WO2009110593A1 - Lubrication system, and universal joint and bearing that use said lubrication system - Google Patents

Lubrication system, and universal joint and bearing that use said lubrication system Download PDF

Info

Publication number
WO2009110593A1
WO2009110593A1 PCT/JP2009/054294 JP2009054294W WO2009110593A1 WO 2009110593 A1 WO2009110593 A1 WO 2009110593A1 JP 2009054294 W JP2009054294 W JP 2009054294W WO 2009110593 A1 WO2009110593 A1 WO 2009110593A1
Authority
WO
WIPO (PCT)
Prior art keywords
lubricating
wax
lubricant
grease
solid lubricant
Prior art date
Application number
PCT/JP2009/054294
Other languages
French (fr)
Japanese (ja)
Inventor
美香 小原
芳英 姫野
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008056749A external-priority patent/JP2009210116A/en
Priority claimed from JP2008056732A external-priority patent/JP5600380B2/en
Priority claimed from JP2008181531A external-priority patent/JP2010018734A/en
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2009110593A1 publication Critical patent/WO2009110593A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • C10M141/06Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic nitrogen-containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M159/00Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
    • C10M159/02Natural products
    • C10M159/06Waxes, e.g. ozocerite, ceresine, petrolatum, slack-wax
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/02Mixtures of base-materials and thickeners
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/06Mixtures of thickeners and additives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6603Special parts or details in view of lubrication with grease as lubricant
    • F16C33/6607Retaining the grease in or near the bearing
    • F16C33/6611Retaining the grease in or near the bearing in a porous or resinous body, e.g. a cage impregnated with the grease
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/14Synthetic waxes, e.g. polythene waxes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/16Paraffin waxes; Petrolatum, e.g. slack wax
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/18Natural waxes, e.g. ceresin, ozocerite, bees wax, carnauba; Degras
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/045Polyureas; Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/02Bearings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • C10N2040/046Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for traction drives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/10Semi-solids; greasy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2060/00Chemical after-treatment of the constituents of the lubricating composition
    • C10N2060/02Reduction, e.g. hydrogenation

