WO2009110499A1 - Method for water purification, equipment for water purification, and water purification set - Google Patents

Method for water purification, equipment for water purification, and water purification set Download PDF

Info

Publication number
WO2009110499A1
WO2009110499A1 PCT/JP2009/054051 JP2009054051W WO2009110499A1 WO 2009110499 A1 WO2009110499 A1 WO 2009110499A1 JP 2009054051 W JP2009054051 W JP 2009054051W WO 2009110499 A1 WO2009110499 A1 WO 2009110499A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
molecule
general formula
independently
water
Prior art date
Application number
PCT/JP2009/054051
Other languages
French (fr)
Japanese (ja)
Inventor
満 近藤
Original Assignee
国立大学法人静岡大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人静岡大学 filed Critical 国立大学法人静岡大学
Priority to CN2009801076541A priority Critical patent/CN101959803B/en
Priority to JP2010501932A priority patent/JP5448195B2/en
Publication of WO2009110499A1 publication Critical patent/WO2009110499A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • C07D233/61Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms with hydrocarbon radicals, substituted by nitrogen atoms not forming part of a nitro radical, attached to ring nitrogen atoms

Definitions

  • the present invention relates to a water purification method, a water purification device, and a water purification set.
  • perchlorate is a substance that damages the thyroid gland that controls metabolic effects in adults and promotes physical development in children.
  • perchlorate ion (ClO 4 ⁇ ) exhibits high solubility in water, and since it hardly interacts with the cation among all the anions, it is difficult to remove from the aqueous solution as a precipitate or the like. Ion.
  • perchlorate As a technique for removing perchlorate from waste liquid contaminated with perchlorate (or perchlorate ions), perchlorate is concentrated, and KCl is added to the concentrated perchlorate solution to perchlorate.
  • a method is known in which acid potassium (KClO 4 ) is produced, cooled and crystallized (see, for example, Japanese Patent Publication No. 9-504472).
  • a water treatment system for removing perchlorate using a resin for example, Japanese Patent Application Laid-Open No. 2004-346299 and “NEDO Overseas Report, No.
  • the above-mentioned method for producing potassium chlorate from perchlorate and crystallizing it has a concentration step of evaporating the solvent from the solution, so that the perchlorate ions in the solution are retained while maintaining the state of the solution. It cannot be captured.
  • the above-described method of removing perchlorate using a resin has a problem of poor selectivity in terms of perchlorate ion trapping as well as costly regeneration of the resin.
  • perchlorate ions cannot be selectively captured from a system in which a plurality of anions are present. Therefore, it is necessary to develop a purification method that selectively captures specific molecules such as perchlorate ions and reduces the concentration of the captured molecules in water.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a water purification method, a water purification device, and a water purification set capable of purifying water with few trapped molecules.
  • Means for solving the above-mentioned problems are as follows. ⁇ 1> Contacting a compound represented by the following general formula (I) and a capture agent containing a metal ion capable of planar tetracoordination or regular octahedral coordination with water containing a molecule to be captured, and porous A method for purifying water, comprising bringing a solid material into contact with water containing a molecule to be captured having a molecular size of 1 nm or less.
  • R 2, R 3, and one of R 4 is in the meta or para to R x R y, R x and R y are following heterocyclic independently of one another Represents a substituent,
  • R 1 , R 2 , R 3 , R 4 and R 5 the remainder excluding R y is independently a hydrogen atom, a substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms, or a sulfonic acid Represents a group, but is not simultaneously a hydrogen atom.
  • R 6 and R 7 each independently represent a hydrogen atom or a methyl group, and A contains at least one nitrogen atom. Represents a 5-membered or 6-membered heterocyclic group.
  • ⁇ 2> The water purification method according to ⁇ 1>, wherein the molecule to be trapped has a molecular size of 1 nm or less.
  • ⁇ 3> The method for purifying water according to ⁇ 1>, wherein the water after contact with the scavenger is brought into contact with the porous solid.
  • ⁇ 4> The water purification method according to ⁇ 1>, wherein the porous solid is at least one selected from the group consisting of activated carbon, zeolite, ion exchange resin, clay, and silica gel.
  • R y is in a para position with respect to R x .
  • ⁇ 6> The water purification method according to ⁇ 1>, wherein in the general formula (I), R 6 and R 7 are both hydrogen atoms.
  • R 3 is R y
  • R 1 , R 2 , R 4 and R 5 are each independently a substituted or unsubstituted hydrocarbon group having 1 to 10 carbon atoms.
  • R 3 is R y
  • R 1 , R 2 , R 4 and R 5 are each independently a substituted or unsubstituted hydrocarbon group having 1 to 6 carbon atoms.
  • R 3 is R y
  • R 1 , R 2 , R 4, and R 5 are each independently a substituted or unsubstituted hydrocarbon group having 1 or 2 carbon atoms.
  • A is an imidazolyl group.
  • the scavenger is a coordination compound including a compound represented by the general formula (I) and a metal ion capable of planar tetracoordination or regular octahedral coordination. is there.
  • a water purification apparatus comprising a filtration part containing a compound represented by the following general formula (I) and a metal ion capable of planar tetracoordination or regular octahedral coordination, and a porous solid: It is.
  • R 2, R 3, and one of R 4 is in the meta or para to R x R y, R x and R y are following heterocyclic independently of one another Represents a substituent,
  • R 1 , R 2 , R 3 , R 4 and R 5 the remainder excluding R y is independently a hydrogen atom, a substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms, or a sulfonic acid Represents a group, but is not simultaneously a hydrogen atom.
  • R 6 and R 7 each independently represent a hydrogen atom or a methyl group, and A contains at least one nitrogen atom. Represents a 5-membered or 6-membered heterocyclic group.
  • the filtration unit includes a capturing unit including the capturing agent and an adsorption unit connected to the capturing unit and including the porous solid.
  • a water purification set comprising a compound represented by the following general formula (I) and a scavenger containing a metal ion capable of planar tetracoordination or regular octahedral coordination, and a porous solid.
  • R 2, R 3, and one of R 4 is in the meta or para to R x R y, R x and R y are following heterocyclic independently of one another Represents a substituent,
  • R 1 , R 2 , R 3 , R 4 and R 5 the remainder excluding R y is independently a hydrogen atom, a substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms, or a sulfonic acid Represents a group, but is not simultaneously a hydrogen atom.
  • R 6 and R 7 each independently represent a hydrogen atom or a methyl group, and A contains at least one nitrogen atom. Represents a 5-membered or 6-membered heterocyclic group.
  • the present invention it is possible to provide a water purification method, a water purification device, and a water purification set that can purify water with few molecules to be trapped.
  • FIG. 4 is a diagram showing a state in which one capture capsule type molecule according to a reference example of the present invention includes one perchlorate ion (ClO 4 ⁇ ) molecule, ignoring the atomic radius. It is the figure which represented the mode that one capture capsule type molecule concerning a reference example of the present invention encapsulates one molecule of perchlorate ion (ClO 4 ⁇ ) in consideration of the van der Waals radius.
  • the water purification method of the present invention comprises a scavenger containing a compound represented by the following general formula (I) and a metal ion capable of planar tetracoordination or regular octahedral coordination, and water containing a molecule to be captured. And contacting the porous solid with water containing the molecule to be captured.
  • a scavenger containing a compound represented by the following general formula (I) and a metal ion capable of planar tetracoordination or regular octahedral coordination and water containing a molecule to be captured.
  • a metal ion capable of planar tetracoordination or regular octahedral coordination
  • the molecule to be captured and the capture capsule type molecule are adsorbed to the porous solid.
  • the concentration of molecules to be captured in water can be effectively reduced, and the water can be purified to have few molecules to be captured.
  • the molecule to be captured is not particularly limited as long as it is a molecule that can be captured by the capturing agent. However, from the viewpoint of obtaining the above effect more effectively, the molecule to be captured is preferably a molecule having a molecular size of 1 nm or less.
  • the molecular size of 1 nm or less means that the maximum diameter of the molecule is 1 nm or less.
  • the maximum diameter of a molecule refers to a value obtained from the average of the longest distances between the atoms at the ends constituting the molecule based on a structural model prepared in consideration of the van der Waals radius.
  • the “molecule” in the present invention may be any of a cation, an anion, and a neutral molecule.
  • molecules to be captured in the present invention are shown below.
  • anions perchlorate ion (ClO 4 ⁇ ), trifluoromethanesulfonate ion (CF 3 SO 3 ⁇ ), tetrafluoroborate ion (BF 4 ⁇ ), azide ion (N 3 ⁇ ), phosphate ion (PO 4 3- ), and the like.
  • neutral molecules include benzene, toluene, xylene, cyclohexane, and cyclohexene.
  • perchlorate ion (ClO 4 ⁇ ), trifluoromethanesulfonate ion (CF 3 SO 3 ⁇ ), and tetrafluoroborate ion (BF 4 ⁇ ) are preferable from the viewpoint of removal efficiency.
  • water containing a molecule to be captured in the present invention may contain other components as long as the molecule to be captured is contained in water.
  • Water containing molecules to be trapped includes, for example, drinking water, industrial water, waste water, and various aqueous solutions, colloidal solutions (milk, etc.), suspensions containing food, soil, and the like.
  • the scavenger in the present invention contains a compound represented by the following general formula (I) and a metal ion capable of planar tetracoordinate or regular octahedral coordination.
  • Examples of the form of the scavenger in the present invention include a form of a coordination compound containing the compound represented by the general formula (I) and the metal ion, and a form of a mixture containing the coordination compound and other components.
  • a compound represented by the general formula (I) that exists independently that is, does not take the form of the coordination compound
  • a metal containing the metal ion And a salt form a compound represented by the general formula (I) that exists independently (that is, does not take the form of the coordination compound) and a metal containing the metal ion And a salt form.
  • R 2, R 3, and one of R 4 is in the meta or para to R x R y, independently R x and R y are each heterocyclic-substituted below Represents a group,
  • R 1 , R 2 , R 3 , R 4 and R 5 the remainder excluding R y is independently a hydrogen atom, a substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms, or a sulfonic acid Represents a group, but not simultaneously a hydrogen atom,
  • R 6 and R 7 each independently represent a hydrogen atom or a methyl group
  • A represents a 5-membered or 6-membered heterocyclic group containing at least one nitrogen atom.
  • the compound represented by the general formula (I) contacts a metal ion capable of planar tetracoordinate or octahedral coordination with a molecule to be captured in a liquid sample, a plurality of the compounds are collected together with the metal ion.
  • the molecules are taken in to form capsule molecules (self-assembly reaction; see, for example, FIGS. 3 and 4 described later).
  • Specific examples of the molecules to be captured are as described above.
  • a capsule molecule incorporating a molecule to be captured is referred to as a “captured capsule molecule”.
  • the capture capsule type molecule can also capture the captured molecule by coordination bond outside the capture capsule type molecule (two metal ions). Therefore, one molecule of the capture capsule type molecule can capture three molecules to be captured. Furthermore, it has been confirmed that one capture capsule type molecule captures another molecule to be captured with another capture capsule type molecule in addition to three molecules to be captured. That is, it is known that one capture capsule type molecule can capture up to four molecules to be captured. The above forms can be confirmed by, for example, single crystal structure analysis and visible / ultraviolet spectrum.
  • the self-assembly reaction by the compound represented by the general formula (I) shows extremely high selectivity for the molecule to be captured, when the molecule to be captured is present in the liquid, it is efficiently and reliably captured. A molecule can be captured.
  • the compound represented by the general formula (I) when the compound represented by the general formula (I) is in contact with the metal ion and an anion other than the molecule to be captured, it is not such a capture capsule type molecule but a coordination compound described later. Such a polymer structure is easily formed.
  • R y is in the para position with respect to R x , that is, R 3 is R y , does not leave the trapped molecule and forms a capture space without a gap. Therefore, it is preferable.
  • R y and R x are the same heterocyclic substituent from the viewpoint of being able to limit the number of isomers of the captured capsule type molecule to be generated and easily identifying the product.
  • R 6 and R 7 are preferably both hydrogen atoms from the viewpoint of forming a trapped capsule molecule without causing steric hindrance with other substituents of the aromatic ring.
  • R 1 , R 2 , R 3 , R 4 and R 5 the remainder excluding R y is independently a hydrogen atom, a substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms, or a sulfonic acid Represents a group but is not simultaneously a hydrogen atom.
  • R 1 and R 2 may be bonded to each other to form a ring (aromatic ring or aliphatic ring).
  • R 4 and R 5 may also be bonded to each other to form a ring (aromatic ring or aliphatic ring).
  • R 1 , R 2 , R 3 , R 4 and R 5 the remainder excluding R y is preferably a substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms.
  • the compound represented by the general formula (I) is sterically hindered from the viewpoint of ease of synthesis. 1 to 10 is preferable, 1 to 6 is more preferable, and 1 to 2 is particularly preferable from the viewpoint of forming a capsule without becoming and preventing anion from leaving the capsule.
  • Examples of the substituent that can be substituted on the hydrocarbon group include a halogen atom, a sulfonic acid group, a nitro group, a hydroxyl group, and an alkyl halide group. From the viewpoint of ease of synthesis, stability, and insolubility in water. Therefore, a fluorine atom or a perfluoroalkyl group is preferable.
  • the heterocyclic group represented by A may be substituted with a substituent such as an alkyl group having 1 to 6 carbon atoms or a sulfonic acid group.
  • the heterocyclic group may contain an oxygen atom or a sulfur atom in addition to the nitrogen atom.
  • Examples of the heterocyclic group represented by A include a heterocyclic group capable of coordinating with the metal ion.
  • Such heterocyclic groups include pyrrolyl groups other than pyrrol-1-yl groups, 2H-pyrrolyl groups other than 2H-pyrrol-1-yl groups, imidazolyl groups, pyrazolyl groups, and isothiazol-1-yl groups.
  • Isothiazolyl groups isoxazolyl groups other than isoxazol-1-yl groups, pyrrolidinyl groups other than pyrrolidin-1-yl groups, imidazolidinyl groups, pyrazolidinyl groups, pyridyl groups other than pyridin-1-yl groups, pyrazyl groups, pyrimidinyl groups, pyridazinyl
  • Preferred are a group, a piperidinyl group other than a piperidin-1-yl group, a piperazinyl group, a morpholinyl group other than a morpholin-4-yl group, and a group represented by the following structural formula.
  • pyrrolyl groups other than pyrrol-1-yl groups imidazolyl groups
  • pyridyl groups other than pyridin-1-yl groups represented by the following structural formula More preferred are the groups
  • the imidazolyl group is particularly preferable.
  • the particularly preferred form of the compound represented by the general formula (I) is R from the viewpoint of ease of synthesis, prevention of formation of isomers, and formation of a capsule space that does not release the trapped molecule.
  • 3 is R y
  • R 1 , R 2 , R 4 and R 5 each independently has 1 to 10 carbon atoms (more preferably 1 to 6 carbon atoms, more preferably 1 or 2 carbon atoms).
  • the compound represented by the general formula (I) includes the following general compounds from the viewpoint of ease of synthesis, prevention of isomer formation, and formation of a capsule space that does not release the trapped molecule.
  • a compound represented by the formula (II) is also preferable.
  • R 1 , R 2 , R 4 , and R 5 are the matters described above for R 1 , R 2 , R 4 , and R 5 in the general formula (I) except that R y is not R y . Can be applied as is.
  • a 1 has the same meaning as A in formula (I), and preferred ranges are also the same.
  • the compound of the present invention includes, for example, reacting a halogen-substituted aromatic compound with a compound corresponding to A in the general formula (I) in the presence of an alkali metal salt to replace the halogen atom with A.
  • a halogen-substituted aromatic compound with a compound corresponding to A in the general formula (I) in the presence of an alkali metal salt to replace the halogen atom with A.
  • 1,4-bis (imidazol-1-yl-methyl) benzene can be synthesized by heating and reacting imidazole and ⁇ , ⁇ '-dibromo-p-xylene in the presence of sodium hydride. Examples of such a synthesis method include C.-H. Zhou, R.-G. Xie, and H.-M. Zhao, Organic. Preparations and Procedures Int., 1996, 28 (3), 345 Has been.
  • exemplary compounds exemplary compounds (a) to (h)) of the compound represented by the general formula (I) are shown.
  • the present invention is not limited to these.
  • the exemplified compound (a) or the exemplified compound (b) is more preferable.
  • Metal ion capable of planar tetracoordinate or octahedral coordination in the present invention examples include Zn 2+ , Cu 2+ , Ni 2+ , Co 2+ , Fe 2+ , Mn 2+ , Ag + , Pd 2+ , and Pt 2+. It is done. Among these, Zn 2+ , Cu 2+ , Ni 2+ , Pd 2+ , and Pt 2+ are preferable, and Cu 2+ is particularly preferable from the viewpoint of the formation of trapping capsule type molecules and the formation of coordination compounds.
  • the coordination compound in the present invention is a compound containing the compound represented by the aforementioned general formula (I) and the aforementioned metal ion.
  • the coordination compound When the coordination compound is brought into contact with the trapped molecule in a liquid sample, the compound represented by the general formula (I) and the metal ion constituting the coordination compound capture the trapped molecule. Reconstituted into capsule-type molecules. For this reason, like the case where the compound represented by the general formula (I) is used as a simple substance, the molecule to be captured can be captured with high selectivity.
  • the coordination compound of the present invention a polymer complex in which a plurality of compounds represented by the general formula (I) are coordinated with each of a plurality of metal ions contained in the coordination compound. Structure is mentioned.
  • the structure of the polymer complex include a two-dimensional sheet structure in which four molecules of the compound represented by the general formula (I) are coordinated with each metal ion.
  • the compound represented by each general formula (I) is arranged between two metal ions, and is coordinated to one metal ion at a nitrogen atom portion in one heterocyclic ring. And is coordinated to the other metal ion at the nitrogen atom in the other heterocyclic ring (see, for example, FIGS. 5 and 6 described later).
  • the coordination compound of the present invention may contain an anion other than a water molecule and the trapped molecule, and these water molecule and anion may be coordinated to the metal ion, It may not be coordinated to the metal ion.
  • an example in which an anion is coordinated to a metal ion is, for example, “A layer” in FIG. 5 described later.
  • examples of water molecules coordinated to metal ions include “B layer” in FIG. 6 to be described later.
  • the anion in the two-dimensional sheet type structure is (1) a metal ion in another two-dimensional sheet type structure.
  • the structure of the coordination compound is a three-dimensional structure in which a plurality of two-dimensional sheet-type structures are stacked (for example, see FIG. 7 described later).
  • two-dimensional sheet-type structures in which water molecules are coordinated to metal ions are anions (for example, sulfate ions). ) May also be included.
  • water molecules in the two-dimensional sheet type structure interact with water molecules in another two-dimensional sheet type structure via anions.
  • the structure of the coordination compound described above has been clarified by, for example, elemental analysis or single crystal structure analysis.
  • Examples of anions other than the trapped molecule that may be contained in the coordination compound of the present invention include OH ⁇ , SO 4 2 ⁇ , CO 3 2 ⁇ , NO 3 ⁇ , CH 3 COO ⁇ , C 2 O 4 2 ⁇ , HCOO ⁇ , Cl ⁇ , Br ⁇ , F ⁇ , PF 6 ⁇ , acetylacetonato (C 5 H 7 O 2 ⁇ ), SiF 6 2 ⁇ , and the like.
  • NO 3 ⁇ , SO 4 2 ⁇ , OH ⁇ , and CO 3 2 ⁇ are preferable, and SO 4 2 ⁇ is more preferable from the viewpoint of the formation of coordination compounds.
  • the metal ion (component A) and the compound represented by the general formula (I) (component B) have a molar ratio [component A / component B] of 1.
  • the method of making it react in the ratio used as / 2 is mentioned.
  • a metal salt composed of the A component and an anion other than the molecule to be trapped (specific examples are as described above) is used as a solvent (for example, water, dimethyl ester).
  • a solvent for example, water, dimethyl ester.
  • Formamide, methanol, ethanol, propanol, acetonitrile, acetone, etc. are dissolved in solution A, and component B is dissolved in another solvent (eg, dimethylformamide, methanol, ethanol, propanol, acetonitrile, acetone, etc.).
  • solvent for example, water, dimethyl ester.
  • component B is dissolved in another solvent (eg, dimethylformamide, methanol, ethanol, propanol, acetonitrile, acetone, etc.).
  • the component A and the component B may be dissolved and reacted in the same solvent.
  • a single solvent such as methanol, dimethylformamide, or ethanol may be used as the solvent.
  • a mixed solvent such as water / acetonitrile, water / dimethylformamide, water / methanol, water / ethanol, methanol / dimethylformamide, ethanol / dimethylformamide or the like may be used.
  • the scavenger in the present invention includes a compound represented by the general formula (I) that exists independently (does not take the form of a coordination compound), and a metal salt, in addition to the form containing the coordination compound. It may be in the form of a mixture.
  • the metal salt the above-mentioned “metal salt composed of the component A and an anion other than the trapped molecule” can be used.
  • porous solid examples include activated carbon, zeolite, ion exchange resin (cation exchange resin or anion exchange resin), clay (clay), silica gel, glass fiber, nonwoven fabric, filter paper, and the like.
  • activated carbon, zeolite, ion exchange resin, clay (clay), and silica gel are preferable, and activated carbon, zeolite, ion exchange resin, and clay (clay) are more preferable.
  • the activated carbon examples include crushed activated carbon, granular activated carbon, and powdered activated carbon. Among them, granular activated carbon and crushed activated carbon are preferable, and crushed activated carbon is more preferable from the viewpoint of the passing speed of the aqueous solution to be treated. preferable.
  • Natural zeolite and synthetic zeolite can be used as the zeolite.
  • zeolite 3A, zeolite 4A, zeolite 5A, and zeolite 13X can be mentioned.
  • zeolite 5A and zeolite 13X are preferable, and zeolite 13X is more preferable.
