WO2009110537A1 - Mram mixed system - Google Patents

Mram mixed system Download PDF

Info

Publication number
WO2009110537A1
WO2009110537A1 PCT/JP2009/054137 JP2009054137W WO2009110537A1 WO 2009110537 A1 WO2009110537 A1 WO 2009110537A1 JP 2009054137 W JP2009054137 W JP 2009054137W WO 2009110537 A1 WO2009110537 A1 WO 2009110537A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetization
layer
magnetization free
magnetization fixed
region
Prior art date
Application number
PCT/JP2009/054137
Other languages
French (fr)
Japanese (ja)
Inventor
俊輔 深見
延行 石綿
哲広 鈴木
則和 大嶋
聖万 永原
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2010501945A priority Critical patent/JP5488833B2/en
Publication of WO2009110537A1 publication Critical patent/WO2009110537A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/02Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements
    • G11C19/08Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure
    • G11C19/0808Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure using magnetic domain propagation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1653Address circuits or decoders
    • G11C11/1655Bit-line or column circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1653Address circuits or decoders
    • G11C11/1657Word-line or row circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1659Cell access
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1673Reading or sensing circuits or methods
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type

Definitions

  • the present invention relates to a semiconductor device, and more particularly to a semiconductor device using a magnetoresistive effect element for a memory cell.
  • Magnetic Random Access Memory Magnetic Random Access Memory
  • MRAM Magnetic Random Access Memory
  • MRAM Magnetic Random Access Memory
  • a magnetoresistive effect element is integrated in a memory cell, and data is stored as the magnetization direction of the ferromagnetic layer of the magnetoresistive effect element.
  • MRAMs Several types have been proposed corresponding to the method of switching the magnetization of the ferromagnetic layer.
  • the most common MRAM is a current-induced magnetic field writing type MRAM.
  • this MRAM wiring for passing a write current is arranged around the magnetoresistive effect element, and the magnetization direction of the ferromagnetic layer of the magnetoresistive effect element is switched by a current magnetic field generated by passing the write current.
  • this MRAM can be written in 1 nanosecond or less, and is suitable as a high-speed MRAM.
  • there has been a report of successful operation verification at 250 MHz N. Sakimura et al., “A 250-MHz 1-Mbit Embedded MRAM Macro Usage 2T1MTJ Cell Bitline Separation and Half-ShipCritichi” Conference, 2007. ASSCC '07. IEEE Asian. P. 216.).
  • the magnetic field for switching the magnetization of the magnetic material in which the thermal stability and the disturbance magnetic field resistance are ensured is generally about several tens [Oe].
  • a large write current of about several mA is required.
  • Even the lowest reported write current is about 1 mA (H. Honjo et al., “Performance of write-line-inserted MTJ for low-write-current MRAM cell”, 52nd MagnetismensMet 2007 (MMM 2007), p. 481.).
  • the write current is large, the chip area is inevitably increased, and the power consumption required for writing increases.
  • the write current further increases and does not scale.
  • spin polarized current writing type MRAM As another MRAM, there is a spin polarized current writing type MRAM.
  • a spin-polarized current is injected into the ferromagnetic conductor of the magnetoresistive element, and the magnetization is caused by a direct interaction between the spin of the conduction electron carrying the current and the magnetic moment of the conductor.
  • spin Transfer Magnetization Switching The presence or absence of spin injection magnetization reversal depends on the current density (not the absolute value of the current). Accordingly, when spin injection magnetization reversal is used for data writing, the write current is reduced if the size of the memory cell is reduced. That is, the spin injection magnetization reversal method is excellent in scaling. When the write current is small, the chip area is small, and high integration and large scale are possible. However, the writing time tends to be longer than that of the current-induced magnetic field writing type MRAM (example: 1 nsec. Or more).
  • a semiconductor device such as a system LSI (Large-Scale Integration) equipped with logic and memory
  • LSI Large-Scale Integration
  • an area that requires high-speed operation, large capacity and high integration That is, there are areas that require a low write current, and a memory is provided in each area.
  • a register or cache is provided as a memory in an area requiring high-speed operation
  • a main storage device or an auxiliary storage device is provided as a memory in an area requiring large capacity and high integration. Since the performance and functions required for each memory are different from each other, one type of memory cannot be used.
  • FF Flip-Flop
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • flash memory etc.
  • an object of the present invention is to provide a memory-embedded semiconductor device capable of achieving both high-speed processing and large-capacity processing in an internal memory.
  • the semiconductor device of the present invention has a first magnetic random access memory having a first memory cell and a second memory cell that operates at a higher speed than the first memory cell, and is the same as the first magnetic random access memory. And a second magnetic random access memory provided in the chip.
  • the first memory cell includes a first magnetization fixed layer whose magnetization direction is fixed, a first magnetization free layer whose magnetization direction can be reversed, a first magnetization fixed layer, and a first magnetization free layer sandwiched between the first magnetization fixed layer and the first magnetization free layer.
  • the first magnetization free layer and the first magnetization fixed layer are made of a ferromagnetic material.
  • a write current flows through at least the first magnetization free layer.
  • the second memory cell includes a second magnetization free layer, a second magnetization fixed layer, and a second nonmagnetic layer provided between the second magnetization free layer and the second magnetization fixed layer.
  • the write current does not flow through the second magnetization free layer.
  • the second magnetization free layer and the second magnetization fixed layer are made of a ferromagnetic material.
  • FIG. 1 is a schematic diagram showing a configuration of a semiconductor device according to an embodiment of the present invention.
  • FIG. 2A is a schematic diagram illustrating a configuration of a current-induced domain wall motion type magnetoresistive effect element according to an embodiment of the present invention.
  • FIG. 2B is a schematic diagram illustrating a configuration of a current-induced domain wall motion type magnetoresistive effect element according to an embodiment of the present invention.
  • FIG. 2C is a schematic diagram illustrating a configuration of a current-induced domain wall motion type magnetoresistive effect element according to an embodiment of the present invention.
  • FIG. 2D is a schematic diagram illustrating a configuration of a current-induced domain wall motion type magnetoresistive effect element according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram showing a configuration of a semiconductor device according to an embodiment of the present invention.
  • FIG. 2A is a schematic diagram illustrating a configuration of a current-induced domain wall motion type magnetoresistive effect element according to an embodiment
  • FIG. 3A is a schematic diagram showing a configuration of a spin-injection magnetization reversal type magnetoresistive effect element according to an example of the present invention.
  • FIG. 3B is a schematic diagram showing a configuration of a spin-injection magnetization reversal type magnetoresistive effect element according to an example of the present invention.
  • FIG. 4A is a schematic diagram showing a configuration of a current-induced magnetic field writing type magnetoresistive effect element according to an example of the present invention.
  • FIG. 4B is a schematic diagram showing a configuration of a current-induced magnetic field writing type magnetoresistive effect element according to the example of the present invention.
  • FIG. 4C is a schematic diagram showing a configuration of a current-induced magnetic field writing type magnetoresistive effect element according to the example of the present invention.
  • FIG. 5A is a circuit diagram showing a configuration example of a memory cell in which the magnetoresistive effect element of this embodiment is integrated.
  • FIG. 5B is a block diagram illustrating a configuration example of an MRAM in which the memory cells of this embodiment are integrated.
  • FIG. 6 is a circuit diagram showing another configuration example of the memory cell in which the magnetoresistive effect element of this embodiment is integrated.
  • FIG. 7A is a perspective view showing a configuration of a first modification of the magnetoresistive element in each MRAM according to the embodiment of the present invention.
  • FIG. 7B is a plan view showing a configuration of a first modification of the magnetoresistive effect element in each MRAM according to the embodiment of the present invention.
  • FIG. 7C is a plan view showing a configuration of a first modification of the magnetoresistive element in each MRAM according to the embodiment of the present invention.
  • FIG. 7D is a plan view showing a configuration of a first modification of the magnetoresistive element in each MRAM according to the embodiment of the present invention.
  • FIG. 8 is a perspective view showing a configuration of a second modification of the magnetoresistive effect element in each MRAM according to the embodiment of the present invention.
  • FIG. 9 is a perspective view showing a configuration of a third modification of the magnetoresistive element in each MRAM according to the embodiment of the present invention.
  • FIG. 10 is a perspective view showing a configuration of a fourth modification of the magnetoresistive effect element in each MRAM according to the embodiment of the present invention.
  • FIG. 11A is a perspective view schematically showing the configuration of the fifth modification example of the magnetoresistance effect element according to the present example.
  • FIG. 11B is a plan view schematically showing the configuration of the fifth modification example of the magnetoresistance effect element according to the present example.
  • FIG. 11C is a plan view schematically showing the configuration of the fifth modification example of the magnetoresistance effect element according to the present example.
  • FIG. 12A is a circuit diagram showing a configuration example of a memory cell in which a fifth modification of the magnetoresistive effect element of this embodiment is integrated.
  • FIG. 12B is a circuit diagram showing another configuration example of the memory cell in which the fifth modification example of the magnetoresistive effect element of this embodiment is integrated.
  • FIG. 1 is a schematic diagram showing a configuration of a semiconductor device according to an embodiment of the present invention.
  • the semiconductor device 1 of the present embodiment is a memory-embedded semiconductor device.
  • the semiconductor device 1 is exemplified by a memory-embedded LSI formed on one chip, and includes a logic unit 2 and a memory unit 3.
  • the logic unit 2 is an area that requires high-speed operation, and has a logic circuit that performs a logical operation.
  • the logic unit 2 further includes MRAMs 4-1 to 4-4 capable of high speed operation.
  • the MRAMs 4-1 to 4-4 are exemplified as current-induced magnetic field writing type MRAMs, and are used as registers, L1 caches (primary caches), and L2 caches (secondary caches).
  • L1 caches primary caches
  • L2 caches secondary caches
  • the current-induced magnetic field writing type MRAM is theoretically 1 nsec.
  • the following writing is possible, and it is suitable as an MRAM capable of high-speed operation (the operation frequency is desirably 200 MHz or more).
  • the operation frequency is desirably 200 MHz or more.
  • the write current is large, the area of the present MRAM is relatively large.
  • the memory is used as a memory having a relatively small capacity such as a register, an L1 cache, or an L2 cache, the area of the entire chip. The impact on is very small.
  • the memory unit 3 is an area that requires large capacity and high integration (that is, low write current), and has a memory circuit for storing data.
  • As the storage circuit large-capacity and highly integrated MRAMs 5-1 to 5-3 are included.
  • the MRAMs 5-1 to 5-3 are exemplified as spin-polarized current writing type MRAMs, and are used as a main storage device or an auxiliary storage device. Hereinafter, when it is not necessary to distinguish between them, they are simply abbreviated as MRAM5.
  • the spin-polarized current writing type MRAM (the writing current is preferably 0.5 mA or less) is exemplified by a current-induced domain wall motion type MRAM and a spin injection magnetization switching type MRAM.
  • the magnetoresistive effect element includes a first ferromagnetic layer having a reversible magnetization (often referred to as a magnetization free layer) and a second ferromagnetic layer having a fixed magnetization ( (Often referred to as a magnetization fixed layer) and a tunnel body provided with a tunnel barrier layer provided between these ferromagnetic layers.
  • Such MRAM data writing utilizes the interaction between spin-polarized conduction electrons and localized electrons in the magnetization free layer when a current is passed between the magnetization free layer and the magnetization fixed layer.
  • the magnetization of the magnetization free layer is reversed.
  • the magnetoresistive effect element is a two-terminal element having a terminal connected to the magnetization free layer and a terminal connected to the magnetization fixed layer. Therefore, this MRAM is effective for reducing the area.
  • the magnetoresistive effect element generally includes a first ferromagnetic layer that holds data (often referred to as a magnetic recording layer) and a second strong layer in which magnetization is fixed.
  • a magnetic layer (often referred to as a magnetization fixed layer) and a laminated body including a tunnel barrier layer provided between these ferromagnetic layers.
  • the magnetic recording layer has a magnetization reversal portion having reversible magnetization and two magnetization fixed portions having fixed magnetization connected to both ends thereof.
  • the data is stored as the magnetization of the magnetization switching unit.
  • the magnetizations of the two magnetization fixed portions are fixed so as to be substantially antiparallel to each other.
  • the magnetoresistive element is a three-terminal element having two terminals connected to both ends of the magnetic recording layer and a terminal connected to the magnetization fixed layer. This MRAM has improved durability, life, and reliability because the write current does not pass through the tunnel barrier layer.
  • the current-induced domain wall motion type MRAM and the spin-injection magnetization reversal type MRAM have excellent scaling properties as described above, and are suitable as MRAMs capable of high integration and large scale.
  • the operation speed is relatively low, the influence is extremely small because it is used as a memory that does not require high-speed operation as compared with a register such as a main storage device or an auxiliary storage device.
  • the semiconductor device 1 when all of the storage elements of the logic unit 2 and the memory unit 3 are nonvolatile memory MRAMs, it is preferable that data can be retained in the MRAMs even when the power is turned off. In that case, power off can be set to the basic state (instant on). Thereby, power consumption can be reduced.
  • the memory elements of the logic unit 2 and the memory unit 3 are nonvolatile memory MRAMs
  • the memory elements can be manufactured in the same process as described later, which is preferable.
  • the semiconductor device 1 can be manufactured at a low cost and in a short time.
  • the semiconductor device of the present invention is not limited to the configuration illustrated in FIG. That is, the number, shape, arrangement, etc. of the MRAM in each part, such as the shape and arrangement of the logic part 2 and the memory part 3, can be freely modified within the scope of the technical idea of the present invention.
  • FIGS. 2C and 2D show a configuration in which the magnetization free layer has a substantially U-shape.
  • the current-induced domain wall motion type magnetoresistive effect element is provided between the magnetization free layer 10, the magnetization fixed layer 30, and the magnetization free layer 10 and the magnetization fixed layer 30.
  • a nonmagnetic layer 20 is provided.
  • the magnetization free layer 10 is connected to the first magnetization fixed region 11a in which the magnetization is fixed, the second magnetization fixed region 11b in which the magnetization is fixed, and the first magnetization fixed region 11a and the second magnetization fixed region 11b. Includes a reversible magnetization free region 12.
  • the magnetization free region 12 overlaps with the magnetization fixed layer 30.
  • the magnetizations of the first magnetization fixed region 11a and the second magnetization fixed region 11b may be fixed by a magnetization fixed layer (not shown) provided above or below the first magnetization fixed region 11a and the second magnetization fixed region 11b.
  • the first magnetization fixed region 11 a and the second magnetization fixed region 11 b are formed so as to extend substantially linearly together with the magnetization fixed region 12, and their magnetization directions are fixed in opposite directions with respect to the magnetization fixed region 12. ing.
  • the magnetization direction of the first magnetization fixed region 11a is the + x direction
  • the magnetization direction of the second magnetization fixed region 11b is the -x direction.
  • the magnetization free region 12 has reversible magnetization as described above. Therefore, the domain wall is formed at the boundary between the first magnetization fixed region 11 a and the magnetization free region 12 or at the boundary between the second magnetization fixed region 11 b and the magnetization free region 12.
  • the current-induced domain wall motion type magnetoresistive effect element shown in FIGS. 2C and 2D is basically the same as the current-induced domain wall motion type magnetoresistive effect element shown in FIGS. 2A and 2B.
  • the magnetization free layer 10 has a substantially U-shaped shape.
  • the magnetization free layer 10 includes a first magnetization fixed region 11a in which magnetization is fixed, a second magnetization fixed region 11b in which magnetization is fixed, a first magnetization fixed region 11a, and a second magnetization fixed region 11b.
  • a magnetization free region 12 that can be reversed in magnetization.
  • the magnetization free region 12 overlaps with the magnetization fixed layer 30.
  • the magnetizations of the first magnetization fixed region 11a and the second magnetization fixed region 11b may be fixed by a magnetization fixed layer (not shown) provided above or below the first magnetization fixed region 11a and the second magnetization fixed region 11b.
  • the first magnetization fixed region 11a and the second magnetization fixed region 11b are formed so as to extend at substantially right angles (y direction) with respect to the magnetization fixed region 12 (extend in the x direction). It is fixed in the same direction (+ y direction) with respect to the fixed region 12.
  • the magnetization free region 12 has reversible magnetization as described above. Therefore, the domain wall is formed at the boundary B1 between the first magnetization fixed region 11a and the magnetization free region 12, or at the boundary B2 between the second magnetization fixed region 11b and the magnetization free region 12.
  • the magnetization free layer 10 and the magnetization fixed layer 30 are made of a ferromagnetic material.
  • the magnetization free layer 10 and the magnetization fixed layer 30 are in-plane magnetization films having in-plane magnetic anisotropy. That is, the magnetization free layer 10 and the magnetization fixed layer 30 have magnetic anisotropy in the in-plane direction.
  • 2A and 2C show the in-plane magnetic anisotropy in the horizontal direction (direction from one of the first magnetization fixed region 11a and the second magnetization fixed region 11b to the other) in the figure as the magnetization direction of each layer. Has been. However, it may have another in-plane direction substantially perpendicular to this direction.
  • the magnetization free layer 10 and the magnetization fixed layer 30 are a perpendicular magnetization film having a perpendicular magnetic anisotropy (perpendicular magnetic anisotropy). That is, the magnetization free layer 10 and the magnetization fixed layer 30 have magnetic anisotropy in the film thickness direction.
  • a magnetic tunnel junction (MTJ) is formed by the magnetization free layer 10, the nonmagnetic layer 20, and the magnetization fixed layer 30.
  • the magnetization free layer 10 includes at least one material selected from Fe, Co, and Ni. Furthermore, perpendicular magnetic anisotropy can be stabilized by including Pt and Pd.
  • B, C, N, O, Al, Si, P, Ti, V, Cr, Mn, Cu, Zn, Zr, Nb, Mo, Tc, Ru, Rh, Ag, Hf, Ta, W , Re, Os, Ir, Au, Sm, and the like can be added so that desired magnetic properties are expressed.
  • Co Co, Co—Pt, Co—Pd, Co—Cr, Co—Pt—Cr, Co—Cr—Ta, Co—Cr—B, Co—Cr—Pt—B, Co—Cr—Ta— B, Co-V, Co-Mo, Co-W, Co-Ti, Co-Ru, Co-Rh, Fe-Pt, Fe-Pd, Fe-Co-Pt, Fe-Co-Pd, Sm-Co, Examples thereof include Gd—Fe—Co, Tb—Fe—Co, and Gd—Tb—Fe—Co.
  • the magnetic anisotropy in the perpendicular direction can also be exhibited by laminating a layer containing any one material selected from Fe, Co, and Ni with different layers. Specifically, a laminated film of Co / Pd, Co / Pt, Co / Ni, Fe / Au, and the like are exemplified.
  • the nonmagnetic layer 20 is preferably made of an insulator.
  • suitable materials for the nonmagnetic layer 20 include Mg—O, Al—O, Al—N, Ni—O, and Hf—O.
  • the present invention can also be implemented by using a semiconductor or a metal material as the nonmagnetic layer 20.
  • examples of materials that can be used for the nonmagnetic layer 20 include Cr, Al, Cu, and Zn.
  • the magnetization free layer 10 is preferable to select materials for the magnetization free layer 10, the nonmagnetic layer 20, and the magnetization fixed layer 30 that have a large magnetoresistance effect ratio corresponding to the SN ratio of the read signal.
  • a very large magnetoresistance effect ratio of 500% has been reported in recent years.
  • the magnetization free layer 10 and the magnetization fixed layer 30 are made of a Co—Fe—B material, and the nonmagnetic layer 2 is made of an Mg—O material.
  • the magnetization direction of each layer of the current-induced domain wall motion type magnetoresistive effect element is arbitrary.
  • the magnetization free layer 10 includes the first magnetization fixed region 11a and the second magnetization fixed region 11b whose magnetizations are fixed substantially antiparallel to each other, and the magnetization free region 12 electrically connected thereto.
  • the magnetization of the magnetization free region 12 is substantially parallel to either the first magnetization fixed region 11a or the second magnetization fixed region 11b. Due to the restriction of the magnetization state, a domain wall is introduced into the first magnetization free layer 10.
  • the magnetization free region 12 when the magnetization of the magnetization free region 12 is substantially parallel to the magnetization of the first magnetization fixed region 11a and is substantially antiparallel to the magnetization of the second magnetization fixed region 11b, the magnetization free region 12 and the second magnetization fixed region A domain wall is formed near the boundary of 11b.
  • the magnetization of the magnetization free region 12 when the magnetization of the magnetization free region 12 is substantially parallel to the magnetization of the second magnetization fixed region 11b and is substantially antiparallel to the magnetization of the first magnetization fixed region 11a, the magnetization free region 12 and the first magnetization fixed region A domain wall is formed near the boundary of 11a.
  • the position of the formed domain wall can be moved by passing a current directly through the first magnetization free layer 10.
  • the first magnetization fixed is obtained by flowing a current in a direction from the magnetization free region 12 toward the first magnetization fixed region 11a.
  • Conduction electrons flow from the region 11a to the magnetization free region 12, and the domain wall moves in the same direction as the flow of the conduction electrons. Due to the movement of the domain wall, the magnetization of the magnetization free region 12 becomes parallel to the first magnetization fixed region 11a.
  • the second magnetization fixed is obtained by flowing a current in a direction from the magnetization free region 12 toward the second magnetization fixed region 11b. Conduction electrons flow from the region 11b to the magnetization free region 12, and the domain wall moves in the same direction as the flow of the conduction electrons. Due to the movement of the domain wall, the magnetization of the magnetization free region 12 becomes parallel to the second magnetization fixed region 11b. In this way, information can be rewritten between the “0” state and the “1” state.
  • the first magnetization fixed region 11a and the second magnetization fixed region 11b be provided with terminals connected to external wiring. At this time, the write current flows between the first terminal connected to the first magnetization fixed region 11a and the second terminal connected to the second magnetization fixed region 11b.
  • the path of the write current for writing data to the magnetoresistive effect element of this embodiment is not limited to this.
  • the magnetoresistive effect is used to read data from the current-induced domain wall motion type magnetoresistive effect element. Specifically, a current is passed between the magnetization fixed layer 30 and the magnetization free region 12 of the magnetization free layer 10 via the nonmagnetic layer 20, so that the magnetization of the magnetization fixed layer 30 and the magnetization of the magnetization free region 12 are relative to each other. Data is read by detecting a change in resistance according to the angle. For example, when the domain wall is near the boundary between the magnetization free region 12 and the first magnetization fixed region 11a, the magnetization of the magnetization fixed layer 30 and the magnetization of the magnetization free region 12 are parallel (for example, “0” is stored). A low resistance state is realized.
  • the magnetization of the magnetization fixed layer 30 and the magnetization of the magnetization free region 12 are antiparallel (for example, “1” is stored).
  • a high resistance state is realized.
  • a change in the resistance of the magnetoresistive effect element is detected as a voltage signal or a current signal, and data stored in the magnetoresistive effect element is determined using the voltage signal or the current signal.
  • each layer on the in-plane plane is not limited to the example shown in each figure, and may be a circle, an ellipse, a rectangle, a rhombus, or another polygon.
  • irregularities can be appropriately provided on the surface of each layer so that appropriate characteristics can be obtained.
  • the area of each layer is arbitrary.
  • 3A to 3B are schematic views showing the configuration of a spin-injection magnetization reversal type magnetoresistive effect element according to an embodiment of the present invention.
  • this spin-injection magnetization reversal type magnetoresistive effect element is provided between the magnetization free layer 10, the magnetization fixed layer 30, and the magnetization free layer 10 and the magnetization fixed layer 30.
  • a nonmagnetic layer 20 is provided.
  • the magnetization free layer 10 has reversible magnetization.
  • the magnetization fixed layer 30 has a fixed magnetization.
  • the magnetization free layer 10 and the magnetization fixed layer 30 are made of a ferromagnetic material.
  • the magnetization free layer 10 and the magnetization fixed layer 30 are in-plane magnetization films having in-plane magnetic anisotropy. That is, the magnetization free layer 10 and the magnetization fixed layer 30 have magnetic anisotropy in the in-plane direction.
  • in-plane magnetic anisotropy in the horizontal direction in the figure is shown as the magnetization direction of each layer. However, it may have another in-plane direction substantially perpendicular to this direction.
  • FIG. 3A in-plane magnetic anisotropy in the horizontal direction in the figure is shown as the magnetization direction of each layer. However, it may have another in-plane direction substantially perpendicular to this direction.
  • FIG. 3A in-plane magnetic anisotropy in the horizontal direction in the figure is shown as the magnetization direction of each layer. However, it may have another in-plane direction substantially perpendicular to this direction.
  • the magnetization free layer 10 and the magnetization fixed layer 30 are perpendicular magnetization films having perpendicular magnetic anisotropy. That is, the magnetization free layer 10 and the magnetization fixed layer 30 have magnetic anisotropy in the film thickness direction.
  • a magnetic tunnel junction (MTJ) is formed by the magnetization free layer 10, the nonmagnetic layer 20, and the magnetization fixed layer 30.
  • each layer is the same as in the case of the current-induced domain wall motion type magnetoresistive effect element as shown in FIGS. 2A to 2D.
  • the magnetization direction of each layer of the spin-injection magnetization reversal type magnetoresistive effect element is arbitrary.
  • Data writing to the spin transfer magnetization reversal type magnetoresistive effect element is realized by a spin transfer magnetization reversal method.
  • a write current flows between the first magnetization fixed layer 10 and the first magnetization free layer 30.
  • the case where the magnetization of the magnetization free layer 10 and the magnetization direction of the magnetization fixed layer 30 are in an antiparallel state is referred to as a “1” state (a state in which data “1” is recorded) and is in a parallel state.
  • the case is a “0” state (a state where data “0” is recorded).
  • the magnetoresistive effect is used for reading data from the spin injection magnetization reversal type magnetoresistive effect element. Specifically, this is the same as in the case of a current-induced domain wall motion type magnetoresistive effect element.
  • any of the spin-polarized current write type magnetoresistive effect elements shown in FIGS. 2A to 2D and FIGS. 3A to 3B can be used.
  • each layer on the in-plane plane is not limited to the example shown in each figure, and may be a circle, an ellipse, a rectangle, a rhombus, or another polygon.
  • irregularities can be appropriately provided on the surface of each layer so that appropriate characteristics can be obtained.
  • the area of each layer is arbitrary.
  • 4A to 4C are schematic diagrams showing the configuration of a current-induced magnetic field write type magnetoresistive effect element according to an embodiment of the present invention.
  • 4A includes a magnetization free layer 210, a magnetization fixed layer 230, and a nonmagnetic layer 220 provided between the magnetization free layer 210 and the magnetization fixed layer 220.
  • a magnetization free layer 210 a magnetization fixed layer 230
  • a nonmagnetic layer 220 provided between the magnetization free layer 210 and the magnetization fixed layer 220.
  • an electrode layer, a diffusion prevention layer, a base layer, and the like are appropriately provided.
  • the magnetization free layer 210 and the magnetization fixed layer 230 are made of a ferromagnetic material.
  • the magnetization free layer 210 and the magnetization fixed layer 230 are in-plane magnetization films having in-plane magnetic anisotropy. That is, the magnetization free layer 210 and the magnetization fixed layer 230 have magnetic anisotropy in the in-plane direction (xy in-plane direction).
  • the nonmagnetic layer 220 is made of an insulator, and a magnetic tunnel junction (MTJ) is formed by the magnetization free layer 210, the nonmagnetic layer 220, and the magnetization fixed layer 230.
  • MTJ magnetic tunnel junction
  • the nonmagnetic layer 220 is preferably made of an insulator, but may be made of a semiconductor or a conductor. Specific materials of the magnetization free layer 210, the nonmagnetic layer 220, and the magnetization fixed layer 230 are the same as those of the magnetization free layer 10, the nonmagnetic layer 20, and the magnetization fixed layer 30 in the spin-polarized current write type magnetoresistive effect element. Things can be used.
  • the magnetization fixed layer 230 has a fixed magnetization. This fixed magnetization is set in a direction perpendicular to the longitudinal direction (x direction) of the magnetization fixed layer 230 or has a vertical component.
  • the magnetization free layer 210 has reversible magnetization.
  • the easy axis of magnetization of the magnetization free layer 210 is perpendicular to the longitudinal direction (x direction) of the magnetization fixed layer 230 or has a perpendicular component.
  • Such magnetic anisotropy can be imparted by shape magnetic anisotropy.
  • the magnetization of the magnetization free layer 210 is either a parallel component or an antiparallel component with respect to the magnetization of the magnetization fixed layer 230. You can have either.
  • the magnetization direction of the magnetization free layer 210 corresponds to stored data.
  • a write current is passed through the magnetization fixed layer 230.
  • the magnetization of the magnetization free layer 210 is reversed by a current-induced magnetic field generated by the write current.
  • the direction of the current-induced magnetic field generated by the direction of the write current can be controlled to change the magnetization of the magnetization free layer 210 to a desired direction.
  • desired data is recorded in the magnetization free layer 210.
  • the magnetization fixed layer 230 may be referred to as a base electrode because of its role.
  • Such a writing method in which a writing current is supplied to the magnetization fixed layer 230, that is, the base electrode can also be referred to as a base writing type.
  • the write current since a write current is directly supplied to the magnetoresistive effect element, the magnitude of the current-induced magnetic field becomes relatively large. Therefore, the write current can be reduced. Moreover, since the magnetization fixed layer 230 introduces a write current, it is desirable that the electric resistance is relatively small. Therefore, the electrical resistance may be lowered by making a conductive layer adjacent to the magnetization fixed layer 230.
  • a read current is passed between the magnetization fixed layer 230 and the magnetization free layer 210 via the nonmagnetic layer 220.
  • data is read by detecting a change in resistance according to the relative angle between the magnetization of the magnetization fixed layer 230 and the magnetization of the magnetization free layer 210.
  • a change in resistance is detected as a voltage signal or a current signal, and data stored in the magnetoresistive effect element is determined using the voltage signal or the current signal.
  • the conductive layer 250 is provided.
  • an electrode layer, a diffusion prevention layer, a base layer, and the like are appropriately provided.
  • the magnetization free layer 210, the magnetization fixed layer 230a, and the nonmagnetic layer 220 in FIG. 4B are the same as the magnetization free layer 210, the magnetization fixed layer 230, and the nonmagnetic layer 220 in FIG. 4A.
  • the magnetization pinned layer 230a is different from the magnetization pinned layer 230 of FIG. 4A in that no write current flows.
  • the conductive layer 250 is a wiring layer for writing data and is formed of a conductor.
  • the direction of the magnetization of the magnetization free layer 210 is controlled by a current-induced magnetic field generated by a write current flowing inside the conductive layer 250. That is, data is written in the magnetoresistive effect element by the current-induced magnetic field. Since the write current is not supplied to the magnetization fixed layer (ferromagnetic material) but to the conductive layer 250 formed of a highly conductive conductor such as copper (Cu) or aluminum (Al), the write wiring resistance is further reduced. I can do it.
  • the conductive layer 250 may be electrically connected to the magnetization fixed layer 230a (or the magnetization free layer if closer to the conductive layer 250) via a contact. Other configurations are the same as those in the case of FIG.
  • a write current is passed from one end of the conductive layer 90 to the other end.
  • the magnetization of the magnetization free layer 210 is reversed by a current-induced magnetic field generated by the write current.
  • the direction of the current-induced magnetic field generated by the direction of the write current can be controlled to change the magnetization of the magnetization free layer 210 to a desired direction.
  • desired data is recorded in the magnetization free layer 210.
  • Such a writing method in which a writing current is allowed to flow through the conductive layer 250 can be called a wiring layer writing type because a wiring dedicated to writing is provided.
  • a read current is passed through the paths of the magnetization free layer 210, the nonmagnetic layer 220, and the magnetization fixed layer 230a.
  • data is read by detecting a change in resistance according to the relative angle between the magnetization of the magnetization fixed layer 230a and the magnetization of the magnetization free layer 210.
  • the magnetization of the magnetization fixed layer 230a and the magnetization of the magnetization free layer 210 are parallel (example: “0” is stored), the low resistance state is realized, and the magnetization of the magnetization fixed layer 230a and the magnetization of the magnetization free layer 210 are realized.
  • a high resistance state is realized.
  • a change in the resistance of the magnetoresistive effect element is detected as a voltage signal or a current signal, and data stored in the magnetoresistive effect element is determined using the voltage signal or the current signal.
  • 4C includes a magnetization fixed layer 230b, a magnetization free layer 210, a nonmagnetic layer 220 provided between the magnetization fixed layer 230b and the magnetization free layer 210, and a nonmagnetic layer sandwiching the magnetization free layer 210. 220, a conductive layer 250 provided on the opposite side of 220, and a magnetization free layer 210a provided on the opposite side of the magnetization free layer 210 across the conductive layer 250.
  • an electrode layer, a diffusion prevention layer, a base layer, and the like are appropriately provided.
  • the magnetization free layer 210, the magnetization fixed layer 230b, and the nonmagnetic layer 220 are the same as the magnetization free layer 210, the magnetization fixed layer 230a, and the nonmagnetic layer 220 in FIG. 4B.
  • the magnetoresistive effect element of FIG. 4B is different from the magnetoresistive effect element of FIG. 4B in that the magnetization free layer has two magnetization free layers 210 and 210a, and the conductive layer 250 is between the magnetization free layer 210 and magnetization free layer 210a. Different.
  • the magnetization free layer 210a is preferably made of the same ferromagnetic material as the magnetization free layer 210, has the same in-plane magnetic anisotropy, and has a reversible magnetization in the reverse direction.
  • the magnetization free layer 210a is magnetically coupled to the magnetization free layer 210 in an antiferromagnetic manner, and stabilizes the magnetization of each other. Further, the magnetization free layer 210a and the magnetization free layer 210 located on both sides of the conductive layer 250 have a function of amplifying a current-induced magnetic field generated by a write current flowing through the conductive layer 250 during a write operation.
  • the magnetization free layer 210, the nonmagnetic layer 220, the magnetization fixed layer 230b, and the magnetization free layer 210a may be stacked in this order, and the magnetization fixed layer 230b may also function as the conductive layer 250. However, in this case, a nonmagnetic layer is inserted between the magnetization fixed layer 230b and the magnetization free layer 210a, and the magnetic coupling between the magnetization fixed layer 230b and the magnetization free layer 210a is cut.
  • Other configurations are the same as those in the case of FIG.
  • the current induced magnetic field due to the write current flowing through the conductive layer 250 is amplified by the magnetization free layer 210a and the magnetization free layer 210, and the current induction Except for the point that the magnetization free layer 210a is magnetized in the opposite direction to the magnetization free layer 210 by the magnetic field, it is the same as in the case of FIG.
  • a writing layer 250 serving as a writing wiring layer is located between the magnetization free layer 210a and the magnetization free layer 210, and such a writing method in which a writing current is supplied thereto is also referred to as an intermediate wiring layer writing type.
  • the method for reading data from the magnetoresistive effect element is the same as that in the case of FIG.
  • the magnetization free layer 210 and the magnetization free layer 210a are depicted as having substantially the same shape, but the shapes of the two layers may be different.
  • the magnetization free layer 210 a may have the same shape as the conductive layer 250.
  • the magnetization of the magnetization free layer 210a is oriented in the x direction, which is the longitudinal direction in a steady state, and rotates in the direction of a current-induced magnetic field when a current is introduced into the conductive layer 250, A magnetic field can be applied efficiently.
  • the magnetization free layer 210a having such a role is often referred to as a cladding layer or a yoke layer.
  • the current-induced magnetic field writing type magnetoresistive effect elements shown in FIGS. 4A to 4C are all examples in which the magnetization free layer and the magnetization fixed layer are composed of in-plane magnetization films having in-plane magnetic anisotropy. ing.
  • the present invention is not limited to this, and the magnetization free layer and the magnetization fixed layer may be composed of a perpendicular magnetization film having perpendicular magnetic anisotropy.
  • any of the current-induced magnetic field write type magnetoresistive effect elements shown in FIGS. 4A to 4C can be used.
  • each layer on the in-plane plane is not limited to the example shown in each figure, and may be a circle, an ellipse, a rectangle, a rhombus, or another polygon.
  • irregularities can be appropriately provided on the surface of each layer so that appropriate characteristics can be obtained.
  • the area of each layer is arbitrary.
  • an appropriate type of MRAM is selected and arranged according to a required function.
  • a memory for a logic circuit that requires high-speed operation an MRAM using a current-induced magnetic field writing type magnetoresistive effect element capable of high-speed operation shown in FIGS. 4A to 4C is used.
  • the low current (large capacity and high capacity) shown in FIGS. 2A to 2D and FIGS. 3A and 3B can be used.
  • An MRAM using a spin-polarized current writing type magnetoresistive element that can be integrated) is used as a spin-polarized current writing type magnetoresistive element that can be integrated.
  • a system (memory mounted semiconductor device) can be obtained.
  • any one of the magnetoresistance effect element of the spin-polarized current writing type current-induced domain wall motion type, spin-injection magnetization switching type, and current-induced magnetic field writing type may be used. It can also be used.
  • FIG. 5A is a circuit diagram showing a configuration example of a memory cell in which the magnetoresistive effect element of this embodiment is integrated.
  • FIG. 5A shows a circuit configuration of a single memory cell 301, but it is actually understood by those skilled in the art that a plurality of memory cells 301 are arranged in an array and integrated in the MRAMs 4 and 5. Will be understood.
  • a terminal connected to the magnetization fixed layer 30 is connected to a ground line GND for reading through a node N3.
  • the One of the two terminals connected to the magnetization free layer 10 is connected to one source / drain of the MOS transistor M1 via the node N1, and the other is connected to one source / drain of the MOS transistor M2 via the node N2.
  • the other source / drain of the MOS transistors M1 and M2 are connected to bit lines BL1 and BL2 for writing, respectively.
  • the gate electrodes of the MOS transistors M1 and M2 are connected to the word line WL. That is, 310 in the figure corresponds to the first magnetization free layer 10.