Definitions

  • the present invention relates to a lubrication system capable of supplying lubricating oil to a sliding part and a rotating part of a mechanical device, and a universal joint and a bearing using the lubrication system.
  • Lubricants can be broadly divided into liquid lubricants and solid lubricants. Grease with increased lubricating oil and shape retention, and solids that retain liquid lubricant and prevent its splashing and dripping. Lubricants are also known.
  • the solid lubricant has a large lubricating oil retaining force, but lacks flexible deformability. For this reason, if such a solid lubricant is used at a site where external stress such as compression or bending is frequently applied, such as the drive part of a constant velocity joint, it is very difficult to deform following the compression and bending. A large force is required, or a very large stress is applied to the solid lubricant, and a mechanical strength is also required in a portion for holding the solid lubricant.
  • an oil-containing foam obtained by foaming a solid component and filling it with a lubricating oil has been reported.
  • an oil-impregnated foam in which lubricating oil is impregnated with a soft resin that is foamed to form continuous air holes and the lubricating oil is retained in the pores is also used by filling the inside of the bearing or constant velocity joint. It is known (see Patent Document 5). This is because the oil-impregnated foam is compressed following the boot that is deformed by the bending of the constant velocity joint.
  • the liquid lubricant that has oozed out from the oil-containing foam is supplied to a necessary portion, and good lubrication is possible.
  • the oil-impregnated foam of Patent Document 5 is of an impregnated type after impregnating a foamed resin with a lubricating oil, and has flexible deformability according to external force and can follow compression and bending deformation, Since the lubricating oil is not contained in the solid component, the lubricating oil retention force is small, and when used under high speed conditions such as a bearing, there is a possibility that the lubricating oil will quickly escape and be depleted.
  • This oil-impregnated foam can be used in a short period of lubrication or in a closed space, but if it is used in a part that requires a long period of lubrication or in an open space, the supply of lubricating oil will be insufficient, or the oil holding power will be weak. Then, the excess lubricating oil is repeatedly released and absorbed from the pores and constantly flows in the space.
  • the release of the lubricant due to external force or temperature rise may be small.
  • it is desirable that the release of the lubricating component from the resin component is the minimum necessary. If the release speed of the lubricating component is small, the speed at which the necessary amount of lubricant reaches the sliding portion becomes slow. For this reason, the lubricant is depleted and wear and lubrication may be caused even in the sliding portion.
  • the present invention has been made in order to cope with such problems, and improves the lubricating component holding power of the foamed solid lubricant that holds the lubricating component, and the lubricant by deformation and external force of the foamed solid lubricant.
  • a long-life, low-cost lubrication system that can keep the amount of oozing out to the minimum necessary and can supplement the lubrication function even when the lubrication component from the foamed solid lubricant is insufficient.
  • the purpose is to provide universal joints and bearings.
  • the lubrication system of the present invention is a lubrication system in which a foamed solid lubricant containing a lubrication component in a resin that is foamed and cured to be porous, and a grease for auxiliary lubrication coexist in a site to be lubricated.
  • the auxiliary lubricating grease contains at least wax A having a melting point of 70 to 150 ° C.
  • the wax A is at least one selected from fatty acid amides and hydrogenated oil.
  • the lubricating component contains at least one selected from lubricating oils and greases, wax B having a melting point of 70 to 150 ° C., and the wax B is a fatty acid monoamide wax, a hydrogenated oil wax, and a hydrocarbon. It is characterized by being at least one wax selected from system waxes. Further, the fatty acid monoamide wax is at least one selected from stearic acid amide, erucic acid amide, and oleic acid amide.
  • the foamed solid lubricant is characterized in that the resin foamed and cured to become porous has rubber-like elasticity, and the lubricating component contained in the resin has exudability due to deformation of the rubber-like elastic body. To do.
  • the foaming ratio of the resin that is made porous by curing and curing is 1.1 to 100 times.
  • the open cell ratio after foaming / curing of the resin foamed / cured to be porous is 50% or more.
  • the foamed solid lubricant is obtained by foaming and curing a mixture containing the lubricating component, the resin, a curing agent, and a foaming agent, and the lubricating component is at least one selected from lubricating oil and grease.
  • the resin is a urethane prepolymer containing in the molecule 2 to 6% by weight of an isocyanate group in the molecule, the foaming agent is water, and the mixture contains 20 lubricant components with respect to the entire mixture. It is characterized by containing ⁇ 80% by weight and having an open cell ratio of 50% or more after foaming.
  • the urethane prepolymer is at least one urethane prepolymer selected from an ester urethane prepolymer, a caprolactone urethane prepolymer, and an ether urethane prepolymer.
  • the curing agent is an aromatic polyamino compound. Further, the aromatic polyamino compound is an aromatic polyamino compound having a substituent at a position adjacent to the amino group.
  • the foamed solid lubricant is obtained by foaming and curing a mixture containing the lubricating component, the resin, a curing agent, and a foaming agent, the resin is a polyether polyol, and the curing agent is a polyisocyanate.
  • the foaming agent is water, and the lubricating component is contained in an amount of 60 to 80% by weight based on the entire mixture including the resin, the curing agent, the foaming agent, and the lubricating component. To do.
  • the above mixture is characterized in that it is foamed and cured after filling the periphery of the sliding member or in the molding die.
  • the rotational torque is transmitted by the engagement between the track groove and the torque transmission member, and the torque transmission member rolls along the track groove to move in the axial direction.
  • the universal joint used is characterized in that the auxiliary lubricating grease and the foamed solid lubricant coexist in the universal joint. Further, the mixture is filled around the torque transmission member before foaming / curing is completed.
  • the universal joint is a constant velocity universal joint.
  • the bearing of the present invention is a bearing using the lubrication system, and is characterized in that the auxiliary lubricating grease and the foamed solid lubricant coexist in the bearing.
  • the lubrication system of the present invention is a lubrication system in which a foamed solid lubricant containing a lubrication component in a resin that is foamed and cured to be porous, and a grease for auxiliary lubrication coexist in a site to be lubricated. Since the prescribed wax A component is added to the auxiliary lubricating grease, the auxiliary lubricating grease is difficult to move from the sliding part even when an external force such as centrifugal force is applied, and the lubricating oil that exudes from the foamed solid lubricant Even when the components are insufficient, the auxiliary lubricating grease can provide a lubricating function.
  • the lubricating component contains at least one selected from a lubricating oil and a grease B having a melting point of 70 to 150 ° C., and the wax B includes a fatty acid monoamide wax, a hydrogenated oil wax, and By using at least one wax selected from hydrocarbon-based waxes, the amount of the lubricating component released from the foamed solid lubricant can be maintained at the required amount, and even if an external force such as centrifugal force is applied, the lubricating component Can be held in a state where it is difficult to move from the sliding portion.
  • the foamed solid lubricant is formed by foaming and curing a mixture containing a lubricating component, a resin that is foamed and cured to become porous, a curing agent, and a foaming agent. It is held in the foamed and cured resin.
  • This lubricating component is mainly present in the resin, and can be gradually released to the necessary site while keeping the amount of the lubricating component that exudes due to external factors such as compression, bending, twisting, and expansion, for example, to a necessary minimum.
  • the lubrication system of the present invention is characterized in that the foamed solid lubricant and the auxiliary lubricating grease containing the predetermined wax A coexist in the lubrication target portion.
  • Auxiliary lubrication grease is responsible for lubrication until the lubricating component sufficiently oozes out of the foamed solid lubricant at the lubrication target site, and wax A added to the auxiliary lubrication grease suppresses the fluidity of the auxiliary lubrication grease.
  • the lubrication function at the lubrication target part can be maintained for a long period of time.
  • FIG. 1 is a sectional view showing a constant velocity universal joint which is an embodiment of the universal joint of the present invention.
  • the constant velocity universal joint includes an inner member (also referred to as an inner ring) 1, an outer member (also referred to as an outer ring) 2, an inner member side track groove 3, an outer member side track groove 4, and a torque transmission member. (Also referred to as a steel ball) 5, cage 6, shaft 7, boot 8, foamed solid lubricant 9, auxiliary lubricating grease 10 in which a predetermined wax A is blended with grease, and other accessory parts .
  • the auxiliary lubricating grease 10 is accommodated in the bottom portion of the outer member 2, and the foamed solid lubricant 9 is disposed in the vicinity of the torque transmission member 5, so The lubricating grease 10 coexists.
  • FIG. 2 is a sectional view showing a constant velocity universal joint according to another embodiment of the present invention.
  • the constant velocity universal joint includes an inner member (inner ring) 1, an outer member (outer ring) 2, an inner member side track groove 3, an outer member side track groove 4, and a torque transmission member (steel ball). 5, a cage 6, a shaft 7, a boot 8, a foamed solid lubricant 9, an auxiliary lubricating grease 10 in which a predetermined wax A is blended with grease, and other accessory parts.
  • the auxiliary lubricating grease 10 is disposed in a space 7 a provided below the shaft hole of the inner member (inner ring) 1, and the foamed solid lubricant 9 is separated by the outer member side track groove 4 on which the torque transmitting member 5 slides.
  • the foamed solid lubricant 9 and the auxiliary lubricating grease 10 coexist in a form arranged in a space surrounded by the rotation direction.
  • FIG. 3 is a cross-sectional view showing a constant velocity universal joint according to another embodiment of the present invention.
  • the constant velocity universal joint includes an inner member (inner ring) 1, an outer member (outer ring) 2, an inner member side track groove 3, an outer member side track groove 4, and a torque transmission member (steel ball). 5, a cage 6, a shaft 7, a boot 8, a foamed solid lubricant 9, an auxiliary lubricating grease 10 in which a predetermined wax A is blended with grease, and other accessory parts.
  • the auxiliary lubricating grease 10 is arranged in the vicinity of the torque transmission member 5 in the track portion, and the foamed solid lubricant 9 is arranged in a space surrounded by the outer member side track groove 4 on which the torque transmission member 5 slides in the rotation direction.
  • the foamed solid lubricant 9 and the auxiliary lubricating grease 10 coexist.
  • FIG. 4 is a cross-sectional view showing a constant velocity universal joint according to another embodiment of the present invention.
  • the constant velocity universal joint includes an inner member (not shown), an outer member (outer ring) 2, an inner member side track groove (not shown), an outer member side track groove 4, and torque transmission. It comprises a member 5, a cage 6 having eight cage windows 6 a, a shaft 7, a boot 8, a foamed solid lubricant 9, an auxiliary lubricating grease 10 in which a predetermined wax A is blended with grease, and other accessory parts.
  • the auxiliary lubricating grease 10 is accommodated in the vicinity of the torque transmission member 5 of the cage window 6a, and the foamed solid lubricant 9 is in a space surrounded by the outer member side track groove 4 in which the torque transmission member 5 slides in the rotation direction.
  • the foamed solid lubricant 9 and the auxiliary lubricating grease 10 coexist in the form in which they are arranged.
  • the foamed solid lubricant 9 includes a resin component and a lubricant component, and by deforming the resin component, a deformation with respect to external stress is made possible.
  • the lubricating component is occluded not only in the open cells of the foam but also in the resin containing closed cells, and the retained amount of the lubricating component is larger than the retained amount by impregnation in the simply open cells.
  • the lubricant is gradually released from the foamed solid lubricant due to the external force such as compression, bending, and expansion that occurs when the constant velocity universal joint takes an angle. It is.
  • the auxiliary lubricating grease 10 is responsible for lubricating the inside of the universal joint together with a lubricating component that is gradually released from the foamed solid lubricant 9.
  • the absolute amount of the lubricating component present in the universal joint is larger than that of the foamed solid lubricant alone. Therefore, a longer life can be achieved while maintaining the characteristics of reducing the amount of lubricant used, which is a great advantage when using a foamed solid lubricant, and reducing the load on boots and boot bands.
  • FIG. 5 is a sectional view of a deep groove ball bearing which is an embodiment of the bearing of the present invention.
  • the bearing 11 includes an inner ring 12, an outer ring 13 disposed concentrically with the inner ring 12, a plurality of rolling elements 14 interposed between the inner and outer rings, and the plurality of rolling elements 14. It is comprised by the holder
  • a foamed solid lubricant 17 is disposed in a space surrounded by the inner ring 12, the outer ring 13, the rolling elements 14, and the seal member 16, and an auxiliary lubricating grease 18 in which a predetermined wax A is blended with grease is provided.
  • the foamed solid lubricant 17 and the auxiliary lubricating grease 18 coexist in the bearing so as to be disposed in the vicinity of the rolling elements 14 that are rolling portions.
  • FIG. 6 is a cross-sectional view of BJ, which is another embodiment of the universal joint of the present invention
  • FIG. 7 is a cross-sectional view of DOJ, which is another embodiment of the present invention
  • FIG. 8 is another embodiment of the present invention. A cross-sectional view of a certain TJ is shown.
  • the BJ 21 has six or eight track grooves 24, 25 in the axial direction formed at equal angles on the inner surface of the outer member 22 and the outer surface of the spherical inner member 23.
  • 25 is supported by a cage 27, the outer periphery of the cage 27 is a spherical surface 27a, and the inner periphery is a spherical surface 27b that conforms to the outer periphery of the inner member 23.
  • outer periphery of the outer member 22 and the outer periphery of the shaft 28 are covered with a boot 29, and the outer member 22, the spherical inner member 23, the track grooves 24 and 25, the torque transmission member 26, and the cage 27, A foamed solid lubricant 30 containing a lubricating component containing a predetermined wax B is enclosed in a space surrounded by the shaft 28.
  • a lubrication system in which auxiliary lubrication grease formed by blending a predetermined wax A in a universal joint coexists is applied.
  • the DOJ 31 is formed with six or eight track grooves 34, 35 in the axial direction at equal angles on the inner surface of the outer member 32 and the outer surface of the spherical inner member 33.
  • 35 is supported by a cage 37
  • the outer periphery of the cage 37 is a spherical surface 37a
  • the inner periphery is a spherical surface 37b that conforms to the outer periphery of the inner member 33
  • each of the spherical surfaces 37a, 37b The positions of the centers (A) and (B) are shifted in the axial direction on the axial center of the outer member 32.
  • outer periphery of the outer member 32 and the outer periphery of the shaft 38 are covered with a boot 39, and the outer member 32, the spherical inner member 33, the track grooves 34 and 35, the torque transmission member 36, and the cage 37, A foamed solid lubricant 40 containing a lubricating component containing a predetermined wax B is enclosed in a space surrounded by the shaft 38.
  • a lubrication system in which auxiliary lubrication grease formed by blending a predetermined wax A in a universal joint coexists is applied.
  • TJ 41 has three cylindrical track grooves 43 in the axial direction formed at equal angles on the inner surface of outer member 42, and three tripod members 44 incorporated inside outer member 42 have three Leg shafts 45, spherical rollers 46 serving as torque transmission members are fitted to the outer sides of the respective leg shafts 45, and needles 47 are incorporated between the spherical rollers 46 serving as torque transmission members and the leg shafts 45 to generate torque.
  • a spherical roller 46 as a transmission member is supported so as to be rotatable and slidable in the axial direction, and the spherical roller 46 as a torque transmission member is fitted into the track groove 43.
  • outer periphery of the outer member 42 and the outer periphery of the shaft 48 are covered with a boot 49, and a predetermined wax B is applied to a space surrounded by the outer member 42, the track groove 43, the tripod member 44, and the shaft 48.
  • a foamed solid lubricant 50 containing the contained lubricating component is enclosed.
  • a lubrication system in which auxiliary lubrication grease formed by blending a predetermined wax A in a universal joint coexists is applied.
  • FIG. 9 is a cross-sectional view of a deep groove ball bearing which is another embodiment of the bearing of the present invention.
  • an inner ring 52 having an inner ring rolling surface 52a on the outer peripheral surface and an outer ring 53 having an outer ring rolling surface 53a on the inner peripheral surface are arranged concentrically, and the inner ring rolling surface 52a.
  • a plurality of rolling elements 54 are arranged between the outer ring rolling surface 53a and the outer ring rolling surface 53a.
  • the rolling element 54 is held by a cage 55, and a foamed solid lubricant 57 containing a lubricating component containing a predetermined wax B is enclosed at least around the rolling element 54.
  • a lubrication system in which auxiliary lubrication grease formed by blending a predetermined wax A in a bearing coexists is applied.
  • the seal member 56 is fixed to the outer ring 53 and the like at the axial end openings 58a and 58b of the inner ring 52 and the outer ring 53, respectively.
  • the seal member 56 prevents leakage of a lubricating component that is gradually released from the foamed solid lubricant 57 and the like.
  • the foamed solid lubricant used in the present invention releases the lubricating component to the outside due to external stresses such as centrifugal force, compression, bending, and expansion, so that the lubricating component does not ooze out from the foamed solid lubricant. If the lubricating component is exhausted, the lubricating component may not be sufficiently present in the sliding portion. In the present invention, by using the auxiliary lubricating grease together, it is possible to make up for the shortage of the lubricating component that oozes out from the foamed solid lubricant.
  • the auxiliary lubricating grease containing the predetermined wax A it becomes easier to move the lubricant to the sliding portion.
  • the lubricating component oozes out from the solid foam lubricant by using the auxiliary lubricating grease. We can make up for the shortage.
  • the amount of the lubricating component released from the foamed solid lubricant can be maintained at a required amount, and an external force such as centrifugal force can be maintained. Even if added, the lubricating component can be held in a state in which it is difficult to move from the sliding portion. Further, even if the sliding portion is in a metal contact state due to a temporary lack of lubricant locally, the temperature rises due to the metal contact, so that the wax B component in the lubricating component of the foamed solid lubricant is melted.
  • the lubricant Since the fluidity is improved, the lubricant is quickly supplied to the sliding portion, and a smooth lubrication state can be maintained. For this reason, the lubrication function is continuously carried out without a shortage of lubricant (to improve the balance between outflow and supply) in the sliding portion of a mechanical element such as a bearing or universal joint in which a foamed solid lubricant is enclosed. Can fully fulfill.
  • the foamed solid lubricant used in the present invention requires much less energy when bent compared to non-foamed materials, and can be flexibly deformed while maintaining a high density of lubricating components such as lubricating oil. Therefore, even if the foamed solid lubricant shrinks in the process of cooling after solidifying the foamed solid lubricant inside the constant velocity universal joint, for example, it is necessary for bending and deformation even if the steel ball of the constant velocity universal joint is embraced Since the energy is small, it can be easily deformed and the problem of increased rotational torque can be prevented. Moreover, since it has many foamed parts, ie, a porous part, it is advantageous also at the point of weight reduction.
  • the foamed solid lubricant used in the present invention only foams and cures a mixture containing a lubricating component and a resin component, no special equipment is required, and it can be filled and molded in any place. Is possible. Further, the density of the foamed solid lubricant can be changed by controlling the blending amount of the blending components of the mixture.
  • the foamed and hardened resin constituting the foamed solid lubricant is preferably a resin having rubber-like elasticity after foaming and curing and having a lubricating component exuding property due to deformation.
  • Foaming / curing may be in a form in which foaming / curing is performed when the resin is produced, or in a form in which a foaming agent is blended with the resin and foaming / curing is performed in molding.
  • curing means a cross-linking reaction and / or a phenomenon in which a liquid is solidified.
  • the rubber-like elasticity means rubber elasticity and means that deformation applied by an external force returns to the original shape by eliminating the external force.
  • the foamed solid lubricant of the present invention is a foamed solid lubricant obtained by foaming and curing the urethane prepolymer or the like to make it porous, and having a lubricating component occluded inside the resin.
  • This foamed solid lubricant has excellent lubricating component holding power, and can be manufactured at a low cost while suppressing the amount of the lubricating component oozed out even if it is deformed by an external force.
  • the urethane prepolymer that can be used in the present invention is obtained by a reaction between a compound having an active hydrogen group and a polyisocyanate, and the isocyanate group is contained at the end of the molecular chain or at the end of the side chain branched from within the molecular chain. It may be.
  • the urethane prepolymer may have a urethane bond in the molecular chain.
  • Ether ethers include Takenate L-1170 (Mitsui Chemical Polyurethane), L-1158 (Mitsui Chemical Polyurethane), and Coronate 4090 (Nippon Polyurethane).
  • ester type examples include Coronate 4047 (manufactured by Nippon Polyurethane Co., Ltd.), and caprolactone type includes Takenate L-1350 (manufactured by Mitsui Chemical Polyurethane Co., Ltd.), Takenate L-1680 (manufactured by Mitsui Chemical Polyurethane Co., Ltd.), and Sianaprene 7-QM. (Manufactured by Mitsui Chemicals Polyurethane), Plaxel EP1130 (manufactured by Daicel Chemical Industries) and the like.
  • oligomers or prepolymer compounds whose terminal groups are modified with isocyanate groups can be used.
  • examples of such a compound include a terminal isocyanate-modified polyether polyol and an isocyanate-modified product of a hydroxyl group-terminated polybutadiene.
  • Examples of the terminal isocyanate-modified polyether polyol include Coronate 1050 (manufactured by Nippon Polyurethane Co., Ltd.).
  • examples of the isocyanate-modified product of hydroxyl-terminated polybutadiene include poly-bd MC50 (made by Idemitsu Kosan Co., Ltd.) and poly-bd HTP9 (made by Idemitsu Kosan Co., Ltd.).
  • urethane prepolymers can be used in a mixture of 2 or more types depending on the desired mechanical properties.
  • a urethane prepolymer having an isocyanate group content of 2% by weight or more and less than 6% by weight or less can be used. If the content of isocyanate groups (-NCO) is less than 2% by weight, it becomes difficult to achieve both foaming and elasticity, and if it is more than 6% by weight, the hardness becomes too high and the resilience increases and deformation due to external force. It becomes easy to generate heat when receiving.
  • isocyanate groups (-NCO) is less than 2% by weight, it becomes difficult to achieve both foaming and elasticity, and if it is more than 6% by weight, the hardness becomes too high and the resilience increases and deformation due to external force. It becomes easy to generate heat when receiving.
  • a blocked isocyanate in which the isocyanate group is blocked with a blocking agent such as phenols, lactams, alcohols and oximes can be used.
  • the curing agent for curing the urethane prepolymer is preferably a compound having active hydrogen, and examples thereof include a polyamino compound having a functional group as an amino group and a polyol compound having a functional group as a hydroxyl group.
  • Polyamino compounds include 3,3'-dichloro-4,4'-diaminodiphenylmethane (hereinafter referred to as MOCA), 3,3'-dimethyl-4,4'-diaminodiphenylmethane, and 3,3'-dimethoxy-4.
  • MOCA 3,3'-dichloro-4,4'-diaminodiphenylmethane
  • 3'-dimethyl-4,4'-diaminodiphenylmethane 3,3'-dimethoxy-4.
  • aromatic amino compounds are preferable because of low cost and excellent physical properties, and aromatic diamino compounds having a substituent at the position adjacent to the amino group are particularly preferable.
  • aromatic diamino compounds having a substituent at the position adjacent to the amino group are particularly preferable.
  • the reactivity of the amino group is suppressed by the substituent at the adjacent position because it undergoes a step of curing together with foaming.
  • the urethane prepolymer When the urethane prepolymer is cured with a polyamino compound, it becomes a foamed solid lubricant having urethane and urea bonds in the molecule.
  • a foamed solid lubricant having urethane and urea bonds in the molecule.
  • the urethane bond density in the molecule is lowered, and elongation and impact resilience are improved.
  • rigidity can be provided by generating a urea bond.
  • polyol compound examples include low molecular polyols such as 1,4-butane glycol and trimethylolpropane, polyether polyols, castor oil polyols, and polyester polyols. Of the polyol compounds, trimethylolpropane is preferred.
  • the ratio of the isocyanate group contained in the urethane prepolymer, the amino group (—NH 2 ) or hydroxyl group (—OH) of the curing agent, and the hydroxyl group of water (—OH) as the foaming agent, Flexibility, elasticity, etc. are determined.
  • the resin component examples include polyether polyol.
  • the polyether polyol examples include alkylene oxide (alkylene oxide having 2 to 4 carbon atoms, for example, ethylene oxide, propylene oxide, butylene oxide) adducts of low molecular polyols and ring-opening polymers of alkylene oxides.
  • Polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol are included.
  • polyether polyol trade name Preminol manufactured by Asahi Glass Co., Ltd. may be mentioned.
  • Preminol is a polyether polyol having a molecular weight of 5,000-12,000.
  • Examples of the polyisocyanate used as a curing agent for curing the polyether polyol include diphenylmethane diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate and mixtures thereof, 1,5-naphthylene diisocyanate, 1, Examples include 3-phenylene diisocyanate and 1,4-phenylene diisocyanate.
  • Examples of commercially available products include Nippon Polyurethane Co., Ltd .: Coronate T80.
  • the lubricating component that can be used in the present invention can be used as long as it does not dissolve the solid component forming the foam.
  • lubricating component for example, lubricating oil, grease, wax or the like can be used alone or in combination.
  • Particularly preferred are hydrocarbon-based lubricants, hydrocarbon-based greases, or mixtures of hydrocarbon-based lubricants and hydrocarbon-based greases.
  • hydrocarbon-based lubricating oils examples include paraffinic and naphthenic mineral oils, hydrocarbon synthetic oils, GTL base oils, and the like. These can be used alone or as a mixed oil.
  • ester synthetic oils, ether synthetic oils, fluorine oils, silicone oils and the like can also be used. These can be used alone or as a mixed oil.
  • the hydrocarbon grease is a grease having a hydrocarbon oil as a base oil
  • examples of the base oil include the above-described hydrocarbon lubricants.
  • examples of the thickener include lithium soaps, lithium complex soaps, calcium soaps, calcium complex soaps, aluminum soaps, aluminum complex soaps, and other urea compounds such as diurea compounds and polyurea compounds. It is not a thing.
  • the diurea compound is obtained by the reaction of diisocyanate and monoamine
  • the polyurea compound is obtained by the reaction of diisocyanate and polyamine.
  • greases based on ester-based synthetic oils, ether-based synthetic oils, GTL base oils, fluorine oils, silicone oils and the like can also be used.
  • wax B By adding wax B to the above-mentioned lubricating component in the foamed solid lubricant, it is possible to suppress the fluidity at a relatively low temperature (normal temperature) and remain at the site where lubrication is necessary. When the temperature rises, the wax B dissolves, so that the fluidity of the lubricating component is improved and the lubricant is quickly supplied to the place where the lubricant is required.
  • the wax B added to the lubricating component of the foamed solid lubricant has a melting point of 70 to 150 ° C., and when the wax B has an amide bond in the molecule, the amide bond is a monoamide bond. If the melting point is less than 70 ° C., the temperature at which the softening (fluidity increases) is low, so the fluid may flow more than necessary and the lubricant may move from the place where it is necessary. If the melting point exceeds 150 ° C., the melting point is too high and the wax B may not melt when necessary, and the desired fluidity may not be improved, and supply of the lubricating component to the sliding portion may be delayed.
  • the melting point of the wax B is high, it is necessary to raise the lubricating component to a high temperature when the wax B is melted / dispersed, which causes deterioration of the lubricating component itself.
  • those having two or more amide bonds in the wax molecule such as ethylene bis stearamide are not suitable. This is because the resin component is not cured when the foamed solid lubricant is produced. The reason for this is not clear, but it is considered that a wax having two or more amide bonds inevitably has a high molecular weight, and therefore compatibility with urethane molecules occurs.
  • the wax B added to the lubricating component is preferably at least one wax selected from fatty acid monoamide wax, hydrogenated oil wax, and hydrocarbon wax.
  • fatty acid monoamide wax either a saturated fatty acid monoamide or an unsaturated fatty acid monoamide can be used.
  • Preferred fatty acid monoamides include stearic acid amide, oleic acid amide, erucic acid amide and the like.
  • the hydrogen-cured oil-based wax include hardened castor oil, and examples of the hydrocarbon-based wax include paraffin wax.
  • the resin component of the foamed solid lubricant used in the present invention is polyurethane, fatty acid monoamide is particularly preferred among the waxes B.
  • the fatty acid monoamides at least selected from stearic acid amide, oleic acid amide, and erucic acid amide. Most preferably, one is used.
  • the amount of wax B added to the lubricating component of the foamed solid lubricant is from 1% to 15% by weight, more preferably from 2% to 10% by weight, based on the amount of the lubricating component. If it is less than 1% by weight, the fluidity at normal temperature cannot be lowered, and if it exceeds 15% by weight, the fluidity of the lubricating component is too low, and it is not preferable because it is difficult to reach the place where lubrication is required.
  • these waxes B may be added as one of raw materials when preparing the foamed solid lubricant, or heated in advance to the melting point of the wax B in which all or part of the lubricating component is employed. In addition, they may be mixed uniformly. When the melting point of the wax B is equal to or higher than the production temperature of the foamed solid lubricant, the latter method is preferably used.
  • the means for foaming the foamed solid lubricant uses an isocyanate compound as a raw material, and therefore preferably uses water that reacts with the isocyanate compound to generate carbon dioxide gas.
  • a catalyst as necessary, and for example, a tertiary amine catalyst or an organometallic catalyst is used.
  • a tertiary amine catalyst include monoamines, diamines, triamines, cyclic amines, alcohol amines, ether amines, imidazole derivatives, and acid block amine catalysts.
  • organometallic catalysts include stanaoctate, dibutyltin diacetate, dibutyltin dilaurate, dibutyltin mercaptide, dibutyltin thiocarboxylate, dibutyltin maleate, dioctyltin dimercaptide, dioctyltin thiocarboxylate, octenoate, etc. Is mentioned. Moreover, you may mix and use these multiple types for the purpose of adjusting the balance of reaction.
  • the foamed solid lubricant is a mixture containing the lubricating component (adding wax B as required), a resin component such as the urethane prepolymer or the polyether polyol, a curing agent, and a foaming agent. Obtained by foaming and curing.
  • the blending ratio of the lubricating component is 20 to 80% by weight, preferably 40 to 60% by weight, based on the entire mixture.
  • the lubricating component is less than 20% by weight, the supply amount of the lubricating oil or the like is so small that the function as the foamed solid lubricant cannot be exhibited.
  • the blending ratio of the lubricating component is 60 to 80% by weight with respect to the entire mixture.
  • the lubricating component is less than 60% by weight, the supply amount of the lubricating oil or the like is so small that the function as the foamed solid lubricant cannot be exhibited, and when it is more than 80% by weight, it may not solidify.
  • various additives such as pigments, antistatic agents, flame retardants, antifungal agents and fillers can be added to the solid foamed lubricant as necessary.
  • solid lubricants such as molybdenum disulfide and graphite, friction modifiers such as organic molybdenum, oily agents such as amines, fatty acids, and fats, antioxidants such as amines and phenols, petroleum sulfonates, dinonylnaphthalene sulfone Rust inhibitors such as nates and sorbitan esters, extreme pressure agents such as sulfur and sulfur-phosphorus, antiwear agents such as organic zinc and phosphorus, metal deactivators such as benzotriazole and sodium nitrite, polymethacrylate, polystyrene
  • additives such as a viscosity index improver such as
  • the method of mixing each component when producing the foamed solid lubricant is not particularly limited, and for example, mixing is performed using a commonly used stirrer such as a Henschel mixer, a ribbon mixer, a juicer mixer, a mixing head, or the like. be able to.
  • the mixture preferably uses a surfactant such as a commercially available silicone foam stabilizer, and each raw material molecule is preferably dispersed uniformly. Further, the surface tension can be controlled by the type of the foam stabilizer, and the type of the generated bubbles can be controlled to open cells or closed cells.
  • surfactants include anionic surfactants, nonionic surfactants, cationic surfactants, amphoteric surfactants, silicone surfactants, and fluorine surfactants.
  • a reactive impregnation method in which a foaming reaction and a curing reaction are simultaneously performed in the presence of a lubricating component such as a lubricating oil, in order to simultaneously achieve a high filling of the lubricating component and a high elongation of material properties at the same time.
  • a lubricating component such as a lubricating oil
  • the bubbles formed in the foam in the foam formation stage are uniformly impregnated with the lubrication component, and the lubrication component is occluded in the foamed / cured resin to increase the filling of the lubrication component and improve the material properties.
  • High elongation is considered to be compatible.
  • the foam impregnated in advance and the impregnation method impregnating this with the lubricating component does not have sufficient lubricating component retention.
  • the lubricant is released in a short period of time, and the lubricating component is supplied when used for a long time. It becomes insufficient.
  • the open cell ratio of the foamed solid lubricant after foaming is 50% or more, preferably 50% or more and 90% or less.
  • the open cell ratio is less than 50%, the ratio of the resin component (solid component) lubricating oil temporarily taken up in the closed cells increases and may not be supplied to the outside when necessary.
  • it exceeds ⁇ 90% there is a risk that it will be disadvantageous for long-term use due to a decrease in the oil retention of the lubricant and an increase in the amount of lubricant released, or the strength (durability) of the foamed solid lubricant itself may be reduced. I get out.
  • the lubricating component taken into the closed cells is slowly released compared with the lubricating component taken into the open cells, and the sustained release can be continued for a long time.
  • the open cell ratio of the foamed solid lubricant can be calculated by the following procedure. (1) The foamed solid lubricant that has been foam-cured is cut into an appropriate size to obtain sample A. The weight of sample A is measured. (2) Soxhlet A is washed for 3 hours (solvent: petroleum benzine). Then leave it in a thermostatic bath at 80 ° C for 2 hours to completely dry the organic solvent and obtain Sample B. The weight of sample B is measured. (3) The open cell ratio is calculated by the following procedure.
  • Open cell ratio (1 ⁇ (weight of resin component of sample B ⁇ weight of resin component of sample A) / weight of lubricating component of sample A) ⁇ 100
  • the resin component weight and the lubrication component weight of Samples A and B are calculated by multiplying the weights of Samples A and B by the composition charge ratio. Lubricating components taken into discontinuous closed cells are not released to the outside by Soxhlet cleaning for 3 hours, so the weight of sample B is not reduced.
  • the open cell ratio can be calculated as the release of the lubricating component.
  • the foaming ratio of the foamed solid lubricant should be at least 1.1 and less than 100 times.
  • the expansion ratio is 1.1 or less, the bubble volume is small and deformation cannot be allowed when external stress is applied. Moreover, when it is 100 times or more, it is difficult to obtain a strength that can withstand external stress.
  • the expansion ratio is preferably 1.1 times to 10 times.
  • the foamed solid lubricant may be foamed and cured after pouring a mixture containing a lubricating component and resin into a lubrication target member such as a universal joint or a bearing, and after foaming and curing at normal pressure, cutting, grinding, etc. Then, it can be post-processed into the target shape and incorporated into the member to be lubricated.
  • a lubrication target member such as a universal joint or a bearing
  • a method of pouring the resin into the lubrication target member before foaming / curing and foaming / curing in the member By adopting this method, the manufacturing process is simplified and the cost can be reduced.
  • a lubrication object member a ball screw, a linear guide, a spherical bush, etc. other than the said constant velocity universal joint and a bearing are mentioned.
  • the thickener and base oil of the auxiliary lubricating grease that can coexist with the foamed solid lubricant in the present invention
  • those exemplified as an example of the lubricating component in the foamed solid lubricant can be used.
  • various additives can be included.
  • the present invention by adding wax A to the auxiliary lubricating grease, it is possible to suppress the fluidity at a relatively low temperature (normal temperature) and to remain at the site where lubrication is required.
  • a relatively low temperature normal temperature
  • the wax A melts, so that the fluidity of the auxiliary lubricating grease is improved, and the lubricant is quickly supplied to the place where the lubricant is required.
  • auxiliary lubricating grease has a melting point in the range of 70-150 °C. If the melting point is less than °C 70 ° C, the temperature at which it softens (increases fluidity) is low, so there is a risk that it will flow more than necessary and the lubricant may move from where it is needed. . When the temperature exceeds 150 ° C., the melting point is too high and the wax A may not melt when necessary, and the target fluidity may not be improved, and the supply of the lubricating component to the sliding portion may be delayed. If the melting point of the wax A is high, it is necessary to raise the auxiliary lubricating grease to a high temperature when the wax A is melted / dispersed, which causes deterioration of the auxiliary lubricating grease itself.
  • the wax A used for the auxiliary lubricating grease is preferably selected from at least one of fatty acid amide and hydrogenated oil.
  • the fatty acid amide may be a saturated fatty acid amide or an unsaturated fatty acid amide.
  • Preferable fatty acid amides include stearic acid amide, oleic acid amide, erucic acid amide, and ethylenebisstearic acid amide.
  • Examples of hydrogenated oil include hardened castor oil.
  • the amount of wax A used in the auxiliary lubricating grease is from 1% by weight to less than 15% by weight, more preferably from 2 to 10% by weight, based on the entire auxiliary lubricating grease. If the amount is less than 1% by weight, the fluidity at normal temperature cannot be lowered. If the amount is 15% by weight or more, the auxiliary lubricating grease becomes too hard to be supplied to a place requiring lubrication. When these waxes A are added to the auxiliary lubricating grease, it is preferable that the auxiliary lubricating grease is heated and uniformly mixed with the melting point of the selected wax A or higher.
  • the amount of auxiliary lubricating grease that can coexist with the foamed solid lubricant is preferably 1 to 60% by volume of the space volume to be lubricated. More preferably, it is 3 to 40% by volume. If the amount is less than 1% by volume, the amount of grease is insufficient. If the amount is more than 60% by volume, the amount of the foamed solid lubricant that contributes to lubrication over a long period of time decreases, resulting in a problem in durability.
  • the method of enclosing the auxiliary lubricating grease in the lubrication target portion is not limited.
  • auxiliary lubricating grease may be applied to the lubrication target part or its parts, or after filling the lubrication target part with the foamed solid lubricant, the syringe (or It is also possible to inject it to the target place with something similar to that.
  • the place where the auxiliary lubricating grease is enclosed or applied in the lubrication system is not particularly limited, but it is preferable to enclose or apply it near the sliding portion of the lubrication target part.
  • the auxiliary lubricating grease enclosed or applied can gradually move to the sliding portion of the lubrication target portion due to the centrifugal force or bending motion of the lubrication target portion, and can contribute to lubrication.
  • the place where the auxiliary lubricating grease is filled or applied in the universal joint is not particularly limited as long as it can reach the rolling part and the sliding part in the joint at the start of the universal joint. Preferably, it is the vicinity of the sliding part and rolling part in a universal joint.
  • Specific parts of the constant velocity universal joint include the outer member bottom, the shaft of the inner member (inner ring), the torque transmission member of the track, the cage inner and outer surfaces, the cage window, and the outer
  • the spherical portion of member-cage-inner member can be mentioned (see FIGS. 1 to 4).
  • the auxiliary lubricating grease may be enclosed or applied in the universal joint or its parts before filling the universal joint with the foamed solid lubricant.
  • the auxiliary lubricating grease may be injected into a target location with a syringe (or similar one) (see FIGS. 1 to 4).
  • Examples of using the universal joint of the present invention for a constant velocity universal joint include an undercut free joint (hereinafter referred to as UJ) in addition to BJ.
  • UJ undercut free joint
  • the number of torque transmitting members (balls) of such BJ and UJ may be 6 or 8.
  • a foamed solid lubricant is sealed in BJ or UJ, the lubricant is filled only in the necessary parts, which contributes to cost reduction and weight reduction, and because the operating angle used is large, it is compressed. ⁇ It is easy to bend and the lubricant is easily supplied to the sliding part.
  • examples of use for sliding type constant velocity universal joints include DOJ, TJ, and cross groove joint.
  • a cross joint etc. are mentioned as an inconstant velocity universal joint.
  • the bearing of the present invention is not limited to the bearing described in the embodiment, and can be widely applied to various types of rolling bearings. Examples include angular contact ball bearings, thrust ball bearings, cylindrical roller bearings, needle roller bearings, thrust cylindrical roller bearings, thrust needle roller bearings, tapered roller bearings, thrust tapered roller bearings, self-aligning ball bearings, and self-aligning rollers. Examples include bearings, thrust spherical roller bearings, and plain bearings.
  • auxiliary lubricating grease A to auxiliary lubricating grease H used in Examples 1 to 8 and Comparative Examples 1 to 4 were prepared by the following method.
  • Auxiliary lubrication grease A Base grease by uniformly dispersing 9.16 g of diphenylmethane-4,4-diisocyanate and 7.84 g of p-toluidine in 83 g of mineral oil (manufactured by Nippon Oil Corporation: Turbine 100) Got. To this base grease, 10% by weight of stearamide (manufactured by Kao Corporation: fatty acid amide T melting point 97-102 ° C.) was added, heated to 110 ° C. and stirred well to obtain grease A for auxiliary lubrication.
  • stearamide manufactured by Kao Corporation: fatty acid amide T melting point 97-102 ° C.
  • Auxiliary lubrication grease B Base grease by uniformly dispersing 9.16 g of diphenylmethane-4,4-diisocyanate and 7.84 g of p-toluidine in 83 g of mineral oil (manufactured by Nippon Oil Corporation: Turbine 100) Got. To this base grease, 3% by weight of stearic acid amide (manufactured by Kao Corporation: fatty acid amide T melting point 97-102 ° C.) was added, heated to 110 ° C. and stirred well to obtain auxiliary lubricating grease B.
  • stearic acid amide manufactured by Kao Corporation: fatty acid amide T melting point 97-102 ° C.
  • Auxiliary lubrication grease C Base grease by uniformly dispersing 9.16 g of diphenylmethane-4,4-diisocyanate and 7.84 g of p-toluidine in 83 g of mineral oil (manufactured by Nippon Oil Corporation: Turbine 100) Got. To this base grease, 5% by weight of ethylene bis-stearic acid amide (manufactured by Kao Corporation: fatty acid amide EB-G melting point 141.5-146.5 ° C) was added, heated to 150 ° C, stirred well, and supplementary lubricating grease C Got.
  • ethylene bis-stearic acid amide manufactured by Kao Corporation: fatty acid amide EB-G melting point 141.5-146.5 ° C
  • Auxiliary lubrication grease D In 92 g of mineral oil (manufactured by Nippon Oil Corporation: Turbine 100), 3.94 g of diphenylmethane-4,4-diisocyanate and 4.07 g of octylamine were reacted, and the resulting diurea compound was uniformly dispersed to form a base grease. Obtained. To this base grease, 5% by weight of erucic acid amide (manufactured by Kao Corporation: fatty acid amide E melting point 79-85 ° C.) was added, heated to 100 ° C. and stirred well to obtain auxiliary lubricating grease D.
  • mineral oil manufactured by Nippon Oil Corporation: Turbine 100
  • erucic acid amide manufactured by Kao Corporation: fatty acid amide E melting point 79-85 ° C.
  • Auxiliary lubrication grease E In 92 g of mineral oil (manufactured by Nippon Oil Corporation: Turbine 100), 3.94 g of diphenylmethane-4,4-diisocyanate and 4.07 g of octylamine were reacted, and the resulting diurea compound was uniformly dispersed to form a base grease. Obtained. To this base grease, 5% by weight of oleic acid amide (manufactured by Kao Corporation: fatty acid amide —N melting point 70-75 ° C) was added, and the mixture was heated to 100 ° C and stirred well to obtain auxiliary lubricating grease E It was.
  • mineral oil manufactured by Nippon Oil Corporation: Turbine 100
  • oleic acid amide manufactured by Kao Corporation: fatty acid amide —N melting point 70-75 ° C
  • Auxiliary lubrication grease F In 92 g of mineral oil (manufactured by Nippon Oil Corporation: Turbine 100), 3.94 g of diphenylmethane-4,4-diisocyanate and 4.07 g of octylamine were reacted, and the resulting diurea compound was uniformly dispersed to form a base grease. Obtained. To this base grease, 5% by weight of hardened castor oil (manufactured by Kao Corporation: Kao wax 85-P melting point 85-87 ° C) was added, heated to 100 ° C and stirred well to obtain auxiliary lubricating grease F .
  • Auxiliary lubrication grease G Base grease by uniformly dispersing 9.16 g of diphenylmethane-4,4-diisocyanate and 7.84 g of p-toluidine in 83 g of mineral oil (manufactured by Nippon Oil Corporation: Turbine 100) Got. To this base grease, 5% by weight of paraffin wax (manufactured by Nippon Seiwa Co., Ltd .: HNP-5 melting point 62 ° C.) was added, heated to 80 ° C. and stirred well to obtain auxiliary lubricating grease G.
  • paraffin wax manufactured by Nippon Seiwa Co., Ltd .: HNP-5 melting point 62 ° C.
  • Auxiliary lubrication grease H Base grease by uniformly dispersing 9.16 g of diphenylmethane-4,4-diisocyanate and 7.84 g of p-toluidine in 83 g of mineral oil (manufactured by Nippon Oil Corporation: Turbine 100) Got. To this base grease, 15% by weight of stearamide (manufactured by Kao Corporation: fatty acid amide T melting point 97 to 102 ° C.) was added, heated to 110 ° C. and stirred well to obtain auxiliary lubricating grease H.
  • stearamide manufactured by Kao Corporation: fatty acid amide T melting point 97 to 102 ° C.
  • Example 7 Example 8, Comparative Example 2 and Comparative Example 4
  • an outer member 2 an inner member 1, a cage 6 and a steel ball 5 which is a torque transmission member are assembled into a fixed eight ball joint sub-assy (manufactured by NTN: EBJ82 outer diameter size 72.6 mm), 5 g of auxiliary lubricating grease shown in Table 1 was sealed at the bottom of the outer member.
  • component amounts (composition) shown in Table 1 silicone-based foam stabilizer, mineral oil, amine-based catalyst, and water as a blowing agent were added to the polyether polyol, and the mixture was heated at 90 ° C. and stirred well.
  • Comparative Example 2 and Comparative Example 4 the open cell ratio of the foamed solid lubricant was less than 50%, so that the lubricant was sufficiently supplied to the necessary parts (sliding parts such as ball-track parts and cage spherical parts). I guess it didn't exist.
  • Comparative Example 3 since the amount of wax A added to the auxiliary lubricating grease was 15% by weight, there was little outflow of the lubricating component to the boot side. However, since the fluidity of the lubrication component is too low, it is difficult to move the lubrication component even in the joint, and the lubricant is not sufficiently supplied to the necessary part (sliding part such as ball-track part and cage spherical part). I guess.
  • Example 9 and Example 10 Of the compositions shown in Table 2, (a), (d), (e) and (i) were mixed well at 80 ° C, and then the amine curing agent (b) dissolved at 120 ° C was added and mixed quickly. . Finally, water (c) and an amine catalyst (h) were added and the mixture obtained by stirring was filled in the internal space of a taper bearing (NTN Corporation: 30204 outer diameter size 47 mm). After a few seconds, the foaming reaction started and allowed to stand at 100 ° C. for 30 minutes to cure. Then, 0.3 g of the auxiliary lubricating grease was injected into the vicinity of the rolling element with a syringe (see FIG. 5). A specimen was obtained.
  • the obtained test piece was subjected to the following initial characteristic test and life test, and the state of appearance of the initial characteristic and the life time were measured. Further, the open cell ratio of the foamed solid lubricant was measured based on the above-mentioned method for calculating the open cell ratio. These results are also shown in Table 2.
  • Example 11 and Example 12 Add silicone-based foam stabilizer (d), lubricating oil (i), amine-based catalyst (h) and water (c) as blowing agent to polyether polyol (g) with the composition shown in Table 2, and heat at 90 ° C. Stir well.
  • the mixture obtained by adding isocyanate to this and stirring well was filled in the internal space of a taper bearing (NTN Corporation: 30204 outer diameter size 47 mm). After a few seconds, the foaming reaction started. After standing for 15 minutes at 90 ° C. and curing, 0.3 g of the auxiliary lubricating grease was injected into the vicinity of the rolling element with a syringe (see FIG. 5). A specimen was obtained. The same items as in Example 9 were measured. The results are also shown in Table 2.
  • Comparative Example 5 Bearing test specimens having the compositions shown in Table 2 were prepared in the same procedure as in Example 9 and Example 10, but no auxiliary lubricating grease was enclosed. The same items as in Example 9 were measured. The results are also shown in Table 2.
  • Comparative Example 6 Bearing test specimens having the composition shown in Table 2 were prepared in the same manner as in Examples 11 and 12, but no auxiliary lubricating grease was enclosed. The same items as in Example 9 were measured. The results are also shown in Table 2.
  • Examples 13 to 16 and Comparative Example 7 First, as shown in FIG. 2, an outer member 2, an inner member 1, a cage 6 and a steel ball 5 which is a torque transmission member are assembled into a fixed eight ball joint sub-assy (manufactured by NTN: EBJ82 outer diameter size 72.6 mm) was prepared, and (a), (d), (e), (i) among the compositions shown in Table 3 were mixed well at 80 ° C. and then dissolved at 120 ° C. (b), (h) And mixed quickly. Finally, (c) was added and stirred, and then 15.0 g was sealed in the joint subassembly. After a few seconds, the foaming reaction started.
  • NTN EBJ82 outer diameter size 72.6 mm
  • the foamed solid lubricant in the constant velocity universal joint was cured by allowing it to stand for 30 minutes in a thermostatic bath set at 100 ° C. to cure. After that, 5 g of auxiliary lubricating grease is sealed in the space 7 a provided below the shaft hole of the inner member 1, and other sections such as boots and shafts are assembled, and the solid foam lubricant and auxiliary lubricating grease are contained inside.
  • a test piece of a constant velocity universal joint coexisting with was obtained (see FIG. 2). About the obtained test piece and the foaming solid lubricant in a test piece, the item similar to Example 1 was measured. These results are also shown in Table 3.
  • Reference Example 11 and Reference Example 12 Add silicone-based foam stabilizer (d), lubricating oil (i), amine-based catalyst (h) and water (c) as blowing agent to polyether polyol (g) with the composition shown in Table 5, and heat at 90 ° C. Stir well.
  • the mixture obtained by adding isocyanate to this and stirring well was filled in the internal space of a taper bearing (NTN Corporation: 30204 outer diameter size 47 mm). After a few seconds, the foaming reaction started, and it was left to cure at 90 ° C. for 15 minutes to obtain a bearing test piece in which a foamed solid lubricant was enclosed.
  • the same items as in Reference Example 9 were measured. The results are also shown in Table 5.
  • Reference Comparative Example 3 Bearing test pieces were prepared in the same manner as in Reference Example 9 and Reference Example 10 with the compositions shown in Table 5, but the foamed solid lubricant was not cured (solidified).
  • Reference Comparative Example 4 Bearing test pieces were prepared in the same manner as in Reference Example 11 and Reference Example 12 with the compositions shown in Table 5, but wax B was not added to the lubricating component. The same items as in Reference Example 9 were measured. The results are also shown in Table 5.
  • the lubrication system of the present invention can improve the lubricating component retention of the foamed solid lubricant that retains the lubricating component, and can suppress the amount of lubricant oozing due to deformation of the foamed solid lubricant, and Even when the lubrication component from the foamed solid lubricant is insufficient, the lubrication function can be supplemented, and a long life and cost reduction can be met. Therefore, it can be suitably used as a lubrication system for various rolling bearings and universal joints used for various industrial machines and automobiles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lubricants (AREA)

Abstract

Provided are a long-lived, low-cost lubrication system that not only improves the holding strength of the lubricant components in foam solid lubricants but can also keep the amount of exuded lubricant to the minimum necessary, and can supplement lubricant function even when there are insufficient lubricant components from the foam solid lubricant, and a universal joint and bearing that use said lubrication system. Disclosed is a lubrication system wherein a foam solid lubricant, made by including lubricant components inside a resin that is foamed and cured to become porous, and a supplementary lubricant grease are both present at the lubrication site. The above supplementary lubricant grease comprises at least a wax A with a melting point of 70-150ºC. As an example of the application in a constant velocity universal joint, a foam solid lubricant (9) and a supplementary lubricant grease (10) made by blending a prescribed wax A are both present inside a universal joint provided with an inner member (1), an outer member (2), an inner member track groove (3), an outer member track groove (4), a steel ball (5), a cage (6), a shaft (7), and a boot (8).