  • anion exchange resin examples include acrylic anion exchange resins, styrene anion exchange resins, and dimethylamine anion exchange resins. Among them, styrene anion exchange resins and dimethylamine type An anion exchange resin is preferred, and a dimethylamine anion exchange resin is more preferred.
  • cation exchange resin examples include styrene cation exchange resins, methacrylic acid cation exchange resins, and acrylic acid cation exchange resins. Among them, methacrylic acid cation exchange resins are preferable.
  • the pore size of the porous solid in the present invention is not particularly limited, but is preferably 0.4 nm to 1.5 nm, particularly preferably 0.6 nm to 1.0 nm, from the viewpoint of adsorptivity depending on the size of the molecule to be captured.
  • the method of bringing the capturing agent into contact with water containing the molecule to be captured may be a method of adding a capturing agent to the water containing the molecule to be captured or a method of passing water containing the molecule to be captured through the capturing agent.
  • the method of bringing the porous solid into contact with the water containing the molecule to be trapped is the method of adding the porous solid to the water containing the molecule to be trapped. The method of letting it pass may be used.
  • the capturing agent and water containing the molecule to be captured are contacted (hereinafter also referred to as “treatment A”). Further, contacting the porous solid and water containing the molecule to be captured (hereinafter, also referred to as “treatment B”) may be performed simultaneously or separately.
  • the form in which the treatment A and the treatment B are simultaneously performed is a form in which the capture agent and the porous solid are added to a liquid sample (independently or as a mixture),
  • Examples include a form in which a liquid sample is passed through a mixture containing a capture agent and the porous solid.
  • the form in which the process A and the process B are separately performed includes a form in which the process A is performed in the order of the process B and a form in which the process B is performed in the order of the process A.
  • the form in which the process A and the process B are performed independently is the form in which the process A is performed in the order of the process B out of the two forms (that is, the capture agent).
  • the liquid sample after contact with the porous solid is preferably brought into contact with the porous solid.
  • by performing in order from the process A to the process B not only the density
  • processing A to process B the liquid sample is passed through a capture agent (process A), and the liquid sample that has passed through the capture agent is further passed through a porous solid (process B).
  • a capturing agent is added to the liquid sample (processing A), and the unreacted capturing agent is filtered from the liquid sample to which the capturing agent is added.
  • Examples include a form in which a porous solid is added to the liquid sample that has been removed and the capture agent has been removed (Process A).
  • the time for contacting the scavenger and water containing the molecule to be captured is not particularly limited, but is preferably 2 hours or longer, more preferably 6 hours or longer, and particularly preferably 10 hours or longer.
  • the upper limit is not particularly limited, but is, for example, 30 hours.
  • the time for contacting the porous solid with water containing the molecule to be trapped is not particularly limited, and is preferably 2 hours or more, more preferably 6 hours or more, and more preferably 10 hours, although it depends on the kind of the porous solid. The above is particularly preferable.
  • the upper limit is not particularly limited, but is, for example, 30 hours.
  • the liquid sample is heated. May be.
  • the heating temperature varies depending on the type of metal salt, the type of compound represented by formula (I), the type of coordination compound, etc., but is preferably 0 to 100 ° C., more preferably 20 to 70 ° C. .
  • the temperature of the liquid sample in the treatment B varies depending on the kind of the porous solid and the like, but is preferably 5 to 40 ° C., more preferably 20 to 30 ° C. from the viewpoint of adsorptivity.
  • the water purification method of this invention performs other processes, such as a pre-process, a middle process, a post-process. May be included.
  • a pre-process for example, when a liquid sample shows acidity or alkalinity, the liquid sample is passed through a buffer (or a buffer is added to the liquid sample), so that the liquid sample A process to bring it close to sex.
  • the buffer include soil.
  • the post-treatment include filtration with a known filter.
  • the water purification apparatus of the present invention comprises a filtration unit comprising a compound represented by the general formula (I) and a scavenger containing a metal ion capable of planar tetracoordinate or regular octahedral coordination, and a porous solid.
  • a filtration unit comprising a compound represented by the general formula (I) and a scavenger containing a metal ion capable of planar tetracoordinate or regular octahedral coordination, and a porous solid.
  • the water purification device 10 has a filtration unit 12 including a scavenger 14 and a porous solid 16.
  • the filtration unit 12 has a supply port 22 and a discharge port 24, and the flow rate adjusting unit 18 is connected to the discharge port 24.
  • a filter 15 is provided on the downstream side of the capture agent 14 (the discharge port 24 side, hereinafter the same), and a filter 17 is provided on the downstream side of the porous solid 16.
  • the arrangement of the capture agent 14 and the porous solid 16 is the capture agent 14 on the upstream side (the supply port 22 side, hereinafter the same), and the porous solid 16 on the downstream side.
  • a liquid sample is supplied to the filtration part 12 from the direction of arrow I, and the supplied liquid sample contacts the capture agent 14 in the filtration part 12 (the processing A).
  • the molecule to be captured in the liquid sample is captured by the capture agent 14 (that is, a capture capsule type molecule is formed).
  • the liquid sample passes through the filter 15 and comes into contact with the porous solid 16 (process B).
  • the trapped capsule molecules formed as described above are also adsorbed to the porous solid 16.
  • the liquid sample after the above purification treatment passes through the filter 17, the discharge port 24 and the flow rate adjustment unit 18 and is discharged in the direction of the arrow O.
  • the contact time between the liquid sample and the capture agent 14 and the contact time between the liquid sample and the porous solid 16 can be collectively adjusted by the flow rate adjusting unit 18.
  • a preferable range of the contact time is as described above.
  • known means such as an operation valve and an adjustment valve can be used.
  • the structure of the filtration unit 12 include a structure in which the capture agent 14 and the porous solid 16 are placed in a hollow container.
  • a hollow container For example, a well-known column, a filter housing, etc. can be used.
  • the amount of the scavenger 14 is not particularly limited.
  • the upper limit is not particularly limited, but is, for example, 500 g.
  • the amount of the porous solid 16 is not particularly limited.
  • the upper limit is not particularly limited, but is, for example, 500 g.
  • a well-known filter can be used as the filter 15 and the filter 17 provided in the downstream of the capture
  • the water purification device 10 is not limited to the form in which the capture agent 14 and the porous solid 16 are directly put into the hollow container, and the cartridge containing the capture agent 14 and the cartridge containing the porous solid 16 are mounted in the hollow container. It may be a form to do.
  • the trapping agent 14 that is, the trapping portion
  • the porous solid 16 that is, the adsorbing portion
  • the trapping agent 14 and the porous solid 16 are divided into two filtration portions. 14 and the porous solid 16 may be mixed to constitute one filtration unit.
  • a capturing agent 14 as a capturing part upstream and a porous solid 16 as an adsorbing part downstream as shown in FIG. .
  • a flow rate adjusting unit may be provided on the upstream side of the filtering unit 12 in the liquid sample flow path so that the supply rate of the liquid sample can be adjusted.
  • the water purification device 30 includes a capturing unit 32 having the capturing agent 14 and an adsorption unit 42 including the porous solid 16.
  • the capturing unit 32 and the adsorbing unit 42 constitute a filtering unit.
  • the matters described for the filtering unit 12 in the water purifier 30 can be applied as they are.
  • the preferred amounts of the scavenger 14 and the porous solid 16 are the same as in the case of the water purification device 10.
  • the capturing unit 32 has a supply port 36 and a discharge port 37.
  • a filter 35 is provided on the downstream side of the capture agent 14 (on the discharge port 37 side, the same applies hereinafter).
  • the filter 35 can be omitted.
  • the adsorbing part 42 has a supply port 46 and a discharge port 47, and a filter 45 is provided on the downstream side of the porous solid 16 (the discharge port 47 side, the same applies hereinafter).
  • the filter 45 can be omitted.
  • the discharge port 37 of the capturing unit 32 and the supply port 46 of the suction unit 42 are connected by a connection unit 40.
  • the connection unit 40 may have a flow rate adjusting function as will be described later.
  • a flow rate adjusting unit 50 is connected to the discharge port 47 of the adsorption unit 42.
  • water liquid sample
  • a liquid sample is supplied to the capturing unit 32 from the direction of the arrow I, and the supplied liquid sample contacts the capturing agent 14 in the capturing unit 32 (Processing A).
  • the molecule to be captured in the liquid sample is captured by the capture agent 14 (that is, a capture capsule type molecule is formed).
  • the liquid sample after contacting the capture agent 14 is transferred to the adsorption unit 42 through the filter 35, the discharge port 37, the connection unit 40, and the supply port 46.
  • the transferred liquid sample comes into contact with the porous solid 16 (Process B).
  • the contact time between the liquid sample and the capture agent 14 and the contact time between the liquid sample and the porous solid 16 can be collectively adjusted by the flow rate adjusting unit 50.
  • a preferable range of the contact time is as described above.
  • known means such as an operation valve and an adjusting valve can be used.
  • the means similar to the flow volume control part 50 can also be provided in another location.
  • the term “between the capture unit 32 and the adsorption unit 42 in the flow path of the liquid sample” refers to, for example, the downstream side of the capture unit 32 (for example, the vicinity of the discharge port 37) and the upstream side of the adsorption unit 42 (for example, supply) The vicinity of the mouth 46), and the like.
  • connection part 40 may have a flow volume adjustment function.
  • a flow rate adjusting unit may be provided on the upstream side of the capturing unit 32 (for example, in the vicinity of the supply port 36) in the liquid sample flow path so that the supply rate of the liquid sample can be adjusted.
  • connection between the capture unit 32 and the suction unit 42 is not limited to using the independent connection unit 40 shown in FIG.
  • the end part of the capture part 32 and the end part of the suction part 42 may be provided with a mutually connectable mechanism (such as a screw mechanism), and the capture part 32 and the suction part 42 may be connected by this mechanism. .
  • the water purification apparatus of this invention is not limited to the said 2 examples. Absent.
  • a structure such as a known water purifier can be used without particular limitation.
  • the water purification set of the present invention comprises a scavenger containing a compound represented by the general formula (I) and a metal ion capable of planar tetracoordinate or octahedral coordination, and a porous solid.
  • the water purification method of the present invention can be performed using the water purification set. That is, the process A can be performed using a scavenger, and the process B can be performed using a porous solid.
  • An advantage of using the water purification set is that the capturing agent can be easily brought into contact with the liquid sample for an arbitrary time. For example, after the capture agent is filled in a glass filter container, it is possible to perform an operation such as immersing in a liquid sample for an arbitrary time, and subsequently immersing activated carbon or an ion exchange resin in an aqueous solution for an arbitrary time.
  • the water purification set there is a form of a set in which the scavenger and the porous solid are combined in a state where they are individually put in a container.
  • a set in which one type of capture agent and porous solid is combined may be used, or a set including a plurality of types of capture agent and / or porous solid (that is, depending on conditions such as a molecular species to be captured).
  • a set in which a combination of a capturing agent and a porous solid can be selected.
  • the capture agent and the porous solid can be used out of the container at the time of use.
  • a set form in which a capturing member including a capturing agent and an adsorption member including a porous solid are combined is also suitable.
  • a set in which one type of capture member and adsorption member is combined may be used, or a set including a plurality of types of capture members and / or adsorption members (that is, capture is performed according to conditions such as the species to be captured). It may be a set in which a combination of a member and an adsorbing member can be selected.
  • the capturing member and the adsorbing member members having the same structure as the capturing unit 32 and the adsorbing unit 42 described for the water purification device 30 described above can be applied.
  • the process A can be performed using a capturing member
  • the process B can be performed using an adsorption member.
  • the water purifier of this invention can be obtained by connecting the said capture member and the said adsorption member.
  • the connection may be performed using an independent connection member, or by providing a mechanism (screw mechanism or the like) that can be connected to each other at the end of the capturing means and the end of the suction means. You may go.
  • the obtained purple crystals were collected, and the structure of the purple crystals was confirmed by single crystal structure analysis and mass spectrometry measurement.
  • Single crystal structure analysis was performed using a structure analysis apparatus (Mercury two-dimensional detector system) manufactured by Rigaku Corporation and collecting X-ray reflection data using a molybdenum K ⁇ radiation source at room temperature.
  • the structural analysis was performed using the Crystal Structure program manufactured by Rigaku Corporation.
  • the mass spectrometry measurement was performed using the LCT mass spectrometer made from Micromass.
  • FIGS. 3 and 4 show the structure of the trapped capsule molecule, which has been clarified from the single crystal structure analysis data and the mass spectrometry measurement.
  • the structure of the trapping capsule molecule is a structure in which a capsule skeleton formed by two copper (II) ions and four bit4 molecules encloses one molecule of perchlorate ion.
  • perchlorate ions are coordinated to both copper (II) ions one molecule at a time from the outside of the capsule.
  • the size of the space formed by two copper (II) ions and the bitb4 molecule is 6.5 0.6 (0.65 nm) ⁇ 6.5 ⁇ (0.65 nm) ⁇ 5.0 ⁇ ( 0.50 nm), and was a size that contained perchlorate ions so as not to be detached.
  • hydrogen atoms are omitted.
  • the obtained purple crystals were dissolved in any of dimethylformamide, methanol, ethanol, acetonitrile, and acetone. This result also shows that the purple crystal has the structure of a trapped capsule molecule.
  • the resulting blue crystal was subjected to single crystal structure analysis.
  • the blue crystal was not soluble in the solvent and could not be subjected to mass spectrometry, the ratio of carbon, hydrogen, and nitrogen in the blue crystal was confirmed by elemental analysis and matched with the single crystal structure analysis result. It was confirmed.
  • the obtained blue crystal is not a capture capsule type molecule as in Reference Example 2, but a coordination compound ( ⁇ [Cu (bitb) 2 (H 2 O) 2 ] ⁇ It was found to be a polymer complex represented by [Cu (bitb) 2 (SO 4 ) 2 ] ⁇ ⁇ ; hereinafter also referred to as “Cu-bitb polymer”). The detailed structure of the coordination compound will be described later.
  • the obtained blue crystals did not dissolve in any of water, dimethylformamide, methanol and ethanol.
  • This result also shows that the blue crystals are not the structure of the trapped capsule molecule, but the coordination compound ( ⁇ [Cu (bitb) 2 (H 2 O) 2 ] ⁇ [Cu (bitb) 2 (SO 4 ) 2 ] ⁇ ⁇
  • the coordination compound ⁇ [Cu (bitb) 2 (H 2 O) 2 ] ⁇ [Cu (bitb) 2 (SO 4 ) 2 ] ⁇ ⁇
  • the reason why the blue crystal takes the structure of the coordination compound rather than the structure of the trapping capsule type molecule is thought to be that the size of the sulfate ion is larger than the size of the perchlorate ion.
  • the capsule skeleton since the size of the molecule that can be encapsulated by the capsule skeleton consisting of the bit4 molecule and two metal ions does not match the size of the sulfate ion, the capsule skeleton is not formed, and the coordination compound is formed.
  • FIGS. 5 to 7 show the structures of the coordination compounds that have been clarified from the results of elemental analysis and single crystal structure analysis.
  • the ionic species having six bonds represents a copper (II) ion, and one six-membered ring and two five-membered rings (heterocycles) arranged between two copper (II) ions.
  • bitb is coordinated to one copper (II) ion at the nitrogen atom in one heterocyclic ring, and coordinated to the other copper (II) ion at the nitrogen atom in the other heterocyclic ring. is doing.
  • the coordination compound has a structure spread in an infinite chain, in FIGS.
  • the structure of the coordination compound is a three-dimensional structure in which two types of two-dimensional sheet-type structures (A layer shown in FIG. 5 and B layer shown in FIG. 6) are alternately stacked ( FIG. 7). Details of each structure will be described below.
  • the A layer shown in FIG. 5 is a two-dimensional sheet-type structure that is formed by coordinating four molecules of bitb to one copper (II) ion and spreads in an infinite two-dimensional manner. More specifically, the A layer has a negatively charged two-dimensional sheet structure [Cu (bitb) 2 (SO 4 ) 2 in which two molecules of sulfate ions are coordinated with the copper (II) ion. ] ⁇ .
  • arrows a and b represent axes parallel to the two-dimensional plane of the A layer (hereinafter also referred to as “a axis” and “b axis”).
  • the B layer shown in FIG. 6 is also a two-dimensional sheet-type structure that is formed by coordinating four molecules of bitb to one copper (II) ion and spreads in an infinite two-dimensional manner. More specifically, the B layer is a positively charged two-dimensional sheet structure [Cu (bitb) 2 (H 2 O) in which two molecules of water are coordinated with the copper (II) ion. 2 ] ⁇ .
  • arrows a and b represent axes parallel to the two-dimensional plane of the B layer (hereinafter also referred to as “a axis” and “b axis”).
  • the three-dimensional structure shown in FIG. 7 is a structure in which the A layer and the B layer are alternately stacked.
  • an arrow c represents an axis that is not parallel to the two-dimensional plane of the A layer and the B layer.
  • the A layer and the B layer are respectively arranged on the ab plane, and have a structure in which they are alternately stacked along the c-axis.
  • Example 1 ⁇ Experiment on removal of perchlorate ion> ⁇ Sample 1 (blank) ⁇ Sodium perchlorate was dissolved in distilled water to prepare Sample 1 (30 ml) containing 100 ppm of perchlorate ions. About the obtained sample 1 (blank), the density
  • the measurement was performed using an ion chromatograph IC 861 manufactured by Metrohm. The measurement was performed by a CO 2 differential presser method, and anions were detected by an electric conductivity detector. The measurement was performed at room temperature of 23 ° C., and the sample used for the measurement was filtered through a membrane filter, and the aqueous solution used for the measurement was purified with an ultrapure water production apparatus Direct-Q manufactured by Millipore.
  • Sample 2 The sample 1 is represented by the coordination compound ( ⁇ [Cu (bitb) 2 (H 2 O) 2 ] ⁇ [Cu (bitb) 2 (SO 4 ) 2 ] ⁇ ⁇ ) obtained in Reference Example 3.
  • a polymer complex hereinafter referred to as “Cu-bitb polymer” (46 mg) was added (treatment A), and allowed to stand for 24 hours to obtain a sample 2. About the obtained sample 2, the same measurement as the sample 1 was performed.
  • Sample 3 Sample 3 ⁇ Sample 1 above includes 50 mg of activated carbon (activated carbon manufactured by Wako Pure Chemicals, crushed 0.2 mm to 1 mm), 50 mg of ion exchange resin (weakly basic anion exchange resin WA-30 manufactured by Mitsubishi Chemical Corporation), or zeolite (Union Showa) 50 mg of Molecular Sieve 13X (manufactured by Co., Ltd.) was added (Processing B) and allowed to stand for 24 hours to obtain Sample 3, Sample 6, or Sample 9. With respect to the obtained sample 3, sample 6, or sample 9, the same measurement as that of sample 1 was performed.
  • activated carbon activated carbon manufactured by Wako Pure Chemicals, crushed 0.2 mm to 1 mm
  • ion exchange resin weakly basic anion exchange resin WA-30 manufactured by Mitsubishi Chemical Corporation
  • zeolite Union Showa
  • Sample 4 Sample 4, Sample 7, Sample 10 ⁇
  • AB simultaneous this treatment is referred to as “AB simultaneous”
  • the sample was allowed to stand for 24 hours to obtain Sample 4, Sample 7, or Sample 10.
  • sample 7, or sample 10 the same measurement as that of sample 1 was performed.
  • Example 2 ⁇ Comparison of copper ion concentration> Next, with respect to Sample 4, Sample 5, Sample 7, Sample 8, Sample 10, and Sample 11 in Example 1, the concentration of copper ions was measured under the following conditions.
  • Multi-type ICP emission spectrometer After adding nitric acid (1%) to 20 ml of sample and thermally decomposing it, the sample is made up to 20 ml and the concentration of copper ions contained in the aqueous solution is determined using a multi-type ICP emission spectrometer (ICP (VISTA-MPX manufactured by Varian). )).
  • ICP VISTA-MPX manufactured by Varian.
  • Example 3 ⁇ Experiment on Removal of Tetrafluoroborate Ion (BF 4 ⁇ )> Sample 101 (30 ml) containing 100 ppm of tetrafluoroborate ions was prepared by dissolving sodium tetrafluoroborate in distilled water. In addition, the concentration (100 ppm) of tetrafluoroborate ions in the sample 101 (blank) is a value measured under the above-described conditions by ion chromatography.
  • sample 101 46 mg of Cu-bitb polymer, 50 mg of activated carbon (activated carbon made by Wako Pure Chemicals, crushed 0.2 mm to 1 mm), 50 mg of ion exchange resin (WA-30), or 50 mg of zeolite (13X)
  • activated carbon activated carbon made by Wako Pure Chemicals, crushed 0.2 mm to 1 mm
  • ion exchange resin WA-30
  • zeolite 13X
  • this treatment is referred to as “AB simultaneous”
  • the sample was allowed to stand for 24 hours to obtain Sample 102, Sample 104, or Sample 106.
  • the obtained sample 102, sample 104, or sample 106 was measured in the same manner as the sample 101.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

A method for water purification which comprises bringing a scavenger containing both a compound represented by general formula (I) and metal ions capable of square planar coordination or octahedral coordination into contact with water containing molecules to be scavenged and bringing a porous solid into contact with water containing molecules to be scavenged. In general formula (I), one of R2, R3 and R4 is Ry present at a position meta or para to Rx; Rx and Ry are each independently a heterocyclic substituent described below; R1, R2, R3, R4 and R5 except Ry are each independently hydrogen, a substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms, or a sulfonic acid group, with the proviso that they are not simultaneously hydrogen; and in the heterocyclic substituent, R6 and R7 are each independently hydrogen or methyl and A is a 5- or 6-membered heterocyclic group containing at least one nitrogen atom.

