WO2009110339A1 - Device package, electronic module, and electronic apparatus - Google Patents

Device package, electronic module, and electronic apparatus Download PDF

Info

Publication number
WO2009110339A1
WO2009110339A1 PCT/JP2009/053165 JP2009053165W WO2009110339A1 WO 2009110339 A1 WO2009110339 A1 WO 2009110339A1 JP 2009053165 W JP2009053165 W JP 2009053165W WO 2009110339 A1 WO2009110339 A1 WO 2009110339A1
Authority
WO
WIPO (PCT)
Prior art keywords
bonding material
bonding
region
device package
members
Prior art date
Application number
PCT/JP2009/053165
Other languages
French (fr)
Japanese (ja)
Inventor
真司 渡邉
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2010501850A priority Critical patent/JPWO2009110339A1/en
Publication of WO2009110339A1 publication Critical patent/WO2009110339A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0016Brazing of electronic components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/10Containers; Seals characterised by the material or arrangement of seals between parts, e.g. between cap and base of the container or between leads and walls of the container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention is based on the priority claim of Japanese patent application: Japanese Patent Application No. 2008-052164 (filed on Mar. 3, 2008), the entire contents of which are incorporated herein by reference. Shall.
  • the present invention relates to a device package having a hollow structure, and more particularly, to a device package in which the inside of the hollow structure is decompressed and hermetically sealed, an electronic module using the device package, and an electronic apparatus.
  • Patent Document 1 As a device package in which such a device is hermetically sealed inside a hollow structure, in Patent Document 1, a ceramic base 110, a metallized layer 111 formed around the main surface of the ceramic base 110, and a metallized layer 111 are disclosed.
  • the electronic component package 101 includes a plating layer 112 formed on the upper surface of the metal layer 102 and a metal lid 102 bonded to the plating layer 112 by an electron beam or a laser beam.
  • the metallized layer 111 has a flatness of 5 ⁇ m or less. Is disclosed (conventional example 1; see FIG. 15).
  • the flatness of the metallized layer 111 is 5 ⁇ m or less, the flatness of the surface of the plating layer 112 formed thereon is also good, and an electron beam or a laser beam with the metal lid 102 is used. It is said that the airtight yield of the joint is improved and the reliability of the joint is also improved.
  • a semiconductor substrate 202 and a cap substrate 204 arranged at a distance 203 from the surface 202 a of the semiconductor substrate 202 are provided, and the semiconductor of the cap substrate 204 is interposed between the semiconductor substrate 202 and the cap substrate 204.
  • a semiconductor package 201 provided with a spacer 205 protruding from a surface 204a facing the substrate 202, and an adhesive layer 206 for bonding and fixing the spacer 205 and the semiconductor substrate 202 (conventional example 2; FIG. 16). According to this, it is assumed that the semiconductor package 201 can be manufactured in which the distance 203 between the semiconductor substrate 202 and the cap substrate 204 is kept uniform and the distance 203 between the semiconductor substrate 202 and the cap substrate 204 is freely controlled.
  • a device having a fine operation part using micromachine technology has an influence that the operation part is influenced by air, for example, air resistance, heat conduction to air, etc., cannot be ignored in securing the characteristics of the device. Yes. Therefore, in order to reduce the influence of air in the working part, a highly airtight package having a high degree of vacuum by reducing the pressure inside the hollow structure has been strongly demanded.
  • Patent Documents 1 and 2 are incorporated herein by reference.
  • the following analysis is given by the present invention.
  • the inside of the hollow structure is kept at a high degree of vacuum, atmospheric pressure is applied to the structural members of the package, and a large stress is generated at the joint between the structural members.
  • an increase in the size of the package helps increase this stress. For this reason, it is essential to select a structure and material that can withstand this stress.
  • the adhesive strength of the adhesive is insufficient if the inside of the hollow structure is a large vacuum package.
  • the bonding strength that can withstand the stress generated by the atmospheric pressure cannot be secured.
  • the main object of the present invention is to improve the productivity and the hermetic sealing reliability in the device package in which the inside of the hollow structure is decompressed, the structural members can be joined even with a relatively low load.
  • a device package in which a device element is arranged inside a hollow structure of a package formed by bonding a plurality of members, and an outer peripheral edge portion of a bonding region between the plurality of members And a first bonding material for joining the plurality of members, and a region of the inner peripheral edge of the joining region between the plurality of members,
  • a bonding material pattern having a second bonding material for bonding the plurality of members, and the inside of the hollow structure is depressurized, in a region between the first bonding material and the second bonding material. It is characterized by having a void.
  • the bonding area can be reduced while maintaining the bonding strength of the bonding portion of the package, the bonding load at the time of manufacturing can be reduced, and even a large-sized depressurized airtight package can be produced.
  • a highly airtight structure can be realized.
  • by providing a space in the region between the first bonding material and the second bonding material it is possible to prevent the progress of cracks in this space and realize a hermetic structure with high hermetic sealing reliability in which a leak path is unlikely to occur. can do.
  • FIG. 1A is a cross-sectional view schematically showing a configuration of a device package according to a first embodiment of the present invention
  • FIG. It is sectional drawing which showed typically the structure before the assembly of the device package which concerns on Example 1 of this invention. It is a figure for demonstrating the stress which generate
  • FIG. 4A is a cross-sectional view schematically showing a configuration of a device package according to a second embodiment of the present invention
  • FIG. 4B is a cross-sectional view taken along line XX ′.
