WO2009110440A1 - Method of predicting bend lifetime of laminated body, prediction device of bend lifetime of laminated body, prediction program of bend lifetime of laminated body, and recording medium - Google Patents

Method of predicting bend lifetime of laminated body, prediction device of bend lifetime of laminated body, prediction program of bend lifetime of laminated body, and recording medium Download PDF

Info

Publication number
WO2009110440A1
WO2009110440A1 PCT/JP2009/053912 JP2009053912W WO2009110440A1 WO 2009110440 A1 WO2009110440 A1 WO 2009110440A1 JP 2009053912 W JP2009053912 W JP 2009053912W WO 2009110440 A1 WO2009110440 A1 WO 2009110440A1
Authority
WO
WIPO (PCT)
Prior art keywords
stress
bending
laminate
life
wiring layer
Prior art date
Application number
PCT/JP2009/053912
Other languages
French (fr)
Japanese (ja)
Inventor
伸悦 藤元
Original Assignee
新日鐵化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵化学株式会社 filed Critical 新日鐵化学株式会社
Priority to CN200980107719.2A priority Critical patent/CN101960283B/en
Priority to JP2010501901A priority patent/JP5248595B2/en
Publication of WO2009110440A1 publication Critical patent/WO2009110440A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0041Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining deflection or stress
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0033Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining damage, crack or wear
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0075Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by means of external apparatus, e.g. test benches or portable test systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0277Bendability or stretchability details
    • H05K1/028Bending or folding regions of flexible printed circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0023Bending
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/26Composites
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/04Ageing analysis or optimisation against ageing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/16Inspection; Monitoring; Aligning
    • H05K2203/162Testing a finished product, e.g. heat cycle testing of solder joints

Definitions

  • the present invention relates to a method and apparatus for predicting the bending life of a bendable laminate having a plurality of laminated layers including a base layer and a wiring layer made of a patterned conductor, and bending of the laminate
  • the present invention relates to a program and a recording medium used for predicting a lifetime.
  • the FPC includes, for example, a base layer, a wiring layer made of a patterned conductor bonded to one surface of the base layer, an adhesive layer covering the wiring layer, and a cover layer bonded to the adhesive layer. And have.
  • FPCs used in electronic devices having moving parts are required to have high bending resistance.
  • One of the tests for evaluating the bending resistance characteristics of FPC is a bending test called an IPC test.
  • IPC test a bending test
  • an FPC is bent and inserted in a U shape between a fixed plate and a movable plate arranged at a predetermined interval, and each end in the longitudinal direction of the FPC is fixed to the fixed plate and the movable plate, respectively. This is done by reciprocating the movable plate in a direction parallel to the surface.
  • the number of reciprocating motions of the movable plate from the start of the test until the wiring layer breaks is measured as the bending life.
  • the first method is a method using a master curve and an actual measurement value of a prediction target, as described in Patent Document 1, for example.
  • the second method is a method using a finite element method as described in Patent Document 2 and Patent Document 3, for example.
  • Patent Document 1 describes a method for predicting the bending life of a composite such as a flat cable.
  • a master that shows the relationship between the maximum distortion amount of the conductor portion of the composite and / or the deviation of the bent shape from the ideal radius when mounted on the bending resistance evaluation test apparatus, and the actually measured bending life. Create a curve.
  • the maximum strain amount of the conductor portion and / or the deviation amount of the bent shape from the ideal radius in the composite body to be predicted mounted on the bending resistance evaluation test apparatus is measured.
  • the maximum distortion amount of the conductor portion and / or the deviation amount of the bent shape from the ideal radius in the measured composite object is collated with the master curve to predict the bending life of the composite object to be predicted.
  • Patent Document 2 describes a method for predicting the bending life of an electric wire or electric wire bundle having at least a central conductor wire.
  • a master curve indicating the relationship between the bending life of a single electric wire and the amount of change in strain is obtained.
  • the maximum strain change amount of the central conductor wire of the electric wire or electric wire bundle to be predicted is calculated using the finite element method.
  • the calculated maximum strain variation is collated with the master curve to predict the bending life of the prediction target electric wire or electric wire bundle.
  • Patent Document 3 describes a method for predicting the bending durability of a plurality of electric wires and a bending protection member attached to a bent portion.
  • a finite element model of each of a plurality of electric wires and a bending protection member is created.
  • the stress in each finite element of the finite element model is calculated.
  • the maximum stress is searched from among the calculated stresses.
  • the number of bending durability times corresponding to the maximum stress for each of the plurality of electric wires and the bending protection member is acquired, and the shortest bending durability number is obtained from these.
  • a number of configurations can be considered by changing the conditions of the plurality of layers. Repeating trial production and bending test for each of such a large number of configurations requires a great deal of labor, time and cost. Therefore, if you want to design a laminate that has the desired bending life, if you can simulate the prediction of the bending life by arbitrarily setting the conditions of each layer that makes up the laminate, you can significantly reduce labor, time, and cost. It becomes possible to reduce. Further, if such a simulation is possible, it is possible to easily obtain a preferable combination of conditions of each layer constituting the laminated body.
  • the condition of each layer constituting the laminate is arbitrarily set and the simulation is performed. There is a problem that cannot be performed. In the first method, it is also impossible to obtain a preferable combination of conditions for each layer constituting the stacked body using simulation.
  • the second method of the conventional methods for predicting the bending resistance such as the bending life by simulation uses the finite element method, so that it takes a lot of time and labor to create a finite element model. is there.
  • An object of the present invention is to easily set a bending life prediction method for a laminated body and a bending life prediction apparatus for a laminated body by arbitrarily setting the conditions of each layer constituting the laminated body and predicting the bending life of the laminated body.
  • Another object of the present invention is to provide a bending life prediction program for a laminate and a recording medium.
  • the method for predicting the bending life of a laminate of the present invention has a plurality of laminated layers including a base layer and a wiring layer made of a patterned conductor, extends in one direction, and is a bendable laminate.
  • the laminate is bent and inserted in a U shape between a fixed plate and a movable plate arranged at a predetermined interval, and each end in the longitudinal direction of the laminate is fixed to the fixed plate and the movable plate, respectively.
  • This is a method for predicting a bending life to be measured by a bending test performed by reciprocating a plate in a direction parallel to its surface.
  • the bending life prediction method of the laminate of the present invention is For each of a plurality of laminate samples having different configurations, the thickness of each layer constituting the sample, the relationship between stress and strain in each layer constituting the sample, the interval between the fixed plate and the movable plate in the bending test, A first calculation procedure for calculating a stress generated in the wiring layer of the sample using each information of the line width and the line width in the wiring layer; For each of a plurality of samples, a procedure for measuring the bending life by a bending test, Based on the stress generated in the wiring layer of each sample calculated by the first calculation procedure and the bending life of each sample measured by the procedure of measuring the bending life, the wiring layer in the laminated body having an arbitrary configuration is generated.
  • a procedure for determining the relationship between stress and flex life Regarding the virtual laminate that is the object of predicting the flex life, the thickness of each layer constituting the virtual laminate, the relationship between the stress and strain in each layer constituting the virtual laminate, and the fixed plate and the movable plate in the bending test
  • the elastic modulus of the material constituting each layer may be used as the relationship between stress and strain in each layer.
  • the relationship between stress and strain in each layer may be obtained by a tensile test on the material constituting each layer.
  • the main stress obtained from the normal stress and the shear stress is calculated as the stress generated in the wiring layer of the sample
  • the second calculation procedure As a stress generated in the wiring layer of the virtual laminate, a main stress obtained from a normal stress and a shear stress may be calculated.
  • the relationship between the stress generated in the wiring layer and the flexing life using the temperature when the flexing test is performed as a parameter.
  • the virtual lamination under an arbitrary temperature is based on the stress calculated by the second calculation procedure and the relationship between the stress and the bending life using the temperature as a parameter.
  • the flexion life of the body may be predicted.
  • the stress generated in the wiring layer and the bending life using the frequency of the reciprocating motion of the movable plate in the bending test as parameters.
  • the virtual life under an arbitrary frequency is calculated based on the stress calculated by the second calculation procedure and the relationship between the stress using the frequency as a parameter and the bending life.
  • the bending life of the laminate may be predicted.
  • the bending life prediction apparatus for a laminate has a plurality of laminated layers including a base layer and a wiring layer made of a patterned conductor, extends in one direction, and is a bendable laminate.
  • the laminate is bent and inserted in a U shape between a fixed plate and a movable plate arranged at a predetermined interval, and each end in the longitudinal direction of the laminate is fixed to the fixed plate and the movable plate, respectively. It is a device that predicts the bending life to be measured by a bending test performed by reciprocating a plate in a direction parallel to its surface.
  • the bending life prediction apparatus of the laminate of the present invention is For each of a plurality of laminate samples having different configurations, the thickness of each layer constituting the sample, the relationship between stress and strain in each layer constituting the sample, the interval between the fixed plate and the movable plate in the bending test, First input means for inputting information on the line width and the line width in the wiring layer; First calculation means for calculating stress generated in the wiring layer of the sample using information input by the first input means; A second input means for inputting the bending life of each of the plurality of samples measured by the bending test; Based on the stress generated in the wiring layer of each sample calculated by the first calculation means and the bending life of each sample input by the second input means, the stress generated in the wiring layer in the laminate having an arbitrary configuration Means for determining the relationship between the bending life and Regarding the virtual laminate that is the object of predicting the flex life, the thickness of each layer constituting the virtual laminate, the relationship between the stress and strain in each layer constituting the virtual laminate, and the fixed plate and the mov
  • the first calculation means calculates the main stress obtained from the normal stress and the shear stress as the stress generated in the wiring layer of the sample
  • the second calculation means As the stress generated in the wiring layer of the laminated body, the main stress obtained from the normal stress and the shear stress may be calculated.
  • the means for obtaining the relationship between the stress and the bending life is the relationship between the stress generated in the wiring layer and the bending life with the temperature when the bending test is performed as a parameter. And calculating the bending life based on the stress calculated by the second calculating means and the relationship between the stress and the bending life with the temperature as a parameter and the virtual lamination under an arbitrary temperature.
  • the flexion life of the body may be predicted.
  • the means for obtaining the relationship between the stress and the bending life is the stress generated in the wiring layer and the bending life using the frequency of the reciprocating motion of the movable plate in the bending test as a parameter.
  • the means for calculating the relationship between the bending life and the bending life is calculated based on the stress calculated by the second calculation means and the relationship between the stress and the bending life with the frequency as a parameter.
  • the bending life of the laminate may be predicted.
  • the bending life prediction program for a laminated body of the present invention has a plurality of laminated layers including a base layer and a wiring layer made of a patterned conductor, extends in one direction, and can be bent.
  • the laminate is bent and inserted in a U shape between a fixed plate and a movable plate arranged at a predetermined interval, and each end in the longitudinal direction of the laminate is fixed to the fixed plate and the movable plate, respectively.
  • the bending life prediction program for a laminate includes a computer, For each of a plurality of laminate samples having different configurations, the thickness of each layer constituting the sample, the relationship between stress and strain in each layer constituting the sample, the interval between the fixed plate and the movable plate in the bending test, A first input means for inputting information on the line width and the inter-line width in the wiring layer; First calculation means for calculating stress generated in the wiring layer of the sample using information input by the first input means; A second input means for inputting the bending life of each of the plurality of samples measured by the bending test; Based on the stress generated in the wiring layer of each sample calculated by the first calculation means and the bending life of each sample input by the second input means, the stress generated in the wiring layer in the laminate having an arbitrary configuration Means for determining the relationship between the bending life and Regarding the virtual laminate that is the object of predicting the flex life, the thickness of each layer constituting the virtual laminate, the relationship between the stress and strain in each layer constituting the virtual laminate,
  • the computer-readable recording medium of the present invention records the bending life prediction program for the laminate of the present invention.
  • the thickness of each layer constituting the virtual laminate and the virtual laminate The relationship between the stress and strain in each layer constituting the virtual laminate, the distance between the fixed plate and the movable plate in the bending test, and the line width and the inter-line width in the wiring layer of the virtual laminate, It is possible to calculate the stress generated in the wiring layer of the virtual laminate and predict the flex life of the virtual laminate based on the calculated stress and the relationship between the stress and the flex life. Thereby, according to this invention, it becomes possible to set the conditions of each layer which comprises a laminated body arbitrarily, and to predict the bending life of a laminated body easily.
  • FIG. 6 is a characteristic diagram showing a relationship between a principal stress and a bending life represented by a stress-bending life relational expression in an embodiment of the present invention.
  • SYMBOLS 1 Laminated body, 11 ... Base layer, 12 ... Wiring layer, 13 ... Adhesive layer, 14 ... Cover layer, 21 ... Fixed plate, 22 ... Movable plate, 30 ... Bending life prediction apparatus.
  • the laminated body in this Embodiment has a plurality of laminated layers including a base layer and a wiring layer made of a patterned conductor, extends in one direction, and can be bent.
  • FPC flexible printed wiring board
  • FIG. 1 is a perspective view showing a part of the laminate.
  • the hatched surface represents a cross section.
  • FIG. 2 is a plan view showing a wiring layer of the laminate.
  • the laminate shown in FIGS. 1 and 2 is specifically an FPC.
  • this FPC is a test FPC used for measuring a flex life by a flex test.
  • the laminate 1 includes a base layer 11, a wiring layer 12 made of a patterned conductor joined to one surface of the base layer 11, and an adhesive layer covering the wiring layer 12. 13 and a cover layer 14 bonded to the adhesive layer 13.
  • the laminate 1 extends in one direction and can be bent.
  • the laminated body 1 may further include another adhesive layer disposed between the base layer 11 and the wiring layer 12.
  • the wiring layer 12 has a meander shape. More specifically, the wiring layer 12 includes two adjacent linear portions 12a extending in the longitudinal direction of the laminate 1 (left and right direction in FIG. 2) and two adjacent wiring layers 12 so that the entire wiring layer 12 has a meander shape. It has the connection part 12b which connects the edge parts of the linear part 12a.
  • the width of the linear portion 12a (the vertical dimension in FIG. 2) is defined as a line width LW
  • the interval between two adjacent linear portions 12a is defined as a line width SW.
  • a resin such as a polyimide resin is used.
  • a metal such as copper is used.
  • a synthetic adhesive such as an epoxy adhesive or an acrylic adhesive is used.
  • laminate sample In the following description, the terms “laminate sample”, “arbitrary laminate”, and “virtual laminate” are used in relation to the laminate 1.
  • the “laminate sample” is actually produced in order to create a stress-bending life relationship as a relation between the stress generated in the wiring layer 12 and the flexing life in a laminated body having an arbitrary configuration described later. It is the laminated body 1 which is.
  • “Arbitrary laminated body” is an imaginary laminated body 1 in which conditions other than the minimum requirements of the laminated body 1 are not specified.
  • the “virtual laminated body” is an imaginary laminated body 1 that is a target for predicting a flex life.
  • the “virtual laminate” includes the thickness of each layer constituting the laminate 1, the relationship between stress and strain in each layer constituting the laminate 1, the distance between the fixed plate and the movable plate in the bending test, It is specified by each information of the line width LW and the line width SW in the wiring layer 12.
  • “laminate sample”, “arbitrary laminate”, and “virtual laminate” “laminate sample” is denoted by reference numeral 1A, and “arbitrary laminate”
  • the “body” is denoted by reference numeral 1B, and the “virtual stacked body” is denoted by reference numeral 1C.
  • FIG. 3 is an explanatory view showing a state in which the laminate 1 is mounted on a bending test apparatus used for a bending test.
  • the bending test apparatus includes a fixed plate 21 and a movable plate 22 that are arranged with a predetermined interval H therebetween.
  • the laminate 1 is bent in a U shape between the fixed plate 21 and the movable plate 22 and the longitudinal ends of the laminate 1 are fixed to the fixed plate 21 by the fixtures 23 and 24, respectively.
  • the movable plate 22 is fixed to the movable plate 22, and the movable plate 22 is reciprocated in a direction parallel to the surface.