  • one of the magnetization fixed layer 30 and the first magnetization free layer 10 is connected to one source / drain of the MOS transistor M1 via the node N1.
  • the other is connected to one source / drain of the MOS transistor M2 via a node N2.
  • the other sources / drains of the MOS transistors M1 and M2 are connected to the bit lines BL1 and BL2, respectively.
  • the gate electrodes of the MOS transistors M1 and M2 are connected to the word line WL.
  • 310 in the figure corresponds to the magnetization fixed layer 30, the nonmagnetic layer 20, and the first magnetization free layer 10.
  • one of the magnetization fixed layer 30 and the first magnetization free layer 10 is connected to the ground line GND via the node N1 (not the node N3).
  • one of two terminals connected to both ends of the magnetization fixed layer 230 is connected to one source / drain of the MOS transistor M1 via the node N1.
  • the other is connected to one source / drain of the MOS transistor M2 via the node N2.
  • a terminal connected to the magnetization free layer 210 is connected to a ground line GND for reading via a node N3.
  • 310 in the figure corresponds to the magnetization fixed layer 230.
  • one of two terminals connected to both ends of the conductive layer 250 is connected to one source / drain of the MOS transistor M1 via the node N1.
  • the other is connected to one source / drain of the MOS transistor M2 via a node N2.
  • a terminal connected to the magnetization free layer 210 is connected to a ground line GND for reading via a node N3.
  • the magnetization fixed layer 230a and the conductive layer 250 are electrically connected.
  • 310 in the figure corresponds to the conductive layer 250.
  • one of two terminals connected to both ends of the conductive layer 250 is connected to one source / drain of the MOS transistor M1 via the node N1.
  • the other is connected to one source / drain of the MOS transistor M2 via a node N2.
  • a terminal connected to the magnetization fixed layer 230b is connected to the ground line GND for reading via the node N3.
  • 310 in the figure corresponds to the conductive layer 250.
  • FIG. 5B is a block diagram showing a configuration example of an MRAM in which the memory cells of this embodiment are integrated.
  • the MRAM 360 includes a memory cell array 361 in which a plurality of memory cells 301 are arranged in a matrix.
  • the memory cell array 361 includes a reference cell 301r that is referred to when data is read, in addition to the memory cell 301 used for data recording described in FIG. 5A.
  • the structure of the reference cell 301r is the same as that of the memory cell 301.
  • the word line WL is connected to the X selector 362.
  • the X selector 362 selects a word line WL connected to the target memory cell 301s as a selected word line WLs during a data write operation and a read operation.
  • the bit line BL1 is connected to the Y-side current termination circuit 364, and the bit line BL2 is connected to the Y selector 363.
  • the Y selector 363 selects the bit line BL2 connected to the target memory cell 301s as the selected bit line BL2s during the data write operation and the read operation.
  • the Y-side current termination circuit 364 selects the bit line BL1 connected to the target memory cell 301s as the selected bit line BL1s.
  • the Y-side current source circuit 365 supplies or draws a predetermined write current (Iwrite) to the selected bit line BL2s during the data write operation.
  • the Y-side power supply circuit 366 supplies a predetermined voltage to the Y-side current termination circuit 364 during the data write operation.
  • the write current (Iwrite) flows into or out of the Y selector 363.
  • These X selector 362, Y selector 363, Y side current termination circuit 364, Y side current source circuit 365, and Y side power supply circuit 366 are “write current supply circuits for supplying a write current (Iwrite) to the memory cell 301. Is comprised.
  • the read current adding circuit 367 supplies a predetermined read current (Iread) to the selected second bit line BL2s during the data read operation.
  • the Y-side current termination circuit 364 sets the bit line BL1 to “Open”.
  • the read current load circuit 367 supplies a predetermined read current (Iread) to the reference bit line BL2r connected to the reference cell 301r.
  • the sense amplifier 368 reads data from the target memory cell 301s based on the difference between the potential of the reference bit line BL2r and the potential of the selected bit line BL2s, and outputs the data.
  • the X selector 362, Y selector 363, Y-side current termination circuit 364, read current adding circuit 367, and sense amplifier 368 constitute a “read current supply circuit” for supplying a read current (Iread) to the memory cell 301. is doing.
  • the word line WL is pulled up to a “high” level, and the MOS transistors M1 and M2 are turned “ON”.
  • One of the bit lines BL1 and BL2 is pulled up to the “high” level, and the other is pulled down to the “low” level.
  • Which of the bit lines BL1 and BL2 is pulled up to the “high” level and which is pulled down to the “low” level is determined by data to be written to the magnetoresistive element. As described above, data “0” and “1” can be written separately.
  • the word line WL is pulled up to the “high” level, and the MOS transistors M1 and M2 are turned “ON”.
  • One of the bit lines BL1 and BL2 is pulled up to the “high” level, and the other is set to “open” (floating).
  • a read current passing through the magnetoresistive effect element flows from one of the bit lines BL1 and BL2 to the ground line GND.
  • the potential of the bit line through which the read current flows or the magnitude of the read current depends on a change in resistance of the magnetoresistive element due to the magnetoresistive effect. By detecting this change in resistance as a voltage signal or a current signal, high-speed reading can be performed.
  • circuit configurations shown in FIGS. 5A and 5B and the circuit operation described here are merely examples of a method for carrying out the present invention, and can be implemented by other circuit configurations.
  • FIG. 5A It has been reported that when the circuit configuration of FIG. 5A is applied to a current-induced magnetic field writing type magnetoresistive effect element (FIGS. 4A to 4C), operation at 200 MHz or higher is possible (N. Sakimura). et al., IEEE JOURNAL OF SOLID-STATE CIRCUITS, Vol.42, 2007, pp.830.). However, other circuit configurations as shown in FIG. 6 can be used to perform higher-speed operation.
  • FIG. 6 is a circuit diagram showing another configuration example of the memory cell in which the magnetoresistive effect element of this embodiment is integrated.
  • FIG. 6 shows a circuit configuration of a single memory cell 302. However, it will be understood by those skilled in the art that a plurality of memory cells 302 are actually arranged in an array and integrated in an MRAM. It will be understood. It has been reported that when the circuit configuration of FIG. 6 is applied to a current-induced magnetic field writing type magnetoresistive effect element (FIGS. 4A to 4C), operation at 500 MHz or more is possible (N. Sakimura). et al., IEEE JOURNAL OF SOLID-STATE CIRCUITS, Vol.42, 2007, pp.830.).
  • two MTJ1 and MTJ2 are used for one memory cell 302.
  • Complementary data (“0" and “1” or “1” and “0") are stored in MTJ1 and MTJ2.
  • the read signal is amplified by the MOS transistors M13 and M14.
  • the second magnetoresistive element in the second magnetoresistive element (MTJ2), one of the two terminals connected to both ends of the magnetization fixed layer 230 is One source / drain of the MOS transistor M11 is connected via the node N11, and the other is connected to one terminal of the magnetization fixed layer 230 of the first magnetoresistive effect element (MTJ1) via the node N12.
  • a terminal connected to the magnetization free layer 210 is connected to a wiring SPL that supplies a read current via a node N14.
  • one of two terminals connected to both ends of the magnetization fixed layer 230 is a node to the other terminal of the magnetization fixed layer 230 of the second magnetoresistance effect element (MTJ2).
  • the other is connected via N12, and the other is connected to one source / drain of MOS transistor M12 via node N13.
  • a terminal connected to the magnetization free layer 210 is connected to a ground line GND for reading via a node N15. That is, 311 and 312 in the figure correspond to the magnetization fixed layer 230 of the second and first magnetoresistance effect elements, respectively.
  • the second magnetoresistive element in the second magnetoresistive element (MTJ2), one of the two terminals connected to both ends of the conductive layer 250 is a MOS.
  • One source / drain of the transistor M11 is connected via the node N11, and the other is connected to one terminal of the conductive layer 250 of the first magnetoresistive element (MTJ1) via the node N12.
  • a terminal connected to the magnetization free layer 210 is connected to a wiring SPL that supplies a read current via a node N14.
  • one of two terminals connected to both ends of the conductive layer 250 has a node N12 on the other terminal of the conductive layer 250 of the second magnetoresistive element (MTJ2).
  • the other is connected to one source / drain of the MOS transistor M12 via a node N13.
  • a terminal connected to the magnetization free layer 210 is connected to a ground line GND for reading via a node N15. That is, 311 and 312 in the figure correspond to the conductive layers 250 of the second and first magnetoresistive elements, respectively.
  • the second magnetoresistive element in the second magnetoresistive element (MTJ2), one of two terminals connected to both ends of the conductive layer 250 is a MOS.
  • One source / drain of the transistor M11 is connected via the node N11, and the other is connected to one terminal of the conductive layer 250 of the first magnetoresistive element (MTJ1) via the node N12.
  • a terminal connected to the magnetization fixed layer 230b is connected to a wiring SPL for supplying a read current via a node N14.
  • one of two terminals connected to both ends of the conductive layer 250 has a node N12 on the other terminal of the conductive layer 250 of the second magnetoresistive element (MTJ2).
  • the other is connected to one source / drain of the MOS transistor M12 via a node N13.
  • a terminal connected to the magnetization fixed layer 230b is connected to a ground line GND for reading through a node N15. That is, 311 and 312 in the figure correspond to the conductive layers 250 of the second and first magnetoresistive elements, respectively.
  • the terminal connected to the magnetization fixed layer 30 is a read current. Is connected to a wiring SPL for supplying One of the two terminals connected to the magnetization free layer 10 is connected to one source / drain of the MOS transistor M11 via the node N11, and the other is connected to the magnetization free layer 10 of the first magnetoresistance effect element (MTJ1). Is connected to one end of this via a node N12. In the first magnetoresistive element (MTJ1), the terminal connected to the magnetization fixed layer 30 is connected to the ground line GND for reading.
  • One of the two terminals connected to the magnetization free layer 10 is connected to the other end of the magnetization free layer 10 of the second magnetoresistive effect element (MTJ2) via the node N12, and the other is one of the MOS transistors M12.
  • the source / drain is connected through node N13. That is, 311 and 312 in the figure correspond to the magnetization free layer 10 of the second and first magnetoresistive elements, respectively.
  • the second magnetoresistive element in the second magnetoresistive element (MTJ2), one of the magnetization free layer 10 and the magnetization fixed layer 30 is One is connected to one source / drain of the MOS transistor M11 via the node N11, and the other is the same terminal of the magnetization free layer 10 and the magnetization fixed layer 30 in the first magnetoresistive element (MTJ1).
  • the first magnetoresistive effect element MTJ1
  • the same one as the second magnetoresistive effect element (MTJ2) connected to the node N12 of the magnetization free layer 10 and the magnetization fixed layer 30 has the second magnetoresistance effect.
  • the effect element (MTJ2) is connected via the node N12, and the rest of the magnetization free layer 10 and the magnetization fixed layer 30 are connected to one source / drain of the MOS transistor M12 via the node N13.
  • the node N14 of the wiring SPL that supplies the read current is connected to the node N11, and the node N15 of the ground line GND is connected to the node N13.
  • 311 and 312 in the figure correspond to the second and first magnetoresistive elements, respectively.
  • the word line RWL is pulled up to “high” level, and the MOS transistor M15 is turned “ON”. Further, the read voltage supply line SPL is pulled up to the “high” level.
  • the read current passing through the paths of the node N14, the nodes N11, MTJ2, the nodes N12, MTJ1, the node N13, and the node N15 flows from the read voltage supply line SPL to the ground line GND via the MTJ1 and MTJ2.
  • the potential of the node N12 between MTJ2 and MTJ1 depends on complementary data stored in MTJ2 and MTJ1. Therefore, the potential of the node N12 is amplified by the MOS transistors M13 and M14 and detected by the bit line RBL, thereby enabling high-speed reading.
  • circuit configuration shown in FIG. 6 and the circuit operation described here are merely examples of a method for carrying out the present invention, and can be implemented by other circuit configurations.
  • FIGS. 7A to 7D are schematic views showing the configuration of a first modification of the magnetoresistive effect element in each MRAM according to the embodiment of the present invention.
  • the magnetoresistive effect element 8 and the magnetoresistive effect element 9 according to the embodiment of the present invention are formed on the same chip.
  • the white arrow in each component in the figure indicates the direction of magnetization (the same applies hereinafter).
  • the magnetoresistive effect element 9 is used in a memory cell of the MRAM 5 for high integration and large capacity (low current). This is a spin-polarized current writing type current-induced domain wall motion type magnetoresistive effect element.
  • the magnetoresistive effect element 9 includes a magnetization free layer 10, a magnetization fixed layer 30, and a nonmagnetic layer 20 provided between the magnetization free layer 10 and the magnetization fixed layer 30.
  • the magnetoresistive effect element 9 is the same as the magnetoresistive effect element shown in FIG. 2B.
  • As terminals of the magnetization free layer 10 a contact 41 is connected to the first magnetization fixed region 11a, and a contact 42 is connected to the second magnetization fixed region 11b.
  • Each contact is connected to, for example, a MOS transistor (see FIG. 5A) of the memory cell.
  • the magnetization fixed layer 30 is connected to, for example, the ground line GND (see FIG. 5A).
  • GND ground line
  • the write current flows through the path of the contact 41, the first magnetization fixed region 11 a, the magnetization free region 12, the second magnetization fixed region 11 b, and the contact 42. Thereby, the domain wall of the magnetization free layer 10 moves according to the write current.
  • the read current flows through a magnetic tunnel junction (MTJ) composed of the magnetization fixed layer 30, the nonmagnetic layer 20, and the magnetization free layer 10 (magnetization free region 12).
  • MTJ magnetic tunnel junction
  • Other configurations and operations are as described in relation to the magnetoresistive effect element in FIG. 2B.
  • the shape of the magnetization free layer 10 may be any of FIGS. 2A to 2D.
  • the magnetoresistive effect element 8 is used in a memory cell of the MRAM 4 for high speed operation. This is a current-induced magnetic field writing type magnetoresistive effect element.
  • the magnetoresistive effect element 8 is of the aforementioned wiring layer writing type.
  • the magnetoresistive effect element 8 includes a magnetization free layer 210, a nonmagnetic layer 220, a magnetization fixed layer 230 a, and a conductive layer 250 provided in the vicinity of the magnetization free layer 210.
  • the magnetoresistive effect element 8 is the same as the magnetoresistive effect element shown in FIG. 4B except that a perpendicular magnetization film is used.
  • the magnetization free layer 210 is connected to the conductive layer 250 through the metal layer 257.
  • the conductive layer 250 has one end connected to the contact 255 and the other end connected to the contact 256. Each contact is connected to, for example, a MOS transistor (see FIG. 5A) of the memory cell.
  • the magnetization fixed layer 230a is connected to the ground line GND (see FIG. 5A), for example.
  • GND ground line
  • the conductive layer 250 is composed of a stacked body of the same material as the magnetization free layer 210, the nonmagnetic layer 220, and the magnetization fixed layer 230a.
  • the write current may flow through any material layer.
  • the write current flows through the path of the contact 255, the conductive layer 250, and the contact 256. Thereby, a magnetic field is induced around the conductive layer 250 (a range including the magnetization free layer 210).
  • the read current flows through a magnetic tunnel junction (MTJ) path formed by the magnetization fixed layer 230a, the nonmagnetic layer 220, and the magnetization free layer 210.
  • MTJ magnetic tunnel junction
  • the shape of the conductive layer 250 is not particularly limited as long as a desired magnetic field can be induced in a range in which the write current flowing therethrough includes the magnetization free layer 210.
  • FIG. 7B is a plan view of the magnetoresistive effect element 8 of FIG. 7A as viewed from the z direction, but the conductive layer 250 includes magnetic tunnel junctions (the magnetization free layer 210, the nonmagnetic layer 220, and the magnetization fixed layer 230). It may be a substantially C-shape that surrounds.
  • the conductive layer 250 may be a substantially I-shaped conductive layer 250a that linearly extends beside the magnetic tunnel junction.
  • the conductive layer 250 may be a substantially L-shaped conductive layer 250b that passes while bending beside the magnetic tunnel junction.
  • the magnetoresistive effect element 8 and the magnetoresistive effect element 9 according to the embodiment of the invention are formed on the same chip.
  • the magnetization free layer 210, the nonmagnetic layer 220, and the magnetization fixed layer 230a of the magnetoresistive effect element 8 are the same as the magnetization free layer 10, the nonmagnetic layer 20, and the magnetization fixed layer 30 of the magnetoresistive effect element 9, respectively. It can be formed simultaneously with the material. That is, the MRAM 4 and the MRAM 5 can be formed by the same process, and the number of processes does not increase. As a result, the semiconductor device 1 can be manufactured at a low cost and in a short time.
  • the conductive layer 250 is also formed of the same material as the magnetization free layer 210, the nonmagnetic layer 220, and the magnetization fixed layer 230a.
  • the semiconductor device 1 can be manufactured at a lower cost and in a shorter time.
  • FIG. 8 is a perspective view showing a configuration of a second modification of the magnetoresistive effect element in each MRAM according to the embodiment of the present invention.
  • the magnetoresistive effect element 8a and the magnetoresistive effect element 9a according to the second modification of the embodiment of the present invention are formed on the same chip.
  • the magnetoresistive effect element 9a is used in a memory cell of the MRAM 5 for high integration and large capacity (low current). This is a spin-polarized current writing type current-induced domain wall motion type magnetoresistive effect element.
  • the magnetoresistive effect element 9 a includes a magnetization free layer 10, a magnetization fixed layer 30, and a nonmagnetic layer 20 provided between the magnetization free layer 10 and the magnetization fixed layer 30.
  • the magnetoresistive effect element 9a is the same as the magnetoresistive effect element shown in FIG. 2A.
  • Each contact is connected to, for example, a MOS transistor (see FIG. 5A) of the memory cell.
  • the magnetization fixed layer 30 is connected to, for example, the ground line GND (see FIG. 5A).
  • GND ground line
  • the write current flows through the path of the contact 41 (+ 41a), the first magnetization fixed region 11a, the magnetization free region 12, the second magnetization fixed region 11b, and the contact 42 (+ 42a).
  • the read current flows through a magnetic tunnel junction (MTJ) composed of the magnetization fixed layer 30, the nonmagnetic layer 20, and the magnetization free layer 10 (magnetization free region 12).
  • MTJ magnetic tunnel junction
  • Other configurations and operations are as described in relation to the magnetoresistive effect element in FIG. 2A.
  • the shape of the magnetization free layer 10 may be any of FIGS. 2A to 2D.
  • the magnetoresistive effect element 8a is used in a memory cell of the MRAM 4 for high speed operation. This is a current-induced magnetic field writing type magnetoresistive effect element.
  • the magnetoresistive effect element 8a is the above-described intermediate layer wiring write type.
  • the magnetoresistive effect element 8a includes a magnetization fixed layer 230b, a nonmagnetic layer 220, a magnetization free layer 210, a conductive layer 250, and a magnetization free layer 210b.
  • the magnetoresistive effect element 8a is the same as the magnetoresistive effect element shown in FIG. 4C.
  • the conductive layer 250 has terminals at both ends connected to, for example, MOS transistors of two memory cells (see FIG. 5A).
  • the magnetization fixed layer 230b is connected to, for example, the ground line GND (see FIG. 5A).
  • GND ground line
  • an electrode layer, a diffusion prevention layer, a base layer, and the like are appropriately provided.
  • the write current flows through the conductive layer 250.
  • a magnetic field is induced around the conductive layer 250 (a range including the magnetization free layer 210 and the magnetization free layer 210a).
  • the read current flows through a magnetic tunnel junction (MTJ) path composed of the magnetization fixed layer 230b, the nonmagnetic layer 220, and the magnetization free layer 210.
  • MTJ magnetic tunnel junction
  • the magnetoresistive effect element 8a and the magnetoresistive effect element 9a according to the embodiment of the present invention are formed on the same chip.
  • the magnetization free layer 210a, the conductive layer 250a, the magnetization free layer 210, the nonmagnetic layer 220, and the magnetization fixed layer 230b of the magnetoresistive effect element 8a are respectively connected to the contacts 41a and 42a, contacts 41, 42, and
  • the magnetization free layer 10, the nonmagnetic layer 20, and the magnetization fixed layer 30 can be simultaneously formed in the same layer with the same material. That is, the MRAM 4 and the MRAM 5 can be formed by the same process, and the number of processes does not increase. As a result, the semiconductor device 1 can be manufactured at a low cost and in a short time.
  • FIG. 9 is a perspective view showing a configuration of a third modification of the magnetoresistive element in each MRAM according to the embodiment of the present invention.
  • the magnetoresistive effect element 8b and the magnetoresistive effect element 9b according to the third modification of the embodiment of the present invention are formed on the same chip.
  • the magnetoresistive effect element 9b is used in a memory cell of the MRAM 5 for high integration and large capacity (low current).
  • This is a spin-polarization current writing type spin-injection magnetization reversal type magnetoresistive effect element.
  • the magnetoresistive effect element 9 b includes a magnetization free layer 10, a magnetization fixed layer 30, and a nonmagnetic layer 20 provided between the magnetization free layer 10 and the magnetization fixed layer 30.
  • the magnetoresistive effect element 9b is the same as the magnetoresistive effect element shown in FIG. 3A.
  • a contact 94 and a wiring layer 95 are connected as terminals of the magnetization free layer 10, and a contact 91 and a wiring layer 92 are connected to the magnetization fixed layer 30.
  • Each contact and wiring layer is connected to, for example, a MOS transistor (see FIG. 5A) of the memory cell.
  • a MOS transistor see FIG. 5A
  • an electrode layer, a diffusion prevention layer, a base layer, and the like are appropriately provided.
  • the write current flows through the path of the contact 91, the magnetization fixed layer 30, the nonmagnetic layer 20, the magnetization free layer 10, and the contact 94. Thereby, the magnetization direction of the magnetization free layer 10 changes according to the write current.
  • the read current flows through a magnetic tunnel junction (MTJ) composed of the magnetization fixed layer 30, the nonmagnetic layer 20, and the magnetization free layer 10.
  • MTJ magnetic tunnel junction
  • the magnetoresistive effect element 8b is used in a memory cell of the MRAM 4 for high speed operation. This is a current-induced magnetic field writing type magnetoresistive effect element.
  • the magnetoresistive effect element 8b is the above-described base write type.
  • the magnetoresistive element 8 b includes a magnetization fixed layer 230, a nonmagnetic layer 220, and a magnetization free layer 210.
  • the magnetoresistive effect element 8b is the same as the magnetoresistive effect element shown in FIG. 4A.
  • a contact 258 and a wiring layer 259 are connected as terminals of the magnetization free layer 210.
  • the contact 260 and the wiring layer 261 are connected as one terminal of the magnetization fixed layer 230, and the contact 262 and the wiring layer 263 are connected as the other terminal.
  • the terminals of both ends of the magnetization fixed layer 230 are connected to, for example, MOS transistors (see FIG. 5A) of two memory cells.
  • the magnetization free layer 210 is connected to the ground line GND (see FIG. 5A), for example.
  • the write current flows through the magnetization fixed layer 230.
  • a magnetic field is induced around the magnetization fixed layer 230 (a range including the magnetization free layer 210).
  • the read current flows through a magnetic tunnel junction (MTJ) path constituted by the magnetization fixed layer 230, the nonmagnetic layer 220, and the magnetization free layer 210.
  • MTJ magnetic tunnel junction
  • the magnetoresistive effect element 8b and the magnetoresistive effect element 9b according to the embodiment of the present invention are formed on the same chip.
  • the magnetization free layer 210, the nonmagnetic layer 220, and the magnetization fixed layer 230 of the magnetoresistive effect element 8b are the same layer as the magnetization free layer 10, the nonmagnetic layer 20, and the magnetization fixed layer 30 of the magnetoresistance effect element 9b, respectively. It can be formed simultaneously with the material. That is, the MRAM 4 and the MRAM 5 can be formed by the same process, and the number of processes does not increase. As a result, the semiconductor device 1 can be manufactured at a low cost and in a short time.
  • FIG. 10 is a perspective view showing a configuration of a fourth modification of the magnetoresistive effect element in each MRAM according to the embodiment of the present invention.
  • the magnetoresistive effect element 8c and the magnetoresistive effect element 9c according to the fourth modification of the embodiment of the present invention are formed on the same chip.
  • the magnetoresistive effect element 9c is used for a memory cell of the MRAM 5 for high integration and large capacity (low current).
  • This is a spin-polarization current writing type spin-injection magnetization reversal type magnetoresistive effect element.
  • the magnetoresistive effect element 9 c includes a magnetization free layer 10, a magnetization fixed layer 30, and a nonmagnetic layer 20 provided between the magnetization free layer 10 and the magnetization fixed layer 30.
  • the magnetoresistive effect element 9c is the same as the magnetoresistive effect element shown in FIG. 3B.
  • a contact 94 and a wiring layer 95 are connected as terminals of the magnetization free layer 10, and a contact 91 and a wiring layer 92 are connected to the magnetization fixed layer 30.
  • Each contact and wiring layer is connected to, for example, a MOS transistor (see FIG. 5A) of the memory cell.
  • a MOS transistor see FIG. 5A
  • an electrode layer, a diffusion prevention layer, a base layer, and the like are appropriately provided.
  • the write current flows through the path of the contact 91, the magnetization fixed layer 30, the nonmagnetic layer 20, the magnetization free layer 10, and the contact 94. Thereby, the magnetization direction of the magnetization free layer 10 changes according to the write current.
  • the read current flows through a magnetic tunnel junction (MTJ) composed of the magnetization fixed layer 30, the nonmagnetic layer 20, and the magnetization free layer 10.
  • MTJ magnetic tunnel junction
  • the magnetoresistive effect element 8c is used in a memory cell of the MRAM 4 for high speed operation. This is a current-induced magnetic field writing type magnetoresistive effect element.
  • the magnetoresistive effect element 8c is the above-described wiring layer writing type.
  • the magnetoresistive element 8 c includes a magnetization free layer 210, a nonmagnetic layer 220, a magnetization fixed layer 230 a, and a conductive layer 250 a provided in the vicinity of the magnetization free layer 210.
  • the magnetoresistive effect element 8c is the same as the magnetoresistive effect element shown in FIG. 4B except that a perpendicular magnetization film is used.
  • the conductive layer 250a is the same as the conductive layer 250a in FIG. 7C.
  • the magnetization fixed layer 230a is connected to the conductive layer 250a through a contact 267, a metal layer 268, and a contact 269.
  • the conductive layer 250 a has one end connected to the contact 270 and the wiring layer 271, and the other end connected to the contact 272 and the wiring layer 273.
  • the contacts 270 and 272 are connected to, for example, a MOS transistor (see FIG. 5A) of the memory cell.
  • the magnetization free layer 210 is connected to the ground line GND (see FIG. 5A), for example.
  • GND see FIG. 5A
  • the conductive layer 250a is formed of a stacked body made of the same material as the magnetization free layer 210, the nonmagnetic layer 220, and the magnetization fixed layer 230a.
  • the write current may flow through any material layer.
  • the write current flows through the path of the contact 270, the conductive layer 250a, and the contact 272.
  • a magnetic field is induced around the conductive layer 250a (a range including the magnetization free layer 210).
  • the read current flows through a magnetic tunnel junction (MTJ) path formed by the magnetization fixed layer 230a, the nonmagnetic layer 220, and the magnetization free layer 210.
  • MTJ magnetic tunnel junction
  • the magnetoresistive effect element 8c and the magnetoresistive effect element 9c according to the embodiment of the present invention are formed on the same chip.
  • the magnetization free layer 210, the nonmagnetic layer 220, and the magnetization fixed layer 230a of the magnetoresistive effect element 8c are the same layer as the magnetization free layer 10, the nonmagnetic layer 20, and the magnetization fixed layer 30 of the magnetoresistive effect element 9c, respectively. It can be formed simultaneously with the material. That is, the MRAM 4 and the MRAM 5 can be formed by the same process, and the number of processes does not increase. As a result, the semiconductor device 1 can be manufactured at a low cost and in a short time.
  • the conductive layer 250a is also formed of the same material as that of the magnetization free layer 210, the nonmagnetic layer 220, and the magnetization fixed layer 230a, and thus can be formed in the same process.
  • the semiconductor device 1 can be manufactured at a lower cost and in a shorter time.
  • FIG. 11A to 11C are schematic views schematically showing the configuration of the fifth modification example of the magnetoresistance effect element according to this example.
  • FIG. 11A is a perspective view
  • FIGS. 11B and 11C are xy plan views.
  • the combination of FIG. 11A and FIG. 11B shows a case having perpendicular magnetic anisotropy
  • the combination of FIG. 11A and FIG. 11C shows a case having in-plane magnetic anisotropy.
  • the magnetoresistive effect element 9d is used in a memory cell of the MRAM 5 for high integration and large capacity (low current). This is a spin-polarized current writing type current-induced domain wall motion type magnetoresistive effect element.
  • the first magnetization free layer 10 includes a first magnetization fixed region 11a and a second magnetization fixed region. 11b and a magnetization free region 12.
  • the first magnetization fixed region 11a is connected to one end of the magnetization free region 12 as shown in FIGS. 2A to 2D
  • the second magnetization fixed region 11b is connected to the other end.
  • the first magnetization fixed region 11 a and the second magnetization fixed region 11 b are connected to one end of the magnetization free region 12.
  • first magnetization fixed region 11a, the second magnetization fixed region 11b, and the magnetization free region 12 form a three-forked path (three-forked, substantially Y-shaped).
  • the magnetic pinned layer 30, the nonmagnetic layer 20, and the magnetization free region 20 constitute a magnetic tunnel junction (MTJ).
  • the first magnetization free layer 10 and the magnetization fixed layer 30 have magnetic anisotropy in the film thickness direction (perpendicular magnetic anisotropy). And the magnetization of the 1st magnetization fixed area
  • the magnetization free region 12 can take magnetization parallel to one of the magnetizations of the first magnetization fixed region 11a and the second magnetization fixed region 11b.
  • the magnetization of the magnetization fixed layer 30 is fixed in the film thickness direction.
  • the magnetization of the first magnetization fixed region 11a is fixed in the + z direction
  • the magnetization of the second magnetization fixed region 11b is fixed in the ⁇ z direction
  • the magnetization free region 12 can take magnetization in either the + z direction or the ⁇ z direction.
  • the magnetization fixed layer 30 has magnetization fixed in the ⁇ z direction.
  • the first magnetization free layer 10 and the magnetization fixed layer 30 have magnetic anisotropy in the in-plane direction (in-plane magnetic anisotropy).
  • the magnetizations of the first magnetization fixed region 11a and the second magnetization fixed region 11b constituting the first magnetization free layer 10 are in the in-plane direction, one is in the direction toward the magnetization free region 12, and the other is from the magnetization free region 12. It is fixed in the direction of leaving.
  • the magnetization free region 12 can take magnetization in a direction toward the connection portion between the first magnetization fixed region 11a and the second magnetization fixed region 11b or in the opposite direction.
  • the magnetization of the magnetization fixed layer 30 is fixed in the in-plane direction substantially parallel to the magnetization of the magnetization free region 12.
  • the magnetization of the first magnetization fixed region 11 a is fixed in the direction toward the magnetization free region 12
  • the magnetization of the second magnetization fixed region 11 b is fixed in the direction away from the magnetization free region 12.
  • the magnetization free region 12 can take magnetization in either the + x direction or the ⁇ x direction.
  • the magnetization fixed layer 30 has magnetization fixed in the + x direction.
  • the magnetoresistive effect element 9d having the structure of FIGS. 11A and 11B or FIGS. 11A and 11C is a four-terminal element. One of the four terminals is provided in the magnetization fixed layer 30, the other two terminals are provided in the first magnetization fixed region 11 a and the second magnetization fixed region 11 b, and the remaining one terminal is the magnetization free region 12. Provided. In the magnetoresistive effect element 9 d, a domain wall is formed either near the boundary between the first magnetization fixed region 11 a and the magnetization free region 12 or near the boundary between the second magnetization fixed region 11 b and the magnetization free region 12.
  • writing is performed by passing a current between the first magnetization fixed region 11a and the magnetization free region 12 or between the second magnetization fixed region 11b and the magnetization free region 12.
  • the magnetic domain wall starts from the boundary between the first magnetization fixed region 11 a or the second magnetization fixed region 11 b and the magnetization free region 12, and is written by exiting from the other end of the magnetization free region 12. Is called.
  • FIGS. 12A to 12B are circuit diagrams showing a configuration example of a memory cell in which a fifth modification of the magnetoresistive effect element of this embodiment is integrated. These show two examples of circuit configurations adopted when the magnetoresistive effect element 9d has the configurations of FIGS. 11A and 11B or FIGS. 11A and 11C.
  • FIG. 12A two MOS transistors M21 and M22 are provided for one memory cell 303. One of the source / drain of the MOS transistor M21 is connected to the ground line GND, and the other is connected to one end of the first magnetization fixed region 11a (the side opposite to the boundary with the magnetization free region 12).
  • one of the source / drain of the MOS transistor M22 is connected to the ground line GND, and the other is connected to one end of the second magnetization fixed region 11b (the side opposite to the boundary with the magnetization free region 12).
  • the gate of the MOS transistor M21 is connected to the word line WLa, and the gate of the MOS transistor M22 is connected to the word line WLb.
  • a bit line BLa is connected to the end of the magnetization free region 12 (on the opposite side to the boundary between the first magnetization fixed region 11a and the second magnetization fixed region 11b).
  • the bit line BLa is a write wiring for supplying a write current to the magnetization free layer 10.
  • a bit line BLb is connected to the magnetization fixed layer 30 that is one end of the magnetic tunnel junction (MTJ).
  • the bit line BLb is a read wiring for supplying a read current to the magnetic tunnel junction (MTJ).
  • Data write and read operations in the circuit configuration as shown in FIG. 12A will be described.
  • Data can be written according to which of the word line WLa and the word line WLb is pulled up to the “high” level and which is pulled down to the “low” level.
  • the word line WLa is set to the “low” level
  • the word line WLb is set to the “high” level
  • the bit line BLa is set to the “high” level
  • the ground line GND is set to the “low” level
  • the MOS transistor M21 is On the other hand, the MOS transistor M22 is turned “ON”.
  • a write current flows from the bit line BLa to the ground line GND through the magnetization free region 12, the second magnetization fixed region 11b, and the MOS transistor M22.
  • the word line WLb is set to “low” level
  • the word line WLa is set to “high”
  • the bit line BLa is set to “high”
  • the ground line GND is set to “low” level
  • the MOS transistor M22 is set to “OFF”.
  • the MOS transistor M21 is turned “ON”.
  • a write current flows from the bit line BLa to the ground line GND through the magnetization free region 12, the first magnetization fixed region 11a, and the MOS transistor M21. In this way, data can be written separately.
  • data can be read out by the first method described below, for example.
  • the word line WLa and the word line WLb are set to “Low”, the bit line BLb is set to “High”, and the bit line BLa is set to “Ground”.
  • the MOS transistors M21 and M22 are “OFF”, and current flows from the bit line BLb through the MTJ to the bit line BLa.
  • the resistance of the magnetic tunnel junction (MTJ) can be read, and the data of the magnetoresistive effect element can be read.
  • the information of the memory cell 303 at the intersection of the bit line BLa and the bit line BLb is read, that is, cross-point reading is performed.
  • the second method as described below may be used for reading data from the memory cell 303 shown in FIG. 12A.
  • the word line WLa is set to “high” level and the word line WLb is set to “low” level, whereby the MOS transistor M21 is turned “ON” and the MOS transistor M22 is turned “OFF”.
  • the ground line GND is set to the “low” level
  • the bit line BLb is set to the “high” level.
  • the bit line BLa is set to an appropriate potential.
  • the read current passes through the MTJ from the bit line BLb and flows to the ground line GND via the MOS transistor M21 without flowing to the bit line BLa. This can also read the resistance value of the magnetic tunnel junction (MTJ).
  • the second method selects one memory cell 303 by the MOS transistor M21, so that high-speed read is possible.
  • FIG. 12B other circuit configurations as shown in FIG. 12B may be applied.
  • the memory cell 304 of FIG. 12B is provided with three MOS transistors. Specifically, one of the source / drain of the MOS transistor M23 is connected to the end of the magnetization free region 12 (on the side opposite to the first magnetization fixed region 11a and the second magnetization fixed region 11b), and the MOS transistor M23 The other source / drain is connected to the bit line BLc. The gate of the MOS transistor M23 is connected to the word line WLc.
  • Data write and read operations in the circuit configuration as shown in FIG. 12B will be described.
  • Data can be written according to which of the first word line WLa and the word line WLb is set to the “low” level and which is set to the “high” level.
  • the word line WLa is set to the “low” level
  • the word line WLb is set to the “high” level
  • the word line WLc is set to the “high” level
  • the MOS transistor M21 is set to “OFF”
  • the MOS transistor M22 is set to “ The MOS transistor M23 is turned “ON”.
  • the bit line BLc when the bit line BLc is set to the “high” level and the ground line GND is set to the “low” level, the bit line BLc passes through the MOS transistor M23, the magnetization free region 12, the second magnetization fixed region 11b, and the MOS transistor M22. Thus, a write current flows to the ground line GND.
  • the word line WLb is set to “low” level
  • the word line WLa is set to “high”
  • the word line WLc is set to “high”
  • the MOS transistor M22 is set to “OFF” and the MOS transistor M21 is set to “ON”.
  • the MOS transistor M23 is turned “ON”.
  • bit line BLc when the bit line BLc is set to the “high” level and the ground line GND is set to the “low” level, the bit line BLc passes through the MOS transistor M23, the magnetization free region 12, the first magnetization fixed region 11a, and the MOS transistor M21. Thus, a write current flows to the ground line GND. In this way, data can be written separately.
  • data can be read out as follows, for example.
  • the word line WLa is set to the “low” level
  • the word line WLb is set to the “low” level
  • the word line WLc is set to the “high” level.
  • the MOS transistors M21 and M22 are “OFF” and the MOS transistor M23 is “ON”.
  • the bit line BLb is set to the “high” level
  • the bit line BLc is set to “low”
  • the read current passes from the bit line Blb to the MTJ and flows to the bit line BLc via the MOS transistor M23.
  • data can be read out.
  • circuit configuration and circuit operation described here are merely examples, and the magnetoresistive effect element 9d having the structure shown in FIGS. 11A and 11B can be replaced by a memory cell even when other circuit configurations and circuit settings are used. Can be integrated.
  • the magnetoresistive effect element 9d having the structure of FIG. 11B can be used in place of the magnetoresistive effect element 9 of FIG. 7A.
  • the magnetoresistive effect element 9d and the magnetoresistive effect element 8 can be simultaneously formed of the same material by the same process. That is, the MRAM 4 and the MRAM 5 can be formed by the same process, and the number of processes does not increase. As a result, the semiconductor device 1 can be manufactured at a low cost and in a short time.
  • the magnetoresistive effect element 9d having the structure of FIG. 11C can be used in place of the magnetoresistive effect element 9a of FIG.
  • the magnetoresistive effect element 9d and the magnetoresistive effect element 8a can be simultaneously formed of the same material by the same process. That is, the MRAM 4 and the MRAM 5 can be formed by the same process, and the number of processes does not increase. As a result, the semiconductor device 1 can be manufactured at a low cost and in a short time.
  • Example of this invention and its various modifications are described above, this invention should not be limited to the above-mentioned Example and modification. Those skilled in the art will readily understand that a plurality of the above-described modified examples can be applied in combination as long as there is no contradiction.
  • the semiconductor device of the present invention can achieve both high-speed processing and large-capacity processing in the internal memory as a memory-embedded semiconductor device.