Description

水の浄化方法、水の浄化装置、及び水の浄化セットWater purification method, water purification device, and water purification set
 本発明は、水の浄化方法、水の浄化装置、及び水の浄化セットに関する。 The present invention relates to a water purification method, a water purification device, and a water purification set.
 従来より、水中の不純物の濃度を低減させる水の浄化方法について、種々の検討がなされている。不純物の例として、過塩素酸塩が挙げられる。
 過塩素酸塩は、成人の代謝作用を司り小児の身体発育を促進する甲状腺に障害を及ぼす物質である。近年、土壌・水中において、高濃度の過塩素酸イオンが検出された事例が、相次いで報告されている。また、過塩素酸イオン(ClO )は、水に対して高い溶解度を示し、全ての陰イオンの中で、最も陽イオンと相互作用しにくいため、沈殿等として水溶液から取り出すことが困難なイオンである。
 過塩素酸塩(又は過塩素酸イオン)により汚染された廃液から過塩素酸塩を除去する技術として、過塩素酸塩を濃縮し、濃縮された過塩素酸塩溶液にKClを加えて過塩素酸カリ(KClO)を生成させ、冷却して結晶化させる方法が知られている(例えば、特表平9-504472号公報参照)。また、樹脂を用いて過塩素酸塩を除去する水処理システム(例えば、特開2004-346299号公報及び「NEDO海外レポート、No.946、2004.12.15、[平成20年2月19日検索]、インターネット<http://www.nedo.go.jp/kankobutsu/report/946/946-07.pdf>」参照)も知られている。
 一方、種々のイオンを取り込むようにカプセルを形成しうる化合物が知られている(例えば、J.Am.Chem.Soc., 2003, Vol.125, No.28, p.8595-8613参照)。この化合物は、カプセル内に取り込まれるイオンの種類やイオンのサイズにかかわらず、カプセル骨格を形成しやすい構造を有する。
Conventionally, various studies have been made on water purification methods for reducing the concentration of impurities in water. An example of an impurity is perchlorate.
Perchlorate is a substance that damages the thyroid gland that controls metabolic effects in adults and promotes physical development in children. In recent years, cases in which high concentrations of perchlorate ions have been detected in soil and water have been reported one after another. In addition, perchlorate ion (ClO 4 ) exhibits high solubility in water, and since it hardly interacts with the cation among all the anions, it is difficult to remove from the aqueous solution as a precipitate or the like. Ion.
As a technique for removing perchlorate from waste liquid contaminated with perchlorate (or perchlorate ions), perchlorate is concentrated, and KCl is added to the concentrated perchlorate solution to perchlorate. A method is known in which acid potassium (KClO 4 ) is produced, cooled and crystallized (see, for example, Japanese Patent Publication No. 9-504472). Further, a water treatment system for removing perchlorate using a resin (for example, Japanese Patent Application Laid-Open No. 2004-346299 and “NEDO Overseas Report, No. 946, December 15, 2004” [searched on February 19, 2008] The Internet <http://www.nedo.go.jp/kankobutsu/report/946/946-07.pdf>") is also known.
On the other hand, compounds capable of forming capsules so as to take in various ions are known (see, for example, J. Am. Chem. Soc., 2003, Vol. 125, No. 28, p. 8595-8613). This compound has a structure that easily forms a capsule skeleton regardless of the type of ions or the size of ions taken into the capsule.
 しかしながら、過塩素酸塩から過塩素酸カリを生成させ結晶化させる前記の方法では、溶液から溶媒を蒸発させる濃縮工程を有するため、溶液の状態を保持したまま、溶液中の過塩素酸イオンを捕捉することはできない。また、樹脂を用いて過塩素酸塩を除去する前記の方法では、樹脂の再生にコストがかかる他、過塩素酸イオン捕捉に関し、選択性に劣る問題がある。
 一方、前記カプセルを形成しうる化合物を用いて過塩素酸イオンの除去を試みたとしても、複数の陰イオンが存在する系から過塩素酸イオンを選択的に捕捉することはできない。
 従って、過塩素酸イオン等の特定の分子を選択的に捕捉し、捕捉された被捕捉分子の水中における濃度を低減させる浄化方法の開発が必要である。
However, the above-mentioned method for producing potassium chlorate from perchlorate and crystallizing it has a concentration step of evaporating the solvent from the solution, so that the perchlorate ions in the solution are retained while maintaining the state of the solution. It cannot be captured. In addition, the above-described method of removing perchlorate using a resin has a problem of poor selectivity in terms of perchlorate ion trapping as well as costly regeneration of the resin.
On the other hand, even if an attempt is made to remove perchlorate ions using a compound capable of forming the capsule, perchlorate ions cannot be selectively captured from a system in which a plurality of anions are present.
Therefore, it is necessary to develop a purification method that selectively captures specific molecules such as perchlorate ions and reduces the concentration of the captured molecules in water.
 本発明は前記に鑑みなされたものであり、被捕捉分子の少ない水に浄化できる水の浄化方法、水の浄化装置、及び水の浄化セットを提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a water purification method, a water purification device, and a water purification set capable of purifying water with few trapped molecules.
 前記課題を解決するための手段は以下のとおりである。
<1> 下記一般式(I)で表される化合物及び平面四配位又は正八面体配位可能な金属イオンを含む捕捉剤と、被捕捉分子を含む水と、を接触させること、及び、多孔質固体と、分子サイズ1nm以下の被捕捉分子を含む水と、を接触させること、を含む水の浄化方法である。
Means for solving the above-mentioned problems are as follows.
<1> Contacting a compound represented by the following general formula (I) and a capture agent containing a metal ion capable of planar tetracoordination or regular octahedral coordination with water containing a molecule to be captured, and porous A method for purifying water, comprising bringing a solid material into contact with water containing a molecule to be captured having a molecular size of 1 nm or less.
Figure JPOXMLDOC01-appb-C000007

 
Figure JPOXMLDOC01-appb-C000007

 
[式中、R、R、及びRのうち1つは、Rに対してメタ位又はパラ位にあるRであり、R及びRは互いに独立して下記の複素環置換基を表し、 Wherein, R 2, R 3, and one of R 4 is in the meta or para to R x R y, R x and R y are following heterocyclic independently of one another Represents a substituent,
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 R、R、R、R及びRのうち、Rを除いた残りは、それぞれ独立に、水素原子、炭素数1~30の置換若しくは未置換の炭化水素基、又はスルホン酸基を表すが、同時に水素原子であることはなく、前記複素環置換基のうち、R及びRはそれぞれ独立に、水素原子又はメチル基を表し、Aは、窒素原子を少なくとも1つ含む5員又は6員の複素環基を表す。] Of R 1 , R 2 , R 3 , R 4 and R 5 , the remainder excluding R y is independently a hydrogen atom, a substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms, or a sulfonic acid Represents a group, but is not simultaneously a hydrogen atom. Among the heterocyclic substituents, R 6 and R 7 each independently represent a hydrogen atom or a methyl group, and A contains at least one nitrogen atom. Represents a 5-membered or 6-membered heterocyclic group. ]
<2> 前記被捕捉分子の分子サイズが1nm以下であることを特徴とする<1>記載の水の浄化方法である。
<3> 前記捕捉剤との接触後の水と、前記多孔質固体と、を接触させる<1>記載の水の浄化方法である。
<4> 前記多孔質固体が、活性炭、ゼオライト、イオン交換樹脂、クレー、及びシリカゲルからなる群から選択される少なくとも1種である<1>記載の水の浄化方法である。
<5> 前記一般式(I)中、RがRに対してパラ位にある<1>記載の水の浄化方法である。
<6> 前記一般式(I)中、前記R及びRが共に水素原子である<1>記載の水の浄化方法である。
<2> The water purification method according to <1>, wherein the molecule to be trapped has a molecular size of 1 nm or less.
<3> The method for purifying water according to <1>, wherein the water after contact with the scavenger is brought into contact with the porous solid.
<4> The water purification method according to <1>, wherein the porous solid is at least one selected from the group consisting of activated carbon, zeolite, ion exchange resin, clay, and silica gel.
<5> The method for purifying water according to <1>, wherein, in the general formula (I), R y is in a para position with respect to R x .
<6> The water purification method according to <1>, wherein in the general formula (I), R 6 and R 7 are both hydrogen atoms.
<7> 前記一般式(I)中、RがRであり、R、R、R及びRが、それぞれ独立に、炭素数1~10の置換若しくは未置換の炭化水素基であり、Aがイミダゾリル基である<1>記載の水の浄化方法である。
<8> 前記一般式(I)中、RがRであり、R、R、R及びRが、それぞれ独立に、炭素数1~6の置換若しくは未置換の炭化水素基であり、Aがイミダゾリル基である<1>記載の水の浄化方法である。
<9> 前記一般式(I)中、RがRであり、R、R、R及びRが、それぞれ独立に、炭素数1又は2の置換若しくは未置換の炭化水素基であり、Aがイミダゾリル基である<1>記載の水の浄化方法である。
<10> 前記捕捉剤が、前記一般式(I)で表される化合物及び平面四配位又は正八面体配位可能な金属イオンを含む配位化合物である<1>記載の水の浄化方法である。
<7> In the general formula (I), R 3 is R y , and R 1 , R 2 , R 4 and R 5 are each independently a substituted or unsubstituted hydrocarbon group having 1 to 10 carbon atoms. The method for purifying water according to <1>, wherein A is an imidazolyl group.
<8> In the general formula (I), R 3 is R y , and R 1 , R 2 , R 4 and R 5 are each independently a substituted or unsubstituted hydrocarbon group having 1 to 6 carbon atoms. The method for purifying water according to <1>, wherein A is an imidazolyl group.
<9> In the general formula (I), R 3 is R y , and R 1 , R 2 , R 4, and R 5 are each independently a substituted or unsubstituted hydrocarbon group having 1 or 2 carbon atoms. The method for purifying water according to <1>, wherein A is an imidazolyl group.
<10> The water purification method according to <1>, wherein the scavenger is a coordination compound including a compound represented by the general formula (I) and a metal ion capable of planar tetracoordination or regular octahedral coordination. is there.
<11> 下記一般式(I)で表される化合物及び平面四配位又は正八面体配位可能な金属イオンを含む捕捉剤と、多孔質固体と、を含む濾過部を備えた水の浄化装置である。 <11> A water purification apparatus comprising a filtration part containing a compound represented by the following general formula (I) and a metal ion capable of planar tetracoordination or regular octahedral coordination, and a porous solid: It is.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
[式中、R、R、及びRのうち1つは、Rに対してメタ位又はパラ位にあるRであり、R及びRは互いに独立して下記の複素環置換基を表し、 Wherein, R 2, R 3, and one of R 4 is in the meta or para to R x R y, R x and R y are following heterocyclic independently of one another Represents a substituent,
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 R、R、R、R及びRのうち、Rを除いた残りは、それぞれ独立に、水素原子、炭素数1~30の置換若しくは未置換の炭化水素基、又はスルホン酸基を表すが、同時に水素原子であることはなく、前記複素環置換基のうち、R及びRはそれぞれ独立に、水素原子又はメチル基を表し、Aは、窒素原子を少なくとも1つ含む5員又は6員の複素環基を表す。] Of R 1 , R 2 , R 3 , R 4 and R 5 , the remainder excluding R y is independently a hydrogen atom, a substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms, or a sulfonic acid Represents a group, but is not simultaneously a hydrogen atom. Among the heterocyclic substituents, R 6 and R 7 each independently represent a hydrogen atom or a methyl group, and A contains at least one nitrogen atom. Represents a 5-membered or 6-membered heterocyclic group. ]
<12> 前記濾過部が、前記捕捉剤を含む捕捉部と、前記捕捉部に接続し、前記多孔質固体を含む吸着部と、を有する<11>記載の水の浄化装置である。 <12> The water purifier according to <11>, wherein the filtration unit includes a capturing unit including the capturing agent and an adsorption unit connected to the capturing unit and including the porous solid.
<13> 下記一般式(I)で表される化合物及び平面四配位又は正八面体配位可能な金属イオンを含む捕捉剤と、多孔質固体と、を有する水の浄化セットである。 <13> A water purification set comprising a compound represented by the following general formula (I) and a scavenger containing a metal ion capable of planar tetracoordination or regular octahedral coordination, and a porous solid.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
[式中、R、R、及びRのうち1つは、Rに対してメタ位又はパラ位にあるRであり、R及びRは互いに独立して下記の複素環置換基を表し、 Wherein, R 2, R 3, and one of R 4 is in the meta or para to R x R y, R x and R y are following heterocyclic independently of one another Represents a substituent,
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 R、R、R、R及びRのうち、Rを除いた残りは、それぞれ独立に、水素原子、炭素数1~30の置換若しくは未置換の炭化水素基、又はスルホン酸基を表すが、同時に水素原子であることはなく、前記複素環置換基のうち、R及びRはそれぞれ独立に、水素原子又はメチル基を表し、Aは、窒素原子を少なくとも1つ含む5員又は6員の複素環基を表す。] Of R 1 , R 2 , R 3 , R 4 and R 5 , the remainder excluding R y is independently a hydrogen atom, a substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms, or a sulfonic acid Represents a group, but is not simultaneously a hydrogen atom. Among the heterocyclic substituents, R 6 and R 7 each independently represent a hydrogen atom or a methyl group, and A contains at least one nitrogen atom. Represents a 5-membered or 6-membered heterocyclic group. ]
 本発明によれば、被捕捉分子の少ない水に浄化できる水の浄化方法、水の浄化装置、及び水の浄化セットを提供することができる。 According to the present invention, it is possible to provide a water purification method, a water purification device, and a water purification set that can purify water with few molecules to be trapped.
本発明に係る水の浄化装置の一例を示す概念図である。It is a conceptual diagram which shows an example of the water purification apparatus which concerns on this invention. 本発明に係る水の浄化装置の別の一例を示す概念図である。It is a conceptual diagram which shows another example of the water purification apparatus which concerns on this invention. 本発明の参考例に係る捕捉カプセル型分子1分子が過塩素酸イオン(ClO )1分子を内包する様子を、原子半径を無視して表した図である。FIG. 4 is a diagram showing a state in which one capture capsule type molecule according to a reference example of the present invention includes one perchlorate ion (ClO 4 ) molecule, ignoring the atomic radius. 本発明の参考例に係る捕捉カプセル型分子1分子が過塩素酸イオン(ClO )1分子を内包する様子を、ファンデルワールス半径を考慮して表した図である。It is the figure which represented the mode that one capture capsule type molecule concerning a reference example of the present invention encapsulates one molecule of perchlorate ion (ClO 4 ) in consideration of the van der Waals radius. 本発明の参考例に係る配位化合物の二次元シート型構造(A layer)を示す図である。It is a figure which shows the two-dimensional sheet type | mold structure (A-layer) of the coordination compound which concerns on the reference example of this invention. 本発明の参考例に係る配位化合物の二次元シート型構造(B layer)を示す図である。It is a figure which shows the two-dimensional sheet type structure (B layer) of the coordination compound which concerns on the reference example of this invention. 本発明の参考例に係る配位化合物の三次元構造を示す図である。It is a figure which shows the three-dimensional structure of the coordination compound which concerns on the reference example of this invention.
≪水の浄化方法≫
 本発明の水の浄化方法は、下記一般式(I)で表される化合物と平面四配位若しくは正八面体配位可能な金属イオンとを含む捕捉剤と、被捕捉分子を含む水と、を接触させること、及び、多孔質固体と被捕捉分子を含む水とを接触させること、を有する。
 本発明では、前記捕捉剤と被捕捉分子を含む水とが接触すると、後述するように、一般式(I)で表される化合物4分子と前記金属イオン2個とによって被捕捉分子1分子を取り囲んだ構造の捕捉カプセル型分子が形成される。また、多孔質固体と被捕捉分子を含む水とが接触すると、前記被捕捉分子及び前記捕捉カプセル型分子が多孔質固体に吸着する。
 以上により、本発明の水の浄化方法によれば、水中における被捕捉分子の濃度を効果的に低減でき、被捕捉分子の少ない水に浄化できる。
≪Water purification method≫
The water purification method of the present invention comprises a scavenger containing a compound represented by the following general formula (I) and a metal ion capable of planar tetracoordination or regular octahedral coordination, and water containing a molecule to be captured. And contacting the porous solid with water containing the molecule to be captured.
In the present invention, when the scavenger and water containing the molecule to be captured come into contact, as described later, one molecule to be captured is composed of four compounds represented by the general formula (I) and two metal ions. A trapped capsule molecule with an enclosed structure is formed. Further, when the porous solid comes into contact with water containing the molecule to be captured, the molecule to be captured and the capture capsule type molecule are adsorbed to the porous solid.
As described above, according to the method for purifying water of the present invention, the concentration of molecules to be captured in water can be effectively reduced, and the water can be purified to have few molecules to be captured.
 前記被捕捉分子としては、前記捕捉剤により捕捉される分子であれば特に限定はないが、上記効果をより効果的に得る観点からは、分子サイズ1nm以下の被捕捉分子であることが好ましい。
 本発明において、分子サイズ1nm以下とは、分子の最大径が1nm以下であることを指す。
 ここで、分子の最大径は、ファンデルワールス半径を考慮して作製した構造モデルを基に、その分子を構成する末端の原子間距離の最長距離の平均から求められた値を指す。
 また、本発明における「分子」は、陽イオン、陰イオン、及び中性分子のいずれであってもよい。
The molecule to be captured is not particularly limited as long as it is a molecule that can be captured by the capturing agent. However, from the viewpoint of obtaining the above effect more effectively, the molecule to be captured is preferably a molecule having a molecular size of 1 nm or less.
In the present invention, the molecular size of 1 nm or less means that the maximum diameter of the molecule is 1 nm or less.
Here, the maximum diameter of a molecule refers to a value obtained from the average of the longest distances between the atoms at the ends constituting the molecule based on a structural model prepared in consideration of the van der Waals radius.
The “molecule” in the present invention may be any of a cation, an anion, and a neutral molecule.
 本発明における被捕捉分子の具体例を以下に示す。
 陰イオンとして、過塩素酸イオン(ClO )、トリフルオロメタンスルホン酸イオン(CFSO )、テトラフルオロホウ酸イオン(BF )、アジ化物イオン(N )、リン酸イオン(PO 3-)、等が挙げられる。
 中性分子として、ベンゼン、トルエン、キシレン、シクロヘキサン、シクロヘキセン、が挙げられる。
Specific examples of the molecules to be captured in the present invention are shown below.
As anions, perchlorate ion (ClO 4 ), trifluoromethanesulfonate ion (CF 3 SO 3 ), tetrafluoroborate ion (BF 4 ), azide ion (N 3 ), phosphate ion (PO 4 3- ), and the like.
Examples of neutral molecules include benzene, toluene, xylene, cyclohexane, and cyclohexene.
 以上の具体例の中でも、除去効率の点からは、過塩素酸イオン(ClO )、トリフルオロメタンスルホン酸イオン(CFSO )、テトラフルオロホウ酸イオン(BF )が好ましい。 Among the above specific examples, perchlorate ion (ClO 4 ), trifluoromethanesulfonate ion (CF 3 SO 3 ), and tetrafluoroborate ion (BF 4 ) are preferable from the viewpoint of removal efficiency.
 また、本発明における「被捕捉分子を含む水」は、水中に被捕捉分子が含まれている限り他の成分を含んでいてもよい。
 「被捕捉分子を含む水」には、例えば、飲料水、工業用水、廃水等のほか、各種水溶液、コロイド溶液(牛乳等)、食品や土壌等を含む懸濁液、等が含まれる。
Further, the “water containing a molecule to be captured” in the present invention may contain other components as long as the molecule to be captured is contained in water.
“Water containing molecules to be trapped” includes, for example, drinking water, industrial water, waste water, and various aqueous solutions, colloidal solutions (milk, etc.), suspensions containing food, soil, and the like.
<捕捉剤>
 本発明における捕捉剤は下記一般式(I)で表される化合物及び平面四配位又は正八面体配位可能な金属イオンを含む。
 本発明における捕捉剤の形態としては、一般式(I)で表される化合物及び前記金属イオンを含む配位化合物の形態や、前記配位化合物及び他の成分を含む混合物の形態が挙げられる。
 また、本発明における捕捉剤の別の形態としては、独立して存在する(即ち、前記配位化合物の形態をとらない)一般式(I)で表される化合物と、前記金属イオンを含む金属塩と、を有する混合物の形態が挙げられる。
 以下、一般式(I)で表される化合物について説明し、引き続き、平面四配位又は正八面体配位可能な金属イオン、配位化合物、金属塩について説明する。
<Capturing agent>
The scavenger in the present invention contains a compound represented by the following general formula (I) and a metal ion capable of planar tetracoordinate or regular octahedral coordination.
Examples of the form of the scavenger in the present invention include a form of a coordination compound containing the compound represented by the general formula (I) and the metal ion, and a form of a mixture containing the coordination compound and other components.
As another form of the scavenger in the present invention, a compound represented by the general formula (I) that exists independently (that is, does not take the form of the coordination compound) and a metal containing the metal ion And a salt form.
Hereinafter, the compound represented by the general formula (I) will be described, and subsequently, a metal ion, a coordination compound, and a metal salt that can be planar tetracoordinated or octahedrally coordinated will be described.
~ 一般式(I)で表される化合物 ~
Figure JPOXMLDOC01-appb-C000013
~ Compounds represented by general formula (I) ~
Figure JPOXMLDOC01-appb-C000013
 式中、R、R、及びRのうち1つは、Rに対してメタ位又はパラ位にあるRであり、R及びRは互いに独立して下記の複素環置換基を表し、 Wherein, R 2, R 3, and one of R 4 is in the meta or para to R x R y, independently R x and R y are each heterocyclic-substituted below Represents a group,
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 R、R、R、R及びRのうち、Rを除いた残りは、それぞれ独立に、水素原子、炭素数1~30の置換若しくは未置換の炭化水素基、又はスルホン酸基を表すが、同時に水素原子であることはなく、
 前記複素環置換基のうち、R及びRはそれぞれ独立に、水素原子又はメチル基を表し、Aは、窒素原子を少なくとも1つ含む5員又は6員の複素環基を表す。
Of R 1 , R 2 , R 3 , R 4 and R 5 , the remainder excluding R y is independently a hydrogen atom, a substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms, or a sulfonic acid Represents a group, but not simultaneously a hydrogen atom,
Among the heterocyclic substituents, R 6 and R 7 each independently represent a hydrogen atom or a methyl group, and A represents a 5-membered or 6-membered heterocyclic group containing at least one nitrogen atom.
 前記一般式(I)で表される化合物は、液体試料中で、平面四配位又は正八面体配位可能な金属イオンと被捕捉分子とに接触すると、複数集まって前記金属イオンとともに、被捕捉分子を取り込んでカプセル分子を形成する(自己集積化反応;例えば、後述の図3及び図4参照)。被捕捉分子の具体例については前述のとおりである。
 本発明においては、被捕捉分子を取り込んだカプセル分子を、「捕捉カプセル型分子」という。
 捕捉カプセル型分子は、被捕捉分子1分子を内包して捕捉するほか、前記捕捉カプセル型分子の外側(2個の金属イオン)にも、配位結合により被捕捉分子を捕捉することができる。従って、捕捉カプセル型分子1分子は、被捕捉分子を3分子捕捉することが可能である。さらに、捕捉カプセル型分子1分子は、被捕捉分子3分子に加え、別の捕捉カプセル型分子との間に、被捕捉分子をさらに1分子捕捉することが確認されている。即ち、捕捉カプセル型分子1分子は、被捕捉分子を最大4分子まで捕捉できることがわかっている。
 以上の形態は、例えば単結晶構造解析及び可視・紫外分光スペクトル等により確認することができる。
When the compound represented by the general formula (I) contacts a metal ion capable of planar tetracoordinate or octahedral coordination with a molecule to be captured in a liquid sample, a plurality of the compounds are collected together with the metal ion. The molecules are taken in to form capsule molecules (self-assembly reaction; see, for example, FIGS. 3 and 4 described later). Specific examples of the molecules to be captured are as described above.
In the present invention, a capsule molecule incorporating a molecule to be captured is referred to as a “captured capsule molecule”.
In addition to trapping and capturing one molecule to be captured, the capture capsule type molecule can also capture the captured molecule by coordination bond outside the capture capsule type molecule (two metal ions). Therefore, one molecule of the capture capsule type molecule can capture three molecules to be captured. Furthermore, it has been confirmed that one capture capsule type molecule captures another molecule to be captured with another capture capsule type molecule in addition to three molecules to be captured. That is, it is known that one capture capsule type molecule can capture up to four molecules to be captured.
The above forms can be confirmed by, for example, single crystal structure analysis and visible / ultraviolet spectrum.
 前記一般式(I)で表される化合物による自己集積化反応は、被捕捉分子に対して極めて高い選択性を示すため、液体中に被捕捉分子が存在する場合、効率よくかつ確実に被捕捉分子を捕捉することができる。
 なお、前記一般式(I)で表される化合物は、前記金属イオンと被捕捉分子以外の陰イオンとに接触した場合には、このような捕捉カプセル型分子ではなく、後述する配位化合物のような高分子構造を容易に形成する。
Since the self-assembly reaction by the compound represented by the general formula (I) shows extremely high selectivity for the molecule to be captured, when the molecule to be captured is present in the liquid, it is efficiently and reliably captured. A molecule can be captured.
In addition, when the compound represented by the general formula (I) is in contact with the metal ion and an anion other than the molecule to be captured, it is not such a capture capsule type molecule but a coordination compound described later. Such a polymer structure is easily formed.
 前記一般式(I)において、RがRに対してパラ位にあること、即ち、RがRであることが、被捕捉分子が離脱しない、隙間の無い捕捉空間を形成させる観点から、好ましい。
 また、RとRは同一の複素環置換基であることが、生成する捕捉カプセル型分子の異性体の数を制限でき、生成物の同定を行いやすい観点からは、好ましい。
 R及びRにおいて、R及びRは、芳香族環の他の置換基と立体障害を起こすことなく、捕捉カプセル型分子を形成しうる観点から、共に水素原子であることが好ましい。
In the general formula (I), the viewpoint that R y is in the para position with respect to R x , that is, R 3 is R y , does not leave the trapped molecule and forms a capture space without a gap. Therefore, it is preferable.
In addition, it is preferable that R y and R x are the same heterocyclic substituent from the viewpoint of being able to limit the number of isomers of the captured capsule type molecule to be generated and easily identifying the product.
In R x and R y , R 6 and R 7 are preferably both hydrogen atoms from the viewpoint of forming a trapped capsule molecule without causing steric hindrance with other substituents of the aromatic ring.
 R、R、R、R及びRのうち、Rを除いた残りは、それぞれ独立に、水素原子、炭素数1~30の置換若しくは未置換の炭化水素基、又はスルホン酸基を表すが、同時に水素原子であることはない。また、R及びRは、互いに結合して環(芳香族環又は脂肪族環)を形成してもよい。また、R及びRも、互いに結合して環(芳香族環又は脂肪族環)を形成してもよい。
 R、R、R、R及びRのうち、Rを除いた残りとしては、炭素数1~30の置換若しくは未置換の炭化水素基が好ましい。
 R、R、R、R及びRで表される炭化水素基の炭素数としては、合成容易性の観点や、一般式(I)で表される化合物同士が立体的に障害となることなくカプセルを形成し、また陰イオンのカプセル内からの離脱を防ぐ観点から、1~10が好ましく、1~6がより好ましく、1~2が特に好ましい。
 この炭化水素基に置換可能な置換基としては、ハロゲン原子、スルホン酸基、ニトロ基、ヒドロキシル基、ハロゲン化アルキル基を挙げることができるが、合成容易性、安定性、及び水に対する不溶性の観点から、フッ素原子、又はパーフルオロアルキル基が好ましい。
Of R 1 , R 2 , R 3 , R 4 and R 5 , the remainder excluding R y is independently a hydrogen atom, a substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms, or a sulfonic acid Represents a group but is not simultaneously a hydrogen atom. R 1 and R 2 may be bonded to each other to form a ring (aromatic ring or aliphatic ring). R 4 and R 5 may also be bonded to each other to form a ring (aromatic ring or aliphatic ring).
Of R 1 , R 2 , R 3 , R 4 and R 5 , the remainder excluding R y is preferably a substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms.
As the number of carbon atoms of the hydrocarbon group represented by R 1 , R 2 , R 3 , R 4 and R 5 , the compound represented by the general formula (I) is sterically hindered from the viewpoint of ease of synthesis. 1 to 10 is preferable, 1 to 6 is more preferable, and 1 to 2 is particularly preferable from the viewpoint of forming a capsule without becoming and preventing anion from leaving the capsule.
Examples of the substituent that can be substituted on the hydrocarbon group include a halogen atom, a sulfonic acid group, a nitro group, a hydroxyl group, and an alkyl halide group. From the viewpoint of ease of synthesis, stability, and insolubility in water. Therefore, a fluorine atom or a perfluoroalkyl group is preferable.
 R及びRにおいて、Aで表される複素環基は、炭素数1~6のアルキル基やスルホン酸基等の置換基で置換されていてもよい。また、前記複素環基中には、窒素原子の他に、酸素原子や硫黄原子が含まれていてもよい。
 Aで表される複素環基としては、前記金属イオンに配位可能な複素環基が挙げられる。このような複素環基としては、ピロール-1-イル基以外のピロリル基、2H-ピロール-1-イル基以外の2H-ピロリル基、イミダゾリル基、ピラゾリル基、イソチアゾール-1-イル基以外のイソチアゾリル基、イソオキサゾール-1-イル基以外のイソオキサゾリル基、ピロリジン-1-イル基以外のピロリジニル基、イミダゾリジニル基、ピラゾリジニル基、ピリジン-1-イル基以外のピリジル基、ピラジル基、ピリミジニル基、ピリダジニル基、ピペリジン-1-イル基以外のピペリジニル基、ピペラジニル基、モルホリン-4-イル基以外のモルホリニル基、下記構造式で表される基が好ましい。
In R x and R y , the heterocyclic group represented by A may be substituted with a substituent such as an alkyl group having 1 to 6 carbon atoms or a sulfonic acid group. The heterocyclic group may contain an oxygen atom or a sulfur atom in addition to the nitrogen atom.
Examples of the heterocyclic group represented by A include a heterocyclic group capable of coordinating with the metal ion. Such heterocyclic groups include pyrrolyl groups other than pyrrol-1-yl groups, 2H-pyrrolyl groups other than 2H-pyrrol-1-yl groups, imidazolyl groups, pyrazolyl groups, and isothiazol-1-yl groups. Isothiazolyl groups, isoxazolyl groups other than isoxazol-1-yl groups, pyrrolidinyl groups other than pyrrolidin-1-yl groups, imidazolidinyl groups, pyrazolidinyl groups, pyridyl groups other than pyridin-1-yl groups, pyrazyl groups, pyrimidinyl groups, pyridazinyl Preferred are a group, a piperidinyl group other than a piperidin-1-yl group, a piperazinyl group, a morpholinyl group other than a morpholin-4-yl group, and a group represented by the following structural formula.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 前記の中でも、合成容易性と金属イオンに対する配位性との観点からは、ピロール-1-イル基以外のピロリル基、イミダゾリル基、ピリジン-1-イル基以外のピリジル基、下記構造式で表される基がより好ましい。 Among these, from the viewpoint of ease of synthesis and coordination with metal ions, pyrrolyl groups other than pyrrol-1-yl groups, imidazolyl groups, pyridyl groups other than pyridin-1-yl groups, represented by the following structural formula More preferred are the groups
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 前記の中でもイミダゾリル基が特に好ましい。 Of these, the imidazolyl group is particularly preferable.
 前記一般式(I)で表される化合物の特に好ましい形態は、合成の容易性の観点、異性体の生成の阻止の観点、及び被捕捉分子を離脱させないカプセル空間を形成させる観点からは、RがRであって、R、R、R及びRが、それぞれ独立に、炭素数1~10(より好ましくは炭素数1~6、更に好ましくは炭素数1又は2)の置換(より好ましくはハロゲン置換)若しくは未置換の炭化水素基であって、Aがイミダゾリル基である形態である。 The particularly preferred form of the compound represented by the general formula (I) is R from the viewpoint of ease of synthesis, prevention of formation of isomers, and formation of a capsule space that does not release the trapped molecule. 3 is R y , and R 1 , R 2 , R 4 and R 5 each independently has 1 to 10 carbon atoms (more preferably 1 to 6 carbon atoms, more preferably 1 or 2 carbon atoms). A substituted (more preferably halogen-substituted) or unsubstituted hydrocarbon group in which A is an imidazolyl group.
 また、前記一般式(I)で表される化合物としては、合成の容易性の観点、異性体の生成の阻止の観点、及び被捕捉分子を離脱させないカプセル空間を形成させる観点からは、下記一般式(II)で表される化合物も好ましい。 The compound represented by the general formula (I) includes the following general compounds from the viewpoint of ease of synthesis, prevention of isomer formation, and formation of a capsule space that does not release the trapped molecule. A compound represented by the formula (II) is also preferable.
Figure JPOXMLDOC01-appb-C000017