  • the wiring layer 12 is energized and the resistance value of the wiring layer 12 is detected. Then, when the resistance value of the wiring layer 12 becomes equal to or higher than a predetermined value, it is determined that the wiring layer 12 is broken. In the bending test, the number of reciprocating motions of the movable plate 22 from the start of the test until the wiring layer 12 breaks, that is, until the resistance value of the wiring layer 12 becomes a predetermined value or more is measured as the bending life.
  • the bending life prediction apparatus 30 is an apparatus that predicts the bending life to be measured for the laminate 1 by the above-described bending test.
  • the bending life prediction apparatus 30 is realized using a computer.
  • FIG. 4 is a block diagram showing a configuration of a computer 30C that realizes the bending life prediction apparatus 30.
  • the computer 30 ⁇ / b> C includes a main control unit 31, an input device 32, an output device 33, a display device 34, a storage device 35, and a bus 36 that connects them to each other.
  • the main control unit 31 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory).
  • the storage device 35 is not particularly limited as long as it can store information, but is, for example, a hard disk device or an optical disk device.
  • the storage device 35 records information on a computer-readable recording medium 37 and reproduces information from the recording medium 37.
  • the recording medium 37 may be in any form as long as it can store information, but is, for example, a hard disk or an optical disk.
  • the recording medium 37 may be a recording medium in which the bending life prediction program for the laminate according to the present embodiment is recorded.
  • FIG. 5 is a functional block diagram showing a functional configuration of the bending life prediction apparatus 30.
  • the bending life prediction apparatus 30 includes a first input means 41, a first calculation means 42, a second input means 43, a stress-bending life relational expression creating means 44, A third input unit 45, a second calculation unit 46, and a bending life prediction unit 47 are provided.
  • the first input means 41 includes, for each of a plurality of laminate samples 1A having different configurations, the thickness of each layer constituting the sample 1A, the relationship between the stress and strain in each layer constituting the sample 1A, and the bending test. Information on the distance H between the fixed plate 21 and the movable plate 22, and the line width LW and the line width SW in the wiring layer 12 of the sample 1A are input.
  • the first calculation means 42 uses the information input by the first input means 41 to calculate the stress generated in the wiring layer 12 of the sample 1A.
  • the second input means 43 inputs the bending life of each of the plurality of samples 1A measured by the bending test.
  • the stress-bending life relation formula creating means 44 includes the stress generated in the wiring layer 12 of each sample 1A calculated by the first calculating means 42 and the bending life of each sample 1A input by the second input means 43. Based on the above, the relationship between the stress generated in the wiring layer 12 in the laminate 1B having an arbitrary configuration and the flex life is obtained. Specifically, the stress-bending life relation formula creating means 44 creates a stress-bending life relation formula as a relation between the stress generated in the wiring layer 12 and the flex life in the laminate 1B having an arbitrary configuration.
  • the stress-bending life relationship formula creating means 44 corresponds to “means for obtaining the relationship between stress and bending life” in the present invention.
  • the third input means 45 includes, for the virtual laminate 1C, the thickness of each layer constituting the virtual laminate 1C, the relationship between the stress and strain in each layer constituting the virtual laminate 1C, and the fixed plate in the bending test. Information on the distance H between the movable plate 22 and the line width LW and the line width SW in the wiring layer 12 of the virtual laminate 1C is input.
  • the second calculation means 46 uses the information input by the third input means 45 to calculate the stress generated in the wiring layer 12 of the virtual laminate 1C.
  • the bending life prediction means 47 is a stress-bending life relational expression created by the stress generated in the wiring layer 12 of the virtual laminate 1C calculated by the second calculation means 46 and the stress-bending life relation creating means 44. Based on the above, the bending life of the virtual laminate 1C is predicted.
  • the program for predicting the bending life of the laminate shows the computer 30C shown in FIG. 4 in order to predict the bending life to be measured for the laminate 1 by the above-described bending test. It functions as each means.
  • the bending life prediction program for the laminate is recorded in the recording medium 37 in FIG. 4 or the ROM in the main control unit 31.
  • the bending life prediction method of the laminated body according to the present embodiment is a method of predicting the bending life to be measured for the laminated body 1 by the above-described bending test.
  • FIG. 6 is a flowchart showing a method for predicting the bending life of the laminate according to the present embodiment.
  • the bending life prediction method for a laminate according to the present embodiment first, for each of a plurality of laminate samples 1A having different configurations, the thickness of each layer constituting sample 1A, Using information on the relationship between stress and strain in each layer constituting the sample 1A, the distance H between the fixed plate 21 and the movable plate 22 in the bending test, and the line width LW and the line width SW in the wiring layer 12 of the sample 1A. Then, the stress generated in the wiring layer 12 of the sample 1A is calculated (step S101). This step S101 corresponds to the first calculation procedure in the present invention. Next, the bending life of each of the plurality of samples 1A is measured by a bending test (step S102).
  • step S103 based on the stress generated in the wiring layer 12 of each sample 1A calculated in step S101 and the bending life of each sample 1A measured in step S102, the wiring layer 12 in the laminate 1B having an arbitrary configuration As a relationship between the generated stress and the flex life, a stress-flex life relationship is obtained (step S103).
  • step S104 corresponds to the second calculation procedure in the present invention.
  • step S105 based on the stress generated in the wiring layer 12 of the virtual laminate 1C calculated in step S104 and the relationship between the stress obtained in step S103 and the flex life, the flex life of the virtual laminate 1C is calculated. Prediction is made (step S105).
  • step S101 and step S102 may be reversed from the above description.
  • step S101 first, the thickness of each layer constituting the sample 1A and the stress and strain in each layer constituting the sample 1A are measured by the first input means 41 for each of the samples 1A of the plurality of stacked bodies 1 having different configurations. , The distance H between the fixed plate 21 and the movable plate 22 in the bending test, and the line width LW and the line width SW in the wiring layer 12 of the sample 1A are input. Next, the stress generated in the wiring layer 12 of the sample 1 ⁇ / b> A is calculated by the first calculation unit 42 using the information input by the first input unit 41.
  • step S102 the bending life of each of the plurality of samples 1A measured by the bending test is input by the second input means 43.
  • step S103 based on the stress generated in the wiring layer 12 of each sample 1A calculated by the first calculation means 42 and the bending life of each sample 1A input by the second input means 43, stress-bending is performed.
  • the life relation formula creating means 44 creates a stress-bending life relation formula as a relation between the stress generated in the wiring layer 12 and the flex life in the laminate 1B having an arbitrary configuration.
  • step S104 the third input unit 45 causes the virtual laminated body 1C to have a thickness of each layer constituting the virtual laminated body 1C, a relationship between stress and strain in each layer constituting the virtual laminated body 1C, and bending.
  • Information on the distance H between the fixed plate 21 and the movable plate 22 in the test and the line width and the line width in the wiring layer 12 of the virtual laminate 1C are input.
  • the stress generated in the wiring layer 12 of the virtual laminate 1C is calculated by the second calculation unit 46 using the information input by the third input unit 45.
  • step S105 based on the stress generated in the wiring layer 12 of the virtual laminated body 1C calculated by the second calculation means 46 and the stress-bending life relation formula created by the stress-bending life relation formula creation means 44.
  • the bending life prediction means 47 predicts the bending life of the virtual laminate 1C.
  • FIG. 7 is a cross-sectional view of a model of the laminate 1 used for explaining the stress calculation method.
  • FIG. 7 shows a model in which the laminate 1 has three layers, but the following description applies to the case where the laminate has two or more layers.
  • the number of layers of the stacked body 1 is n (n is an integer of 2 or more).
  • the symbol B represents the width of the stacked body 1. The width here is a dimension in a direction parallel to the lower surface of the first layer and perpendicular to the longitudinal direction of the laminate 1.
  • the wiring layer 12 is patterned as shown in FIG. 2, for example. Therefore, when the laminated body 1 is viewed from above, the laminated body 1 includes the wiring layer 12. There are portions where the wiring layer 12 does not exist. Here, a portion where the wiring layer 12 exists is called a wiring portion, and a portion where the wiring layer 12 does not exist is called a space portion.
  • the wiring part and the space part have different configurations. For example, in the case of the laminated body 1 shown in FIG. 1, the wiring part is composed of four layers, and the space part is composed of three layers. Therefore, hereinafter, the wiring portion and the space portion are considered separately as necessary.
  • the lower surface of the first layer is defined as a reference surface SP.
  • the symbol NP represents the neutral surface of the laminate 1.
  • the distance between the neutral plane NP and the reference plane SP is defined as a neutral plane position [NP]
  • the neutral plane position [NP] is calculated separately for the wiring portion and the space portion.
  • the neutral plane position [NP] is calculated by the following equation (1).
  • E i is the elastic modulus of the material constituting the i-th layer.
  • This elastic modulus E i corresponds to “relation between stress and strain in each layer” in the present embodiment.
  • B i is the width of the i-th layer and corresponds to the width B shown in FIG.
  • the value of the line width LW is used as B i
  • the line width SW is used as B i.
  • the value of is used.
  • h i is the distance between the center plane of the i-th layer and the reference plane SP.
  • the central surface of the i-th layer is a virtual surface located at the center in the thickness direction of the i-th layer.
  • the neutral plane position of the wiring portion is referred to as [NP] Line .
  • a bending normal stress ⁇ c that is a maximum tensile normal stress in the longitudinal direction generated in the wiring layer 12 by pure bending is calculated.
  • the bending normal stress ⁇ c is calculated by the following equation (3).
  • Ec is the elastic modulus of the wiring layer 12.
  • yc is the distance from the reference plane SP to the surface (here, the lower surface) that becomes convex when bent between the upper surface and the lower surface of the wiring layer 12.
  • B Line is the sum of the line widths LW
  • B Space is the sum of the line widths SW.
  • a i is the distance between the upper surface of the i-th layer and the neutral plane NP
  • b i is the distance between the lower surface of the i-th layer and the neutral plane NP.
  • k is the shear correction factor.
  • R in the bending test is about 1 mm
  • Le is a half value of the circumference of the effective bent portion.
  • A is the cross-sectional area of the laminate 1 perpendicular to the longitudinal direction of the laminate 1.
  • the principal stress S generated in the wiring layer 12 is calculated.
  • the main stress S is calculated by the following equation (7).
  • the main stress S as the stress generated in the wiring layer 12 is calculated from the vertical stress ⁇ c and the shear stress ⁇ . Further, as described above, the principal stress S is the thickness of each layer constituting the laminated body 1, the relationship between the stress and strain (elastic modulus) in each layer constituting the laminated body 1, and the fixed plate 21 in the bending test. And the distance H between the movable plate 22 and the information on the line width LW and the line width SW in the wiring layer 12.
  • step S101 the principal stress S generated in the wiring layer 12 is calculated for each of a plurality of laminate samples 1A having different configurations by the above method.
  • step S104 the principal stress S generated in the wiring layer 12 is calculated by the above method for the virtual laminated body 1C that is a target for predicting the bending life.
  • step S102 the bending life N of each of the plurality of samples 1A is measured by the bending test described with reference to FIG.
  • f be the frequency of the reciprocating motion of the movable plate 22 in this bending test.
  • T is the temperature at which the bending test is performed.
  • the bending test may be performed with the frequency f and the temperature T being constant for all the samples 1A, or may be performed with at least one of the frequency f and the temperature T being different for each sample 1A.
  • a plurality of types of samples 1A are prepared for each type, and a bending test is performed on each of the plurality of samples 1A of one type by changing at least one of frequency f and temperature T. Good.
  • the stress-bending life relation equation created in step S103 is used, and at least one of the frequency f and the temperature T is a parameter. It becomes possible to make it a function.
  • the relationship between the main stress S generated in the wiring layer 12 and the bending life N for the laminate 1B having an arbitrary configuration is as follows. It was found that it can be approximated by equation (8). Therefore, in the present embodiment, the following equation (8) is a stress-bending life relationship expression that represents the relationship between the principal stress S generated in the wiring layer 12 and the bending life N in the laminate 1B having an arbitrary configuration.
  • the relationship between the principal stress S and the bending life N expressed by the equation (8) is as shown in FIG.
  • N ⁇ ⁇ (f ⁇ / S ⁇ ) ⁇ exp ( ⁇ / T) (8)
  • ⁇ , ⁇ , ⁇ , and ⁇ are physical property parameters (constants).
  • ⁇ , ⁇ , ⁇ , ⁇ are obtained by the least square method so that the equation (8) becomes an equation that approximates the data of the principal stress S and the bending life N generated in the wiring layer 12 for the plurality of samples 1A. Determine the value of.
  • Formula (8) becomes a formula showing the relation between principal stress S and bending life N about layered product 1B of arbitrary composition.
  • step S105 the principal stress S generated in the wiring layer 12 of the virtual laminate 1C calculated in step S104 is substituted into the above equation (8) obtained in step S103, whereby the virtual laminate 1C.
  • the bending life N is calculated.
  • the value of the parameter is specified, Substitute into equation (8).
  • the equation (8) Is an equation representing the relationship between the principal stress S and the bending life N when the bending test is performed under the condition where the frequency f and the temperature T are the above-described constant values.
  • Equation (8) predict the bending life N when the bending test is performed on the virtual laminated body 1C under the conditions where the frequency f and the temperature T are the above-described constant values, respectively. Is possible.
  • the bending test is performed on the plurality of samples 1A, and the equation (8) is created using the data obtained by the bending test, the equation (8) ) Is an expression representing the relationship between the principal stress S and the bending life N, using the temperature T as a parameter when the bending test is performed under the condition that the frequency f is the above-mentioned constant value.
  • the bending life N in the case where the bending test is performed on the virtual laminated body 1C using the equation (8) under the condition that the frequency f is the above-described constant value at an arbitrary temperature T. Can be predicted.
  • the bending test is performed on the plurality of samples 1A, and the formula (8) is created using the data obtained by the bending test, the formula (8 ) Is an expression representing the relationship between the principal stress S and the bending life N using the frequency f as a parameter when the bending test is performed under the condition where the temperature T is the above constant value.
  • the bending life N in the case where the bending test is performed on the virtual laminated body 1C using the equation (8) under the condition that the temperature T is the above-described constant value under an arbitrary frequency f. Can be predicted.
  • the equation (8) is This is an equation representing the relationship between the principal stress S and the bending life N, with the frequency f and the temperature T as parameters. In this case, it is possible to predict the bending life N when the bending test is performed on the virtual laminated body 1C under an arbitrary temperature T and an arbitrary frequency f using the equation (8). .
  • the elastic modulus of the material constituting each layer is used as the relationship between the stress and the strain in each layer constituting the laminate 1, but the laminate 1 is constituted.
  • the relationship between stress and strain in each layer may be obtained by a tensile test on the material constituting each layer. Specifically, what is acquired by the tensile test on the material constituting each layer is actually measured data (hereinafter referred to as SS curve) of the relationship between stress and strain acquired by the tensile test.
  • an SS curve is obtained by performing a tensile test on each of the materials (hereinafter referred to as constituent materials) constituting each layer.
  • the laminate 1 is divided into a plurality of calculation steps that are sufficiently fine so that the calculation does not diverge from the straight state to the bent state in the bending test.
  • the slope for each calculation step is calculated in the SS curve of each constituent material.
  • the inclination for each calculation step is the elastic modulus for each calculation step in each constituent material.
  • the elastic modulus for each calculation step in each constituent material thus obtained is used in place of the elastic modulus used in the series of calculations of Equations (1) to (7), and an updated Lagrangian method is used.
  • the series of calculations of the formulas (1) to (7) are repeatedly performed for each calculation step, and wiring is performed in the bent state at the time of the bending test.
  • the principal stress S generated in the layer 12 is calculated. According to the calculation method of the principal stress S using such an updated Lagrangian method, the principal stress S can be accurately calculated even when the relationship between stress and strain (SS curve) in each layer is nonlinear. become.
  • the thickness of each layer constituting the virtual laminated body 1C and the relationship between the stress and strain in each layer constituting the virtual laminated body 1C is obtained using the information on the distance H between the fixed plate 21 and the movable plate 22 in the bending test and the line width LW and the line width SW in the wiring layer 12 of the virtual laminate 1C.
  • the bending life N of the virtual laminate 1C can be predicted based on the calculated stress and the stress-bending life relational expression. In the present embodiment, when the bending life N of the virtual laminated body 1C is predicted, it is not necessary to actually make the prototype of the laminated body 1.
  • the bending life N of the virtual laminated body 1C can be estimated by the calculation using each said information, without using a finite element method. Therefore, according to the present embodiment, it is possible to easily set the conditions of each layer constituting the multilayer body 1 and predict the bending life of the multilayer body 1. Thereby, according to this Embodiment, it becomes possible to obtain
  • the laminated body to which the present invention is applied is not limited to the FPC in which the wiring layer is provided on only one surface of the base layer, but may be an FPC in which the wiring layer is provided on both surfaces of the base layer.