Abstract

A semiconductor device comprises a first magnetic random access memory having a first memory cell (9) and a second magnetic random access memory provided in the same chip as the first magnetic random access memory and having a second memory cell (8) operating at a higher speed than that of the first memory cell (9). The first memory cell (9) constitutes a spin-polarized current write type MRAM. Spin-polarized current is injected into a ferromagnetic conductor of a magnetoresistive effect element and a direct interaction between the spin of a conduction electron contributing to the current and the magnetic moment of the conductor causes a magnetization reversal, based on which data is stored. Write current flows through at least a magnetic free layer. The second memory cell (8) constitutes a current-induced magnetic field write type MRAM. Data is stored based on the magnetic field induced by a write current.

Description

[規則37.2に基づきISAが決定した発明の名称] MRAM混載システム[Name of invention determined by ISA based on Rule 37.2] MRAM mixed loading system
 本発明は、半導体装置に関し、特に、磁気抵抗効果素子をメモリセルに用いる半導体装置に関する。 The present invention relates to a semiconductor device, and more particularly to a semiconductor device using a magnetoresistive effect element for a memory cell.
 磁気ランダムアクセスメモリ(Magnetic Random Access Memory;MRAM)は高速動作、および無限回の書き換えが可能な不揮発性メモリとして期待され、開発が盛んに行われている。MRAMではメモリセルに磁気抵抗効果素子が集積化され、磁気抵抗効果素子の強磁性層の磁化の向きとしてデータが記憶される。この強磁性層の磁化をスイッチングさせる方法に対応していくつかの種類のMRAMが提案されている。 Magnetic Random Access Memory (Magnetic Random Access Memory; MRAM) is expected to be a non-volatile memory capable of high-speed operation and infinite rewriting, and has been actively developed. In the MRAM, a magnetoresistive effect element is integrated in a memory cell, and data is stored as the magnetization direction of the ferromagnetic layer of the magnetoresistive effect element. Several types of MRAMs have been proposed corresponding to the method of switching the magnetization of the ferromagnetic layer.
 最も一般的なMRAMとしては、電流誘起磁界書き込み型のMRAMがある。このMRAMでは、磁気抵抗効果素子の周辺に書き込み電流を流すための配線を配置し、書き込み電流を流すことで発生する電流磁界によって磁気抵抗効果素子の強磁性層の磁化の方向をスイッチングさせる。このMRAMでは、原理的には1ナノ秒以下での書き込みが可能であり、高速MRAMとして好適である。例えば、250MHzでの動作実証に成功した報告がある(N.Sakimura et al.,“A 250-MHz 1-Mbit Embedded MRAM Macro Using 2T1MTJ Cell with Bitline Separation and Half-Pitch Shift Architecture”,Solid-State Circuits Conference,2007.ASSCC’07.IEEE Asian.p.216.)。更に、500MHzでの動作に適した回路構成も提案されている(N.Sakimura et al.,“MRAM Cell Technology for Over 500-MHz SoC”,IEEE JOURNAL OF SOLID-STATE CIRCUITS,Vol.42,2007,pp.830.)。 The most common MRAM is a current-induced magnetic field writing type MRAM. In this MRAM, wiring for passing a write current is arranged around the magnetoresistive effect element, and the magnetization direction of the ferromagnetic layer of the magnetoresistive effect element is switched by a current magnetic field generated by passing the write current. In principle, this MRAM can be written in 1 nanosecond or less, and is suitable as a high-speed MRAM. For example, there has been a report of successful operation verification at 250 MHz (N. Sakimura et al., “A 250-MHz 1-Mbit Embedded MRAM Macro Usage 2T1MTJ Cell Bitline Separation and Half-ShipCritichi” Conference, 2007. ASSCC '07. IEEE Asian. P. 216.). Furthermore, a circuit configuration suitable for operation at 500 MHz has also been proposed (N. Sakimura et al., “MRAM Cell Technology for Over 500-MHz SoC”, IEEE JOURNAL OF SOLID-STATE CIRCUITS, Vol. 42. pp. 830.).
 しかし、熱安定性、外乱磁界耐性が確保された磁性体の磁化をスイッチングするための磁界は一般的には数10[Oe]程度となる。このような磁界を発生させるためには数mA程度の大きな書き込み電流が必要となる。報告されている書き込み電流の中で最も低いものでも1mA程度である(H.Honjo et al.,“Performance of write-line-inserted MTJ for low-write-current MRAM cell”,52nd Magnetism and Magnetic Materials Conference 2007(MMM 2007).p.481.)。書き込み電流が大きいと、チップ面積が大きくならざるを得ず、また書き込みに要する消費電力も増大する。これに加えて、メモリセルが微細化されると、書き込み電流はさらに増大し、スケーリングしない。 However, the magnetic field for switching the magnetization of the magnetic material in which the thermal stability and the disturbance magnetic field resistance are ensured is generally about several tens [Oe]. In order to generate such a magnetic field, a large write current of about several mA is required. Even the lowest reported write current is about 1 mA (H. Honjo et al., “Performance of write-line-inserted MTJ for low-write-current MRAM cell”, 52nd MagnetismensMet 2007 (MMM 2007), p. 481.). When the write current is large, the chip area is inevitably increased, and the power consumption required for writing increases. In addition to this, when the memory cell is miniaturized, the write current further increases and does not scale.
 他のMRAMとしては、スピン偏極電流書き込み型のMRAMがある。このMRAMでは、磁気抵抗効果素子の強磁性導体にスピン偏極電流(spin-polarized current)が注入され、その電流を担う伝導電子のスピンと導体の磁気モーメントとの間の直接相互作用によって磁化が反転する(以下、「スピン注入磁化反転:Spin Transfer Magnetization Switching」と参照される)。スピン注入磁化反転の発生の有無は、(電流の絶対値ではなく)電流密度に依存する。したがって、スピン注入磁化反転をデータ書き込みに利用する場合、メモリセルのサイズが小さくなれば、書き込み電流も低減される。すなわち、スピン注入磁化反転方式はスケーリング性に優れている。書き込み電流が小さいと、チップ面積が小さくなり、高集積化や大規模化が可能となる。ただし、電流誘起磁界書き込み型のMRAMに比較して、書き込み時間が長い傾向(例示:1nsec.以上)にある。 As another MRAM, there is a spin polarized current writing type MRAM. In this MRAM, a spin-polarized current is injected into the ferromagnetic conductor of the magnetoresistive element, and the magnetization is caused by a direct interaction between the spin of the conduction electron carrying the current and the magnetic moment of the conductor. (Hereinafter referred to as “Spin Transfer Magnetization Switching”). The presence or absence of spin injection magnetization reversal depends on the current density (not the absolute value of the current). Accordingly, when spin injection magnetization reversal is used for data writing, the write current is reduced if the size of the memory cell is reduced. That is, the spin injection magnetization reversal method is excellent in scaling. When the write current is small, the chip area is small, and high integration and large scale are possible. However, the writing time tends to be longer than that of the current-induced magnetic field writing type MRAM (example: 1 nsec. Or more).
 システムLSI(Large-Scale Integration)のようなロジックとメモリを搭載した半導体装置(以下、「メモリ混載型半導体装置」とも参照される)では、高速動作が必要な領域と、大容量・高集積(つまり低書き込み電流)が必要な領域とがあり、それぞれの領域にはメモリが設けられている。例えば、高速動作が必要な領域のメモリとしてはレジスタやキャッシュが設けられ、大容量・高集積が必要な領域のメモリとしては主記憶装置や補助記憶装置が設けられている。各メモリに要求される性能や機能は互いに異なるため、一種類のメモリで対応することは出来ない。したがって、これまで、複数の種類のメモリ(FF(Flip-Flop)、SRAM(Static Random Access Memory)、DRAM(Dynamic Random Access Memory)、フラッシュメモリなど)のうちから選択した少なくとも一つを高速動作が必要な領域に、他の少なくとも一つを大容量・高集積の領域にそれぞれ用いていた。しかし、その場合、各メモリで使用する材料やプロセスが互いに異なるため、プロセス数が増加してしまう。その結果、製造コストの増加や製造期間の長期化、製造歩留まりの低下等の問題を招くおそれがある。 In a semiconductor device (hereinafter also referred to as a “memory-embedded semiconductor device”) such as a system LSI (Large-Scale Integration) equipped with logic and memory, an area that requires high-speed operation, large capacity and high integration ( That is, there are areas that require a low write current, and a memory is provided in each area. For example, a register or cache is provided as a memory in an area requiring high-speed operation, and a main storage device or an auxiliary storage device is provided as a memory in an area requiring large capacity and high integration. Since the performance and functions required for each memory are different from each other, one type of memory cannot be used. Therefore, at least one of a plurality of types of memory (FF (Flip-Flop), SRAM (Static Random Access Memory), DRAM (Dynamic Random Access Memory), flash memory, etc.) has been operated at high speed so far. At least one of the other required areas was used for a large capacity / highly integrated area. However, in this case, the number of processes increases because the materials and processes used in each memory are different from each other. As a result, problems such as an increase in manufacturing cost, a prolonged manufacturing period, and a decrease in manufacturing yield may occur.
 したがって、本発明の目的は、内部のメモリにおける高速処理と大容量処理とを両立させることが可能なメモリ混載型の半導体装置を提供することにある。 Therefore, an object of the present invention is to provide a memory-embedded semiconductor device capable of achieving both high-speed processing and large-capacity processing in an internal memory.
 本発明の半導体装置は、第1メモリセルを有する第1磁気ランダムアクセスメモリと、第1メモリセルと比較して高速で動作する第2メモリセルを有し、前記第1磁気ランダムアクセスメモリと同一チップ内に設けられた第2磁気ランダムアクセスメモリとを具備する。第1メモリセルは、磁化方向が固定された第1磁化固定層と、磁化方向が反転可能な第1磁化自由層と、第1磁化固定層と第1磁化自由層とに挟まれた第1非磁性層とを備える。第1磁化自由層及び第1磁化固定層は、強磁性体から構成されている。書き込み電流が、少なくとも第1磁化自由層を流れる。第2メモリセルは、第2磁化自由層と、第2磁化固定層と、第2磁化自由層と第2磁化固定層との間に設けられた第2非磁性層とを備える。書き込み電流が、第2磁化自由層を流れない。第2磁化自由層及び第2磁化固定層は、強磁性体から構成されている。 The semiconductor device of the present invention has a first magnetic random access memory having a first memory cell and a second memory cell that operates at a higher speed than the first memory cell, and is the same as the first magnetic random access memory. And a second magnetic random access memory provided in the chip. The first memory cell includes a first magnetization fixed layer whose magnetization direction is fixed, a first magnetization free layer whose magnetization direction can be reversed, a first magnetization fixed layer, and a first magnetization free layer sandwiched between the first magnetization fixed layer and the first magnetization free layer. A nonmagnetic layer. The first magnetization free layer and the first magnetization fixed layer are made of a ferromagnetic material. A write current flows through at least the first magnetization free layer. The second memory cell includes a second magnetization free layer, a second magnetization fixed layer, and a second nonmagnetic layer provided between the second magnetization free layer and the second magnetization fixed layer. The write current does not flow through the second magnetization free layer. The second magnetization free layer and the second magnetization fixed layer are made of a ferromagnetic material.
図1は、本発明の実施例に係る半導体装置の構成を示す模式図である。FIG. 1 is a schematic diagram showing a configuration of a semiconductor device according to an embodiment of the present invention. 図2Aは、本発明の実施例に係る電流誘起磁壁移動型の磁気抵抗効果素子の構成を示す模式図である。FIG. 2A is a schematic diagram illustrating a configuration of a current-induced domain wall motion type magnetoresistive effect element according to an embodiment of the present invention. 図2Bは、本発明の実施例に係る電流誘起磁壁移動型の磁気抵抗効果素子の構成を示す模式図である。FIG. 2B is a schematic diagram illustrating a configuration of a current-induced domain wall motion type magnetoresistive effect element according to an embodiment of the present invention. 図2Cは、本発明の実施例に係る電流誘起磁壁移動型の磁気抵抗効果素子の構成を示す模式図である。FIG. 2C is a schematic diagram illustrating a configuration of a current-induced domain wall motion type magnetoresistive effect element according to an embodiment of the present invention. 図2Dは、本発明の実施例に係る電流誘起磁壁移動型の磁気抵抗効果素子の構成を示す模式図である。FIG. 2D is a schematic diagram illustrating a configuration of a current-induced domain wall motion type magnetoresistive effect element according to an embodiment of the present invention. 図3Aは、本発明の実施例に係るスピン注入磁化反転型の磁気抵抗効果素子の構成を示す模式図である。FIG. 3A is a schematic diagram showing a configuration of a spin-injection magnetization reversal type magnetoresistive effect element according to an example of the present invention. 図3Bは、本発明の実施例に係るスピン注入磁化反転型の磁気抵抗効果素子の構成を示す模式図である。FIG. 3B is a schematic diagram showing a configuration of a spin-injection magnetization reversal type magnetoresistive effect element according to an example of the present invention. 図4Aは、本発明の実施例に係る、電流誘起磁界書き込み型の磁気抵抗効果素子の構成を示す模式図である。FIG. 4A is a schematic diagram showing a configuration of a current-induced magnetic field writing type magnetoresistive effect element according to an example of the present invention. 図4Bは、本発明の実施例に係る、電流誘起磁界書き込み型の磁気抵抗効果素子の構成を示す模式図である。FIG. 4B is a schematic diagram showing a configuration of a current-induced magnetic field writing type magnetoresistive effect element according to the example of the present invention. 図4Cは、本発明の実施例に係る、電流誘起磁界書き込み型の磁気抵抗効果素子の構成を示す模式図である。FIG. 4C is a schematic diagram showing a configuration of a current-induced magnetic field writing type magnetoresistive effect element according to the example of the present invention. 図5Aは、本実施例の磁気抵抗効果素子が集積化されたメモリセルの構成例を示す回路図である。FIG. 5A is a circuit diagram showing a configuration example of a memory cell in which the magnetoresistive effect element of this embodiment is integrated. 図5Bは、本実施例のメモリセルが集積化されたMRAMの構成例を示すブロック図である。FIG. 5B is a block diagram illustrating a configuration example of an MRAM in which the memory cells of this embodiment are integrated. 図6は、本実施例の磁気抵抗効果素子が集積化されたメモリセルの他の構成例を示す回路図である。FIG. 6 is a circuit diagram showing another configuration example of the memory cell in which the magnetoresistive effect element of this embodiment is integrated. 図7Aは、本発明の実施例に係る各MRAMにおける磁気抵抗効果素子の第1変形例の構成を示す斜視図である。FIG. 7A is a perspective view showing a configuration of a first modification of the magnetoresistive element in each MRAM according to the embodiment of the present invention. 図7Bは、本発明の実施例に係る各MRAMにおける磁気抵抗効果素子の第1変形例の構成を示す平面図である。FIG. 7B is a plan view showing a configuration of a first modification of the magnetoresistive effect element in each MRAM according to the embodiment of the present invention. 図7Cは、本発明の実施例に係る各MRAMにおける磁気抵抗効果素子の第1変形例の構成を示す平面図である。FIG. 7C is a plan view showing a configuration of a first modification of the magnetoresistive element in each MRAM according to the embodiment of the present invention. 図7Dは、本発明の実施例に係る各MRAMにおける磁気抵抗効果素子の第1変形例の構成を示す平面図である。FIG. 7D is a plan view showing a configuration of a first modification of the magnetoresistive element in each MRAM according to the embodiment of the present invention. 図8は、本発明の実施例に係る各MRAMにおける磁気抵抗効果素子の第2変形例の構成を示す斜視図である。FIG. 8 is a perspective view showing a configuration of a second modification of the magnetoresistive effect element in each MRAM according to the embodiment of the present invention. 図9は、本発明の実施例に係る各MRAMにおける磁気抵抗効果素子の第3変形例の構成を示す斜視図である。FIG. 9 is a perspective view showing a configuration of a third modification of the magnetoresistive element in each MRAM according to the embodiment of the present invention. 図10は、本発明の実施例に係る各MRAMにおける磁気抵抗効果素子の第4変形例の構成を示す斜視図である。FIG. 10 is a perspective view showing a configuration of a fourth modification of the magnetoresistive effect element in each MRAM according to the embodiment of the present invention. 図11Aは、本実施例に係る磁気抵抗効果素子の第5変形例の構成を模式的に示す斜視図である。FIG. 11A is a perspective view schematically showing the configuration of the fifth modification example of the magnetoresistance effect element according to the present example. 図11Bは、本実施例に係る磁気抵抗効果素子の第5変形例の構成を模式的に示す平面図である。FIG. 11B is a plan view schematically showing the configuration of the fifth modification example of the magnetoresistance effect element according to the present example. 図11Cは、本実施例に係る磁気抵抗効果素子の第5変形例の構成を模式的に示す平面図である。FIG. 11C is a plan view schematically showing the configuration of the fifth modification example of the magnetoresistance effect element according to the present example. 図12Aは、本実施例の磁気抵抗効果素子の第5変形例が集積化されたメモリセルの構成例を示す回路図である。FIG. 12A is a circuit diagram showing a configuration example of a memory cell in which a fifth modification of the magnetoresistive effect element of this embodiment is integrated. 図12Bは、本実施例の磁気抵抗効果素子の第5変形例が集積化されたメモリセルの他の構成例を示す回路図である。FIG. 12B is a circuit diagram showing another configuration example of the memory cell in which the fifth modification example of the magnetoresistive effect element of this embodiment is integrated.
 以下、本発明の半導体装置の実施例について説明する。図1は、本発明の実施例に係る半導体装置の構成を示す模式図である。本実施例の半導体装置1は、メモリ混載型の半導体装置である。その半導体装置1は、一つのチップ上に形成されたメモリ混載型のLSIに例示され、ロジック部2とメモリ部3とを具備する。 Hereinafter, embodiments of the semiconductor device of the present invention will be described. FIG. 1 is a schematic diagram showing a configuration of a semiconductor device according to an embodiment of the present invention. The semiconductor device 1 of the present embodiment is a memory-embedded semiconductor device. The semiconductor device 1 is exemplified by a memory-embedded LSI formed on one chip, and includes a logic unit 2 and a memory unit 3.
 ロジック部2は、高速動作が必要な領域であり、論理演算を行う論理回路を有している。ロジック部2は、更に、高速動作が可能なMRAM4-1~4-4を含んでいる。MRAM4-1~4-4は、電流誘起磁界書き込み型のMRAMに例示され、レジスタやL1キャッシュ(1次キャッシュ)やL2キャッシュ(2次キャッシュ)として用いられている。以下、特に区別する必要がない場合、単にMRAM4と省略して表記する。 The logic unit 2 is an area that requires high-speed operation, and has a logic circuit that performs a logical operation. The logic unit 2 further includes MRAMs 4-1 to 4-4 capable of high speed operation. The MRAMs 4-1 to 4-4 are exemplified as current-induced magnetic field writing type MRAMs, and are used as registers, L1 caches (primary caches), and L2 caches (secondary caches). Hereinafter, when it is not necessary to distinguish between them, they are simply abbreviated as MRAM4.
 電流誘起磁界書き込み型のMRAMは、既述のように原理的には1nsec.以下での書き込みが可能であり、高速動作(動作周波数は200MHz以上であることが望ましい)が可能なMRAMとして好適である。また、一般的には、書き込み電流が大きいため本MRAMの面積は相対的に大きくなるが、レジスタやL1キャッシュやL2キャッシュのような相対的に容量が小さいメモリとして用いられるため、チップ全体の面積に対する影響は極めて小さい。 The current-induced magnetic field writing type MRAM is theoretically 1 nsec. The following writing is possible, and it is suitable as an MRAM capable of high-speed operation (the operation frequency is desirably 200 MHz or more). In general, since the write current is large, the area of the present MRAM is relatively large. However, since the memory is used as a memory having a relatively small capacity such as a register, an L1 cache, or an L2 cache, the area of the entire chip. The impact on is very small.
 メモリ部3は、大容量・高集積(つまり低書き込み電流)が必要な領域であり、データを記憶する記憶回路を有している。その記憶回路として、大容量・高集積のMRAM5-1~5-3を含んでいる。MRAM5-1~5-3は、スピン偏極電流書き込み型のMRAMに例示され、主記憶装置や補助記憶装置として用いられている。以下、特に区別する必要がない場合、単にMRAM5と省略して表記する。 The memory unit 3 is an area that requires large capacity and high integration (that is, low write current), and has a memory circuit for storing data. As the storage circuit, large-capacity and highly integrated MRAMs 5-1 to 5-3 are included. The MRAMs 5-1 to 5-3 are exemplified as spin-polarized current writing type MRAMs, and are used as a main storage device or an auxiliary storage device. Hereinafter, when it is not necessary to distinguish between them, they are simply abbreviated as MRAM5.
 スピン偏極電流書き込み型のMRAM(書き込み電流が0.5mA以下であることが望ましい)は、電流誘起磁壁移動型のMRAM及びスピン注入磁化反転型のMRAMに例示される。
 スピン注入磁化反転型のMRAMでは、磁気抵抗効果素子が、反転可能な磁化を有する第1の強磁性層(しばしば、磁化自由層と呼ばれる)と、磁化が固定された第2の強磁性層(しばしば、磁化固定層と呼ばれる)と、これらの強磁性層の間に設けられたトンネルバリア層を備える積層体で構成される。このようなMRAMのデータ書き込みでは、磁化自由層と磁化固定層の間で電流を流したときのスピン偏極した伝導電子の磁化自由層中の局在電子との間の相互作用を利用して磁化自由層の磁化が反転される。この場合、磁気抵抗効果素子は、磁化自由層に接続される端子と磁化固定層に接続される端子とを有する2端子の素子となる。そのため、このMRAMは、小面積化に有効である。
The spin-polarized current writing type MRAM (the writing current is preferably 0.5 mA or less) is exemplified by a current-induced domain wall motion type MRAM and a spin injection magnetization switching type MRAM.
In the spin injection magnetization reversal type MRAM, the magnetoresistive effect element includes a first ferromagnetic layer having a reversible magnetization (often referred to as a magnetization free layer) and a second ferromagnetic layer having a fixed magnetization ( (Often referred to as a magnetization fixed layer) and a tunnel body provided with a tunnel barrier layer provided between these ferromagnetic layers. Such MRAM data writing utilizes the interaction between spin-polarized conduction electrons and localized electrons in the magnetization free layer when a current is passed between the magnetization free layer and the magnetization fixed layer. The magnetization of the magnetization free layer is reversed. In this case, the magnetoresistive effect element is a two-terminal element having a terminal connected to the magnetization free layer and a terminal connected to the magnetization fixed layer. Therefore, this MRAM is effective for reducing the area.
 電流誘起磁壁移動型のMRAMでは、磁気抵抗効果素子は、一般的には、データを保持する第1の強磁性層(しばしば、磁気記録層と呼ばれる)と、磁化が固定された第2の強磁性層(しばしば、磁化固定層と呼ばれる)と、これらの強磁性層の間に設けられたトンネルバリア層を備える積層体で構成される。そして、磁気記録層が、反転可能な磁化を有する磁化反転部と、その両端に接続された、固定された磁化を有する2つの磁化固定部とを有している。データは、磁化反転部の磁化として記憶される。2つの磁化固定部の磁化は、互いに略反平行となるように固定されている。磁化がこのように配置されると、磁気記録層に磁壁(domain wall)が導入される。磁壁を貫通する方向に電流を流すと磁壁はスピン偏極した伝導電子の方向に移動(Domain Wall Motion)することから、磁気記録層に電流を流すことによりデータ書き込みが可能となる。この場合、磁気抵抗効果素子は、磁気記録層の両端に接続される2つの端子と磁化固定層に接続される端子とを有する3端子の素子となる。このMRAMは、トンネルバリア層に書き込み電流が通らない分、耐久性、寿命、信頼性が向上する。 In a current-induced domain wall motion type MRAM, the magnetoresistive effect element generally includes a first ferromagnetic layer that holds data (often referred to as a magnetic recording layer) and a second strong layer in which magnetization is fixed. A magnetic layer (often referred to as a magnetization fixed layer) and a laminated body including a tunnel barrier layer provided between these ferromagnetic layers. The magnetic recording layer has a magnetization reversal portion having reversible magnetization and two magnetization fixed portions having fixed magnetization connected to both ends thereof. The data is stored as the magnetization of the magnetization switching unit. The magnetizations of the two magnetization fixed portions are fixed so as to be substantially antiparallel to each other. When the magnetization is arranged in this way, a domain wall is introduced into the magnetic recording layer. When a current is passed in the direction penetrating the domain wall, the domain wall moves in the direction of spin-polarized conduction electrons (Domain Wall Motion), so that data can be written by passing a current through the magnetic recording layer. In this case, the magnetoresistive element is a three-terminal element having two terminals connected to both ends of the magnetic recording layer and a terminal connected to the magnetization fixed layer. This MRAM has improved durability, life, and reliability because the write current does not pass through the tunnel barrier layer.
 書き込み電流の低減に関し、例えば、スピン注入磁化反転型のMRAMでは0.2mAでの書き込みを実証した報告がある(T.Kawahara et al.,“2Mb Spin-Transfer Torque RAM (SPRAM) with Bit-by-Bit Bidirectional Current Write and Parallelizing-Direction Current Read”,Solid-State Circuits Conference,2007.ISSCC 2007.Digest of Technical Papers.IEEE International.p.480.)。ただし、書き込み電流は、原理的にナノ秒領域で急激に増加するとの報告がある(T.Aoki et al.,“Spin transfer switching in nano second switching speed region for MgO based ferromagnetic tunnel junctions”,The 31st Annual Conference on MAGNETICS in Japan(2007),The Magnetics Society of Japan .p.340.)。また、低電流化のためには、垂直磁気異方性を有するタイプが面内磁気異方性を有するタイプと比較して有利との報告がある(M.Nakayama et al.,“TbCoFe/CoFeB/MgO/CoFeB/TbCoFe magnetoresistive tunneling junctions with perpendicular magnetic anisotropy”,52nd Magnetism and Magnetic Materials Conference 2007(MMM 2007).p.80.)。 Regarding the reduction of the write current, for example, there is a report demonstrating the write at 0.2 mA in the spin injection magnetization reversal type MRAM (T. Kawahara et al., “2 Mb Spin-Transfer Torque RAM (SPRAM) with Bit-by -Bit Bidirectional Current Write and Parallelizing-Direction Current Read ", Solid-State Circuits Confence, 2007. ISSCC 2007. DigestEnt. However, it has been reported that the write current increases rapidly in the nanosecond region in principle (T. Aoki et al., “Spin transfer switching in nano second switching speed region for MgO based ferromechanical 31”. Conference on MAGNETICS in Japan (2007), The Magnetics Society of Japan.p.340.). In addition, there is a report that a type having perpendicular magnetic anisotropy is more advantageous than a type having in-plane magnetic anisotropy for reducing current (M. Nakayama et al., “TbCoFe / CoFeB”). / MgO / CoFeB / TbCoFe magnetotunative tunneling junctions with perpendental magnetic anisotropy ", 52nd Magnetism and MagneticMen.M200.
 また、例えば、電流誘起磁壁移動型のMRAMでは0.05mAでの磁壁移動が可能であることを示した報告がある(S.Fukami et al.,“Micromagnetic analysis of current driven domain wall motion in nano-strips with perpendicular magnetic anisotropy.”,52nd Magnetism and Magnetic Materials Conference 2007(MMM 2007).p.352.)。また、磁壁移動速度は、電流密度に比例し、最大で約100m/sとした報告がある(M.Hayashi et al.,“Current Driven Domain Wall Velocities Exceeding the Spin Angular Momentum Transfer Rate in Permalloy Nanowires”,Physical Review Letters, vol.98,p.037204(2007).)。この場合、100nmの移動には1nsかかることになる。 In addition, for example, there is a report showing that a domain wall motion at 0.05 mA is possible in a current-induced domain wall motion type MRAM (S. Fukami et al., “Micromagnetic analysis of current dominant wall motion in-mannan- strips with perpendicular magnetic anisotropy. ", 52nd Magnetism and Magnetic Materials Conference 2007 (MMM 2007) .p.352.). In addition, the domain wall moving speed is proportional to the current density, and is reported to be about 100 m / s at the maximum (M. Hayashi et al., “Current Driven Domains, World Velocities, Exceeding The Spin Annular Momentum” (Physical Review Letters, vol. 98, p. 037204 (2007).). In this case, the movement of 100 nm takes 1 ns.
 電流誘起磁壁移動型のMRAM及びスピン注入磁化反転型のMRAMは、既述のようにスケーリング性に優れており、高集積化や大規模化が可能なMRAMとして好適である。また、動作速度は相対的に小さいが、主記憶装置や補助記憶装置のようなレジスタ等と比較して高速動作を要求されないメモリとして用いられるため、その影響は極めて小さい。 The current-induced domain wall motion type MRAM and the spin-injection magnetization reversal type MRAM have excellent scaling properties as described above, and are suitable as MRAMs capable of high integration and large scale. In addition, although the operation speed is relatively low, the influence is extremely small because it is used as a memory that does not require high-speed operation as compared with a register such as a main storage device or an auxiliary storage device.
 上記半導体装置1において、ロジック部2及びメモリ部3の記憶素子を全て不揮発性メモリのMRAMとした場合、電源オフの状態においても、それらMRAMにおいてデータを保持し続けることが出来、好ましい。その場合、電源オフを基本の状態(インスタントオン)とすることができる。それにより、消費電力を低下させることが出来る。 In the semiconductor device 1, when all of the storage elements of the logic unit 2 and the memory unit 3 are nonvolatile memory MRAMs, it is preferable that data can be retained in the MRAMs even when the power is turned off. In that case, power off can be set to the basic state (instant on). Thereby, power consumption can be reduced.
 更に、上記半導体装置1において、ロジック部2及びメモリ部3の記憶素子を不揮発性メモリのMRAMとした場合、後述されるように記憶素子を同一プロセスで製造することが出来、好ましい。このように、異なる種類のMRAMを同一プロセスで製造することで、低コスト、且つ短時間で半導体装置1を製造することが可能となる。 Furthermore, in the semiconductor device 1, when the memory elements of the logic unit 2 and the memory unit 3 are nonvolatile memory MRAMs, the memory elements can be manufactured in the same process as described later, which is preferable. Thus, by manufacturing different types of MRAMs in the same process, the semiconductor device 1 can be manufactured at a low cost and in a short time.
 なお、本発明の半導体装置は、図1に例示される構成に限定されるものではない。すなわち、ロジック部2及びメモリ部3の形状や配置等、各部でのMRAMの数や形状や配置等は、本発明の技術的思想の範囲内で自由に変形することが可能である。 Note that the semiconductor device of the present invention is not limited to the configuration illustrated in FIG. That is, the number, shape, arrangement, etc. of the MRAM in each part, such as the shape and arrangement of the logic part 2 and the memory part 3, can be freely modified within the scope of the technical idea of the present invention.
 次に、スピン偏極電流書き込み型のMRAM5に用いられる磁気抵抗効果素子について詳細に説明する。まず、電流誘起磁壁移動型の磁気抵抗効果素子について説明する。図2A~図2Dは、本発明の実施例に係る電流誘起磁壁移動型の磁気抵抗効果素子の構成を示す模式図である。ここで、図2A及び図2Bは磁壁が移動する磁化自由層が直線的に伸びる構成を示し、図2C及び図2Dはその磁化自由層が略U字型形状の構成を示している。 Next, the magnetoresistive effect element used in the spin polarized current writing type MRAM 5 will be described in detail. First, a current-induced domain wall motion type magnetoresistive effect element will be described. 2A to 2D are schematic views showing the configuration of a current-induced domain wall motion type magnetoresistive effect element according to an embodiment of the present invention. 2A and 2B show a configuration in which the magnetization free layer in which the domain wall moves linearly extends, and FIGS. 2C and 2D show a configuration in which the magnetization free layer has a substantially U-shape.
 図2A及び図2Bに示すように、この電流誘起磁壁移動型の磁気抵抗効果素子は、磁化自由層10、磁化固定層30、及び磁化自由層10と磁化固定層30との間に設けられた非磁性層20を具備する。磁化自由層10は、磁化が固定される第1磁化固定領域11aと、磁化が固定される第2磁化固定領域11bと、第1磁化固定領域11aと第2磁化固定領域11bとに接続され磁化が反転可能な磁化自由領域12とを含んでいる。磁化自由領域12は、磁化固定層30とオーバーラップしている。第1磁化固定領域11a及び第2磁化固定領域11bは、その上部又は下部に設けられた磁化固定層(図示されず)により磁化が固定されても良い。第1磁化固定領域11aと第2磁化固定領域11bとは、磁化固定領域12と共に略直線に延びるように形成されており、その磁化の向きは磁化固定領域12に対して互いに逆方向に固定されている。図の例では、第1磁化固定領域11aの磁化方向が+x方向、第2磁化固定領域11bの磁化方向が-x方向である。一方、磁化自由領域12は、既述のように反転可能な磁化を有している。従って、磁壁が、第1磁化固定領域11aと磁化自由領域12との境界、あるいは、第2磁化固定領域11bと磁化自由領域12との境界に形成される。 As shown in FIGS. 2A and 2B, the current-induced domain wall motion type magnetoresistive effect element is provided between the magnetization free layer 10, the magnetization fixed layer 30, and the magnetization free layer 10 and the magnetization fixed layer 30. A nonmagnetic layer 20 is provided. The magnetization free layer 10 is connected to the first magnetization fixed region 11a in which the magnetization is fixed, the second magnetization fixed region 11b in which the magnetization is fixed, and the first magnetization fixed region 11a and the second magnetization fixed region 11b. Includes a reversible magnetization free region 12. The magnetization free region 12 overlaps with the magnetization fixed layer 30. The magnetizations of the first magnetization fixed region 11a and the second magnetization fixed region 11b may be fixed by a magnetization fixed layer (not shown) provided above or below the first magnetization fixed region 11a and the second magnetization fixed region 11b. The first magnetization fixed region 11 a and the second magnetization fixed region 11 b are formed so as to extend substantially linearly together with the magnetization fixed region 12, and their magnetization directions are fixed in opposite directions with respect to the magnetization fixed region 12. ing. In the illustrated example, the magnetization direction of the first magnetization fixed region 11a is the + x direction, and the magnetization direction of the second magnetization fixed region 11b is the -x direction. On the other hand, the magnetization free region 12 has reversible magnetization as described above. Therefore, the domain wall is formed at the boundary between the first magnetization fixed region 11 a and the magnetization free region 12 or at the boundary between the second magnetization fixed region 11 b and the magnetization free region 12.
 図2C及び図2Dに示される電流誘起磁壁移動型の磁気抵抗効果素子も、基本的に図2A及び図2Bの電流誘起磁壁移動型の磁気抵抗効果素子と同じである。ただし、磁化自由層10が略U字型の形状を有している点で異なる。具体的には、磁化自由層10は、磁化が固定される第1磁化固定領域11aと、磁化が固定される第2磁化固定領域11bと、第1磁化固定領域11aと第2磁化固定領域11bとに接続され磁化が反転可能な磁化自由領域12とを含んでいる。磁化自由領域12は、磁化固定層30とオーバーラップしている。第1磁化固定領域11a及び第2磁化固定領域11bは、その上部又は下部に設けられた磁化固定層(図示されず)により磁化が固定されても良い。第1磁化固定領域11aと第2磁化固定領域11bとは、磁化固定領域12(x方向に伸びる)に対して略直角に延びる(y方向)ように形成されており、その磁化の向きは磁化固定領域12に対して同じ方向(+y方向)に固定されている。一方、磁化自由領域12は、既述のように反転可能な磁化を有している。従って、磁壁が、第1磁化固定領域11aと磁化自由領域12との境界B1、あるいは、第2磁化固定領域11bと磁化自由領域12との境界B2に形成される。 The current-induced domain wall motion type magnetoresistive effect element shown in FIGS. 2C and 2D is basically the same as the current-induced domain wall motion type magnetoresistive effect element shown in FIGS. 2A and 2B. However, the difference is that the magnetization free layer 10 has a substantially U-shaped shape. Specifically, the magnetization free layer 10 includes a first magnetization fixed region 11a in which magnetization is fixed, a second magnetization fixed region 11b in which magnetization is fixed, a first magnetization fixed region 11a, and a second magnetization fixed region 11b. And a magnetization free region 12 that can be reversed in magnetization. The magnetization free region 12 overlaps with the magnetization fixed layer 30. The magnetizations of the first magnetization fixed region 11a and the second magnetization fixed region 11b may be fixed by a magnetization fixed layer (not shown) provided above or below the first magnetization fixed region 11a and the second magnetization fixed region 11b. The first magnetization fixed region 11a and the second magnetization fixed region 11b are formed so as to extend at substantially right angles (y direction) with respect to the magnetization fixed region 12 (extend in the x direction). It is fixed in the same direction (+ y direction) with respect to the fixed region 12. On the other hand, the magnetization free region 12 has reversible magnetization as described above. Therefore, the domain wall is formed at the boundary B1 between the first magnetization fixed region 11a and the magnetization free region 12, or at the boundary B2 between the second magnetization fixed region 11b and the magnetization free region 12.
 磁化自由層10、及び磁化固定層30は強磁性体により構成される。図2A及び図2Cの場合、磁化自由層10、及び磁化固定層30は、面内磁気異方性(in-plane magnetic anisotropy)を有する面内磁化膜(in-plane magnetization film)である。つまり、磁化自由層10及び磁化固定層30は、膜面内方向の磁気異方性を有している。なお、図2A及び図2Cでは、各層の磁化方向として、図の左右方向(第1磁化固定領域11a及び第2磁化固定領域11bの一方から他方へ向かう方向)の面内磁気異方性が示されている。しかし、この方向と略直角な他の面内方向を有していても良い。一方、図2B及び図2Dの場合、磁化自由層10、及び磁化固定層30は、垂直磁気異方性(perpendicular magnetic anisotropy)を有する垂直磁化膜(perpendicular magnetization film)である。つまり、磁化自由層10及び磁化固定層30は、膜厚方向の磁気異方性を有している。図2A、図2B、図2C及び図2Dのいずれも、磁化自由層10、非磁性層20、及び磁化固定層30で磁気トンネル接合(MTJ)が形成されている。 The magnetization free layer 10 and the magnetization fixed layer 30 are made of a ferromagnetic material. In the case of FIG. 2A and FIG. 2C, the magnetization free layer 10 and the magnetization fixed layer 30 are in-plane magnetization films having in-plane magnetic anisotropy. That is, the magnetization free layer 10 and the magnetization fixed layer 30 have magnetic anisotropy in the in-plane direction. 2A and 2C show the in-plane magnetic anisotropy in the horizontal direction (direction from one of the first magnetization fixed region 11a and the second magnetization fixed region 11b to the other) in the figure as the magnetization direction of each layer. Has been. However, it may have another in-plane direction substantially perpendicular to this direction. On the other hand, in the case of FIG. 2B and FIG. 2D, the magnetization free layer 10 and the magnetization fixed layer 30 are a perpendicular magnetization film having a perpendicular magnetic anisotropy (perpendicular magnetic anisotropy). That is, the magnetization free layer 10 and the magnetization fixed layer 30 have magnetic anisotropy in the film thickness direction. 2A, 2B, 2C, and 2D, a magnetic tunnel junction (MTJ) is formed by the magnetization free layer 10, the nonmagnetic layer 20, and the magnetization fixed layer 30.
 以下では各層の材料について例示する。なお、ここで示される材料は全て例であり、実際には前述のような磁化状態が実現できればいかなる材料を用いても構わない。 The following are examples of materials for each layer. Note that all the materials shown here are examples, and any material may be used in practice as long as the above-described magnetization state can be realized.
 まず、磁化自由層10は、Fe、Co、Niのうちから選択される少なくとも一つの材料を含むことが望ましい。さらにPtやPdを含むことで垂直磁気異方性を安定化することができる。これに加えて、B、C、N、O、Al、Si、P、Ti、V、Cr、Mn、Cu、Zn、Zr、Nb、Mo、Tc、Ru、Rh、Ag、Hf、Ta、W、Re、Os、Ir、Au、Smなどを添加することによって所望の磁気特性が発現されるように調整することができる。具体的にはCo、Co-Pt、Co-Pd、Co-Cr、Co-Pt-Cr、Co-Cr-Ta、Co-Cr-B、Co-Cr-Pt-B、Co-Cr-Ta-B、Co-V、Co-Mo、Co-W、Co-Ti、Co-Ru、Co-Rh、Fe-Pt、Fe-Pd、Fe-Co-Pt、Fe-Co-Pd、Sm-Co、Gd-Fe-Co、Tb-Fe-Co、Gd-Tb-Fe-Coなどが例示される。この他、Fe、Co、Niのうちから選択されるいずれか一つの材料を含む層を、異なる層と積層させることにより垂直方向の磁気異方性を発現させることもできる。具体的にはCo/Pd、Co/Pt、Co/Ni、Fe/Auの積層膜などが例示される。 First, it is desirable that the magnetization free layer 10 includes at least one material selected from Fe, Co, and Ni. Furthermore, perpendicular magnetic anisotropy can be stabilized by including Pt and Pd. In addition to this, B, C, N, O, Al, Si, P, Ti, V, Cr, Mn, Cu, Zn, Zr, Nb, Mo, Tc, Ru, Rh, Ag, Hf, Ta, W , Re, Os, Ir, Au, Sm, and the like can be added so that desired magnetic properties are expressed. Specifically, Co, Co—Pt, Co—Pd, Co—Cr, Co—Pt—Cr, Co—Cr—Ta, Co—Cr—B, Co—Cr—Pt—B, Co—Cr—Ta— B, Co-V, Co-Mo, Co-W, Co-Ti, Co-Ru, Co-Rh, Fe-Pt, Fe-Pd, Fe-Co-Pt, Fe-Co-Pd, Sm-Co, Examples thereof include Gd—Fe—Co, Tb—Fe—Co, and Gd—Tb—Fe—Co. In addition, the magnetic anisotropy in the perpendicular direction can also be exhibited by laminating a layer containing any one material selected from Fe, Co, and Ni with different layers. Specifically, a laminated film of Co / Pd, Co / Pt, Co / Ni, Fe / Au, and the like are exemplified.
 非磁性層20は絶縁体から構成されることが望ましい。非磁性層20として好適な材料としては、具体的にはMg-O、Al-O、Al-N、Ni-O、Hf-Oなどが挙げられる。ただし、この他に、非磁性層20として半導体や金属材料を用いても本発明は実施できる。具体的には、非磁性層20として使用可能な材料としては、Cr、Al、Cu、Znなどが挙げられる。 The nonmagnetic layer 20 is preferably made of an insulator. Specific examples of suitable materials for the nonmagnetic layer 20 include Mg—O, Al—O, Al—N, Ni—O, and Hf—O. However, the present invention can also be implemented by using a semiconductor or a metal material as the nonmagnetic layer 20. Specifically, examples of materials that can be used for the nonmagnetic layer 20 include Cr, Al, Cu, and Zn.
 なお、磁化自由層10、非磁性層20、磁化固定層30には、読み出し信号のSN比に相当する磁気抵抗効果比が大きくなるような材料が選択されることが好ましい。例えばCo-Fe-B/Mg-O/Co-Fe-B系のMTJにおいては近年500%級の非常に大きな磁気抵抗効果比が報告されている。この観点では、磁化自由層10、磁化固定層30をCo-Fe-B系の材料とし、非磁性層2をMg-O系とすることが望ましい。 It should be noted that it is preferable to select materials for the magnetization free layer 10, the nonmagnetic layer 20, and the magnetization fixed layer 30 that have a large magnetoresistance effect ratio corresponding to the SN ratio of the read signal. For example, in a Co—Fe—B / Mg—O / Co—Fe—B MTJ, a very large magnetoresistance effect ratio of 500% has been reported in recent years. From this viewpoint, it is desirable that the magnetization free layer 10 and the magnetization fixed layer 30 are made of a Co—Fe—B material, and the nonmagnetic layer 2 is made of an Mg—O material.