 
Figure JPOXMLDOC01-appb-C000017

 
 一般式(II)において、R、R、R、及びRは、Rでないこと以外は、一般式(I)におけるR、R、R、及びRについて前述した事項をそのまま適用可能である。
 また、一般式(II)において、Aは、一般式(I)におけるAと同義であり、好ましい範囲も同様である。
In the general formula (II), R 1 , R 2 , R 4 , and R 5 are the matters described above for R 1 , R 2 , R 4 , and R 5 in the general formula (I) except that R y is not R y . Can be applied as is.
In the general formula (II), A 1 has the same meaning as A in formula (I), and preferred ranges are also the same.
 本発明の化合物は、例えば、ハロゲン置換された芳香族化合物と、一般式(I)中のAに相当する化合物とをアルカリ金属塩の存在下で反応させて、ハロゲン原子をAで置換することにより容易に合成することができる。例えば、イミダゾールとα,α’-ジブロモ-p-キシレンを水素化ナトリウムの存在下で加熱反応させて、1,4-ビス(イミダゾール-1-イル-メチル)ベンゼンを合成することができる。このような合成方法としては、例えば、C.-H. Zhou, R.-G. Xie, and H.-M. Zhao, Organic. Preparations and Procedures Int., 1996, 28(3), 345 に記載されている。 The compound of the present invention includes, for example, reacting a halogen-substituted aromatic compound with a compound corresponding to A in the general formula (I) in the presence of an alkali metal salt to replace the halogen atom with A. Can be easily synthesized. For example, 1,4-bis (imidazol-1-yl-methyl) benzene can be synthesized by heating and reacting imidazole and α, α'-dibromo-p-xylene in the presence of sodium hydride. Examples of such a synthesis method include C.-H. Zhou, R.-G. Xie, and H.-M. Zhao, Organic. Preparations and Procedures Int., 1996, 28 (3), 345 Has been.
 以下、一般式(I)で表される化合物の例示化合物(例示化合物(a)~(h))を示す。ただし本発明はこれらに限定されるものではない。 Hereinafter, exemplary compounds (exemplary compounds (a) to (h)) of the compound represented by the general formula (I) are shown. However, the present invention is not limited to these.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 前記例示化合物(a)~(h)のうち、例示化合物(a)又は例示化合物(b)がより好ましい。 Of the exemplified compounds (a) to (h), the exemplified compound (a) or the exemplified compound (b) is more preferable.
~ 平面四配位又は正八面体配位可能な金属イオン ~
 本発明における平面四配位又は正八面体配位可能な金属イオンとしては、例えば、Zn2+、Cu2+、Ni2+、Co2+、Fe2+、Mn2+、Ag、Pd2+、及びPt2+が挙げられる。
 中でも、捕捉カプセル型分子の形成性及び配位化合物の形成性の観点等からは、Zn2+、Cu2+、Ni2+、Pd2+、Pt2+が好ましく、Cu2+が特に好ましい。
-Metal ions capable of planar tetracoordinate or octahedral coordination-
Examples of the metal ion capable of planar tetracoordinate or octahedral coordination in the present invention include Zn 2+ , Cu 2+ , Ni 2+ , Co 2+ , Fe 2+ , Mn 2+ , Ag + , Pd 2+ , and Pt 2+. It is done.
Among these, Zn 2+ , Cu 2+ , Ni 2+ , Pd 2+ , and Pt 2+ are preferable, and Cu 2+ is particularly preferable from the viewpoint of the formation of trapping capsule type molecules and the formation of coordination compounds.
~ 配位化合物 ~
 本発明における配位化合物は、前述の一般式(I)で表される化合物と、前述の金属イオンと、を含む化合物である。
~ Coordination compounds ~
The coordination compound in the present invention is a compound containing the compound represented by the aforementioned general formula (I) and the aforementioned metal ion.
 前記配位化合物を液体試料中で前記被捕捉分子に接触させると、該配位化合物を構成する前記一般式(I)で表される化合物及び前記金属イオンが、前記被捕捉分子を取り込んだ捕捉カプセル型分子に再構成される。
 このため、前記一般式(I)で表される化合物を単体として用いる場合と同様に、前記被捕捉分子を選択性高く捕捉することができる。
When the coordination compound is brought into contact with the trapped molecule in a liquid sample, the compound represented by the general formula (I) and the metal ion constituting the coordination compound capture the trapped molecule. Reconstituted into capsule-type molecules.
For this reason, like the case where the compound represented by the general formula (I) is used as a simple substance, the molecule to be captured can be captured with high selectivity.
 本発明の配位化合物の具体的な構造としては、該配位化合物に含まれる複数の金属イオンのそれぞれに対し、前記一般式(I)で表される化合物が複数配位した高分子錯体の構造が挙げられる。
 該高分子錯体の構造としては、例えば、各金属イオンに対し前記一般式(I)で表される化合物が4分子ずつ配位した二次元シート型構造などがある。該二次元シート型構造においては、各一般式(I)で表される化合物は、二つの金属イオン間に配置され、一方の複素環中の窒素原子の部分で一方の金属イオンに配位し、他方の複素環中の窒素原子の部分で他方の金属イオンに配位している(例えば、後述する図5及び図6参照)。
 本発明の配位化合物には、水分子や前記被捕捉分子以外の陰イオンが含まれることがあるが、これらの水分子や陰イオンは、前記金属イオンに配位していてもよいし、前記金属イオンに配位していなくてもよい。
As a specific structure of the coordination compound of the present invention, a polymer complex in which a plurality of compounds represented by the general formula (I) are coordinated with each of a plurality of metal ions contained in the coordination compound. Structure is mentioned.
Examples of the structure of the polymer complex include a two-dimensional sheet structure in which four molecules of the compound represented by the general formula (I) are coordinated with each metal ion. In the two-dimensional sheet type structure, the compound represented by each general formula (I) is arranged between two metal ions, and is coordinated to one metal ion at a nitrogen atom portion in one heterocyclic ring. And is coordinated to the other metal ion at the nitrogen atom in the other heterocyclic ring (see, for example, FIGS. 5 and 6 described later).
The coordination compound of the present invention may contain an anion other than a water molecule and the trapped molecule, and these water molecule and anion may be coordinated to the metal ion, It may not be coordinated to the metal ion.
 前記二次元シート型構造の配位化合物において、金属イオンに陰イオンが配位した例としては、例えば、後述する図5中の「A layer」が挙げられる。
 また、前記二次元シート型構造の配位化合物において、金属イオンに水分子が配位した例としては、例えば、後述する図6中の「B layer」が挙げられる。
In the coordination compound having the two-dimensional sheet structure, an example in which an anion is coordinated to a metal ion is, for example, “A layer” in FIG. 5 described later.
Moreover, in the coordination compound having the two-dimensional sheet structure, examples of water molecules coordinated to metal ions include “B layer” in FIG. 6 to be described later.
 また、前記配位化合物の構造が前記陰イオンを含む前記二次元シート型構造である場合、該二次元シート型構造中の陰イオンは、(1)別の二次元シート型構造中の金属イオンと配位結合するか、(2)別の二次元シート型構造中の金属イオンに配位した水分子と水素結合していてもよい。前記(1)及び(2)の場合には、前記配位化合物の構造は二次元シート型構造が複数重なった三次元構造となる(例えば、後述する図7参照)。
 また、三次元構造の別の例としては、金属イオンに水分子が配位した二次元シート型構造(例えば、後述する図6中の「B layer」)同士が、陰イオン(例えば、硫酸イオン)を介して相互に重なった構造も挙げられる。この構造では、二次元シート型構造中の水分子と、別の二次元シート型構造中の水分子と、が陰イオンを介して相互作用している。
Moreover, when the structure of the coordination compound is the two-dimensional sheet type structure containing the anion, the anion in the two-dimensional sheet type structure is (1) a metal ion in another two-dimensional sheet type structure. Or (2) hydrogen bonds to water molecules coordinated to metal ions in another two-dimensional sheet type structure. In the cases of (1) and (2), the structure of the coordination compound is a three-dimensional structure in which a plurality of two-dimensional sheet-type structures are stacked (for example, see FIG. 7 described later).
As another example of the three-dimensional structure, two-dimensional sheet-type structures in which water molecules are coordinated to metal ions (for example, “B layer” in FIG. 6 described later) are anions (for example, sulfate ions). ) May also be included. In this structure, water molecules in the two-dimensional sheet type structure interact with water molecules in another two-dimensional sheet type structure via anions.
 以上で説明した配位化合物の構造は、例えば、元素分析や単結晶構造解析等により明らかとなっている。 The structure of the coordination compound described above has been clarified by, for example, elemental analysis or single crystal structure analysis.
 また、本発明の配位化合物に含まれることがある、被捕捉分子以外の陰イオンとしては、例えば、OH、SO 2-、CO 2-、NO 、CHCOO、C 2-、HCOO、Cl、Br、F、PF 、アセチルアセトナト(C )、SiF 2-、等が挙げられる。
 中でも、配位化合物の形成性の観点等からは、NO 、SO 2-、OH、CO 2-が好ましく、SO 2-がより好ましい。
Examples of anions other than the trapped molecule that may be contained in the coordination compound of the present invention include OH , SO 4 2− , CO 3 2− , NO 3 , CH 3 COO , C 2 O 4 2− , HCOO , Cl , Br , F , PF 6 , acetylacetonato (C 5 H 7 O 2 ), SiF 6 2− , and the like.
Among these, NO 3 , SO 4 2− , OH , and CO 3 2− are preferable, and SO 4 2− is more preferable from the viewpoint of the formation of coordination compounds.
 本発明の配位化合物の合成方法としては、前記金属イオン(A成分)と、前記一般式(I)で表される化合物(B成分)とを、モル比〔A成分/B成分〕が1/2となる割合で反応させる方法が挙げられる。 As a method for synthesizing the coordination compound of the present invention, the metal ion (component A) and the compound represented by the general formula (I) (component B) have a molar ratio [component A / component B] of 1. The method of making it react in the ratio used as / 2 is mentioned.
 前記A成分と前記B成分とを反応させる方法としては、前記A成分と被捕捉分子以外の陰イオン(具体例は前述のとおりである)とからなる金属塩を、溶剤(例えば、水、ジメチルホルムアミド、メタノール、エタノール、プロパノール、アセトニトリル、アセトン、等)中に溶解させて溶液Aとし、前記B成分を別の溶剤(例えば、ジメチルホルムアミド、メタノール、エタノール、プロパノール、アセトニトリル、アセトン、等)中に溶解させて溶液Bとし、溶液Aと溶液Bとを混合して反応させる方法が挙げられる。 As a method of reacting the A component and the B component, a metal salt composed of the A component and an anion other than the molecule to be trapped (specific examples are as described above) is used as a solvent (for example, water, dimethyl ester). Formamide, methanol, ethanol, propanol, acetonitrile, acetone, etc.) are dissolved in solution A, and component B is dissolved in another solvent (eg, dimethylformamide, methanol, ethanol, propanol, acetonitrile, acetone, etc.). There is a method in which the solution B is dissolved and the solution A and the solution B are mixed and reacted.
 また、前記A成分と前記B成分とを同一の溶剤中に溶解させて反応させてもよく、この場合の溶剤としては、メタノール、ジメチルホルムアミド、又はエタノール等の単一溶媒を使用してもよいし、水/アセトニトリル、水/ジメチルホルムアミド、水/メタノール、水/エタノール、メタノール/ジメチルホルムアミド、エタノール/ジメチルホルムアミド等の混合溶剤を使用してもよい。 Further, the component A and the component B may be dissolved and reacted in the same solvent. In this case, a single solvent such as methanol, dimethylformamide, or ethanol may be used as the solvent. In addition, a mixed solvent such as water / acetonitrile, water / dimethylformamide, water / methanol, water / ethanol, methanol / dimethylformamide, ethanol / dimethylformamide or the like may be used.
~ 金属塩 ~
 本発明における捕捉剤は、上記配位化合物を含む形態の他、独立して存在する(配位化合物の形態をとらない)一般式(I)で表される化合物と、金属塩と、を含む混合物の形態であってもよい。
 ここで、金属塩としては、上述の「A成分と被捕捉分子以外の陰イオンとからなる金属塩」を用いることができる。
~ Metal salt ~
The scavenger in the present invention includes a compound represented by the general formula (I) that exists independently (does not take the form of a coordination compound), and a metal salt, in addition to the form containing the coordination compound. It may be in the form of a mixture.
Here, as the metal salt, the above-mentioned “metal salt composed of the component A and an anion other than the trapped molecule” can be used.
<多孔質固体>
 本発明における多孔質固体の具体例としては、活性炭、ゼオライト、イオン交換樹脂(陽イオン交換樹脂又は陰イオン交換樹脂)、クレー(粘土)、シリカゲル、ガラスファイバー、不織布、濾紙、等が挙げられる。中でも、活性炭、ゼオライト、イオン交換樹脂、クレー(粘土)、シリカゲルが好ましく、活性炭、ゼオライト、イオン交換樹脂、クレー(粘土)がより好ましい。
<Porous solid>
Specific examples of the porous solid in the present invention include activated carbon, zeolite, ion exchange resin (cation exchange resin or anion exchange resin), clay (clay), silica gel, glass fiber, nonwoven fabric, filter paper, and the like. Among these, activated carbon, zeolite, ion exchange resin, clay (clay), and silica gel are preferable, and activated carbon, zeolite, ion exchange resin, and clay (clay) are more preferable.
 前記活性炭としては、例えば、破砕状活性炭、顆粒状活性炭、粉末状活性炭が挙げられ、中でも、処理される水溶液の通過速度の点から、顆粒状活性炭、破砕状活性炭が好ましく、破砕状活性炭がより好ましい。 Examples of the activated carbon include crushed activated carbon, granular activated carbon, and powdered activated carbon. Among them, granular activated carbon and crushed activated carbon are preferable, and crushed activated carbon is more preferable from the viewpoint of the passing speed of the aqueous solution to be treated. preferable.
 前記ゼオライトとしては、天然ゼオライト、合成ゼオライトが利用できる。
 例えば、ゼオライト3A、ゼオライト4A、ゼオライト5A、ゼオライト13Xが挙げられ、中でも、ゼオライト5A、ゼオライト13Xが好ましく、ゼオライト13Xがより好ましい。
Natural zeolite and synthetic zeolite can be used as the zeolite.
For example, zeolite 3A, zeolite 4A, zeolite 5A, and zeolite 13X can be mentioned. Among them, zeolite 5A and zeolite 13X are preferable, and zeolite 13X is more preferable.
 前記陰イオン交換樹脂としては、アクリル系の陰イオン交換樹脂、スチレン系の陰イオン交換樹脂、ジメチルアミン系の陰イオン交換樹脂が挙げられ、中でも、スチレン系の陰イオン交換樹脂、ジメチルアミン系の陰イオン交換樹脂が好ましく、ジメチルアミン系の陰イオン交換樹脂がより好ましい。 Examples of the anion exchange resin include acrylic anion exchange resins, styrene anion exchange resins, and dimethylamine anion exchange resins. Among them, styrene anion exchange resins and dimethylamine type An anion exchange resin is preferred, and a dimethylamine anion exchange resin is more preferred.
 前記陽イオン交換樹脂としては、スチレン系の陽イオン交換樹脂、メタクリル酸系の陽イオン交換樹脂、アクリル酸系の陽イオン交換樹脂が挙げられ、中でも、メタクリル酸系の陽イオン交換樹脂が好ましい。 Examples of the cation exchange resin include styrene cation exchange resins, methacrylic acid cation exchange resins, and acrylic acid cation exchange resins. Among them, methacrylic acid cation exchange resins are preferable.
 本発明における多孔質固体の孔径としては特に限定はないが、被捕捉分子のサイズによる吸着性等の観点から、0.4nm~1.5nmが好ましく、0.6nm~1.0nmが特に好ましい。 The pore size of the porous solid in the present invention is not particularly limited, but is preferably 0.4 nm to 1.5 nm, particularly preferably 0.6 nm to 1.0 nm, from the viewpoint of adsorptivity depending on the size of the molecule to be captured.
 本発明では、捕捉剤と被捕捉分子を含む水とを接触させる方法は、被捕捉分子を含む水に捕捉剤を添加する方法でも、被捕捉分子を含む水を捕捉剤に通過させる方法でもよい。
 また、本発明では、多孔質固体と被捕捉分子を含む水とを接触させる方法は、被捕捉分子を含む水に多孔質固体を添加する方法でも、被捕捉分子を含む水を多孔質固体に通過させる方法でもよい。
In the present invention, the method of bringing the capturing agent into contact with water containing the molecule to be captured may be a method of adding a capturing agent to the water containing the molecule to be captured or a method of passing water containing the molecule to be captured through the capturing agent. .
In the present invention, the method of bringing the porous solid into contact with the water containing the molecule to be trapped is the method of adding the porous solid to the water containing the molecule to be trapped. The method of letting it pass may be used.
 本発明では、捕捉剤と被捕捉分子を含む水(以下、この「被捕捉分子を含む水」を、単に「液体試料」ともいう)とを接触させること(以下、「処理A」ともいう)、及び、多孔質固体と被捕捉分子を含む水とを接触させること(以下、「処理B」ともいう)、は同時に行っても別個独立に行ってもよい。 In the present invention, the capturing agent and water containing the molecule to be captured (hereinafter, “water containing the molecule to be captured” is also simply referred to as “liquid sample”) are contacted (hereinafter also referred to as “treatment A”). Further, contacting the porous solid and water containing the molecule to be captured (hereinafter, also referred to as “treatment B”) may be performed simultaneously or separately.
 本発明において、処理A及び処理Bを同時に行う形態としては、前記捕捉剤と前記多孔質固体とを液体試料中に添加する(独立に添加しても混合物として添加してもよい)形態、前記捕捉剤と前記多孔質固体とを含む混合物に液体試料を通過させる形態、等が挙げられる。 In the present invention, the form in which the treatment A and the treatment B are simultaneously performed is a form in which the capture agent and the porous solid are added to a liquid sample (independently or as a mixture), Examples include a form in which a liquid sample is passed through a mixture containing a capture agent and the porous solid.
 本発明において、処理A及び処理Bを別個独立に行う形態としては、処理Aから処理Bの順に行う形態と、処理Bから処理Aの順に行う形態と、が挙げられる。
 被捕捉分子の濃度をより効果的に低減する観点からは、処理A及び処理Bを別個独立に行う形態としては、上記2形態のうち、処理Aから処理Bの順に行う形態(即ち、捕捉剤との接触後の液体試料と、前記多孔質固体と、を接触させる形態)が好ましい。
 また、処理Aから処理Bの順に行うことで、被捕捉分子の濃度だけでなく、金属イオンの濃度をも低減できる。
In the present invention, the form in which the process A and the process B are separately performed includes a form in which the process A is performed in the order of the process B and a form in which the process B is performed in the order of the process A.
From the viewpoint of more effectively reducing the concentration of the molecule to be captured, the form in which the process A and the process B are performed independently is the form in which the process A is performed in the order of the process B out of the two forms (that is, the capture agent). The liquid sample after contact with the porous solid is preferably brought into contact with the porous solid.
Moreover, by performing in order from the process A to the process B, not only the density | concentration of a to-be-captured molecule | numerator but the density | concentration of a metal ion can be reduced.