Abstract

A method of predicting the bend lifetime of a laminated body comprising a plurality of layers. Stress occurring in a wiring layer in the virtual laminated body is calculated using respective pieces of information relating to the virtual laminated body: the thickness of each layer constituting the virtual laminated body, the relation between the stress and strain in each layer constituting the virtual laminated body, the interval between a fixed plate and a movable plate in a bend test, and the line width and the line space width in the wiring layer of the virtual laminated body. On the basis of the calculated stress and the relation between the stress and the bend lifetime, the bend lifetime of the virtual laminated body is predicted.

Description

積層体の屈曲寿命予測方法、積層体の屈曲寿命予測装置、積層体の屈曲寿命予測プログラムおよび記録媒体Bending life prediction method for laminated body, bending life prediction apparatus for laminated body, bending life prediction program for laminated body, and recording medium
 本発明は、ベース層と、パターン化された導体よりなる配線層とを含む積層された複数の層を有する屈曲可能な積層体の屈曲寿命を予測する方法および装置、ならびに、上記積層体の屈曲寿命を予測するために用いられるプログラムおよび記録媒体に関する。 The present invention relates to a method and apparatus for predicting the bending life of a bendable laminate having a plurality of laminated layers including a base layer and a wiring layer made of a patterned conductor, and bending of the laminate The present invention relates to a program and a recording medium used for predicting a lifetime.
 近年、携帯電話機、ハードディスク装置、プリンタ等の、可動部を有する電子機器において、フレキシブルプリント配線板(以下、FPCと記す。)が広く利用されている。このFPCは、例えば、ベース層と、このベース層の一方の面に接合されたパターン化された導体よりなる配線層と、この配線層を覆う接着層と、この接着層に接合されたカバー層とを有している。 In recent years, flexible printed wiring boards (hereinafter referred to as FPC) are widely used in electronic devices having movable parts such as mobile phones, hard disk devices, and printers. The FPC includes, for example, a base layer, a wiring layer made of a patterned conductor bonded to one surface of the base layer, an adhesive layer covering the wiring layer, and a cover layer bonded to the adhesive layer. And have.
 可動部を有する電子機器において用いられるFPCには、高い耐屈曲特性が求められる。FPCの耐屈曲特性を評価するための試験の1つとして、IPC試験と呼ばれる屈曲試験がある。この屈曲試験は、所定の間隔を開けて配置された固定板と可動板の間にFPCをU字形状に屈曲させて介挿し且つFPCの長手方向の各端部をそれぞれ固定板と可動板に固定し、可動板をその面に平行な方向に往復運動させることによって行われる。この屈曲試験では、例えば、試験の開始から、配線層が破断するまでの可動板の往復運動の回数が、屈曲寿命として測定される。 FPCs used in electronic devices having moving parts are required to have high bending resistance. One of the tests for evaluating the bending resistance characteristics of FPC is a bending test called an IPC test. In this bending test, an FPC is bent and inserted in a U shape between a fixed plate and a movable plate arranged at a predetermined interval, and each end in the longitudinal direction of the FPC is fixed to the fixed plate and the movable plate, respectively. This is done by reciprocating the movable plate in a direction parallel to the surface. In this bending test, for example, the number of reciprocating motions of the movable plate from the start of the test until the wiring layer breaks is measured as the bending life.
 ところで、所望の耐屈曲特性を満たすようにFPCを設計したい場合、FPCの試作と屈曲試験とを繰り返し行ったのでは、多大な労力、時間およびコストを要する。そこで、シミュレーションによってFPCの屈曲寿命を予測できれば、労力、時間およびコストを低減することが可能になる。 By the way, when it is desired to design the FPC so as to satisfy the desired bending resistance, it takes a lot of labor, time and cost if the FPC prototype and the bending test are repeated. Therefore, if the bending life of the FPC can be predicted by simulation, it is possible to reduce labor, time and cost.
 従来、FPCのような屈曲可能な配線部材に関して、シミュレーションによって屈曲寿命等の耐屈曲特性を予測する方法としては、大きく分けて、以下の第1および第2の方法があった。第1の方法は、例えば特許文献1に記載されているように、マスターカーブと予測対象の実測値とを用いる方法である。第2の方法は、例えば特許文献2や特許文献3に記載されているように、有限要素法を用いる方法である。 Conventionally, with regard to a bendable wiring member such as an FPC, methods for predicting bending resistance characteristics such as a bending life by simulation are roughly divided into the following first and second methods. The first method is a method using a master curve and an actual measurement value of a prediction target, as described in Patent Document 1, for example. The second method is a method using a finite element method as described in Patent Document 2 and Patent Document 3, for example.
 特許文献1には、フラットケーブル等の複合体の屈曲寿命を予測する方法が記載されている。この方法では、まず、耐屈曲性評価試験装置に装着した際の複合体の導体部の最大歪み量及び/または屈曲形状の理想半径からのずれ量と、実測した屈曲寿命との関係を示すマスターカーブを作成する。次に、耐屈曲性評価試験装置に装着した予測対象の複合体における導体部の最大歪み量及び/または屈曲形状の理想半径からのずれ量を測定する。次に、測定された予測対象の複合体における導体部の最大歪み量及び/または屈曲形状の理想半径からのずれ量を上記マスターカーブに照合して、予測対象の複合体の屈曲寿命を予測する。 Patent Document 1 describes a method for predicting the bending life of a composite such as a flat cable. In this method, first, a master that shows the relationship between the maximum distortion amount of the conductor portion of the composite and / or the deviation of the bent shape from the ideal radius when mounted on the bending resistance evaluation test apparatus, and the actually measured bending life. Create a curve. Next, the maximum strain amount of the conductor portion and / or the deviation amount of the bent shape from the ideal radius in the composite body to be predicted mounted on the bending resistance evaluation test apparatus is measured. Next, the maximum distortion amount of the conductor portion and / or the deviation amount of the bent shape from the ideal radius in the measured composite object is collated with the master curve to predict the bending life of the composite object to be predicted. .
 特許文献2には、少なくとも中心導体線を有する電線または電線束の屈曲寿命を予測する方法が記載されている。この方法では、まず、単一の電線の屈曲寿命と歪み変化量との関係を示すマスターカーブを取得する。次に、予測対象の電線または電線束の中心導体線の最大歪み変化量を、有限要素法を用いて算出する。次に、算出された最大歪み変化量を上記マスターカーブに照合して、予測対象の電線または電線束の屈曲寿命を予測する。 Patent Document 2 describes a method for predicting the bending life of an electric wire or electric wire bundle having at least a central conductor wire. In this method, first, a master curve indicating the relationship between the bending life of a single electric wire and the amount of change in strain is obtained. Next, the maximum strain change amount of the central conductor wire of the electric wire or electric wire bundle to be predicted is calculated using the finite element method. Next, the calculated maximum strain variation is collated with the master curve to predict the bending life of the prediction target electric wire or electric wire bundle.
 特許文献3には、屈曲部に取り付けられる複数の電線および屈曲保護部材の屈曲耐久性を予測する方法が記載されている。この方法では、まず、複数の電線および屈曲保護部材の各々の有限要素モデルを作成する。次に、有限要素モデルの各有限要素における応力を計算する。次に、計算された各応力のうちから最大応力を検索する。次に、予測関数を参照して、複数の電線および屈曲保護部材毎の最大応力に対応する各屈曲耐久回数を取得し、このうちから最短屈曲耐久回数を求める。 Patent Document 3 describes a method for predicting the bending durability of a plurality of electric wires and a bending protection member attached to a bent portion. In this method, first, a finite element model of each of a plurality of electric wires and a bending protection member is created. Next, the stress in each finite element of the finite element model is calculated. Next, the maximum stress is searched from among the calculated stresses. Next, with reference to the prediction function, the number of bending durability times corresponding to the maximum stress for each of the plurality of electric wires and the bending protection member is acquired, and the shortest bending durability number is obtained from these.
日本特開平8-166333号公報Japanese Unexamined Patent Publication No. 8-166333 日本特開2002-260459号公報Japanese Unexamined Patent Publication No. 2002-260459 日本特開2004-191361号公報Japanese Unexamined Patent Publication No. 2004-191361
 ところで、FPCのように複数の層を有する屈曲可能な積層体では、複数の層の条件を変えることによって多数の構成が考えられる。このような多数の構成のそれぞれについて、試作と屈曲試験とを繰り返し行ったのでは、多大な労力、時間およびコストを要する。そのため、所望の屈曲寿命を有する積層体を設計したい場合、積層体を構成する各層の条件を任意に設定して、屈曲寿命を予測するシミュレーションが可能であれば、労力、時間およびコストを大幅に低減することが可能になる。また、このようなシミュレーションが可能であれば、容易に、積層体を構成する各層の条件の好ましい組み合わせを求めることも可能になる。 By the way, in a bendable laminate having a plurality of layers such as FPC, a number of configurations can be considered by changing the conditions of the plurality of layers. Repeating trial production and bending test for each of such a large number of configurations requires a great deal of labor, time and cost. Therefore, if you want to design a laminate that has the desired bending life, if you can simulate the prediction of the bending life by arbitrarily setting the conditions of each layer that makes up the laminate, you can significantly reduce labor, time, and cost. It becomes possible to reduce. Further, if such a simulation is possible, it is possible to easily obtain a preferable combination of conditions of each layer constituting the laminated body.
 しかしながら、シミュレーションによって屈曲寿命等の耐屈曲特性を予測する従来の方法のうちの第1の方法では、予測対象の実測値を用いるため、積層体を構成する各層の条件を任意に設定してシミュレーションを行うことができないという問題点がある。また、第1の方法では、シミュレーションを用いて、積層体を構成する各層の条件の好ましい組み合わせを求めることもできない。 However, in the first method of the conventional methods for predicting the bending resistance such as the bending life by simulation, since the actual measurement value of the prediction target is used, the condition of each layer constituting the laminate is arbitrarily set and the simulation is performed. There is a problem that cannot be performed. In the first method, it is also impossible to obtain a preferable combination of conditions for each layer constituting the stacked body using simulation.
 また、シミュレーションによって屈曲寿命等の耐屈曲特性を予測する従来の方法のうちの第2の方法では、有限要素法を用いるため、有限要素モデルの作成に多くの時間と労力を要するという問題点がある。 In addition, the second method of the conventional methods for predicting the bending resistance such as the bending life by simulation uses the finite element method, so that it takes a lot of time and labor to create a finite element model. is there.
 本発明の目的は、容易に、積層体を構成する各層の条件を任意に設定して、積層体の屈曲寿命を予測できるようにした積層体の屈曲寿命予測方法、積層体の屈曲寿命予測装置、積層体の屈曲寿命予測プログラムおよび記録媒体を提供することにある。 SUMMARY OF THE INVENTION An object of the present invention is to easily set a bending life prediction method for a laminated body and a bending life prediction apparatus for a laminated body by arbitrarily setting the conditions of each layer constituting the laminated body and predicting the bending life of the laminated body. Another object of the present invention is to provide a bending life prediction program for a laminate and a recording medium.
 本発明の積層体の屈曲寿命予測方法は、ベース層と、パターン化された導体よりなる配線層とを含む積層された複数の層を有し、一方向に延び、屈曲可能な積層体について、所定の間隔を開けて配置された固定板と可動板の間に積層体をU字形状に屈曲させて介挿し且つ積層体の長手方向の各端部をそれぞれ固定板と可動板とに固定し、可動板をその面に平行な方向に往復運動させて行う屈曲試験によって測定されるべき屈曲寿命を予測する方法である。 The method for predicting the bending life of a laminate of the present invention has a plurality of laminated layers including a base layer and a wiring layer made of a patterned conductor, extends in one direction, and is a bendable laminate. The laminate is bent and inserted in a U shape between a fixed plate and a movable plate arranged at a predetermined interval, and each end in the longitudinal direction of the laminate is fixed to the fixed plate and the movable plate, respectively. This is a method for predicting a bending life to be measured by a bending test performed by reciprocating a plate in a direction parallel to its surface.
 本発明の積層体の屈曲寿命予測方法は、
 互いに異なる構成の複数の積層体の試料の各々について、試料を構成する各層の厚みと、試料を構成する各層における応力とひずみの関係と、屈曲試験における固定板と可動板の間隔と、試料の配線層における線幅および線間幅の各情報を用いて、試料の配線層に生じる応力を算出する第1の算出手順と、
 複数の試料の各々について、屈曲試験によって屈曲寿命を測定する手順と、
 第1の算出手順によって算出された各試料の配線層に生じる応力と、屈曲寿命を測定する手順によって測定された各試料の屈曲寿命とに基づいて、任意の構成の積層体における配線層に生じる応力と屈曲寿命との関係を求める手順と、
 屈曲寿命を予測する対象である仮想の積層体について、仮想の積層体を構成する各層の厚みと、仮想の積層体を構成する各層における応力とひずみの関係と、屈曲試験における固定板と可動板の間隔と、仮想の積層体の配線層における線幅および線間幅の各情報を用いて、仮想の積層体の配線層に生じる応力を算出する第2の算出手順と、
 第2の算出手順によって算出された仮想の積層体の配線層に生じる応力と、応力と屈曲寿命との関係を求める手順によって求められた応力と屈曲寿命との関係とに基づいて、仮想の積層体の屈曲寿命を予測する手順とを備えている。
The bending life prediction method of the laminate of the present invention is
For each of a plurality of laminate samples having different configurations, the thickness of each layer constituting the sample, the relationship between stress and strain in each layer constituting the sample, the interval between the fixed plate and the movable plate in the bending test, A first calculation procedure for calculating a stress generated in the wiring layer of the sample using each information of the line width and the line width in the wiring layer;
For each of a plurality of samples, a procedure for measuring the bending life by a bending test,
Based on the stress generated in the wiring layer of each sample calculated by the first calculation procedure and the bending life of each sample measured by the procedure of measuring the bending life, the wiring layer in the laminated body having an arbitrary configuration is generated. A procedure for determining the relationship between stress and flex life,
Regarding the virtual laminate that is the object of predicting the flex life, the thickness of each layer constituting the virtual laminate, the relationship between the stress and strain in each layer constituting the virtual laminate, and the fixed plate and the movable plate in the bending test A second calculation procedure for calculating the stress generated in the wiring layer of the virtual laminate, using the information of the line width and the inter-line width in the wiring layer of the virtual laminate,
Based on the stress generated in the wiring layer of the virtual laminate calculated by the second calculation procedure, and the relationship between the stress and the flex life determined by the procedure for obtaining the relationship between the stress and the flex life, the virtual stack And a procedure for predicting the flexion life of the body.
 本発明の積層体の屈曲寿命予測方法では、各層における応力とひずみの関係として、各層を構成する材料の弾性率を用いてもよい。 In the method for predicting the bending life of the laminate of the present invention, the elastic modulus of the material constituting each layer may be used as the relationship between stress and strain in each layer.
 また、本発明の積層体の屈曲寿命予測方法において、各層における応力とひずみの関係は、各層を構成する材料についての引張試験によって取得されるものであってもよい。 Further, in the method for predicting the bending life of the laminate of the present invention, the relationship between stress and strain in each layer may be obtained by a tensile test on the material constituting each layer.
 また、本発明の積層体の屈曲寿命予測方法において、第1の算出手順では、試料の配線層に生じる応力として、垂直応力とせん断応力から求まる主応力を算出し、第2の算出手順では、仮想の積層体の配線層に生じる応力として、垂直応力とせん断応力から求まる主応力を算出してもよい。 Further, in the bending life prediction method of the laminate of the present invention, in the first calculation procedure, the main stress obtained from the normal stress and the shear stress is calculated as the stress generated in the wiring layer of the sample, and in the second calculation procedure, As a stress generated in the wiring layer of the virtual laminate, a main stress obtained from a normal stress and a shear stress may be calculated.
 また、本発明の積層体の屈曲寿命予測方法において、応力と屈曲寿命との関係を求める手順では、屈曲試験が行われるときの温度をパラメータとした、配線層に生じる応力と屈曲寿命との関係を求め、屈曲寿命を予測する手順では、第2の算出手順によって算出された応力と、温度をパラメータとした応力と屈曲寿命との関係とに基づいて、任意の温度の下での仮想の積層体の屈曲寿命を予測してもよい。 In the method for predicting the flexing life of the laminate of the present invention, in the procedure for obtaining the relationship between the stress and the flexing life, the relationship between the stress generated in the wiring layer and the flexing life using the temperature when the flexing test is performed as a parameter. In the procedure for obtaining the bending life and predicting the bending life, the virtual lamination under an arbitrary temperature is based on the stress calculated by the second calculation procedure and the relationship between the stress and the bending life using the temperature as a parameter. The flexion life of the body may be predicted.
 また、本発明の積層体の屈曲寿命予測方法において、応力と屈曲寿命との関係を求める手順では、屈曲試験における可動板の往復運動の周波数をパラメータとした、配線層に生じる応力と屈曲寿命との関係を求め、屈曲寿命を予測する手順では、第2の算出手順によって算出された応力と、周波数をパラメータとした応力と屈曲寿命との関係とに基づいて、任意の周波数の下での仮想の積層体の屈曲寿命を予測してもよい。 Further, in the method for predicting the bending life of the laminate of the present invention, in the procedure for obtaining the relationship between the stress and the bending life, the stress generated in the wiring layer and the bending life using the frequency of the reciprocating motion of the movable plate in the bending test as parameters. In the procedure for calculating the relationship between the bending life and the bending life, the virtual life under an arbitrary frequency is calculated based on the stress calculated by the second calculation procedure and the relationship between the stress using the frequency as a parameter and the bending life. The bending life of the laminate may be predicted.
 本発明の積層体の屈曲寿命予測装置は、ベース層と、パターン化された導体よりなる配線層とを含む積層された複数の層を有し、一方向に延び、屈曲可能な積層体について、所定の間隔を開けて配置された固定板と可動板の間に積層体をU字形状に屈曲させて介挿し且つ積層体の長手方向の各端部をそれぞれ固定板と可動板とに固定し、可動板をその面に平行な方向に往復運動させて行う屈曲試験によって測定されるべき屈曲寿命を予測する装置である。 The bending life prediction apparatus for a laminate according to the present invention has a plurality of laminated layers including a base layer and a wiring layer made of a patterned conductor, extends in one direction, and is a bendable laminate. The laminate is bent and inserted in a U shape between a fixed plate and a movable plate arranged at a predetermined interval, and each end in the longitudinal direction of the laminate is fixed to the fixed plate and the movable plate, respectively. It is a device that predicts the bending life to be measured by a bending test performed by reciprocating a plate in a direction parallel to its surface.
 本発明の積層体の屈曲寿命予測装置は、
 互いに異なる構成の複数の積層体の試料の各々について、試料を構成する各層の厚みと、試料を構成する各層における応力とひずみの関係と、屈曲試験における固定板と可動板の間隔と、試料の配線層における線幅および線間幅の各情報を入力する第1の入力手段と、
 第1の入力手段によって入力された情報を用いて、試料の配線層に生じる応力を算出する第1の算出手段と、
 屈曲試験によって測定された複数の試料の各々の屈曲寿命を入力する第2の入力手段と、
 第1の算出手段によって算出された各試料の配線層に生じる応力と、第2の入力手段によって入力された各試料の屈曲寿命とに基づいて、任意の構成の積層体における配線層に生じる応力と屈曲寿命との関係を求める手段と、
 屈曲寿命を予測する対象である仮想の積層体について、仮想の積層体を構成する各層の厚みと、仮想の積層体を構成する各層における応力とひずみの関係と、屈曲試験における固定板と可動板の間隔と、仮想の積層体の配線層における線幅および線間幅の各情報を入力する第3の入力手段と、
 第3の入力手段によって入力された情報を用いて、仮想の積層体の配線層に生じる応力を算出する第2の算出手段と、
 第2の算出手段によって算出された仮想の積層体の配線層に生じる応力と、応力と屈曲寿命との関係を求める手段によって求められた応力と屈曲寿命との関係とに基づいて、仮想の積層体の屈曲寿命を予測する手段とを備えている。
The bending life prediction apparatus of the laminate of the present invention is
For each of a plurality of laminate samples having different configurations, the thickness of each layer constituting the sample, the relationship between stress and strain in each layer constituting the sample, the interval between the fixed plate and the movable plate in the bending test, First input means for inputting information on the line width and the line width in the wiring layer;
First calculation means for calculating stress generated in the wiring layer of the sample using information input by the first input means;