 上記のように、電流誘起磁壁移動型の磁気抵抗効果素子の各層の磁化方向には任意性がある。ただし、書き込み電流を小さくしたい場合には、垂直磁気異方性を有する図2Bや図2Dの場合の磁気抵抗効果素子を用いることが好ましい。一方、高いMR比を得たい場合には、面内磁気異方性を有する図2Aや図2Cの場合の磁気抵抗効果素子を用いることが好ましい。 As described above, the magnetization direction of each layer of the current-induced domain wall motion type magnetoresistive effect element is arbitrary. However, when it is desired to reduce the write current, it is preferable to use the magnetoresistive effect element having the perpendicular magnetic anisotropy in the case of FIGS. 2B and 2D. On the other hand, when it is desired to obtain a high MR ratio, it is preferable to use the magnetoresistive effect element shown in FIGS. 2A and 2C having in-plane magnetic anisotropy.
 次に、電流誘起磁壁移動型の磁気抵抗効果素子の動作方法、具体的には、書き込み方法及び読み出し方法について説明する。 Next, an operation method of the current-induced domain wall motion type magnetoresistive effect element, specifically, a writing method and a reading method will be described.
 まず、データの書き込み方法について説明する。電流誘起磁壁移動型の磁気抵抗効果素子へのデータの書き込みは、磁化自由層10内に形成される磁壁を移動させることによって行われる。前述のように、磁化自由層10は磁化が互いに略反平行に固定された第1磁化固定領域11aと第2磁化固定領域11bと、それらに電気的に接続された磁化自由領域12を具備し、磁化自由領域12の磁化は第1磁化固定領域11aか第2磁化固定領域11bのいずれかと略平行方向となる。このような磁化状態の制約によって、第1磁化自由層10内には磁壁が導入される。例えば、磁化自由領域12の磁化が第1磁化固定領域11aの磁化と略平行であり、第2磁化固定領域11bの磁化とは略反平行にあるとき、磁化自由領域12と第2磁化固定領域11bの境界付近に磁壁が形成される。また、磁化自由領域12の磁化が第2磁化固定領域11bの磁化と略平行であり、第1磁化固定領域11aの磁化とは略反平行にあるとき、磁化自由領域12と第1磁化固定領域11aの境界付近に磁壁が形成される。 First, the data writing method will be described. Data writing to the current-induced domain wall motion type magnetoresistance effect element is performed by moving the domain wall formed in the magnetization free layer 10. As described above, the magnetization free layer 10 includes the first magnetization fixed region 11a and the second magnetization fixed region 11b whose magnetizations are fixed substantially antiparallel to each other, and the magnetization free region 12 electrically connected thereto. The magnetization of the magnetization free region 12 is substantially parallel to either the first magnetization fixed region 11a or the second magnetization fixed region 11b. Due to the restriction of the magnetization state, a domain wall is introduced into the first magnetization free layer 10. For example, when the magnetization of the magnetization free region 12 is substantially parallel to the magnetization of the first magnetization fixed region 11a and is substantially antiparallel to the magnetization of the second magnetization fixed region 11b, the magnetization free region 12 and the second magnetization fixed region A domain wall is formed near the boundary of 11b. In addition, when the magnetization of the magnetization free region 12 is substantially parallel to the magnetization of the second magnetization fixed region 11b and is substantially antiparallel to the magnetization of the first magnetization fixed region 11a, the magnetization free region 12 and the first magnetization fixed region A domain wall is formed near the boundary of 11a.
 形成された磁壁は、第1磁化自由層10内に直接電流を流すことによってその位置を移動させることができる。例えば、磁化自由領域12と第1磁化固定領域11aの境界付近に磁壁が形成されている場合、磁化自由領域12から第1磁化固定領域11aへ向かう方向に電流を流すことによって、第1磁化固定領域11aから磁化自由領域12へと伝導電子が流れ、伝導電子の流れと同方向に磁壁が移動する。磁壁の移動により、磁化自由領域12の磁化は第1磁化固定領域11aと平行方向になる。また、磁化自由領域12と第2磁化固定領域11bの境界付近に磁壁が形成されている場合、磁化自由領域12から第2磁化固定領域11bへ向かう方向に電流を流すことによって、第2磁化固定領域11bから磁化自由領域12へと伝導電子が流れ、伝導電子の流れと同方向に磁壁が移動する。磁壁の移動により、磁化自由領域12の磁化は第2磁化固定領域11bと平行方向になる。このようにして“0”状態と“1”状態との間での情報の書き換えが可能である。  The position of the formed domain wall can be moved by passing a current directly through the first magnetization free layer 10. For example, when a domain wall is formed in the vicinity of the boundary between the magnetization free region 12 and the first magnetization fixed region 11a, the first magnetization fixed is obtained by flowing a current in a direction from the magnetization free region 12 toward the first magnetization fixed region 11a. Conduction electrons flow from the region 11a to the magnetization free region 12, and the domain wall moves in the same direction as the flow of the conduction electrons. Due to the movement of the domain wall, the magnetization of the magnetization free region 12 becomes parallel to the first magnetization fixed region 11a. When a domain wall is formed in the vicinity of the boundary between the magnetization free region 12 and the second magnetization fixed region 11b, the second magnetization fixed is obtained by flowing a current in a direction from the magnetization free region 12 toward the second magnetization fixed region 11b. Conduction electrons flow from the region 11b to the magnetization free region 12, and the domain wall moves in the same direction as the flow of the conduction electrons. Due to the movement of the domain wall, the magnetization of the magnetization free region 12 becomes parallel to the second magnetization fixed region 11b. In this way, information can be rewritten between the “0” state and the “1” state. *
 このようにして、“0”状態からの“1”書き込み、及び、“1”状態からの“0”書き込みが実現される。また、図示されていないが、“0”状態からの“0”書き込み、及び、“1”状態からの“1”書き込み、すなわちオーバーライトも可能である。 In this way, “1” write from the “0” state and “0” write from the “1” state are realized. Although not shown, “0” writing from the “0” state and “1” writing from the “1” state, that is, overwriting is also possible.
 実際には、上述のような書き込み電流を導入するために、第1磁化固定領域11aと第2磁化固定領域11bに、外部の配線に接続される端子が設けられることが望ましい。このとき書き込み電流は、第1磁化固定領域11aに接続される第1端子と第2磁化固定領域11bに接続される第2端子の間で流される。但し、本実施例の磁気抵抗効果素子にデータを書き込むための書き込み電流の経路はこの限りではない。 Actually, in order to introduce the write current as described above, it is desirable that the first magnetization fixed region 11a and the second magnetization fixed region 11b be provided with terminals connected to external wiring. At this time, the write current flows between the first terminal connected to the first magnetization fixed region 11a and the second terminal connected to the second magnetization fixed region 11b. However, the path of the write current for writing data to the magnetoresistive effect element of this embodiment is not limited to this.
 次に、データの読み出し方法について説明する。電流誘起磁壁移動型の磁気抵抗効果素子からのデータの読み出しには、磁気抵抗効果が利用される。具体的には、非磁性層20を介して磁化固定層30と磁化自由層10の磁化自由領域12との間で電流を流し、磁化固定層30の磁化と磁化自由領域12の磁化との相対角に応じた抵抗の変化を検出することでデータを読み出す。例えば、磁壁が磁化自由領域12と第1磁化固定領域11aの境界付近にある場合、磁化固定層30の磁化と磁化自由領域12の磁化とが平行(例示:“0”を記憶)であるから、低抵抗状態が実現される。一方、磁壁が磁化自由領域12と第2磁化固定領域11bの境界付近にある場合、磁化固定層30の磁化と磁化自由領域12の磁化が反平行(例示:“1”を記憶)であるから、高抵抗状態が実現される。磁気抵抗効果素子の抵抗の変化が、電圧信号、又は電流信号として検知され、その電圧信号、又は電流信号を用いて磁気抵抗効果素子に記憶されているデータが判別される。 Next, a method for reading data will be described. The magnetoresistive effect is used to read data from the current-induced domain wall motion type magnetoresistive effect element. Specifically, a current is passed between the magnetization fixed layer 30 and the magnetization free region 12 of the magnetization free layer 10 via the nonmagnetic layer 20, so that the magnetization of the magnetization fixed layer 30 and the magnetization of the magnetization free region 12 are relative to each other. Data is read by detecting a change in resistance according to the angle. For example, when the domain wall is near the boundary between the magnetization free region 12 and the first magnetization fixed region 11a, the magnetization of the magnetization fixed layer 30 and the magnetization of the magnetization free region 12 are parallel (for example, “0” is stored). A low resistance state is realized. On the other hand, when the domain wall is in the vicinity of the boundary between the magnetization free region 12 and the second magnetization fixed region 11b, the magnetization of the magnetization fixed layer 30 and the magnetization of the magnetization free region 12 are antiparallel (for example, “1” is stored). A high resistance state is realized. A change in the resistance of the magnetoresistive effect element is detected as a voltage signal or a current signal, and data stored in the magnetoresistive effect element is determined using the voltage signal or the current signal.
 なお、各層の面内平面における形状は各図の例に限られず、円形、楕円形、長方形、ひし形、その他の多角形などであってもよい。また、適切な特性が得られるように、各層の表面に適宜凹凸を設けることも可能である。また、各層の面積についても任意性がある。 The shape of each layer on the in-plane plane is not limited to the example shown in each figure, and may be a circle, an ellipse, a rectangle, a rhombus, or another polygon. In addition, irregularities can be appropriately provided on the surface of each layer so that appropriate characteristics can be obtained. Also, the area of each layer is arbitrary.
 次に、スピン注入磁化反転型の磁気抵抗効果素子について説明する。図3A~図3Bは、本発明の実施例に係るスピン注入磁化反転型の磁気抵抗効果素子の構成を示す模式図である。 Next, a spin injection magnetization reversal type magnetoresistive effect element will be described. 3A to 3B are schematic views showing the configuration of a spin-injection magnetization reversal type magnetoresistive effect element according to an embodiment of the present invention.
 図3A及び図3Bに示すように、このスピン注入磁化反転型の磁気抵抗効果素子は、磁化自由層10、磁化固定層30、及び磁化自由層10と磁化固定層30との間に設けられた非磁性層20を具備する。磁化自由層10は、反転可能な磁化を有している。磁化固定層30は、磁化が固定されている。 As shown in FIGS. 3A and 3B, this spin-injection magnetization reversal type magnetoresistive effect element is provided between the magnetization free layer 10, the magnetization fixed layer 30, and the magnetization free layer 10 and the magnetization fixed layer 30. A nonmagnetic layer 20 is provided. The magnetization free layer 10 has reversible magnetization. The magnetization fixed layer 30 has a fixed magnetization.
 磁化自由層10、及び磁化固定層30は強磁性体により構成される。図3Aの場合、磁化自由層10、及び磁化固定層30は、面内磁気異方性を有する面内磁化膜である。つまり、磁化自由層10及び磁化固定層30は、膜面内方向の磁気異方性を有している。なお、図3Aでは、各層の磁化方向として、図の左右方向の面内磁気異方性が示されている。しかし、この方向と略直角な他の面内方向を有していても良い。一方、図3Bの場合、磁化自由層10、及び磁化固定層30は、垂直磁気異方性を有する垂直磁化膜である。つまり、磁化自由層10及び磁化固定層30は、膜厚方向の磁気異方性を有している。図3A及び図3Bのいずれも、磁化自由層10、非磁性層20、及び磁化固定層30で磁気トンネル接合(MTJ)が形成されている。 The magnetization free layer 10 and the magnetization fixed layer 30 are made of a ferromagnetic material. In the case of FIG. 3A, the magnetization free layer 10 and the magnetization fixed layer 30 are in-plane magnetization films having in-plane magnetic anisotropy. That is, the magnetization free layer 10 and the magnetization fixed layer 30 have magnetic anisotropy in the in-plane direction. In FIG. 3A, in-plane magnetic anisotropy in the horizontal direction in the figure is shown as the magnetization direction of each layer. However, it may have another in-plane direction substantially perpendicular to this direction. On the other hand, in the case of FIG. 3B, the magnetization free layer 10 and the magnetization fixed layer 30 are perpendicular magnetization films having perpendicular magnetic anisotropy. That is, the magnetization free layer 10 and the magnetization fixed layer 30 have magnetic anisotropy in the film thickness direction. 3A and 3B, a magnetic tunnel junction (MTJ) is formed by the magnetization free layer 10, the nonmagnetic layer 20, and the magnetization fixed layer 30.
 以下では各層の材料については、図2A~図2Dのような電流誘起磁壁移動型の磁気抵抗効果素子の場合と同様である。 Hereinafter, the material of each layer is the same as in the case of the current-induced domain wall motion type magnetoresistive effect element as shown in FIGS. 2A to 2D.
 上記のように、スピン注入磁化反転型の磁気抵抗効果素子の各層の磁化方向には任意性がある。ただし、書き込み電流を小さくしたい場合には、垂直磁気異方性を有する図3Bの場合の磁気抵抗効果素子を用いることが好ましい。一方、高いMR比を得たい場合には、一般的には、面内磁気異方性を有する図3Aの場合の磁気抵抗効果素子を用いることが好ましい。 As described above, the magnetization direction of each layer of the spin-injection magnetization reversal type magnetoresistive effect element is arbitrary. However, when it is desired to reduce the write current, it is preferable to use the magnetoresistive effect element in FIG. 3B having perpendicular magnetic anisotropy. On the other hand, in order to obtain a high MR ratio, it is generally preferable to use the magnetoresistive effect element in the case of FIG. 3A having in-plane magnetic anisotropy.
 次に、スピン注入磁化反転型の磁気抵抗効果素子の動作方法、具体的には、書き込み方法及び読み出し方法について説明する。 Next, an operation method of the spin-injection magnetization reversal type magnetoresistive effect element, specifically, a writing method and a reading method will be described.
 まず、データ書き込み方法について説明する。スピン注入磁化反転型の磁気抵抗効果素子へのデータの書き込みは、スピン注入磁化反転方式により実現される。具体的には、第1磁化固定層10と第1磁化自由層30との間に書き込み電流が流される。ここで、磁化自由層10の磁化と磁化固定層30の磁化方向とが反平行の状態にある場合を、“1”状態(データ“1”が記録された状態)とし、平行の状態にある場合を“0”状態(データ “0”が記録された状態)とする。 First, the data writing method will be described. Data writing to the spin transfer magnetization reversal type magnetoresistive effect element is realized by a spin transfer magnetization reversal method. Specifically, a write current flows between the first magnetization fixed layer 10 and the first magnetization free layer 30. Here, the case where the magnetization of the magnetization free layer 10 and the magnetization direction of the magnetization fixed layer 30 are in an antiparallel state is referred to as a “1” state (a state in which data “1” is recorded) and is in a parallel state. The case is a “0” state (a state where data “0” is recorded).
 書き込み電流が磁化固定層30から非磁性層20を通して磁化自由層10へ流れた場合、伝導電子は磁化自由層10から非磁性層20を通して磁化固定層30へと流れる。例えば、磁化固定層30の磁化方向が第1方向に固定されていると、第1方向とは逆の第2方向のスピン角運動量を有する伝導電子は、第1方向のスピン角運動量を有する伝導電子に比べると、磁化固定層30の界面でより多く反射される。結果として、磁化自由層10内では、第2方向のスピン角運動量を有する電子がマジョリティとなり、第2方向への磁化反転が誘起される。磁化自由層10の磁化が第2方向であり、磁化固定層30の磁化方向が第1方向であるから、両磁化は反平行の状態にある。したがって、“1”状態(データ “1”が記録された状態)が書き込まれることになる。 When the write current flows from the magnetization fixed layer 30 to the magnetization free layer 10 through the nonmagnetic layer 20, conduction electrons flow from the magnetization free layer 10 to the magnetization fixed layer 30 through the nonmagnetic layer 20. For example, when the magnetization direction of the magnetization fixed layer 30 is fixed in the first direction, the conduction electrons having the spin angular momentum in the second direction opposite to the first direction are conduction electrons having the spin angular momentum in the first direction. Compared to electrons, the light is reflected more at the interface of the magnetization fixed layer 30. As a result, in the magnetization free layer 10, electrons having the spin angular momentum in the second direction become majority, and magnetization reversal in the second direction is induced. Since the magnetization of the magnetization free layer 10 is in the second direction and the magnetization direction of the magnetization fixed layer 30 is in the first direction, both magnetizations are in an antiparallel state. Therefore, a “1” state (a state in which data “1” is recorded) is written.
 一方、書き込み電流が磁化自由層10から非磁性層20を通して磁化固定層30へ流れた場合、伝導電子は、磁化固定層30から第1非磁性層20を通して磁化自由層10へと流れる。例えば、磁化固定層30の磁化方向が第1方向に固定されていると、第1方向のスピン角運動量を有する多くの伝導電子が磁化自由層10へ流れ込む。結果として、磁化自由層10内では、第1方向のスピン角運動量を有する電子がマジョリティとなり、第1方向への磁化反転が誘起される。磁化自由層10の磁化が第1方向であり、磁化固定層30の磁化方向が第1方向であるから、両磁化は平行の状態にある。したがって、“0”状態(データ“0”が記録された状態)が書き込まれることになる。 On the other hand, when the write current flows from the magnetization free layer 10 through the nonmagnetic layer 20 to the magnetization fixed layer 30, conduction electrons flow from the magnetization fixed layer 30 through the first nonmagnetic layer 20 to the magnetization free layer 10. For example, when the magnetization direction of the magnetization fixed layer 30 is fixed in the first direction, many conduction electrons having a spin angular momentum in the first direction flow into the magnetization free layer 10. As a result, in the magnetization free layer 10, electrons having a spin angular momentum in the first direction become majority, and magnetization reversal in the first direction is induced. Since the magnetization of the magnetization free layer 10 is the first direction and the magnetization direction of the magnetization fixed layer 30 is the first direction, both magnetizations are in a parallel state. Therefore, a “0” state (a state in which data “0” is recorded) is written.
 上記方法により、“0”書き込み、及び、“1”書き込みが実現される。このとき、“1”状態からの“0”書き込み、及び、“0”状態からの“1”書き込みだけでなく、“0”状態からの“0”書き込み、及び、“1”状態からの“1”書き込みのようなオーバーライトも可能である。 By the above method, “0” writing and “1” writing are realized. At this time, not only “0” write from the “1” state and “1” write from the “0” state, but also “0” write from the “0” state and “1” write from the “1” state. Overwriting such as 1 "writing is also possible.
 次に、データの読み出し方法について説明する。スピン注入磁化反転型の磁気抵抗効果素子からのデータ読み出しについては、磁気抵抗効果が利用される。具体的には、電流誘起磁壁移動型の磁気抵抗効果素子の場合と同様である。 Next, a method for reading data will be described. The magnetoresistive effect is used for reading data from the spin injection magnetization reversal type magnetoresistive effect element. Specifically, this is the same as in the case of a current-induced domain wall motion type magnetoresistive effect element.
 以上のように、MRAM5に用いられる磁気抵抗効果素子について、上記図2A~図2D及び図3A~図3Bに示されるスピン偏極電流書き込み型の磁気抵抗効果素子のいずれかを用いることができる。 As described above, as the magnetoresistive effect element used in the MRAM 5, any of the spin-polarized current write type magnetoresistive effect elements shown in FIGS. 2A to 2D and FIGS. 3A to 3B can be used.
 なお、各層の面内平面における形状は各図の例に限られず、円形、楕円形、長方形、ひし形、その他の多角形などであってもよい。また、適切な特性が得られるように、各層の表面に適宜凹凸を設けることも可能である。また、各層の面積についても任意性がある。 The shape of each layer on the in-plane plane is not limited to the example shown in each figure, and may be a circle, an ellipse, a rectangle, a rhombus, or another polygon. In addition, irregularities can be appropriately provided on the surface of each layer so that appropriate characteristics can be obtained. Also, the area of each layer is arbitrary.
 次に、電流誘起磁界書き込み型のMRAM4に用いられる磁気抵抗効果素子について説明する。図4A~図4Cは、本発明の実施例に係る、電流誘起磁界書き込み型の磁気抵抗効果素子の構成を示す模式図である。 Next, a magnetoresistive effect element used in the current-induced magnetic field writing type MRAM 4 will be described. 4A to 4C are schematic diagrams showing the configuration of a current-induced magnetic field write type magnetoresistive effect element according to an embodiment of the present invention.
 図4Aの磁気抵抗効果素子は、磁化自由層210、磁化固定層230、磁化自由層210と磁化固定層220との間に設けられた非磁性層220を備えている。図示されていないが、上述の層に加えて、電極層、拡散防止層、下地層などが適宜設けられることが望ましい。 4A includes a magnetization free layer 210, a magnetization fixed layer 230, and a nonmagnetic layer 220 provided between the magnetization free layer 210 and the magnetization fixed layer 220. Although not shown, in addition to the above-described layers, it is desirable that an electrode layer, a diffusion prevention layer, a base layer, and the like are appropriately provided.
 磁化自由層210及び磁化固定層230は、強磁性体から構成されている。磁化自由層210及び磁化固定層230は、面内磁気異方性を有する面内磁化膜である。すなわち、磁化自由層210及び磁化固定層230は、面内方向(xy面内方向)に磁気異方性を有する。本実施例では、非磁性層220は絶縁体により構成されており、磁化自由層210、非磁性層220、及び磁化固定層230で磁気トンネル接合(MTJ)が形成されている。非磁性層220は、絶縁体により構成されることが望ましいが、半導体や導体から構成されてもよい。磁化自由層210、非磁性層220及び磁化固定層230の具体的な材料については、スピン偏極電流書込み型の磁気抵抗効果素子における磁化自由層10、非磁性層20及び磁化固定層30と同じものを使用することができる。 The magnetization free layer 210 and the magnetization fixed layer 230 are made of a ferromagnetic material. The magnetization free layer 210 and the magnetization fixed layer 230 are in-plane magnetization films having in-plane magnetic anisotropy. That is, the magnetization free layer 210 and the magnetization fixed layer 230 have magnetic anisotropy in the in-plane direction (xy in-plane direction). In this embodiment, the nonmagnetic layer 220 is made of an insulator, and a magnetic tunnel junction (MTJ) is formed by the magnetization free layer 210, the nonmagnetic layer 220, and the magnetization fixed layer 230. The nonmagnetic layer 220 is preferably made of an insulator, but may be made of a semiconductor or a conductor. Specific materials of the magnetization free layer 210, the nonmagnetic layer 220, and the magnetization fixed layer 230 are the same as those of the magnetization free layer 10, the nonmagnetic layer 20, and the magnetization fixed layer 30 in the spin-polarized current write type magnetoresistive effect element. Things can be used.
 磁化固定層230は固定された磁化を有する。この固定磁化は、磁化固定層230の長手方向(x方向)と垂直方向とするか、または垂直方向成分を有するようにする。一方、磁化自由層210は反転可能な磁化を有する。また磁化自由層210の磁化容易軸は磁化固定層230の長手方向(x方向)と垂直方向とするか、または垂直方向成分を有するようにする。このような磁気異方性は形状磁気異方性によって付与することができる。 The magnetization fixed layer 230 has a fixed magnetization. This fixed magnetization is set in a direction perpendicular to the longitudinal direction (x direction) of the magnetization fixed layer 230 or has a vertical component. On the other hand, the magnetization free layer 210 has reversible magnetization. The easy axis of magnetization of the magnetization free layer 210 is perpendicular to the longitudinal direction (x direction) of the magnetization fixed layer 230 or has a perpendicular component. Such magnetic anisotropy can be imparted by shape magnetic anisotropy.
 磁化固定層230の固定磁化、及び磁化自由層210の磁化容易軸が上述の通りであるとき、磁化自由層210の磁化は磁化固定層230の磁化に対して、平行成分か反平行成分のうちのいずれかを持ちうる。図4Aの磁気抵抗効果素子においては、磁化自由層210の磁化の方向が記憶されるデータに対応する。 When the fixed magnetization of the magnetization fixed layer 230 and the magnetization easy axis of the magnetization free layer 210 are as described above, the magnetization of the magnetization free layer 210 is either a parallel component or an antiparallel component with respect to the magnetization of the magnetization fixed layer 230. You can have either. In the magnetoresistive element of FIG. 4A, the magnetization direction of the magnetization free layer 210 corresponds to stored data.
 次に、図4Aの電流誘起磁界書き込み型の磁気抵抗効果素子の動作方法、具体的には、書き込み方法及び読み出し方法について説明する。 Next, an operation method of the current-induced magnetic field writing type magnetoresistive effect element of FIG. 4A, specifically, a writing method and a reading method will be described.
 データの書き込み方法について説明する。まず、磁化固定層230に書き込み電流を流す。その書き込み電流により発生する電流誘起磁界により、磁化自由層210の磁化を反転させる。そのとき、書き込み電流の向きで発生する電流誘起磁界の向きを制御して、磁化自由層210の磁化を所望の向きに変化させることが出来る。それにより、磁化自由層210に所望のデータを記録する。磁化固定層230はその役割からベース電極と参照されることもある。そして、磁化固定層230、すなわちベース電極に書き込み電流を流すこのような書き込み方式をベース書き込み型とも言うことができる。この方式では、磁気抵抗効果素子に直接書き込み電流を流すので、電流誘起磁界の大きさが相対的に大きくなる。そのため、書き込み電流を小さくすることが出来る。また、磁化固定層230は書き込み電流を導入することから、電気抵抗が比較的小さいことが望ましい。そのために、磁化固定層230に導電層を隣接させて電気抵抗を下げてもよい。 Explain how to write data. First, a write current is passed through the magnetization fixed layer 230. The magnetization of the magnetization free layer 210 is reversed by a current-induced magnetic field generated by the write current. At that time, the direction of the current-induced magnetic field generated by the direction of the write current can be controlled to change the magnetization of the magnetization free layer 210 to a desired direction. Thereby, desired data is recorded in the magnetization free layer 210. The magnetization fixed layer 230 may be referred to as a base electrode because of its role. Such a writing method in which a writing current is supplied to the magnetization fixed layer 230, that is, the base electrode can also be referred to as a base writing type. In this method, since a write current is directly supplied to the magnetoresistive effect element, the magnitude of the current-induced magnetic field becomes relatively large. Therefore, the write current can be reduced. Moreover, since the magnetization fixed layer 230 introduces a write current, it is desirable that the electric resistance is relatively small. Therefore, the electrical resistance may be lowered by making a conductive layer adjacent to the magnetization fixed layer 230.
 次に、データの読み出し方法について説明する。まず、非磁性層220を介して磁化固定層230と磁化自由層210との間で読み出し電流を流す。そして、磁化固定層230の磁化と磁化自由層210の磁化との間の相対角に応じた抵抗の変化を検出することでデータを読み出す。たとえば、磁化固定層230の磁化と磁化自由層210の磁化とが平行の場合(例示:“0”を記憶)、低抵抗状態が実現され、磁化固定層230の磁化と磁化自由層210の磁化とが反平行の場合(例示:“1”を記憶)、高抵抗状態が実現される。磁気抵抗効果素子の抵抗の変化が、電圧信号、又は電流信号として検知され、その電圧信号、又は電流信号を用いて磁気抵抗効果素子に記憶されているデータが判別される。 Next, a method for reading data will be described. First, a read current is passed between the magnetization fixed layer 230 and the magnetization free layer 210 via the nonmagnetic layer 220. Then, data is read by detecting a change in resistance according to the relative angle between the magnetization of the magnetization fixed layer 230 and the magnetization of the magnetization free layer 210. For example, when the magnetization of the magnetization fixed layer 230 and the magnetization of the magnetization free layer 210 are parallel (example: “0” is stored), a low resistance state is realized, and the magnetization of the magnetization fixed layer 230 and the magnetization of the magnetization free layer 210 are Are antiparallel (example: “1” is stored), a high resistance state is realized. A change in the resistance of the magnetoresistive effect element is detected as a voltage signal or a current signal, and data stored in the magnetoresistive effect element is determined using the voltage signal or the current signal.
 図4Bの磁気抵抗効果素子は、磁化自由層210、磁化固定層230a、磁化自由層210と磁化固定層230aとの間に設けられた非磁性層220、及び磁化自由層210の近傍に設けられた導電層250を備えている。図示されていないが、上述の層に加えて、電極層、拡散防止層、下地層などが適宜設けられることが望ましい。 4B is provided in the vicinity of the magnetization free layer 210, the magnetization fixed layer 230a, the nonmagnetic layer 220 provided between the magnetization free layer 210 and the magnetization fixed layer 230a, and the magnetization free layer 210. The conductive layer 250 is provided. Although not shown, in addition to the above-described layers, it is desirable that an electrode layer, a diffusion prevention layer, a base layer, and the like are appropriately provided.
 図4Bの磁化自由層210、磁化固定層230a、非磁性層220は、図4Aの磁化自由層210、磁化固定層230、非磁性層220と同じである。ただし、磁化固定層230aには書き込み電流が流されない点で、図4Aの磁化固定層230と異なる。 The magnetization free layer 210, the magnetization fixed layer 230a, and the nonmagnetic layer 220 in FIG. 4B are the same as the magnetization free layer 210, the magnetization fixed layer 230, and the nonmagnetic layer 220 in FIG. 4A. However, the magnetization pinned layer 230a is different from the magnetization pinned layer 230 of FIG. 4A in that no write current flows.
 導電層250は、データ書き込み用の配線層であり、導電体で形成されている。導電層250内部を流れる書き込み電流が発生する電流誘起磁界により、磁化自由層210の磁化が向きが制御される。すなわち、当該電流誘起磁界により、磁気抵抗効果素子はデータが書き込まれる。書き込み電流を磁化固定層(強磁性体)ではなく、銅(Cu)やアルミニウム(Al)のような高導電率の導電体で形成された導電層250に流すので、書き込み配線抵抗をより低くすることが出来る。導電層250は、磁化固定層230a(又は導電層250により近い場合には磁化自由層)とコンタクトを介して電気的に接続されていても良い。
 その他の構成は、図4Aの場合と同様であるのでその説明を省略する。
The conductive layer 250 is a wiring layer for writing data and is formed of a conductor. The direction of the magnetization of the magnetization free layer 210 is controlled by a current-induced magnetic field generated by a write current flowing inside the conductive layer 250. That is, data is written in the magnetoresistive effect element by the current-induced magnetic field. Since the write current is not supplied to the magnetization fixed layer (ferromagnetic material) but to the conductive layer 250 formed of a highly conductive conductor such as copper (Cu) or aluminum (Al), the write wiring resistance is further reduced. I can do it. The conductive layer 250 may be electrically connected to the magnetization fixed layer 230a (or the magnetization free layer if closer to the conductive layer 250) via a contact.
Other configurations are the same as those in the case of FIG.
 次に、図4Bの電流誘起磁界書き込み型の磁気抵抗効果素子の動作方法、具体的には、書き込み方法及び読み出し方法について説明する。 Next, an operation method of the current-induced magnetic field writing type magnetoresistive effect element of FIG. 4B, specifically, a writing method and a reading method will be described.
 データの書き込み方法について説明する。まず、導電層90の一端から他端へ書き込み電流を流す。その書き込み電流により発生する電流誘起磁界により、磁化自由層210の磁化を反転させる。そのとき、書き込み電流の向きで発生する電流誘起磁界の向きを制御して、磁化自由層210の磁化を所望の向きに変化させることが出来る。それにより、磁化自由層210に所望のデータを記録する。導電層250に書き込み電流を流すこのような書き込み方式は書き込み専用の配線を設けることから、配線層書き込み型とも言うことができる。 Explain how to write data. First, a write current is passed from one end of the conductive layer 90 to the other end. The magnetization of the magnetization free layer 210 is reversed by a current-induced magnetic field generated by the write current. At that time, the direction of the current-induced magnetic field generated by the direction of the write current can be controlled to change the magnetization of the magnetization free layer 210 to a desired direction. Thereby, desired data is recorded in the magnetization free layer 210. Such a writing method in which a writing current is allowed to flow through the conductive layer 250 can be called a wiring layer writing type because a wiring dedicated to writing is provided.
 次に、データの読み出し方法について説明する。まず、磁化自由層210、非磁性層220及び磁化固定層230aの経路で読み出し電流を流す。そして、磁化固定層230aの磁化と磁化自由層210の磁化との間の相対角に応じた抵抗の変化を検出することでデータを読み出す。たとえば、磁化固定層230aの磁化と磁化自由層210の磁化とが平行の場合(例示:“0”を記憶)、低抵抗状態が実現され、磁化固定層230aの磁化と磁化自由層210の磁化とが反平行の場合(例示:“1”を記憶)、高抵抗状態が実現される。磁気抵抗効果素子の抵抗の変化が、電圧信号、又は電流信号として検知され、その電圧信号、又は電流信号を用いて磁気抵抗効果素子に記憶されているデータが判別される。 Next, a method for reading data will be described. First, a read current is passed through the paths of the magnetization free layer 210, the nonmagnetic layer 220, and the magnetization fixed layer 230a. Then, data is read by detecting a change in resistance according to the relative angle between the magnetization of the magnetization fixed layer 230a and the magnetization of the magnetization free layer 210. For example, when the magnetization of the magnetization fixed layer 230a and the magnetization of the magnetization free layer 210 are parallel (example: “0” is stored), the low resistance state is realized, and the magnetization of the magnetization fixed layer 230a and the magnetization of the magnetization free layer 210 are realized. Are antiparallel (example: “1” is stored), a high resistance state is realized. A change in the resistance of the magnetoresistive effect element is detected as a voltage signal or a current signal, and data stored in the magnetoresistive effect element is determined using the voltage signal or the current signal.
 図4Cの磁気抵抗効果素子は、磁化固定層230b、磁化自由層210、磁化固定層230bと磁化自由層210との間に設けられた非磁性層220、磁化自由層210を挟んで非磁性層220と反対側に設けられた導電層250、及び導電層250を挟んで磁化自由層210と反対側に設けられた磁化自由層210aを備えている。図示されていないが、上述の層に加えて、電極層、拡散防止層、下地層などが適宜設けられることが望ましい。 4C includes a magnetization fixed layer 230b, a magnetization free layer 210, a nonmagnetic layer 220 provided between the magnetization fixed layer 230b and the magnetization free layer 210, and a nonmagnetic layer sandwiching the magnetization free layer 210. 220, a conductive layer 250 provided on the opposite side of 220, and a magnetization free layer 210a provided on the opposite side of the magnetization free layer 210 across the conductive layer 250. Although not shown, in addition to the above-described layers, it is desirable that an electrode layer, a diffusion prevention layer, a base layer, and the like are appropriately provided.
 磁化自由層210、磁化固定層230b、非磁性層220は、図4Bの磁化自由層210、磁化固定層230a、非磁性層220と同じである。ただし、磁化自由層が磁化自由層210と磁化自由層210aと2層ある点、導電層250が磁化自由層210と磁化自由層210aとの間にある点で、図4Bの磁気抵抗効果素子と異なる。 The magnetization free layer 210, the magnetization fixed layer 230b, and the nonmagnetic layer 220 are the same as the magnetization free layer 210, the magnetization fixed layer 230a, and the nonmagnetic layer 220 in FIG. 4B. However, the magnetoresistive effect element of FIG. 4B is different from the magnetoresistive effect element of FIG. 4B in that the magnetization free layer has two magnetization free layers 210 and 210a, and the conductive layer 250 is between the magnetization free layer 210 and magnetization free layer 210a. Different.
 磁化自由層210aは、好適には磁化自由層210と同じ強磁性体の材料で形成され、同じ面内磁気異方性を有し、反転可能な逆方向の磁化を有している。磁化自由層210aは、磁化自由層210と反強磁性的に磁気結合し、互いの磁化を安定化させている。また、導電層250を挟んで両側に位置する磁化自由層210aと磁化自由層210は、書込み動作時に、導電層250を流れる書き込み電流により発生する電流誘起磁界を増幅する機能を有している。なお、磁化自由層210、非磁性層220、磁化固定層230b及び磁化自由層210aをこの順に積層し、磁化固定層230bに導電層250の機能を兼ねさせる構成とすることも可能である。ただし、この場合には磁化固定層230bと磁化自由層210aの間に非磁性層が挿入され、磁化固定層230bと磁化自由層210aの間での磁気結合が切られる。
 その他の構成は、図4Bの場合と同様であるのでその説明を省略する。
The magnetization free layer 210a is preferably made of the same ferromagnetic material as the magnetization free layer 210, has the same in-plane magnetic anisotropy, and has a reversible magnetization in the reverse direction. The magnetization free layer 210a is magnetically coupled to the magnetization free layer 210 in an antiferromagnetic manner, and stabilizes the magnetization of each other. Further, the magnetization free layer 210a and the magnetization free layer 210 located on both sides of the conductive layer 250 have a function of amplifying a current-induced magnetic field generated by a write current flowing through the conductive layer 250 during a write operation. Note that the magnetization free layer 210, the nonmagnetic layer 220, the magnetization fixed layer 230b, and the magnetization free layer 210a may be stacked in this order, and the magnetization fixed layer 230b may also function as the conductive layer 250. However, in this case, a nonmagnetic layer is inserted between the magnetization fixed layer 230b and the magnetization free layer 210a, and the magnetic coupling between the magnetization fixed layer 230b and the magnetization free layer 210a is cut.
Other configurations are the same as those in the case of FIG.
 次に、本実施例の磁気抵抗効果素子8bのデータの書き込み方法については、導電層250を流れる書き込み電流による電流誘起磁界が磁化自由層210aと磁化自由層210によって増幅させる点や、その電流誘起磁界により磁化自由層210aが磁化自由層210と逆向きに磁化される点を除けば、図4Bの場合と同様であるのでその説明を省略する。磁化自由層210aと磁化自由層210との中間に書き込み配線層となる導電層250が位置し、ここに書き込み電流を流すこのような書き込み方式を中間配線層書き込み型とも言う。
 また、この磁気抵抗効果素子からのデータの読み出し方法については、図4Bの場合と同様であるのでその説明を省略する。
Next, regarding the data writing method of the magnetoresistive effect element 8b of the present embodiment, the current induced magnetic field due to the write current flowing through the conductive layer 250 is amplified by the magnetization free layer 210a and the magnetization free layer 210, and the current induction Except for the point that the magnetization free layer 210a is magnetized in the opposite direction to the magnetization free layer 210 by the magnetic field, it is the same as in the case of FIG. A writing layer 250 serving as a writing wiring layer is located between the magnetization free layer 210a and the magnetization free layer 210, and such a writing method in which a writing current is supplied thereto is also referred to as an intermediate wiring layer writing type.
The method for reading data from the magnetoresistive effect element is the same as that in the case of FIG.
 また、図4Cでは磁化自由層210と磁化自由層210aはほぼ同じ形状であるものとして描かれているが、この2層の形状は異なってもよい。例えば磁化自由層210aは導電層250と同形状をしていてもよい。この場合には磁化自由層210aの磁化は定常状態ではその長手方向であるx方向を向き、導電層250に電流が導入されたときに、電流誘起磁界の方向に回転し、磁化自由層210に効率的に磁界を印加することができる。このような役割を有する磁化自由層210aはしばしばクラッド層、またはヨーク層などと参照される。 In FIG. 4C, the magnetization free layer 210 and the magnetization free layer 210a are depicted as having substantially the same shape, but the shapes of the two layers may be different. For example, the magnetization free layer 210 a may have the same shape as the conductive layer 250. In this case, the magnetization of the magnetization free layer 210a is oriented in the x direction, which is the longitudinal direction in a steady state, and rotates in the direction of a current-induced magnetic field when a current is introduced into the conductive layer 250, A magnetic field can be applied efficiently. The magnetization free layer 210a having such a role is often referred to as a cladding layer or a yoke layer.
 上記説明において、図4A~図4Cの電流誘起磁界書き込み型の磁気抵抗効果素子は、すべて磁化自由層や磁化固定層が面内磁気異方性を有する面内磁化膜で構成された例を示している。しかし、本発明はそれに限定されるものではなく、磁化自由層や磁化固定層が垂直磁気異方性を有する垂直磁化膜で構成されていても良い。 In the above description, the current-induced magnetic field writing type magnetoresistive effect elements shown in FIGS. 4A to 4C are all examples in which the magnetization free layer and the magnetization fixed layer are composed of in-plane magnetization films having in-plane magnetic anisotropy. ing. However, the present invention is not limited to this, and the magnetization free layer and the magnetization fixed layer may be composed of a perpendicular magnetization film having perpendicular magnetic anisotropy.
 以上のように、MRAM4に用いられる磁気抵抗効果素子について、上記図4A~図4Cに示される電流誘起磁界書き込み型の磁気抵抗効果素子のいずれかを用いることができる。 As described above, as the magnetoresistive effect element used in the MRAM 4, any of the current-induced magnetic field write type magnetoresistive effect elements shown in FIGS. 4A to 4C can be used.
 なお、各層の面内平面における形状は各図の例に限られず、円形、楕円形、長方形、ひし形、その他の多角形などであってもよい。また、適切な特性が得られるように、各層の表面に適宜凹凸を設けることも可能である。また、各層の面積についても任意性がある。 The shape of each layer on the in-plane plane is not limited to the example shown in each figure, and may be a circle, an ellipse, a rectangle, a rhombus, or another polygon. In addition, irregularities can be appropriately provided on the surface of each layer so that appropriate characteristics can be obtained. Also, the area of each layer is arbitrary.
 本発明では、メモリ搭載型の半導体装置において、要求される機能に応じて適切な種類のMRAMを選択し配置する。例えば、高速動作が要求される論理回路用のメモリとしては、図4A~図4Cに示される高速動作が可能な電流誘起磁界書き込み型の磁気抵抗効果素子を用いたMRAMを用いる。一方、低電流(大容量・高集積)が要求される主記憶装置や補助記憶装置用のメモリとして、図2A~図2D及び図3A及び図3Bに示される低電流化(大容量化・高集積化)が可能なスピン偏極電流書込み型の磁気抵抗効果素子を用いたMRAMを用いる。このように、高速動作用のメモリと低電流(大容量・高集積)用のメモリについて、2種類のMRAMを組み合わせて用いることで、高速処理と大容量処理とを両立させた不揮発性メモリ混載システム(メモリ搭載型半導体装置)を得ることができる。 In the present invention, in a memory-mounted semiconductor device, an appropriate type of MRAM is selected and arranged according to a required function. For example, as a memory for a logic circuit that requires high-speed operation, an MRAM using a current-induced magnetic field writing type magnetoresistive effect element capable of high-speed operation shown in FIGS. 4A to 4C is used. On the other hand, as memories for main storage devices and auxiliary storage devices that require low current (large capacity and high integration), the low current (large capacity and high capacity) shown in FIGS. 2A to 2D and FIGS. 3A and 3B can be used. An MRAM using a spin-polarized current writing type magnetoresistive element that can be integrated) is used. As described above, the non-volatile memory mixed in which high-speed processing and large-capacity processing are made compatible by using a combination of two kinds of MRAMs for the memory for high-speed operation and the memory for low current (large capacity and high integration). A system (memory mounted semiconductor device) can be obtained.