 処理Aから処理Bの順に行う形態の具体例としては、液体試料を捕捉剤に通過させ(処理A)、捕捉剤を通過した液体試料を、更に多孔質固体に通過させる(処理B)形態が好適である。この形態の場合、必要に応じ、その他の濾過と組み合わせてもよい。
 処理Aから処理Bの順に行う形態の別の具体例としては、捕捉剤を前記液体試料に添加し(処理A)、捕捉剤が添加された液体試料から未反応分の捕捉剤を濾過等により除去し、捕捉剤が除去された液体試料に多孔質固体を添加する(処理A)形態が挙げられる。
As a specific example of the form of processing A to process B, the liquid sample is passed through a capture agent (process A), and the liquid sample that has passed through the capture agent is further passed through a porous solid (process B). Is preferred. In the case of this form, you may combine with other filtration as needed.
As another specific example of the form performed in the order of processing A to processing B, a capturing agent is added to the liquid sample (processing A), and the unreacted capturing agent is filtered from the liquid sample to which the capturing agent is added. Examples include a form in which a porous solid is added to the liquid sample that has been removed and the capture agent has been removed (Process A).
 本発明において、捕捉剤と被捕捉分子を含む水とを接触させる時間については特に限定はないが、2時間以上が好ましく、6時間以上がより好ましく、10時間以上が特に好ましい。上限も特に限定はないが、例えば30時間である。
 本発明において、多孔質固体と被捕捉分子を含む水とを接触させる時間についても特に限定はなく多孔質固体の種類にもよるが、2時間以上が好ましく、6時間以上がより好ましく、10時間以上が特に好ましい。上限も特に限定はないが、例えば30時間である。
In the present invention, the time for contacting the scavenger and water containing the molecule to be captured is not particularly limited, but is preferably 2 hours or longer, more preferably 6 hours or longer, and particularly preferably 10 hours or longer. The upper limit is not particularly limited, but is, for example, 30 hours.
In the present invention, the time for contacting the porous solid with water containing the molecule to be trapped is not particularly limited, and is preferably 2 hours or more, more preferably 6 hours or more, and more preferably 10 hours, although it depends on the kind of the porous solid. The above is particularly preferable. The upper limit is not particularly limited, but is, for example, 30 hours.
 前記処理Aにおいては、一般式(I)で表される化合物と金属イオンと被捕捉分子との接触頻度を高め、捕捉カプセル型分子形成反応の反応性を向上させる観点からは、液体試料を加熱してもよい。加熱の温度としては、金属塩の種類、一般式(I)で表される化合物の種類、及び配位化合物の種類などによっても異なるが、0~100℃が好ましく、20~70℃がより好ましい。
 前記処理Bにおける液体試料の温度は、多孔質固体の種類等によっても異なるが、吸着性の観点からは、5~40℃が好ましく、20~30℃がより好ましい。
In the treatment A, from the viewpoint of increasing the contact frequency between the compound represented by the general formula (I), the metal ion, and the molecule to be captured and improving the reactivity of the capture capsule type molecule formation reaction, the liquid sample is heated. May be. The heating temperature varies depending on the type of metal salt, the type of compound represented by formula (I), the type of coordination compound, etc., but is preferably 0 to 100 ° C., more preferably 20 to 70 ° C. .
The temperature of the liquid sample in the treatment B varies depending on the kind of the porous solid and the like, but is preferably 5 to 40 ° C., more preferably 20 to 30 ° C. from the viewpoint of adsorptivity.
 以上、本発明の水の浄化方法の好ましい形態について説明したが、本発明の水の浄化方法は、前記処理A及び前記処理B以外に、前処理、中処理、後処理など、その他の処理を含んでいてもよい。
 前記前処理の例としては、例えば、液体試料が酸性やアルカリ性を示す場合に、液体試料を緩衝剤に通過させる(又は、該液体試料に緩衝剤を添加する)ことで、該液体試料を中性に近づける処理が挙げられる。この処理により、特に、処理Aにおける効率が更に向上する。ここで、緩衝剤としては、土などが挙げられる。
 前記後処理の例としては、公知のフィルターによる濾過等が挙げられる。
As mentioned above, although the preferable form of the water purification method of this invention was demonstrated, in addition to the said process A and the said process B, the water purification method of this invention performs other processes, such as a pre-process, a middle process, a post-process. May be included.
As an example of the pretreatment, for example, when a liquid sample shows acidity or alkalinity, the liquid sample is passed through a buffer (or a buffer is added to the liquid sample), so that the liquid sample A process to bring it close to sex. By this process, in particular, the efficiency in the process A is further improved. Here, examples of the buffer include soil.
Examples of the post-treatment include filtration with a known filter.
≪水の浄化装置≫
 本発明の水の浄化装置は、前記一般式(I)で表される化合物及び平面四配位又は正八面体配位可能な金属イオンを含む捕捉剤と、多孔質固体と、を含む濾過部を備える。
 本発明の水の浄化装置によれば、前記捕捉剤と前記被捕捉分子を含む水とを接触させることができ、さらに、多孔質固体と被捕捉分子を含む水とを接触させることができるので、水中の被捕捉分子の濃度を効果的に低減できる。
≪Water purification device≫
The water purification apparatus of the present invention comprises a filtration unit comprising a compound represented by the general formula (I) and a scavenger containing a metal ion capable of planar tetracoordinate or regular octahedral coordination, and a porous solid. Prepare.
According to the water purification apparatus of the present invention, the scavenger and the water containing the molecule to be trapped can be brought into contact, and furthermore, the porous solid and the water containing the molecule to be trapped can be brought into contact with each other. The concentration of trapped molecules in water can be effectively reduced.
 以下、本発明の水の浄化装置の一例について、図1を参照して説明する。
 図1において、水の浄化装置10は、捕捉剤14及び多孔質固体16を含む濾過部12を有している。濾過部12は供給口22及び排出口24を有し、排出口24には流量調節部18が接続されている。
 また、捕捉剤14の下流側(排出口24側、以下同じ)にはフィルタ15が、多孔質固体16の下流側にはフィルタ17が、それぞれ備えられている。
 捕捉剤14及び多孔質固体16の配置は、上流側(供給口22側、以下同じ)が捕捉剤14、下流側が多孔質固体16となっている。
Hereinafter, an example of the water purification apparatus of the present invention will be described with reference to FIG.
In FIG. 1, the water purification device 10 has a filtration unit 12 including a scavenger 14 and a porous solid 16. The filtration unit 12 has a supply port 22 and a discharge port 24, and the flow rate adjusting unit 18 is connected to the discharge port 24.
Further, a filter 15 is provided on the downstream side of the capture agent 14 (the discharge port 24 side, hereinafter the same), and a filter 17 is provided on the downstream side of the porous solid 16.
The arrangement of the capture agent 14 and the porous solid 16 is the capture agent 14 on the upstream side (the supply port 22 side, hereinafter the same), and the porous solid 16 on the downstream side.
 次に、水の浄化装置10を用いて液体試料(即ち、被捕捉分子を含む水)の浄化処理を行う場合について説明する。
 まず、矢印Iの方向から液体試料が濾過部12に供給され、供給された液体試料は、濾過部12内で捕捉剤14に接触する(前記処理A)。これにより液体試料中の被捕捉分子が捕捉剤14により捕捉される(即ち、捕捉カプセル型分子が形成される)。
 次に、液体試料は、フィルタ15を通過し、多孔質固体16と接触する(前記処理B)。これにより、前記捕捉剤により捕捉しきれなかった微量の被捕捉分子が多孔質固体16に吸着される。一方、前記で形成された捕捉カプセル型分子も多孔質固体16に吸着する。
 以上の浄化処理の後の液体試料は、フィルタ17、排出口24及び流量調節部18を通り、矢印Oの方向に排出される。
Next, the case where the purification process of a liquid sample (namely, water containing a trapped molecule) is performed using the water purification apparatus 10 will be described.
First, a liquid sample is supplied to the filtration part 12 from the direction of arrow I, and the supplied liquid sample contacts the capture agent 14 in the filtration part 12 (the processing A). As a result, the molecule to be captured in the liquid sample is captured by the capture agent 14 (that is, a capture capsule type molecule is formed).
Next, the liquid sample passes through the filter 15 and comes into contact with the porous solid 16 (process B). Thereby, a small amount of molecules to be captured that cannot be captured by the capturing agent are adsorbed to the porous solid 16. On the other hand, the trapped capsule molecules formed as described above are also adsorbed to the porous solid 16.
The liquid sample after the above purification treatment passes through the filter 17, the discharge port 24 and the flow rate adjustment unit 18 and is discharged in the direction of the arrow O.
 上記浄化処理では、液体試料と捕捉剤14との接触時間、及び、液体試料と多孔質固体16との接触時間は、流量調節部18により一括して調整できる。
 該接触時間の好ましい範囲は前述のとおりである。
 例えば、捕捉剤14及び多孔質固体16のうち、接触時間を多く必要とする側にあわせ、流量調節部18により流量を調節することが好ましい。
 流量調節部18としては、操作弁や調整弁等の公知の手段を用いることができる。
In the above purification treatment, the contact time between the liquid sample and the capture agent 14 and the contact time between the liquid sample and the porous solid 16 can be collectively adjusted by the flow rate adjusting unit 18.
A preferable range of the contact time is as described above.
For example, it is preferable to adjust the flow rate by the flow rate adjusting unit 18 in accordance with the side of the capturing agent 14 and the porous solid 16 that requires a longer contact time.
As the flow rate adjustment unit 18, known means such as an operation valve and an adjustment valve can be used.
 前記濾過部12の具体的な構造としては、例えば、中空容器中に捕捉剤14及び多孔質固体16を入れた構造が挙げられる。ここで、中空容器としては特に限定はなく、例えば、公知のカラムやフィルタハウジング等を用いることができる。
 捕捉剤14の量としては特に限定はないが、例えば、被捕捉分子を100ppm含む水100lを処理する場合には、50g以上が好ましく、100g以上がより好ましい。上限も特に限定はないが、例えば500gである。
 また、多孔質固体16の量としても特に限定はないが、例えば、被捕捉分子を100ppm含む水100lを処理する場合には、50g以上が好ましく、100g以上がより好ましい。上限も特に限定はないが、例えば500gである。
Specific examples of the structure of the filtration unit 12 include a structure in which the capture agent 14 and the porous solid 16 are placed in a hollow container. Here, there is no limitation in particular as a hollow container, For example, a well-known column, a filter housing, etc. can be used.
The amount of the scavenger 14 is not particularly limited. For example, when treating 100 l of water containing 100 ppm of molecules to be captured, 50 g or more is preferable, and 100 g or more is more preferable. The upper limit is not particularly limited, but is, for example, 500 g.
Further, the amount of the porous solid 16 is not particularly limited. For example, when 100 l of water containing 100 ppm of molecules to be captured is treated, 50 g or more is preferable, and 100 g or more is more preferable. The upper limit is not particularly limited, but is, for example, 500 g.
 また、中空容器中、捕捉剤14の下流側及び多孔質固体16の下流側に備えられたフィルタ15及びフィルタ17としては、公知のフィルタを用いることができる。なお、これらのフィルタの少なくとも一方は省略することも可能である。
 また、水の浄化装置10では、前記中空容器に捕捉剤14及び多孔質固体16を直接入れる形態には限られず、前記中空容器に捕捉剤14を含むカートリッジ及び多孔質固体16を含むカートリッジを装着する形態であってもよい。
Moreover, a well-known filter can be used as the filter 15 and the filter 17 provided in the downstream of the capture | acquisition agent 14 and the downstream of the porous solid 16 in a hollow container. Note that at least one of these filters may be omitted.
Further, the water purification device 10 is not limited to the form in which the capture agent 14 and the porous solid 16 are directly put into the hollow container, and the cartridge containing the capture agent 14 and the cartridge containing the porous solid 16 are mounted in the hollow container. It may be a form to do.
 また、図1では、上流側を捕捉剤14(即ち、捕捉部)、下流側を多孔質固体16(即ち、吸着部)として濾過部を2つに分けた構成となっているが、捕捉剤14と多孔質固体16とが混合されて一つの濾過部を構成してもよい。
 但し、被捕捉分子の濃度をより低下させる観点からは、図1のように、上流側に捕捉部としての捕捉剤14、下流側に吸着部としての多孔質固体16を配置することがより好ましい。
In FIG. 1, the trapping agent 14 (that is, the trapping portion) on the upstream side and the porous solid 16 (that is, the adsorbing portion) on the downstream side are divided into two filtration portions. 14 and the porous solid 16 may be mixed to constitute one filtration unit.
However, from the viewpoint of further reducing the concentration of molecules to be captured, it is more preferable to dispose a capturing agent 14 as a capturing part upstream and a porous solid 16 as an adsorbing part downstream as shown in FIG. .
 また、液体試料の流路における、濾過部12の上流側に流量調節部を設け、液体試料の供給速度を調節できるようにしてもよい。 Further, a flow rate adjusting unit may be provided on the upstream side of the filtering unit 12 in the liquid sample flow path so that the supply rate of the liquid sample can be adjusted.
 以上、一つの中空容器中に捕捉剤14及び多孔質固体16を一緒に入れる形態について説明したが、図2に示すように、捕捉剤14及び多孔質固体16を別々の中空容器に入れる他の一例も好適である。
 図2において、水の浄化装置30は、捕捉剤14を有する捕捉部32と、多孔質固体16を含む吸着部42と、を有している。捕捉部32と吸着部42とにより濾過部が構成される。捕捉部32及び吸着部42の具体的構造は、前記水の浄化装置30中の濾過部12について説明した事項をそのまま適用できる。また、捕捉剤14及び多孔質固体16の好ましい量については、水の浄化装置10の場合と同様である。
 捕捉部32は供給口36及び排出口37を有している。捕捉剤14の下流側(排出口37側、以下同じ)には、フィルタ35が備えられている。なお、フィルタ35は省略することもできる。
 吸着部42は供給口46及び排出口47を有しており、多孔質固体16の下流側(排出口47側、以下同じ)には、フィルタ45が備えられている。なお、フィルタ45は省略することもできる。
 前記捕捉部32の排出口37と、前記吸着部42の供給口46と、は接続部40によって接続されている。接続部40は、後述するように流量調節機能を有していてもよい。
 また、前記吸着部42の排出口47には流量調節部50が接続されている。
As mentioned above, although the form which puts the capture | acquisition agent 14 and the porous solid 16 together in one hollow container was demonstrated, as shown in FIG. 2, other capture | acquisition agent 14 and the porous solid 16 are put into another hollow container. An example is also suitable.
In FIG. 2, the water purification device 30 includes a capturing unit 32 having the capturing agent 14 and an adsorption unit 42 including the porous solid 16. The capturing unit 32 and the adsorbing unit 42 constitute a filtering unit. As the specific structures of the capturing unit 32 and the adsorbing unit 42, the matters described for the filtering unit 12 in the water purifier 30 can be applied as they are. The preferred amounts of the scavenger 14 and the porous solid 16 are the same as in the case of the water purification device 10.
The capturing unit 32 has a supply port 36 and a discharge port 37. A filter 35 is provided on the downstream side of the capture agent 14 (on the discharge port 37 side, the same applies hereinafter). The filter 35 can be omitted.
The adsorbing part 42 has a supply port 46 and a discharge port 47, and a filter 45 is provided on the downstream side of the porous solid 16 (the discharge port 47 side, the same applies hereinafter). The filter 45 can be omitted.
The discharge port 37 of the capturing unit 32 and the supply port 46 of the suction unit 42 are connected by a connection unit 40. The connection unit 40 may have a flow rate adjusting function as will be described later.
A flow rate adjusting unit 50 is connected to the discharge port 47 of the adsorption unit 42.
 水の浄化装置30を用いても、前述の水の浄化装置10を用いた場合と同様に水(液体試料)の浄化を行うことができる。
 即ち、矢印Iの方向から液体試料が捕捉部32に供給され、供給された液体試料は、捕捉部32内で捕捉剤14に接触する(処理A)。これにより液体試料中の被捕捉分子が捕捉剤14により捕捉される(即ち、捕捉カプセル型分子が形成される)。
 捕捉剤14に接触後の液体試料は、フィルタ35、排出口37、接続部40、及び供給口46を通って吸着部42に移送される。
 移送された液体試料は、多孔質固体16と接触する(処理B)。これにより、前記捕捉剤により捕捉しきれなかった微量の被捕捉分子が多孔質固体16に吸着される。一方、前記で形成された捕捉カプセル型分子も多孔質固体16に吸着する。
 以上の浄化処理の後の液体試料は、フィルタ45、排出口47及び流量調節部50を通り、矢印Oの方向に排出される。
Even when the water purification device 30 is used, water (liquid sample) can be purified as in the case of using the water purification device 10 described above.
That is, a liquid sample is supplied to the capturing unit 32 from the direction of the arrow I, and the supplied liquid sample contacts the capturing agent 14 in the capturing unit 32 (Processing A). As a result, the molecule to be captured in the liquid sample is captured by the capture agent 14 (that is, a capture capsule type molecule is formed).
The liquid sample after contacting the capture agent 14 is transferred to the adsorption unit 42 through the filter 35, the discharge port 37, the connection unit 40, and the supply port 46.
The transferred liquid sample comes into contact with the porous solid 16 (Process B). Thereby, a small amount of molecules to be captured that cannot be captured by the capturing agent are adsorbed to the porous solid 16. On the other hand, the trapped capsule molecules formed as described above are also adsorbed to the porous solid 16.
The liquid sample after the above purification treatment passes through the filter 45, the discharge port 47, and the flow rate adjustment unit 50, and is discharged in the direction of the arrow O.
 水の浄化装置30において、液体試料と捕捉剤14との接触時間、及び、液体試料と多孔質固体16との接触時間は、流量調節部50により一括して調整できる。
 該接触時間の好ましい範囲は前述のとおりである。
 例えば、捕捉剤14及び多孔質固体16のうち、接触時間を多く必要とする側にあわせ、流量調節部50により流量を調節することが好ましい。
 流量調節部50としては、操作弁や調整弁等の公知の手段を用いることができる。
In the water purification device 30, the contact time between the liquid sample and the capture agent 14 and the contact time between the liquid sample and the porous solid 16 can be collectively adjusted by the flow rate adjusting unit 50.