A second input means for inputting the bending life of each of the plurality of samples measured by the bending test;
Based on the stress generated in the wiring layer of each sample calculated by the first calculation means and the bending life of each sample input by the second input means, the stress generated in the wiring layer in the laminate having an arbitrary configuration Means for determining the relationship between the bending life and
Regarding the virtual laminate that is the object of predicting the flex life, the thickness of each layer constituting the virtual laminate, the relationship between the stress and strain in each layer constituting the virtual laminate, and the fixed plate and the movable plate in the bending test A third input means for inputting information on each of the interval and the line width and the inter-line width in the wiring layer of the virtual laminate,
Using the information input by the third input means, second calculation means for calculating the stress generated in the wiring layer of the virtual laminate,
Based on the stress generated in the wiring layer of the virtual laminated body calculated by the second calculating means and the relationship between the stress and the bending life obtained by the means for obtaining the relation between the stress and the bending life, Means for predicting the flexion life of the body.
 本発明の積層体の屈曲寿命予測装置において、第1の算出手段は、試料の配線層に生じる応力として、垂直応力とせん断応力から求まる主応力を算出し、第2の算出手段は、仮想の積層体の配線層に生じる応力として、垂直応力とせん断応力から求まる主応力を算出してもよい。 In the bending life prediction apparatus for a laminate according to the present invention, the first calculation means calculates the main stress obtained from the normal stress and the shear stress as the stress generated in the wiring layer of the sample, and the second calculation means As the stress generated in the wiring layer of the laminated body, the main stress obtained from the normal stress and the shear stress may be calculated.
 また、本発明の積層体の屈曲寿命予測装置において、応力と屈曲寿命との関係を求める手段は、屈曲試験が行われるときの温度をパラメータとした、配線層に生じる応力と屈曲寿命との関係を求め、屈曲寿命を予測する手段は、第2の算出手段によって算出された応力と、温度をパラメータとした応力と屈曲寿命との関係とに基づいて、任意の温度の下での仮想の積層体の屈曲寿命を予測してもよい。 Further, in the bending life prediction apparatus of the laminate of the present invention, the means for obtaining the relationship between the stress and the bending life is the relationship between the stress generated in the wiring layer and the bending life with the temperature when the bending test is performed as a parameter. And calculating the bending life based on the stress calculated by the second calculating means and the relationship between the stress and the bending life with the temperature as a parameter and the virtual lamination under an arbitrary temperature. The flexion life of the body may be predicted.
 また、本発明の積層体の屈曲寿命予測装置において、応力と屈曲寿命との関係を求める手段は、屈曲試験における可動板の往復運動の周波数をパラメータとした、配線層に生じる応力と屈曲寿命との関係を求め、屈曲寿命を予測する手段は、第2の算出手段によって算出された応力と、周波数をパラメータとした応力と屈曲寿命との関係とに基づいて、任意の周波数の下での仮想の積層体の屈曲寿命を予測してもよい。 Further, in the bending life prediction apparatus of the laminate of the present invention, the means for obtaining the relationship between the stress and the bending life is the stress generated in the wiring layer and the bending life using the frequency of the reciprocating motion of the movable plate in the bending test as a parameter. The means for calculating the relationship between the bending life and the bending life is calculated based on the stress calculated by the second calculation means and the relationship between the stress and the bending life with the frequency as a parameter. The bending life of the laminate may be predicted.
 本発明の積層体の屈曲寿命予測プログラムは、ベース層と、パターン化された導体よりなる配線層とを含む積層された複数の層を有し、一方向に延び、屈曲可能な積層体について、所定の間隔を開けて配置された固定板と可動板の間に積層体をU字形状に屈曲させて介挿し且つ積層体の長手方向の各端部をそれぞれ固定板と可動板とに固定し、可動板をその面に平行な方向に往復運動させて行う屈曲試験によって測定されるべき屈曲寿命を予測するために、コンピュータを、以下の各手段として機能させるためのプログラムである。 The bending life prediction program for a laminated body of the present invention has a plurality of laminated layers including a base layer and a wiring layer made of a patterned conductor, extends in one direction, and can be bent. The laminate is bent and inserted in a U shape between a fixed plate and a movable plate arranged at a predetermined interval, and each end in the longitudinal direction of the laminate is fixed to the fixed plate and the movable plate, respectively. A program for causing a computer to function as the following means for predicting a bending life to be measured by a bending test performed by reciprocating a plate in a direction parallel to the surface.
 本発明の積層体の屈曲寿命予測プログラムは、コンピュータを、
 互いに異なる構成の複数の積層体の試料の各々について、試料を構成する各層の厚みと、試料を構成する各層における応力とひずみの関係と、屈曲試験における固定板と可動板の間隔と、試料の配線層における線幅および線間幅の各情報を入力する第1の入力手段、
 第1の入力手段によって入力された情報を用いて、試料の配線層に生じる応力を算出する第1の算出手段、
 屈曲試験によって測定された複数の試料の各々の屈曲寿命を入力する第2の入力手段、
 第1の算出手段によって算出された各試料の配線層に生じる応力と、第2の入力手段によって入力された各試料の屈曲寿命とに基づいて、任意の構成の積層体における配線層に生じる応力と屈曲寿命との関係を求める手段、
 屈曲寿命を予測する対象である仮想の積層体について、仮想の積層体を構成する各層の厚みと、仮想の積層体を構成する各層における応力とひずみの関係と、屈曲試験における固定板と可動板の間隔と、仮想の積層体の配線層における線幅および線間幅の各情報を入力する第3の入力手段、
 第3の入力手段によって入力された情報を用いて、仮想の積層体の配線層に生じる応力を算出する第2の算出手段、および
 第2の算出手段によって算出された仮想の積層体の配線層に生じる応力と、応力と屈曲寿命との関係を求める手段によって求められた応力と屈曲寿命との関係とに基づいて、仮想の積層体の屈曲寿命を予測する手段、として機能させる。
The bending life prediction program for a laminate according to the present invention includes a computer,
For each of a plurality of laminate samples having different configurations, the thickness of each layer constituting the sample, the relationship between stress and strain in each layer constituting the sample, the interval between the fixed plate and the movable plate in the bending test, A first input means for inputting information on the line width and the inter-line width in the wiring layer;
First calculation means for calculating stress generated in the wiring layer of the sample using information input by the first input means;
A second input means for inputting the bending life of each of the plurality of samples measured by the bending test;
Based on the stress generated in the wiring layer of each sample calculated by the first calculation means and the bending life of each sample input by the second input means, the stress generated in the wiring layer in the laminate having an arbitrary configuration Means for determining the relationship between the bending life and
Regarding the virtual laminate that is the object of predicting the flex life, the thickness of each layer constituting the virtual laminate, the relationship between the stress and strain in each layer constituting the virtual laminate, and the fixed plate and the movable plate in the bending test A third input means for inputting each information of the interval between the line width and the line width in the wiring layer of the virtual laminate,
Second calculation means for calculating the stress generated in the wiring layer of the virtual laminate using the information input by the third input means, and the wiring layer of the virtual laminate calculated by the second calculation means And a means for predicting the bending life of the virtual laminate based on the relationship between the stress generated in the stress and the relation between the stress and the bending life obtained by the means for obtaining the relationship between the stress and the bending life.
 本発明のコンピュータ読み取り可能な記録媒体は、本発明の積層体の屈曲寿命予測プログラムを記録したものである。 The computer-readable recording medium of the present invention records the bending life prediction program for the laminate of the present invention.
 本発明の積層体の屈曲寿命予測方法、積層体の屈曲寿命予測装置、積層体の屈曲寿命予測プログラムまたは記録媒体によれば、仮想の積層体について、仮想の積層体を構成する各層の厚みと、仮想の積層体を構成する各層における応力とひずみの関係と、屈曲試験における固定板と可動板の間隔と、仮想の積層体の配線層における線幅および線間幅の各情報を用いて、仮想の積層体の配線層に生じる応力を算出し、この算出された応力と、応力と屈曲寿命との関係とに基づいて、仮想の積層体の屈曲寿命を予測することが可能になる。これにより、本発明によれば、容易に、積層体を構成する各層の条件を任意に設定して、積層体の屈曲寿命を予測することが可能になる。 According to the method for predicting the bending life of the laminate, the bending life prediction apparatus for the laminate, the bending life prediction program for the laminate, or the recording medium of the present invention, the thickness of each layer constituting the virtual laminate and the virtual laminate The relationship between the stress and strain in each layer constituting the virtual laminate, the distance between the fixed plate and the movable plate in the bending test, and the line width and the inter-line width in the wiring layer of the virtual laminate, It is possible to calculate the stress generated in the wiring layer of the virtual laminate and predict the flex life of the virtual laminate based on the calculated stress and the relationship between the stress and the flex life. Thereby, according to this invention, it becomes possible to set the conditions of each layer which comprises a laminated body arbitrarily, and to predict the bending life of a laminated body easily.
 本発明のその他の目的、特徴および利益は、以下の説明を以って十分明白になるであろう。 Other objects, features and benefits of the present invention will become fully apparent with the following description.
本発明の一実施の形態における積層体の一部を示す斜視図である。It is a perspective view which shows a part of laminated body in one embodiment of this invention. 本発明の一実施の形態における積層体の配線層を示す平面図である。It is a top view which shows the wiring layer of the laminated body in one embodiment of this invention. 屈曲試験に用いられる屈曲試験装置に積層体を装着した状態を示す説明図である。It is explanatory drawing which shows the state which mounted | wore the bending test apparatus used for a bending test with the laminated body. 本発明の一実施の形態に係る屈曲寿命予測装置を実現するコンピュータの構成を示すブロック図である。It is a block diagram which shows the structure of the computer which implement | achieves the bending life prediction apparatus which concerns on one embodiment of this invention. 本発明の一実施の形態に係る屈曲寿命予測装置の機能構成を示す機能ブロック図である。It is a functional block diagram which shows the function structure of the bending life prediction apparatus which concerns on one embodiment of this invention. 本発明の一実施の形態に係る積層体の屈曲寿命予測方法を示す流れ図である。It is a flowchart which shows the bending life prediction method of the laminated body which concerns on one embodiment of this invention. 本発明の一実施の形態における応力の計算方法の説明に使用する積層体のモデルの断面図である。It is sectional drawing of the model of the laminated body used for description of the calculation method of the stress in one embodiment of this invention. 本発明の一実施の形態における応力-屈曲寿命関係式によって表される主応力と屈曲寿命との関係を示す特性図である。FIG. 6 is a characteristic diagram showing a relationship between a principal stress and a bending life represented by a stress-bending life relational expression in an embodiment of the present invention.
符号の説明Explanation of symbols
 1…積層体、11…ベース層、12…配線層、13…接着層、14…カバー層、21…固定板、22…可動板、30…屈曲寿命予測装置。 DESCRIPTION OF SYMBOLS 1 ... Laminated body, 11 ... Base layer, 12 ... Wiring layer, 13 ... Adhesive layer, 14 ... Cover layer, 21 ... Fixed plate, 22 ... Movable plate, 30 ... Bending life prediction apparatus.
 以下、本発明の一実施の形態に係る積層体の屈曲寿命予測方法、積層体の屈曲寿命予測装置、積層体の屈曲寿命予測プログラムおよび記録媒体について図面を参照して詳細に説明する。始めに、本実施の形態における積層体について説明する。本実施の形態における積層体は、ベース層と、パターン化された導体よりなる配線層とを含む積層された複数の層を有し、一方向に延び、屈曲可能なものである。このような積層体としては、例えばFPC(フレキシブルプリント配線板)がある。 Hereinafter, a flexural life prediction method for a laminate, a flexural life prediction apparatus for a laminate, a flexural life prediction program for a laminate, and a recording medium according to an embodiment of the present invention will be described in detail with reference to the drawings. First, the laminated body in this Embodiment is demonstrated. The laminated body in this embodiment has a plurality of laminated layers including a base layer and a wiring layer made of a patterned conductor, extends in one direction, and can be bent. As such a laminated body, there exists FPC (flexible printed wiring board), for example.
 ここで、図1および図2を参照して、本実施の形態における積層体の構成の一例について説明する。図1は、積層体の一部を示す斜視図である。図1において、ハッチングを付した面は断面を表している。図2は、積層体の配線層を示す平面図である。図1および図2に示した積層体は、具体的にはFPCである。ただし、このFPCは、屈曲試験によって屈曲寿命を測定するために用いられる試験用のFPCである。 Here, with reference to FIG. 1 and FIG. 2, an example of the structure of the laminated body in this Embodiment is demonstrated. FIG. 1 is a perspective view showing a part of the laminate. In FIG. 1, the hatched surface represents a cross section. FIG. 2 is a plan view showing a wiring layer of the laminate. The laminate shown in FIGS. 1 and 2 is specifically an FPC. However, this FPC is a test FPC used for measuring a flex life by a flex test.
 図1に示したように、積層体1は、ベース層11と、このベース層11の一方の面に接合されたパターン化された導体よりなる配線層12と、この配線層12を覆う接着層13と、この接着層13に接合されたカバー層14とを備えている。また、積層体1は、一方向に延び、屈曲可能である。なお、積層体1は、更に、ベース層11と配線層12の間に配置された他の接着層を備えていてもよい。 As shown in FIG. 1, the laminate 1 includes a base layer 11, a wiring layer 12 made of a patterned conductor joined to one surface of the base layer 11, and an adhesive layer covering the wiring layer 12. 13 and a cover layer 14 bonded to the adhesive layer 13. The laminate 1 extends in one direction and can be bent. The laminated body 1 may further include another adhesive layer disposed between the base layer 11 and the wiring layer 12.
 図2に示したように、配線層12は、ミアンダ形状を有している。より詳しく説明すると、配線層12は、積層体1の長手方向(図2における左右方向)に延びる複数の直線状部分12aと、配線層12の全体がミアンダ形状となるように、隣接する2つの直線状部分12aの端部同士を連結する連結部分12bとを有している。ここで、直線状部分12aの幅(図2における上下方向の寸法)を線幅LWと定義し、隣接する2つの直線状部分12aの間隔を線間幅SWと定義する。 As shown in FIG. 2, the wiring layer 12 has a meander shape. More specifically, the wiring layer 12 includes two adjacent linear portions 12a extending in the longitudinal direction of the laminate 1 (left and right direction in FIG. 2) and two adjacent wiring layers 12 so that the entire wiring layer 12 has a meander shape. It has the connection part 12b which connects the edge parts of the linear part 12a. Here, the width of the linear portion 12a (the vertical dimension in FIG. 2) is defined as a line width LW, and the interval between two adjacent linear portions 12a is defined as a line width SW.
 ベース層11およびカバー層14の材料としては、ポリイミド系樹脂等の樹脂が用いられる。配線層12の材料としては、銅等の金属が用いられる。接着層13の材料としては、エポキシ系接着剤、アクリル系接着剤等の合成系接着剤が用いられる。 As the material of the base layer 11 and the cover layer 14, a resin such as a polyimide resin is used. As a material of the wiring layer 12, a metal such as copper is used. As the material of the adhesive layer 13, a synthetic adhesive such as an epoxy adhesive or an acrylic adhesive is used.
 なお、以下の説明では、積層体1に関連して、「積層体の試料」、「任意の構成の積層体」および「仮想の積層体」という用語が用いられている。「積層体の試料」とは、後で説明する任意の構成の積層体における配線層12に生じる応力と屈曲寿命との関係としての応力-屈曲寿命関係式を作成するために、実際に作製される積層体1である。「任意の構成の積層体」とは、積層体1の最低限の要件以外の条件は特定されない想像上の積層体1である。「仮想の積層体」とは、屈曲寿命を予測する対象である想像上の積層体1である。「仮想の積層体」は、積層体1を構成する各層の厚みと、積層体1を構成する各層における応力とひずみの関係と、屈曲試験における固定板と可動板の間隔と、積層体1の配線層12における線幅LWおよび線間幅SWの各情報によって特定される。以下、「積層体の試料」、「任意の構成の積層体」および「仮想の積層体」を区別するために、「積層体の試料」には符号1Aを付し、「任意の構成の積層体」には符号1Bを付し、「仮想の積層体」には符号1Cを付す。 In the following description, the terms “laminate sample”, “arbitrary laminate”, and “virtual laminate” are used in relation to the laminate 1. The “laminate sample” is actually produced in order to create a stress-bending life relationship as a relation between the stress generated in the wiring layer 12 and the flexing life in a laminated body having an arbitrary configuration described later. It is the laminated body 1 which is. “Arbitrary laminated body” is an imaginary laminated body 1 in which conditions other than the minimum requirements of the laminated body 1 are not specified. The “virtual laminated body” is an imaginary laminated body 1 that is a target for predicting a flex life. The “virtual laminate” includes the thickness of each layer constituting the laminate 1, the relationship between stress and strain in each layer constituting the laminate 1, the distance between the fixed plate and the movable plate in the bending test, It is specified by each information of the line width LW and the line width SW in the wiring layer 12. Hereinafter, in order to distinguish between “laminate sample”, “arbitrary laminate”, and “virtual laminate”, “laminate sample” is denoted by reference numeral 1A, and “arbitrary laminate” The “body” is denoted by reference numeral 1B, and the “virtual stacked body” is denoted by reference numeral 1C.
 次に、図3を参照して、積層体1の屈曲寿命を測定するための屈曲試験について説明する。図3は、屈曲試験に用いられる屈曲試験装置に積層体1を装着した状態を示す説明図である。屈曲試験装置は、所定の間隔Hを開けて配置された固定板21と可動板22とを備えている。屈曲試験は、固定板21と可動板22の間に積層体1をU字形状に屈曲させて介挿し且つ積層体1の長手方向の各端部をそれぞれ固定具23,24によって固定板21と可動板22とに固定し、可動板22をその面に平行な方向に往復運動させて行われる。また、屈曲試験の際には、配線層12に通電されて、配線層12の抵抗値が検出される。そして、配線層12の抵抗値が所定値以上になったときに配線層12が破断したと判断される。屈曲試験では、試験の開始から、配線層12が破断するまで、すなわち配線層12の抵抗値が所定値以上になるまでの可動板22の往復運動の回数が、屈曲寿命として測定される。 Next, a bending test for measuring the bending life of the laminate 1 will be described with reference to FIG. FIG. 3 is an explanatory view showing a state in which the laminate 1 is mounted on a bending test apparatus used for a bending test. The bending test apparatus includes a fixed plate 21 and a movable plate 22 that are arranged with a predetermined interval H therebetween. In the bending test, the laminate 1 is bent in a U shape between the fixed plate 21 and the movable plate 22 and the longitudinal ends of the laminate 1 are fixed to the fixed plate 21 by the fixtures 23 and 24, respectively. The movable plate 22 is fixed to the movable plate 22, and the movable plate 22 is reciprocated in a direction parallel to the surface. In the bending test, the wiring layer 12 is energized and the resistance value of the wiring layer 12 is detected. Then, when the resistance value of the wiring layer 12 becomes equal to or higher than a predetermined value, it is determined that the wiring layer 12 is broken. In the bending test, the number of reciprocating motions of the movable plate 22 from the start of the test until the wiring layer 12 breaks, that is, until the resistance value of the wiring layer 12 becomes a predetermined value or more is measured as the bending life.
 次に、図4および図5を参照して、本実施の形態に係る屈曲寿命予測装置について説明する。本実施の形態に係る屈曲寿命予測装置30は、積層体1について前述の屈曲試験によって測定されるべき屈曲寿命を予測する装置である。屈曲寿命予測装置30は、コンピュータを用いて実現される。 Next, the bending life prediction apparatus according to the present embodiment will be described with reference to FIG. 4 and FIG. The bending life prediction apparatus 30 according to the present embodiment is an apparatus that predicts the bending life to be measured for the laminate 1 by the above-described bending test. The bending life prediction apparatus 30 is realized using a computer.