 次に、本実施例のMRAM4、5におけるメモリセル301の回路構成について、図5A及び図5Bを用いて説明する。図5A及び図5Bにおいて、メモリセル301の記憶そしとして、上記スピン偏極電流書き込み型の電流誘起磁壁移動型及びスピン注入磁化反転型、及び、電流誘起磁界書き込み型のいずれの磁気抵抗効果素子に対しても用いることができる。 Next, the circuit configuration of the memory cell 301 in the MRAMs 4 and 5 of this embodiment will be described with reference to FIGS. 5A and 5B. 5A and 5B, as the memory cell 301, any one of the magnetoresistance effect element of the spin-polarized current writing type current-induced domain wall motion type, spin-injection magnetization switching type, and current-induced magnetic field writing type may be used. It can also be used.
 図5Aは、本実施例の磁気抵抗効果素子が集積化されたメモリセルの構成例を示す回路図である。図5Aには、単一のメモリセル301の回路構成が図示されているが、実際には複数のメモリセル301がアレイ状に配置されてMRAM4、5に集積化されていることは、当業者には理解されよう。 FIG. 5A is a circuit diagram showing a configuration example of a memory cell in which the magnetoresistive effect element of this embodiment is integrated. FIG. 5A shows a circuit configuration of a single memory cell 301, but it is actually understood by those skilled in the art that a plurality of memory cells 301 are arranged in an array and integrated in the MRAMs 4 and 5. Will be understood.
 図5Aにおいて、電流誘起磁壁移動型の磁気抵抗効果素子(図2A~図2D)の場合、磁化固定層30に接続される端子は、読み出しのためのグラウンド線GNDにノードN3を介して接続される。磁化自由層10に接続される2つの端子は、一方がMOSトランジスタM1の一方のソース/ドレインにノードN1を介して接続され、他方がMOSトランジスタM2の一方のソース/ドレインにノードN2を介して接続される。また、MOSトランジスタM1、M2の他方のソース/ドレインは、それぞれ書き込みのためのビット線BL1、BL2に接続される。更に、MOSトランジスタM1、M2のゲート電極はワード線WLに接続される。すなわち、図中の310は第1磁化自由層10に対応する。 5A, in the case of a current-induced domain wall motion type magnetoresistive effect element (FIGS. 2A to 2D), a terminal connected to the magnetization fixed layer 30 is connected to a ground line GND for reading through a node N3. The One of the two terminals connected to the magnetization free layer 10 is connected to one source / drain of the MOS transistor M1 via the node N1, and the other is connected to one source / drain of the MOS transistor M2 via the node N2. Connected. The other source / drain of the MOS transistors M1 and M2 are connected to bit lines BL1 and BL2 for writing, respectively. Further, the gate electrodes of the MOS transistors M1 and M2 are connected to the word line WL. That is, 310 in the figure corresponds to the first magnetization free layer 10.
 スピン注入磁化反転型の磁気抵抗効果素子(図3A~図3B)の場合、磁化固定層30及び第1磁化自由層10のいずれか一方はMOSトランジスタM1の一方のソース/ドレインにノードN1を介して接続され、他方はMOSトランジスタM2の一方のソース/ドレインにノードN2を介して接続される。また、MOSトランジスタM1、M2の他方のソース/ドレインは、それぞれビット線BL1、BL2に接続される。更に、MOSトランジスタM1、M2のゲート電極はワード線WLに接続される。図中の310は磁化固定層30、非磁性層20及び第1磁化自由層10に対応する。この場合、図示されないが、磁化固定層30及び第1磁化自由層10のいずれか一方が、(ノードN3ではなく)ノードN1を介してグラウンド線GNDに接続される。 In the case of the spin-injection magnetization reversal type magnetoresistive effect element (FIGS. 3A to 3B), one of the magnetization fixed layer 30 and the first magnetization free layer 10 is connected to one source / drain of the MOS transistor M1 via the node N1. The other is connected to one source / drain of the MOS transistor M2 via a node N2. The other sources / drains of the MOS transistors M1 and M2 are connected to the bit lines BL1 and BL2, respectively. Further, the gate electrodes of the MOS transistors M1 and M2 are connected to the word line WL. 310 in the figure corresponds to the magnetization fixed layer 30, the nonmagnetic layer 20, and the first magnetization free layer 10. In this case, although not shown, one of the magnetization fixed layer 30 and the first magnetization free layer 10 is connected to the ground line GND via the node N1 (not the node N3).
 電流誘起磁界書き込み型の磁気抵抗効果素子(図4A)の場合、磁化固定層230の両端に接続される2つの端子は、一方がMOSトランジスタM1の一方のソース/ドレインにノードN1を介して接続され、他方がMOSトランジスタM2の一方のソース/ドレインにノードN2を介して接続される。磁化自由層210に接続される端子は、読み出しのためのグラウンド線GNDにノードN3を介して接続される。図中の310は磁化固定層230に対応する。 In the case of the current-induced magnetic field writing type magnetoresistive effect element (FIG. 4A), one of two terminals connected to both ends of the magnetization fixed layer 230 is connected to one source / drain of the MOS transistor M1 via the node N1. The other is connected to one source / drain of the MOS transistor M2 via the node N2. A terminal connected to the magnetization free layer 210 is connected to a ground line GND for reading via a node N3. 310 in the figure corresponds to the magnetization fixed layer 230.
 電流誘起磁界書き込み型の磁気抵抗効果素子(図4B)の場合、導電層250の両端に接続される2つの端子は、一方がMOSトランジスタM1の一方のソース/ドレインにノードN1を介して接続され、他方がMOSトランジスタM2の一方のソース/ドレインにノードN2を介して接続される。磁化自由層210に接続される端子は、読み出しのためのグラウンド線GNDにノードN3を介して接続される。ただし、この場合、磁化固定層230aと導電層250とは電気的に接続されている。図中の310は導電層250に対応する。 In the case of the current-induced magnetic field writing type magnetoresistive effect element (FIG. 4B), one of two terminals connected to both ends of the conductive layer 250 is connected to one source / drain of the MOS transistor M1 via the node N1. The other is connected to one source / drain of the MOS transistor M2 via a node N2. A terminal connected to the magnetization free layer 210 is connected to a ground line GND for reading via a node N3. However, in this case, the magnetization fixed layer 230a and the conductive layer 250 are electrically connected. 310 in the figure corresponds to the conductive layer 250.
 電流誘起磁界書き込み型の磁気抵抗効果素子(図4C)の場合、導電層250の両端に接続される2つの端子は、一方がMOSトランジスタM1の一方のソース/ドレインにノードN1を介して接続され、他方がMOSトランジスタM2の一方のソース/ドレインにノードN2を介して接続される。磁化固定層230bに接続される端子は、読み出しのためのグラウンド線GNDにノードN3を介して接続される。図中の310は導電層250に対応する。 In the case of the current-induced magnetic field writing type magnetoresistive effect element (FIG. 4C), one of two terminals connected to both ends of the conductive layer 250 is connected to one source / drain of the MOS transistor M1 via the node N1. The other is connected to one source / drain of the MOS transistor M2 via a node N2. A terminal connected to the magnetization fixed layer 230b is connected to the ground line GND for reading via the node N3. 310 in the figure corresponds to the conductive layer 250.
 図5Bは、本実施例のメモリセルが集積化されたMRAMの構成例を示すブロック図である。図5Bにおいて、MRAM360は、複数のメモリセル301がマトリックス状に配置されたメモリセルアレイ361を有している。このメモリセルアレイ361は、図5Aで説明されたデータの記録に用いられるメモリセル301と共に、データ読み出しの際に参照されるリファレンスセル301rを含んでいる。リファレンスセル301rの構造は、メモリセル301と同じである。 FIG. 5B is a block diagram showing a configuration example of an MRAM in which the memory cells of this embodiment are integrated. In FIG. 5B, the MRAM 360 includes a memory cell array 361 in which a plurality of memory cells 301 are arranged in a matrix. The memory cell array 361 includes a reference cell 301r that is referred to when data is read, in addition to the memory cell 301 used for data recording described in FIG. 5A. The structure of the reference cell 301r is the same as that of the memory cell 301.
 ワード線WLは、Xセレクタ362に接続されている。Xセレクタ362は、データの書込み動作時、及び読出し動作時において、対象メモリセル301sにつながるワード線WLを選択ワード線WLsとして選択する。ビット線BL1はY側電流終端回路364に接続されており、ビット線BL2はYセレクタ363に接続されている。Yセレクタ363は、データの書込み動作時、及び読出し動作時において、対象メモリセル301sにつながるビット線BL2を選択ビット線BL2sとして選択する。Y側電流終端回路364は、対象メモリセル301sにつながるビット線BL1を選択ビット線BL1sとして選択する。 The word line WL is connected to the X selector 362. The X selector 362 selects a word line WL connected to the target memory cell 301s as a selected word line WLs during a data write operation and a read operation. The bit line BL1 is connected to the Y-side current termination circuit 364, and the bit line BL2 is connected to the Y selector 363. The Y selector 363 selects the bit line BL2 connected to the target memory cell 301s as the selected bit line BL2s during the data write operation and the read operation. The Y-side current termination circuit 364 selects the bit line BL1 connected to the target memory cell 301s as the selected bit line BL1s.
 Y側電流源回路365は、データ書込み動作時、選択ビット線BL2sに対し、所定の書き込み電流(Iwrite)の供給又は引き込みを行う。Y側電源回路366は、データ書き込み動作時、Y側電流終端回路364に所定の電圧を供給する。その結果、書き込み電流(Iwrite)は、Yセレクタ363へ流れ込む、あるいは、Yセレクタ363から流れ出す。これらXセレクタ362、Yセレクタ363、Y側電流終端回路364、Y側電流源回路365、及びY側電源回路366は、メモリセル301に書き込み電流(Iwrite)を供給するための「書き込み電流供給回路」を構成している。 The Y-side current source circuit 365 supplies or draws a predetermined write current (Iwrite) to the selected bit line BL2s during the data write operation. The Y-side power supply circuit 366 supplies a predetermined voltage to the Y-side current termination circuit 364 during the data write operation. As a result, the write current (Iwrite) flows into or out of the Y selector 363. These X selector 362, Y selector 363, Y side current termination circuit 364, Y side current source circuit 365, and Y side power supply circuit 366 are “write current supply circuits for supplying a write current (Iwrite) to the memory cell 301. Is comprised.
 読み出し電流付加回路367は、データ読み出し動作時、選択第2ビット線BL2sに所定の読み出し電流(Iread)を流す。Y側電流終端回路364は、ビット線BL1を“Open”に設定する。また、読み出し電流負荷回路367は、リファレンスセル301rにつながるリファレンスビット線BL2rに所定の読み出し電流(Iread)を流す。センスアンプ368は、リファレンスビット線BL2rの電位と選択ビット線BL2sの電位の差に基づいて、対象メモリセル301sからデータを読み出し、そのデータを出力する。これらXセレクタ362、Yセレクタ363、Y側電流終端回路364、読み出し電流付加回路367、及びセンスアンプ368は、メモリセル301に読み出し電流(Iread)を供給するための「読み出し電流供給回路」を構成している。 The read current adding circuit 367 supplies a predetermined read current (Iread) to the selected second bit line BL2s during the data read operation. The Y-side current termination circuit 364 sets the bit line BL1 to “Open”. The read current load circuit 367 supplies a predetermined read current (Iread) to the reference bit line BL2r connected to the reference cell 301r. The sense amplifier 368 reads data from the target memory cell 301s based on the difference between the potential of the reference bit line BL2r and the potential of the selected bit line BL2s, and outputs the data. The X selector 362, Y selector 363, Y-side current termination circuit 364, read current adding circuit 367, and sense amplifier 368 constitute a “read current supply circuit” for supplying a read current (Iread) to the memory cell 301. is doing.
 次に、図5A及び図5Bに示されるMRAMにおける書き込み方法、読み出し方法について説明する。まず、書き込みを行う場合、ワード線WLが“high”レベルにプルアップされ、MOSトランジスタM1、M2が“ON”にされる。また、ビット線BL1、BL2のいずれか一方が“high”レベルにプルアップされ、他方が“low”レベルにプルダウンされる。ビット線BL1、BL2のどちらを“high”レベルにプルアップし、どちらを“low”レベルにプルダウンするかは、当該磁気抵抗効果素子に書き込まれるべきデータにより決定される。以上により、データ“0”と“1”を書き分けることができる。 Next, a writing method and a reading method in the MRAM shown in FIGS. 5A and 5B will be described. First, when writing, the word line WL is pulled up to a “high” level, and the MOS transistors M1 and M2 are turned “ON”. One of the bit lines BL1 and BL2 is pulled up to the “high” level, and the other is pulled down to the “low” level. Which of the bit lines BL1 and BL2 is pulled up to the “high” level and which is pulled down to the “low” level is determined by data to be written to the magnetoresistive element. As described above, data “0” and “1” can be written separately.
 一方、読み出しを行う場合、ワード線WLが“high”レベルにプルアップされ、MOSトランジスタM1、M2が“ON”にされる。また、ビット線BL1、BL2のいずれか一方が“high”レベルにプルアップされ、他方が“open”(フローティング)に設定される。このときビット線BL1、BL2の一方から、磁気抵抗効果素子を貫通する読み出し電流がグラウンド線GNDへと流れる。読み出し電流が流されるビット線の電位、又は、読み出し電流の大きさは、磁気抵抗効果による磁気抵抗効果素子の抵抗の変化に依存する。この抵抗の変化を電圧信号、又は電流信号として検知することにより高速での読み出しが可能となる。 On the other hand, when reading, the word line WL is pulled up to the “high” level, and the MOS transistors M1 and M2 are turned “ON”. One of the bit lines BL1 and BL2 is pulled up to the “high” level, and the other is set to “open” (floating). At this time, a read current passing through the magnetoresistive effect element flows from one of the bit lines BL1 and BL2 to the ground line GND. The potential of the bit line through which the read current flows or the magnitude of the read current depends on a change in resistance of the magnetoresistive element due to the magnetoresistive effect. By detecting this change in resistance as a voltage signal or a current signal, high-speed reading can be performed.
 ただし、図5A及び図5Bに示された回路構成、及び、ここで述べられた回路動作は、本発明を実施する方法の一例に過ぎず、他の回路構成による実施も可能である。 However, the circuit configurations shown in FIGS. 5A and 5B and the circuit operation described here are merely examples of a method for carrying out the present invention, and can be implemented by other circuit configurations.
 電流誘起磁界書込み型の磁気抵抗効果素子(図4A~図4C)に対して、図5Aの回路構成を適用した場合、200MHz以上での動作が可能となることが報告されている(N.Sakimura et al.,IEEE JOURNAL OF SOLID-STATE CIRCUITS,Vol.42,2007,pp.830.)。ただし、より高速な動作を行うために、図6に示されるような他の回路構成を用いることも可能である。 It has been reported that when the circuit configuration of FIG. 5A is applied to a current-induced magnetic field writing type magnetoresistive effect element (FIGS. 4A to 4C), operation at 200 MHz or higher is possible (N. Sakimura). et al., IEEE JOURNAL OF SOLID-STATE CIRCUITS, Vol.42, 2007, pp.830.). However, other circuit configurations as shown in FIG. 6 can be used to perform higher-speed operation.
 図6は、本実施例の磁気抵抗効果素子が集積化されたメモリセルの他の構成例を示す回路図である。図6には、単一のメモリセル302の回路構成が図示されているが、実際には複数のメモリセル302がアレイ状に配置されてMRAMに集積化されていることは、当業者には理解されよう。電流誘起磁界書込み型の磁気抵抗効果素子(図4A~図4C)に対して、図6の回路構成を適用した場合、500MHz以上での動作が可能となることが報告されている(N.Sakimura et al.,IEEE JOURNAL OF SOLID-STATE CIRCUITS,Vol.42,2007,pp.830.)。 FIG. 6 is a circuit diagram showing another configuration example of the memory cell in which the magnetoresistive effect element of this embodiment is integrated. FIG. 6 shows a circuit configuration of a single memory cell 302. However, it will be understood by those skilled in the art that a plurality of memory cells 302 are actually arranged in an array and integrated in an MRAM. It will be understood. It has been reported that when the circuit configuration of FIG. 6 is applied to a current-induced magnetic field writing type magnetoresistive effect element (FIGS. 4A to 4C), operation at 500 MHz or more is possible (N. Sakimura). et al., IEEE JOURNAL OF SOLID-STATE CIRCUITS, Vol.42, 2007, pp.830.).
 なお、図6は、一つのメモリセル302に2つのMTJ1とMTJ2が用いられている。MTJ1とMTJ2には相補なデータ(“0”と“1”又は“1”と“0”)が記憶される。加えて、メモリセル302内で、MOSトランジスタM13、M14により読み出し信号が増幅される。 In FIG. 6, two MTJ1 and MTJ2 are used for one memory cell 302. Complementary data ("0" and "1" or "1" and "0") are stored in MTJ1 and MTJ2. In addition, in the memory cell 302, the read signal is amplified by the MOS transistors M13 and M14.
 MTJ1及びMTJ2として図4Aの第1及び第2の磁気抵抗効果素子を用いる場合、第2の磁気抵抗効果素子(MTJ2)では、磁化固定層230の両端に接続される2つの端子は、一方がMOSトランジスタM11の一方のソース/ドレインにノードN11を介して接続され、他方が第1の磁気抵抗効果素子(MTJ1)の磁化固定層230の一方の端子にノードN12を介して接続される。磁化自由層210に接続される端子は、読み出し電流を供給する配線SPLにノードN14を介して接続される。第1の磁気抵抗効果素子(MTJ1)では、磁化固定層230の両端に接続される2つの端子は、一方が第2の磁気抵抗効果素子(MTJ2)の磁化固定層230の他方の端子にノードN12を介して接続され、他方がMOSトランジスタM12の一方のソース/ドレインにノードN13を介して接続される。磁化自由層210に接続される端子は、読み出しのためのグラウンド線GNDにノードN15を介して接続される。すなわち、図中の311、312は、それぞれ第2及び第1の磁気抵抗効果素子の磁化固定層230に対応する。 When the first and second magnetoresistive elements in FIG. 4A are used as MTJ1 and MTJ2, in the second magnetoresistive element (MTJ2), one of the two terminals connected to both ends of the magnetization fixed layer 230 is One source / drain of the MOS transistor M11 is connected via the node N11, and the other is connected to one terminal of the magnetization fixed layer 230 of the first magnetoresistive effect element (MTJ1) via the node N12. A terminal connected to the magnetization free layer 210 is connected to a wiring SPL that supplies a read current via a node N14. In the first magnetoresistance effect element (MTJ1), one of two terminals connected to both ends of the magnetization fixed layer 230 is a node to the other terminal of the magnetization fixed layer 230 of the second magnetoresistance effect element (MTJ2). The other is connected via N12, and the other is connected to one source / drain of MOS transistor M12 via node N13. A terminal connected to the magnetization free layer 210 is connected to a ground line GND for reading via a node N15. That is, 311 and 312 in the figure correspond to the magnetization fixed layer 230 of the second and first magnetoresistance effect elements, respectively.
 MTJ1及びMTJ2として図4Bの第1及び第2の磁気抵抗効果素子を用いる場合、第2の磁気抵抗効果素子(MTJ2)では、導電層250の両端に接続される2つの端子は、一方がMOSトランジスタM11の一方のソース/ドレインにノードN11を介して接続され、他方が第1の磁気抵抗効果素子(MTJ1)の導電層250の一方の端子にノードN12を介して接続される。磁化自由層210に接続される端子は、読み出し電流を供給する配線SPLにノードN14を介して接続される。第1の磁気抵抗効果素子(MTJ1)では、導電層250の両端に接続される2つの端子は、一方が第2の磁気抵抗効果素子(MTJ2)の導電層250の他方の端子にノードN12を介して接続され、他方がMOSトランジスタM12の一方のソース/ドレインにノードN13を介して接続される。磁化自由層210に接続される端子は、読み出しのためのグラウンド線GNDにノードN15を介して接続される。すなわち、図中の311、312は、それぞれ第2及び第1の磁気抵抗効果素子の導電層250に対応する。 When the first and second magnetoresistive elements in FIG. 4B are used as MTJ1 and MTJ2, in the second magnetoresistive element (MTJ2), one of the two terminals connected to both ends of the conductive layer 250 is a MOS. One source / drain of the transistor M11 is connected via the node N11, and the other is connected to one terminal of the conductive layer 250 of the first magnetoresistive element (MTJ1) via the node N12. A terminal connected to the magnetization free layer 210 is connected to a wiring SPL that supplies a read current via a node N14. In the first magnetoresistive element (MTJ1), one of two terminals connected to both ends of the conductive layer 250 has a node N12 on the other terminal of the conductive layer 250 of the second magnetoresistive element (MTJ2). The other is connected to one source / drain of the MOS transistor M12 via a node N13. A terminal connected to the magnetization free layer 210 is connected to a ground line GND for reading via a node N15. That is, 311 and 312 in the figure correspond to the conductive layers 250 of the second and first magnetoresistive elements, respectively.
 MTJ1及びMTJ2として図4Cの第1及び第2の磁気抵抗効果素子を用いる場合、第2の磁気抵抗効果素子(MTJ2)では、導電層250の両端に接続される2つの端子は、一方がMOSトランジスタM11の一方のソース/ドレインにノードN11を介して接続され、他方が第1の磁気抵抗効果素子(MTJ1)の導電層250の一方の端子にノードN12を介して接続される。磁化固定層230bに接続される端子は、読み出し電流を供給する配線SPLにノードN14を介して接続される。第1の磁気抵抗効果素子(MTJ1)では、導電層250の両端に接続される2つの端子は、一方が第2の磁気抵抗効果素子(MTJ2)の導電層250の他方の端子にノードN12を介して接続され、他方がMOSトランジスタM12の一方のソース/ドレインにノードN13を介して接続される。磁化固定層230bに接続される端子は、読み出しのためのグラウンド線GNDにノードN15を介して接続される。すなわち、図中の311、312は、それぞれ第2及び第1の磁気抵抗効果素子の導電層250に対応する。 When the first and second magnetoresistive elements in FIG. 4C are used as MTJ1 and MTJ2, in the second magnetoresistive element (MTJ2), one of two terminals connected to both ends of the conductive layer 250 is a MOS. One source / drain of the transistor M11 is connected via the node N11, and the other is connected to one terminal of the conductive layer 250 of the first magnetoresistive element (MTJ1) via the node N12. A terminal connected to the magnetization fixed layer 230b is connected to a wiring SPL for supplying a read current via a node N14. In the first magnetoresistive element (MTJ1), one of two terminals connected to both ends of the conductive layer 250 has a node N12 on the other terminal of the conductive layer 250 of the second magnetoresistive element (MTJ2). The other is connected to one source / drain of the MOS transistor M12 via a node N13. A terminal connected to the magnetization fixed layer 230b is connected to a ground line GND for reading through a node N15. That is, 311 and 312 in the figure correspond to the conductive layers 250 of the second and first magnetoresistive elements, respectively.
 MTJ1及びMTJ2として図2A~図2Dの第1及び第2の磁気抵抗効果素子9を用いる場合、第2の磁気抵抗効果素子(MTJ2)では、磁化固定層30に接続される端子は、読み出し電流を供給する配線SPLに接続される。磁化自由層10に接続される2つの端子は、一方がMOSトランジスタM11の一方のソース/ドレインにノードN11を介して接続され、他方が第1の磁気抵抗効果素子(MTJ1)の磁化自由層10の一端にノードN12を介して接続される。第1の磁気抵抗効果素子(MTJ1)では、磁化固定層30に接続される端子は、読み出しのためのグラウンド線GNDに接続される。磁化自由層10に接続される2つの端子は、一方が第2の磁気抵抗効果素子(MTJ2)の磁化自由層10の他端にノードN12を介して接続され、他方がMOSトランジスタM12の一方のソース/ドレインにノードN13を介して接続される。すなわち、図中の311、312は、それぞれ第2及び第1の磁気抵抗効果素子の磁化自由層10に対応する。 When the first and second magnetoresistive elements 9 of FIGS. 2A to 2D are used as MTJ1 and MTJ2, in the second magnetoresistive element (MTJ2), the terminal connected to the magnetization fixed layer 30 is a read current. Is connected to a wiring SPL for supplying One of the two terminals connected to the magnetization free layer 10 is connected to one source / drain of the MOS transistor M11 via the node N11, and the other is connected to the magnetization free layer 10 of the first magnetoresistance effect element (MTJ1). Is connected to one end of this via a node N12. In the first magnetoresistive element (MTJ1), the terminal connected to the magnetization fixed layer 30 is connected to the ground line GND for reading. One of the two terminals connected to the magnetization free layer 10 is connected to the other end of the magnetization free layer 10 of the second magnetoresistive effect element (MTJ2) via the node N12, and the other is one of the MOS transistors M12. The source / drain is connected through node N13. That is, 311 and 312 in the figure correspond to the magnetization free layer 10 of the second and first magnetoresistive elements, respectively.
 MTJ1及びMTJ2として図3A~図3Bの第1及び第2の磁気抵抗効果素子を用いる場合、第2の磁気抵抗効果素子(MTJ2)では、磁化自由層10及び磁化固定層30のいずれか一方は、一方がMOSトランジスタM11の一方のソース/ドレインにノードN11を介して接続され、他方が第1の磁気抵抗効果素子(MTJ1)における磁化自由層10及び磁化固定層30のうちの同じ方の端子にノードN12を介して接続される。第1の磁気抵抗効果素子(MTJ1)では、磁化自由層10及び磁化固定層30のうちのノードN12に接続された第2の磁気抵抗効果素子(MTJ2)と同じ方が、第2の磁気抵抗効果素子(MTJ2)にノードN12を介して接続され、磁化自由層10及び磁化固定層30のうちの残りが、MOSトランジスタM12の一方のソース/ドレインにノードN13を介して接続される。図示されないが、読み出し電流を供給する配線SPLのノードN14はノードN11に接続され、グラウンド線GNDのノードN15はノードN13に接続される。図中の311、312は、それぞれ第2及び第1の磁気抵抗効果素子に対応する。 When the first and second magnetoresistive elements in FIGS. 3A to 3B are used as MTJ1 and MTJ2, in the second magnetoresistive element (MTJ2), one of the magnetization free layer 10 and the magnetization fixed layer 30 is One is connected to one source / drain of the MOS transistor M11 via the node N11, and the other is the same terminal of the magnetization free layer 10 and the magnetization fixed layer 30 in the first magnetoresistive element (MTJ1). To the node N12 through the node N12. In the first magnetoresistive effect element (MTJ1), the same one as the second magnetoresistive effect element (MTJ2) connected to the node N12 of the magnetization free layer 10 and the magnetization fixed layer 30 has the second magnetoresistance effect. The effect element (MTJ2) is connected via the node N12, and the rest of the magnetization free layer 10 and the magnetization fixed layer 30 are connected to one source / drain of the MOS transistor M12 via the node N13. Although not shown, the node N14 of the wiring SPL that supplies the read current is connected to the node N11, and the node N15 of the ground line GND is connected to the node N13. 311 and 312 in the figure correspond to the second and first magnetoresistive elements, respectively.
 次に、図6に示されるMRAMにおける書き込み方法、読み出し方法について説明する。まず、書き込みを行う場合、ワード線WWLが“high”レベルにプルアップされ、MOSトランジスタM11、M12が“ON”にされる。また、ビット線WBLa、WBLbのいずれか一方が“high”レベルにプルアップされ、他方が“low”レベルにプルダウンされる。ビット線WBLa、WBLbのどちらを“high”レベルにプルアップし、どちらを“low”レベルにプルダウンするかは、MTJ1及びMTJ2に書き込まれるべきデータにより決定される。これにより、MTJ2とMTJ1には相補なデータ(“0”と“1”又は“1”と“0”)が記憶される。 Next, a writing method and a reading method in the MRAM shown in FIG. 6 will be described. First, when writing, the word line WWL is pulled up to a “high” level, and the MOS transistors M11 and M12 are turned “ON”. One of the bit lines WBLa and WBLb is pulled up to the “high” level, and the other is pulled down to the “low” level. Which of the bit lines WBLa and WBLb is pulled up to the “high” level and which is pulled down to the “low” level is determined by the data to be written in the MTJ1 and MTJ2. Thereby, complementary data ("0" and "1" or "1" and "0") are stored in MTJ2 and MTJ1.
 一方、読み出しを行う場合、ワード線RWLが“high”レベルにプルアップされ、MOSトランジスタM15が“ON”にされる。また、読出し電圧供給線SPLが“high”レベルにプルアップされる。このとき読出し電圧供給線SPLから、ノードN14、ノードN11、MTJ2、ノードN12、MTJ1、ノードN13、ノードN15の経路を通る読み出し電流がMTJ1及びMTJ2を経由してグラウンド線GNDへと流れる。このとき、MTJ2とMTJ1との間のノードN12の電位は、MTJ2とMTJ1に記憶された相補的なデータに依存する。したがって、ノードN12の電位をMOSトランジスタM13、M14で増幅して、ビット線RBLで検知することにより高速での読み出しが可能となる。 On the other hand, when reading, the word line RWL is pulled up to “high” level, and the MOS transistor M15 is turned “ON”. Further, the read voltage supply line SPL is pulled up to the “high” level. At this time, the read current passing through the paths of the node N14, the nodes N11, MTJ2, the nodes N12, MTJ1, the node N13, and the node N15 flows from the read voltage supply line SPL to the ground line GND via the MTJ1 and MTJ2. At this time, the potential of the node N12 between MTJ2 and MTJ1 depends on complementary data stored in MTJ2 and MTJ1. Therefore, the potential of the node N12 is amplified by the MOS transistors M13 and M14 and detected by the bit line RBL, thereby enabling high-speed reading.
 ただし、図6に示された回路構成、及び、ここで述べられた回路動作は、本発明を実施する方法の一例に過ぎず、他の回路構成による実施も可能である。 However, the circuit configuration shown in FIG. 6 and the circuit operation described here are merely examples of a method for carrying out the present invention, and can be implemented by other circuit configurations.
 (第1変形例)
 次に、本発明の実施例に係る各MRAMにおける磁気抵抗効果素子の第1変形例の構成について説明する。図7A~図7Dは、本発明の実施例に係る各MRAMにおける磁気抵抗効果素子の第1変形例の構成を示す概略図である。本発明の実施例に係る磁気抵抗効果素子8と磁気抵抗効果素子9とは同一のチップ上に形成されている。ただし、図中の各構成内の白抜き矢印は、磁化の向きを示している(以下同じ)。
(First modification)
Next, the configuration of a first modification of the magnetoresistive effect element in each MRAM according to an embodiment of the present invention will be described. 7A to 7D are schematic views showing the configuration of a first modification of the magnetoresistive effect element in each MRAM according to the embodiment of the present invention. The magnetoresistive effect element 8 and the magnetoresistive effect element 9 according to the embodiment of the present invention are formed on the same chip. However, the white arrow in each component in the figure indicates the direction of magnetization (the same applies hereinafter).
 図7Aに示すように、磁気抵抗効果素子9は、高集積・大容量(低電流)向けのMRAM5のメモリセルに用いられている。スピン偏極電流書込み型の電流誘起磁壁移動型の磁気抵抗効果素子である。磁気抵抗効果素子9は、磁化自由層10、磁化固定層30、磁化自由層10と磁化固定層30との間に設けられた非磁性層20を備えている。磁気抵抗効果素子9は、図2Bに記載の磁気抵抗効果素子と同じである。磁化自由層10の端子として、コンタクト41が第1磁化固定領域11aに接続され、コンタクト42が第2磁化固定領域11bに接続されている。各コンタクトは、例えば、メモリセルのMOSトランジスタ(図5A参照)に接続される。磁化固定層30は、例えば、グランド線GND(図5A参照)に接続される。図示されていないが、上述の層に加えて、電極層、拡散防止層、下地層などが適宜設けられることが望ましい。 As shown in FIG. 7A, the magnetoresistive effect element 9 is used in a memory cell of the MRAM 5 for high integration and large capacity (low current). This is a spin-polarized current writing type current-induced domain wall motion type magnetoresistive effect element. The magnetoresistive effect element 9 includes a magnetization free layer 10, a magnetization fixed layer 30, and a nonmagnetic layer 20 provided between the magnetization free layer 10 and the magnetization fixed layer 30. The magnetoresistive effect element 9 is the same as the magnetoresistive effect element shown in FIG. 2B. As terminals of the magnetization free layer 10, a contact 41 is connected to the first magnetization fixed region 11a, and a contact 42 is connected to the second magnetization fixed region 11b. Each contact is connected to, for example, a MOS transistor (see FIG. 5A) of the memory cell. The magnetization fixed layer 30 is connected to, for example, the ground line GND (see FIG. 5A). Although not shown, in addition to the above-described layers, it is desirable that an electrode layer, a diffusion prevention layer, a base layer, and the like are appropriately provided.
 磁気抵抗効果素子9において、書き込み電流は、コンタクト41、第1磁化固定領域11a、磁化自由領域12、第2磁化固定領域11b及びコンタクト42の経路を流れる。これにより、磁化自由層10の磁壁がその書き込み電流に応じて移動する。また、読み出し電流は、磁化固定層30、非磁性層20及び磁化自由層10(磁化自由領域12)で構成される磁気トンネル接合(MTJ)を流れる。その他の構成及び動作については、図2Bの磁気抵抗効果素子に関連して記載されたとおりである。なお、磁化自由層10の形状は、図2A~図2Dのいずれであっても良い。 In the magnetoresistive effect element 9, the write current flows through the path of the contact 41, the first magnetization fixed region 11 a, the magnetization free region 12, the second magnetization fixed region 11 b, and the contact 42. Thereby, the domain wall of the magnetization free layer 10 moves according to the write current. The read current flows through a magnetic tunnel junction (MTJ) composed of the magnetization fixed layer 30, the nonmagnetic layer 20, and the magnetization free layer 10 (magnetization free region 12). Other configurations and operations are as described in relation to the magnetoresistive effect element in FIG. 2B. The shape of the magnetization free layer 10 may be any of FIGS. 2A to 2D.
 磁気抵抗効果素子8は、高速動作向けのMRAM4のメモリセルに用いられている。電流誘起磁界書き込み型の磁気抵抗効果素子である。特に、磁気抵抗効果素子8は前述の配線層書込み型である。磁気抵抗効果素子8は、磁化自由層210、非磁性層220、磁化固定層230a、及び磁化自由層210の近傍に設けられた導電層250を備えている。磁気抵抗効果素子8は、垂直磁化膜を用いているほかは図4Bに記載の磁気抵抗効果素子と同じである。磁化自由層210はメタル層257を介して導電層250に接続されている。導電層250は、一端がコンタクト255に接続され、他端がコンタクト256にそれぞれ接続されている。各コンタクトは、例えば、メモリセルのMOSトランジスタ(図5A参照)に接続される。磁化固定層230aは、例えば、グランド線GND(図5A参照)に接続される。図示されていないが、上述の層に加えて、電極層、拡散防止層、下地層などが適宜設けられることが望ましい。 The magnetoresistive effect element 8 is used in a memory cell of the MRAM 4 for high speed operation. This is a current-induced magnetic field writing type magnetoresistive effect element. In particular, the magnetoresistive effect element 8 is of the aforementioned wiring layer writing type. The magnetoresistive effect element 8 includes a magnetization free layer 210, a nonmagnetic layer 220, a magnetization fixed layer 230 a, and a conductive layer 250 provided in the vicinity of the magnetization free layer 210. The magnetoresistive effect element 8 is the same as the magnetoresistive effect element shown in FIG. 4B except that a perpendicular magnetization film is used. The magnetization free layer 210 is connected to the conductive layer 250 through the metal layer 257. The conductive layer 250 has one end connected to the contact 255 and the other end connected to the contact 256. Each contact is connected to, for example, a MOS transistor (see FIG. 5A) of the memory cell. The magnetization fixed layer 230a is connected to the ground line GND (see FIG. 5A), for example. Although not shown, in addition to the above-described layers, it is desirable that an electrode layer, a diffusion prevention layer, a base layer, and the like are appropriately provided.
 図7Aの例では、導電層250は、磁化自由層210、非磁性層220及び磁化固定層230aと同じ材料の積層体から構成されている。書き込み電流はどの材料の層を流れても良い。 In the example of FIG. 7A, the conductive layer 250 is composed of a stacked body of the same material as the magnetization free layer 210, the nonmagnetic layer 220, and the magnetization fixed layer 230a. The write current may flow through any material layer.
 磁気抵抗効果素子8において、書き込み電流は、コンタクト255、導電層250、コンタクト256の経路を流れる。これにより、導電層250の周囲(磁化自由層210を含む範囲)に磁界が誘起される。また、読み出し電流は、磁化固定層230a、非磁性層220及び磁化自由層210で構成される磁気トンネル接合(MTJ)の経路を流れる。その他の構成及び動作については、図4Bの磁気抵抗効果素子に関連して記載されたとおりである。 In the magnetoresistive effect element 8, the write current flows through the path of the contact 255, the conductive layer 250, and the contact 256. Thereby, a magnetic field is induced around the conductive layer 250 (a range including the magnetization free layer 210). In addition, the read current flows through a magnetic tunnel junction (MTJ) path formed by the magnetization fixed layer 230a, the nonmagnetic layer 220, and the magnetization free layer 210. Other configurations and operations are as described in relation to the magnetoresistive effect element in FIG. 4B.
 導電層250の形状は、そこを流れる書き込み電流が磁化自由層210を含む範囲に所望の磁界を誘起可能であれば、特に制限は無い。例えば、図7Bは図7Aの磁気抵抗効果素子8をz方向から見た平面図であるが、導電層250は、磁気トンネル接合(磁化自由層210、非磁性層220及び磁化固定層230)を囲むような略C字型の形状であっても良い。また、図7Cに示されるように、導電層250は、磁気トンネル接合の横を直線的に伸びる略I字型の形状の導電層250aであっても良い。更に、図7Dに示されるように、導電層250は、磁気トンネル接合の横を屈曲しながら通るような略L字型の形状の導電層250bであっても良い。 The shape of the conductive layer 250 is not particularly limited as long as a desired magnetic field can be induced in a range in which the write current flowing therethrough includes the magnetization free layer 210. For example, FIG. 7B is a plan view of the magnetoresistive effect element 8 of FIG. 7A as viewed from the z direction, but the conductive layer 250 includes magnetic tunnel junctions (the magnetization free layer 210, the nonmagnetic layer 220, and the magnetization fixed layer 230). It may be a substantially C-shape that surrounds. Further, as shown in FIG. 7C, the conductive layer 250 may be a substantially I-shaped conductive layer 250a that linearly extends beside the magnetic tunnel junction. Further, as shown in FIG. 7D, the conductive layer 250 may be a substantially L-shaped conductive layer 250b that passes while bending beside the magnetic tunnel junction.
 本変形例の場合、既述の効果に加えて、以下の効果を有する。
 発明の実施例に係る磁気抵抗効果素子8と磁気抵抗効果素子9とは同一のチップ上に形成されている。そして、磁気抵抗効果素子8の磁化自由層210、非磁性層220及び磁化固定層230aは、それぞれ磁気抵抗効果素子9の磁化自由層10、非磁性層20及び磁化固定層30と同一レイヤーに同一材料で同時に形成することができる。すなわち、MRAM4とMRAM5とは、同一のプロセスでの形成が可能であり、プロセス数は増大しない。それにより、低コスト、且つ短時間で半導体装置1を製造することが可能となる。また、図7A~図7Dの場合、導電層250も、磁化自由層210、非磁性層220及び磁化固定層230aと同じ材料の積層体から構成されているので、同様に同一のプロセスでの形成が可能であり、より低コスト且つ短時間で半導体装置1を製造することが可能となる。
In the case of this modification, in addition to the effects described above, the following effects are obtained.
The magnetoresistive effect element 8 and the magnetoresistive effect element 9 according to the embodiment of the invention are formed on the same chip. The magnetization free layer 210, the nonmagnetic layer 220, and the magnetization fixed layer 230a of the magnetoresistive effect element 8 are the same as the magnetization free layer 10, the nonmagnetic layer 20, and the magnetization fixed layer 30 of the magnetoresistive effect element 9, respectively. It can be formed simultaneously with the material. That is, the MRAM 4 and the MRAM 5 can be formed by the same process, and the number of processes does not increase. As a result, the semiconductor device 1 can be manufactured at a low cost and in a short time. 7A to 7D, the conductive layer 250 is also formed of the same material as the magnetization free layer 210, the nonmagnetic layer 220, and the magnetization fixed layer 230a. The semiconductor device 1 can be manufactured at a lower cost and in a shorter time.
(第2変形例)
 次に、本発明の実施例に係る各MRAMにおける磁気抵抗効果素子の第2変形例の構成について説明する。図8は、本発明の実施例に係る各MRAMにおける磁気抵抗効果素子の第2変形例の構成を示す斜視図である。本発明の実施例の第2変形例に係る磁気抵抗効果素子8aと磁気抵抗効果素子9aとは同一のチップ上に形成されている。
(Second modification)
Next, the configuration of the second modification of the magnetoresistive effect element in each MRAM according to the embodiment of the present invention will be described. FIG. 8 is a perspective view showing a configuration of a second modification of the magnetoresistive effect element in each MRAM according to the embodiment of the present invention. The magnetoresistive effect element 8a and the magnetoresistive effect element 9a according to the second modification of the embodiment of the present invention are formed on the same chip.
 図8に示すように、磁気抵抗効果素子9aは、高集積・大容量(低電流)向けのMRAM5のメモリセルに用いられている。スピン偏極電流書込み型の電流誘起磁壁移動型の磁気抵抗効果素子である。磁気抵抗効果素子9aは、磁化自由層10、磁化固定層30、磁化自由層10と磁化固定層30との間に設けられた非磁性層20を備えている。磁気抵抗効果素子9aは、図2Aに記載の磁気抵抗効果素子と同じである。磁化自由層10の端子として、コンタクト41が第1磁化固定領域11aに接続され、コンタクト42が第2磁化固定領域11bに接続されている。各コンタクトは、例えば、メモリセルのMOSトランジスタ(図5A参照)に接続される。磁化固定層30は、例えば、グランド線GND(図5A参照)に接続される。図示されていないが、上述の層に加えて、電極層、拡散防止層、下地層などが適宜設けられることが望ましい。 As shown in FIG. 8, the magnetoresistive effect element 9a is used in a memory cell of the MRAM 5 for high integration and large capacity (low current). This is a spin-polarized current writing type current-induced domain wall motion type magnetoresistive effect element. The magnetoresistive effect element 9 a includes a magnetization free layer 10, a magnetization fixed layer 30, and a nonmagnetic layer 20 provided between the magnetization free layer 10 and the magnetization fixed layer 30. The magnetoresistive effect element 9a is the same as the magnetoresistive effect element shown in FIG. 2A. As terminals of the magnetization free layer 10, a contact 41 is connected to the first magnetization fixed region 11a, and a contact 42 is connected to the second magnetization fixed region 11b. Each contact is connected to, for example, a MOS transistor (see FIG. 5A) of the memory cell. The magnetization fixed layer 30 is connected to, for example, the ground line GND (see FIG. 5A). Although not shown, in addition to the above-described layers, it is desirable that an electrode layer, a diffusion prevention layer, a base layer, and the like are appropriately provided.
 磁気抵抗効果素子9aにおいて、書き込み電流は、コンタクト41(+41a)、第1磁化固定領域11a、磁化自由領域12、第2磁化固定領域11b及びコンタクト42(+42a)の経路を流れる。これにより、磁化自由層10の磁壁がその書き込み電流に応じて移動する。また、読み出し電流は、磁化固定層30、非磁性層20及び磁化自由層10(磁化自由領域12)で構成される磁気トンネル接合(MTJ)を流れる。その他の構成及び動作については、図2Aの磁気抵抗効果素子に関連して記載されたとおりである。なお、磁化自由層10の形状は、図2A~図2Dのいずれであっても良い。 In the magnetoresistive effect element 9a, the write current flows through the path of the contact 41 (+ 41a), the first magnetization fixed region 11a, the magnetization free region 12, the second magnetization fixed region 11b, and the contact 42 (+ 42a). Thereby, the domain wall of the magnetization free layer 10 moves according to the write current. The read current flows through a magnetic tunnel junction (MTJ) composed of the magnetization fixed layer 30, the nonmagnetic layer 20, and the magnetization free layer 10 (magnetization free region 12). Other configurations and operations are as described in relation to the magnetoresistive effect element in FIG. 2A. The shape of the magnetization free layer 10 may be any of FIGS. 2A to 2D.
 磁気抵抗効果素子8aは、高速動作向けのMRAM4のメモリセルに用いられている。電流誘起磁界書き込み型の磁気抵抗効果素子である。特に、磁気抵抗効果素子8aは前述の中間層配線書き込み型である。磁気抵抗効果素子8aは、磁化固定層230b、非磁性層220、磁化自由層210、導電層250及び磁化自由層210bを備えている。磁気抵抗効果素子8aは、図4Cに記載の磁気抵抗効果素子と同じである。導電層250は、両端の端子が、例えば、2つのメモリセルのMOSトランジスタ(図5A参照)に接続される。磁化固定層230bは、例えば、グランド線GND(図5A参照)に接続される。図示されていないが、上述の層に加えて、電極層、拡散防止層、下地層などが適宜設けられることが望ましい。 The magnetoresistive effect element 8a is used in a memory cell of the MRAM 4 for high speed operation. This is a current-induced magnetic field writing type magnetoresistive effect element. In particular, the magnetoresistive effect element 8a is the above-described intermediate layer wiring write type. The magnetoresistive effect element 8a includes a magnetization fixed layer 230b, a nonmagnetic layer 220, a magnetization free layer 210, a conductive layer 250, and a magnetization free layer 210b. The magnetoresistive effect element 8a is the same as the magnetoresistive effect element shown in FIG. 4C. The conductive layer 250 has terminals at both ends connected to, for example, MOS transistors of two memory cells (see FIG. 5A). The magnetization fixed layer 230b is connected to, for example, the ground line GND (see FIG. 5A). Although not shown, in addition to the above-described layers, it is desirable that an electrode layer, a diffusion prevention layer, a base layer, and the like are appropriately provided.