Description

潤滑システム、該潤滑システムを用いた自在継手および軸受Lubrication system, universal joint and bearing using the lubrication system
 本発明は機械装置の摺動部や回転部に潤滑油を供給可能な潤滑システム、該潤滑システムを用いた自在継手および軸受に関する。 The present invention relates to a lubrication system capable of supplying lubricating oil to a sliding part and a rotating part of a mechanical device, and a universal joint and a bearing using the lubrication system.
 一般に、自動車や産業用機械に代表されるようなほとんどの機械の摺動部や回転部において潤滑剤が使用されている。潤滑剤は大別して液体潤滑剤と固体潤滑剤に分けられるが、潤滑油を増ちょうさせて保形性を持たせたグリースや、液体潤滑剤を保持してその飛散や垂れ落ちを防止できる固形潤滑剤も知られている。 Generally, a lubricant is used in sliding parts and rotating parts of most machines represented by automobiles and industrial machines. Lubricants can be broadly divided into liquid lubricants and solid lubricants. Grease with increased lubricating oil and shape retention, and solids that retain liquid lubricant and prevent its splashing and dripping. Lubricants are also known.
 近年、自動車の高性能化、コンパクト化および軽量化のための技術的改良が進み、自動車部品や産業機械の駆動伝達に用いられる自在継手についても小型化、高性能化および長寿命化の要求が高まっている。コンパクト化や軽量化の進展とともに、自在継手にも高い負荷が加わることになり、従来のグリースによる潤滑では、充分な長寿命化が困難な場合がある。今後ますます高性能化が求められることからグリースの封入量や添加剤を最適化するだけでは、上記のような問題に完全に対応することが難しく、新しい潤滑剤や新たな潤滑機構の研究開発が求められている。 In recent years, technical improvements for higher performance, compactness, and weight reduction of automobiles have progressed, and there is a demand for miniaturization, higher performance, and longer life of universal joints used for drive transmission of automobile parts and industrial machines. It is growing. Along with the progress of downsizing and weight reduction, a high load is also applied to the universal joint, and it may be difficult to achieve a long life with conventional grease lubrication. Since higher performance will be required in the future, it is difficult to completely address the above problems by simply optimizing the amount of grease and additives, and research and development of new lubricants and new lubrication mechanisms Is required.
 例えば、潤滑油やグリースに、超高分子量ポリオレフィン、またはウレタン樹脂およびその硬化剤を混合し、樹脂の分子間に液状の潤滑成分を保持させて徐々に染み出る物性を持たせた固形潤滑剤が知られている(特許文献1~特許文献3参照)。また、潤滑剤の存在下でポリウレタン原料であるポリオールとジイソシアネートを潤滑成分中で反応させた自己潤滑性のポリウレタンエラストマーが知られている(特許文献4参照)。このような固形潤滑剤は、軸受に封入して固化させると、潤滑油を徐々に染み出させるものであり、これを用いると潤滑油の補充のためのメンテナンスが不要になり、水分の多い厳しい使用環境や強い慣性力の働く環境などでも軸受寿命の長期化に役立てることを狙ったものである。 For example, there is a solid lubricant in which ultra-high molecular weight polyolefin or urethane resin and its curing agent are mixed with lubricating oil and grease, and a liquid lubricant component is held between the resin molecules to gradually exude physical properties. It is known (see Patent Documents 1 to 3). Also known is a self-lubricating polyurethane elastomer obtained by reacting a polyol, which is a polyurethane raw material, with a diisocyanate in a lubricating component in the presence of a lubricant (see Patent Document 4). When such solid lubricant is sealed in a bearing and solidified, it gradually exudes lubricating oil. If this is used, maintenance for replenishing the lubricating oil becomes unnecessary, and there is a lot of moisture. It is intended to be useful for extending the life of the bearing even in environments where it is used or where inertia is strong.
 しかし、上記した特許文献1~特許文献4による技術では固形潤滑剤は、潤滑油保持力は大きいが、柔軟な変形性に欠ける。このため、このような固形潤滑剤を、等速ジョイントの駆動部のような圧縮や屈曲などの外部応力が高い頻度で繰り返し加わる部位に使用すると、圧縮や屈曲に追従して変形させるために非常に大きな力が必要になり、または非常に大きな応力が固形潤滑剤に加わって、それを保持する部分にも機械的強度が必要になる。固形潤滑剤の強度と充填率は通常、補償的なものであるので、潤滑剤を高充填率で保持することが困難であり、長寿命化を妨げる可能性がある。そのため、圧縮や屈曲などの外部応力が高い頻度で繰り返し起こるような部位においても簡便に使用可能な固形潤滑剤が求められている。 However, in the techniques according to Patent Document 1 to Patent Document 4 described above, the solid lubricant has a large lubricating oil retaining force, but lacks flexible deformability. For this reason, if such a solid lubricant is used at a site where external stress such as compression or bending is frequently applied, such as the drive part of a constant velocity joint, it is very difficult to deform following the compression and bending. A large force is required, or a very large stress is applied to the solid lubricant, and a mechanical strength is also required in a portion for holding the solid lubricant. Since the strength and filling rate of the solid lubricant are usually compensatory, it is difficult to keep the lubricant at a high filling rate, which may hinder the extension of the service life. Therefore, there is a demand for a solid lubricant that can be easily used even at sites where external stress such as compression and bending repeatedly occurs at a high frequency.
 この固形潤滑剤として、固形成分を発泡体化し、これに潤滑油を充填させることで得られる含油発泡体が報告されている。例えば、発泡して連通気孔を形成した柔軟な樹脂に潤滑油を含浸し、その気孔内に潤滑油を保持させた含油発泡体も軸受や等速ジョイントの内部に充填して使用されることが知られている(特許文献5参照)。これは、等速ジョイントの屈曲により変形するブーツに追従して含油発泡体が圧縮される。ここで含油発泡体より滲み出た液状潤滑剤が必要部位に供給され、良好な潤滑を可能にするものである。 As this solid lubricant, an oil-containing foam obtained by foaming a solid component and filling it with a lubricating oil has been reported. For example, an oil-impregnated foam in which lubricating oil is impregnated with a soft resin that is foamed to form continuous air holes and the lubricating oil is retained in the pores is also used by filling the inside of the bearing or constant velocity joint. It is known (see Patent Document 5). This is because the oil-impregnated foam is compressed following the boot that is deformed by the bending of the constant velocity joint. Here, the liquid lubricant that has oozed out from the oil-containing foam is supplied to a necessary portion, and good lubrication is possible.
 しかし、特許文献5の含油発泡体は発泡樹脂に潤滑油を含浸させた後含浸型のものであり、外力に応じる柔軟な変形性があって圧縮や屈曲変形にも追従することはできるが、潤滑油が固形成分に含まれていないため潤滑油保持力が小さく、軸受などの高速条件で使用した場合には、潤滑油が急速に抜け出て枯渇する可能性もある。この含油発泡体は、短時間での潤滑や密閉空間においては使用可能であるが、長時間の潤滑を要する部分や開放空間で使用すると潤滑油が供給不足になり、または、油保持力が弱いと、余剰の潤滑油は気孔から放出および吸収を繰り返し、絶えず空間内を流動することになる。 However, the oil-impregnated foam of Patent Document 5 is of an impregnated type after impregnating a foamed resin with a lubricating oil, and has flexible deformability according to external force and can follow compression and bending deformation, Since the lubricating oil is not contained in the solid component, the lubricating oil retention force is small, and when used under high speed conditions such as a bearing, there is a possibility that the lubricating oil will quickly escape and be depleted. This oil-impregnated foam can be used in a short period of lubrication or in a closed space, but if it is used in a part that requires a long period of lubrication or in an open space, the supply of lubricating oil will be insufficient, or the oil holding power will be weak. Then, the excess lubricating oil is repeatedly released and absorbed from the pores and constantly flows in the space.
 このような固形潤滑剤から余剰に染み出した潤滑油は、自在継手におけるブーツ材やゴムなどの外装材に接すると、その素材を潤滑油やその添加剤が化学的に腐食または劣化させるものもある。また、該潤滑剤を製造する工程では、潤滑油やグリースを確実に含浸させるために多くの製造工程が必要になり、これでは低コスト化の要求に応えることも困難である。 When the lubricant exuded excessively from such a solid lubricant comes into contact with an exterior material such as a boot material or rubber in a universal joint, the lubricant or its additive may chemically corrode or deteriorate the material. is there. In addition, in the process of manufacturing the lubricant, many manufacturing processes are required for reliably impregnating the lubricant and grease, and it is difficult to meet the demand for cost reduction.
 上記のような理由から潤滑剤の保持性が高く、かつ大きな変形を許容する等速ジョイント用潤滑剤が求められている。特に固形成分内にも潤滑剤を含有させ、潤滑成分保持力を高める必要がある。この要求に対し、例えば、製造工程が簡便で、柔軟で潤滑成分保持力が高い発泡潤滑剤(特許文献6参照)とそれを用いた等速ジョイント(特許文献7参照)が提案されている。 For the reasons described above, there is a demand for a lubricant for a constant velocity joint that has high retention of the lubricant and that allows large deformation. In particular, it is necessary to include a lubricant in the solid component to increase the retention of the lubricating component. In response to this requirement, for example, a foamed lubricant (see Patent Document 6) that has a simple manufacturing process, is flexible, and has a high lubricating component retention force, and a constant velocity joint (see Patent Document 7) using the same have been proposed.
 しかし、特許文献6の発泡潤滑剤も特許文献7の等速ジョイントも使い方によっては外力や温度上昇による潤滑剤の放出が少ない場合がある。また、耐久性を考慮すると樹脂成分からの潤滑成分の放出は必要最小限であることが望ましい。潤滑成分の放出速度が小さければ、摺動部に必要量の潤滑剤が到達する速度は遅くなる。そのため、潤滑剤が枯渇状態となり摺動部でも摩耗や潤滑不良を引き起こす場合がある。 However, depending on how the foamed lubricant disclosed in Patent Document 6 and the constant velocity joint disclosed in Patent Document 7 are used, the release of the lubricant due to external force or temperature rise may be small. In view of durability, it is desirable that the release of the lubricating component from the resin component is the minimum necessary. If the release speed of the lubricating component is small, the speed at which the necessary amount of lubricant reaches the sliding portion becomes slow. For this reason, the lubricant is depleted and wear and lubrication may be caused even in the sliding portion.
特開平6-41569号公報JP-A-6-41569 特開平6-172770号公報JP-A-6-172770 特開2000-319681号公報JP 2000-319681 A 特開平11-286601号公報Japanese Patent Laid-Open No. 11-286601 特開平9-42297号公報Japanese Patent Laid-Open No. 9-42297 特開2007-177226号公報JP 2007-177226 A 特開2007-247887号公報Japanese Patent Laid-Open No. 2007-247887
 本発明は、このような問題点に対処するためになされたものであり、潤滑成分を保持する発泡固形潤滑剤の潤滑成分保持力を向上させるとともに、発泡固形潤滑剤の変形や外力による潤滑剤の滲み出し量を必要最小限に留めることができ、かつ発泡固形潤滑剤からの潤滑成分が不足する場合でも潤滑機能を補うことができる長寿命で低コストな潤滑システム、該潤滑システムを用いた自在継手および軸受の提供を目的とする。 The present invention has been made in order to cope with such problems, and improves the lubricating component holding power of the foamed solid lubricant that holds the lubricating component, and the lubricant by deformation and external force of the foamed solid lubricant. A long-life, low-cost lubrication system that can keep the amount of oozing out to the minimum necessary and can supplement the lubrication function even when the lubrication component from the foamed solid lubricant is insufficient. The purpose is to provide universal joints and bearings.
 本発明の潤滑システムは、発泡・硬化して多孔質化する樹脂内に潤滑成分を含んでなる発泡固形潤滑剤と、補助潤滑用グリースとが潤滑対象部位に共存する潤滑システムであって、上記補助潤滑用グリースは融点が 70~150℃であるワックスAを少なくとも含有することを特徴とする。また、上記ワックスAが、脂肪酸アミドおよび水素硬化油から選ばれた少なくとも一つであることを特徴とする。 The lubrication system of the present invention is a lubrication system in which a foamed solid lubricant containing a lubrication component in a resin that is foamed and cured to be porous, and a grease for auxiliary lubrication coexist in a site to be lubricated. The auxiliary lubricating grease contains at least wax A having a melting point of 70 to 150 ° C. The wax A is at least one selected from fatty acid amides and hydrogenated oil.
 上記潤滑成分は、潤滑油およびグリースから選ばれた少なくとも1つに、融点が 70~150℃であるワックスBを含有し、該ワックスBは脂肪酸モノアミド系ワックス、水素硬化油系ワックス、および炭化水素系ワックスから選ばれた少なくとも1つのワックスであることを特徴とする。また、上記脂肪酸モノアミド系ワックスが、ステアリン酸アミド、エルカ酸アミド、オレイン酸アミドから選ばれた少なくとも1つであることを特徴とする。 The lubricating component contains at least one selected from lubricating oils and greases, wax B having a melting point of 70 to 150 ° C., and the wax B is a fatty acid monoamide wax, a hydrogenated oil wax, and a hydrocarbon. It is characterized by being at least one wax selected from system waxes. Further, the fatty acid monoamide wax is at least one selected from stearic acid amide, erucic acid amide, and oleic acid amide.
 上記発泡固形潤滑剤は、上記発泡・硬化して多孔質化する樹脂がゴム状弾性を有し、該樹脂内に含まれる潤滑成分がゴム状弾性体の変形により滲出性を有することを特徴とする。また、上記発泡・硬化して多孔質化する樹脂の発泡倍率が、1.1~100 倍であることを特徴とする。また、上記発泡・硬化して多孔質化する樹脂の発泡・硬化後の連続気泡率が 50%以上であることを特徴とする。 The foamed solid lubricant is characterized in that the resin foamed and cured to become porous has rubber-like elasticity, and the lubricating component contained in the resin has exudability due to deformation of the rubber-like elastic body. To do. In addition, the foaming ratio of the resin that is made porous by curing and curing is 1.1 to 100 times. Also, the open cell ratio after foaming / curing of the resin foamed / cured to be porous is 50% or more.
 上記発泡固形潤滑剤は、上記潤滑成分と、上記樹脂と、硬化剤と、発泡剤とを含む混合物を発泡・硬化させてなり、上記潤滑成分は潤滑油およびグリースから選ばれた少なくとも1つであり、上記樹脂が分子内にイソシアネート基を 2 重量%以上 6 重量%未満含有するウレタンプレポリマーであり、上記発泡剤が水であり、上記混合物は、混合物全体に対して、上記潤滑成分を20~80 重量%含み、発泡後の連続気泡率が 50%以上であることを特徴とする。また、上記ウレタンプレポリマーは、エステル系ウレタンプレポリマー、カプロラクトン系ウレタンプレポリマー、およびエーテル系ウレタンプレポリマーから選ばれた少なくとも1つのウレタンプレポリマーであることを特徴とする。 The foamed solid lubricant is obtained by foaming and curing a mixture containing the lubricating component, the resin, a curing agent, and a foaming agent, and the lubricating component is at least one selected from lubricating oil and grease. The resin is a urethane prepolymer containing in the molecule 2 to 6% by weight of an isocyanate group in the molecule, the foaming agent is water, and the mixture contains 20 lubricant components with respect to the entire mixture. It is characterized by containing ˜80% by weight and having an open cell ratio of 50% or more after foaming. The urethane prepolymer is at least one urethane prepolymer selected from an ester urethane prepolymer, a caprolactone urethane prepolymer, and an ether urethane prepolymer.
 上記イソシアネート基と、該イソシアネート基と反応する上記硬化剤の官能基との割合が当量比で(硬化剤の官能基/NCO)=1/(1.1~2.5)の範囲であることを特徴とする。また、上記水の水酸基と、上記硬化剤の官能基との割合が当量比で(水の水酸基/硬化剤の官能基)=1/(0.7~2.0)の範囲であることを特徴とする。また、上記硬化剤が芳香族ポリアミノ化合物であることを特徴とする。また、上記芳香族ポリアミノ化合物がアミノ基の隣接位に置換基を有する芳香族ポリアミノ化合物であることを特徴とする。 The ratio between the isocyanate group and the functional group of the curing agent that reacts with the isocyanate group is an equivalent ratio of (functional group of the curing agent / NCO) = 1 / (1.1 to 2.5). . The ratio of the hydroxyl group of water to the functional group of the curing agent is an equivalent ratio (water hydroxyl group / functional group of the curing agent) = 1 / (0.7 to 2.0). The curing agent is an aromatic polyamino compound. Further, the aromatic polyamino compound is an aromatic polyamino compound having a substituent at a position adjacent to the amino group.
 上記発泡固形潤滑剤は、上記潤滑成分と、上記樹脂と、硬化剤と、発泡剤とを含む混合物を発泡・硬化させてなり、上記樹脂がポリエーテルポリオールであり、上記硬化剤がポリイソシアネートであり、上記発泡剤が水であり、上記樹脂と、上記硬化剤と、上記発泡剤と、上記潤滑成分とを含む混合物全体に対して、上記潤滑成分を 60~80 重量%含むことを特徴とする。 The foamed solid lubricant is obtained by foaming and curing a mixture containing the lubricating component, the resin, a curing agent, and a foaming agent, the resin is a polyether polyol, and the curing agent is a polyisocyanate. The foaming agent is water, and the lubricating component is contained in an amount of 60 to 80% by weight based on the entire mixture including the resin, the curing agent, the foaming agent, and the lubricating component. To do.
 上記混合物は、摺動部材の周囲、または成形用型内に充填された後に、発泡・硬化されてなることを特徴とする。 The above mixture is characterized in that it is foamed and cured after filling the periphery of the sliding member or in the molding die.
 本発明の自在継手は、トラック溝とトルク伝達部材との係り合いによって回転トルクが伝達され、上記トルク伝達部材が上記トラック溝に沿って転動することによって軸方向移動がなされ、上記潤滑システムを用いた自在継手であって、該自在継手の内部に、上記補助潤滑用グリースと上記発泡固形潤滑剤とが共存してなることを特徴とする。また、上記混合物は、発泡・硬化が完了する前に上記トルク伝達部材の周囲に充填されることを特徴とする。また、上記自在継手は、等速自在継手であることを特徴とする。 In the universal joint of the present invention, the rotational torque is transmitted by the engagement between the track groove and the torque transmission member, and the torque transmission member rolls along the track groove to move in the axial direction. The universal joint used is characterized in that the auxiliary lubricating grease and the foamed solid lubricant coexist in the universal joint. Further, the mixture is filled around the torque transmission member before foaming / curing is completed. The universal joint is a constant velocity universal joint.
 本発明の軸受は、上記潤滑システムを用いた軸受であって、該軸受内部に、上記補助潤滑用グリースと、上記発泡固形潤滑剤とが共存してなることを特徴とする。 The bearing of the present invention is a bearing using the lubrication system, and is characterized in that the auxiliary lubricating grease and the foamed solid lubricant coexist in the bearing.
 本発明の潤滑システムは、発泡・硬化して多孔質化する樹脂内に潤滑成分を含んでなる発泡固形潤滑剤と、補助潤滑用グリースとが潤滑対象部位に共存する潤滑システムであって、上記補助潤滑用グリースには所定のワックスA成分が添加されているので、遠心力などの外力が加わっても補助潤滑用グリースが摺動部から移動しにくく、発泡固形潤滑剤より滲み出してくる潤滑成分が不足する場合でも該補助潤滑用グリースにより潤滑機能を担うことができる。また、局部的に、一時的な潤滑剤不足により摺動部が金属接触状態になったとしても、金属接触により温度が上昇するため、補助潤滑用グリース中のワックスA成分が溶融し補助潤滑用グリースの流動性が向上するために摺動部にすばやく供給され、円滑な潤滑状態を保つことができる。このため、発泡固形潤滑剤が封入される軸受や自在継手等の機械要素における摺動部等において潤滑剤が(流出しないために)不足することなく継続して潤滑機能を十分に果たすことができる。 The lubrication system of the present invention is a lubrication system in which a foamed solid lubricant containing a lubrication component in a resin that is foamed and cured to be porous, and a grease for auxiliary lubrication coexist in a site to be lubricated. Since the prescribed wax A component is added to the auxiliary lubricating grease, the auxiliary lubricating grease is difficult to move from the sliding part even when an external force such as centrifugal force is applied, and the lubricating oil that exudes from the foamed solid lubricant Even when the components are insufficient, the auxiliary lubricating grease can provide a lubricating function. In addition, even if the sliding part is in a metal contact state due to a temporary lack of lubricant locally, the temperature rises due to the metal contact, so that the wax A component in the auxiliary lubrication grease melts and the auxiliary lubrication Since the fluidity of the grease is improved, the grease is quickly supplied to the sliding portion, and a smooth lubrication state can be maintained. For this reason, the lubrication function can be satisfactorily performed continuously without a shortage of the lubricant (because it does not flow out) in a sliding portion or the like in a mechanical element such as a bearing or a universal joint in which the solid foam lubricant is enclosed. .
 また、上記潤滑成分は、潤滑油およびグリースから選ばれた少なくとも1つに、融点が 70~150℃であるワックスBを含有し、該ワックスBは脂肪酸モノアミド系ワックス、水素硬化油系ワックス、および炭化水素系ワックスから選ばれた少なくとも1つのワックスとすることで、発泡固形潤滑剤から放出される潤滑成分量を必要量に保つことができ、また、遠心力などの外力が加わっても潤滑成分が摺動部から移動しにくい状態に保持できる。また、局部的に、一時的な潤滑剤不足により摺動部が金属接触状態になったとしても、金属接触により温度が上昇するため、発泡固形潤滑剤の潤滑成分中のワックスB成分が溶融し流動性が向上するために摺動部に潤滑剤がすばやく供給され、円滑な潤滑状態を保つことができる。 The lubricating component contains at least one selected from a lubricating oil and a grease B having a melting point of 70 to 150 ° C., and the wax B includes a fatty acid monoamide wax, a hydrogenated oil wax, and By using at least one wax selected from hydrocarbon-based waxes, the amount of the lubricating component released from the foamed solid lubricant can be maintained at the required amount, and even if an external force such as centrifugal force is applied, the lubricating component Can be held in a state where it is difficult to move from the sliding portion. Further, even if the sliding portion is in a metal contact state due to a temporary lack of lubricant locally, the temperature rises due to the metal contact, so that the wax B component in the lubricating component of the foamed solid lubricant is melted. Since the fluidity is improved, the lubricant is quickly supplied to the sliding portion, and a smooth lubrication state can be maintained.
 本発明の潤滑システムにおいて発泡固形潤滑剤は、潤滑成分と、発泡・硬化して多孔質化する樹脂と、硬化剤と、発泡剤とを含む混合物を発泡・硬化させてなるので、潤滑成分が発泡・硬化した樹脂内に保持される。発泡させることで、外部応力に対する自在な変形を可能にし、特に柔軟性を向上させることができる。この潤滑成分は主として樹脂内に存在し、例えば圧縮、屈曲、ねじり、膨張などの外的な因子によって滲み出す潤滑成分量を必要最小限に保ちつつ、必要部位に徐放することができる。 In the lubricating system of the present invention, the foamed solid lubricant is formed by foaming and curing a mixture containing a lubricating component, a resin that is foamed and cured to become porous, a curing agent, and a foaming agent. It is held in the foamed and cured resin. By foaming, free deformation with respect to external stress is possible, and in particular, flexibility can be improved. This lubricating component is mainly present in the resin, and can be gradually released to the necessary site while keeping the amount of the lubricating component that exudes due to external factors such as compression, bending, twisting, and expansion, for example, to a necessary minimum.
 以上の結果、本発明の潤滑システムを軸受や自在継手等の機械要素に適用することで、従来のグリース使用量の低減によるコストダウン、ブーツ材への負荷低減、等速ジョイントの軽量化とコンパクト化を可能にすることができ、工業的に有利な経済的側面だけでなく環境に対する負荷低減、設計の自由度という複数の観点からも社会的重要度の高い技術となる。 As a result of the above, by applying the lubrication system of the present invention to machine elements such as bearings and universal joints, cost reduction by reducing the amount of conventional grease, load on boot materials, weight reduction and compactness of constant velocity joints The technology is highly socially important not only from economically advantageous industrial aspects, but also from a plurality of viewpoints, such as environmental load reduction and design freedom.
本発明の自在継手の一実施形態である等速自在継手を示す断面図である。It is sectional drawing which shows the constant velocity universal joint which is one Embodiment of the universal joint of this invention. 本発明の他の実施形態である等速自在継手を示す断面図である。It is sectional drawing which shows the constant velocity universal joint which is other embodiment of this invention. 本発明の他の実施形態である等速自在継手を示す断面図である。It is sectional drawing which shows the constant velocity universal joint which is other embodiment of this invention. 本発明の他の実施形態である等速自在継手を示す断面図である。It is sectional drawing which shows the constant velocity universal joint which is other embodiment of this invention. 本発明の軸受の一実施形態である深溝玉軸受を示す断面図である。It is sectional drawing which shows the deep groove ball bearing which is one Embodiment of the bearing of this invention. 本発明の自在継手の他の実施形態であるBJの断面図である。It is sectional drawing of BJ which is other embodiment of the universal joint of this invention. 本発明の自在継手の他の実施形態であるDOJの断面図である。It is sectional drawing of DOJ which is other embodiment of the universal joint of this invention. 本発明の自在継手の他の実施形態であるTJの断面図である。It is sectional drawing of TJ which is other embodiment of the universal joint of this invention. 本発明の軸受の他の実施形態である深溝玉軸受の断面図である。It is sectional drawing of the deep groove ball bearing which is other embodiment of the bearing of this invention.
符号の説明Explanation of symbols
  1  内方部材
  2  外方部材
  3  内方部材側トラック溝
  4  外方部材側トラック溝
  5  鋼球
  6  ケージ
  7  シャフト
  8  ブーツ
  9  発泡固形潤滑剤
 10  補助潤滑用グリース
 11  深溝玉軸受
 12  内輪
 13  外輪
 14  転動体
 15  保持器
 16  シール部材
 17  発泡固形潤滑剤
 18  補助潤滑用グリース
DESCRIPTION OF SYMBOLS 1 Inner member 2 Outer member 3 Inner member side track groove 4 Outer member side track groove 5 Steel ball 6 Cage 7 Shaft 8 Boot 9 Foamed solid lubricant 10 Grease for auxiliary lubrication 11 Deep groove ball bearing 12 Inner ring 13 Outer ring 14 Rolling element 15 Cage 16 Seal member 17 Foam solid lubricant 18 Auxiliary lubrication grease
 本発明の潤滑システムは発泡固形潤滑剤と、所定のワックスAを含有する補助潤滑用グリースとが潤滑対象部位に共存する構成とすることに特徴がある。潤滑対象部位において発泡固形潤滑剤より潤滑成分が十分に滲み出してくるまでの潤滑を補助潤滑用グリースが担うとともに、補助潤滑用グリースに添加されたワックスAが補助潤滑用グリースの流動性を抑えることで潤滑対象部位における潤滑機能を長期間保持することができる。 The lubrication system of the present invention is characterized in that the foamed solid lubricant and the auxiliary lubricating grease containing the predetermined wax A coexist in the lubrication target portion. Auxiliary lubrication grease is responsible for lubrication until the lubricating component sufficiently oozes out of the foamed solid lubricant at the lubrication target site, and wax A added to the auxiliary lubrication grease suppresses the fluidity of the auxiliary lubrication grease. Thus, the lubrication function at the lubrication target part can be maintained for a long period of time.
 本発明の潤滑システムを用いた自在継手について図面を用いて具体的に説明する。図1は本発明の自在継手の一実施形態である等速自在継手を示す断面図である。図1に示すように等速自在継手は内方部材(内輪ともいう)1、外方部材(外輪ともいう)2、内方部材側トラック溝3、外方部材側トラック溝4、トルク伝達部材(鋼球ともいう)5、ケージ6、シャフト7、ブーツ8、発泡固形潤滑剤9、グリースに所定のワックスAを配合してなる補助潤滑用グリース10、および、その他の付属部品より構成される。このとき等速自在継手において、補助潤滑用グリース10は外方部材2の底部に収容され、発泡固形潤滑剤9はトルク伝達部材5の付近に配置される形で、発泡固形潤滑剤9と補助潤滑用グリース10が共存している。 The universal joint using the lubrication system of the present invention will be specifically described with reference to the drawings. FIG. 1 is a sectional view showing a constant velocity universal joint which is an embodiment of the universal joint of the present invention. As shown in FIG. 1, the constant velocity universal joint includes an inner member (also referred to as an inner ring) 1, an outer member (also referred to as an outer ring) 2, an inner member side track groove 3, an outer member side track groove 4, and a torque transmission member. (Also referred to as a steel ball) 5, cage 6, shaft 7, boot 8, foamed solid lubricant 9, auxiliary lubricating grease 10 in which a predetermined wax A is blended with grease, and other accessory parts . At this time, in the constant velocity universal joint, the auxiliary lubricating grease 10 is accommodated in the bottom portion of the outer member 2, and the foamed solid lubricant 9 is disposed in the vicinity of the torque transmission member 5, so The lubricating grease 10 coexists.
 図2は本発明の他の実施形態である等速自在継手を示す断面図である。図2に示すように等速自在継手は内方部材(内輪)1、外方部材(外輪)2、内方部材側トラック溝3、外方部材側トラック溝4、トルク伝達部材(鋼球)5、ケージ6、シャフト7、ブーツ8、発泡固形潤滑剤9、グリースに所定のワックスAを配合してなる補助潤滑用グリース10およびその他の付属部品より構成される。このとき補助潤滑用グリース10は内方部材(内輪)1のシャフト穴下に設けた空間7aに配置され、発泡固形潤滑剤9はトルク伝達部材5が摺動する外方部材側トラック溝4により回転方向に囲まれる空間に配置される形で、発泡固形潤滑剤9と補助潤滑用グリース10が共存している。 FIG. 2 is a sectional view showing a constant velocity universal joint according to another embodiment of the present invention. As shown in FIG. 2, the constant velocity universal joint includes an inner member (inner ring) 1, an outer member (outer ring) 2, an inner member side track groove 3, an outer member side track groove 4, and a torque transmission member (steel ball). 5, a cage 6, a shaft 7, a boot 8, a foamed solid lubricant 9, an auxiliary lubricating grease 10 in which a predetermined wax A is blended with grease, and other accessory parts. At this time, the auxiliary lubricating grease 10 is disposed in a space 7 a provided below the shaft hole of the inner member (inner ring) 1, and the foamed solid lubricant 9 is separated by the outer member side track groove 4 on which the torque transmitting member 5 slides. The foamed solid lubricant 9 and the auxiliary lubricating grease 10 coexist in a form arranged in a space surrounded by the rotation direction.
 図3は本発明の他の実施形態である等速自在継手を示す断面図である。図3に示すように等速自在継手は内方部材(内輪)1、外方部材(外輪)2、内方部材側トラック溝3、外方部材側トラック溝4、トルク伝達部材(鋼球)5、ケージ6、シャフト7、ブーツ8、発泡固形潤滑剤9、グリースに所定のワックスAを配合してなる補助潤滑用グリース10およびその他の付属部品より構成される。このとき補助潤滑用グリース10はトラック部のトルク伝達部材5近傍に配置され、発泡固形潤滑剤9はトルク伝達部材5が摺動する外方部材側トラック溝4により回転方向に囲まれる空間に配置される形で、発泡固形潤滑剤9と補助潤滑用グリース10が共存している。 FIG. 3 is a cross-sectional view showing a constant velocity universal joint according to another embodiment of the present invention. As shown in FIG. 3, the constant velocity universal joint includes an inner member (inner ring) 1, an outer member (outer ring) 2, an inner member side track groove 3, an outer member side track groove 4, and a torque transmission member (steel ball). 5, a cage 6, a shaft 7, a boot 8, a foamed solid lubricant 9, an auxiliary lubricating grease 10 in which a predetermined wax A is blended with grease, and other accessory parts. At this time, the auxiliary lubricating grease 10 is arranged in the vicinity of the torque transmission member 5 in the track portion, and the foamed solid lubricant 9 is arranged in a space surrounded by the outer member side track groove 4 on which the torque transmission member 5 slides in the rotation direction. Thus, the foamed solid lubricant 9 and the auxiliary lubricating grease 10 coexist.