A preferable range of the contact time is as described above.
For example, it is preferable to adjust the flow rate by the flow rate adjusting unit 50 in accordance with the side of the capturing agent 14 and the porous solid 16 that requires a longer contact time.
As the flow rate adjusting unit 50, known means such as an operation valve and an adjusting valve can be used.
 また、水の浄化装置30では、流量調節部50と同様の手段を他の箇所に設けることもできる。
 例えば、液体試料の流路における、捕捉部32と吸着部42との間に流量調節部を設けることで、液体試料と捕捉剤14との接触時間と、液体試料と多孔質固体16との接触時間と、をそれぞれ独立に調節することができる。
 前記「液体試料の流路における、捕捉部32と吸着部42との間」とは、例えば、捕捉部32の下流側(例えば、排出口37付近)、吸着部42の上流側(例えば、供給口46付近)、等が挙げられる。また、接続部40が流量調節機能を有していてもよい。
 また、液体試料の流路における、捕捉部32の上流側(例えば、供給口36付近)に流量調節部を設け、液体試料の供給速度を調節できるようにしてもよい。
Moreover, in the water purification apparatus 30, the means similar to the flow volume control part 50 can also be provided in another location.
For example, by providing a flow rate adjusting unit between the capturing unit 32 and the adsorbing unit 42 in the flow path of the liquid sample, the contact time between the liquid sample and the capturing agent 14 and the contact between the liquid sample and the porous solid 16. The time can be adjusted independently.
The term “between the capture unit 32 and the adsorption unit 42 in the flow path of the liquid sample” refers to, for example, the downstream side of the capture unit 32 (for example, the vicinity of the discharge port 37) and the upstream side of the adsorption unit 42 (for example, supply) The vicinity of the mouth 46), and the like. Moreover, the connection part 40 may have a flow volume adjustment function.
In addition, a flow rate adjusting unit may be provided on the upstream side of the capturing unit 32 (for example, in the vicinity of the supply port 36) in the liquid sample flow path so that the supply rate of the liquid sample can be adjusted.
 また、捕捉部32と吸着部42との接続は、図2に示す独立した接続部40を用いることには限定されない。例えば、捕捉部32の端部と吸着部42の端部とに、相互に接続可能な機構(ねじ機構など)を備え、この機構により捕捉部32と吸着部42とが接続されていてもよい。 Further, the connection between the capture unit 32 and the suction unit 42 is not limited to using the independent connection unit 40 shown in FIG. For example, the end part of the capture part 32 and the end part of the suction part 42 may be provided with a mutually connectable mechanism (such as a screw mechanism), and the capture part 32 and the suction part 42 may be connected by this mechanism. .
 以上、本発明の水の浄化装置の例について説明したが、捕捉剤と、多孔質固体と、を含む濾過部を備える限り、本発明の水の浄化装置は上記2例に限定されるものではない。例えば、公知の浄水器等の構造を特に制限なく用いることができる。 As mentioned above, although the example of the water purification apparatus of this invention was demonstrated, as long as the filtration part containing a capture | acquisition agent and porous solid is provided, the water purification apparatus of this invention is not limited to the said 2 examples. Absent. For example, a structure such as a known water purifier can be used without particular limitation.
≪水の浄化セット≫
 本発明の水の浄化セットは、前記一般式(I)で表される化合物及び平面四配位又は正八面体配位可能な金属イオンを含む捕捉剤と、多孔質固体と、を含む。
 前記水の浄化セットを用い、本発明の水の浄化方法を行うことができる。
 即ち、捕捉剤を用いて前記処理Aを行うことができ、多孔質固体を用いて前記処理Bを行うことができる。
≪Water purification set≫
The water purification set of the present invention comprises a scavenger containing a compound represented by the general formula (I) and a metal ion capable of planar tetracoordinate or octahedral coordination, and a porous solid.
The water purification method of the present invention can be performed using the water purification set.
That is, the process A can be performed using a scavenger, and the process B can be performed using a porous solid.
 前記水の浄化セットを用いる利点として、捕捉剤を、液体試料に任意の時間接触させることを、簡易に行えることが挙げられる。例えば、捕捉剤をガラスフィルター容器に充填後、液体試料中に任意の時間浸し、続いて活性炭、あるいはイオン交換樹脂などを水溶液に任意の時間浸す、などの操作が可能となる。 An advantage of using the water purification set is that the capturing agent can be easily brought into contact with the liquid sample for an arbitrary time. For example, after the capture agent is filled in a glass filter container, it is possible to perform an operation such as immersing in a liquid sample for an arbitrary time, and subsequently immersing activated carbon or an ion exchange resin in an aqueous solution for an arbitrary time.
 前記水の浄化セットの具体的形態としては、捕捉剤と、多孔質固体と、を個別に容器に入れた状態で組み合わせたセットの形態が挙げられる。この形態では、捕捉剤と多孔質固体とを1種ずつ組み合わせたセットであってもよいし、捕捉剤及び/又は多孔質固体を複数種含むセット(即ち、被捕捉分子種などの条件に応じて捕捉剤と多孔質固体との組み合わせを選択できるセット)であってもよい。
 この形態において、捕捉剤及び多孔質固体は、それぞれ使用時に容器から出して用いることができる。
As a specific form of the water purification set, there is a form of a set in which the scavenger and the porous solid are combined in a state where they are individually put in a container. In this form, a set in which one type of capture agent and porous solid is combined may be used, or a set including a plurality of types of capture agent and / or porous solid (that is, depending on conditions such as a molecular species to be captured). And a set in which a combination of a capturing agent and a porous solid can be selected.
In this form, the capture agent and the porous solid can be used out of the container at the time of use.
 また、前記水の浄化セットの別の具体的形態としては、捕捉剤を含む捕捉部材と、多孔質固体を含む吸着部材と、を組み合わせたセットの形態も好適である。この形態では、捕捉部材と吸着部材とを1種ずつ組み合わせたセットであってもよいし、捕捉部材及び/又は吸着部材を複数種含むセット(即ち、被捕捉分子種などの条件に応じて捕捉部材と吸着部材との組み合わせを選択できるセット)であってもよい。
 ここで、捕捉部材及び吸着部材については、上述した水の浄化装置30について説明した捕捉部32及び吸着部42と同様の構造の部材をそれぞれ適用できる。
 この形態では、捕捉部材を用いて前記処理Aを行うことができ、吸着部材を用いて前記処理Bを行うことができる。
 また、前記捕捉部材と前記吸着部材とを接続することにより、本発明の水の浄化装置を得ることができる。接続は、前述のとおり、独立した接続部材を用いて行ってもよいし、前記捕捉手段の端部及び前記吸着手段の端部に、相互に接続可能な機構(ねじ機構など)を備えることにより行ってもよい。
Further, as another specific form of the water purification set, a set form in which a capturing member including a capturing agent and an adsorption member including a porous solid are combined is also suitable. In this form, a set in which one type of capture member and adsorption member is combined may be used, or a set including a plurality of types of capture members and / or adsorption members (that is, capture is performed according to conditions such as the species to be captured). It may be a set in which a combination of a member and an adsorbing member can be selected.
Here, as the capturing member and the adsorbing member, members having the same structure as the capturing unit 32 and the adsorbing unit 42 described for the water purification device 30 described above can be applied.
In this embodiment, the process A can be performed using a capturing member, and the process B can be performed using an adsorption member.
Moreover, the water purifier of this invention can be obtained by connecting the said capture member and the said adsorption member. As described above, the connection may be performed using an independent connection member, or by providing a mechanism (screw mechanism or the like) that can be connected to each other at the end of the capturing means and the end of the suction means. You may go.
 以下、本発明の実施例について説明するが、本発明はこれらの実施例に限定されるものではない。 Examples of the present invention will be described below, but the present invention is not limited to these examples.
〔参考例1〕
<例示化合物(a)(1,4-ビス(イミダゾール-1-イル-メチル)2,3,5,6-テトラメチルベンゼン;bitb)の合成>
 下記反応スキーム1に従って例示化合物(a)(bitb)の合成を行った。
 まず、イミダゾール(関東化学(株)製)0.33g(5mmol)のTHF溶液10mlに、NaH(関東化学(株)製)0.095g(4mmol)のTHF懸濁液(5ml)をゆっくりと加え、20分撹拌した(THF(テトラヒドロフラン)は関東化学(株)製、以下同じ)。
 前記撹拌後の溶液に、1,4-ビスブロモメチル-2,3,5,6-テトラメチルベンゼン(東京化成工業(株)製、慣用名:ジブロモズレン)0.64g(2mmol)のTHF溶液(15ml)をゆっくり添加し、60℃で3~5時間還流した。還流後の溶液を室温に冷却し、冷却後の溶液に水(40ml)を加え、更にクロロホルム(関東化学(株)製)を加えて粗生成物をクロロホルムで抽出した。得られたクロロホルム抽出液を無水硫酸ナトリウムで乾燥させた。乾燥後のクロロホルム抽出液を濃縮し石油エーテル(関東化学(株)製)を加えることで例示化合物(a)を収率53%で得た。
[Reference Example 1]
<Synthesis of Exemplary Compound (a) (1,4-bis (imidazol-1-yl-methyl) 2,3,5,6-tetramethylbenzene; bitb)>
According to the following reaction scheme 1, exemplary compounds (a) (bitb) were synthesized.
First, a THF suspension (5 ml) of 0.095 g (4 mmol) of NaH (Kanto Chemical Co., Ltd.) was slowly added to 10 ml of a THF solution of 0.33 g (5 mmol) of imidazole (Kanto Chemical Co., Ltd.). The mixture was stirred for 20 minutes (THF (tetrahydrofuran) was manufactured by Kanto Chemical Co., Inc., the same applies hereinafter).
To the stirred solution, a THF solution of 0.64 g (2 mmol) of 1,4-bisbromomethyl-2,3,5,6-tetramethylbenzene (manufactured by Tokyo Chemical Industry Co., Ltd., common name: dibromodurene) ( 15 ml) was slowly added and refluxed at 60 ° C. for 3-5 hours. The refluxed solution was cooled to room temperature, water (40 ml) was added to the cooled solution, chloroform (Kanto Chemical Co., Ltd.) was added, and the crude product was extracted with chloroform. The obtained chloroform extract was dried over anhydrous sodium sulfate. The chloroform extract after drying was concentrated and petroleum ether (manufactured by Kanto Chemical Co., Inc.) was added to obtain Exemplified Compound (a) at a yield of 53%.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 前記で得られた例示化合物(a)は、NMRにより構造を確認した。
~NMRデータ~
1H NMR spectrum(300MHz, CDCl3, r.t.) : δ7.24(d, 2H), 6.97(s, 2H), 6.75(d, 2H), 5.17(s, 4H) , 2.19(s, 12H) 
The structure of the exemplified compound (a) obtained above was confirmed by NMR.
~ NMR data ~
1 H NMR spectrum (300MHz, CDCl 3 , rt): δ7.24 (d, 2H), 6.97 (s, 2H), 6.75 (d, 2H), 5.17 (s, 4H), 2.19 (s, 12H)
〔参考例2〕
<過塩素酸を取り込んだ捕捉カプセル型分子の形成>
 過塩素酸銅(II)6水和物(キシダ化学(株)製)0.093g(0.25mmol)と、参考例1で得られた例示化合物(a)(bitb)0.147g(0.5mmol)とを、アセトニトリル/水(25ml/25ml)の混合溶液中に加え(アセトニトリルは関東化学(株)製)、この混合溶液を撹拌し、その後数日間静置させ、紫色結晶を得た。
 得られた紫色結晶を集めて、紫色結晶の構造を単結晶構造解析及び質量分析測定により確認した。
 単結晶構造解析は、(株)リガク製の構造解析装置(マーキュリー二次元検出器システム)を用い、室温でモリブデンKαの線源を用いてX線の反射データを収集した。構造解析は、(株)リガク製の Crystal Structure プログラムを用いて行った。
 また、質量分析測定は、Micromass社製のLCT質量分析計を用いて行った。
[Reference Example 2]
<Formation of trapped capsule molecules incorporating perchloric acid>
0.093 g (0.25 mmol) of copper (II) perchlorate hexahydrate (manufactured by Kishida Chemical Co., Ltd.) and 0.147 g (0. 0.1 g) of the exemplary compound (a) (bitb) obtained in Reference Example 1. 5 mmol) was added to a mixed solution of acetonitrile / water (25 ml / 25 ml) (acetonitrile was manufactured by Kanto Chemical Co., Inc.), and the mixed solution was stirred and allowed to stand for several days to obtain purple crystals.
The obtained purple crystals were collected, and the structure of the purple crystals was confirmed by single crystal structure analysis and mass spectrometry measurement.
Single crystal structure analysis was performed using a structure analysis apparatus (Mercury two-dimensional detector system) manufactured by Rigaku Corporation and collecting X-ray reflection data using a molybdenum Kα radiation source at room temperature. The structural analysis was performed using the Crystal Structure program manufactured by Rigaku Corporation.
Moreover, the mass spectrometry measurement was performed using the LCT mass spectrometer made from Micromass.
~単結晶構造解析データ~
monoclinic space group P21/c(No.14), a = 25.73 (2) Å, b = 13.26(1) Å, c = 27.73(4) Å, β = 117.52(1)°, V = 8383(13) Å3, Z = 4, R = 0.090, Rw = 0.223
-Single crystal structure analysis data-
monoclinic space group P2 1 /c(No.14), a = 25.73 (2) Å, b = 13.26 (1) Å, c = 27.73 (4) Å, β = 117.52 (1) °, V = 8383 (13 ) Å 3 , Z = 4, R = 0.090, Rw = 0.223
 上記単結晶構造解析データ及び質量分析測定より、前記紫色結晶は、以下の反応によって得られた[Cu(bitb)](ClOであることがわかった。 From the single crystal structure analysis data and mass spectrometry measurement, it was found that the purple crystal was [Cu 2 (bitb) 4 ] (ClO 4 ) 4 obtained by the following reaction.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 また、上記単結晶構造解析データ及び質量分析測定より、前記紫色結晶([Cu(bitb)](ClO)は、捕捉カプセル型分子であることがわかった。
 上記単結晶構造解析データ及び質量分析測定より明らかとなった捕捉カプセル型分子の構造を、図3及び図4に示す。
Further, the purple crystal ([Cu 2 (bitb) 4 ] (ClO 4 ) 4 ) was found to be a capture capsule type molecule from the single crystal structure analysis data and mass spectrometry measurement.
FIGS. 3 and 4 show the structure of the trapped capsule molecule, which has been clarified from the single crystal structure analysis data and the mass spectrometry measurement.
 図3に示すように、捕捉カプセル型分子の構造は、銅(II)イオン2個及びbitb4分子により形成されたカプセル骨格が、過塩素酸イオン1分子を内包する構造である。なお、図示しないが、両方の銅(II)イオンには、カプセルの外側から過塩素酸イオンが1分子ずつ配位している。
 また、図4に示すように、銅(II)イオン2個及びbitb4分子により形成される空間のサイズは、6.5Å(0.65nm)×6.5Å(0.65nm)×5.0Å(0.50nm)であり、過塩素酸イオンを離脱不能な程度に内包するサイズであった。
 また、図3及び図4では水素原子を省略して表している。
As shown in FIG. 3, the structure of the trapping capsule molecule is a structure in which a capsule skeleton formed by two copper (II) ions and four bit4 molecules encloses one molecule of perchlorate ion. Although not shown, perchlorate ions are coordinated to both copper (II) ions one molecule at a time from the outside of the capsule.
In addition, as shown in FIG. 4, the size of the space formed by two copper (II) ions and the bitb4 molecule is 6.5 0.6 (0.65 nm) × 6.5 Å (0.65 nm) × 5.0 Å ( 0.50 nm), and was a size that contained perchlorate ions so as not to be detached.
In FIGS. 3 and 4, hydrogen atoms are omitted.
 また、得られた紫色結晶は、ジメチルホルムアミド、メタノール、エタノール、アセトニトリル、アセトンのいずれにも溶解した。この結果も、該紫色結晶が捕捉カプセル型分子の構造を有することを示す。 The obtained purple crystals were dissolved in any of dimethylformamide, methanol, ethanol, acetonitrile, and acetone. This result also shows that the purple crystal has the structure of a trapped capsule molecule.
〔参考例3〕
<銅(II)イオンとbitbとを含む配位化合物(Cu-bitbポリマー)の合成>
 試薬は、和光純薬工業株式会社の硫酸銅五水和物(CuSO・5HO)、関東化学株式会社のジメチルホルムアミド(DMF)、を用いて合成した。
 bitb58.9mg(0.2mmol)をDMF20mlに、硫酸銅25.0mg(0.1mmol)を水20mlにそれぞれ溶かした。得られたそれぞれの溶液を一気に反応させ、室温下で1週間静置することによって水不溶性の青色結晶を得た。
 得られた青色結晶について、単結晶構造解析を行った。
 また、該青色結晶は溶媒に溶けず、質量分析を行うことができなかったため、該青色結晶中の炭素、水素、及び窒素の比を元素分析で確認し、単結晶構造解析結果と一致することを確認した。
[Reference Example 3]
<Synthesis of Coordination Compound (Cu-bitb Polymer) Containing Copper (II) Ion and Bitb>
The reagent was synthesized using copper sulfate pentahydrate (CuSO 4 · 5H 2 O) manufactured by Wako Pure Chemical Industries, Ltd. and dimethylformamide (DMF) manufactured by Kanto Chemical Co., Inc.
58.9 mg (0.2 mmol) of bitb were dissolved in 20 ml of DMF, and 25.0 mg (0.1 mmol) of copper sulfate were dissolved in 20 ml of water. Each of the obtained solutions was reacted at once and left at room temperature for 1 week to obtain water-insoluble blue crystals.
The resulting blue crystal was subjected to single crystal structure analysis.
In addition, since the blue crystal was not soluble in the solvent and could not be subjected to mass spectrometry, the ratio of carbon, hydrogen, and nitrogen in the blue crystal was confirmed by elemental analysis and matched with the single crystal structure analysis result. It was confirmed.
~元素分析データ~
理論値(C3660CuN12S) C, 48.45; H, 6.78; N, 12.55
実測値 C, 48.72; H, 6.41; N,12.73
(測定装置 Euro Vector社製 Euro EA3000)
Elemental analysis data
Theoretical value (C 36 H 60 CuN 8 O 12 S) C, 48.45; H, 6.78; N, 12.55
Found C, 48.72; H, 6.41; N, 12.73
(Measuring device Euro EA3000 manufactured by Euro Vector)
~単結晶構造解析データ~
monoclinic space group C2/m(No.12),C3660CuN12S,Mw(式量)892.5, a = 12.3(1) Å, b = 27.3(2) Å, c = 13.8(1)Å, β = 113.42(1)°, V = 4252(62) Å3, Z = 4, R = 0.114, Rw = 0.470
-Single crystal structure analysis data-
monoclinic space group C2 / m (No. 12), C 36 H 60 CuN 8 O 12 S, Mw (formula) 892.5, a = 12.3 (1) Å, b = 27.3 (2) Å, c = 13.8 (1 ) Å, β = 113.42 (1) °, V = 4252 (62) Å 3 , Z = 4, R = 0.114, Rw = 0.470