 磁気抵抗効果素子8aにおいて、書き込み電流は、導電層250を流れる。これにより、導電層250の周囲(磁化自由層210及び磁化自由層210aを含む範囲)に磁界が誘起される。また、読み出し電流は、磁化固定層230b、非磁性層220及び磁化自由層210で構成される磁気トンネル接合(MTJ)の経路を流れる。その他の構成及び動作については、図4Cの磁気抵抗効果素子に関連して記載されたとおりである。 In the magnetoresistive effect element 8a, the write current flows through the conductive layer 250. Thereby, a magnetic field is induced around the conductive layer 250 (a range including the magnetization free layer 210 and the magnetization free layer 210a). Further, the read current flows through a magnetic tunnel junction (MTJ) path composed of the magnetization fixed layer 230b, the nonmagnetic layer 220, and the magnetization free layer 210. Other configurations and operations are as described in relation to the magnetoresistive effect element in FIG. 4C.
 本変形例の場合、既述の効果に加えて、以下の効果を有する。
 発明の実施例に係る磁気抵抗効果素子8aと磁気抵抗効果素子9aとは同一のチップ上に形成されている。そして、磁気抵抗効果素子8aの磁化自由層210a、導電層250a、磁化自由層210、非磁性層220及び磁化固定層230bは、それぞれ磁気抵抗効果素子9aのコンタクト41a、42a、コンタクト41、42、磁化自由層10、非磁性層20及び磁化固定層30と同一レイヤーに同一材料で同時に形成することができる。すなわち、MRAM4とMRAM5とは、同一のプロセスでの形成が可能であり、プロセス数は増大しない。それにより、低コスト、且つ短時間で半導体装置1を製造することが可能となる。
In the case of this modification, in addition to the effects described above, the following effects are obtained.
The magnetoresistive effect element 8a and the magnetoresistive effect element 9a according to the embodiment of the present invention are formed on the same chip. The magnetization free layer 210a, the conductive layer 250a, the magnetization free layer 210, the nonmagnetic layer 220, and the magnetization fixed layer 230b of the magnetoresistive effect element 8a are respectively connected to the contacts 41a and 42a, contacts 41, 42, and The magnetization free layer 10, the nonmagnetic layer 20, and the magnetization fixed layer 30 can be simultaneously formed in the same layer with the same material. That is, the MRAM 4 and the MRAM 5 can be formed by the same process, and the number of processes does not increase. As a result, the semiconductor device 1 can be manufactured at a low cost and in a short time.
(第3変形例)
 次に、本発明の実施例に係る各MRAMにおける磁気抵抗効果素子の第3変形例の構成について説明する。図9は、本発明の実施例に係る各MRAMにおける磁気抵抗効果素子の第3変形例の構成を示す斜視図である。本発明の実施例の第3変形例に係る磁気抵抗効果素子8bと磁気抵抗効果素子9bとは同一のチップ上に形成されている。
(Third Modification)
Next, the configuration of a third modification of the magnetoresistive element in each MRAM according to the embodiment of the present invention will be described. FIG. 9 is a perspective view showing a configuration of a third modification of the magnetoresistive element in each MRAM according to the embodiment of the present invention. The magnetoresistive effect element 8b and the magnetoresistive effect element 9b according to the third modification of the embodiment of the present invention are formed on the same chip.
 図9に示すように、磁気抵抗効果素子9bは、高集積・大容量(低電流)向けのMRAM5のメモリセルに用いられている。スピン偏極電流書込み型のスピン注入磁化反転型の磁気抵抗効果素子である。磁気抵抗効果素子9bは、磁化自由層10、磁化固定層30、磁化自由層10と磁化固定層30との間に設けられた非磁性層20を備えている。磁気抵抗効果素子9bは、図3Aに記載の磁気抵抗効果素子と同じである。磁化自由層10の端子としてコンタクト94、配線層95が接続され、磁化固定層30にコンタクト91、配線層92が接続されている。各コンタクト、配線層は、例えば、メモリセルのMOSトランジスタ(図5A参照)に接続される。図示されていないが、上述の層に加えて、電極層、拡散防止層、下地層などが適宜設けられることが望ましい。 As shown in FIG. 9, the magnetoresistive effect element 9b is used in a memory cell of the MRAM 5 for high integration and large capacity (low current). This is a spin-polarization current writing type spin-injection magnetization reversal type magnetoresistive effect element. The magnetoresistive effect element 9 b includes a magnetization free layer 10, a magnetization fixed layer 30, and a nonmagnetic layer 20 provided between the magnetization free layer 10 and the magnetization fixed layer 30. The magnetoresistive effect element 9b is the same as the magnetoresistive effect element shown in FIG. 3A. A contact 94 and a wiring layer 95 are connected as terminals of the magnetization free layer 10, and a contact 91 and a wiring layer 92 are connected to the magnetization fixed layer 30. Each contact and wiring layer is connected to, for example, a MOS transistor (see FIG. 5A) of the memory cell. Although not shown, in addition to the above-described layers, it is desirable that an electrode layer, a diffusion prevention layer, a base layer, and the like are appropriately provided.
 磁気抵抗効果素子9bにおいて、書き込み電流は、コンタクト91、磁化固定層30、非磁性層20、磁化自由層10及びコンタクト94の経路を流れる。これにより、磁化自由層10の磁化方向がその書き込み電流に応じて変化する。また、読み出し電流は、磁化固定層30、非磁性層20及び磁化自由層10で構成される磁気トンネル接合(MTJ)を流れる。その他の構成及び動作については、図3Aの磁気抵抗効果素子に関連して記載されたとおりである。 In the magnetoresistive effect element 9b, the write current flows through the path of the contact 91, the magnetization fixed layer 30, the nonmagnetic layer 20, the magnetization free layer 10, and the contact 94. Thereby, the magnetization direction of the magnetization free layer 10 changes according to the write current. The read current flows through a magnetic tunnel junction (MTJ) composed of the magnetization fixed layer 30, the nonmagnetic layer 20, and the magnetization free layer 10. Other configurations and operations are as described in connection with the magnetoresistive effect element of FIG. 3A.
 磁気抵抗効果素子8bは、高速動作向けのMRAM4のメモリセルに用いられている。電流誘起磁界書き込み型の磁気抵抗効果素子である。特に、磁気抵抗効果素子8bは前述のベース書き込み型である。磁気抵抗効果素子8bは、磁化固定層230、非磁性層220、及び磁化自由層210を備えている。磁気抵抗効果素子8bは、図4Aに記載の磁気抵抗効果素子と同じである。磁化自由層210の端子としてコンタクト258、配線層259が接続されている。また、磁化固定層230の一方の端子としてコンタクト260、配線層261が接続され、他方の端子としてコンタクト262、配線層263が接続されている。磁化固定層230は、両端の端子が、例えば、2つのメモリセルのMOSトランジスタ(図5A参照)に接続される。磁化自由層210は、例えば、グランド線GND(図5A参照)に接続される。図示されていないが、上述の層に加えて、電極層、拡散防止層、下地層などが適宜設けられることが望ましい。 The magnetoresistive effect element 8b is used in a memory cell of the MRAM 4 for high speed operation. This is a current-induced magnetic field writing type magnetoresistive effect element. In particular, the magnetoresistive effect element 8b is the above-described base write type. The magnetoresistive element 8 b includes a magnetization fixed layer 230, a nonmagnetic layer 220, and a magnetization free layer 210. The magnetoresistive effect element 8b is the same as the magnetoresistive effect element shown in FIG. 4A. A contact 258 and a wiring layer 259 are connected as terminals of the magnetization free layer 210. Further, the contact 260 and the wiring layer 261 are connected as one terminal of the magnetization fixed layer 230, and the contact 262 and the wiring layer 263 are connected as the other terminal. The terminals of both ends of the magnetization fixed layer 230 are connected to, for example, MOS transistors (see FIG. 5A) of two memory cells. The magnetization free layer 210 is connected to the ground line GND (see FIG. 5A), for example. Although not shown, in addition to the above-described layers, it is desirable that an electrode layer, a diffusion prevention layer, a base layer, and the like are appropriately provided.
 磁気抵抗効果素子8bにおいて、書き込み電流は、磁化固定層230を流れる。これにより、磁化固定層230の周囲(磁化自由層210を含む範囲)に磁界が誘起される。また、読み出し電流は、磁化固定層230、非磁性層220及び磁化自由層210で構成される磁気トンネル接合(MTJ)の経路を流れる。その他の構成及び動作については、図4Aの磁気抵抗効果素子に関連して記載されたとおりである。 In the magnetoresistive effect element 8b, the write current flows through the magnetization fixed layer 230. Thereby, a magnetic field is induced around the magnetization fixed layer 230 (a range including the magnetization free layer 210). In addition, the read current flows through a magnetic tunnel junction (MTJ) path constituted by the magnetization fixed layer 230, the nonmagnetic layer 220, and the magnetization free layer 210. Other configurations and operations are as described in relation to the magnetoresistive element of FIG. 4A.
 本変形例の場合、既述の効果に加えて、以下の効果を有する。
 発明の実施例に係る磁気抵抗効果素子8bと磁気抵抗効果素子9bとは同一のチップ上に形成されている。そして、磁気抵抗効果素子8bの磁化自由層210、非磁性層220及び磁化固定層230は、それぞれ磁気抵抗効果素子9bの磁化自由層10、非磁性層20及び磁化固定層30と同一レイヤーに同一材料で同時に形成することができる。すなわち、MRAM4とMRAM5とは、同一のプロセスでの形成が可能であり、プロセス数は増大しない。それにより、低コスト、且つ短時間で半導体装置1を製造することが可能となる。
In the case of this modification, in addition to the effects described above, the following effects are obtained.
The magnetoresistive effect element 8b and the magnetoresistive effect element 9b according to the embodiment of the present invention are formed on the same chip. The magnetization free layer 210, the nonmagnetic layer 220, and the magnetization fixed layer 230 of the magnetoresistive effect element 8b are the same layer as the magnetization free layer 10, the nonmagnetic layer 20, and the magnetization fixed layer 30 of the magnetoresistance effect element 9b, respectively. It can be formed simultaneously with the material. That is, the MRAM 4 and the MRAM 5 can be formed by the same process, and the number of processes does not increase. As a result, the semiconductor device 1 can be manufactured at a low cost and in a short time.
(第4変形例)
 次に、本発明の実施例に係る各MRAMにおける磁気抵抗効果素子の第4変形例の構成について説明する。図10は、本発明の実施例に係る各MRAMにおける磁気抵抗効果素子の第4変形例の構成を示す斜視図である。本発明の実施例の第4変形例に係る磁気抵抗効果素子8cと磁気抵抗効果素子9cとは同一のチップ上に形成されている。
(Fourth modification)
Next, the configuration of a fourth modification of the magnetoresistive element in each MRAM according to the embodiment of the present invention will be described. FIG. 10 is a perspective view showing a configuration of a fourth modification of the magnetoresistive effect element in each MRAM according to the embodiment of the present invention. The magnetoresistive effect element 8c and the magnetoresistive effect element 9c according to the fourth modification of the embodiment of the present invention are formed on the same chip.
 図10に示すように、磁気抵抗効果素子9cは、高集積・大容量(低電流)向けのMRAM5のメモリセルに用いられている。スピン偏極電流書込み型のスピン注入磁化反転型の磁気抵抗効果素子である。磁気抵抗効果素子9cは、磁化自由層10、磁化固定層30、磁化自由層10と磁化固定層30との間に設けられた非磁性層20を備えている。磁気抵抗効果素子9cは、図3Bに記載の磁気抵抗効果素子と同じである。磁化自由層10の端子としてコンタクト94、配線層95が接続され、磁化固定層30にコンタクト91、配線層92が接続されている。各コンタクト、配線層は、例えば、メモリセルのMOSトランジスタ(図5A参照)に接続される。図示されていないが、上述の層に加えて、電極層、拡散防止層、下地層などが適宜設けられることが望ましい。 As shown in FIG. 10, the magnetoresistive effect element 9c is used for a memory cell of the MRAM 5 for high integration and large capacity (low current). This is a spin-polarization current writing type spin-injection magnetization reversal type magnetoresistive effect element. The magnetoresistive effect element 9 c includes a magnetization free layer 10, a magnetization fixed layer 30, and a nonmagnetic layer 20 provided between the magnetization free layer 10 and the magnetization fixed layer 30. The magnetoresistive effect element 9c is the same as the magnetoresistive effect element shown in FIG. 3B. A contact 94 and a wiring layer 95 are connected as terminals of the magnetization free layer 10, and a contact 91 and a wiring layer 92 are connected to the magnetization fixed layer 30. Each contact and wiring layer is connected to, for example, a MOS transistor (see FIG. 5A) of the memory cell. Although not shown, in addition to the above-described layers, it is desirable that an electrode layer, a diffusion prevention layer, a base layer, and the like are appropriately provided.
 磁気抵抗効果素子9cにおいて、書き込み電流は、コンタクト91、磁化固定層30、非磁性層20、磁化自由層10及びコンタクト94の経路を流れる。これにより、磁化自由層10の磁化方向がその書き込み電流に応じて変化する。また、読み出し電流は、磁化固定層30、非磁性層20及び磁化自由層10で構成される磁気トンネル接合(MTJ)を流れる。その他の構成及び動作については、図3Bの磁気抵抗効果素子に関連して記載されたとおりである。 In the magnetoresistive effect element 9 c, the write current flows through the path of the contact 91, the magnetization fixed layer 30, the nonmagnetic layer 20, the magnetization free layer 10, and the contact 94. Thereby, the magnetization direction of the magnetization free layer 10 changes according to the write current. The read current flows through a magnetic tunnel junction (MTJ) composed of the magnetization fixed layer 30, the nonmagnetic layer 20, and the magnetization free layer 10. Other configurations and operations are as described in relation to the magnetoresistive effect element in FIG. 3B.
 磁気抵抗効果素子8cは、高速動作向けのMRAM4のメモリセルに用いられている。電流誘起磁界書き込み型の磁気抵抗効果素子である。特に、磁気抵抗効果素子8cは前述の配線層書き込み型である。磁気抵抗効果素子8cは、磁化自由層210、非磁性層220、磁化固定層230a、及び磁化自由層210の近傍に設けられた導電層250aを備えている。磁気抵抗効果素子8cは、垂直磁化膜を用いているほかは図4Bに記載の磁気抵抗効果素子と同じである。導電層250aは、図7Cの導電層250aと同じである。磁化固定層230aはコンタクト267、メタル層268、コンタクト269を介して導電層250aに接続されている。導電層250aは、一端がコンタクト270、配線層271に接続され、他端がコンタクト272、配線層273にそれぞれ接続されている。コンタクト270、272は、例えば、メモリセルのMOSトランジスタ(図5A参照)に接続される。磁化自由層210は、例えば、グランド線GND(図5A参照)に接続される。図示されていないが、上述の層に加えて、電極層、拡散防止層、下地層などが適宜設けられることが望ましい。 The magnetoresistive effect element 8c is used in a memory cell of the MRAM 4 for high speed operation. This is a current-induced magnetic field writing type magnetoresistive effect element. In particular, the magnetoresistive effect element 8c is the above-described wiring layer writing type. The magnetoresistive element 8 c includes a magnetization free layer 210, a nonmagnetic layer 220, a magnetization fixed layer 230 a, and a conductive layer 250 a provided in the vicinity of the magnetization free layer 210. The magnetoresistive effect element 8c is the same as the magnetoresistive effect element shown in FIG. 4B except that a perpendicular magnetization film is used. The conductive layer 250a is the same as the conductive layer 250a in FIG. 7C. The magnetization fixed layer 230a is connected to the conductive layer 250a through a contact 267, a metal layer 268, and a contact 269. The conductive layer 250 a has one end connected to the contact 270 and the wiring layer 271, and the other end connected to the contact 272 and the wiring layer 273. The contacts 270 and 272 are connected to, for example, a MOS transistor (see FIG. 5A) of the memory cell. The magnetization free layer 210 is connected to the ground line GND (see FIG. 5A), for example. Although not shown, in addition to the above-described layers, it is desirable that an electrode layer, a diffusion prevention layer, a base layer, and the like are appropriately provided.
 図10の例では、導電層250aは、磁化自由層210、非磁性層220及び磁化固定層230aと同じ材料の積層体から構成されている。書き込み電流はどの材料の層を流れても良い。 In the example of FIG. 10, the conductive layer 250a is formed of a stacked body made of the same material as the magnetization free layer 210, the nonmagnetic layer 220, and the magnetization fixed layer 230a. The write current may flow through any material layer.
 磁気抵抗効果素子8cにおいて、書き込み電流は、コンタクト270、導電層250a、コンタクト272の経路を流れる。これにより、導電層250aの周囲(磁化自由層210を含む範囲)に磁界が誘起される。また、読み出し電流は、磁化固定層230a、非磁性層220及び磁化自由層210で構成される磁気トンネル接合(MTJ)の経路を流れる。その他の構成及び動作については、図4Bの磁気抵抗効果素子に関連して記載されたとおりである。 In the magnetoresistive effect element 8c, the write current flows through the path of the contact 270, the conductive layer 250a, and the contact 272. As a result, a magnetic field is induced around the conductive layer 250a (a range including the magnetization free layer 210). In addition, the read current flows through a magnetic tunnel junction (MTJ) path formed by the magnetization fixed layer 230a, the nonmagnetic layer 220, and the magnetization free layer 210. Other configurations and operations are as described in relation to the magnetoresistive effect element in FIG. 4B.
 本変形例の場合、既述の効果に加えて、以下の効果を有する。
 発明の実施例に係る磁気抵抗効果素子8cと磁気抵抗効果素子9cとは同一のチップ上に形成されている。そして、磁気抵抗効果素子8cの磁化自由層210、非磁性層220及び磁化固定層230aは、それぞれ磁気抵抗効果素子9cの磁化自由層10、非磁性層20及び磁化固定層30と同一レイヤーに同一材料で同時に形成することができる。すなわち、MRAM4とMRAM5とは、同一のプロセスでの形成が可能であり、プロセス数は増大しない。それにより、低コスト、且つ短時間で半導体装置1を製造することが可能となる。また、図10の場合、導電層250aも、磁化自由層210、非磁性層220及び磁化固定層230aと同じ材料の積層体から構成されているので、同様に同一のプロセスでの形成が可能であり、より低コスト且つ短時間で半導体装置1を製造することが可能となる。
In the case of this modification, in addition to the effects described above, the following effects are obtained.
The magnetoresistive effect element 8c and the magnetoresistive effect element 9c according to the embodiment of the present invention are formed on the same chip. The magnetization free layer 210, the nonmagnetic layer 220, and the magnetization fixed layer 230a of the magnetoresistive effect element 8c are the same layer as the magnetization free layer 10, the nonmagnetic layer 20, and the magnetization fixed layer 30 of the magnetoresistive effect element 9c, respectively. It can be formed simultaneously with the material. That is, the MRAM 4 and the MRAM 5 can be formed by the same process, and the number of processes does not increase. As a result, the semiconductor device 1 can be manufactured at a low cost and in a short time. In the case of FIG. 10, the conductive layer 250a is also formed of the same material as that of the magnetization free layer 210, the nonmagnetic layer 220, and the magnetization fixed layer 230a, and thus can be formed in the same process. Thus, the semiconductor device 1 can be manufactured at a lower cost and in a shorter time.
(第5変形例)
 次に、本発明の実施例に係る各MRAMにおける磁気抵抗効果素子の第5変形例の構成について説明する。図11A~図11Cは、本実施例に係る磁気抵抗効果素子の第5変形例の構成を模式的に示す概略図である。図11Aはその斜視図を、図11B及び図11Cはxy平面図をそれぞれ示している。ただし、図11A及び図11Bの組み合わせは垂直磁気異方性を有する場合を示し、図11A及び図11Cの組み合わせは面内磁気異方性を有する場合を示している。
(5th modification)
Next, the configuration of the fifth modification example of the magnetoresistive effect element in each MRAM according to the embodiment of the present invention will be described. 11A to 11C are schematic views schematically showing the configuration of the fifth modification example of the magnetoresistance effect element according to this example. FIG. 11A is a perspective view, and FIGS. 11B and 11C are xy plan views. However, the combination of FIG. 11A and FIG. 11B shows a case having perpendicular magnetic anisotropy, and the combination of FIG. 11A and FIG. 11C shows a case having in-plane magnetic anisotropy.
 磁気抵抗効果素子9dは、高集積・大容量(低電流)向けのMRAM5のメモリセルに用いられている。スピン偏極電流書込み型の電流誘起磁壁移動型の磁気抵抗効果素子である。 The magnetoresistive effect element 9d is used in a memory cell of the MRAM 5 for high integration and large capacity (low current). This is a spin-polarized current writing type current-induced domain wall motion type magnetoresistive effect element.
 図11A及び図11B、又は、図11A及び図11Cの構造を有する電流誘起磁壁移動型の磁気抵抗効果素子9dにおいて、第1磁化自由層10は、第1磁化固定領域11a、第2磁化固定領域11b、磁化自由領域12から構成される。ただし、図2A~図2Dに示されるような磁化自由領域12の一方の端部に第1磁化固定領域11aが接続して設けられ、他方の端部に第2磁化固定領域11bが接続して設けられるのではなく、磁化自由領域12の一方の端部に第1磁化固定領域11a、及び第2磁化固定領域11bが接続して設けられる。すなわち、第1磁化固定領域11a、第2磁化固定領域11b、及び磁化自由領域12は三叉路(三叉、略Y字型)を形成する。磁気固定層30、非磁性層20及び磁化自由領域20が磁気トンネル接合(MTJ)を構成している。 In the current-induced domain wall motion type magnetoresistive effect element 9d having the structure of FIGS. 11A and 11B or FIGS. 11A and 11C, the first magnetization free layer 10 includes a first magnetization fixed region 11a and a second magnetization fixed region. 11b and a magnetization free region 12. However, the first magnetization fixed region 11a is connected to one end of the magnetization free region 12 as shown in FIGS. 2A to 2D, and the second magnetization fixed region 11b is connected to the other end. Instead of being provided, the first magnetization fixed region 11 a and the second magnetization fixed region 11 b are connected to one end of the magnetization free region 12. That is, the first magnetization fixed region 11a, the second magnetization fixed region 11b, and the magnetization free region 12 form a three-forked path (three-forked, substantially Y-shaped). The magnetic pinned layer 30, the nonmagnetic layer 20, and the magnetization free region 20 constitute a magnetic tunnel junction (MTJ).
 図11Bの場合、磁気抵抗効果素子9dにおいて、第1磁化自由層10及び磁化固定層30は膜厚方向に磁気異方性を有する(垂直磁気異方性)。そして、第1磁化自由層10を構成する第1磁化固定領域11a、第2磁化固定領域11bの磁化は膜厚方向で互いに反平行方向に固定されている。磁化自由領域12は、第1磁化固定領域11a及び第2磁化固定領域11bの磁化のいずれかに平行な磁化を取り得る。磁化固定層30の磁化は膜厚方向で固定されている。例えば、第1磁化固定領域11aは+z方向に磁化が固定され、第2磁化固定領域11bは-z方向に磁化が固定されている。磁化自由領域12は、+z方向及び-z方向のいずれかの磁化を取り得る。磁化固定層30は、-z方向に磁化が固定されている。 In the case of FIG. 11B, in the magnetoresistive effect element 9d, the first magnetization free layer 10 and the magnetization fixed layer 30 have magnetic anisotropy in the film thickness direction (perpendicular magnetic anisotropy). And the magnetization of the 1st magnetization fixed area | region 11a and the 2nd magnetization fixed area | region 11b which comprises the 1st magnetization free layer 10 is being fixed to the antiparallel direction mutually in the film thickness direction. The magnetization free region 12 can take magnetization parallel to one of the magnetizations of the first magnetization fixed region 11a and the second magnetization fixed region 11b. The magnetization of the magnetization fixed layer 30 is fixed in the film thickness direction. For example, the magnetization of the first magnetization fixed region 11a is fixed in the + z direction, and the magnetization of the second magnetization fixed region 11b is fixed in the −z direction. The magnetization free region 12 can take magnetization in either the + z direction or the −z direction. The magnetization fixed layer 30 has magnetization fixed in the −z direction.
 図11Cの場合、磁気抵抗効果素子9dにおいて、第1磁化自由層10及び磁化固定層30は面内方向に磁気異方性を有する(面内磁気異方性)。そして、第1磁化自由層10を構成する第1磁化固定領域11a、第2磁化固定領域11bの磁化は面内方向で、一方は、磁化自由領域12へ向かう方向、他方は磁化自由領域12から離れる方向に固定されている。磁化自由領域12は、第1磁化固定領域11a及び第2磁化固定領域11bとの接続部分に向かう方向又はその逆方向の磁化を取り得る。磁化固定層30の磁化は磁化自由領域12の磁化と略平行な面内方向で固定されている。例えば、第1磁化固定領域11aは磁化自由領域12へ向かう方向に磁化が固定され、第2磁化固定領域11bは磁化自由領域12から離れる方向に磁化が固定されている。磁化自由領域12は、+x方向及び-x方向のいずれかの磁化を取り得る。磁化固定層30は、+x方向に磁化が固定されている。 In the case of FIG. 11C, in the magnetoresistive effect element 9d, the first magnetization free layer 10 and the magnetization fixed layer 30 have magnetic anisotropy in the in-plane direction (in-plane magnetic anisotropy). The magnetizations of the first magnetization fixed region 11a and the second magnetization fixed region 11b constituting the first magnetization free layer 10 are in the in-plane direction, one is in the direction toward the magnetization free region 12, and the other is from the magnetization free region 12. It is fixed in the direction of leaving. The magnetization free region 12 can take magnetization in a direction toward the connection portion between the first magnetization fixed region 11a and the second magnetization fixed region 11b or in the opposite direction. The magnetization of the magnetization fixed layer 30 is fixed in the in-plane direction substantially parallel to the magnetization of the magnetization free region 12. For example, the magnetization of the first magnetization fixed region 11 a is fixed in the direction toward the magnetization free region 12, and the magnetization of the second magnetization fixed region 11 b is fixed in the direction away from the magnetization free region 12. The magnetization free region 12 can take magnetization in either the + x direction or the −x direction. The magnetization fixed layer 30 has magnetization fixed in the + x direction.
 図11A及び図11B、又は、図11A及び図11Cの構造の磁気抵抗効果素子9dは4端子素子である。4つの端子のうちの1つは磁化固定層30に設けられ、他の2つの端子は第1磁化固定領域11aと第2磁化固定領域11bに設けられ、残りの1つの端子は磁化自由領域12に設けられる。磁気抵抗効果素子9dにおいて、第1磁化固定領域11aと磁化自由領域12の境界付近、または第2磁化固定領域11bと磁化自由領域12の境界付近のいずれか一方に磁壁が形成される。また、磁気抵抗効果素子9dにおいて、第1磁化固定領域11aと磁化自由領域12の間、若しくは第2磁化固定領域11bと磁化自由領域12の間で電流を流すことにより書き込みを行う。この場合には、磁壁は第1磁化固定領域11a、または第2磁化固定領域11bと磁化自由領域12の境界から出発して、磁化自由領域12のもう一方の端部から抜けることで書き込みが行われる。 The magnetoresistive effect element 9d having the structure of FIGS. 11A and 11B or FIGS. 11A and 11C is a four-terminal element. One of the four terminals is provided in the magnetization fixed layer 30, the other two terminals are provided in the first magnetization fixed region 11 a and the second magnetization fixed region 11 b, and the remaining one terminal is the magnetization free region 12. Provided. In the magnetoresistive effect element 9 d, a domain wall is formed either near the boundary between the first magnetization fixed region 11 a and the magnetization free region 12 or near the boundary between the second magnetization fixed region 11 b and the magnetization free region 12. In the magnetoresistive element 9d, writing is performed by passing a current between the first magnetization fixed region 11a and the magnetization free region 12 or between the second magnetization fixed region 11b and the magnetization free region 12. In this case, the magnetic domain wall starts from the boundary between the first magnetization fixed region 11 a or the second magnetization fixed region 11 b and the magnetization free region 12, and is written by exiting from the other end of the magnetization free region 12. Is called.
 図12A~図12Bは、本実施例の磁気抵抗効果素子の第5変形例が集積化されたメモリセルの構成例を示す回路図である。これらは、磁気抵抗効果素子9dが図11A及び図11B、又は、図11A及び図11Cの構成を有している場合に採用される回路構成の二つの例を示している。
 図12Aでは、1つのメモリセル303に対して2つのMOSトランジスタM21、M22が設けられている。MOSトランジスタM21のソース/ドレインの一方がグラウンド線GNDに接続されており、他方が第1磁化固定領域11aの一端(磁化自由領域12との境界とは反対側)に接続されている。また、MOSトランジスタM22のソース/ドレインの一方がグラウンド線GNDに接続されており、他方が第2磁化固定領域11bの一端(磁化自由領域12との境界とは反対側)に接続されている。MOSトランジスタM21のゲートは、ワード線WLaに接続されており、MOSトランジスタM22のゲートは、ワード線WLbに接続されている。
12A to 12B are circuit diagrams showing a configuration example of a memory cell in which a fifth modification of the magnetoresistive effect element of this embodiment is integrated. These show two examples of circuit configurations adopted when the magnetoresistive effect element 9d has the configurations of FIGS. 11A and 11B or FIGS. 11A and 11C.
In FIG. 12A, two MOS transistors M21 and M22 are provided for one memory cell 303. One of the source / drain of the MOS transistor M21 is connected to the ground line GND, and the other is connected to one end of the first magnetization fixed region 11a (the side opposite to the boundary with the magnetization free region 12). In addition, one of the source / drain of the MOS transistor M22 is connected to the ground line GND, and the other is connected to one end of the second magnetization fixed region 11b (the side opposite to the boundary with the magnetization free region 12). The gate of the MOS transistor M21 is connected to the word line WLa, and the gate of the MOS transistor M22 is connected to the word line WLb.
 また、磁化自由領域12の端部(第1磁化固定領域11a及び第2磁化固定領域11bとの境界とは反対側)には、ビット線BLaが接続されている。このビット線BLaは、書き込み電流を磁化自由層10に供給するための書き込み配線である。また、磁気トンネル接合(MTJ)の一端である磁化固定層30には、ビット線BLbが接続されている。このビット線BLbは、磁気トンネル接合(MTJ)に読み出し電流を供給するための読み出し配線である。 Further, a bit line BLa is connected to the end of the magnetization free region 12 (on the opposite side to the boundary between the first magnetization fixed region 11a and the second magnetization fixed region 11b). The bit line BLa is a write wiring for supplying a write current to the magnetization free layer 10. A bit line BLb is connected to the magnetization fixed layer 30 that is one end of the magnetic tunnel junction (MTJ). The bit line BLb is a read wiring for supplying a read current to the magnetic tunnel junction (MTJ).
 図12Aのような回路構成におけるデータの書き込み動作及び読出し動作について説明する。
 データの書き込みは、ワード線WLa、ワード線WLbのどちらを“high”レベルにプルアップし、どちらを“low”レベルにプルダウンするかでデータの書き分けができる。例えば、ワード線WLaが“low”レベルに、ワード線WLbが“high”レベルに、ビット線BLaが“high”レベルに、グラウンド線GNDが“low”レベルに設定された場合、MOSトランジスタM21は“OFF”となる一方、MOSトランジスタM22は“ON”となる。結果として、ビット線BLaから磁化自由領域12、第2磁化固定領域11b、MOSトランジスタM22を経由して、グラウンド線GNDへと書き込み電流が流れる。また、ワード線WLbが“low”レベルに、ワード線WLaが “high”に、ビット線BLaが“high”に、グラウンド線GNDが“low”レベルに設定された場合、MOSトランジスタM22が“OFF”となり、一方、MOSトランジスタM21は“ON”となる。結果として、ビット線BLaから磁化自由領域12、第1磁化固定領域11a、MOSトランジスタM21を経由して、グラウンド線GNDへと書き込み電流が流れる。このようにしてデータの書き分けが可能である。
Data write and read operations in the circuit configuration as shown in FIG. 12A will be described.
Data can be written according to which of the word line WLa and the word line WLb is pulled up to the “high” level and which is pulled down to the “low” level. For example, when the word line WLa is set to the “low” level, the word line WLb is set to the “high” level, the bit line BLa is set to the “high” level, and the ground line GND is set to the “low” level, the MOS transistor M21 is On the other hand, the MOS transistor M22 is turned “ON”. As a result, a write current flows from the bit line BLa to the ground line GND through the magnetization free region 12, the second magnetization fixed region 11b, and the MOS transistor M22. When the word line WLb is set to “low” level, the word line WLa is set to “high”, the bit line BLa is set to “high”, and the ground line GND is set to “low” level, the MOS transistor M22 is set to “OFF”. On the other hand, the MOS transistor M21 is turned "ON". As a result, a write current flows from the bit line BLa to the ground line GND through the magnetization free region 12, the first magnetization fixed region 11a, and the MOS transistor M21. In this way, data can be written separately.
 また、データの読み出しは、例えば以下で述べる第1の方法によって行うことができる。第1の方法においては、ワード線WLa、ワード線WLbは“Low”に、ビット線BLbは“High”に、ビット線BLaは“Ground”に設定される。このときMOSトランジスタM21,M22は“OFF”となり、電流はビット線BLbからMTJを貫通し、ビット線BLaへと流れる。これによって磁気トンネル接合(MTJ)の抵抗を読み出すことができ、磁気抵抗効果素子のデータの読み出しが可能となる。この場合にはビット線BLaとビット線BLbの交点のメモリセル303の情報が読み出され、すなわちクロスポイント読み出しとなる。 In addition, data can be read out by the first method described below, for example. In the first method, the word line WLa and the word line WLb are set to “Low”, the bit line BLb is set to “High”, and the bit line BLa is set to “Ground”. At this time, the MOS transistors M21 and M22 are “OFF”, and current flows from the bit line BLb through the MTJ to the bit line BLa. As a result, the resistance of the magnetic tunnel junction (MTJ) can be read, and the data of the magnetoresistive effect element can be read. In this case, the information of the memory cell 303 at the intersection of the bit line BLa and the bit line BLb is read, that is, cross-point reading is performed.
 また、図12Aに示されるメモリセル303からのデータの読み出しには、以下に述べるような第2の方法を用いてもよい。まず、ワード線WLaが“high”レベルに、ワード線WLbが“low”レベルに設定され、これにより、MOSトランジスタM21が “ON”に、MOSトランジスタM22が“OFF”にされる。またグラウンド線GNDが“low”レベルに設定され、ビット線BLbは“high”レベルに設定される。さらにビット線BLaが適切な電位に設定される。このとき、読み出し電流はビット線BLbからMTJを貫通し、ビット線BLaに流れることなく、MOSトランジスタM21を経由してグラウンド線GNDへと流れる。これによっても磁気トンネル接合(MTJ)の抵抗値を読み出すことができる。第2の方法は、第1の方法で用いられている読み出しとは異なり、MOSトランジスタM21によって一つのメモリセル303が選択されるため、高速での読み出しが可能となる。 Also, the second method as described below may be used for reading data from the memory cell 303 shown in FIG. 12A. First, the word line WLa is set to “high” level and the word line WLb is set to “low” level, whereby the MOS transistor M21 is turned “ON” and the MOS transistor M22 is turned “OFF”. The ground line GND is set to the “low” level, and the bit line BLb is set to the “high” level. Further, the bit line BLa is set to an appropriate potential. At this time, the read current passes through the MTJ from the bit line BLb and flows to the ground line GND via the MOS transistor M21 without flowing to the bit line BLa. This can also read the resistance value of the magnetic tunnel junction (MTJ). Unlike the read method used in the first method, the second method selects one memory cell 303 by the MOS transistor M21, so that high-speed read is possible.
 本実施例では、図12Bに示されるような他の回路構成が適用されてもよい。図12Aと図12Bとの違いは、図12Bのメモリセル304に3つのMOSトランジスタが設けられることにある。具体的には、磁化自由領域12の端部(第1磁化固定領域11a、及び第2磁化固定領域11bとは反対側)にMOSトランジスタM23のソース/ドレインの一方が接続され、MOSトランジスタM23の他方のソース/ドレインはビット線BLcに接続される。またMOSトランジスタM23のゲートはワード線WLcに接続される。 In this embodiment, other circuit configurations as shown in FIG. 12B may be applied. The difference between FIG. 12A and FIG. 12B is that the memory cell 304 of FIG. 12B is provided with three MOS transistors. Specifically, one of the source / drain of the MOS transistor M23 is connected to the end of the magnetization free region 12 (on the side opposite to the first magnetization fixed region 11a and the second magnetization fixed region 11b), and the MOS transistor M23 The other source / drain is connected to the bit line BLc. The gate of the MOS transistor M23 is connected to the word line WLc.
 図12Bのような回路構成におけるデータの書き込み動作及び読出し動作について説明する。
 データの書き込みは、第1ワード線WLa、ワード線WLbのどちらを“low”レベルにし、どちらを“high”レベルにするかでデータの書き分けができる。例えば、ワード線WLaが“low”レベルに、ワード線WLbが“high”レベルに、ワード線WLcが“high”レベルに設定された場合、MOSトランジスタM21は“OFF”に、MOSトランジスタM22は“ON”に、MOSトランジスタM23は“ON”になる。ここでビット線BLcを“high”レベルにし、グラウンド線GNDを“low”レベルにした場合、ビット線BLcからMOSトランジスタM23、磁化自由領域12、第2磁化固定領域11b、MOSトランジスタM22を経由して、グラウンド線GNDへと書き込み電流が流れる。またワード線WLbが“low”レベルに、ワード線WLaが “high”に、ワード線WLcが“high”に設定された場合、MOSトランジスタM22は“OFF”に、MOSトランジスタM21は“ON”に、MOSトランジスタM23は“ON”になる。ここでビット線BLcを“high”レベルにし、グラウンド線GNDを“low”レベルにした場合、ビット線BLcからMOSトランジスタM23、磁化自由領域12、第1磁化固定領域11a、MOSトランジスタM21を経由して、グラウンド線GNDへと書き込み電流が流れる。このようにしてデータの書き分けが可能である。
Data write and read operations in the circuit configuration as shown in FIG. 12B will be described.
Data can be written according to which of the first word line WLa and the word line WLb is set to the “low” level and which is set to the “high” level. For example, when the word line WLa is set to the “low” level, the word line WLb is set to the “high” level, and the word line WLc is set to the “high” level, the MOS transistor M21 is set to “OFF”, and the MOS transistor M22 is set to “ The MOS transistor M23 is turned “ON”. Here, when the bit line BLc is set to the “high” level and the ground line GND is set to the “low” level, the bit line BLc passes through the MOS transistor M23, the magnetization free region 12, the second magnetization fixed region 11b, and the MOS transistor M22. Thus, a write current flows to the ground line GND. When the word line WLb is set to “low” level, the word line WLa is set to “high”, and the word line WLc is set to “high”, the MOS transistor M22 is set to “OFF” and the MOS transistor M21 is set to “ON”. The MOS transistor M23 is turned “ON”. Here, when the bit line BLc is set to the “high” level and the ground line GND is set to the “low” level, the bit line BLc passes through the MOS transistor M23, the magnetization free region 12, the first magnetization fixed region 11a, and the MOS transistor M21. Thus, a write current flows to the ground line GND. In this way, data can be written separately.
 また、データの読み出しは例えば以下のようにして行うことができる。まずワード線WLaが“low”レベルに、ワード線WLbが“low”レベルに、ワード線WLcが“high”レベルに設定される。このときMOSトランジスタM21、M22は“OFF”に、MOSトランジスタM23は“ON”になる。ここでビット線BLbを“high”レベルにしてビット線BLcを“low”にすることで、読み出し電流はビット線BlbからMTJを貫通し、MOSトランジスタM23を経由し、ビット線BLcへと流れる。これによってデータの読み出しを行うことができる。 In addition, data can be read out as follows, for example. First, the word line WLa is set to the “low” level, the word line WLb is set to the “low” level, and the word line WLc is set to the “high” level. At this time, the MOS transistors M21 and M22 are “OFF” and the MOS transistor M23 is “ON”. Here, when the bit line BLb is set to the “high” level and the bit line BLc is set to “low”, the read current passes from the bit line Blb to the MTJ and flows to the bit line BLc via the MOS transistor M23. As a result, data can be read out.
 なお、ここで述べた回路構成、及び回路の動作は、一つの例に過ぎず、他の回路構成、及び回路設定を用いても図11A、図11Bの構造の磁気抵抗効果素子9dをメモリセルに集積化することができる。 Note that the circuit configuration and circuit operation described here are merely examples, and the magnetoresistive effect element 9d having the structure shown in FIGS. 11A and 11B can be replaced by a memory cell even when other circuit configurations and circuit settings are used. Can be integrated.
 図11Bの構造を有する磁気抵抗効果素子9dは、図7Aの磁気抵抗効果素子9の替わりに用いることが出来る。その場合、磁気抵抗効果素子9dと磁気抵抗効果素子8とは同一のプロセスで同一の材料で同時に形成することができる。すなわち、MRAM4とMRAM5とは、同一のプロセスでの形成が可能であり、プロセス数は増大しない。それにより、低コスト、且つ短時間で半導体装置1を製造することが可能となる。 The magnetoresistive effect element 9d having the structure of FIG. 11B can be used in place of the magnetoresistive effect element 9 of FIG. 7A. In that case, the magnetoresistive effect element 9d and the magnetoresistive effect element 8 can be simultaneously formed of the same material by the same process. That is, the MRAM 4 and the MRAM 5 can be formed by the same process, and the number of processes does not increase. As a result, the semiconductor device 1 can be manufactured at a low cost and in a short time.
 また、図11Cの構造を有する磁気抵抗効果素子9dは、図8の磁気抵抗効果素子9aの替わりに用いることが出来る。その場合、磁気抵抗効果素子9dと磁気抵抗効果素子8aとは同一のプロセスで同一の材料で同時に形成することができる。すなわち、MRAM4とMRAM5とは、同一のプロセスでの形成が可能であり、プロセス数は増大しない。それにより、低コスト、且つ短時間で半導体装置1を製造することが可能となる。 Further, the magnetoresistive effect element 9d having the structure of FIG. 11C can be used in place of the magnetoresistive effect element 9a of FIG. In that case, the magnetoresistive effect element 9d and the magnetoresistive effect element 8a can be simultaneously formed of the same material by the same process. That is, the MRAM 4 and the MRAM 5 can be formed by the same process, and the number of processes does not increase. As a result, the semiconductor device 1 can be manufactured at a low cost and in a short time.
 なお、以上には本発明の実施例、及びその様々な変形例が記載されているが、本発明は、上述の実施例及び変形例に限定して解釈されてはならない。上述の変形例は、矛盾しない限り、その複数が組み合わせて適用可能であることは、当業者には容易に理解されよう。 In addition, although the Example of this invention and its various modifications are described above, this invention should not be limited to the above-mentioned Example and modification. Those skilled in the art will readily understand that a plurality of the above-described modified examples can be applied in combination as long as there is no contradiction.
 以上、実施の形態を参照して本発明を説明したが、本発明は上記実施の形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解しうる様々な変更をすることができる。 Although the present invention has been described above with reference to the embodiment, the present invention is not limited to the above embodiment. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
 本発明の半導体装置は、メモリ混載型の半導体装置として、内部のメモリにおける高速処理と大容量処理とを両立させることができる。 The semiconductor device of the present invention can achieve both high-speed processing and large-capacity processing in the internal memory as a memory-embedded semiconductor device.
 この出願は、2008年3月7日に出願された特許出願番号2008-058792号の日本特許出願に基づいており、その出願による優先権の利益を主張し、その出願の開示は、引用することにより、そっくりそのままここに組み込まれている。 This application is based on Japanese Patent Application No. 2008-058792 filed on Mar. 7, 2008, claiming the benefit of priority from that application, the disclosure of that application should be cited Is incorporated here as it is.