 図4は本発明の他の実施形態である等速自在継手を示す断面図である。図4に示すように等速自在継手は内方部材(図示せず)、外方部材(外輪)2、内方部材側トラック溝(図示せず)、外方部材側トラック溝4、トルク伝達部材5、8箇所のケージ窓6aを有するケージ6、シャフト7、ブーツ8、発泡固形潤滑剤9、グリースに所定のワックスAを配合してなる補助潤滑用グリース10およびその他の付属部品より構成される。このとき補助潤滑用グリース10はケージ窓6aのトルク伝達部材5近傍に収容され、発泡固形潤滑剤9はトルク伝達部材5が摺動する外方部材側トラック溝4により回転方向に囲まれる空間に配置される形で、発泡固形潤滑剤9と補助潤滑用グリース10が共存している。 FIG. 4 is a cross-sectional view showing a constant velocity universal joint according to another embodiment of the present invention. As shown in FIG. 4, the constant velocity universal joint includes an inner member (not shown), an outer member (outer ring) 2, an inner member side track groove (not shown), an outer member side track groove 4, and torque transmission. It comprises a member 5, a cage 6 having eight cage windows 6 a, a shaft 7, a boot 8, a foamed solid lubricant 9, an auxiliary lubricating grease 10 in which a predetermined wax A is blended with grease, and other accessory parts. The At this time, the auxiliary lubricating grease 10 is accommodated in the vicinity of the torque transmission member 5 of the cage window 6a, and the foamed solid lubricant 9 is in a space surrounded by the outer member side track groove 4 in which the torque transmission member 5 slides in the rotation direction. The foamed solid lubricant 9 and the auxiliary lubricating grease 10 coexist in the form in which they are arranged.
 発泡固形潤滑剤9は樹脂成分と潤滑成分とを含み、このうち樹脂成分を発泡させることで、外部応力に対する変形を可能にした。発泡固形潤滑剤9のうち潤滑成分は発泡体の連続気泡内だけでなく、独立気泡を含む樹脂内に吸蔵され、潤滑成分の保持量が単なる連続気泡内の含浸による保持量よりも多くなるとともに、回転運動に伴う遠心力や、等速自在継手が角度を取ったときに発生する圧縮、屈曲、膨張などの外的な応力によって発泡固形潤滑剤中より外部に潤滑成分が徐放されるものである。また、補助潤滑用グリース10は発泡固形潤滑剤9中から徐放される潤滑成分と共に自在継手内の潤滑を担う。この場合、発泡固形潤滑剤のみよりも、自在継手内に存在する潤滑成分の絶対量が多くなる。よって、発泡固形潤滑剤を使用した場合の大きな利点である潤滑剤使用量の低減やブーツやブーツバンドへの負荷低減の特徴を保ちながら、より長寿命が達成できる。なお、潤滑成分が発泡・硬化した樹脂内に吸蔵されるとは、後述する潤滑油やグリースなどの液体・半固体状の潤滑成分が発泡・硬化した樹脂や硬化剤と反応することなく、化合物にならないで含まれることをいう。 The foamed solid lubricant 9 includes a resin component and a lubricant component, and by deforming the resin component, a deformation with respect to external stress is made possible. Among the foamed solid lubricant 9, the lubricating component is occluded not only in the open cells of the foam but also in the resin containing closed cells, and the retained amount of the lubricating component is larger than the retained amount by impregnation in the simply open cells. The lubricant is gradually released from the foamed solid lubricant due to the external force such as compression, bending, and expansion that occurs when the constant velocity universal joint takes an angle. It is. The auxiliary lubricating grease 10 is responsible for lubricating the inside of the universal joint together with a lubricating component that is gradually released from the foamed solid lubricant 9. In this case, the absolute amount of the lubricating component present in the universal joint is larger than that of the foamed solid lubricant alone. Therefore, a longer life can be achieved while maintaining the characteristics of reducing the amount of lubricant used, which is a great advantage when using a foamed solid lubricant, and reducing the load on boots and boot bands. Note that the fact that the lubricating component is occluded in the foamed / cured resin means that the liquid / semi-solid lubricating component such as lubricating oil and grease described below does not react with the foamed / cured resin or curing agent, and the compound It means that it is included without becoming.
 本発明の潤滑システムを転がり軸受に適用した例について図面を用いて具体的に説明する。図5は本発明の軸受の一実施形態である深溝玉軸受の断面図である。図5に示すように軸受11は、内輪12と、内輪12と同心に配置された外輪13と、これら内、外輪間に介在する複数個の転動体14と、この複数個の転動体14を保持する保持器15と、外輪13等に固定されるシール部材16とにより構成される。発泡固形潤滑剤17が、内輪12と、外輪13と、転動体14と、シール部材16とに囲まれた空間に配置され、グリースに所定のワックスAを配合してなる補助潤滑用グリース18が、転がり部である転動体14の近傍に配置される形で、発泡固形潤滑剤17と、補助潤滑用グリース18とが軸受内部において共存している。 An example in which the lubrication system of the present invention is applied to a rolling bearing will be specifically described with reference to the drawings. FIG. 5 is a sectional view of a deep groove ball bearing which is an embodiment of the bearing of the present invention. As shown in FIG. 5, the bearing 11 includes an inner ring 12, an outer ring 13 disposed concentrically with the inner ring 12, a plurality of rolling elements 14 interposed between the inner and outer rings, and the plurality of rolling elements 14. It is comprised by the holder | retainer 15 to hold | maintain and the sealing member 16 fixed to the outer ring | wheel 13 grade | etc.,. A foamed solid lubricant 17 is disposed in a space surrounded by the inner ring 12, the outer ring 13, the rolling elements 14, and the seal member 16, and an auxiliary lubricating grease 18 in which a predetermined wax A is blended with grease is provided. The foamed solid lubricant 17 and the auxiliary lubricating grease 18 coexist in the bearing so as to be disposed in the vicinity of the rolling elements 14 that are rolling portions.
 図6は本発明の自在継手の他の実施形態であるBJの断面図を、図7は本発明の他の実施形態であるDOJの断面図を、図8は本発明の他の実施形態であるTJの断面図を、それぞれ示す。 6 is a cross-sectional view of BJ, which is another embodiment of the universal joint of the present invention, FIG. 7 is a cross-sectional view of DOJ, which is another embodiment of the present invention, and FIG. 8 is another embodiment of the present invention. A cross-sectional view of a certain TJ is shown.
 図6に示すように、BJ21は外方部材22の内面および球形の内方部材23の外面に軸方向の六本または八本のトラック溝24、25を等角度に形成し、そのトラック溝24、25間に組み込んだトルク伝達部材26をケージ27で支持し、このケージ27の外周を球面27aとし、かつ内周を内方部材23の外周に適合する球面27bとしている。また、外方部材22の外周とシャフト28の外周とをブーツ29で覆い、外方部材22と、球形の内方部材23と、トラック溝24、25と、トルク伝達部材26と、ケージ27と、シャフト28とに囲まれた空間に所定のワックスBを含有する潤滑成分を含んでなる発泡固形潤滑剤30が封入されている。自在継手の内部に所定のワックスAを配合してなる補助潤滑グリースが共存する潤滑システムが適用されている。 As shown in FIG. 6, the BJ 21 has six or eight track grooves 24, 25 in the axial direction formed at equal angles on the inner surface of the outer member 22 and the outer surface of the spherical inner member 23. , 25 is supported by a cage 27, the outer periphery of the cage 27 is a spherical surface 27a, and the inner periphery is a spherical surface 27b that conforms to the outer periphery of the inner member 23. Further, the outer periphery of the outer member 22 and the outer periphery of the shaft 28 are covered with a boot 29, and the outer member 22, the spherical inner member 23, the track grooves 24 and 25, the torque transmission member 26, and the cage 27, A foamed solid lubricant 30 containing a lubricating component containing a predetermined wax B is enclosed in a space surrounded by the shaft 28. A lubrication system in which auxiliary lubrication grease formed by blending a predetermined wax A in a universal joint coexists is applied.
 図7に示すように、DOJ31は外方部材32の内面および球形の内方部材33の外面に軸方向の六本または八本のトラック溝34、35を等角度に形成し、そのトラック溝34、35間に組み込んだトルク伝達部材36をケージ37で支持し、このケージ37の外周を球面37aとし、かつ内周を内方部材33の外周に適合する球面37bとし、各球面37a、37bの中心(イ)、(ロ)を外方部材32の軸心上において軸方向に位置をずらしてある。また、外方部材32の外周とシャフト38の外周とをブーツ39で覆い、外方部材32と、球形の内方部材33と、トラック溝34、35と、トルク伝達部材36と、ケージ37と、シャフト38とに囲まれた空間に所定のワックスBを含有する潤滑成分を含んでなる発泡固形潤滑剤40が封入されている。自在継手の内部に所定のワックスAを配合してなる補助潤滑グリースが共存する潤滑システムが適用されている。 As shown in FIG. 7, the DOJ 31 is formed with six or eight track grooves 34, 35 in the axial direction at equal angles on the inner surface of the outer member 32 and the outer surface of the spherical inner member 33. , 35 is supported by a cage 37, the outer periphery of the cage 37 is a spherical surface 37a, and the inner periphery is a spherical surface 37b that conforms to the outer periphery of the inner member 33, and each of the spherical surfaces 37a, 37b The positions of the centers (A) and (B) are shifted in the axial direction on the axial center of the outer member 32. Further, the outer periphery of the outer member 32 and the outer periphery of the shaft 38 are covered with a boot 39, and the outer member 32, the spherical inner member 33, the track grooves 34 and 35, the torque transmission member 36, and the cage 37, A foamed solid lubricant 40 containing a lubricating component containing a predetermined wax B is enclosed in a space surrounded by the shaft 38. A lubrication system in which auxiliary lubrication grease formed by blending a predetermined wax A in a universal joint coexists is applied.
 図8に示すように、TJ41は外方部材42の内面に軸方向の三本の円筒形トラック溝43を等角度に形成し、外方部材42の内側に組み込んだトリポード部材44には三本の脚軸45を設け、各脚軸45の外側にトルク伝達部材である球面ローラ46を嵌合し、そのトルク伝達部材である球面ローラ46と脚軸45との間にニードル47を組み込んでトルク伝達部材である球面ローラ46を回転可能に、かつ軸方向にスライド可能に支持し、そのトルク伝達部材である球面ローラ46を上記トラック溝43に嵌合してある。また、外方部材42の外周とシャフト48の外周とをブーツ49で覆い、外方部材42と、トラック溝43と、トリポード部材44と、シャフト48とに囲まれた空間に所定のワックスBを含有する潤滑成分を含んでなる発泡固形潤滑剤50が封入されている。自在継手の内部に所定のワックスAを配合してなる補助潤滑グリースが共存する潤滑システムが適用されている。 As shown in FIG. 8, TJ 41 has three cylindrical track grooves 43 in the axial direction formed at equal angles on the inner surface of outer member 42, and three tripod members 44 incorporated inside outer member 42 have three Leg shafts 45, spherical rollers 46 serving as torque transmission members are fitted to the outer sides of the respective leg shafts 45, and needles 47 are incorporated between the spherical rollers 46 serving as torque transmission members and the leg shafts 45 to generate torque. A spherical roller 46 as a transmission member is supported so as to be rotatable and slidable in the axial direction, and the spherical roller 46 as a torque transmission member is fitted into the track groove 43. Further, the outer periphery of the outer member 42 and the outer periphery of the shaft 48 are covered with a boot 49, and a predetermined wax B is applied to a space surrounded by the outer member 42, the track groove 43, the tripod member 44, and the shaft 48. A foamed solid lubricant 50 containing the contained lubricating component is enclosed. A lubrication system in which auxiliary lubrication grease formed by blending a predetermined wax A in a universal joint coexists is applied.
 このようなTJやDOJについては、軸方向に摺動しろが必要なため、グリースなどの既存の潤滑剤を用いた場合は上述したBJなどの固定式ジョイントよりも封入空間容積が多くなる。しかしながら、発泡固形潤滑剤(図6の30、図7の40、図8の50)は、必要な部位にのみ充填が可能であるため、DOJやTJに発泡固形潤滑剤を封入する場合に低コスト化と軽量化への寄与度がより大きくなる。 For such TJ and DOJ, it is necessary to slide in the axial direction. Therefore, when an existing lubricant such as grease is used, the enclosed space volume is larger than that of the above-described fixed joint such as BJ. However, since the foamed solid lubricant (30 in FIG. 6, 40 in FIG. 7, 50 in FIG. 8) can be filled only in necessary portions, it is low when encapsulating the foamed solid lubricant in DOJ or TJ. The contribution to cost reduction and weight reduction becomes larger.
 図9は本発明の軸受の他の実施形態である深溝玉軸受の断面図である。図9に示すように深溝玉軸受51は、外周面に内輪転走面52aを有する内輪52と内周面に外輪転走面53aを有する外輪53とが同心に配置され、内輪転走面52aと外輪転走面53aとの間に複数個の転動体54が配置される。転動体54は保持器55により保持され、少なくとも転動体54の周囲に所定のワックスBを含有する潤滑成分を含んでなる発泡固形潤滑剤57が封入される。軸受の内部に所定のワックスAを配合してなる補助潤滑グリースが共存する潤滑システムが適用されている。シール部材56は、内輪52および外輪53の軸方向両端開口部58a、58bにそれぞれ外輪53等に固定されて設けられる。シール部材56は、発泡固形潤滑剤57等から徐放される潤滑成分の漏洩を防止する。 FIG. 9 is a cross-sectional view of a deep groove ball bearing which is another embodiment of the bearing of the present invention. As shown in FIG. 9, in the deep groove ball bearing 51, an inner ring 52 having an inner ring rolling surface 52a on the outer peripheral surface and an outer ring 53 having an outer ring rolling surface 53a on the inner peripheral surface are arranged concentrically, and the inner ring rolling surface 52a. A plurality of rolling elements 54 are arranged between the outer ring rolling surface 53a and the outer ring rolling surface 53a. The rolling element 54 is held by a cage 55, and a foamed solid lubricant 57 containing a lubricating component containing a predetermined wax B is enclosed at least around the rolling element 54. A lubrication system in which auxiliary lubrication grease formed by blending a predetermined wax A in a bearing coexists is applied. The seal member 56 is fixed to the outer ring 53 and the like at the axial end openings 58a and 58b of the inner ring 52 and the outer ring 53, respectively. The seal member 56 prevents leakage of a lubricating component that is gradually released from the foamed solid lubricant 57 and the like.
 本発明に用いる発泡固形潤滑剤は、遠心力、圧縮、屈曲、膨張などの外的な応力等によって外部に潤滑成分を徐放するので、発泡固形潤滑剤からの潤滑成分の滲み出しが不足したり、潤滑成分が枯渇すると、潤滑成分が摺動部に十分存在していない場合がある。本発明では補助潤滑用グリースを併用することで、発泡固形潤滑剤から滲み出す潤滑成分の不足を補うことができる。 The foamed solid lubricant used in the present invention releases the lubricating component to the outside due to external stresses such as centrifugal force, compression, bending, and expansion, so that the lubricating component does not ooze out from the foamed solid lubricant. If the lubricating component is exhausted, the lubricating component may not be sufficiently present in the sliding portion. In the present invention, by using the auxiliary lubricating grease together, it is possible to make up for the shortage of the lubricating component that oozes out from the foamed solid lubricant.
 特に所定のワックスAを含有する補助潤滑用グリースを用いることにより、摺動部への潤滑剤の移動などがより容易となる。その結果、発泡固形潤滑剤からの潤滑成分の滲み出しが不足したり、潤滑成分が枯渇する場合であっても、補助潤滑用グリースを併用することで、発泡固形潤滑剤から滲み出す潤滑成分の不足を補うことができる。また、局部的に、一時的な潤滑剤不足により摺動部が金属接触状態になったとしても、金属接触により温度が上昇するため、補助潤滑用グリース中のワックスA成分が溶融し補助潤滑用グリースの流動性が向上するために摺動部にすばやく供給され、円滑な潤滑状態を保つことができる。 Particularly, by using the auxiliary lubricating grease containing the predetermined wax A, it becomes easier to move the lubricant to the sliding portion. As a result, even if the lubrication component oozes out from the solid foam lubricant or the lubrication component is exhausted, the lubricating component oozes out from the solid foam lubricant by using the auxiliary lubricating grease. We can make up for the shortage. In addition, even if the sliding part is in a metal contact state due to a temporary lack of lubricant locally, the temperature rises due to the metal contact, so that the wax A component in the auxiliary lubrication grease melts and the auxiliary lubrication Since the fluidity of the grease is improved, the grease is quickly supplied to the sliding portion, and a smooth lubrication state can be maintained.
 本発明において上記発泡固形潤滑剤の潤滑成分にはワックスB成分を添加することで、発泡固形潤滑剤から放出される潤滑成分量を必要量に保つことができ、また、遠心力などの外力が加わっても潤滑成分が摺動部から移動しにくい状態に保持することができる。また、局部的に、一時的な潤滑剤不足により摺動部が金属接触状態になったとしても、金属接触により温度が上昇するため、発泡固形潤滑剤の潤滑成分中のワックスB成分が溶融し流動性が向上するために摺動部に潤滑剤がすばやく供給され、円滑な潤滑状態を保つことができる。このため、発泡固形潤滑剤が封入される軸受や自在継手等の機械要素における摺動部等において潤滑剤が(流出と供給のバランスが向上するために)不足することなく継続して潤滑機能を十分に果たすことができる。 In the present invention, by adding the wax B component to the lubricating component of the foamed solid lubricant, the amount of the lubricating component released from the foamed solid lubricant can be maintained at a required amount, and an external force such as centrifugal force can be maintained. Even if added, the lubricating component can be held in a state in which it is difficult to move from the sliding portion. Further, even if the sliding portion is in a metal contact state due to a temporary lack of lubricant locally, the temperature rises due to the metal contact, so that the wax B component in the lubricating component of the foamed solid lubricant is melted. Since the fluidity is improved, the lubricant is quickly supplied to the sliding portion, and a smooth lubrication state can be maintained. For this reason, the lubrication function is continuously carried out without a shortage of lubricant (to improve the balance between outflow and supply) in the sliding portion of a mechanical element such as a bearing or universal joint in which a foamed solid lubricant is enclosed. Can fully fulfill.
 本発明に用いる発泡固形潤滑剤は、非発泡体と比較して屈曲時に必要なエネルギーが非常に小さく、潤滑油などの潤滑成分を高密度に保持しながら柔軟な変形が可能である。よって、該発泡固形潤滑剤を例えば等速自在継手内部で固化させた後冷却する過程において、発泡固形潤滑剤が収縮し、等速自在継手の鋼球を抱き込んだとしても屈曲・変形時に必要なエネルギーが小さいために容易に変形することができ、回転トルクが大きくなるという問題を防ぐことができる。また、発泡部分すなわち多孔質な部分を多く持つため、軽量化の点でも有利である。 The foamed solid lubricant used in the present invention requires much less energy when bent compared to non-foamed materials, and can be flexibly deformed while maintaining a high density of lubricating components such as lubricating oil. Therefore, even if the foamed solid lubricant shrinks in the process of cooling after solidifying the foamed solid lubricant inside the constant velocity universal joint, for example, it is necessary for bending and deformation even if the steel ball of the constant velocity universal joint is embraced Since the energy is small, it can be easily deformed and the problem of increased rotational torque can be prevented. Moreover, since it has many foamed parts, ie, a porous part, it is advantageous also at the point of weight reduction.
 また、本発明に用いる発泡固形潤滑剤は潤滑成分と、樹脂成分とを含む混合物を発泡・硬化させるだけであるので、特別な設備も不要であり、任意の場所に充填して成形することが可能である。また、上記混合物の配合成分の配合量をコントロールすることにより発泡固形潤滑剤の密度を変化させることができる。 In addition, since the foamed solid lubricant used in the present invention only foams and cures a mixture containing a lubricating component and a resin component, no special equipment is required, and it can be filled and molded in any place. Is possible. Further, the density of the foamed solid lubricant can be changed by controlling the blending amount of the blending components of the mixture.
 本発明において発泡固形潤滑剤を構成する発泡・硬化して多孔質化する樹脂としては、発泡・硬化後にゴム状弾性を有し、変形により潤滑成分の滲出性を有するものが好ましい。発泡・硬化は、樹脂生成時に発泡・硬化させる形式であっても、樹脂に発泡剤を配合して成形時に発泡・硬化させる形式であってもよい。ここで硬化は架橋反応および/または液状物が固体化する現象を意味する。また、ゴム状弾性とは、ゴム弾性を意味するとともに、外力により加えられた変形がその外力を無くすことにより元の形状に復帰することを意味する。 In the present invention, the foamed and hardened resin constituting the foamed solid lubricant is preferably a resin having rubber-like elasticity after foaming and curing and having a lubricating component exuding property due to deformation. Foaming / curing may be in a form in which foaming / curing is performed when the resin is produced, or in a form in which a foaming agent is blended with the resin and foaming / curing is performed in molding. Here, curing means a cross-linking reaction and / or a phenomenon in which a liquid is solidified. The rubber-like elasticity means rubber elasticity and means that deformation applied by an external force returns to the original shape by eliminating the external force.
 本発明において発泡固形潤滑剤に用いられる樹脂成分には、耐熱性および柔軟性に優れ、低コスト化が可能となるウレタンプレポリマーを用いることが好ましい。本発明の発泡固形潤滑剤は、上記ウレタンプレポリマー等が発泡・硬化して多孔質化された固形物であり、かつ潤滑成分を樹脂内部に吸蔵してなる発泡固形潤滑剤である。この発泡固形潤滑剤は潤滑成分保持力に優れ、外力による変形を受けても潤滑成分の滲み出し量を必要最小限に抑制し、かつ安価に製造できる。 For the resin component used in the foamed solid lubricant in the present invention, it is preferable to use a urethane prepolymer that is excellent in heat resistance and flexibility and can be reduced in cost. The foamed solid lubricant of the present invention is a foamed solid lubricant obtained by foaming and curing the urethane prepolymer or the like to make it porous, and having a lubricating component occluded inside the resin. This foamed solid lubricant has excellent lubricating component holding power, and can be manufactured at a low cost while suppressing the amount of the lubricating component oozed out even if it is deformed by an external force.
 本発明に使用できるウレタンプレポリマーは、活性水素基を有する化合物とポリイソシアネートとの反応によって得られ、イソシアネート基は、分子鎖末端であっても、あるいは分子鎖内から分岐した側鎖末端に含まれていてもよい。また、ウレタンプレポリマーは分子鎖内にウレタン結合を有していてもよい。 The urethane prepolymer that can be used in the present invention is obtained by a reaction between a compound having an active hydrogen group and a polyisocyanate, and the isocyanate group is contained at the end of the molecular chain or at the end of the side chain branched from within the molecular chain. It may be. The urethane prepolymer may have a urethane bond in the molecular chain.
 反応するモノマー(=活性水素基を有する化合物)の種類によって、カプロラクトン系、エステル系、エーテル系などに分類される。エーテル系にはタケネートL-1170(三井化学ポリウレタン社製)、L-1158(三井化学ポリウレタン社製)、コロネート4090(日本ポリウレタン社製)がある。また、エステル系としてはコロネート4047(日本ポリウレタン社製)などがあり、カプロラクトン系にはタケネートL-1350(三井化学ポリウレタン社製)、タケネートL-1680(三井化学ポリウレタン社製)、サイアナプレン7-QM(三井化学ポリウレタン社製)、プラクセルEP1130(ダイセル化学工業社製)などが挙げられる。 Depending on the type of monomer (= compound having an active hydrogen group) to be reacted, it is classified into caprolactone, ester, ether and the like. Ether ethers include Takenate L-1170 (Mitsui Chemical Polyurethane), L-1158 (Mitsui Chemical Polyurethane), and Coronate 4090 (Nippon Polyurethane). Examples of the ester type include Coronate 4047 (manufactured by Nippon Polyurethane Co., Ltd.), and caprolactone type includes Takenate L-1350 (manufactured by Mitsui Chemical Polyurethane Co., Ltd.), Takenate L-1680 (manufactured by Mitsui Chemical Polyurethane Co., Ltd.), and Sianaprene 7-QM. (Manufactured by Mitsui Chemicals Polyurethane), Plaxel EP1130 (manufactured by Daicel Chemical Industries) and the like.
 また、末端基をイソシアネート基に変性したオリゴマーやプレポリマー化合物も使用することができる。このような化合物としては末端イソシアネート変性ポリエーテルポリオールや水酸基末端ポリブタジエンのイソシアネート変性体が挙げられる。末端イソシアネート変性ポリエーテルポリオールにはコロネート1050(日本ポリウレタン社製)などが挙げられる。また、水酸基末端ポリブタジエンのイソシアネート変性体には poly-bd MC50(出光興産社製)や poly-bd HTP9(出光興産社製)が挙げられる。 Also, oligomers or prepolymer compounds whose terminal groups are modified with isocyanate groups can be used. Examples of such a compound include a terminal isocyanate-modified polyether polyol and an isocyanate-modified product of a hydroxyl group-terminated polybutadiene. Examples of the terminal isocyanate-modified polyether polyol include Coronate 1050 (manufactured by Nippon Polyurethane Co., Ltd.). Examples of the isocyanate-modified product of hydroxyl-terminated polybutadiene include poly-bd MC50 (made by Idemitsu Kosan Co., Ltd.) and poly-bd HTP9 (made by Idemitsu Kosan Co., Ltd.).
 これらウレタンプレポリマーは目的とする機械的性質などに応じて 2 種類以上を混合して使用することができる。 These urethane prepolymers can be used in a mixture of 2 or more types depending on the desired mechanical properties.
 本発明では、イソシアネート基含有量が 2 重量%以上 6 重量%未満のウレタンプレポリマーを使用できる。イソシアネート基(-NCO)の含有量が 2 重量%未満であると発泡性と弾力性の両立が難しくなるし、 6 重量%以上であると硬度が大きくなりすぎて反発弾性が大きくなり外力による変形を受けるときに発熱等を起こしやすくなる。 In the present invention, a urethane prepolymer having an isocyanate group content of 2% by weight or more and less than 6% by weight or less can be used. If the content of isocyanate groups (-NCO) is less than 2% by weight, it becomes difficult to achieve both foaming and elasticity, and if it is more than 6% by weight, the hardness becomes too high and the resilience increases and deformation due to external force. It becomes easy to generate heat when receiving.
 また、イソシアネート基は、フェノール類、ラクタム類、アルコール類、オキシム類などのブロック剤でイソシアネート基をブロックしたブロックイソシアネート等を使用することができる。 In addition, as the isocyanate group, a blocked isocyanate in which the isocyanate group is blocked with a blocking agent such as phenols, lactams, alcohols and oximes can be used.
 上記ウレタンプレポリマーを硬化させる硬化剤としては、活性水素を有する化合物が好ましく、官能基がアミノ基であるポリアミノ化合物、官能基が水酸基であるポリオール化合物が挙げられる。 The curing agent for curing the urethane prepolymer is preferably a compound having active hydrogen, and examples thereof include a polyamino compound having a functional group as an amino group and a polyol compound having a functional group as a hydroxyl group.
 ポリアミノ化合物としては、3,3′-ジクロロ-4,4′-ジアミノジフェニルメタン(以下、MOCAと記す)、3,3′-ジメチル-4,4′-ジアミノジフェニルメタン、3,3′-ジメトキシ-4,4′-ジアミノジフェニルメタン、4,4′-ジアミノ-3,3′-ジエチル-5,5′-ジメチルジフェニルメタン、トリメチレン-ビス-(4-アミノベンゾアート)、ビス(メチルチオ)-2,4-トルエンジアミン、ビス(メチルチオ)-2,6-トルエンジアミン、メチルチオトルエンジアミン、3,5-ジエチルトルエン-2,4-ジアミン、3,5-ジエチルトルエン-2,6-ジアミンに代表される芳香族ポリアミノ化合物が挙げられる。 Polyamino compounds include 3,3'-dichloro-4,4'-diaminodiphenylmethane (hereinafter referred to as MOCA), 3,3'-dimethyl-4,4'-diaminodiphenylmethane, and 3,3'-dimethoxy-4. , 4'-diaminodiphenylmethane, 4,4'-diamino-3,3'-diethyl-5,5'-dimethyldiphenylmethane, trimethylene-bis- (4-aminobenzoate), bis (methylthio) -2,4- Aromatics typified by toluenediamine, bis (methylthio) -2,6-toluenediamine, methylthiotoluenediamine, 3,5-diethyltoluene-2,4-diamine, 3,5-diethyltoluene-2,6-diamine Examples include polyamino compounds.
 上記ポリアミノ化合物の中でも芳香族アミノ化合物が低コストであり、物性が優れているため、好ましく、特にアミノ基の隣接位に置換基を有する芳香族ジアミノ化合物が好ましい。本発明においては、発泡と共に硬化させる工程を経るため、隣接位の置換基によりアミノ基の反応性が抑制されるためと考えられる。 Among the above polyamino compounds, aromatic amino compounds are preferable because of low cost and excellent physical properties, and aromatic diamino compounds having a substituent at the position adjacent to the amino group are particularly preferable. In the present invention, it is considered that the reactivity of the amino group is suppressed by the substituent at the adjacent position because it undergoes a step of curing together with foaming.
 ウレタンプレポリマーをポリアミノ化合物で硬化させるとウレタンおよびウレア結合を分子内に有する発泡固形潤滑剤となる。ウレア結合を生成させることによって分子中のウレタン結合密度を下げることになり、伸びや反発弾性が向上する。また、ウレア結合を生成させることによって剛性を与えることができる。 When the urethane prepolymer is cured with a polyamino compound, it becomes a foamed solid lubricant having urethane and urea bonds in the molecule. By generating urea bonds, the urethane bond density in the molecule is lowered, and elongation and impact resilience are improved. Moreover, rigidity can be provided by generating a urea bond.
 ポリオール化合物としては、1,4-ブタングリコールやトリメチロールプロパンに代表される低分子ポリオール、ポリエーテルポリオール、ひまし油系ポリオール、ポリエステル系ポリオールが挙げられる。ポリオール化合物の中ではトリメチロールプロパンが好ましい。 Examples of the polyol compound include low molecular polyols such as 1,4-butane glycol and trimethylolpropane, polyether polyols, castor oil polyols, and polyester polyols. Of the polyol compounds, trimethylolpropane is preferred.
 ウレタンプレポリマーに含まれるイソシアネート基(-NCO)と、該イソシアネート基と反応する硬化剤の官能基との割合は、官能基がアミノ基または水酸基である場合、当量比で(硬化剤の官能基/NCO)=1/(1.1~2.5)の範囲である。ウレタンプレポリマーに含まれるイソシアネート基と硬化剤のアミノ基(-NH2 )または水酸基(-OH)、そして発泡剤である水の水酸基(-OH)との割合で発泡固形潤滑剤の発泡倍率や柔軟性、弾力性等が定まる。硬化剤のアミノ基(-NH2 )または水酸基(-OH)とウレタンプレポリマーのイソシアネート基(-NCO)とを当量で反応させると、発泡剤である水と反応するイソシアネート基(-NCO)が消失してしまうため、(硬化剤の官能基/NCO)=1/(1.1~2.5)の範囲が好ましい。また、発泡剤である水の水酸基と、硬化剤の官能基との割合が当量比で(水の水酸基/硬化剤の官能基)=1/(0.7~2.0)の範囲である。上記範囲よりも硬化剤の量が少なくなると発泡固形潤滑剤の強度等の物性が著しく低下するばかりでなく、ウレタンエラストマーとして硬化しない場合もある。 The ratio between the isocyanate group (—NCO) contained in the urethane prepolymer and the functional group of the curing agent that reacts with the isocyanate group is an equivalent ratio when the functional group is an amino group or a hydroxyl group (functional group of the curing agent). /NCO)=1/(1.1 to 2.5). The ratio of the isocyanate group contained in the urethane prepolymer, the amino group (—NH 2 ) or hydroxyl group (—OH) of the curing agent, and the hydroxyl group of water (—OH) as the foaming agent, Flexibility, elasticity, etc. are determined. When the amino group (—NH 2 ) or hydroxyl group (—OH) of the curing agent and the isocyanate group (—NCO) of the urethane prepolymer are reacted in an equivalent amount, an isocyanate group (—NCO) that reacts with water as the blowing agent is formed. Since it disappears, the range of (functional group of curing agent / NCO) = 1 / (1.1 to 2.5) is preferable. Further, the ratio of the hydroxyl group of water, which is a foaming agent, to the functional group of the curing agent is an equivalent ratio (hydroxyl group of water / functional group of the curing agent) = 1 / (0.7 to 2.0). If the amount of the curing agent is less than the above range, not only the physical properties such as the strength of the foamed solid lubricant are remarkably lowered, but also the urethane elastomer may not be cured.
 上記樹脂成分の他の例としては、ポリエーテルポリオールが挙げられる。ポリエーテルポリオールとしては、低分子ポリオールのアルキレンオキサイド(炭素数2~4のアルキレンオキサイド、例えばエチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド)付加物およびアルキレンオキサイドの開環重合物が挙げられ、具体的にはポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコールが含まれる。ポリエーテルポリオールを例示すれば旭硝子社製の商品名プレミノールが挙げられる。プレミノールは 5000~12000 の分子量を有するポリエーテルポリオールである。 Other examples of the resin component include polyether polyol. Examples of the polyether polyol include alkylene oxide (alkylene oxide having 2 to 4 carbon atoms, for example, ethylene oxide, propylene oxide, butylene oxide) adducts of low molecular polyols and ring-opening polymers of alkylene oxides. Polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol are included. As an example of polyether polyol, trade name Preminol manufactured by Asahi Glass Co., Ltd. may be mentioned. Preminol is a polyether polyol having a molecular weight of 5,000-12,000.