 図4は、屈曲寿命予測装置30を実現するコンピュータ30Cの構成を示すブロック図である。図4に示したように、コンピュータ30Cは、主制御部31と、入力装置32と、出力装置33と、表示装置34と、記憶装置35と、これらを互いに接続するバス36とを備えている。主制御部31は、CPU(中央処理装置)、ROM(リードオンリメモリ)およびRAM(ランダムアクセスメモリ)を有している。記憶装置35は、情報を記憶できるものであれば、その形態は問わないが、例えばハードディスク装置または光ディスク装置である。また、記憶装置35は、コンピュータ読み取り可能な記録媒体37に対して情報を記録し、また記録媒体37より情報を再生するようになっている。記録媒体37は、情報を記憶できるものであれば、その形態は問わないが、例えばハードディスクまたは光ディスクである。記録媒体37は、本実施の形態に係る積層体の屈曲寿命予測プログラムを記録した記録媒体であってもよい。 FIG. 4 is a block diagram showing a configuration of a computer 30C that realizes the bending life prediction apparatus 30. As shown in FIG. 4, the computer 30 </ b> C includes a main control unit 31, an input device 32, an output device 33, a display device 34, a storage device 35, and a bus 36 that connects them to each other. . The main control unit 31 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory). The storage device 35 is not particularly limited as long as it can store information, but is, for example, a hard disk device or an optical disk device. The storage device 35 records information on a computer-readable recording medium 37 and reproduces information from the recording medium 37. The recording medium 37 may be in any form as long as it can store information, but is, for example, a hard disk or an optical disk. The recording medium 37 may be a recording medium in which the bending life prediction program for the laminate according to the present embodiment is recorded.
 図5は、屈曲寿命予測装置30の機能構成を示す機能ブロック図である。図5に示したように、屈曲寿命予測装置30は、第1の入力手段41と、第1の算出手段42と、第2の入力手段43と、応力-屈曲寿命関係式作成手段44と、第3の入力手段45と、第2の算出手段46と、屈曲寿命予測手段47とを備えている。 FIG. 5 is a functional block diagram showing a functional configuration of the bending life prediction apparatus 30. As shown in FIG. As shown in FIG. 5, the bending life prediction apparatus 30 includes a first input means 41, a first calculation means 42, a second input means 43, a stress-bending life relational expression creating means 44, A third input unit 45, a second calculation unit 46, and a bending life prediction unit 47 are provided.
 第1の入力手段41は、互いに異なる構成の複数の積層体の試料1Aの各々について、試料1Aを構成する各層の厚みと、試料1Aを構成する各層における応力とひずみの関係と、屈曲試験における固定板21と可動板22の間隔Hと、試料1Aの配線層12における線幅LWおよび線間幅SWの各情報を入力する。第1の算出手段42は、第1の入力手段41によって入力された情報を用いて、試料1Aの配線層12に生じる応力を算出する。第2の入力手段43は、屈曲試験によって測定された複数の試料1Aの各々の屈曲寿命を入力する。 The first input means 41 includes, for each of a plurality of laminate samples 1A having different configurations, the thickness of each layer constituting the sample 1A, the relationship between the stress and strain in each layer constituting the sample 1A, and the bending test. Information on the distance H between the fixed plate 21 and the movable plate 22, and the line width LW and the line width SW in the wiring layer 12 of the sample 1A are input. The first calculation means 42 uses the information input by the first input means 41 to calculate the stress generated in the wiring layer 12 of the sample 1A. The second input means 43 inputs the bending life of each of the plurality of samples 1A measured by the bending test.
 応力-屈曲寿命関係式作成手段44は、第1の算出手段42によって算出された各試料1Aの配線層12に生じる応力と、第2の入力手段43によって入力された各試料1Aの屈曲寿命とに基づいて、任意の構成の積層体1Bにおける配線層12に生じる応力と屈曲寿命との関係を求める。応力-屈曲寿命関係式作成手段44は、具体的には、任意の構成の積層体1Bにおける配線層12に生じる応力と屈曲寿命との関係として、応力-屈曲寿命関係式を作成する。応力-屈曲寿命関係式作成手段44は、本発明における「応力と屈曲寿命との関係を求める手段」に対応する。 The stress-bending life relation formula creating means 44 includes the stress generated in the wiring layer 12 of each sample 1A calculated by the first calculating means 42 and the bending life of each sample 1A input by the second input means 43. Based on the above, the relationship between the stress generated in the wiring layer 12 in the laminate 1B having an arbitrary configuration and the flex life is obtained. Specifically, the stress-bending life relation formula creating means 44 creates a stress-bending life relation formula as a relation between the stress generated in the wiring layer 12 and the flex life in the laminate 1B having an arbitrary configuration. The stress-bending life relationship formula creating means 44 corresponds to “means for obtaining the relationship between stress and bending life” in the present invention.
 第3の入力手段45は、仮想の積層体1Cについて、仮想の積層体1Cを構成する各層の厚みと、仮想の積層体1Cを構成する各層における応力とひずみの関係と、屈曲試験における固定板21と可動板22の間隔Hと、仮想の積層体1Cの配線層12における線幅LWおよび線間幅SWの各情報を入力する。第2の算出手段46は、第3の入力手段45によって入力された情報を用いて、仮想の積層体1Cの配線層12に生じる応力を算出する。 The third input means 45 includes, for the virtual laminate 1C, the thickness of each layer constituting the virtual laminate 1C, the relationship between the stress and strain in each layer constituting the virtual laminate 1C, and the fixed plate in the bending test. Information on the distance H between the movable plate 22 and the line width LW and the line width SW in the wiring layer 12 of the virtual laminate 1C is input. The second calculation means 46 uses the information input by the third input means 45 to calculate the stress generated in the wiring layer 12 of the virtual laminate 1C.
 屈曲寿命予測手段47は、第2の算出手段46によって算出された仮想の積層体1Cの配線層12に生じる応力と、応力-屈曲寿命関係式作成手段44によって作成された応力-屈曲寿命関係式とに基づいて、仮想の積層体1Cの屈曲寿命を予測する。 The bending life prediction means 47 is a stress-bending life relational expression created by the stress generated in the wiring layer 12 of the virtual laminate 1C calculated by the second calculation means 46 and the stress-bending life relation creating means 44. Based on the above, the bending life of the virtual laminate 1C is predicted.
 本実施の形態に係る積層体の屈曲寿命予測プログラムは、積層体1について前述の屈曲試験によって測定されるべき屈曲寿命を予測するために、図4に示したコンピュータ30Cを、図5に示した各手段として機能させるものである。この積層体の屈曲寿命予測プログラムは、図4における記録媒体37または主制御部31内のROMに記録されている。 The program for predicting the bending life of the laminate according to the present embodiment shows the computer 30C shown in FIG. 4 in order to predict the bending life to be measured for the laminate 1 by the above-described bending test. It functions as each means. The bending life prediction program for the laminate is recorded in the recording medium 37 in FIG. 4 or the ROM in the main control unit 31.
 次に、本実施の形態に係る積層体の屈曲寿命予測方法について説明する。本実施の形態に係る積層体の屈曲寿命予測方法は、積層体1について前述の屈曲試験によって測定されるべき屈曲寿命を予測する方法である。 Next, the bending life prediction method for the laminate according to this embodiment will be described. The bending life prediction method of the laminated body according to the present embodiment is a method of predicting the bending life to be measured for the laminated body 1 by the above-described bending test.
 図6は、本実施の形態に係る積層体の屈曲寿命予測方法を示す流れ図である。図6に示したように、本実施の形態に係る積層体の屈曲寿命予測方法では、まず、互いに異なる構成の複数の積層体の試料1Aの各々について、試料1Aを構成する各層の厚みと、試料1Aを構成する各層における応力とひずみの関係と、屈曲試験における固定板21と可動板22の間隔Hと、試料1Aの配線層12における線幅LWおよび線間幅SWの各情報を用いて、試料1Aの配線層12に生じる応力を算出する(ステップS101)。このステップS101は、本発明における第1の算出手順に対応する。次に、複数の試料1Aの各々について、屈曲試験によって屈曲寿命を測定する(ステップS102)。 FIG. 6 is a flowchart showing a method for predicting the bending life of the laminate according to the present embodiment. As shown in FIG. 6, in the bending life prediction method for a laminate according to the present embodiment, first, for each of a plurality of laminate samples 1A having different configurations, the thickness of each layer constituting sample 1A, Using information on the relationship between stress and strain in each layer constituting the sample 1A, the distance H between the fixed plate 21 and the movable plate 22 in the bending test, and the line width LW and the line width SW in the wiring layer 12 of the sample 1A. Then, the stress generated in the wiring layer 12 of the sample 1A is calculated (step S101). This step S101 corresponds to the first calculation procedure in the present invention. Next, the bending life of each of the plurality of samples 1A is measured by a bending test (step S102).
 次に、ステップS101によって算出された各試料1Aの配線層12に生じる応力と、ステップS102によって測定された各試料1Aの屈曲寿命とに基づいて、任意の構成の積層体1Bにおける配線層12に生じる応力と屈曲寿命との関係として、応力-屈曲寿命関係式を求める(ステップS103)。 Next, based on the stress generated in the wiring layer 12 of each sample 1A calculated in step S101 and the bending life of each sample 1A measured in step S102, the wiring layer 12 in the laminate 1B having an arbitrary configuration As a relationship between the generated stress and the flex life, a stress-flex life relationship is obtained (step S103).
 次に、仮想の積層体1Cについて、仮想の積層体1Cを構成する各層の厚みと、仮想の積層体1Cを構成する各層における応力とひずみの関係と、屈曲試験における固定板21と可動板22の間隔Hと、仮想の積層体1Cの配線層12における線幅LWおよび線間幅SWの各情報を用いて、仮想の積層体1Cの配線層12に生じる応力を算出する(ステップS104)。このステップS104は、本発明における第2の算出手順に対応する。 Next, for the virtual laminate 1C, the thickness of each layer constituting the virtual laminate 1C, the relationship between the stress and strain in each layer constituting the virtual laminate 1C, and the fixed plate 21 and the movable plate 22 in the bending test. The stress generated in the wiring layer 12 of the virtual laminate 1C is calculated using the information of the interval H and the line width LW and the inter-line width SW in the wiring layer 12 of the virtual laminate 1C (step S104). This step S104 corresponds to the second calculation procedure in the present invention.
 次に、ステップS104によって算出された仮想の積層体1Cの配線層12に生じる応力と、ステップS103によって求められた応力と屈曲寿命との関係とに基づいて、仮想の積層体1Cの屈曲寿命を予測する(ステップS105)。 Next, based on the stress generated in the wiring layer 12 of the virtual laminate 1C calculated in step S104 and the relationship between the stress obtained in step S103 and the flex life, the flex life of the virtual laminate 1C is calculated. Prediction is made (step S105).
 以上の各ステップ(工程)により、仮想の積層体1Cの屈曲寿命が予測される。なお、ステップS101とステップS102の順番は、上記の説明とは逆であってもよい。 The bending life of the virtual laminate 1C is predicted by the above steps (processes). Note that the order of step S101 and step S102 may be reversed from the above description.
 次に、本実施の形態に係る屈曲寿命予測装置30によって、上記の積層体の屈曲寿命予測方法を実現する場合における屈曲寿命予測装置30の動作について説明する。ステップS101では、まず、第1の入力手段41によって、互いに異なる構成の複数の積層体1の試料1Aの各々について、試料1Aを構成する各層の厚みと、試料1Aを構成する各層における応力とひずみの関係と、屈曲試験における固定板21と可動板22の間隔Hと、試料1Aの配線層12における線幅LWおよび線間幅SWの各情報を入力する。次に、第1の入力手段41によって入力された情報を用いて、第1の算出手段42によって、試料1Aの配線層12に生じる応力を算出する。 Next, the operation of the bending life prediction device 30 when the bending life prediction device 30 according to the present embodiment realizes the above-described bending life prediction method for a laminate will be described. In step S101, first, the thickness of each layer constituting the sample 1A and the stress and strain in each layer constituting the sample 1A are measured by the first input means 41 for each of the samples 1A of the plurality of stacked bodies 1 having different configurations. , The distance H between the fixed plate 21 and the movable plate 22 in the bending test, and the line width LW and the line width SW in the wiring layer 12 of the sample 1A are input. Next, the stress generated in the wiring layer 12 of the sample 1 </ b> A is calculated by the first calculation unit 42 using the information input by the first input unit 41.
 ステップS102では、第2の入力手段43によって、屈曲試験によって測定された複数の試料1Aの各々の屈曲寿命を入力する。 In step S102, the bending life of each of the plurality of samples 1A measured by the bending test is input by the second input means 43.
 ステップS103では、第1の算出手段42によって算出された各試料1Aの配線層12に生じる応力と、第2の入力手段43によって入力された各試料1Aの屈曲寿命とに基づいて、応力-屈曲寿命関係式作成手段44によって、任意の構成の積層体1Bにおける配線層12に生じる応力と屈曲寿命との関係として、応力-屈曲寿命関係式を作成する。 In step S103, based on the stress generated in the wiring layer 12 of each sample 1A calculated by the first calculation means 42 and the bending life of each sample 1A input by the second input means 43, stress-bending is performed. The life relation formula creating means 44 creates a stress-bending life relation formula as a relation between the stress generated in the wiring layer 12 and the flex life in the laminate 1B having an arbitrary configuration.
 ステップS104では、第3の入力手段45によって、仮想の積層体1Cについて、仮想の積層体1Cを構成する各層の厚みと、仮想の積層体1Cを構成する各層における応力とひずみの関係と、屈曲試験における固定板21と可動板22の間隔Hと、仮想の積層体1Cの配線層12における線幅および線間幅の各情報を入力する。次に、第3の入力手段45によって入力された情報を用いて、第2の算出手段46によって、仮想の積層体1Cの配線層12に生じる応力を算出する。 In step S104, the third input unit 45 causes the virtual laminated body 1C to have a thickness of each layer constituting the virtual laminated body 1C, a relationship between stress and strain in each layer constituting the virtual laminated body 1C, and bending. Information on the distance H between the fixed plate 21 and the movable plate 22 in the test and the line width and the line width in the wiring layer 12 of the virtual laminate 1C are input. Next, the stress generated in the wiring layer 12 of the virtual laminate 1C is calculated by the second calculation unit 46 using the information input by the third input unit 45.
 ステップS105では、第2の算出手段46によって算出された仮想の積層体1Cの配線層12に生じる応力と、応力-屈曲寿命関係式作成手段44によって作成された応力-屈曲寿命関係式とに基づいて、屈曲寿命予測手段47によって、仮想の積層体1Cの屈曲寿命を予測する。 In step S105, based on the stress generated in the wiring layer 12 of the virtual laminated body 1C calculated by the second calculation means 46 and the stress-bending life relation formula created by the stress-bending life relation formula creation means 44. Thus, the bending life prediction means 47 predicts the bending life of the virtual laminate 1C.
 以下、本実施の形態に係る積層体の屈曲寿命予測方法について、より詳細に説明する。まず、ステップS101とステップS104における配線層12に生じる応力の計算方法について、図7を参照して詳しく説明する。図7は、応力の計算方法の説明に使用する積層体1のモデルの断面図である。図7には、便宜上、積層体1が3層であるモデルを示しているが、以下の説明は、積層体が2層以上である場合の全般に当てはまる。ここで、積層体1の層の数をn(nは2以上の整数)とする。また、この積層体1を構成する各層のうち下から数えてi番目(i=1,2,…,n)の層を第i層と呼ぶ。図7において、符号Bは、積層体1の幅を表している。なお、ここでいう幅とは、第1層の下面に平行で、積層体1の長手方向に垂直な方向の寸法である。 Hereinafter, the bending life prediction method for the laminate according to the present embodiment will be described in more detail. First, a method for calculating the stress generated in the wiring layer 12 in steps S101 and S104 will be described in detail with reference to FIG. FIG. 7 is a cross-sectional view of a model of the laminate 1 used for explaining the stress calculation method. For convenience, FIG. 7 shows a model in which the laminate 1 has three layers, but the following description applies to the case where the laminate has two or more layers. Here, the number of layers of the stacked body 1 is n (n is an integer of 2 or more). In addition, the i-th (i = 1, 2,..., N) layer counted from the bottom among the layers constituting the laminate 1 is referred to as an i-th layer. In FIG. 7, the symbol B represents the width of the stacked body 1. The width here is a dimension in a direction parallel to the lower surface of the first layer and perpendicular to the longitudinal direction of the laminate 1.
 なお、本実施の形態における積層体1では、配線層12が例えば図2に示したようにパターニングされているため、積層体1を上から見たときに、積層体1には、配線層12が存在する部分と、配線層12が存在しない部分とがある。ここで、配線層12が存在する部分を配線部と呼び、配線層12が存在しない部分をスペース部と呼ぶ。配線部とスペース部では、構成が異なる。例えば、図1に示した積層体1の場合、配線部は4層で構成され、スペース部は3層で構成されている。そのため、以下、必要に応じて、配線部とスペース部とを分けて考える。 In the laminated body 1 in the present embodiment, the wiring layer 12 is patterned as shown in FIG. 2, for example. Therefore, when the laminated body 1 is viewed from above, the laminated body 1 includes the wiring layer 12. There are portions where the wiring layer 12 does not exist. Here, a portion where the wiring layer 12 exists is called a wiring portion, and a portion where the wiring layer 12 does not exist is called a space portion. The wiring part and the space part have different configurations. For example, in the case of the laminated body 1 shown in FIG. 1, the wiring part is composed of four layers, and the space part is composed of three layers. Therefore, hereinafter, the wiring portion and the space portion are considered separately as necessary.
[中立面位置の計算]
 ここで、第1層の下面を基準面SPとする。以下、基準面SPが図7おける下側に凸形状になるように積層体1を屈曲させる場合について考える。図7において、符号NPは積層体1の中立面を表している。ここで、中立面NPと基準面SPとの距離を中立面位置[NP]とし、この中立面位置[NP]を、配線部とスペース部とで別々に計算する。中立面位置[NP]は、次の式(1)によって算出される。
[Calculation of neutral plane position]
Here, the lower surface of the first layer is defined as a reference surface SP. Hereinafter, the case where the laminated body 1 is bent so that the reference plane SP has a convex shape on the lower side in FIG. 7 will be considered. In FIG. 7, the symbol NP represents the neutral surface of the laminate 1. Here, the distance between the neutral plane NP and the reference plane SP is defined as a neutral plane position [NP], and the neutral plane position [NP] is calculated separately for the wiring portion and the space portion. The neutral plane position [NP] is calculated by the following equation (1).
 [NP]=Σi=1 /Σi=1  …(1) [NP] = Σ i = 1 n E i B i h i t i / Σ i = 1 n E i B i t i ... (1)
 ここで、Eは、第i層を構成する材料の弾性率である。この弾性率Eは、本実施の形態における「各層における応力とひずみの関係」に対応する。Bは、第i層の幅であり、図7に示した幅Bに相当する。配線部の中立面位置[NP]を求める場合には、Bとして線幅LWの値を用い、スペース部の中立面位置[NP]を求める場合には、Bとして線間幅SWの値を用いる。hは、第i層の中央面と基準面SPとの距離である。なお、第i層の中央面とは、第i層の厚み方向の中央に位置する仮想の面である。tは、第i層の厚みである。また、記号“Σi=1 ”は、iが1からnまでの総和を表す。以下、配線部の中立面位置を[NP]Lineと記す。 Here, E i is the elastic modulus of the material constituting the i-th layer. This elastic modulus E i corresponds to “relation between stress and strain in each layer” in the present embodiment. B i is the width of the i-th layer and corresponds to the width B shown in FIG. When obtaining the neutral plane position [NP] of the wiring portion, the value of the line width LW is used as B i , and when obtaining the neutral plane position [NP] of the space portion, the line width SW as B i. The value of is used. h i is the distance between the center plane of the i-th layer and the reference plane SP. The central surface of the i-th layer is a virtual surface located at the center in the thickness direction of the i-th layer. t i is the thickness of the i-th layer. Further, the symbol “Σ i = 1 n ” represents the sum of i from 1 to n. Hereinafter, the neutral plane position of the wiring portion is referred to as [NP] Line .
[有効曲率半径の計算]
 次に、図3に示したように固定板21と可動板22の間に積層体1をU字形状に屈曲させて介挿したときの積層体1の屈曲部における配線部の有効曲率半径Rを計算する。有効曲率半径Rは、積層体1の屈曲部の屈曲中心から配線部の中立面NPまでの距離である。有効曲率半径Rは、固定板21と可動板22の間隔Hと配線部の中立面位置[NP]Lineから、次の式(2)によって算出される。
[Calculation of effective curvature radius]
Next, as shown in FIG. 3, the effective curvature radius R of the wiring portion at the bent portion of the multilayer body 1 when the multilayer body 1 is inserted in a U shape between the fixed plate 21 and the movable plate 22. Calculate The effective curvature radius R is a distance from the bending center of the bent portion of the laminate 1 to the neutral plane NP of the wiring portion. The effective radius of curvature R is calculated from the distance H between the fixed plate 21 and the movable plate 22 and the neutral plane position [NP] Line of the wiring portion by the following equation (2).
 R=H/2-[NP]Line …(2) R = H / 2- [NP] Line (2)
[曲げ垂直応力の計算]
 次に、純曲げによって配線層12に生じる長手方向の最大引張垂直応力である曲げ垂直応力σcを計算する。曲げ垂直応力σcは、次の式(3)によって算出される。
[Calculation of bending normal stress]
Next, a bending normal stress σc that is a maximum tensile normal stress in the longitudinal direction generated in the wiring layer 12 by pure bending is calculated. The bending normal stress σc is calculated by the following equation (3).