Claims (12)

  1.  第1メモリセルを有する第1磁気ランダムアクセスメモリと、
     前記第1メモリセルと比較して高速で動作する第2メモリセルを有し、前記第1磁気ランダムアクセスメモリと同一チップ内に設けられた第2磁気ランダムアクセスメモリとを具備し、
     前記第1メモリセルは、
      磁化方向が固定された第1磁化固定層と、
      磁化方向が反転可能な第1磁化自由層と、
      前記第1磁化固定層と前記第1磁化自由層とに挟まれた第1非磁性層とを備え、
      前記第1磁化自由層及び前記第1磁化固定層は、強磁性体から構成され、
      書き込み電流が、少なくとも前記第1磁化自由層を流れ、
     前記第2メモリセルは、
      第2磁化自由層と、
      第2磁化固定層と、
      前記第2磁化自由層と前記第2磁化固定層との間に設けられた第2非磁性層とを備え、
      書き込み電流が、前記第2磁化自由層を流れず、
      前記第2磁化自由層及び前記第2磁化固定層は、強磁性体から構成されている
     半導体装置。
    A first magnetic random access memory having first memory cells;
    A second magnetic random access memory having a second memory cell operating at a higher speed than the first memory cell, and provided in the same chip as the first magnetic random access memory;
    The first memory cell includes
    A first magnetization fixed layer having a fixed magnetization direction;
    A first magnetization free layer whose magnetization direction is reversible;
    A first nonmagnetic layer sandwiched between the first magnetization fixed layer and the first magnetization free layer;
    The first magnetization free layer and the first magnetization fixed layer are made of a ferromagnetic material,
    A write current flows through at least the first magnetization free layer;
    The second memory cell includes
    A second magnetization free layer;
    A second magnetization fixed layer;
    A second nonmagnetic layer provided between the second magnetization free layer and the second magnetization fixed layer;
    Write current does not flow through the second magnetization free layer,
    The second magnetization free layer and the second magnetization fixed layer are made of a ferromagnetic material.
  2.  請求の範囲1に記載の半導体装置であって、
     前記第1磁化自由層と前記第2磁化自由層とは、同一のレイヤーに設けられ、
     前記第1磁化固定層と前記第2磁化固定層とは、別の同一のレイヤーに設けられている
     半導体装置。
    A semiconductor device according to claim 1,
    The first magnetization free layer and the second magnetization free layer are provided in the same layer,
    The first magnetization fixed layer and the second magnetization fixed layer are provided in different same layers.
  3.  請求の範囲1又は2に記載の半導体装置であって、
     前記第1磁化自由層は、
      磁化が固定される第1磁化固定領域と
      磁化が固定される第2磁化固定領域と
      前記第1磁化固定領域と前記第2磁化固定領域とに接続され、磁化が反転可能な磁化自由領域とを含み、
      前記第1非磁性層は、前記磁化自由領域と前記第1磁化固定層との間に設けられ、
      前記書き込み電流が、前記第1磁化固定領域と前記磁化自由領域と前記第2磁化固定領域とを流れる
     半導体装置。
    A semiconductor device according to claim 1 or 2,
    The first magnetization free layer comprises:
    A first magnetization fixed region in which magnetization is fixed; a second magnetization fixed region in which magnetization is fixed; a magnetization free region connected to the first magnetization fixed region and the second magnetization fixed region and capable of reversing magnetization; Including
    The first nonmagnetic layer is provided between the magnetization free region and the first magnetization fixed layer,
    The semiconductor device, wherein the write current flows through the first magnetization fixed region, the magnetization free region, and the second magnetization fixed region.
  4.  請求の範囲1乃至3のいずれか一項に記載の半導体装置であって、
     前記第1磁化固定領域が前記磁化自由領域の一方の端部に隣接して設けられ、
     前記第2磁化固定領域が前記磁化自由領域の他方の端部に隣接して設けられ、
     前記第1磁化固定領域と前記第2磁化固定領域と前記磁化自由領域とが、略U字型を形成する
     半導体装置。
    A semiconductor device according to any one of claims 1 to 3,
    The first magnetization fixed region is provided adjacent to one end of the magnetization free region;
    The second magnetization fixed region is provided adjacent to the other end of the magnetization free region;
    The semiconductor device, wherein the first magnetization fixed region, the second magnetization fixed region, and the magnetization free region form a substantially U-shape.
  5.  請求の範囲3に記載の半導体装置であって、
     前記第1磁化固定領域が前記磁化自由領域の一方の端部に隣接して設けられ、
     前記第2磁化固定領域が前記磁化自由領域の前記一方の端部に隣接して設けられ、
     前記第1磁化固定領域と前記第2磁化固定領域と前記磁化自由領域とが、略Y字型を形成する
     半導体装置。
    A semiconductor device according to claim 3,
    The first magnetization fixed region is provided adjacent to one end of the magnetization free region;
    The second magnetization fixed region is provided adjacent to the one end of the magnetization free region;
    The semiconductor device, wherein the first magnetization fixed region, the second magnetization fixed region, and the magnetization free region form a substantially Y shape.
  6.  請求の範囲1又は2に記載の半導体装置であって、
     前記第1メモリセルは、前記書き込み電流が、前記第1磁化自由層と前記第1非磁性層と前記第1磁化固定層とを流れる
     半導体装置。
    A semiconductor device according to claim 1 or 2,
    In the first memory cell, the write current flows through the first magnetization free layer, the first nonmagnetic layer, and the first magnetization fixed layer.
  7.  請求の範囲1乃至6のいずれか一項に記載の半導体装置であって、
     前記第1磁化固定層及び前記第1磁化自由層は、面内磁気異方性及び垂直磁気異方性のいずれか一方を有する
     半導体装置。
    A semiconductor device according to any one of claims 1 to 6,
    The first magnetization fixed layer and the first magnetization free layer have one of in-plane magnetic anisotropy and perpendicular magnetic anisotropy.
  8.  請求の範囲1乃至7のいずれか一項に記載の半導体装置であって、
     前記第2メモリセルは、前記第2磁化固定層に書き込み電流が流れる
     半導体装置。
    A semiconductor device according to any one of claims 1 to 7,
    In the second memory cell, a write current flows through the second magnetization fixed layer.
  9.  請求の範囲1乃至7のいずれか一項に記載の半導体装置であって、
     前記第2メモリセルは、前記第2磁化自由層の近傍に設けられ、書き込み電流が流れる書き込み配線を更に含む
     半導体装置。
    A semiconductor device according to any one of claims 1 to 7,
    The second memory cell further includes a write wiring provided in the vicinity of the second magnetization free layer and through which a write current flows.
  10.  請求の範囲1乃至7のいずれか一項に記載の半導体装置であって、
     前記第2メモリセルは、
     前記第2磁化自由層を挟んで前記第2非磁性層とは反対側に設けられる導電層と、
     前記導電層を挟んで前記第2磁化自由層とは反対側に設けられる下部磁化自由層とを更に含み、
     前記導電層に書き込み電流が流れる
     半導体装置。
    A semiconductor device according to any one of claims 1 to 7,
    The second memory cell includes
    A conductive layer provided on the opposite side of the second nonmagnetic layer across the second magnetization free layer;
    A lower magnetization free layer provided on the opposite side of the second magnetization free layer across the conductive layer;
    A semiconductor device in which a write current flows in the conductive layer.
  11.  請求の範囲1乃至10のいずれか一項に記載の半導体装置であって、
     前記第1メモリセルは、前記第1非磁性層がMgOを含有する
     半導体装置。
    A semiconductor device according to any one of claims 1 to 10,
    In the first memory cell, the first nonmagnetic layer contains MgO.
  12.  請求の範囲1乃至11のいずれか一項に記載の半導体装置であって、
     前記第1メモリセルは、前記第1磁化自由層と前記第1磁化固定層のうちの少なくとも一方がCo-Fe-Bを含有する
     半導体装置。
    A semiconductor device according to any one of claims 1 to 11,
    In the first memory cell, at least one of the first magnetization free layer and the first magnetization fixed layer contains Co—Fe—B.
PCT/JP2009/054137 2008-03-07 2009-03-05 Mram mixed system WO2009110537A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010501945A JP5488833B2 (en) 2008-03-07 2009-03-05 MRAM mixed loading system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-058792 2008-03-07
JP2008058792 2008-03-07