 上記ポリエーテルポリオールを硬化させる硬化剤として用いるポリイソシアネートとしては、例えば、ジフェニルメタンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネートおよびその混合物、1,5-ナフチレンジイソシアネート、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネートが挙げられる。市販品として日本ポリウレタン社製:コロネートT80などが挙げられる。 Examples of the polyisocyanate used as a curing agent for curing the polyether polyol include diphenylmethane diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate and mixtures thereof, 1,5-naphthylene diisocyanate, 1, Examples include 3-phenylene diisocyanate and 1,4-phenylene diisocyanate. Examples of commercially available products include Nippon Polyurethane Co., Ltd .: Coronate T80.
 本発明に使用できる潤滑成分は、発泡体を形成する固形成分を溶解しないものであれば使用することができる。潤滑成分としては、例えば潤滑油、グリース、ワックスなどを単独でもしくは混合して使用できる。特に好ましいものとして炭化水素系潤滑油、炭化水素系グリース、または炭化水素系潤滑油と炭化水素系グリースとの混合物が挙げられる。 The lubricating component that can be used in the present invention can be used as long as it does not dissolve the solid component forming the foam. As the lubricating component, for example, lubricating oil, grease, wax or the like can be used alone or in combination. Particularly preferred are hydrocarbon-based lubricants, hydrocarbon-based greases, or mixtures of hydrocarbon-based lubricants and hydrocarbon-based greases.
 炭化水素系潤滑油としては、パラフィン系やナフテン系の鉱物油、炭化水素系合成油、GTL基油等が挙げられる。これらは単独でも混合油としても使用できる。また、エステル系合成油、エーテル系合成油、フッ素油、シリコーン油等も使用することができる。これらは単独でも混合油としても使用できる。 Examples of hydrocarbon-based lubricating oils include paraffinic and naphthenic mineral oils, hydrocarbon synthetic oils, GTL base oils, and the like. These can be used alone or as a mixed oil. In addition, ester synthetic oils, ether synthetic oils, fluorine oils, silicone oils and the like can also be used. These can be used alone or as a mixed oil.
 炭化水素系グリースは炭化水素油を基油とするグリースであり、基油としては上述の炭化水素系潤滑油を挙げることができる。増ちょう剤としては、リチウム石けん、リチウムコンプレックス石けん、カルシウム石けん、カルシウムコンプレックス石けん、アルミニウム石けん、アルミニウムコンプレックス石けん等の石けん類、ジウレア化合物、ポリウレア化合物等のウレア系化合物が挙げられるが、特に限定されるものではない。ジウレア化合物はジイソシアネートとモノアミンの反応で、ポリウレア化合物はジイソシアネートとポリアミンの反応で、それぞれ得られる。また、エステル系合成油、エーテル系合成油、GTL基油、フッ素油、シリコーン油等を基油としたグリースも使用できる。 The hydrocarbon grease is a grease having a hydrocarbon oil as a base oil, and examples of the base oil include the above-described hydrocarbon lubricants. Examples of the thickener include lithium soaps, lithium complex soaps, calcium soaps, calcium complex soaps, aluminum soaps, aluminum complex soaps, and other urea compounds such as diurea compounds and polyurea compounds. It is not a thing. The diurea compound is obtained by the reaction of diisocyanate and monoamine, and the polyurea compound is obtained by the reaction of diisocyanate and polyamine. In addition, greases based on ester-based synthetic oils, ether-based synthetic oils, GTL base oils, fluorine oils, silicone oils and the like can also be used.
 発泡固形潤滑剤における上記潤滑成分にワックスBを添加することにより、比較的低温時(常温)ではその流動性を抑え潤滑必要部位に留まることができるが、金属接触等により機械要素の摺動部で温度が上昇するとワックスBが溶けるために潤滑成分の流動性が向上し、潤滑剤の必要な場所へすばやく供給される。 By adding wax B to the above-mentioned lubricating component in the foamed solid lubricant, it is possible to suppress the fluidity at a relatively low temperature (normal temperature) and remain at the site where lubrication is necessary. When the temperature rises, the wax B dissolves, so that the fluidity of the lubricating component is improved and the lubricant is quickly supplied to the place where the lubricant is required.
 発泡固形潤滑剤の潤滑成分に添加するワックスBは、融点が 70~150℃のものであり、該ワックスBが分子内にアミド結合を有する場合、該アミド結合はモノアミド結合であるワックスである。融点が 70℃未満であると軟化する(流動性が上がる)温度が低いため、必要以上に流動してしまい潤滑剤が必要な場所から移動してしまうおそれがある。融点が150℃をこえると、融点が高すぎて必要なときにワックスBが溶融しない場合があり、目的の流動性の向上が得られず摺動部に潤滑成分の供給が遅れる場合がある。また、ワックスBの融点が高いと、ワックスBを溶融・分散させる際に潤滑成分を高温に上昇させる必要があり、潤滑成分自体の劣化を引き起こす要因となる。また、エチレンビスステアリン酸アミドのようなワックス分子内にアミド結合を2個以上持つものは適さない。発泡固形潤滑剤作製時に、樹脂成分が硬化しないからである。その理由は明らかではないが、アミド結合を2個以上持つワックスは、必然的に分子量が大きくなるために、ウレタン分子との相溶性が発生するためと考えられる。 The wax B added to the lubricating component of the foamed solid lubricant has a melting point of 70 to 150 ° C., and when the wax B has an amide bond in the molecule, the amide bond is a monoamide bond. If the melting point is less than 70 ° C., the temperature at which the softening (fluidity increases) is low, so the fluid may flow more than necessary and the lubricant may move from the place where it is necessary. If the melting point exceeds 150 ° C., the melting point is too high and the wax B may not melt when necessary, and the desired fluidity may not be improved, and supply of the lubricating component to the sliding portion may be delayed. Further, if the melting point of the wax B is high, it is necessary to raise the lubricating component to a high temperature when the wax B is melted / dispersed, which causes deterioration of the lubricating component itself. Also, those having two or more amide bonds in the wax molecule such as ethylene bis stearamide are not suitable. This is because the resin component is not cured when the foamed solid lubricant is produced. The reason for this is not clear, but it is considered that a wax having two or more amide bonds inevitably has a high molecular weight, and therefore compatibility with urethane molecules occurs.
 潤滑成分に添加するワックスBは脂肪酸モノアミド系ワックス、水素硬化油系ワックス、および炭化水素系ワックスから選ばれた少なくとも1つのワックスであることが好ましい。脂肪酸モノアミド系ワックスは、飽和脂肪酸モノアミド、不飽和脂肪酸モノアミドのいずれでも使用できる。好ましい脂肪酸モノアミドとしては、ステアリン酸アミド、オレイン酸アミド、エルカ酸アミド等が挙げられる。また、上記水素硬化油系ワックスとしては硬化ひまし油等が挙げられ、炭化水素系ワックスとしてはパラフィンワックス等が挙げられる。本発明に用いる発泡固形潤滑剤の樹脂成分をポリウレタンとする場合、ワックスBの中でも特に好ましいのは脂肪酸モノアミドであり、脂肪酸モノアミドの中でもステアリン酸アミド、オレイン酸アミド、エルカ酸アミドから選ばれた少なくとも1つを使用することがもっとも好ましい。 The wax B added to the lubricating component is preferably at least one wax selected from fatty acid monoamide wax, hydrogenated oil wax, and hydrocarbon wax. As the fatty acid monoamide wax, either a saturated fatty acid monoamide or an unsaturated fatty acid monoamide can be used. Preferred fatty acid monoamides include stearic acid amide, oleic acid amide, erucic acid amide and the like. Examples of the hydrogen-cured oil-based wax include hardened castor oil, and examples of the hydrocarbon-based wax include paraffin wax. When the resin component of the foamed solid lubricant used in the present invention is polyurethane, fatty acid monoamide is particularly preferred among the waxes B. Among the fatty acid monoamides, at least selected from stearic acid amide, oleic acid amide, and erucic acid amide. Most preferably, one is used.
 また、発泡固形潤滑剤の潤滑成分に添加するワックスBの添加量は、潤滑成分量に対して 1 重量%~15 重量%、さらに好ましくは 2 重量%~10 重量%である。1 重量%未満の場合は常温での流動性の低下が得られず、15 重量%をこえる場合には潤滑成分の流動性が低下しすぎるため潤滑必要箇所に行きにくくなり好ましくない。 The amount of wax B added to the lubricating component of the foamed solid lubricant is from 1% to 15% by weight, more preferably from 2% to 10% by weight, based on the amount of the lubricating component. If it is less than 1% by weight, the fluidity at normal temperature cannot be lowered, and if it exceeds 15% by weight, the fluidity of the lubricating component is too low, and it is not preferable because it is difficult to reach the place where lubrication is required.
 これらのワックスBを潤滑成分へ添加する方法としては、発泡固形潤滑剤作製時に原料の1つとして投入してもよいし、あらかじめ潤滑成分の全部または一部を採用したワックスBの融点以上に加熱の上、均一に混合して用いてもよい。ワックスBの融点が、発泡固形潤滑剤の作製温度以上の場合は、後者の方法をとることが好ましい。 As a method of adding these waxes B to the lubricating component, it may be added as one of raw materials when preparing the foamed solid lubricant, or heated in advance to the melting point of the wax B in which all or part of the lubricating component is employed. In addition, they may be mixed uniformly. When the melting point of the wax B is equal to or higher than the production temperature of the foamed solid lubricant, the latter method is preferably used.
 本発明において発泡固形潤滑剤を発泡させる手段(発泡剤)は、原料にイソシアネート化合物を用いることから、イソシアネート化合物と反応して二酸化炭素ガスを発生させる水を用いることが好ましい。 In the present invention, the means for foaming the foamed solid lubricant (foaming agent) uses an isocyanate compound as a raw material, and therefore preferably uses water that reacts with the isocyanate compound to generate carbon dioxide gas.
 また、必要に応じて触媒を使用することが好ましく、例えば、3級アミン系触媒や有機金属触媒などが用いられる。3級アミン系触媒としてはモノアミン類、ジアミン類、トリアミン類、環状アミン類、アルコールアミン類、エーテルアミン類、イミダゾール誘導体、酸ブロックアミン触媒などが挙げられる。また、有機金属触媒としてはスタナオクタエート、ジブチルチンジアセテート、ジブチルチンジラウレート、ジブチルチンメルカプチド、ジブチルチンチオカルボキシレート、ジブチルチンマレエート、ジオクチルチンジメルカプチド、ジオクチルチンチオカルボキシレート、オクテン酸塩などが挙げられる。また、反応のバランスを整えるなどの目的でこれら複数種類を混合して用いてもよい。 Further, it is preferable to use a catalyst as necessary, and for example, a tertiary amine catalyst or an organometallic catalyst is used. Examples of the tertiary amine catalyst include monoamines, diamines, triamines, cyclic amines, alcohol amines, ether amines, imidazole derivatives, and acid block amine catalysts. Examples of organometallic catalysts include stanaoctate, dibutyltin diacetate, dibutyltin dilaurate, dibutyltin mercaptide, dibutyltin thiocarboxylate, dibutyltin maleate, dioctyltin dimercaptide, dioctyltin thiocarboxylate, octenoate, etc. Is mentioned. Moreover, you may mix and use these multiple types for the purpose of adjusting the balance of reaction.
 本発明において発泡固形潤滑剤は、上記潤滑成分(必要に応じてワックスBを添加)と、上記ウレタンプレポリマーや上記ポリエーテルポリオールなどの樹脂成分と、硬化剤と、発泡剤とを含む混合物を発泡・硬化させて得られる。 In the present invention, the foamed solid lubricant is a mixture containing the lubricating component (adding wax B as required), a resin component such as the urethane prepolymer or the polyether polyol, a curing agent, and a foaming agent. Obtained by foaming and curing.
 上記潤滑成分の配合割合は、樹脂成分がウレタンプレポリマーの場合、混合物全体に対して、20~80 重量%、好ましくは 40~60 重量%である。潤滑成分が 20 重量%未満であると、潤滑油などの供給量が少なく発泡固形潤滑剤としての機能を発揮できず、80 重量%より多いときには固化しない場合がある。 When the resin component is a urethane prepolymer, the blending ratio of the lubricating component is 20 to 80% by weight, preferably 40 to 60% by weight, based on the entire mixture. When the lubricating component is less than 20% by weight, the supply amount of the lubricating oil or the like is so small that the function as the foamed solid lubricant cannot be exhibited.
 樹脂成分がポリエーテルポリオールの場合、上記潤滑成分の配合割合は、混合物全体に対して、60~80 重量%である。潤滑成分が 60 重量%未満であると、潤滑油などの供給量が少なく発泡固形潤滑剤としての機能を発揮できず、80 重量%より多いときには固化しない場合がある。 When the resin component is a polyether polyol, the blending ratio of the lubricating component is 60 to 80% by weight with respect to the entire mixture. When the lubricating component is less than 60% by weight, the supply amount of the lubricating oil or the like is so small that the function as the foamed solid lubricant cannot be exhibited, and when it is more than 80% by weight, it may not solidify.
 本発明において発泡固形潤滑剤には必要に応じて顔料や帯電防止剤、難燃剤、防黴剤やフィラーなどの各種添加剤等を添加することができる。さらに二硫化モリブデン、グラファイト等の固体潤滑剤、有機モリブデン等の摩擦調整剤、アミン、脂肪酸、油脂類等の油性剤、アミン系、フェノール系などの酸化防止剤、石油スルフォネート、ジノニルナフタレンスルフォネート、ソルビタンエステルなどの錆止め剤、イオウ系、イオウ-リン系などの極圧剤、有機亜鉛、リン系などの摩耗防止剤、ベンゾトリアゾール、亜硝酸ソーダなどの金属不活性剤、ポリメタクリレート、ポリスチレンなどの粘度指数向上剤などの各種添加剤を含んでいてもよい。 In the present invention, various additives such as pigments, antistatic agents, flame retardants, antifungal agents and fillers can be added to the solid foamed lubricant as necessary. In addition, solid lubricants such as molybdenum disulfide and graphite, friction modifiers such as organic molybdenum, oily agents such as amines, fatty acids, and fats, antioxidants such as amines and phenols, petroleum sulfonates, dinonylnaphthalene sulfone Rust inhibitors such as nates and sorbitan esters, extreme pressure agents such as sulfur and sulfur-phosphorus, antiwear agents such as organic zinc and phosphorus, metal deactivators such as benzotriazole and sodium nitrite, polymethacrylate, polystyrene Various additives such as a viscosity index improver such as
 発泡固形潤滑剤を製造するときの各成分を混合する方法としては、特に限定されることなく、例えばヘンシェルミキサー、リボンミキサー、ジューサーミキサー、ミキシングヘッド等、一般に用いられる撹拌機を使用して混合することができる。上記混合物は、市販のシリコーン系整泡剤などの界面活性剤を使用し、各原料分子を均一に分散させておくことが好ましい。また、この整泡剤の種類によって表面張力を制御し、生じる気泡の種類を連続気泡または独立気泡に制御することが可能となる。このような界面活性剤としては陰イオン系界面活性剤、非イオン系界面活性剤、陽イオン系界面活性剤、両性界面活性剤、シリコーン系界面活性剤、フッ素系界面活性剤などが挙げられる。 The method of mixing each component when producing the foamed solid lubricant is not particularly limited, and for example, mixing is performed using a commonly used stirrer such as a Henschel mixer, a ribbon mixer, a juicer mixer, a mixing head, or the like. be able to. The mixture preferably uses a surfactant such as a commercially available silicone foam stabilizer, and each raw material molecule is preferably dispersed uniformly. Further, the surface tension can be controlled by the type of the foam stabilizer, and the type of the generated bubbles can be controlled to open cells or closed cells. Examples of such surfactants include anionic surfactants, nonionic surfactants, cationic surfactants, amphoteric surfactants, silicone surfactants, and fluorine surfactants.
 本発明において潤滑油などの潤滑成分存在下で発泡反応と硬化反応とを同時に行なう反応型含浸法を用いることが、潤滑成分の高充填化と材料物性の高伸化を同時に両立させるためには望ましい。これは発泡体形成段階において発泡体に形成された気泡に潤滑成分が均一に含浸されるとともに、潤滑成分が発泡・硬化した樹脂内に吸蔵されることにより潤滑成分の高充填化と材料物性の高伸化が両立するものと考えられる。これに対してあらかじめ発泡体を製造しておき、これに潤滑成分を含浸させる後含浸法では潤滑成分保持力が十分でなく、短時間で潤滑剤が放出され長期的に使用すると潤滑成分が供給不足となる。 In the present invention, using a reactive impregnation method in which a foaming reaction and a curing reaction are simultaneously performed in the presence of a lubricating component such as a lubricating oil, in order to simultaneously achieve a high filling of the lubricating component and a high elongation of material properties at the same time. desirable. This is because the bubbles formed in the foam in the foam formation stage are uniformly impregnated with the lubrication component, and the lubrication component is occluded in the foamed / cured resin to increase the filling of the lubrication component and improve the material properties. High elongation is considered to be compatible. In contrast, the foam impregnated in advance and the impregnation method impregnating this with the lubricating component does not have sufficient lubricating component retention. The lubricant is released in a short period of time, and the lubricating component is supplied when used for a long time. It becomes insufficient.
 本発明において発泡固形潤滑剤の発泡後の連続気泡率が 50 %以上であり、好ましくは 50 %以上 90 %以下である。連続気泡率が 50 %未満の場合は、樹脂成分(固形成分)の潤滑油が一時的に独立気泡中に取り込まれている割合が多くなり、必要な時に外部へ供給されない場合がある。なお、 90 %をこえると潤滑剤の保油性の低下および潤滑剤の放出量が多くなることで長期使用に不利となったり、発泡固形潤滑剤自体の強度(耐久性)が低下したりするおそれがでる。独立気泡中に取り込まれている潤滑成分は、連続気泡に取り込まれた潤滑成分に比べて、ゆっくりと徐放され、その分長時間にわたって徐放を継続することができる。 In the present invention, the open cell ratio of the foamed solid lubricant after foaming is 50% or more, preferably 50% or more and 90% or less. When the open cell ratio is less than 50%, the ratio of the resin component (solid component) lubricating oil temporarily taken up in the closed cells increases and may not be supplied to the outside when necessary. In addition, if it exceeds 油 90%, there is a risk that it will be disadvantageous for long-term use due to a decrease in the oil retention of the lubricant and an increase in the amount of lubricant released, or the strength (durability) of the foamed solid lubricant itself may be reduced. I get out. The lubricating component taken into the closed cells is slowly released compared with the lubricating component taken into the open cells, and the sustained release can be continued for a long time.
 本発明において発泡固形潤滑剤の連続気泡率は以下の手順で算出できる。
(1)発泡硬化した発泡固形潤滑剤を適当な大きさにカットし、試料Aを得る。試料Aの重量を測定する。
(2)Aを 3 時間ソックスレー洗浄(溶剤:石油ベンジン)する。その後 80℃で 2 時間恒温槽に放置し、有機溶剤を完全に乾燥させ、試料Bを得る。試料Bの重量を測定する。
(3)連続気泡率を以下の手順で算出する。
 連続気泡率=(1-(試料Bの樹脂成分重量-試料Aの樹脂成分重量)/試料Aの潤滑成分重量)×100
 なお、試料A、Bの樹脂成分重量、潤滑成分重量は、試料A、Bの重量に組成の仕込み割合を乗じて算出する。
 連続していない独立気泡中に取り込まれた潤滑成分は 3 時間ソックスレー洗浄では外部へ放出されないため試料Bの重量を減少させることがないので、上記の操作で試料Bの重量減少分は連続気泡からの潤滑成分の放出によるものとして連続気泡率が算出できる。
In the present invention, the open cell ratio of the foamed solid lubricant can be calculated by the following procedure.
(1) The foamed solid lubricant that has been foam-cured is cut into an appropriate size to obtain sample A. The weight of sample A is measured.
(2) Soxhlet A is washed for 3 hours (solvent: petroleum benzine). Then leave it in a thermostatic bath at 80 ° C for 2 hours to completely dry the organic solvent and obtain Sample B. The weight of sample B is measured.
(3) The open cell ratio is calculated by the following procedure.
Open cell ratio = (1− (weight of resin component of sample B−weight of resin component of sample A) / weight of lubricating component of sample A) × 100
The resin component weight and the lubrication component weight of Samples A and B are calculated by multiplying the weights of Samples A and B by the composition charge ratio.
Lubricating components taken into discontinuous closed cells are not released to the outside by Soxhlet cleaning for 3 hours, so the weight of sample B is not reduced. The open cell ratio can be calculated as the release of the lubricating component.
 発泡固形潤滑剤の発泡倍率は 1.1 倍以上 100 倍未満がよい。発泡倍率 1.1 倍以下の場合は気泡体積が小さく、外部応力が加わったときに変形を許容できない。また、100 倍以上の時には外部応力に耐える強度を得ることが困難となる。発泡倍率としては 1.1 倍~10 倍が望ましい。 The foaming ratio of the foamed solid lubricant should be at least 1.1 and less than 100 times. When the expansion ratio is 1.1 or less, the bubble volume is small and deformation cannot be allowed when external stress is applied. Moreover, when it is 100 times or more, it is difficult to obtain a strength that can withstand external stress. The expansion ratio is preferably 1.1 times to 10 times.
 発泡固形潤滑剤は、自在継手や軸受等の潤滑対象部材内に潤滑成分および樹脂を含む混合物を流し込んだ後、発泡・硬化させてもよく、また常圧で発泡・硬化した後に裁断や研削等で目的の形状に後加工し、潤滑対象部材内に組み込むこともできる。形状が複雑な潤滑対象部材内の任意の部位にも容易に充填することが可能であり、発泡成形体を得るための成形金型や研削工程等も不要であることから、本発明では、混合物を発泡・硬化前に潤滑対象部材内に流し込み、該部材内において発泡・硬化させる方法を採用することが好ましい。該方法を採用することで、製造工程が簡易となり低コスト化が図れる。なお、潤滑対象部材としては、上記等速自在継手および軸受の他、ボールねじ、リニアガイド、球面ブッシュ等が挙げられる。 The foamed solid lubricant may be foamed and cured after pouring a mixture containing a lubricating component and resin into a lubrication target member such as a universal joint or a bearing, and after foaming and curing at normal pressure, cutting, grinding, etc. Then, it can be post-processed into the target shape and incorporated into the member to be lubricated. In the present invention, it is possible to easily fill any part of the member to be lubricated with a complicated shape, and there is no need for a molding die or a grinding process for obtaining a foamed molded product. It is preferable to employ a method of pouring the resin into the lubrication target member before foaming / curing and foaming / curing in the member. By adopting this method, the manufacturing process is simplified and the cost can be reduced. In addition, as a lubrication object member, a ball screw, a linear guide, a spherical bush, etc. other than the said constant velocity universal joint and a bearing are mentioned.
 本発明において発泡固形潤滑剤と共存させることができる補助潤滑用グリースの増ちょう剤、基油としては、発泡固形潤滑剤中の潤滑成分の一例として挙げたものを用いることができる。同様に各種添加剤を含むこともできる。 As the thickener and base oil of the auxiliary lubricating grease that can coexist with the foamed solid lubricant in the present invention, those exemplified as an example of the lubricating component in the foamed solid lubricant can be used. Similarly, various additives can be included.
 本発明において補助潤滑用グリースにワックスAを添加することにより、比較的低温時(常温)ではその流動性を抑え潤滑必要部位に留まることができるが、金属接触等により軸受や自在継手等の機械要素の摺動部で温度が上昇するとワックスAが溶けるために補助潤滑用グリースの流動性が向上し、潤滑剤の必要な場所へすばやく供給される。 In the present invention, by adding wax A to the auxiliary lubricating grease, it is possible to suppress the fluidity at a relatively low temperature (normal temperature) and to remain at the site where lubrication is required. When the temperature rises at the sliding portion of the element, the wax A melts, so that the fluidity of the auxiliary lubricating grease is improved, and the lubricant is quickly supplied to the place where the lubricant is required.
 補助潤滑用グリースに用いるワックスAは、融点が 70~150℃の範囲のものである。融点が 70℃未満であると軟化する(流動性が上がる)温度が低いため、必要以上に流動してしまい潤滑剤が必要な場所から移動してしまうおそれがあり、期待した役目を成さない。150℃をこえると、融点が高すぎて必要なときにワックスAが溶融しない場合があり、目的の流動性の向上が得られず摺動部に潤滑成分の供給が遅れる場合がある。また、ワックスAの融点が高いと、ワックスAを溶融・分散させる際に補助潤滑用グリースを高温に上昇させる必要があり、補助潤滑用グリース自体の劣化を引き起こす要因となる。 ワ ッ ク ス Wax A used for auxiliary lubricating grease has a melting point in the range of 70-150 ℃. If the melting point is less than ℃ 70 ° C, the temperature at which it softens (increases fluidity) is low, so there is a risk that it will flow more than necessary and the lubricant may move from where it is needed. . When the temperature exceeds 150 ° C., the melting point is too high and the wax A may not melt when necessary, and the target fluidity may not be improved, and the supply of the lubricating component to the sliding portion may be delayed. If the melting point of the wax A is high, it is necessary to raise the auxiliary lubricating grease to a high temperature when the wax A is melted / dispersed, which causes deterioration of the auxiliary lubricating grease itself.
 補助潤滑用グリースに用いるワックスAは、脂肪酸アミド、水素硬化油の中の 1 種類以上から選ばれることが望ましい。脂肪酸アミドは、飽和脂肪酸アミドであっても不飽和脂肪酸アミドであってもよい。好ましい脂肪酸アミドとしては、ステアリン酸アミド、オレイン酸アミド、エルカ酸アミド、エチレンビスステアリン酸アミドが挙げられる。水素硬化油としては、硬化ひまし油が挙げられる。 The wax A used for the auxiliary lubricating grease is preferably selected from at least one of fatty acid amide and hydrogenated oil. The fatty acid amide may be a saturated fatty acid amide or an unsaturated fatty acid amide. Preferable fatty acid amides include stearic acid amide, oleic acid amide, erucic acid amide, and ethylenebisstearic acid amide. Examples of hydrogenated oil include hardened castor oil.
 補助潤滑用グリースに用いるワックスAの添加量は、補助潤滑用グリース全体に対して 1 重量%以上 15 重量%未満、さらに好ましくは 2~10 重量%である。1 重量%未満の場合は常温での流動性の低下が得られず、15 重量%以上の場合には補助潤滑グリースが硬くなりすぎて潤滑が必要な箇所に供給されにくくなり好ましくない。これらのワックスAを補助潤滑用グリースへ添加するときは、選択したワックスAの融点以上に補助潤滑用グリースを加熱の上、均一に混合して用いることが好ましい。 The amount of wax A used in the auxiliary lubricating grease is from 1% by weight to less than 15% by weight, more preferably from 2 to 10% by weight, based on the entire auxiliary lubricating grease. If the amount is less than 1% by weight, the fluidity at normal temperature cannot be lowered. If the amount is 15% by weight or more, the auxiliary lubricating grease becomes too hard to be supplied to a place requiring lubrication. When these waxes A are added to the auxiliary lubricating grease, it is preferable that the auxiliary lubricating grease is heated and uniformly mixed with the melting point of the selected wax A or higher.
 本発明において発泡固形潤滑剤と共存させることができる補助潤滑用グリースの量は潤滑対象の空間容積の 1~60 体積%が望ましい。さらに好ましくは、3~40 体積%である。1 体積%より少ないとグリース量としては不十分であるし、60 体積%よりも多いと長期にわたって潤滑に寄与する発泡固形潤滑剤の封入量が少なくなってしまうため、耐久性に問題が生じる。 In the present invention, the amount of auxiliary lubricating grease that can coexist with the foamed solid lubricant is preferably 1 to 60% by volume of the space volume to be lubricated. More preferably, it is 3 to 40% by volume. If the amount is less than 1% by volume, the amount of grease is insufficient. If the amount is more than 60% by volume, the amount of the foamed solid lubricant that contributes to lubrication over a long period of time decreases, resulting in a problem in durability.
 本発明において補助潤滑用グリースを潤滑対象部位に封入する方法は問わない。潤滑対象部位に発泡固形潤滑剤を充填させる前に潤滑対象部位内やその部品に補助潤滑用グリースを塗布しておいてもよいし、潤滑対象部位に発泡固形潤滑剤を充填した後に注射器(もしくはそれに類似するもの)で目的の場所へ注入してもよい。 In the present invention, the method of enclosing the auxiliary lubricating grease in the lubrication target portion is not limited. Before filling the lubrication target part with the foamed solid lubricant, auxiliary lubricating grease may be applied to the lubrication target part or its parts, or after filling the lubrication target part with the foamed solid lubricant, the syringe (or It is also possible to inject it to the target place with something similar to that.
 また、潤滑システムにおいて補助潤滑用グリースを封入あるいは塗布する場所は特に問わないが、潤滑対象部位の摺動部近傍に封入あるいは塗布することが好ましい。封入あるいは塗布された補助潤滑用グリースは潤滑対象部位の遠心力や屈曲運動により、潤滑対象部位の摺動部に徐々に移動し、潤滑に寄与することができる。 Further, the place where the auxiliary lubricating grease is enclosed or applied in the lubrication system is not particularly limited, but it is preferable to enclose or apply it near the sliding portion of the lubrication target part. The auxiliary lubricating grease enclosed or applied can gradually move to the sliding portion of the lubrication target portion due to the centrifugal force or bending motion of the lubrication target portion, and can contribute to lubrication.
 自在継手において補助潤滑用グリースを封入あるいは塗布する場所は、自在継手始動時に該継手内の転がり部や摺動部に到達できる部位であれば特に制限はない。好ましくは自在継手内の摺動部や転がり部の近傍である。等速自在継手の場合の具体的な部位としては、外方部材底部、内方部材(内輪)のシャフト近傍、トラック部のトルク伝達部材近傍、ケージ内径・外径面、ケージ窓内、外方部材-ケージ-内方部材の球面部が挙げられる(図1~図4参照)。また、自在継手において補助潤滑用グリースを封入する方法としては、自在継手に発泡固形潤滑剤を充填させる前に自在継手内やその部品に補助潤滑用グリースを封入もしくは塗布しておいてもよいし、自在継手に発泡固形潤滑剤を充填した後に注射器(もしくはそれに類似するもの)で目的の箇所へ注入してもよい(図1~図4参照)。 The place where the auxiliary lubricating grease is filled or applied in the universal joint is not particularly limited as long as it can reach the rolling part and the sliding part in the joint at the start of the universal joint. Preferably, it is the vicinity of the sliding part and rolling part in a universal joint. Specific parts of the constant velocity universal joint include the outer member bottom, the shaft of the inner member (inner ring), the torque transmission member of the track, the cage inner and outer surfaces, the cage window, and the outer The spherical portion of member-cage-inner member can be mentioned (see FIGS. 1 to 4). Further, as a method of enclosing the auxiliary lubricating grease in the universal joint, the auxiliary lubricating grease may be enclosed or applied in the universal joint or its parts before filling the universal joint with the foamed solid lubricant. Alternatively, after filling the universal joint with a foamed solid lubricant, it may be injected into a target location with a syringe (or similar one) (see FIGS. 1 to 4).
 本発明の自在継手を等速自在継手に利用した例としては、BJの他、アンダーカットフリージョイント(以下、UJと記す)などが挙げられる。このようなBJやUJのトルク伝達部材(ボール)数は6個または8個の場合がある。BJやUJに発泡固形潤滑剤を封入した場合、潤滑剤が必要な部位のみに充填されることになるため、低コスト化・軽量化に寄与できるとともに、使用される作動角が大きいことから圧縮・屈曲を受けやすく、摺動部へ潤滑剤が供給されやすい。また、摺動式等速自在継手に利用した例としては、DOJ、TJ、クロスグルーブジョイントなどが挙げられる。また、不等速自在継手としては、クロスジョイントなどが挙げられる。 Examples of using the universal joint of the present invention for a constant velocity universal joint include an undercut free joint (hereinafter referred to as UJ) in addition to BJ. The number of torque transmitting members (balls) of such BJ and UJ may be 6 or 8. When a foamed solid lubricant is sealed in BJ or UJ, the lubricant is filled only in the necessary parts, which contributes to cost reduction and weight reduction, and because the operating angle used is large, it is compressed.・ It is easy to bend and the lubricant is easily supplied to the sliding part. In addition, examples of use for sliding type constant velocity universal joints include DOJ, TJ, and cross groove joint. Moreover, a cross joint etc. are mentioned as an inconstant velocity universal joint.
 本発明の軸受は、実施形態で説明した上記軸受に限らず、種々の形式の転がり軸受に広く適用可能である。例として、アンギュラ玉軸受、スラスト玉軸受、円筒ころ軸受、針状ころ軸受、スラスト円筒ころ軸受、スラスト針状ころ軸受、円すいころ軸受、スラスト円すいころ軸受、自動調心玉軸受、自動調心ころ軸受、スラスト自動調心ころ軸受、すべり軸受などが挙げられる。 The bearing of the present invention is not limited to the bearing described in the embodiment, and can be widely applied to various types of rolling bearings. Examples include angular contact ball bearings, thrust ball bearings, cylindrical roller bearings, needle roller bearings, thrust cylindrical roller bearings, thrust needle roller bearings, tapered roller bearings, thrust tapered roller bearings, self-aligning ball bearings, and self-aligning rollers. Examples include bearings, thrust spherical roller bearings, and plain bearings.