 σc=Ec(yc-[NP]Line)/R …(3) σc = Ec (yc− [NP] Line ) / R (3)
 ここで、Ecは配線層12の弾性率である。ycは、基準面SPから、配線層12の上面と下面のうちの曲げの際に凸形状となる面(ここでは下面)までの距離である。 Here, Ec is the elastic modulus of the wiring layer 12. yc is the distance from the reference plane SP to the surface (here, the lower surface) that becomes convex when bent between the upper surface and the lower surface of the wiring layer 12.
[等価曲げ剛性の計算]
 次に、積層体1全体の曲げ剛性である等価曲げ剛性[BR]を計算する。等価曲げ剛性[BR]は、次の式(4)によって算出される。
[Calculation of equivalent bending stiffness]
Next, an equivalent bending stiffness [BR] that is the bending stiffness of the entire laminate 1 is calculated. The equivalent bending stiffness [BR] is calculated by the following equation (4).
 [BR]=BLinei=1 (a -b )/3}Line
     +BSpacei=1 (a -b )/3}Space …(4)
[BR] = B Linei = 1 n E i (a i 3 −b i 3 ) / 3} Line
+ B Spacei = 1 n E i (a i 3 −b i 3 ) / 3} Space (4)
 ここで、BLineは線幅LWの総和、BSpaceは線間幅SWの総和である。また、図7に示したように、aは第i層の上面と中立面NPとの距離、bは第i層の下面と中立面NPとの距離である。{Σi=1 (a -b )/3}Lineは、配線部におけるE(a -b )/3の値の、iが1からnまでの総和である。{Σi=1 (a -b )/3}Spaceは、スペース部におけるE(a -b )/3の値の、iが1からnまでの総和である。なお、式(4)に関連するが、第i層に関して、B(a -b )/3は、一般に断面二次モーメントと呼ばれる断面の幾何学的な特性を表すパラメータである。この第i層の断面二次モーメントに第i層の弾性率を掛けた値が第i層の曲げ剛性である。 Here, B Line is the sum of the line widths LW, and B Space is the sum of the line widths SW. Further, as shown in FIG. 7, a i is the distance between the upper surface of the i-th layer and the neutral plane NP, and b i is the distance between the lower surface of the i-th layer and the neutral plane NP. {Σ i = 1 n E i (a i 3 −b i 3 ) / 3} Line is a value of E i (a i 3 −b i 3 ) / 3 in the wiring section, where i is 1 to n It is the sum. {Σ i = 1 n E i (a i 3 −b i 3 ) / 3} Space is a value of E i (a i 3 −b i 3 ) / 3 in the space part, where i is 1 to n It is the sum. Although related to equation (4), for the i-th layer, B i (a i 3 -b i 3 ) / 3 is a parameter that represents the geometric characteristic of the cross section, generally called the cross-section second moment. . A value obtained by multiplying the cross-sectional second moment of the i-th layer by the elastic modulus of the i-th layer is the bending rigidity of the i-th layer.
[曲げモーメントの計算]
 次に、積層体1の曲げモーメントMを計算する。曲げモーメントMは、次の式(5)によって算出される。
[Calculation of bending moment]
Next, the bending moment M of the laminate 1 is calculated. The bending moment M is calculated by the following equation (5).
 M=[BR]/R …(5) M = [BR] / R ... (5)
[せん断応力の計算]
 次に、積層体1に生じるせん断応力τを計算する。せん断応力τは、次の式(6)によって算出される。
[Calculation of shear stress]
Next, the shear stress τ generated in the laminate 1 is calculated. The shear stress τ is calculated by the following equation (6).
 τ=kM/LeA …(6) Τ = kM / LeA (6)
 ここで、kはせん断修正係数である。屈曲試験の際の有効曲率半径Rが1mm程度の場合には、kの値としては、一次せん断修正係数として一般によく用いられている5/6という値を用いる。Leは有効な屈曲部の周長の半値である。Aは積層体1の長手方向に垂直な積層体1の断面の面積である。 Where k is the shear correction factor. When the effective radius of curvature R in the bending test is about 1 mm, a value of 5/6, which is generally used as a primary shear correction coefficient, is used as the value of k. Le is a half value of the circumference of the effective bent portion. A is the cross-sectional area of the laminate 1 perpendicular to the longitudinal direction of the laminate 1.
 次に、配線層12に生じる主応力Sを計算する。主応力Sは、次の式(7)によって算出される。 Next, the principal stress S generated in the wiring layer 12 is calculated. The main stress S is calculated by the following equation (7).
 S=(σc/2)+√{(σc/2)+τ} …(7) S = (σc / 2) + √ {(σc / 2) 2 + τ 2 } (7)
 このようにして、垂直応力σcとせん断応力τから、配線層12に生じる応力としての主応力Sが算出される。また、この主応力Sは、上記の説明のとおり、積層体1を構成する各層の厚みと、積層体1を構成する各層における応力とひずみの関係(弾性率)と、屈曲試験における固定板21と可動板22の間隔Hと、配線層12における線幅LWおよび線間幅SWの各情報を用いて算出される。 In this way, the main stress S as the stress generated in the wiring layer 12 is calculated from the vertical stress σc and the shear stress τ. Further, as described above, the principal stress S is the thickness of each layer constituting the laminated body 1, the relationship between the stress and strain (elastic modulus) in each layer constituting the laminated body 1, and the fixed plate 21 in the bending test. And the distance H between the movable plate 22 and the information on the line width LW and the line width SW in the wiring layer 12.
 ステップS101では、互いに異なる構成の複数の積層体の試料1Aの各々について、上記の方法により、配線層12に生じる主応力Sを算出する。ステップS104では、屈曲寿命を予測する対象である仮想の積層体1Cについて、上記の方法により、配線層12に生じる主応力Sを算出する。 In step S101, the principal stress S generated in the wiring layer 12 is calculated for each of a plurality of laminate samples 1A having different configurations by the above method. In step S104, the principal stress S generated in the wiring layer 12 is calculated by the above method for the virtual laminated body 1C that is a target for predicting the bending life.
 ステップS102では、複数の試料1Aの各々について、図3を参照して説明した屈曲試験によって屈曲寿命Nを測定する。この屈曲試験における可動板22の往復運動の周波数をfとする。また、屈曲試験が行われるときの温度をTとする。屈曲試験は、全ての試料1Aについて周波数fと温度Tを一定にして行ってもよいし、試料1A毎に周波数fと温度Tの少なくとも一方を異ならせて行ってもよい。あるいは、1つの種類につき複数個ずつ、複数種類の試料1Aを作製し、1つの種類の複数個の試料1Aの各々について、周波数fと温度Tの少なくとも一方を異ならせて屈曲試験を行ってもよい。複数の試料1Aについて、周波数fと温度Tの少なくとも一方を異ならせて屈曲試験を行った場合には、ステップS103で作成する応力-屈曲寿命関係式を、周波数fと温度Tの少なくとも一方をパラメータとした関数とすることが可能になる。 In step S102, the bending life N of each of the plurality of samples 1A is measured by the bending test described with reference to FIG. Let f be the frequency of the reciprocating motion of the movable plate 22 in this bending test. Also, T is the temperature at which the bending test is performed. The bending test may be performed with the frequency f and the temperature T being constant for all the samples 1A, or may be performed with at least one of the frequency f and the temperature T being different for each sample 1A. Alternatively, a plurality of types of samples 1A are prepared for each type, and a bending test is performed on each of the plurality of samples 1A of one type by changing at least one of frequency f and temperature T. Good. When a bending test is performed on a plurality of samples 1A with at least one of the frequency f and the temperature T being different, the stress-bending life relation equation created in step S103 is used, and at least one of the frequency f and the temperature T is a parameter. It becomes possible to make it a function.
 次に、ステップS103において、任意の構成の積層体1Bにおける配線層12に生じる応力と屈曲寿命との関係として、応力-屈曲寿命関係式を求める方法について説明する。多数の試料1Aについて、配線層12に生じる主応力Sと屈曲寿命とを求めた結果、任意の構成の積層体1Bについて、配線層12に生じる主応力Sと屈曲寿命Nとの関係は、次の式(8)で近似できることが分かった。そこで、本実施の形態では、次の式(8)を、任意の構成の積層体1Bにおける配線層12に生じる主応力Sと屈曲寿命Nとの関係を表す応力-屈曲寿命関係式とする。式(8)によって表される主応力Sと屈曲寿命Nとの関係は、図で表すと、図8に示したようになる。 Next, a method for obtaining a stress-bending life relationship as a relationship between the stress generated in the wiring layer 12 and the bending life in the laminated body 1B having an arbitrary configuration in step S103 will be described. As a result of obtaining the main stress S and bending life generated in the wiring layer 12 for a number of samples 1A, the relationship between the main stress S generated in the wiring layer 12 and the bending life N for the laminate 1B having an arbitrary configuration is as follows. It was found that it can be approximated by equation (8). Therefore, in the present embodiment, the following equation (8) is a stress-bending life relationship expression that represents the relationship between the principal stress S generated in the wiring layer 12 and the bending life N in the laminate 1B having an arbitrary configuration. The relationship between the principal stress S and the bending life N expressed by the equation (8) is as shown in FIG.
 N=α・(fχ/Sβ)・exp(δ/T) …(8) N = α · (f χ / S β ) · exp (δ / T) (8)
 ここで、α、β、χ、δは、物性パラメータ(定数)である。ステップS103では、式(8)が、複数の試料1Aについての配線層12に生じる主応力Sおよび屈曲寿命Nのデータを近似する式となるように、最小二乗法によってα、β、χ、δの値を決定する。これにより、式(8)は、任意の構成の積層体1Bについて、主応力Sと屈曲寿命Nとの関係を表す式となる。 Here, α, β, χ, and δ are physical property parameters (constants). In step S103, α, β, χ, δ are obtained by the least square method so that the equation (8) becomes an equation that approximates the data of the principal stress S and the bending life N generated in the wiring layer 12 for the plurality of samples 1A. Determine the value of. Thereby, Formula (8) becomes a formula showing the relation between principal stress S and bending life N about layered product 1B of arbitrary composition.
 ステップS105では、ステップS104によって算出された仮想の積層体1Cの配線層12に生じる主応力Sを、ステップS103によって求められた上記の式(8)に代入することにより、仮想の積層体1Cの屈曲寿命Nを算出する。なお、式(8)において、温度Tと周波数fの少なくとも一方がパラメータとなっている場合には、仮想の積層体1Cの屈曲寿命Nを算出する際には、そのパラメータの値を特定し、式(8)に代入する。 In step S105, the principal stress S generated in the wiring layer 12 of the virtual laminate 1C calculated in step S104 is substituted into the above equation (8) obtained in step S103, whereby the virtual laminate 1C. The bending life N is calculated. In the equation (8), when at least one of the temperature T and the frequency f is a parameter, when calculating the bending life N of the virtual laminate 1C, the value of the parameter is specified, Substitute into equation (8).
 周波数fと温度Tをそれぞれ一定の値にして複数の試料1Aについての屈曲試験を行って、その屈曲試験によって得られたデータを用いて式(8)を作成した場合には、式(8)は、周波数fと温度Tがそれぞれ上記の一定の値である条件で屈曲試験を行った場合における主応力Sと屈曲寿命Nとの関係を表す式となる。この場合には、式(8)を用いて、仮想の積層体1Cについて、周波数fと温度Tがそれぞれ上記の一定の値である条件で屈曲試験を行った場合における屈曲寿命Nを予測することが可能になる。 When the bending test is performed on the plurality of samples 1A with the frequency f and the temperature T being fixed values, and the equation (8) is created using the data obtained by the bending test, the equation (8) Is an equation representing the relationship between the principal stress S and the bending life N when the bending test is performed under the condition where the frequency f and the temperature T are the above-described constant values. In this case, using Equation (8), predict the bending life N when the bending test is performed on the virtual laminated body 1C under the conditions where the frequency f and the temperature T are the above-described constant values, respectively. Is possible.
 周波数fを一定の値にし、温度Tを変えて複数の試料1Aについての屈曲試験を行って、その屈曲試験によって得られたデータを用いて式(8)を作成した場合には、式(8)は、周波数fが上記の一定の値である条件で屈曲試験を行った場合における、温度Tをパラメータとした、主応力Sと屈曲寿命Nとの関係を表す式となる。この場合には、式(8)を用いて、仮想の積層体1Cについて、任意の温度Tの下で、周波数fが上記の一定の値である条件で屈曲試験を行った場合における屈曲寿命Nを予測することが可能になる。 When the frequency f is set to a constant value, the temperature T is changed, the bending test is performed on the plurality of samples 1A, and the equation (8) is created using the data obtained by the bending test, the equation (8) ) Is an expression representing the relationship between the principal stress S and the bending life N, using the temperature T as a parameter when the bending test is performed under the condition that the frequency f is the above-mentioned constant value. In this case, the bending life N in the case where the bending test is performed on the virtual laminated body 1C using the equation (8) under the condition that the frequency f is the above-described constant value at an arbitrary temperature T. Can be predicted.
 温度Tを一定の値にし、周波数fを変えて複数の試料1Aについての屈曲試験を行って、その屈曲試験によって得られたデータを用いて式(8)を作成した場合には、式(8)は、温度Tが上記の一定の値である条件で屈曲試験を行った場合における、周波数fをパラメータとした、主応力Sと屈曲寿命Nとの関係を表す式となる。この場合には、式(8)を用いて、仮想の積層体1Cについて、任意の周波数fの下で、温度Tが上記の一定の値である条件で屈曲試験を行った場合における屈曲寿命Nを予測することが可能になる。 When the temperature T is set to a constant value, the frequency f is changed, the bending test is performed on the plurality of samples 1A, and the formula (8) is created using the data obtained by the bending test, the formula (8 ) Is an expression representing the relationship between the principal stress S and the bending life N using the frequency f as a parameter when the bending test is performed under the condition where the temperature T is the above constant value. In this case, the bending life N in the case where the bending test is performed on the virtual laminated body 1C using the equation (8) under the condition that the temperature T is the above-described constant value under an arbitrary frequency f. Can be predicted.
 周波数fと温度Tの両方を変えて複数の試料1Aについての屈曲試験を行って、その屈曲試験によって得られたデータを用いて式(8)を作成した場合には、式(8)は、周波数fおよび温度Tをパラメータとした、主応力Sと屈曲寿命Nとの関係を表す式となる。この場合には、式(8)を用いて、仮想の積層体1Cについて、任意の温度Tおよび任意の周波数fの下で屈曲試験を行った場合における屈曲寿命Nを予測することが可能になる。 When the bending test is performed on the plurality of samples 1A by changing both the frequency f and the temperature T, and the equation (8) is created using the data obtained by the bending test, the equation (8) is This is an equation representing the relationship between the principal stress S and the bending life N, with the frequency f and the temperature T as parameters. In this case, it is possible to predict the bending life N when the bending test is performed on the virtual laminated body 1C under an arbitrary temperature T and an arbitrary frequency f using the equation (8). .
 なお、式(1)~(7)を用いた説明では、積層体1を構成する各層における応力とひずみの関係として、各層を構成する材料の弾性率を用いたが、積層体1を構成する各層における応力とひずみの関係は、各層を構成する材料についての引張試験によって取得されるものであってもよい。各層を構成する材料についての引張試験によって取得されるものとは、具体的には、引張試験によって取得される応力とひずみの関係の実測データ(以下、SSカーブという。)である。 In the description using the formulas (1) to (7), the elastic modulus of the material constituting each layer is used as the relationship between the stress and the strain in each layer constituting the laminate 1, but the laminate 1 is constituted. The relationship between stress and strain in each layer may be obtained by a tensile test on the material constituting each layer. Specifically, what is acquired by the tensile test on the material constituting each layer is actually measured data (hereinafter referred to as SS curve) of the relationship between stress and strain acquired by the tensile test.
 以下、各層における応力とひずみの関係としてSSカーブを用いる場合における、配線層12に生じる主応力Sの計算方法の一例について説明する。この方法では、まず、各層を構成する材料(以下、構成材料という。)の各々について、引張試験を行ってSSカーブを取得する。次に、積層体1が真っ直ぐの状態から、屈曲試験の際の屈曲した状態までを、計算が発散しない程度に十分に細かい複数の計算ステップに分割する。次に、各構成材料のSSカーブにおいて、計算ステップ毎の傾きを計算する。この計算ステップ毎の傾きは、各構成材料における計算ステップ毎の弾性率となる。次に、このようにして求めた各構成材料における計算ステップ毎の弾性率を、式(1)~(7)の一連の計算において用いた弾性率の代りに用いて、更新形ラグランジュ法によって、積層体1が真っ直ぐの状態から、屈曲試験の際の屈曲した状態まで、計算ステップ毎に式(1)~(7)の一連の計算を繰り返し行って、屈曲試験の際の屈曲した状態において配線層12に生じる主応力Sを計算する。このような更新形ラグランジュ法を用いた主応力Sの計算方法によれば、各層における応力とひずみの関係(SSカーブ)が非線形である場合においても、主応力Sを精度よく算出することが可能になる。 Hereinafter, an example of a method for calculating the main stress S generated in the wiring layer 12 when the SS curve is used as the relationship between stress and strain in each layer will be described. In this method, first, an SS curve is obtained by performing a tensile test on each of the materials (hereinafter referred to as constituent materials) constituting each layer. Next, the laminate 1 is divided into a plurality of calculation steps that are sufficiently fine so that the calculation does not diverge from the straight state to the bent state in the bending test. Next, the slope for each calculation step is calculated in the SS curve of each constituent material. The inclination for each calculation step is the elastic modulus for each calculation step in each constituent material. Next, the elastic modulus for each calculation step in each constituent material thus obtained is used in place of the elastic modulus used in the series of calculations of Equations (1) to (7), and an updated Lagrangian method is used. From the straight state of the laminate 1 to the bent state at the time of the bending test, the series of calculations of the formulas (1) to (7) are repeatedly performed for each calculation step, and wiring is performed in the bent state at the time of the bending test. The principal stress S generated in the layer 12 is calculated. According to the calculation method of the principal stress S using such an updated Lagrangian method, the principal stress S can be accurately calculated even when the relationship between stress and strain (SS curve) in each layer is nonlinear. become.
 以上説明したように、本実施の形態によれば、仮想の積層体1Cについて、仮想の積層体1Cを構成する各層の厚みと、仮想の積層体1Cを構成する各層における応力とひずみの関係と、屈曲試験における固定板21と可動板22の間隔Hと、仮想の積層体1Cの配線層12における線幅LWおよび線間幅SWの各情報を用いて、仮想の積層体1Cの配線層12に生じる応力(主応力)を算出し、この算出された応力と、応力-屈曲寿命関係式とに基づいて、仮想の積層体1Cの屈曲寿命Nを予測することが可能になる。本実施の形態では、仮想の積層体1Cの屈曲寿命Nを予測する際には、実際に積層体1を試作する必要はない。また、本実施の形態では、有限要素法を用いることなく、上記の各情報を用いた演算によって、仮想の積層体1Cの屈曲寿命Nを予測することができる。従って、本実施の形態によれば、容易に、積層体1を構成する各層の条件を任意に設定して、積層体1の屈曲寿命を予測することが可能になる。また、これにより、本実施の形態によれば、積層体1を構成する各層の条件の好ましい組み合わせを求めることも可能になる。 As described above, according to the present embodiment, for the virtual laminated body 1C, the thickness of each layer constituting the virtual laminated body 1C and the relationship between the stress and strain in each layer constituting the virtual laminated body 1C The wiring layer 12 of the virtual laminate 1C is obtained using the information on the distance H between the fixed plate 21 and the movable plate 22 in the bending test and the line width LW and the line width SW in the wiring layer 12 of the virtual laminate 1C. The bending life N of the virtual laminate 1C can be predicted based on the calculated stress and the stress-bending life relational expression. In the present embodiment, when the bending life N of the virtual laminated body 1C is predicted, it is not necessary to actually make the prototype of the laminated body 1. Moreover, in this Embodiment, the bending life N of the virtual laminated body 1C can be estimated by the calculation using each said information, without using a finite element method. Therefore, according to the present embodiment, it is possible to easily set the conditions of each layer constituting the multilayer body 1 and predict the bending life of the multilayer body 1. Thereby, according to this Embodiment, it becomes possible to obtain | require the preferable combination of the conditions of each layer which comprises the laminated body 1. FIG.
 なお、本発明は上記各実施の形態に限定されず、種々の変更が可能である。例えば、本発明が適用される積層体は、ベース層の一方の面にのみ配線層が設けられたFPCに限らず、ベース層の両面に配線層が設けられたFPCであってもよい。 The present invention is not limited to the above-described embodiments, and various modifications can be made. For example, the laminated body to which the present invention is applied is not limited to the FPC in which the wiring layer is provided on only one surface of the base layer, but may be an FPC in which the wiring layer is provided on both surfaces of the base layer.
 以上の説明に基づき、本発明の種々の態様や変形例を実施可能であることは明らかである。従って、以下の請求の範囲の均等の範囲において、上記の最良の形態以外の形態でも本発明を実施することが可能である。 Based on the above description, it is apparent that various aspects and modifications of the present invention can be implemented. Therefore, the present invention can be implemented in forms other than the above-described best form within the scope equivalent to the following claims.