Publications (1)

Publication Number Publication Date
WO2009110537A1 true WO2009110537A1 (en) 2009-09-11

Family

ID=41056089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054137 WO2009110537A1 (en) 2008-03-07 2009-03-05 Mram mixed system

Country Status (2)

Country Link
JP (1) JP5488833B2 (en)
WO (1) WO2009110537A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015060609A (en) * 2013-09-18 2015-03-30 株式会社東芝 Magnetic storage device and driving method of the same
JP2015528601A (en) * 2012-08-10 2015-09-28 クアルコム,インコーポレイテッド Adjustable multi-tier STT-MRAM cache for multi-core processors
US9230629B2 (en) 2013-09-06 2016-01-05 Kabushiki Kaisha Toshiba Semiconductor storage device
JP2017050727A (en) * 2015-09-02 2017-03-09 国立研究開発法人産業技術総合研究所 High frequency oscillator
JP2017059594A (en) * 2015-09-14 2017-03-23 株式会社東芝 Magnetic memory
JP2020205329A (en) * 2019-06-17 2020-12-24 アイシン・エィ・ダブリュ株式会社 Semiconductor storage device
US11817392B2 (en) 2020-09-28 2023-11-14 Taiwan Semiconductor Manufacturing Co., Ltd. Integrated circuit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004023062A (en) * 2002-06-20 2004-01-22 Nec Electronics Corp Semiconductor device and method for manufacturing the same
WO2007020823A1 (en) * 2005-08-15 2007-02-22 Nec Corporation Magnetic memory cell, magnetic random access memory and method for reading/writing data in magnetic random access memory
WO2007119446A1 (en) * 2006-03-24 2007-10-25 Nec Corporation Mram and mram data reading/writing method
JP2008218649A (en) * 2007-03-02 2008-09-18 Renesas Technology Corp Semiconductor device, manufacturing method thereof, and magnetic memory element

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5077732B2 (en) * 2006-03-23 2012-11-21 日本電気株式会社 Magnetic memory cell, magnetic random access memory, semiconductor device, and manufacturing method of semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004023062A (en) * 2002-06-20 2004-01-22 Nec Electronics Corp Semiconductor device and method for manufacturing the same
WO2007020823A1 (en) * 2005-08-15 2007-02-22 Nec Corporation Magnetic memory cell, magnetic random access memory and method for reading/writing data in magnetic random access memory
WO2007119446A1 (en) * 2006-03-24 2007-10-25 Nec Corporation Mram and mram data reading/writing method
JP2008218649A (en) * 2007-03-02 2008-09-18 Renesas Technology Corp Semiconductor device, manufacturing method thereof, and magnetic memory element

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015528601A (en) * 2012-08-10 2015-09-28 クアルコム,インコーポレイテッド Adjustable multi-tier STT-MRAM cache for multi-core processors
US9230629B2 (en) 2013-09-06 2016-01-05 Kabushiki Kaisha Toshiba Semiconductor storage device
US9508413B2 (en) 2013-09-06 2016-11-29 Kabushiki Kaisha Toshiba Semiconductor storage device
JP2015060609A (en) * 2013-09-18 2015-03-30 株式会社東芝 Magnetic storage device and driving method of the same
JP2017050727A (en) * 2015-09-02 2017-03-09 国立研究開発法人産業技術総合研究所 High frequency oscillator
JP2017059594A (en) * 2015-09-14 2017-03-23 株式会社東芝 Magnetic memory
US9916882B2 (en) 2015-09-14 2018-03-13 Kabushiki Kaisha Toshiba Magnetic memory
US9985201B2 (en) 2015-09-14 2018-05-29 Kabushiki Kaisha Toshiba Magnetic memory based on spin hall effect
JP2020205329A (en) * 2019-06-17 2020-12-24 アイシン・エィ・ダブリュ株式会社 Semiconductor storage device
JP7211273B2 (en) 2019-06-17 2023-01-24 株式会社アイシン semiconductor storage device
US11817392B2 (en) 2020-09-28 2023-11-14 Taiwan Semiconductor Manufacturing Co., Ltd. Integrated circuit
US11967560B2 (en) 2020-09-28 2024-04-23 Taiwan Semiconductor Manufacturing Co., Ltd. Integrated circuit

Also Published As

Publication number Publication date
JPWO2009110537A1 (en) 2011-07-14
JP5488833B2 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
JP5435299B2 (en) Semiconductor device
US8711608B2 (en) Memory with separate read and write paths
US8514616B2 (en) Magnetic memory element and magnetic memory
US7613036B2 (en) Memory element utilizing magnetization switching caused by spin accumulation and spin RAM device using the memory element
JP5505312B2 (en) Magnetic memory device and magnetic random access memory
US7292468B2 (en) Magnetic random access memory
WO2008047536A1 (en) Magnetic memory cell and magnetic random access memory
JP5488833B2 (en) MRAM mixed loading system
JP5435298B2 (en) Semiconductor device
JPWO2010074130A1 (en) Magnetic memory device and magnetic random access memory
JP5472832B2 (en) Magnetic memory
US7859891B2 (en) Static source plane in stram
JP2004103125A (en) Magnetic random access memory
JP5754531B2 (en) Magnetoresistive element and method of manufacturing magnetic random access memory
US6894919B2 (en) Magnetic random access memory
US7613034B2 (en) Magnetic memory and method for reading-writing information from-to magnetic storage element
JP2004303837A (en) Magnetic storage cell, magnetic memory device, and its manufacturing method
JP2004265905A (en) Magnetic memory cell, magnetic memory device, and its manufacturing method
JP5147972B2 (en) Thin film magnetic memory device
JPWO2009044609A1 (en) Magnetoresistive memory element, magnetoresistive memory device and method of operating magnetoresistive memory device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09716706

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010501945

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09716706

Country of ref document: EP

Kind code of ref document: A1