<補助潤滑用グリースの作製>
 実施例1~実施例8、比較例1~比較例4に用いる補助潤滑用グリースA~補助潤滑用グリースHを以下の方法で作製した。
<Preparation of auxiliary lubricating grease>
Auxiliary lubricating grease A to auxiliary lubricating grease H used in Examples 1 to 8 and Comparative Examples 1 to 4 were prepared by the following method.
補助潤滑用グリースA
 鉱油(新日本石油社製:タービン100) 83 g 中で、ジフェニルメタン‐4,4‐ジイソシアナート 9.16 g、p-トルイジン 7.84 g を反応させ、生成したジウレア系化合物を均一に分散させてベースグリースを得た。このベースグリースに、ステアリン酸アミド(花王社製:脂肪酸アマイドT 融点 97~102℃ )を 10 重量%添加し、110℃に昇温した後よく撹拌して、補助潤滑用グリースAを得た。
Auxiliary lubrication grease A
Base grease by uniformly dispersing 9.16 g of diphenylmethane-4,4-diisocyanate and 7.84 g of p-toluidine in 83 g of mineral oil (manufactured by Nippon Oil Corporation: Turbine 100) Got. To this base grease, 10% by weight of stearamide (manufactured by Kao Corporation: fatty acid amide T melting point 97-102 ° C.) was added, heated to 110 ° C. and stirred well to obtain grease A for auxiliary lubrication.
補助潤滑用グリースB
 鉱油(新日本石油社製:タービン100) 83 g 中で、ジフェニルメタン‐4,4‐ジイソシアナート 9.16 g、p-トルイジン 7.84 g を反応させ、生成したジウレア系化合物を均一に分散させてベースグリースを得た。このベースグリースに、ステアリン酸アミド(花王社製:脂肪酸アマイドT 融点 97~102℃ )を 3 重量%添加し、110℃に昇温した後よく撹拌して、補助潤滑用グリースBを得た。
Auxiliary lubrication grease B
Base grease by uniformly dispersing 9.16 g of diphenylmethane-4,4-diisocyanate and 7.84 g of p-toluidine in 83 g of mineral oil (manufactured by Nippon Oil Corporation: Turbine 100) Got. To this base grease, 3% by weight of stearic acid amide (manufactured by Kao Corporation: fatty acid amide T melting point 97-102 ° C.) was added, heated to 110 ° C. and stirred well to obtain auxiliary lubricating grease B.
補助潤滑用グリースC
 鉱油(新日本石油社製:タービン100) 83 g 中で、ジフェニルメタン‐4,4‐ジイソシアナート 9.16 g、p-トルイジン 7.84 g を反応させ、生成したジウレア系化合物を均一に分散させてベースグリースを得た。このベースグリースに、エチレンビスステアリン酸アミド(花王社製:脂肪酸アマイドEB-G 融点 141.5~146.5℃ )を 5 重量%添加し、150℃に昇温した後よく撹拌して、補助潤滑用グリースCを得た。
Auxiliary lubrication grease C
Base grease by uniformly dispersing 9.16 g of diphenylmethane-4,4-diisocyanate and 7.84 g of p-toluidine in 83 g of mineral oil (manufactured by Nippon Oil Corporation: Turbine 100) Got. To this base grease, 5% by weight of ethylene bis-stearic acid amide (manufactured by Kao Corporation: fatty acid amide EB-G melting point 141.5-146.5 ° C) was added, heated to 150 ° C, stirred well, and supplementary lubricating grease C Got.
補助潤滑用グリースD
 鉱油(新日本石油社製:タービン100) 92 g 中で、ジフェニルメタン‐4,4‐ジイソシアナート 3.94 g、オクチルアミン 4.07 g を反応させ、生成したジウレア系化合物を均一に分散させてベースグリースを得た。このベースグリースに、エルカ酸アミド(花王社製:脂肪酸アマイドE 融点 79~85℃ )を 5 重量%添加し、100℃に昇温した後よく撹拌して、補助潤滑用グリースDを得た。
Auxiliary lubrication grease D
In 92 g of mineral oil (manufactured by Nippon Oil Corporation: Turbine 100), 3.94 g of diphenylmethane-4,4-diisocyanate and 4.07 g of octylamine were reacted, and the resulting diurea compound was uniformly dispersed to form a base grease. Obtained. To this base grease, 5% by weight of erucic acid amide (manufactured by Kao Corporation: fatty acid amide E melting point 79-85 ° C.) was added, heated to 100 ° C. and stirred well to obtain auxiliary lubricating grease D.
補助潤滑用グリースE
 鉱油(新日本石油社製:タービン100) 92 g 中で、ジフェニルメタン‐4,4‐ジイソシアナート 3.94 g、オクチルアミン 4.07 g を反応させ、生成したジウレア系化合物を均一に分散させてベースグリースを得た。このベースグリースに、オレイン酸アミド(花王社製:脂肪酸アマイドO-N 融点 70~75℃ )を 5 重量%添加し、100℃に昇温した後よく撹拌して、補助潤滑用グリースEを得た。
Auxiliary lubrication grease E
In 92 g of mineral oil (manufactured by Nippon Oil Corporation: Turbine 100), 3.94 g of diphenylmethane-4,4-diisocyanate and 4.07 g of octylamine were reacted, and the resulting diurea compound was uniformly dispersed to form a base grease. Obtained. To this base grease, 5% by weight of oleic acid amide (manufactured by Kao Corporation: fatty acid amide —N melting point 70-75 ° C) was added, and the mixture was heated to 100 ° C and stirred well to obtain auxiliary lubricating grease E It was.
補助潤滑用グリースF
 鉱油(新日本石油社製:タービン100) 92 g 中で、ジフェニルメタン‐4,4‐ジイソシアナート 3.94 g、オクチルアミン 4.07 g を反応させ、生成したジウレア系化合物を均一に分散させてベースグリースを得た。このベースグリースに、硬化ひまし油(花王社製:カオーワックス85-P 融点 85~87℃ )を 5 重量%添加し、100℃に昇温した後よく撹拌して、補助潤滑用グリースFを得た。
Auxiliary lubrication grease F
In 92 g of mineral oil (manufactured by Nippon Oil Corporation: Turbine 100), 3.94 g of diphenylmethane-4,4-diisocyanate and 4.07 g of octylamine were reacted, and the resulting diurea compound was uniformly dispersed to form a base grease. Obtained. To this base grease, 5% by weight of hardened castor oil (manufactured by Kao Corporation: Kao wax 85-P melting point 85-87 ° C) was added, heated to 100 ° C and stirred well to obtain auxiliary lubricating grease F .
補助潤滑用グリースG
 鉱油(新日本石油社製:タービン100) 83 g 中で、ジフェニルメタン‐4,4‐ジイソシアナート 9.16 g、p-トルイジン 7.84 g を反応させ、生成したジウレア系化合物を均一に分散させてベースグリースを得た。このベースグリースに、パラフィンワックス(日本精蝋社製:HNP-5 融点 62℃ )を 5 重量%添加し、80℃に昇温した後よく撹拌して、補助潤滑用グリースGを得た。
Auxiliary lubrication grease G
Base grease by uniformly dispersing 9.16 g of diphenylmethane-4,4-diisocyanate and 7.84 g of p-toluidine in 83 g of mineral oil (manufactured by Nippon Oil Corporation: Turbine 100) Got. To this base grease, 5% by weight of paraffin wax (manufactured by Nippon Seiwa Co., Ltd .: HNP-5 melting point 62 ° C.) was added, heated to 80 ° C. and stirred well to obtain auxiliary lubricating grease G.
補助潤滑用グリースH
 鉱油(新日本石油社製:タービン100) 83 g 中で、ジフェニルメタン‐4,4‐ジイソシアナート 9.16 g、p-トルイジン 7.84 g を反応させ、生成したジウレア系化合物を均一に分散させてベースグリースを得た。このベースグリースに、ステアリン酸アミド(花王社製:脂肪酸アマイドT 融点 97~102℃ )を 15 重量%添加し、110℃に昇温した後よく撹拌して、補助潤滑用グリースHを得た。
Auxiliary lubrication grease H
Base grease by uniformly dispersing 9.16 g of diphenylmethane-4,4-diisocyanate and 7.84 g of p-toluidine in 83 g of mineral oil (manufactured by Nippon Oil Corporation: Turbine 100) Got. To this base grease, 15% by weight of stearamide (manufactured by Kao Corporation: fatty acid amide T melting point 97 to 102 ° C.) was added, heated to 110 ° C. and stirred well to obtain auxiliary lubricating grease H.
実施例1~実施例6、比較例1および比較例3
 最初に、図1に示す、外方部材2、内方部材1、ケージ6およびトルク伝達部材である鋼球5を組み付けた固定式8個ボールジョイントサブアッシー(NTN社製:EBJ82 外径サイズ 72.6 mm )の外方部材底部に、表1に示す補助潤滑用グリースを 5 g 封入した。次に表1に示す組成のうち(a)、(d)、(e)、(i)を 80℃でよく混合し、次に 120℃で溶解した(b)、(h)を加えて素早く混合した。最後に(c)を投入し撹拌した後、補助潤滑用グリースを封入した前述のジョイントサブアッシーに 18.0 g 封入した。数秒後に発泡反応が始まり、100℃に設定した恒温槽で 30 分間放置し硬化させ、ブーツ、シャフトなど他の部区を組み付け発泡固形潤滑剤と、補助潤滑用グリースとが内部に共存する等速自在継手の試験片を得た。得られた試験片を以下に示す耐久性試験に供した。また前述の連続気泡率の算出法に基づき発泡固形潤滑剤の連続気泡率を測定した。結果を表1に併記する。
Examples 1 to 6, Comparative Example 1 and Comparative Example 3
First, as shown in FIG. 1, an outer member 2, an inner member 1, a cage 6 and a steel ball 5 which is a torque transmission member are assembled into a fixed eight ball joint sub-assy (manufactured by NTN: EBJ82 outer diameter size 72.6 mm), 5 g of auxiliary lubricating grease shown in Table 1 was sealed at the bottom of the outer member. Next, among the compositions shown in Table 1, (a), (d), (e), and (i) were mixed well at 80 ° C, and then dissolved at 120 ° C and (b) and (h) were quickly added. Mixed. Finally, (c) was added and stirred, and then 18.0 g was sealed in the joint subassembly with the auxiliary lubricating grease sealed therein. After a few seconds, the foaming reaction starts, and is allowed to stand for 30 minutes in a thermostatic bath set at 100 ° C to harden. The other parts such as boots and shafts are assembled, and the foamed solid lubricant and auxiliary lubricating grease coexist inside. A universal joint specimen was obtained. The obtained test piece was subjected to the durability test shown below. Further, the open cell ratio of the foamed solid lubricant was measured based on the above-mentioned method for calculating the open cell ratio. The results are also shown in Table 1.
<等速自在継手を用いた耐久性試験>
 目的の耐久性の向上が得られているか評価するために、等速自在継手試験片を以下の条件で実機評価を行なった。試験中に外方部材表面温度が 100℃をこえたものは、異常温度上昇として試験打ち切りとした。また、試験後に試験片内部を点検し、摩耗やピーリング等の内部損傷が見られなかったものを可と判定して「○」を、損傷が確認されたものを不可と判定して「×」を記録する。
 ・トルク  451 N・m
 ・角度   6 deg
 ・回転数  580 rpm
 ・試験時間 300 時間
<Durability test using constant velocity universal joint>
In order to evaluate whether or not the target durability has been improved, the constant velocity universal joint test piece was evaluated under the following conditions. If the outer member surface temperature exceeded 100 ° C during the test, the test was terminated due to an abnormal temperature rise. In addition, after the test, the inside of the test piece is inspected, and if there is no internal damage such as wear or peeling, it is judged as acceptable, “○” is judged, and if the damage is confirmed, judged as impossible, “×”. Record.
・ Torque 451 N ・ m
Angle 6 deg
・ Rotation speed 580 rpm
・ Test time 300 hours
実施例7、実施例8、比較例2および比較例4
 最初に、図1に示す、外方部材2、内方部材1、ケージ6およびトルク伝達部材である鋼球5を組み付けた固定式8個ボールジョイントサブアッシー(NTN社製:EBJ82 外径サイズ 72.6 mm )の外方部材底部に、表1に示す補助潤滑用グリースを 5 g 封入した。表1に示す成分量(組成)で、ポリエーテルポリオールにシリコーン系整泡剤、鉱油、アミン系触媒、発泡剤としての水を加え、90℃で加熱しよく撹拌した。これにイソシアネートを加えてよく撹拌した後、補助潤滑用グリースを封入した前述のジョイントサブアッシーに 16.0 g 封入した。数秒後に発泡反応が始まり、90℃に設定した恒温槽で 15 分間放置し硬化させ、ブーツ、シャフトなど他の部区を組み付け、発泡固形潤滑剤と、補助潤滑用グリースとが内部に共存する等速自在継手の試験片を得た(図1参照)。得られた試験片および試験片中の発泡固形潤滑剤について、実施例1同様の項目を測定した。結果を表1に併記する。
Example 7, Example 8, Comparative Example 2 and Comparative Example 4
First, as shown in FIG. 1, an outer member 2, an inner member 1, a cage 6 and a steel ball 5 which is a torque transmission member are assembled into a fixed eight ball joint sub-assy (manufactured by NTN: EBJ82 outer diameter size 72.6 mm), 5 g of auxiliary lubricating grease shown in Table 1 was sealed at the bottom of the outer member. In the component amounts (composition) shown in Table 1, silicone-based foam stabilizer, mineral oil, amine-based catalyst, and water as a blowing agent were added to the polyether polyol, and the mixture was heated at 90 ° C. and stirred well. After adding isocyanate to this and stirring well, 16.0 g was sealed in the above-mentioned joint subassembly filled with auxiliary lubricating grease. After a few seconds, the foaming reaction starts, and it is left to cure for 15 minutes in a thermostatic chamber set at 90 ° C. Other parts such as boots and shafts are assembled, and the solid foam lubricant and auxiliary lubricating grease coexist in the interior. A test piece of a quick universal joint was obtained (see FIG. 1). About the obtained test piece and the foaming solid lubricant in a test piece, the item similar to Example 1 was measured. The results are also shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1~実施例8は試験終了後も継続運転可能で、良好な結果であった。比較例1および比較例2はワックスA入りの補助潤滑用グリースを封入したが、結果は不可であった。比較例1は、ブーツ側への潤滑成分の流出は多くなり、自在継手内が潤滑剤不足になり、損傷にいたったものと考えられる(補助潤滑用グリースに添加したワックスA が低融点だったため、その効果が現れなかったと推測する)。比較例2および比較例4は、発泡固形潤滑剤の連続気泡率が 50%未満であったため、必要箇所(ボール-トラック部やケージ球面部等の摺動部)へ潤滑剤が充分に供給されなかったものと推測する。また、比較例3は、補助潤滑グリースのワックスA添加量が 15 重量%であったため、ブーツ側への潤滑成分の流出は少なかった。しかしながら、潤滑成分の流動性が低すぎたためにジョイント内においても潤滑成分の移動が困難となり、必要箇所(ボール-トラック部やケージ球面部等の摺動部)へ潤滑剤が充分に供給されなかったものと推測する。 In Examples 1 to 8, continuous operation was possible even after the test was completed, and good results were obtained. In Comparative Examples 1 and 2, the auxiliary lubricating grease containing wax A was enclosed, but the result was not possible. In Comparative Example 1, the outflow of the lubricating component to the boot side increased, and it was considered that the inside of the universal joint was deficient in the lubricant, resulting in damage (because the wax A に added to the auxiliary lubricating grease had a low melting point. I guess the effect did n’t appear). In Comparative Example 2 and Comparative Example 4, the open cell ratio of the foamed solid lubricant was less than 50%, so that the lubricant was sufficiently supplied to the necessary parts (sliding parts such as ball-track parts and cage spherical parts). I guess it didn't exist. In Comparative Example 3, since the amount of wax A added to the auxiliary lubricating grease was 15% by weight, there was little outflow of the lubricating component to the boot side. However, since the fluidity of the lubrication component is too low, it is difficult to move the lubrication component even in the joint, and the lubricant is not sufficiently supplied to the necessary part (sliding part such as ball-track part and cage spherical part). I guess.
実施例9および実施例10
 表2に示す組成のうち(a)、(d)、(e)、(i)を 80℃でよく混合し、次に 120℃で溶解したアミン系硬化剤(b)を加えて素早く混合した。最後に水(c)、アミン系触媒(h)を投入し撹拌して得た混合物を、テーパ軸受(NTN社製:30204 外径サイズ 47 mm )の内部空間に充填した。数秒後に発泡反応が始まり、100℃で 30 分間放置し硬化させた後、転動体近傍に上記補助潤滑用グリース 0.3 g を注射器にて注入して(図5参照)、発泡固形潤滑剤封入軸受の試験片を得た。得られた試験片を以下に示す初期特性試験および寿命試験に供し、初期特性の発現状況および寿命時間を測定した。また前述の連続気泡率の算出法に基づき発泡固形潤滑剤の連続気泡率を測定した。これらの結果を表2に併記する。
Example 9 and Example 10
Of the compositions shown in Table 2, (a), (d), (e) and (i) were mixed well at 80 ° C, and then the amine curing agent (b) dissolved at 120 ° C was added and mixed quickly. . Finally, water (c) and an amine catalyst (h) were added and the mixture obtained by stirring was filled in the internal space of a taper bearing (NTN Corporation: 30204 outer diameter size 47 mm). After a few seconds, the foaming reaction started and allowed to stand at 100 ° C. for 30 minutes to cure. Then, 0.3 g of the auxiliary lubricating grease was injected into the vicinity of the rolling element with a syringe (see FIG. 5). A specimen was obtained. The obtained test piece was subjected to the following initial characteristic test and life test, and the state of appearance of the initial characteristic and the life time were measured. Further, the open cell ratio of the foamed solid lubricant was measured based on the above-mentioned method for calculating the open cell ratio. These results are also shown in Table 2.
<軸受を用いた初期特性試験>
 目的の補助潤滑の1つとして初期特性が得られているか評価するために、得られた軸受試験片について、Fa=Fr=67 N の荷重を負荷し、80℃で 5000 rpm で 10 時間回転させた。試験後分解し、ローラ大端部にすべり痕が見られなかったものを可として「○」を、すべり痕が観察されたものを不可として「×」を記録する。
<Initial characteristic test using bearings>
In order to evaluate whether or not the initial characteristics are obtained as one of the target auxiliary lubrications, the obtained bearing test piece was loaded with Fa = Fr = 67 N and rotated at 5000 rpm for 10 hours at 80 ° C. It was. Decompose after the test, and mark “◯” if no slip mark is observed at the roller large end, and mark “X” if no slip mark is observed.
<軸受を用いた寿命試験>
 初期特性試験が可であったものについて、引き続き寿命試験を行なった。得られた試験片にラジアル荷重 67 N 、スラスト荷重 67 N を負荷し、80℃で 5000 rpm で回転させ、回転軸を駆動している電動機の入力電流が制限電流を超過した時(回転トルクが始動トルクの 2 倍をこえた時)までの寿命時間を測定した。
<Life test using bearings>
A life test was subsequently conducted for those for which an initial characteristic test was possible. When a radial load of 67 N and a thrust load of 67 N were applied to the obtained specimen and rotated at 5000 rpm at 80 ° C, the input current of the motor driving the rotating shaft exceeded the limit current (the rotational torque was The lifetime was measured until it exceeded twice the starting torque.
実施例11および実施例12
 表2に示す組成でポリエーテルポリオール(g)にシリコーン系整泡剤(d)、潤滑油(i)、アミン系触媒(h)、発泡剤としての水(c)を加え、90℃で加熱しよく撹拌した。これにイソシアネートを加えてよく撹拌して得た混合物を、テーパ軸受(NTN社製:30204 外径サイズ 47 mm )の内部空間に充填した。数秒後に発泡反応が始まり、90℃で 15 分間放置し硬化させた後、転動体近傍に上記補助潤滑用グリース 0.3 g を注射器にて注入して(図5参照)、発泡固形潤滑剤封入軸受の試験片を得た。実施例9同様の項目を測定した。結果を表2に併記する。
Example 11 and Example 12
Add silicone-based foam stabilizer (d), lubricating oil (i), amine-based catalyst (h) and water (c) as blowing agent to polyether polyol (g) with the composition shown in Table 2, and heat at 90 ° C. Stir well. The mixture obtained by adding isocyanate to this and stirring well was filled in the internal space of a taper bearing (NTN Corporation: 30204 outer diameter size 47 mm). After a few seconds, the foaming reaction started. After standing for 15 minutes at 90 ° C. and curing, 0.3 g of the auxiliary lubricating grease was injected into the vicinity of the rolling element with a syringe (see FIG. 5). A specimen was obtained. The same items as in Example 9 were measured. The results are also shown in Table 2.
比較例5
 表2に示す組成で実施例9および実施例10と同様の手順で軸受試験片を作成したが、補助潤滑用グリースは封入しなかった。実施例9同様の項目を測定した。結果を表2に併記する。
Comparative Example 5
Bearing test specimens having the compositions shown in Table 2 were prepared in the same procedure as in Example 9 and Example 10, but no auxiliary lubricating grease was enclosed. The same items as in Example 9 were measured. The results are also shown in Table 2.
比較例6
 表2に示す組成で実施例11および実施例12と同様の手順で軸受試験片を作成したが、補助潤滑用グリースは封入しなかった。実施例9同様の項目を測定した。結果を表2に併記する。
Comparative Example 6
Bearing test specimens having the composition shown in Table 2 were prepared in the same manner as in Examples 11 and 12, but no auxiliary lubricating grease was enclosed. The same items as in Example 9 were measured. The results are also shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
実施例13~実施例16および比較例7
 最初に、図2に示す、外方部材2、内方部材1、ケージ6およびトルク伝達部材である鋼球5を組み付けた固定式8個ボールジョイントサブアッシー(NTN社製:EBJ82 外径サイズ 72.6 mm )を準備し、表3に示す組成のうち(a)、(d)、(e)、(i)を 80℃でよく混合し、次に 120℃で溶解した(b)、(h)を加えて素早く混合した。最後に(c)を投入し撹拌した後、前述のジョイントサブアッシーに 15.0 g 封入した。数秒後に発泡反応が始まり、100℃に設定した恒温槽で 30 分間放置し硬化させ、等速自在継手内の発泡固形潤滑剤を硬化させた。その後、内方部材1のシャフト穴下に設けた空間7aに補助潤滑用グリース 5 g を封入し、ブーツ、シャフトなど他の部区を組み付け、発泡固形潤滑剤と、補助潤滑用グリースとが内部に共存する等速自在継手の試験片を得た(図2参照)。得られた試験片および試験片中の発泡固形潤滑剤について、実施例1同様の項目を測定した。これらの結果を表3に併記する。
Examples 13 to 16 and Comparative Example 7
First, as shown in FIG. 2, an outer member 2, an inner member 1, a cage 6 and a steel ball 5 which is a torque transmission member are assembled into a fixed eight ball joint sub-assy (manufactured by NTN: EBJ82 outer diameter size 72.6 mm) was prepared, and (a), (d), (e), (i) among the compositions shown in Table 3 were mixed well at 80 ° C. and then dissolved at 120 ° C. (b), (h) And mixed quickly. Finally, (c) was added and stirred, and then 15.0 g was sealed in the joint subassembly. After a few seconds, the foaming reaction started. The foamed solid lubricant in the constant velocity universal joint was cured by allowing it to stand for 30 minutes in a thermostatic bath set at 100 ° C. to cure. After that, 5 g of auxiliary lubricating grease is sealed in the space 7 a provided below the shaft hole of the inner member 1, and other sections such as boots and shafts are assembled, and the solid foam lubricant and auxiliary lubricating grease are contained inside. A test piece of a constant velocity universal joint coexisting with was obtained (see FIG. 2). About the obtained test piece and the foaming solid lubricant in a test piece, the item similar to Example 1 was measured. These results are also shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例13~実施例16は試験終了後も継続運転可能で、良好な結果であった。比較例7は、ブーツ側への潤滑成分の流出は多くなり、自在継手内が潤滑剤不足になり、損傷にいたったものと考えられる(補助潤滑用グリースに添加したワックスA が低融点だったため、その効果が現れなかったと推測する)。 In Examples 13 to 16, continuous operation was possible even after the test was completed, and good results were obtained. In Comparative Example 7, the outflow of the lubricating component to the boot side increased, and it was considered that the inside of the universal joint was deficient in the lubricant, resulting in damage (because the wax A added to the auxiliary lubricating grease had a low melting point. I guess the effect did n’t appear).
参考実施例1~参考実施例6および参考比較例1
 最初に、図6に示す、外方部材22、内方部材23、ケージ27およびトルク伝達部材である鋼球6を組み付けた固定式8個ボールジョイントサブアッシー(NTN社製:EBJ82 外径サイズ 72.6 mm )を準備した。次に表4に示す組成のうち(e)、(i)、(j)を(j)ワックスBの融点以上で混合し、ワックスBを一度溶解した後、潤滑成分に充分に分散させた。次に表4に示す組成のうち(a)、(d)、および前出の(e)、(i)、(j)の混合物を 80℃でよく混合し、次に 120℃で溶解した(b)、(h)を加えて素早く混合した。最後に(C)を投入し撹拌した後、前述ジョイントに 18.0 g 封入した。数秒後に発泡反応が始まり、100℃で 30 分間放置しジョイント内の発泡固形潤滑剤を硬化させ、ブーツ、シャフトなど他の部区を組み付け発泡固形潤滑剤を封入した等速自在継手試験片を得た。得られた試験片を上述の耐久性試験に供した。また前述の連続気泡率の算出法に基づき発泡固形潤滑剤の連続気泡率を測定した。結果を表4に併記する。
Reference Example 1 to Reference Example 6 and Reference Comparative Example 1
First, as shown in FIG. 6, an outer member 22, an inner member 23, a cage 27, and a fixed eight ball joint sub-assembly assembled with a steel ball 6 as a torque transmission member (manufactured by NTN: EBJ82 outer diameter size 72.6 mm). Next, among the compositions shown in Table 4, (e), (i), and (j) were mixed at a temperature equal to or higher than the melting point of (j) wax B, and once dissolved, the wax B was sufficiently dispersed in the lubricating component. Next, among the compositions shown in Table 4, the mixture of (a), (d) and the above (e), (i), (j) was mixed well at 80 ° C. and then dissolved at 120 ° C. ( b) and (h) were added and mixed rapidly. Finally, (C) was added and stirred, and then 18.0 g was sealed in the joint. After a few seconds, the foaming reaction started, left at 100 ° C for 30 minutes to cure the foamed solid lubricant in the joint, and assembled other sections such as boots and shafts to obtain a constant velocity universal joint specimen encapsulating the foamed solid lubricant. It was. The obtained test piece was subjected to the durability test described above. Further, the open cell ratio of the foamed solid lubricant was measured based on the above-mentioned method for calculating the open cell ratio. The results are also shown in Table 4.
参考実施例7、参考実施例8および参考比較例2
 最初に、図6に示す、外方部材22、内方部材23、ケージ27およびトルク伝達部材である鋼球26を組み付けた固定式8個ボールジョイントサブアッシー(NTN社製:EBJ82 外径サイズ 72.6 mm )を準備した。表4に示す成分量(組成)で、ポリエーテルポリオールにシリコーン系整泡剤、鉱油、アミン系触媒、発泡剤としての水を加え、90℃で加熱しよく撹拌した(なお、事前に鉱油とワックスBとをワックスBの融点以上で充分に混合し、ワックスBを鉱油に分散させておいた)。これにイソシアネートを加えてよく撹拌した後、前述ジョイントに 16.0 g 封入した。数秒後に発泡反応が始まり、90℃に設定した恒温槽で 15分間放置し硬化させ、ブーツ、シャフトなど他の部区を組み付け発泡固形潤滑剤を封入した等速自在継手試験片を得た。得られた試験片について参考実施例1同様の項目を測定した。結果を表4に併記する。
Reference Example 7, Reference Example 8 and Reference Comparative Example 2
First, as shown in FIG. 6, a fixed eight ball joint sub-assembly (an NTN company: EBJ82 outer diameter size 72.6) in which an outer member 22, an inner member 23, a cage 27, and a steel ball 26 as a torque transmission member are assembled. mm). In the component amounts (composition) shown in Table 4, silicone foam stabilizer, mineral oil, amine catalyst, water as foaming agent were added to polyether polyol, heated at 90 ° C. and stirred well (in advance, with mineral oil) Wax B was thoroughly mixed at a temperature equal to or higher than the melting point of wax B, and wax B was dispersed in mineral oil). After adding isocyanate and stirring well, 16.0 g was sealed in the joint. After a few seconds, the foaming reaction started and allowed to stand for 15 minutes in a thermostat set at 90 ° C. to cure, and other parts such as boots and shafts were assembled to obtain a constant velocity universal joint specimen enclosing a foamed solid lubricant. The same items as in Reference Example 1 were measured for the obtained test pieces. The results are also shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 参考実施例1~参考実施例8は試験終了後も継続運転可能で、良好な結果であった。参考比較例1および参考比較例2は潤滑成分にワックスBを添加したが、結果は不可であった。参考比較例1は、発泡固形潤滑剤が硬化(固化)しなかった。参考比較例2は、発泡固形潤滑剤の連続気泡率が 50%以下であったため、必要箇所(鋼球-トラック部やケージ球面部等の摺動部)へ潤滑剤が充分に供給されなかったものと推測する。 In Reference Example 1 to Reference Example 8, continuous operation was possible even after the test was completed, and good results were obtained. In Reference Comparative Example 1 and Reference Comparative Example 2, wax B was added to the lubricating component, but the result was not possible. In Reference Comparative Example 1, the foamed solid lubricant was not cured (solidified). In Reference Comparative Example 2, since the open cell ratio of the solid foamed lubricant was 50% or less, the lubricant was not sufficiently supplied to the necessary parts (steel balls-sliding parts such as track parts and cage spherical parts). I guess it.
参考実施例9および参考実施例10
 表5に示す組成のうち(e)、(i)、(j)をワックスBの融点以上で混合し、ワックスBを一度溶解した後、潤滑成分に充分に分散させた。次に表5に示す組成のうち(a)、(d)、および(e)、(i)、(j)の混合物を 80℃でよく混合し、次に 120℃で溶解したアミン系硬化剤(b)、アミン系触媒(h)を加えて素早く混合した。最後に水(c)を投入し撹拌して得た混合物を、テーパ軸受(NTN社製、30204 外径サイズ 47 mm )の内部空間に充填した。数秒後に発泡反応が始まり、100℃で 30分間放置し硬化させ、発泡固形潤滑剤を封入した軸受試験片を得た。得られた軸受試験片および試験片中の発泡固形潤滑剤について、上述の初期特性試験および寿命試験に供し、初期特性の発現状況および寿命時間を測定した。また前述の連続気泡率の算出法に基づき発泡固形潤滑剤の連続気泡率を測定した。これらの結果を表5に併記する。
Reference Example 9 and Reference Example 10
Of the compositions shown in Table 5, (e), (i), and (j) were mixed at a melting point or higher of the wax B, and the wax B was dissolved once and then sufficiently dispersed in the lubricating component. Next, among the compositions shown in Table 5, (a), (d), and a mixture of (e), (i), (j) are mixed well at 80 ° C., and then dissolved at 120 ° C. (B) The amine catalyst (h) was added and quickly mixed. Finally, water (c) was added and the mixture obtained by stirring was filled into the internal space of a taper bearing (NTN Corporation, 30204 outer diameter size 47 mm). After a few seconds, the foaming reaction started and allowed to stand at 100 ° C. for 30 minutes to be cured to obtain a bearing test piece in which a foamed solid lubricant was enclosed. The obtained bearing test piece and the foamed solid lubricant in the test piece were subjected to the initial characteristic test and the life test described above, and the appearance of the initial characteristic and the life time were measured. Further, the open cell ratio of the foamed solid lubricant was measured based on the above-mentioned method for calculating the open cell ratio. These results are also shown in Table 5.
参考実施例11および参考実施例12
 表5示す組成でポリエーテルポリオール(g)にシリコーン系整泡剤(d)、潤滑油(i)、アミン系触媒(h)、発泡剤としての水(c)を加え、90℃で加熱しよく撹拌した。これにイソシアネートを加えてよく撹拌して得た混合物を、テーパ軸受(NTN社製:30204 外径サイズ 47 mm )の内部空間に充填した。数秒後に発泡反応が始まり、90℃で 15分間放置し硬化させて、発泡固形潤滑剤を封入した軸受試験片を得た。参考実施例9同様の項目を測定した。結果を表5に併記する。
Reference Example 11 and Reference Example 12
Add silicone-based foam stabilizer (d), lubricating oil (i), amine-based catalyst (h) and water (c) as blowing agent to polyether polyol (g) with the composition shown in Table 5, and heat at 90 ° C. Stir well. The mixture obtained by adding isocyanate to this and stirring well was filled in the internal space of a taper bearing (NTN Corporation: 30204 outer diameter size 47 mm). After a few seconds, the foaming reaction started, and it was left to cure at 90 ° C. for 15 minutes to obtain a bearing test piece in which a foamed solid lubricant was enclosed. The same items as in Reference Example 9 were measured. The results are also shown in Table 5.
参考比較例3
 表5に示す組成で参考実施例9および参考実施例10と同様の手順で軸受試験片を作成したが、発泡固形潤滑剤は硬化(固化)しなかった。
Reference Comparative Example 3
Bearing test pieces were prepared in the same manner as in Reference Example 9 and Reference Example 10 with the compositions shown in Table 5, but the foamed solid lubricant was not cured (solidified).
参考比較例4
 表5に示す組成で参考実施例11および参考実施例12と同様の手順で軸受試験片を作成したが、潤滑成分にワックスBは添加しなかった。参考実施例9同様の項目を測定した。結果を表5に併記する。
Reference Comparative Example 4
Bearing test pieces were prepared in the same manner as in Reference Example 11 and Reference Example 12 with the compositions shown in Table 5, but wax B was not added to the lubricating component. The same items as in Reference Example 9 were measured. The results are also shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 本発明の潤滑システムは、潤滑成分を保持する発泡固形潤滑剤の潤滑成分保持力を向上させるとともに、発泡固形潤滑剤の変形による潤滑剤の滲み出し量を必要最小限に留めることができ、かつ発泡固形潤滑剤からの潤滑成分が不足する場合でも潤滑機能を補うことができ、長寿命で低コスト化の要望に応じ得る。このため、各種産業機械用および自動車用等に用いられる各種転がり軸受、自在継手等における潤滑システムとして好適に利用できる。 The lubrication system of the present invention can improve the lubricating component retention of the foamed solid lubricant that retains the lubricating component, and can suppress the amount of lubricant oozing due to deformation of the foamed solid lubricant, and Even when the lubrication component from the foamed solid lubricant is insufficient, the lubrication function can be supplemented, and a long life and cost reduction can be met. Therefore, it can be suitably used as a lubrication system for various rolling bearings and universal joints used for various industrial machines and automobiles.