 元素分析及び単結晶構造解析の結果より、得られた青色結晶は、参考例2のような捕捉カプセル型分子ではなく、配位化合物({[Cu(bitb)(HO)[Cu(bitb)(SO}で表される高分子錯体;以下、「Cu-bitbポリマー」ともいう)であることがわかった。該配位化合物の詳細な構造については後述する。 From the results of elemental analysis and single crystal structure analysis, the obtained blue crystal is not a capture capsule type molecule as in Reference Example 2, but a coordination compound ({[Cu (bitb) 2 (H 2 O) 2 ] It was found to be a polymer complex represented by [Cu (bitb) 2 (SO 4 ) 2 ] }; hereinafter also referred to as “Cu-bitb polymer”). The detailed structure of the coordination compound will be described later.
 また、得られた青色結晶は、水、ジメチルホルムアミド、メタノール、エタノールのいずれにも溶解しなかった。この結果も、該青色結晶が、捕捉カプセル型分子の構造ではなく、配位化合物({[Cu(bitb)(HO)[Cu(bitb)(SO}で表される高分子錯体)の構造を有することを示す。
 該青色結晶が、捕捉カプセル型分子の構造ではなく配位化合物の構造をとる理由は、硫酸イオンのサイズが過塩素酸イオンのサイズより大きいことが原因と考えられる。即ち、bitb4分子及び金属イオン2個からなるカプセル骨格が内包し得る分子のサイズと、硫酸イオンのサイズとが一致しないため、カプセル骨格を形成せず、配位化合物を形成したものと思われる。
Further, the obtained blue crystals did not dissolve in any of water, dimethylformamide, methanol and ethanol. This result also shows that the blue crystals are not the structure of the trapped capsule molecule, but the coordination compound ({[Cu (bitb) 2 (H 2 O) 2 ] [Cu (bitb) 2 (SO 4 ) 2 ] } Has a structure of a polymer complex represented by
The reason why the blue crystal takes the structure of the coordination compound rather than the structure of the trapping capsule type molecule is thought to be that the size of the sulfate ion is larger than the size of the perchlorate ion. That is, since the size of the molecule that can be encapsulated by the capsule skeleton consisting of the bit4 molecule and two metal ions does not match the size of the sulfate ion, the capsule skeleton is not formed, and the coordination compound is formed.
 元素分析及び単結晶構造解析の結果よりにより明らかとなった配位化合物の構造を図5~7に示す。
 図5及び図6中、6つの結合手を有するイオン種は銅(II)イオンを表し、2つの銅(II)イオン間に配置する、1つの6員環と2つの5員環(複素環)とを含む分子はbitbを表す。ここで、bitbは、一方の複素環中の窒素原子の部分で一方の銅(II)イオンに配位し、他方の複素環中の窒素原子の部分で他方の銅(II)イオンに配位している。また、該配位化合物は無限鎖状に広がった構造を有しているため、図5~図7では、図の周辺部に位置する原子や分子を省略して表している。また、図5~図7では、水素原子を省略して表している。
 図5~7に示すように、該配位化合物の構造は、2種類の二次元シート型構造(図5に示すA layer及び図6に示すB layer)が交互に積層された三次元構造(図7)である。
以下、各構造の詳細について説明する。
FIGS. 5 to 7 show the structures of the coordination compounds that have been clarified from the results of elemental analysis and single crystal structure analysis.
5 and 6, the ionic species having six bonds represents a copper (II) ion, and one six-membered ring and two five-membered rings (heterocycles) arranged between two copper (II) ions. ) Represents a bitb. Here, bitb is coordinated to one copper (II) ion at the nitrogen atom in one heterocyclic ring, and coordinated to the other copper (II) ion at the nitrogen atom in the other heterocyclic ring. is doing. In addition, since the coordination compound has a structure spread in an infinite chain, in FIGS. 5 to 7, atoms and molecules located in the periphery of the figure are omitted. In FIGS. 5 to 7, hydrogen atoms are omitted.
As shown in FIGS. 5 to 7, the structure of the coordination compound is a three-dimensional structure in which two types of two-dimensional sheet-type structures (A layer shown in FIG. 5 and B layer shown in FIG. 6) are alternately stacked ( FIG. 7).
Details of each structure will be described below.
 図5に示すA layerは、1つの銅(II)イオンにbitbが4分子配位して形成された、二次元的に無限鎖状に広がった二次元シート型構造体である。より詳細には、A layerは、前記銅(II)イオンに対し、更に、硫酸イオンが2分子配位した、負電荷を持つ二次元シート型構造体[Cu(bitb)(SOである。図5中、矢印a及び矢印bは、A layerの二次元平面に平行な軸を表す(以下、「a軸」「b軸」ともいう)。 The A layer shown in FIG. 5 is a two-dimensional sheet-type structure that is formed by coordinating four molecules of bitb to one copper (II) ion and spreads in an infinite two-dimensional manner. More specifically, the A layer has a negatively charged two-dimensional sheet structure [Cu (bitb) 2 (SO 4 ) 2 in which two molecules of sulfate ions are coordinated with the copper (II) ion. ] . In FIG. 5, arrows a and b represent axes parallel to the two-dimensional plane of the A layer (hereinafter also referred to as “a axis” and “b axis”).
 図6に示すB layerも、1つの銅(II)イオンにbitbが4分子配位して形成された、二次元的に無限鎖状に広がった二次元シート型構造である。より詳細には、B layerは、前記銅(II)イオンに対し、更に、水分子が2分子配位した、正電荷を持つ二次元シート型構造体[Cu(bitb)(HO)である。図6中、矢印a及び矢印bは、B layerの二次元平面に平行な軸を表す(以下、「a軸」「b軸」ともいう)。 The B layer shown in FIG. 6 is also a two-dimensional sheet-type structure that is formed by coordinating four molecules of bitb to one copper (II) ion and spreads in an infinite two-dimensional manner. More specifically, the B layer is a positively charged two-dimensional sheet structure [Cu (bitb) 2 (H 2 O) in which two molecules of water are coordinated with the copper (II) ion. 2 ] . In FIG. 6, arrows a and b represent axes parallel to the two-dimensional plane of the B layer (hereinafter also referred to as “a axis” and “b axis”).
 図7に示す三次元構造は、前記A layer及び前記B layerが交互に積層された構造である。図7中、矢印cは、前記A layer及び前記B layerの二次元平面に平行でない軸を表す。
 図7に示すように、前記A layer及び前記B layerは、それぞれab面上に配置され、それらがc軸に沿って交互に積層した構造となっている。
 図7において、A layer中、銅(II)イオンに配位している硫酸イオンは、となりのB layer中の銅(II)イオンに配位している水分子に水素結合している(O-O =2.98Å)。その結果、水素結合を介した三次元構造となっている。
The three-dimensional structure shown in FIG. 7 is a structure in which the A layer and the B layer are alternately stacked. In FIG. 7, an arrow c represents an axis that is not parallel to the two-dimensional plane of the A layer and the B layer.
As shown in FIG. 7, the A layer and the B layer are respectively arranged on the ab plane, and have a structure in which they are alternately stacked along the c-axis.
In FIG. 7, sulfate ions coordinated to copper (II) ions in A layer are hydrogen-bonded to water molecules coordinated to copper (II) ions in the adjacent B layer (O -O = 2.98 cm). As a result, it has a three-dimensional structure through hydrogen bonds.
〔実施例1〕
<過塩素酸イオンの除去に関する実験>
~試料1(ブランク)~
 蒸留水に過塩素酸ナトリウムを溶解させ、過塩素酸イオンが100ppm含まれる試料1(30 ml)を調製した。
 得られた試料1(ブランク)について、過塩素酸イオンの濃度をイオンクロマトグラフィーにより下記条件にて測定した。
[Example 1]
<Experiment on removal of perchlorate ion>
~ Sample 1 (blank) ~
Sodium perchlorate was dissolved in distilled water to prepare Sample 1 (30 ml) containing 100 ppm of perchlorate ions.
About the obtained sample 1 (blank), the density | concentration of the perchlorate ion was measured on condition of the following by ion chromatography.
~イオンクロマトグラフィー測定条件~
 メトローム製イオンクロマトグラフIC 861 を用いて行った。測定は CO2 差プレッサー方式で行い、電気伝導度検出器により陰イオンの検出を行った。測定は室温23℃で行い、測定に使用する試料は、メンブランフィルターでろ過し、また測定に用いる水溶液は Millipore製の超純水製造装置 Direct-Q で精製したものを使用した。
-Ion chromatography measurement conditions-
The measurement was performed using an ion chromatograph IC 861 manufactured by Metrohm. The measurement was performed by a CO 2 differential presser method, and anions were detected by an electric conductivity detector. The measurement was performed at room temperature of 23 ° C., and the sample used for the measurement was filtered through a membrane filter, and the aqueous solution used for the measurement was purified with an ultrapure water production apparatus Direct-Q manufactured by Millipore.
~試料2~
 上記試料1に、前記参考例3で得られた配位化合物({[Cu(bitb)(HO)[Cu(bitb)(SO}で表される高分子錯体;以下「Cu-bitbポリマー」という)46mgを加え(処理A)、24時間静置して試料2を得た。
 得られた試料2について、試料1と同様の測定を行った。
~ Sample 2 ~
The sample 1 is represented by the coordination compound ({[Cu (bitb) 2 (H 2 O) 2 ] [Cu (bitb) 2 (SO 4 ) 2 ] }) obtained in Reference Example 3. A polymer complex (hereinafter referred to as “Cu-bitb polymer”) (46 mg) was added (treatment A), and allowed to stand for 24 hours to obtain a sample 2.
About the obtained sample 2, the same measurement as the sample 1 was performed.
~試料3、試料6、試料9~
 上記試料1に、活性炭(和光純薬製 活性炭、破砕状 0.2mm~1mm)50mg、イオン交換樹脂(三菱化学(株)製 弱塩基性陰イオン交換樹脂WA-30)50mg、又はゼオライト(ユニオン昭和(株)製 モレキュラーシーブ13X)50mgを加え(処理B)、24時間静置し、試料3、試料6、又は試料9を得た。
 得られた試料3、試料6、又は試料9について、試料1と同様の測定を行った。
~ Sample 3, Sample 6, Sample 9 ~
Sample 1 above includes 50 mg of activated carbon (activated carbon manufactured by Wako Pure Chemicals, crushed 0.2 mm to 1 mm), 50 mg of ion exchange resin (weakly basic anion exchange resin WA-30 manufactured by Mitsubishi Chemical Corporation), or zeolite (Union Showa) 50 mg of Molecular Sieve 13X (manufactured by Co., Ltd.) was added (Processing B) and allowed to stand for 24 hours to obtain Sample 3, Sample 6, or Sample 9.
With respect to the obtained sample 3, sample 6, or sample 9, the same measurement as that of sample 1 was performed.
~試料4、試料7、試料10~
 上記試料1に、Cu-bitbポリマー46mgと、活性炭(和光純薬製 活性炭、破砕状 0.2mm~1mm)50mg、イオン交換樹脂(前記WA-30)50mg、又はゼオライト(前記13X)50mgと、を加え(以下、この処理を「AB同時」とする)、24時間静置し、試料4、試料7、又は試料10を得た。
 得られた試料4、試料7、又は試料10について、試料1と同様の測定を行った。
~ Sample 4, Sample 7, Sample 10 ~
In the above sample 1, 46 mg of Cu-bitb polymer, 50 mg of activated carbon (activated carbon manufactured by Wako Pure Chemicals, crushed 0.2 mm to 1 mm), 50 mg of ion exchange resin (WA-30), or 50 mg of zeolite (13X) In addition (hereinafter, this treatment is referred to as “AB simultaneous”), the sample was allowed to stand for 24 hours to obtain Sample 4, Sample 7, or Sample 10.
With respect to the obtained sample 4, sample 7, or sample 10, the same measurement as that of sample 1 was performed.
~試料5、試料8、試料11~
 上記試料1にCu-bitbポリマー46mgを加え、24時間静置した。
 前記24時間静置後、ろ過により沈殿物(未反応分のCu-bitbポリマー、及び捕捉カプセル型分子)を除き、ろ液に活性炭(和光純薬製 活性炭、破砕状 0.2mm~1mm)50mg、イオン交換樹脂(前記WA-30)50mg、又はゼオライト(前記13X)50mgを加え(以下、ここまでの処理を「A→B」とする)、24時間静置した。
 24時間静置後のろ液について、試料1と同様の測定を行った。
~ Sample 5, Sample 8, Sample 11 ~
46 mg of Cu-bitb polymer was added to the sample 1 and allowed to stand for 24 hours.
After leaving for 24 hours, the precipitate (unreacted Cu-bitb polymer and trapping capsule type molecule) is removed by filtration, and the filtrate is activated carbon (activated carbon manufactured by Wako Pure Chemical Industries, crushed 0.2mm-1mm) 50mg, Ion exchange resin (WA-30) 50 mg or zeolite (13X) 50 mg was added (hereinafter referred to as “A → B”) and allowed to stand for 24 hours.
About the filtrate after leaving still for 24 hours, the same measurement as sample 1 was performed.
 以上の結果を表1に示す。 The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 表1に示すように、Cu-bitbポリマーによる処理Aと、活性炭、ゼオライト又はイオン交換樹脂による処理Bと、を組み合わせた場合(「AB同時」及び「A→B」)には、Aのみの場合及びBのみの場合と比較して、過塩素酸イオンの濃度が低減されていた。
 また、「AB同時」と比較して、「A→B」では、過塩素酸イオンの濃度が更に低減されていた。
As shown in Table 1, when treatment A with Cu-bitb polymer and treatment B with activated carbon, zeolite, or ion exchange resin were combined ("AB simultaneous" and "A → B"), only A The concentration of perchlorate ions was reduced compared to the case of B and B alone.
Further, compared with “AB simultaneous”, the concentration of perchlorate ions was further reduced in “A → B”.
〔実施例2〕
<銅イオンの濃度の比較>
 次に、前記実施例1中の試料4、試料5、試料7、試料8、試料10、及び試料11について、下記条件にて銅イオンの濃度を測定した。
[Example 2]
<Comparison of copper ion concentration>
Next, with respect to Sample 4, Sample 5, Sample 7, Sample 8, Sample 10, and Sample 11 in Example 1, the concentration of copper ions was measured under the following conditions.
~銅イオン測定条件(マルチ型ICP発光分析装置)~
 サンプル20mlに硝酸(1%)を加え、加熱分解した後、試料を20mlにメスアップし、水溶液中に含まれている銅イオン濃度を、マルチ型ICP発光分析装置(バリアン製 ICP(VISTA-MPX))を用いて測定した。
-Copper ion measurement conditions (multi-type ICP emission spectrometer)-
After adding nitric acid (1%) to 20 ml of sample and thermally decomposing it, the sample is made up to 20 ml and the concentration of copper ions contained in the aqueous solution is determined using a multi-type ICP emission spectrometer (ICP (VISTA-MPX manufactured by Varian). )).
 次に、「AB同時」の場合の銅イオン濃度と「A→B」の場合の銅イオン濃度との比較を行った。
 その結果、試料4(AB同時)の銅イオン濃度を100としたとき、試料5(A→B)の銅イオン濃度は13.9であった。また、試料7(AB同時)の銅イオン濃度を100としたとき試料8(A→B)の銅イオン濃度は45.9であった。また、試料10(AB同時)の銅イオン濃度を100としたとき試料11(A→B)の銅イオン濃度は1.7であった。
 これらの結果をまとめると表2のようになる。
Next, the copper ion concentration in the case of “AB simultaneous” and the copper ion concentration in the case of “A → B” were compared.
As a result, when the copper ion concentration of Sample 4 (simultaneously AB) was 100, the copper ion concentration of Sample 5 (A → B) was 13.9. Further, when the copper ion concentration of sample 7 (simultaneous with AB) was 100, the copper ion concentration of sample 8 (A → B) was 45.9. When the copper ion concentration of sample 10 (simultaneous with AB) was 100, the copper ion concentration of sample 11 (A → B) was 1.7.
These results are summarized in Table 2.
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
 表2に示すように、「AB同時」と比較して、「A→B」では、銅イオンの濃度が低減されていた。
 以上、表1及び表2より、「AB同時」と比較して「A→B」では、過塩素酸イオンの濃度がさらに低減され、また、銅イオンの濃度も低減されることが確認された。
As shown in Table 2, compared to “AB simultaneous”, the concentration of copper ions was reduced in “A → B”.
As described above, it was confirmed from Tables 1 and 2 that the concentration of perchlorate ions was further reduced and the concentration of copper ions was also reduced in “A → B” compared to “AB simultaneous”. .
〔実施例3〕
<テトラフルオロホウ酸イオン(BF )の除去に関する実験>
 蒸留水にテトラフルオロホウ酸ナトリウムを溶解させ、テトラフルオロホウ酸イオンが100ppm含まれる試料101(30 ml)を調製した。
 なお、上記試料101(ブランク)におけるテトラフルオロホウ酸イオンの濃度(100ppm)は、イオンクロマトグラフィーにより前述の条件にて測定された値である。
Example 3
<Experiment on Removal of Tetrafluoroborate Ion (BF 4 )>
Sample 101 (30 ml) containing 100 ppm of tetrafluoroborate ions was prepared by dissolving sodium tetrafluoroborate in distilled water.
In addition, the concentration (100 ppm) of tetrafluoroborate ions in the sample 101 (blank) is a value measured under the above-described conditions by ion chromatography.
~試料102、試料104、試料106~
 上記試料101に、Cu-bitbポリマー46mgと、活性炭(和光純薬製 活性炭、破砕状 0.2mm~1mm)50mg、イオン交換樹脂(前記WA-30)50mg、又はゼオライト(前記13X)50mgと、を加え(以下、この処理を「AB同時」とする)、24時間静置し、試料102、試料104、又は試料106を得た。
 得られた試料102、試料104、又は試料106について、試料101と同様の測定を行った。
-Sample 102, Sample 104, Sample 106-
In the sample 101, 46 mg of Cu-bitb polymer, 50 mg of activated carbon (activated carbon made by Wako Pure Chemicals, crushed 0.2 mm to 1 mm), 50 mg of ion exchange resin (WA-30), or 50 mg of zeolite (13X) In addition (hereinafter, this treatment is referred to as “AB simultaneous”), the sample was allowed to stand for 24 hours to obtain Sample 102, Sample 104, or Sample 106.
The obtained sample 102, sample 104, or sample 106 was measured in the same manner as the sample 101.
~試料103、試料105、試料107~
 上記試料101にCu-bitbポリマー46mgを加え、24時間静置した。
 前記24時間静置後、ろ過により沈殿物(未反応分のCu-bitbポリマー、及び捕捉カプセル型分子)を除き、ろ液に活性炭(和光純薬製 活性炭、破砕状 0.2mm~1mm)50mg、イオン交換樹脂(前記WA-30)50mg、又はゼオライト(前記13X)50mgを加え(以下、ここまでの処理を「A→B」とする)、24時間静置し、試料103、試料105、又は試料107を得た。
 24時間静置後のろ液について、試料101と同様の測定を行った。
 測定結果を下記表3に示す。
~ Sample 103, Sample 105, Sample 107 ~
To the sample 101, 46 mg of Cu-bitb polymer was added and allowed to stand for 24 hours.
After leaving for 24 hours, the precipitate (unreacted Cu-bitb polymer and trapping capsule type molecule) is removed by filtration, and the filtrate is activated carbon (activated carbon manufactured by Wako Pure Chemical Industries, crushed 0.2mm-1mm) 50mg, Add 50 mg of ion exchange resin (WA-30) or 50 mg of zeolite (13X) (hereinafter referred to as “A → B”) and let stand for 24 hours to give Sample 103, Sample 105, or Sample 107 was obtained.
About the filtrate after leaving still for 24 hours, the same measurement as sample 101 was performed.
The measurement results are shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
 表3に示すように、Cu-bitbポリマーによる処理Aと、活性炭、ゼオライト又はイオン交換樹脂による処理Bと、を組み合わせることにより、テトラフルオロホウ酸イオンの濃度が低減されることが確認された。
 また、「AB同時」と比較して、「A→B」では、テトラフルオロホウ酸イオンの濃度が更に低減されていた。
As shown in Table 3, it was confirmed that the concentration of tetrafluoroborate ions was reduced by combining treatment A with Cu-bitb polymer and treatment B with activated carbon, zeolite, or ion exchange resin.
Further, compared to “AB simultaneous”, the concentration of tetrafluoroborate ions was further reduced in “A → B”.
 日本出願2008-055240の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese application 2008-055240 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually described to be incorporated by reference, Incorporated herein by reference.