Claims (12)

  1.  ベース層と、パターン化された導体よりなる配線層とを含む積層された複数の層を有し、一方向に延び、屈曲可能な積層体について、所定の間隔を開けて配置された固定板と可動板の間に前記積層体をU字形状に屈曲させて介挿し且つ前記積層体の長手方向の各端部をそれぞれ前記固定板と可動板とに固定し、可動板をその面に平行な方向に往復運動させて行う屈曲試験によって測定されるべき屈曲寿命を予測する方法であって、
     互いに異なる構成の複数の前記積層体の試料の各々について、前記試料を構成する各層の厚みと、前記試料を構成する各層における応力とひずみの関係と、前記屈曲試験における固定板と可動板の間隔と、前記試料の配線層における線幅および線間幅の各情報を用いて、前記試料の配線層に生じる応力を算出する第1の算出手順と、
     前記複数の試料の各々について、前記屈曲試験によって屈曲寿命を測定する手順と、
     前記第1の算出手順によって算出された各試料の配線層に生じる応力と、前記屈曲寿命を測定する手順によって測定された各試料の屈曲寿命とに基づいて、任意の構成の前記積層体における前記配線層に生じる応力と屈曲寿命との関係を求める手順と、
     屈曲寿命を予測する対象である仮想の前記積層体について、前記仮想の積層体を構成する各層の厚みと、前記仮想の積層体を構成する各層における応力とひずみの関係と、前記屈曲試験における固定板と可動板の間隔と、前記仮想の積層体の配線層における線幅および線間幅の各情報を用いて、前記仮想の積層体の配線層に生じる応力を算出する第2の算出手順と、
     前記第2の算出手順によって算出された前記仮想の積層体の配線層に生じる応力と、前記応力と屈曲寿命との関係を求める手順によって求められた前記応力と屈曲寿命との関係とに基づいて、前記仮想の積層体の屈曲寿命を予測する手順と
    を備えたことを特徴とする積層体の屈曲寿命予測方法。
    A fixed plate having a plurality of laminated layers including a base layer and a wiring layer made of a patterned conductor, extending in one direction, and being bendable and arranged at a predetermined interval; The laminated body is inserted in a U-shape between the movable plates, and the longitudinal ends of the laminated body are fixed to the fixed plate and the movable plate, respectively, and the movable plate is arranged in a direction parallel to the surface. A method for predicting a bending life to be measured by a bending test performed by reciprocating,
    For each of the plurality of laminate samples having different configurations, the thickness of each layer constituting the sample, the relationship between the stress and strain in each layer constituting the sample, and the interval between the fixed plate and the movable plate in the bending test And a first calculation procedure for calculating a stress generated in the wiring layer of the sample using each information of the line width and the line width in the wiring layer of the sample,
    For each of the plurality of samples, a procedure for measuring a bending life by the bending test,
    Based on the stress generated in the wiring layer of each sample calculated by the first calculation procedure and the bending life of each sample measured by the procedure of measuring the bending life, The procedure for obtaining the relationship between the stress generated in the wiring layer and the flex life,
    For the virtual laminate that is the object of predicting the flex life, the thickness of each layer constituting the virtual laminate, the relationship between the stress and strain in each layer constituting the virtual laminate, and the fixation in the flex test A second calculation procedure for calculating a stress generated in the wiring layer of the virtual laminate using the information on the distance between the plate and the movable plate, and the line width and the inter-line width in the wiring layer of the virtual laminate; ,
    Based on the stress generated in the wiring layer of the virtual laminate calculated by the second calculation procedure and the relationship between the stress and the bending life obtained by the procedure for obtaining the relationship between the stress and the bending life. And a method for predicting the bending life of the virtual laminated body.
  2.  前記各層における応力とひずみの関係として、前記各層を構成する材料の弾性率を用いることを特徴とする請求の範囲第1項記載の積層体の屈曲寿命予測方法。 The method for predicting a flexural life of a laminate according to claim 1, wherein the elastic modulus of the material constituting each layer is used as the relationship between stress and strain in each layer.
  3.  前記各層における応力とひずみの関係は、前記各層を構成する材料についての引張試験によって取得されることを特徴とする請求の範囲第1項記載の積層体の屈曲寿命予測方法。 2. The method for predicting the bending life of a laminate according to claim 1, wherein the relationship between stress and strain in each layer is obtained by a tensile test on the material constituting each layer.
  4.  前記第1の算出手順では、前記試料の配線層に生じる応力として、垂直応力とせん断応力から求まる主応力を算出し、
     前記第2の算出手順では、前記仮想の積層体の配線層に生じる応力として、垂直応力とせん断応力から求まる主応力を算出することを特徴とする請求の範囲第1項記載の積層体の屈曲寿命予測方法。
    In the first calculation procedure, as a stress generated in the wiring layer of the sample, a main stress obtained from a normal stress and a shear stress is calculated,
    2. The bending of the laminate according to claim 1, wherein in the second calculation procedure, a principal stress obtained from a normal stress and a shear stress is calculated as the stress generated in the wiring layer of the virtual laminate. Life prediction method.
  5.  前記応力と屈曲寿命との関係を求める手順では、前記屈曲試験が行われるときの温度をパラメータとした、前記配線層に生じる応力と屈曲寿命との関係を求め、
     前記屈曲寿命を予測する手順では、前記第2の算出手順によって算出された応力と、前記温度をパラメータとした応力と屈曲寿命との関係とに基づいて、任意の温度の下での前記仮想の積層体の屈曲寿命を予測することを特徴とする請求の範囲第1項記載の積層体の屈曲寿命予測方法。
    In the procedure for obtaining the relationship between the stress and the bending life, the temperature when the bending test is performed as a parameter, the relationship between the stress generated in the wiring layer and the bending life is obtained,
    In the procedure of predicting the bending life, the virtual life under an arbitrary temperature is based on the stress calculated by the second calculation procedure and the relationship between the stress using the temperature as a parameter and the bending life. The bending life prediction method for a laminate according to claim 1, wherein the bending life of the laminate is predicted.
  6.  前記応力と屈曲寿命との関係を求める手順では、前記屈曲試験における前記可動板の往復運動の周波数をパラメータとした、前記配線層に生じる応力と屈曲寿命との関係を求め、
     前記屈曲寿命を予測する手順では、前記第2の算出手順によって算出された応力と、前記周波数をパラメータとした応力と屈曲寿命との関係とに基づいて、任意の周波数の下での前記仮想の積層体の屈曲寿命を予測することを特徴とする請求の範囲第1項記載の積層体の屈曲寿命予測方法。
    In the procedure for determining the relationship between the stress and the bending life, the frequency of the reciprocating motion of the movable plate in the bending test was used as a parameter to determine the relationship between the stress generated in the wiring layer and the bending life,
    In the procedure for predicting the bending life, the virtual life under an arbitrary frequency is based on the stress calculated by the second calculation procedure and the relationship between the stress using the frequency as a parameter and the bending life. The bending life prediction method for a laminate according to claim 1, wherein the bending life of the laminate is predicted.
  7.  ベース層と、パターン化された導体よりなる配線層とを含む積層された複数の層を有し、一方向に延び、屈曲可能な積層体について、所定の間隔を開けて配置された固定板と可動板の間に前記積層体をU字形状に屈曲させて介挿し且つ前記積層体の長手方向の各端部をそれぞれ前記固定板と可動板とに固定し、可動板をその面に平行な方向に往復運動させて行う屈曲試験によって測定されるべき屈曲寿命を予測する装置であって、
     互いに異なる構成の複数の前記積層体の試料の各々について、前記試料を構成する各層の厚みと、前記試料を構成する各層における応力とひずみの関係と、前記屈曲試験における固定板と可動板の間隔と、前記試料の配線層における線幅および線間幅の各情報を入力する第1の入力手段と、
     前記第1の入力手段によって入力された情報を用いて、前記試料の配線層に生じる応力を算出する第1の算出手段と、
     前記屈曲試験によって測定された前記複数の試料の各々の屈曲寿命を入力する第2の入力手段と、
     前記第1の算出手段によって算出された各試料の配線層に生じる応力と、前記第2の入力手段によって入力された各試料の屈曲寿命とに基づいて、任意の構成の前記積層体における前記配線層に生じる応力と屈曲寿命との関係を求める手段と、
     屈曲寿命を予測する対象である仮想の前記積層体について、前記仮想の積層体を構成する各層の厚みと、前記仮想の積層体を構成する各層における応力とひずみの関係と、前記屈曲試験における固定板と可動板の間隔と、前記仮想の積層体の配線層における線幅および線間幅の各情報を入力する第3の入力手段と、
     前記第3の入力手段によって入力された情報を用いて、前記仮想の積層体の配線層に生じる応力を算出する第2の算出手段と、
     前記第2の算出手段によって算出された前記仮想の積層体の配線層に生じる応力と、前記応力と屈曲寿命との関係を求める手段によって求められた前記応力と屈曲寿命との関係とに基づいて、前記仮想の積層体の屈曲寿命を予測する手段と
    を備えたことを特徴とする積層体の屈曲寿命予測装置。
    A fixed plate having a plurality of laminated layers including a base layer and a wiring layer made of a patterned conductor, extending in one direction, and being bendable and arranged at a predetermined interval; The laminated body is inserted in a U-shape between the movable plates, and the longitudinal ends of the laminated body are fixed to the fixed plate and the movable plate, respectively, and the movable plate is arranged in a direction parallel to the surface. A device for predicting a bending life to be measured by a bending test performed by reciprocating movement,
    For each of the plurality of laminate samples having different configurations, the thickness of each layer constituting the sample, the relationship between the stress and strain in each layer constituting the sample, and the interval between the fixed plate and the movable plate in the bending test And first input means for inputting each information of the line width and the inter-line width in the wiring layer of the sample,
    First calculation means for calculating stress generated in the wiring layer of the sample using information input by the first input means;
    A second input means for inputting a bending life of each of the plurality of samples measured by the bending test;
    Based on the stress generated in the wiring layer of each sample calculated by the first calculating means and the bending life of each sample input by the second input means, the wiring in the laminate of any configuration Means for determining the relationship between the stress generated in the layer and the bending life;
    For the virtual laminate that is the object for predicting the flex life, the thickness of each layer constituting the virtual laminate, the relationship between the stress and strain in each layer constituting the virtual laminate, and the fixation in the flex test A third input means for inputting information on the distance between the plate and the movable plate, and the line width and the line width in the wiring layer of the virtual laminate;
    Second calculation means for calculating the stress generated in the wiring layer of the virtual laminate using the information input by the third input means;
    Based on the stress generated in the wiring layer of the virtual laminate calculated by the second calculating means, and the relationship between the stress and the bending life obtained by the means for obtaining the relationship between the stress and the bending life. And a means for predicting the bending life of the virtual laminated body.
  8.  前記第1の算出手段は、前記試料の配線層に生じる応力として、垂直応力とせん断応力から求まる主応力を算出し、
     前記第2の算出手段は、前記仮想の積層体の配線層に生じる応力として、垂直応力とせん断応力から求まる主応力を算出することを特徴とする請求の範囲第7項記載の積層体の屈曲寿命予測装置。
    The first calculation means calculates a principal stress obtained from a normal stress and a shear stress as a stress generated in the wiring layer of the sample,
    The bending of the laminate according to claim 7, wherein the second calculation means calculates a principal stress obtained from a normal stress and a shear stress as the stress generated in the wiring layer of the virtual laminate. Life prediction device.
  9.  前記応力と屈曲寿命との関係を求める手段は、前記屈曲試験が行われるときの温度をパラメータとした、前記配線層に生じる応力と屈曲寿命との関係を求め、
     前記屈曲寿命を予測する手段は、前記第2の算出手段によって算出された応力と、前記温度をパラメータとした応力と屈曲寿命との関係とに基づいて、任意の温度の下での前記仮想の積層体の屈曲寿命を予測することを特徴とする請求の範囲第7項記載の積層体の屈曲寿命予測装置。
    Means for obtaining the relationship between the stress and the bending life, the temperature when the bending test is performed as a parameter, the relationship between the stress generated in the wiring layer and the bending life,
    The means for predicting the bending life is based on the stress calculated by the second calculating means and the relationship between the stress and the bending life with the temperature as a parameter and the virtual life under an arbitrary temperature. The bending life prediction device for a laminate according to claim 7, wherein the bending life of the laminate is predicted.
  10.  前記応力と屈曲寿命との関係を求める手段は、前記屈曲試験における前記可動板の往復運動の周波数をパラメータとした、前記配線層に生じる応力と屈曲寿命との関係を求め、
     前記屈曲寿命を予測する手段は、前記第2の算出手段によって算出された応力と、前記周波数をパラメータとした応力と屈曲寿命との関係とに基づいて、任意の周波数の下での前記仮想の積層体の屈曲寿命を予測することを特徴とする請求の範囲第7項記載の積層体の屈曲寿命予測装置。
    The means for determining the relationship between the stress and the bending life is to determine the relationship between the stress generated in the wiring layer and the bending life, using the frequency of the reciprocating motion of the movable plate in the bending test as a parameter.
    The means for predicting the bending life is based on the stress calculated by the second calculating means and the relationship between the stress and the bending life with the frequency as a parameter and the virtual life under an arbitrary frequency. The bending life prediction apparatus for a laminated body according to claim 7, wherein the bending life of the laminated body is predicted.
  11.  ベース層と、パターン化された導体よりなる配線層とを含む積層された複数の層を有し、一方向に延び、屈曲可能な積層体について、所定の間隔を開けて配置された固定板と可動板の間に前記積層体をU字形状に屈曲させて介挿し且つ前記積層体の長手方向の各端部をそれぞれ前記固定板と可動板とに固定し、可動板をその面に平行な方向に往復運動させて行う屈曲試験によって測定されるべき屈曲寿命を予測するために、コンピュータを、
     互いに異なる構成の複数の前記積層体の試料の各々について、前記試料を構成する各層の厚みと、前記試料を構成する各層における応力とひずみの関係と、前記屈曲試験における固定板と可動板の間隔と、前記試料の配線層における線幅および線間幅の各情報を入力する第1の入力手段、
     前記第1の入力手段によって入力された情報を用いて、前記試料の配線層に生じる応力を算出する第1の算出手段、
     前記屈曲試験によって測定された前記複数の試料の各々の屈曲寿命を入力する第2の入力手段、
     前記第1の算出手段によって算出された各試料の配線層に生じる応力と、前記第2の入力手段によって入力された各試料の屈曲寿命とに基づいて、任意の構成の前記積層体における前記配線層に生じる応力と屈曲寿命との関係を求める手段、
     屈曲寿命を予測する対象である仮想の前記積層体について、前記仮想の積層体を構成する各層の厚みと、前記仮想の積層体を構成する各層における応力とひずみの関係と、前記屈曲試験における固定板と可動板の間隔と、前記仮想の積層体の配線層における線幅および線間幅の各情報を入力する第3の入力手段、
     前記第3の入力手段によって入力された情報を用いて、前記仮想の積層体の配線層に生じる応力を算出する第2の算出手段、および
     前記第2の算出手段によって算出された前記仮想の積層体の配線層に生じる応力と、前記応力と屈曲寿命との関係を求める手段によって求められた前記応力と屈曲寿命との関係とに基づいて、前記仮想の積層体の屈曲寿命を予測する手段、
    として機能させるための積層体の屈曲寿命予測プログラム。
    A fixed plate having a plurality of laminated layers including a base layer and a wiring layer made of a patterned conductor, extending in one direction, and being bendable and arranged at a predetermined interval; The laminated body is inserted in a U-shape between the movable plates, and the longitudinal ends of the laminated body are fixed to the fixed plate and the movable plate, respectively, and the movable plate is arranged in a direction parallel to the surface. In order to predict the flexion life to be measured by a flex test performed with reciprocating motion,
    For each of the plurality of laminate samples having different configurations, the thickness of each layer constituting the sample, the relationship between the stress and strain in each layer constituting the sample, and the interval between the fixed plate and the movable plate in the bending test And a first input means for inputting information on the line width and the inter-line width in the wiring layer of the sample,
    First calculation means for calculating a stress generated in the wiring layer of the sample, using information input by the first input means;
    A second input means for inputting a bending life of each of the plurality of samples measured by the bending test;
    Based on the stress generated in the wiring layer of each sample calculated by the first calculating means and the bending life of each sample input by the second input means, the wiring in the laminate of any configuration Means for determining the relationship between the stress generated in the layer and the flex life,
    For the virtual laminate that is the object for predicting the flex life, the thickness of each layer constituting the virtual laminate, the relationship between the stress and strain in each layer constituting the virtual laminate, and the fixation in the flex test A third input means for inputting information on the distance between the plate and the movable plate, and the line width and the line width in the wiring layer of the virtual laminate;
    Second calculation means for calculating a stress generated in the wiring layer of the virtual laminate using the information input by the third input means; and the virtual laminate calculated by the second calculation means. Means for predicting the bending life of the virtual laminate based on the stress generated in the wiring layer of the body and the relationship between the stress and the bending life determined by the means for determining the relationship between the stress and the bending life;
    Flex life prediction program for laminates to function as
  12.  積層体の屈曲寿命予測プログラムを記録したコンピュータ読み取り可能な記録媒体であって、
     前記プログラムは、ベース層と、パターン化された導体よりなる配線層とを含む積層された複数の層を有し、一方向に延び、屈曲可能な積層体について、所定の間隔を開けて配置された固定板と可動板の間に前記積層体をU字形状に屈曲させて介挿し且つ前記積層体の長手方向の各端部をそれぞれ前記固定板と可動板とに固定し、可動板をその面に平行な方向に往復運動させて行う屈曲試験によって測定されるべき屈曲寿命を予測するために、コンピュータを、
     互いに異なる構成の複数の前記積層体の試料の各々について、前記試料を構成する各層の厚みと、前記試料を構成する各層における応力とひずみの関係と、前記屈曲試験における固定板と可動板の間隔と、前記試料の配線層における線幅および線間幅の各情報を入力する第1の入力手段、
     前記第1の入力手段によって入力された情報を用いて、前記試料の配線層に生じる応力を算出する第1の算出手段、
     前記屈曲試験によって測定された前記複数の試料の各々の屈曲寿命を入力する第2の入力手段、
     前記第1の算出手段によって算出された各試料の配線層に生じる応力と、前記第2の入力手段によって入力された各試料の屈曲寿命とに基づいて、任意の構成の前記積層体における前記配線層に生じる応力と屈曲寿命との関係を求める手段、
     屈曲寿命を予測する対象である仮想の前記積層体について、前記仮想の積層体を構成する各層の厚みと、前記仮想の積層体を構成する各層における応力とひずみの関係と、前記屈曲試験における固定板と可動板の間隔と、前記仮想の積層体の配線層における線幅および線間幅の各情報を入力する第3の入力手段、
     前記第3の入力手段によって入力された情報を用いて、前記仮想の積層体の配線層に生じる応力を算出する第2の算出手段、および
     前記第2の算出手段によって算出された前記仮想の積層体の配線層に生じる応力と、前記応力と屈曲寿命との関係を求める手段によって求められた前記応力と屈曲寿命との関係とに基づいて、前記仮想の積層体の屈曲寿命を予測する手段、
    として機能させることを特徴とする記録媒体。
    A computer-readable recording medium in which a bending life prediction program for a laminate is recorded,
    The program has a plurality of laminated layers including a base layer and a wiring layer made of a patterned conductor, and is arranged at a predetermined interval with respect to a laminate that extends in one direction and can be bent. The laminated body is bent in a U shape between the fixed plate and the movable plate, and each end in the longitudinal direction of the laminated body is fixed to the fixed plate and the movable plate, and the movable plate is placed on the surface. In order to predict the bending life to be measured by a bending test performed by reciprocating in parallel directions,
    For each of the plurality of laminate samples having different configurations, the thickness of each layer constituting the sample, the relationship between the stress and strain in each layer constituting the sample, and the interval between the fixed plate and the movable plate in the bending test And a first input means for inputting information on the line width and the inter-line width in the wiring layer of the sample,
    First calculation means for calculating a stress generated in the wiring layer of the sample, using information input by the first input means;
    A second input means for inputting a bending life of each of the plurality of samples measured by the bending test;
    Based on the stress generated in the wiring layer of each sample calculated by the first calculating means and the bending life of each sample input by the second input means, the wiring in the laminate of any configuration Means for determining the relationship between the stress generated in the layer and the flex life,
    For the virtual laminate that is the object for predicting the flex life, the thickness of each layer constituting the virtual laminate, the relationship between the stress and strain in each layer constituting the virtual laminate, and the fixation in the flex test A third input means for inputting information on the distance between the plate and the movable plate, and the line width and the line width in the wiring layer of the virtual laminate;
    Second calculation means for calculating a stress generated in the wiring layer of the virtual laminate using the information input by the third input means; and the virtual laminate calculated by the second calculation means. Means for predicting the bending life of the virtual laminate based on the stress generated in the wiring layer of the body and the relationship between the stress and the bending life determined by the means for determining the relationship between the stress and the bending life;
    A recording medium characterized by functioning as a recording medium.
PCT/JP2009/053912 2008-03-04 2009-03-03 Method of predicting bend lifetime of laminated body, prediction device of bend lifetime of laminated body, prediction program of bend lifetime of laminated body, and recording medium WO2009110440A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200980107719.2A CN101960283B (en) 2008-03-04 2009-03-03 Method of predicting bend lifetime of laminated body, prediction device of bend lifetime of laminated body
JP2010501901A JP5248595B2 (en) 2008-03-04 2009-03-03 Bending life prediction method for laminated body, bending life prediction apparatus for laminated body, bending life prediction program for laminated body, and recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-053763 2008-03-04
JP2008053763 2008-03-04