Claims (19)

  1.  発泡・硬化して多孔質化する樹脂内に潤滑成分を含んでなる発泡固形潤滑剤と、補助潤滑用グリースとが潤滑対象部位に共存する潤滑システムであって、
     前記補助潤滑用グリースは融点が 70~150℃であるワックスAを少なくとも含有することを特徴とする潤滑システム。
    A lubrication system in which a foamed solid lubricant containing a lubricating component in a resin that is foamed and cured to become porous, and an auxiliary lubricating grease coexist in a lubrication target part.
    The lubricating system according to claim 1, wherein the auxiliary lubricating grease contains at least wax A having a melting point of 70 to 150 ° C.
  2.  前記ワックスAが、脂肪酸アミドおよび水素硬化油から選ばれた少なくとも一つであることを特徴とする請求項1記載の潤滑システム。 The lubricating system according to claim 1, wherein the wax A is at least one selected from fatty acid amides and hydrogenated oil.
  3.  前記潤滑成分は、潤滑油およびグリースから選ばれた少なくとも1つに、融点が 70~150℃であるワックスBを含有し、該ワックスBは脂肪酸モノアミド系ワックス、水素硬化油系ワックス、および炭化水素系ワックスから選ばれた少なくとも1つのワックスであることを特徴とする請求項1記載の潤滑システム。 The lubricating component contains at least one selected from lubricating oil and grease, wax B having a melting point of 70 to 150 ° C., and the wax B is a fatty acid monoamide wax, a hydrogenated oil wax, and a hydrocarbon. The lubricating system according to claim 1, wherein the lubricating system is at least one wax selected from system waxes.
  4.  前記脂肪酸モノアミド系ワックスが、ステアリン酸アミド、エルカ酸アミド、オレイン酸アミドから選ばれた少なくとも1つであることを特徴とする請求項3記載の潤滑システム。 4. The lubricating system according to claim 3, wherein the fatty acid monoamide wax is at least one selected from stearic acid amide, erucic acid amide, and oleic acid amide.
  5.  前記発泡固形潤滑剤は、前記発泡・硬化して多孔質化する樹脂がゴム状弾性を有し、該樹脂内に含まれる潤滑成分がゴム状弾性体の変形により滲出性を有することを特徴とする請求項1記載の潤滑システム。 The foamed solid lubricant is characterized in that the resin foamed and cured to become porous has rubber-like elasticity, and the lubricating component contained in the resin has exudability due to deformation of the rubber-like elastic body. The lubrication system according to claim 1.
  6.  前記発泡・硬化して多孔質化する樹脂の発泡倍率が、1.1~100 倍であることを特徴とする請求項1記載の潤滑システム。 2. The lubrication system according to claim 1, wherein the foaming and curing resin has a foaming ratio of 1.1 to 100%.
  7.  前記発泡・硬化して多孔質化する樹脂の発泡・硬化後の連続気泡率が 50%以上であることを特徴とする請求項1記載の潤滑システム。 2. The lubrication system according to claim 1, wherein the foamed / cured resin has a continuous cell ratio after foaming / curing of not less than 50%.
  8.  前記発泡固形潤滑剤は、前記潤滑成分と、前記樹脂と、硬化剤と、発泡剤とを含む混合物を発泡・硬化させてなり、
     前記潤滑成分は潤滑油およびグリースから選ばれた少なくとも1つであり、
     前記樹脂が分子内にイソシアネート基を 2 重量%以上 6 重量%未満含有するウレタンプレポリマーであり、
     前記発泡剤が水であり、
     前記混合物は、混合物全体に対して、前記潤滑成分を 20~80 重量%含み、発泡後の連続気泡率が 50%以上であることを特徴とする請求項1記載の潤滑システム。
    The foamed solid lubricant is obtained by foaming and curing a mixture containing the lubricating component, the resin, a curing agent, and a foaming agent.
    The lubricating component is at least one selected from lubricating oil and grease;
    The resin is a urethane prepolymer containing 2 wt% or more and less than 6 wt% of isocyanate groups in the molecule;
    The blowing agent is water;
    The lubricating system according to claim 1, wherein the mixture contains 20 to 80% by weight of the lubricating component with respect to the whole mixture, and the open cell ratio after foaming is 50% or more.
  9.  前記ウレタンプレポリマーは、エステル系ウレタンプレポリマー、カプロラクトン系ウレタンプレポリマー、およびエーテル系ウレタンプレポリマーから選ばれた少なくとも1つのウレタンプレポリマーであることを特徴とする請求項8記載の潤滑システム。 The lubrication system according to claim 8, wherein the urethane prepolymer is at least one urethane prepolymer selected from an ester urethane prepolymer, a caprolactone urethane prepolymer, and an ether urethane prepolymer.
  10.  前記イソシアネート基と、該イソシアネート基と反応する前記硬化剤の官能基との割合が当量比で(硬化剤の官能基/NCO)=1/(1.1~2.5)の範囲であることを特徴とする請求項8記載の潤滑システム。 The ratio of the isocyanate group to the functional group of the curing agent that reacts with the isocyanate group is an equivalent ratio (functional group of the curing agent / NCO) = 1 / (1.1 to 2.5). The lubrication system according to claim 8.
  11.  前記水の水酸基と、前記硬化剤の官能基との割合が当量比で(水の水酸基/硬化剤の官能基)=1/(0.7~2.0)の範囲であることを特徴とする請求項8記載の潤滑システム。 9. The ratio of the hydroxyl group of water to the functional group of the curing agent is an equivalent ratio (water hydroxyl group / functional group of the curing agent) = 1 / (0.7 to 2.0). The described lubrication system.
  12.  前記硬化剤が芳香族ポリアミノ化合物であることを特徴とする請求項8記載の潤滑システム。 The lubricating system according to claim 8, wherein the curing agent is an aromatic polyamino compound.
  13.  前記芳香族ポリアミノ化合物がアミノ基の隣接位に置換基を有する芳香族ポリアミノ化合物であることを特徴とする請求項12記載の潤滑システム。 The lubricating system according to claim 12, wherein the aromatic polyamino compound is an aromatic polyamino compound having a substituent at the position adjacent to the amino group.
  14.  前記発泡固形潤滑剤は、前記潤滑成分と、前記樹脂と、硬化剤と、発泡剤とを含む混合物を発泡・硬化させてなり、
     前記樹脂がポリエーテルポリオールであり、前記硬化剤がポリイソシアネートであり、
     前記発泡剤が水であり、
     前記樹脂と、前記硬化剤と、前記発泡剤と、前記潤滑成分とを含む混合物全体に対して、前記潤滑成分を 60~80 重量%含むことを特徴とする請求項1記載の潤滑システム。
    The foamed solid lubricant is obtained by foaming and curing a mixture containing the lubricating component, the resin, a curing agent, and a foaming agent.
    The resin is a polyether polyol, and the curing agent is a polyisocyanate,
    The blowing agent is water;
    The lubricating system according to claim 1, wherein the lubricating component is contained in an amount of 60 to 80% by weight based on the entire mixture including the resin, the curing agent, the foaming agent, and the lubricating component.
  15.  前記混合物は、摺動部材の周囲、または成形用型内に充填された後に、発泡・硬化されてなることを特徴とする請求項8または請求項14記載の潤滑システム。 15. The lubrication system according to claim 8 or 14, wherein the mixture is foamed and hardened after being filled around a sliding member or in a molding die.
  16.  請求項1記載の潤滑システムを用いた自在継手であって、
     トラック溝とトルク伝達部材との係り合いによって回転トルクが伝達され、前記トルク伝達部材が前記トラック溝に沿って転動することによって軸方向移動がなされ、前記補助潤滑用グリースと、前記発泡固形潤滑剤とが自在継手内部に共存してなることを特徴とする自在継手。
    A universal joint using the lubrication system according to claim 1,
    A rotational torque is transmitted by the engagement between the track groove and the torque transmission member, and the torque transmission member rolls along the track groove to move in the axial direction. The auxiliary lubricating grease, the foamed solid lubrication, and the like. A universal joint, characterized in that the agent coexists in the universal joint.
  17.  前記混合物は、発泡・硬化が完了する前に前記トルク伝達部材の周囲に充填されることを特徴とする請求項16記載の自在継手。 The universal joint according to claim 16, wherein the mixture is filled around the torque transmitting member before foaming and curing is completed.
  18.  前記自在継手は、等速自在継手であることを特徴とする請求項16記載の自在継手。 The universal joint according to claim 16, wherein the universal joint is a constant velocity universal joint.
  19.  請求項1記載の潤滑システムを用いた軸受であって、
     軸受内部に、前記補助潤滑用グリースと、前記発泡固形潤滑剤とが共存してなることを特徴とする軸受。
    A bearing using the lubrication system according to claim 1,
    A bearing characterized in that the auxiliary lubricating grease and the foamed solid lubricant coexist in the bearing.
PCT/JP2009/054294 2008-03-06 2009-03-06 Lubrication system, and universal joint and bearing that use said lubrication system WO2009110593A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008-056749 2008-03-06
JP2008056749A JP2009210116A (en) 2008-03-06 2008-03-06 Universal joint
JP2008056732A JP5600380B2 (en) 2008-03-06 2008-03-06 Lubrication system
JP2008-056732 2008-03-06
JP2008-181531 2008-07-11
JP2008181531A JP2010018734A (en) 2008-07-11 2008-07-11 Foamed solid lubricant, and universal joint and bearing enclosed with the lubricant