Claims (13)

  1.  下記一般式(I)で表される化合物及び平面四配位又は正八面体配位可能な金属イオンを含む捕捉剤と、被捕捉分子を含む水と、を接触させること、
    及び、
     多孔質固体と、被捕捉分子を含む水と、を接触させること、
    を含む水の浄化方法。
    Figure JPOXMLDOC01-appb-C000001

     
    [式中、R、R、及びRのうち1つは、Rに対してメタ位又はパラ位にあるRであり、R及びRは互いに独立して下記の複素環置換基を表し、
    Figure JPOXMLDOC01-appb-C000002

     
     R、R、R、R及びRのうち、Rを除いた残りは、それぞれ独立に、水素原子、炭素数1~30の置換若しくは未置換の炭化水素基、又はスルホン酸基を表すが、同時に水素原子であることはなく、
     前記複素環置換基のうち、R及びRはそれぞれ独立に、水素原子又はメチル基を表し、Aは、窒素原子を少なくとも1つ含む5員又は6員の複素環基を表す。]
    Contacting a capture agent comprising a compound represented by the following general formula (I) and a metal ion capable of planar tetracoordinate or regular octahedral coordination with water containing a molecule to be captured;
    as well as,
    Contacting a porous solid with water containing a molecule to be captured;
    Water purification method including.
    Figure JPOXMLDOC01-appb-C000001


    Wherein, R 2, R 3, and one of R 4 is in the meta or para to R x R y, R x and R y are following heterocyclic independently of one another Represents a substituent,
    Figure JPOXMLDOC01-appb-C000002


    Of R 1 , R 2 , R 3 , R 4 and R 5 , the remainder excluding R y is independently a hydrogen atom, a substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms, or a sulfonic acid Represents a group, but not simultaneously a hydrogen atom,
    Among the heterocyclic substituents, R 6 and R 7 each independently represent a hydrogen atom or a methyl group, and A represents a 5-membered or 6-membered heterocyclic group containing at least one nitrogen atom. ]
  2.  前記被捕捉分子の分子サイズが1nm以下であることを特徴とする請求項1記載の水の浄化方法。 The water purification method according to claim 1, wherein the molecule size of the trapped molecule is 1 nm or less.
  3.  前記捕捉剤との接触後の水と、前記多孔質固体と、を接触させる請求項1記載の水の浄化方法。 The method for purifying water according to claim 1, wherein the water after contact with the scavenger is brought into contact with the porous solid.
  4.  前記多孔質固体が、活性炭、ゼオライト、イオン交換樹脂、クレー、及びシリカゲルからなる群から選択される少なくとも1種である請求項1記載の水の浄化方法。 The water purification method according to claim 1, wherein the porous solid is at least one selected from the group consisting of activated carbon, zeolite, ion exchange resin, clay, and silica gel.
  5.  前記一般式(I)中、RがRに対してパラ位にある請求項1記載の水の浄化方法。 The method for purifying water according to claim 1, wherein, in the general formula (I), R y is in a para position with respect to R x .
  6.  前記一般式(I)中、前記R及びRが共に水素原子である請求項1記載の水の浄化方法。 The method for purifying water according to claim 1, wherein, in the general formula (I), both R 6 and R 7 are hydrogen atoms.
  7.  前記一般式(I)中、RがRであり、R、R、R及びRが、それぞれ独立に、炭素数1~10の置換若しくは未置換の炭化水素基であり、Aがイミダゾリル基である請求項1記載の水の浄化方法。 In the general formula (I), R 3 is R y , and R 1 , R 2 , R 4 and R 5 are each independently a substituted or unsubstituted hydrocarbon group having 1 to 10 carbon atoms, The method for purifying water according to claim 1, wherein A is an imidazolyl group.
  8.  前記一般式(I)中、RがRであり、R、R、R及びRが、それぞれ独立に、炭素数1~6の置換若しくは未置換の炭化水素基であり、Aがイミダゾリル基である請求項1記載の水の浄化方法。 In the general formula (I), R 3 is R y , and R 1 , R 2 , R 4 and R 5 are each independently a substituted or unsubstituted hydrocarbon group having 1 to 6 carbon atoms, The method for purifying water according to claim 1, wherein A is an imidazolyl group.
  9.  前記一般式(I)中、RがRであり、R、R、R及びRが、それぞれ独立に、炭素数1又は2の置換若しくは未置換の炭化水素基であり、Aがイミダゾリル基である請求項1記載の水の浄化方法。 In the general formula (I), R 3 is R y , and R 1 , R 2 , R 4, and R 5 are each independently a substituted or unsubstituted hydrocarbon group having 1 or 2 carbon atoms, The method for purifying water according to claim 1, wherein A is an imidazolyl group.
  10.  前記捕捉剤が、前記一般式(I)で表される化合物及び平面四配位又は正八面体配位可能な金属イオンを含む配位化合物である請求項1記載の水の浄化方法。 The method for purifying water according to claim 1, wherein the scavenger is a coordination compound comprising a compound represented by the general formula (I) and a metal ion capable of planar tetracoordinate or regular octahedral coordination.
  11.  下記一般式(I)で表される化合物及び平面四配位又は正八面体配位可能な金属イオンを含む捕捉剤と、多孔質固体と、を含む濾過部を備えた水の浄化装置。
    Figure JPOXMLDOC01-appb-C000003

     
    [式中、R、R、及びRのうち1つは、Rに対してメタ位又はパラ位にあるRであり、R及びRは互いに独立して下記の複素環置換基を表し、
    Figure JPOXMLDOC01-appb-C000004

     
     R、R、R、R及びRのうち、Rを除いた残りは、それぞれ独立に、水素原子、炭素数1~30の置換若しくは未置換の炭化水素基、又はスルホン酸基を表すが、同時に水素原子であることはなく、
     前記複素環置換基のうち、R及びRはそれぞれ独立に、水素原子又はメチル基を表し、Aは、窒素原子を少なくとも1つ含む5員又は6員の複素環基を表す。]
    The water purification apparatus provided with the filtration part containing the capture | acquisition agent containing the compound represented by the following general formula (I), and the metal ion which can be planar tetracoordinated or a regular octahedral coordination, and porous solid.
    Figure JPOXMLDOC01-appb-C000003


    Wherein, R 2, R 3, and one of R 4 is in the meta or para to R x R y, R x and R y are following heterocyclic independently of one another Represents a substituent,
    Figure JPOXMLDOC01-appb-C000004


    Of R 1 , R 2 , R 3 , R 4 and R 5 , the remainder excluding R y is independently a hydrogen atom, a substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms, or a sulfonic acid Represents a group, but not simultaneously a hydrogen atom,
    Among the heterocyclic substituents, R 6 and R 7 each independently represent a hydrogen atom or a methyl group, and A represents a 5-membered or 6-membered heterocyclic group containing at least one nitrogen atom. ]
  12.  前記濾過部が、前記捕捉剤を含む捕捉部と、前記捕捉部に接続し、前記多孔質固体を含む吸着部と、を有する請求項11記載の水の浄化装置。 The water purifier according to claim 11, wherein the filtration unit includes a capturing unit including the capturing agent, and an adsorption unit connected to the capturing unit and including the porous solid.
  13.  下記一般式(I)で表される化合物及び平面四配位又は正八面体配位可能な金属イオンを含む捕捉剤と、多孔質固体と、を有する水の浄化セット。
    Figure JPOXMLDOC01-appb-C000005

     
    [式中、R、R、及びRのうち1つは、Rに対してメタ位又はパラ位にあるRであり、R及びRは互いに独立して下記の複素環置換基を表し、
    Figure JPOXMLDOC01-appb-C000006

     
     R、R、R、R及びRのうち、Rを除いた残りは、それぞれ独立に、水素原子、炭素数1~30の置換若しくは未置換の炭化水素基、又はスルホン酸基を表すが、同時に水素原子であることはなく、
     前記複素環置換基のうち、R及びRはそれぞれ独立に、水素原子又はメチル基を表し、Aは、窒素原子を少なくとも1つ含む5員又は6員の複素環基を表す。]
    A water purification set comprising a scavenger comprising a compound represented by the following general formula (I) and a metal ion capable of planar tetracoordinate or regular octahedral coordination, and a porous solid.
    Figure JPOXMLDOC01-appb-C000005


    Wherein, R 2, R 3, and one of R 4 is in the meta or para to R x R y, R x and R y are following heterocyclic independently of one another Represents a substituent,
    Figure JPOXMLDOC01-appb-C000006


    Of R 1 , R 2 , R 3 , R 4 and R 5 , the remainder excluding R y is independently a hydrogen atom, a substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms, or a sulfonic acid Represents a group, but not simultaneously a hydrogen atom,
    Among the heterocyclic substituents, R 6 and R 7 each independently represent a hydrogen atom or a methyl group, and A represents a 5-membered or 6-membered heterocyclic group containing at least one nitrogen atom. ]
PCT/JP2009/054051 2008-03-05 2009-03-04 Method for water purification, equipment for water purification, and water purification set WO2009110499A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009801076541A CN101959803B (en) 2008-03-05 2009-03-04 Method for water purification, equipment for water purification, and water purification set
JP2010501932A JP5448195B2 (en) 2008-03-05 2009-03-04 Water purification method, water purification device, and water purification set

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008055240 2008-03-05
JP2008-055240 2008-03-05

Publications (1)

Publication Number Publication Date
WO2009110499A1 true WO2009110499A1 (en) 2009-09-11

Family

ID=41056052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054051 WO2009110499A1 (en) 2008-03-05 2009-03-04 Method for water purification, equipment for water purification, and water purification set

Country Status (3)

Country Link
JP (1) JP5448195B2 (en)
CN (1) CN101959803B (en)
WO (1) WO2009110499A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012026981A (en) * 2010-07-27 2012-02-09 Maezawa Ind Inc Tetrafluoroborate ion detection agent, tetrafluoroborate ion detection kit, and tetrafluoroborate ion detection method
CN103979664A (en) * 2014-06-03 2014-08-13 武汉纺织大学 Method for activating persulphate by OMS (Octahedral Molecular Sieve)-2 to degrade organic wastewater
JP5954829B2 (en) * 2011-01-28 2016-07-20 国立大学法人静岡大学 Capsule type compound, anion removing agent, and anion removing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5842943B2 (en) * 2014-02-19 2016-01-13 三浦工業株式会社 Water treatment method and water treatment system
FR3082525B1 (en) * 2018-06-18 2022-04-01 Commissariat Energie Atomique METHOD FOR EXTRACTING COBALT FROM A SOLUTION COMPRISING, IN ADDITION TO COBALT, ONE OR MORE OTHER METALLIC ELEMENTS

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58174235A (en) * 1982-02-02 1983-10-13 イエ−リンノヴアシヨ−ン・ハンデルスアクチエボラグ Metal ion adsorbent
JPS60143891A (en) * 1983-12-28 1985-07-30 Hitachi Plant Eng & Constr Co Ltd Treatment of waste water from stack gas desulfurization
JPH0717386U (en) * 1993-09-09 1995-03-28 峻 小山 Water purifier
WO2008029804A1 (en) * 2006-09-06 2008-03-13 National University Corporation Shizuoka University Perchloric acid ion trapping agent

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0717386A (en) * 1993-07-06 1995-01-20 Nissin Kogyo Kk Braking device for vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58174235A (en) * 1982-02-02 1983-10-13 イエ−リンノヴアシヨ−ン・ハンデルスアクチエボラグ Metal ion adsorbent
JPS60143891A (en) * 1983-12-28 1985-07-30 Hitachi Plant Eng & Constr Co Ltd Treatment of waste water from stack gas desulfurization
JPH0717386U (en) * 1993-09-09 1995-03-28 峻 小山 Water purifier
WO2008029804A1 (en) * 2006-09-06 2008-03-13 National University Corporation Shizuoka University Perchloric acid ion trapping agent

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KIYOSHI SATO: "SIZE SERECTIVE RECOGNITION OF ANIONS BY A TETRACATIONIC IMIDAZOLIOPHANE", HETEROCYCLES, vol. 60, no. 4, 2003, pages 779 - 784 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012026981A (en) * 2010-07-27 2012-02-09 Maezawa Ind Inc Tetrafluoroborate ion detection agent, tetrafluoroborate ion detection kit, and tetrafluoroborate ion detection method
JP5954829B2 (en) * 2011-01-28 2016-07-20 国立大学法人静岡大学 Capsule type compound, anion removing agent, and anion removing method
CN103979664A (en) * 2014-06-03 2014-08-13 武汉纺织大学 Method for activating persulphate by OMS (Octahedral Molecular Sieve)-2 to degrade organic wastewater
CN103979664B (en) * 2014-06-03 2016-01-06 武汉纺织大学 A kind of OMS-2 activates the method for persulphate degradation of organic waste water

Also Published As

Publication number Publication date
CN101959803A (en) 2011-01-26
JPWO2009110499A1 (en) 2011-07-14
CN101959803B (en) 2012-11-28
JP5448195B2 (en) 2014-03-19

Similar Documents

Publication Publication Date Title
Qi et al. A two-dimensionally microporous thiostannate with superior Cs+ and Sr 2+ ion-exchange property
Roh et al. Synthesis of a five‐membered molecular necklace: a 2+ 2 approach
JP5190995B2 (en) Heterocyclic substituted aromatic compounds, coordination compounds, perchlorate ion scavengers, perchlorate ion capture methods, and perchlorate ion removal methods
JP5448195B2 (en) Water purification method, water purification device, and water purification set
EP2917224B1 (en) Metal-organic materials (moms) for adsorption of polarizable gases and methods of using moms
Radi et al. A novel environment-friendly hybrid material based on a modified silica gel with a bispyrazole derivative for the removal of Zn II, Pb II, Cd II and Cu II traces from aqueous solutions
Liu et al. Flexible porous coordination polymers constructed from 1, 2-bis (4-pyridyl) hydrazine via solvothermal in situ reduction of 4, 4′-azopyridine
Wang et al. Solvent-controlled synthesis of various Anderson-type polyoxometalate-based metal–organic complexes with excellent capacity for the chromatographic separation of dyes
JP2010022886A (en) Method for removing tetrafluoroborate ion
US20170225969A1 (en) Porous organic polymers for binding heavy metals
Wang et al. Various polyoxomolybdate-based hybrids induced by pH and solvents: structures, adsorption activities for dyes and bifunctional electrocatalytic properties
Ai et al. A fast and highly selective Congo red adsorption material based on a cadmium-phosphonate network
Radi et al. Quantitative removal of Zn (II) from aqueous solution and natural water using new silica-immobilized ketoenol–pyridine receptor
JP2010042403A (en) Method for purifying water
US11649177B2 (en) Systems for removing perchlorate from water
Gao et al. A family of uranium–carboxylic acid hybrid materials: synthesis, structure and mixed-dye selective adsorption
Sun et al. Chiral or achiral: Four isomeric Cd (II) coordination polymers based on phenylenediacrylate ligands
Lv et al. Supramolecular hyperbranched polymer gels based on pillar [5] arene and their applications in removal of micropollutants from water
EP3791949A1 (en) Improvements relating to gas separation
Li et al. Synthesis, crystal structures and properties of five novel coordination polymers and application in removing heavy metals from water
EP2669275B1 (en) Capsule-type compound, anion-removing agent, and anion removal method
WO2014017653A1 (en) Capsule compound, negative-ion remover, and negative-ion removal method
JP5114704B2 (en) Method for separating metal and method for recovering metal
CN109081829B (en) Ag (I) -organic framework material and preparation method and application thereof
JP5950734B2 (en) Cesium ion detection method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980107654.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09718409

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010501932

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 6264/CHENP/2010

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 09718409

Country of ref document: EP

Kind code of ref document: A1