Publications (1)

Publication Number Publication Date
WO2009110440A1 true WO2009110440A1 (en) 2009-09-11

Family

ID=41055995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053912 WO2009110440A1 (en) 2008-03-04 2009-03-03 Method of predicting bend lifetime of laminated body, prediction device of bend lifetime of laminated body, prediction program of bend lifetime of laminated body, and recording medium

Country Status (5)

Country Link
JP (1) JP5248595B2 (en)
KR (1) KR20100138889A (en)
CN (1) CN101960283B (en)
TW (1) TWI460425B (en)
WO (1) WO2009110440A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101870076A (en) * 2010-07-02 2010-10-27 西南交通大学 Method for predicting service life of guide pair of numerical control machine on basis of performance degradation model
WO2013002271A1 (en) * 2011-06-30 2013-01-03 大電株式会社 Method for selecting flex-resistant conductive material, and cable using same
JP2014130048A (en) * 2012-12-28 2014-07-10 Nippon Steel & Sumikin Chemical Co Ltd Bending resistance testing device and method for flexible circuit board
CN108801818A (en) * 2018-05-30 2018-11-13 上海与德通讯技术有限公司 Bending mechanism
CN113092281A (en) * 2021-03-29 2021-07-09 上海南洋-藤仓电缆有限公司 Flat elevator traveling cable service life accelerated evaluation test method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102404294B1 (en) * 2014-09-30 2022-05-31 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Flexible printed circuit board and electronic device
CN108254949B (en) * 2018-01-26 2021-01-01 惠州市华星光电技术有限公司 Method for estimating service life and maximum curvature of liquid crystal panel in curved surface state
CN109490093B (en) * 2018-10-17 2021-04-20 欣强电子(清远)有限公司 Bending angle performance detection device for rigid-flex board
JP7347197B2 (en) * 2019-12-19 2023-09-20 トヨタ自動車株式会社 Manufacturing method and manufacturing device for rotating electrical machine core
CN114577451B (en) * 2022-02-24 2023-08-01 苏州华星光电技术有限公司 Method for testing service life of display panel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02190742A (en) * 1989-01-20 1990-07-26 Shinetsu Eng Kk High speed bending and vibrating method for test piece and device therefor
JPH08166333A (en) * 1994-10-11 1996-06-25 Sumitomo Electric Ind Ltd Estimation method of bend-resistant life of composite body and evaluation method of bend-resistant property of composite body
WO2001008172A1 (en) * 1999-07-26 2001-02-01 Sumitomo Wiring Systems, Ltd. Method of predicting bending life of electric wire or electric wire bundle

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100444177C (en) * 2002-11-28 2008-12-17 矢崎总业株式会社 Method and apparatus for predicting bending life spans of electric wires and/or wire protecting members induced by vibrations, an d recording medium storing program
TWI300125B (en) * 2005-12-20 2008-08-21 Ind Tech Res Inst Apparatus and method for continuously bending flexible device
KR100961259B1 (en) * 2008-07-14 2010-06-03 한국전자통신연구원 Wireless terminal and control method for diffusing smell thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02190742A (en) * 1989-01-20 1990-07-26 Shinetsu Eng Kk High speed bending and vibrating method for test piece and device therefor
JPH08166333A (en) * 1994-10-11 1996-06-25 Sumitomo Electric Ind Ltd Estimation method of bend-resistant life of composite body and evaluation method of bend-resistant property of composite body
WO2001008172A1 (en) * 1999-07-26 2001-02-01 Sumitomo Wiring Systems, Ltd. Method of predicting bending life of electric wire or electric wire bundle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101870076A (en) * 2010-07-02 2010-10-27 西南交通大学 Method for predicting service life of guide pair of numerical control machine on basis of performance degradation model
WO2013002271A1 (en) * 2011-06-30 2013-01-03 大電株式会社 Method for selecting flex-resistant conductive material, and cable using same
JP2014130048A (en) * 2012-12-28 2014-07-10 Nippon Steel & Sumikin Chemical Co Ltd Bending resistance testing device and method for flexible circuit board
CN108801818A (en) * 2018-05-30 2018-11-13 上海与德通讯技术有限公司 Bending mechanism
CN113092281A (en) * 2021-03-29 2021-07-09 上海南洋-藤仓电缆有限公司 Flat elevator traveling cable service life accelerated evaluation test method
CN113092281B (en) * 2021-03-29 2023-03-17 上海南洋-藤仓电缆有限公司 Flat elevator traveling cable service life accelerated evaluation test method

Also Published As

Publication number Publication date
TWI460425B (en) 2014-11-11
JP5248595B2 (en) 2013-07-31
JPWO2009110440A1 (en) 2011-07-14
CN101960283A (en) 2011-01-26
KR20100138889A (en) 2010-12-31
TW200944793A (en) 2009-11-01
CN101960283B (en) 2014-02-19

Similar Documents

Publication Publication Date Title
JP5248595B2 (en) Bending life prediction method for laminated body, bending life prediction apparatus for laminated body, bending life prediction program for laminated body, and recording medium
US8198542B2 (en) Flexible printed circuit board and method of manufacturing the same
Gresil et al. Predictive modeling of electromechanical impedance spectroscopy for composite materials
Yoon et al. Kirchhoff plate theory-based electromechanically-coupled analytical model considering inertia and stiffness effects of a surface-bonded piezoelectric patch
TWI736774B (en) Bend limit film
EP2023110A1 (en) Array type capacitance sensor
Matsunaga Interlaminar stress analysis of laminated composite beams according to global higher-order deformation theories
US7492553B2 (en) Suspension, head gimbal assembly with a multilayered and reinforced suspension and disk drive apparatus with head gimbal assembly
Kim et al. Efficient analysis of laminated composite and sandwich plates with interfacial imperfections
Wu et al. A unified formulation of PVD-based finite cylindrical layer methods for functionally graded material sandwich cylinders
Gao et al. Tuning the wrinkling patterns of an interfacial/coating layer via a regulation interphase
JP4860185B2 (en) Flexible circuit board
Schoeftner et al. Theoretical prediction and experimental verification of shape control of beams with piezoelectric patches and resistive circuits
Madgav et al. Uniplexing and multiplexing of PZT transducers for structural health monitoring
US20060036978A1 (en) Board design aiding apparatus, board design aiding method and board design aiding program
JP2007079833A (en) Wiring pattern design device, method and program
Benasciutti et al. On the optimal bending deflection of piezoelectric scavengers
US7337417B2 (en) Method of supporting wiring design, supporting apparatus using the method, and computer-readable recording medium
JP7147831B2 (en) Elastic matrix determination method and vibration analysis method for laminated core of transformer
JP2007114061A (en) Strain measuring method and apparatus therefor
Mellouli et al. Electromechanical behavior of piezolaminated shell structures with imperfect functionally graded porous materials using an improved solid-shell element
CN117787208B (en) Printed circuit board deformation simulation method and device, electronic equipment and storage medium
Nadella et al. Piezoelectric coupled LISA for guided wave generation and propagation
JP2007333408A (en) Stress sensor
JP2007193452A (en) Laminated glass modeling device, laminated glass modeling method, and laminated glass modeling program

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980107719.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09717836

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2010501901

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107018877

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09717836

Country of ref document: EP

Kind code of ref document: A1