Publications (1)

Publication Number Publication Date
WO2009110593A1 true WO2009110593A1 (en) 2009-09-11

Family

ID=41056142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054294 WO2009110593A1 (en) 2008-03-06 2009-03-06 Lubrication system, and universal joint and bearing that use said lubrication system

Country Status (1)

Country Link
WO (1) WO2009110593A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107002757A (en) * 2014-10-29 2017-08-01 日本精工株式会社 Rolling bearing
CN107002758A (en) * 2014-10-29 2017-08-01 日本精工株式会社 Bearing arrangement and main shaft device
CN107002760A (en) * 2014-12-08 2017-08-01 日本精工株式会社 Bearing arrangement
CN107002756A (en) * 2014-10-29 2017-08-01 日本精工株式会社 Shaft device and machine tool chief axis axle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62241997A (en) * 1985-04-05 1987-10-22 ア−ムコ インコ−ポレイテツド Thermosetting microporous polymer lubricant composition and method for molding the same
JP2007177226A (en) * 2005-11-29 2007-07-12 Ntn Corp Porous solid lubricant
JP2007247887A (en) * 2006-02-14 2007-09-27 Ntn Corp Constant velocity universal joint

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62241997A (en) * 1985-04-05 1987-10-22 ア−ムコ インコ−ポレイテツド Thermosetting microporous polymer lubricant composition and method for molding the same
JP2007177226A (en) * 2005-11-29 2007-07-12 Ntn Corp Porous solid lubricant
JP2007247887A (en) * 2006-02-14 2007-09-27 Ntn Corp Constant velocity universal joint

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107002757A (en) * 2014-10-29 2017-08-01 日本精工株式会社 Rolling bearing
CN107002758A (en) * 2014-10-29 2017-08-01 日本精工株式会社 Bearing arrangement and main shaft device
CN107002756A (en) * 2014-10-29 2017-08-01 日本精工株式会社 Shaft device and machine tool chief axis axle
EP3214327A4 (en) * 2014-10-29 2017-11-29 NSK Ltd. Bearing device and spindle device
CN107002758B (en) * 2014-10-29 2019-05-31 日本精工株式会社 Bearing arrangement and main shaft device
CN107002760A (en) * 2014-12-08 2017-08-01 日本精工株式会社 Bearing arrangement
EP3232073A4 (en) * 2014-12-08 2017-11-29 NSK Ltd. Bearing device

Similar Documents

Publication Publication Date Title
EP1961802A1 (en) Porous solid lubricant, bearing, and constant velocity universal joint
WO2008072607A1 (en) Lubricating system, bearing utilizing the system, universal joint utilizing the system, and process for production thereof
WO2009110593A1 (en) Lubrication system, and universal joint and bearing that use said lubrication system
JP5600380B2 (en) Lubrication system
JP4198171B2 (en) Constant velocity universal joint
JP5346566B2 (en) Porous solid lubricant encapsulated bearing and method for manufacturing the same
JP2008298116A (en) Rolling bearing for tenter clip
JP2010018734A (en) Foamed solid lubricant, and universal joint and bearing enclosed with the lubricant
JP2009210116A (en) Universal joint
JP2008144034A (en) Lubrication system
JP2010270864A (en) Constant velocity universal joint
JP5577008B2 (en) Foamed lubricant and method for producing the same
JP5288829B2 (en) Lubrication system
JP4887127B2 (en) Foamed lubricant encapsulated bearing
JP5288713B2 (en) Lubrication system
JP2008297375A (en) Lubricating system
JP5362191B2 (en) Foamed solid lubricant encapsulated bearing and manufacturing method thereof
JP2008298121A (en) Tapered roller bearing
JP2008297374A (en) Machine element part
JP4999553B2 (en) Universal joint
JP5086624B2 (en) Lubrication system
JP5363711B2 (en) Solid solid foam lubricant and universal joint
JP5086623B2 (en) Lubrication system
JP5027526B2 (en) Universal joint and manufacturing method thereof
JP2008298112A (en) Universal joint and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09717942

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09717942

Country of ref document: EP

Kind code of ref document: A1