  • FIG. 6A is a cross-sectional view schematically showing a configuration of a device package according to Example 3 of the present invention
  • FIG. 6B is a cross-sectional view taken along the line XX ′.
  • region C which showed typically the joining material of the device package which concerns on Example 4 of this invention.
  • a device element (1a in FIG. 1) is arranged inside a hollow structure of a package formed by joining a plurality of members (base 1, cap 2, spacer 3 in FIG. 1).
  • the device package is disposed so as to include an outer peripheral edge region of a bonding region between the plurality of members (between the base 1 and the spacer 3 and between the cap 2 and the spacer 3 in FIG. 1).
  • the inner peripheral edge region of the joining region between the base 1 and the spacer 3 and between the cap 2 and the spacer 3 is included.
  • a second bonding material (4b in FIG. 1), and the inside of the hollow structure is depressurized, and the first bonding material (4a in FIG. 1) and the above There is a void in the region between the second bonding materials (4b in FIG. 1) (form 1).
  • the following forms are also possible.
  • the region between the first bonding material and the second bonding material is arranged by the first bonding material and the second bonding material among the bonding regions between the plurality of members. It is preferable that the stress is smaller than the stress applied to the provided region (Mode 1-1).
  • the first bonding material and the second bonding material are preferably metal materials (Mode 1-2).
  • the bonding material pattern is disposed at a predetermined interval from each of the first bonding material and the second bonding material in a part of a space in a region between the first bonding material and the second bonding material. And having one or a plurality of third bonding materials for bonding the plurality of members, between the first bonding material and the third bonding material, and between the second bonding material and the third bonding material. It is preferable to have a void in each of the regions (Form 1-3).
  • the bonding material pattern is disposed in a part of a space in a region between the first bonding material and the third bonding material and connected to each of the first bonding material and the third bonding material. It is preferable to have a plurality of fourth bonding materials for bonding the plurality of members, and to have a void in a region surrounded by the first bonding material, the third bonding material, and the fourth bonding material ( Form 1-4). It is preferable that the shape of the corner of the void in the region surrounded by the first bonding material, the third bonding material, and the fourth bonding material is formed in an arc shape (Embodiment 1-5).
  • the bonding material pattern is disposed in a part of a space in a region between the second bonding material and the third bonding material and connected to each of the second bonding material and the third bonding material.
  • the plurality of fifth bonding materials for bonding the plurality of members are provided, and a space is provided in a region surrounded by the second bonding material, the third bonding material, and the fifth bonding material ( Form 1-6).
  • the shape of the corner of the void in the region surrounded by the second bonding material, the third bonding material, and the fifth bonding material is preferably formed in an arc shape (Embodiment 1-7).
  • the fourth bonding material and the fifth bonding material are arranged so that at least one of the fourth bonding material and the fifth bonding material does not exist on the radiation from the center of the package.
  • the bonding material pattern is disposed in a part of a space in a region between the plurality of third bonding materials, and is connected to each of the third bonding materials, and a plurality of bonding members bonding the plurality of members. It is preferable to have a void in a region surrounded by the third bonding material and the sixth bonding material (Mode 1-9).
  • the shape of the corner of the void in the region surrounded by the third bonding material and the sixth bonding material is preferably formed in an arc shape (Embodiment 1-10).
  • the fourth bonding material, the fifth bonding material, and the sixth bonding material at least one of the fourth bonding material and the fifth bonding material does not exist on the radiation from the central portion of the package. It is preferable to be disposed (Mode 1-11). It is preferable that one member of the plurality of members is provided with a bonding material in the entire region of the bonding region between the plurality of members (Mode 1-12). It is preferable that at least a barrier layer interposed between the plurality of members and the bonding material pattern is provided (Mode 1-13). It is preferable that a filling material made of a material having a lower elastic modulus than that of the bonding material is provided in the space in the bonding region between the plurality of members (Mode 1-14).
  • the filling material is preferably made of any one of a metal material, a resin material, and a liquid (Form 1-15).
  • the plurality of members are disposed on a base on which a device element is formed or mounted, a frame-shaped spacer disposed on an outer periphery of the device element of the base, and an opposite side of the spacer to the base side.
  • a cap that covers a space on the inner peripheral side of the spacer, and the first bonding material is formed between the base and the spacer, and the outer peripheral edge of each bonding region between the spacer and the cap.
  • the second bonding material is disposed so as to include a region of an inner peripheral edge of each bonding region between the base and the spacer and between the spacer and the cap.
  • the plurality of members include a base on which a device element is formed or mounted, and a cap in which a recess is formed in a region including the device element on a surface on the base side, and the first bonding material includes the base And the second bonding material is disposed so as to include a region of an inner peripheral edge of a bonding region between the base and the cap. It is preferable to be provided (Mode 1-17).
  • Embodiment 2 of the present invention is characterized in that an electronic module includes the device package (Mode 2).
  • Embodiment 3 of the present invention is characterized in that an electronic device includes the device package or the electronic module (Mode 3).
  • FIG. 1A is a cross-sectional view schematically showing a configuration of a device package according to Embodiment 1 of the present invention
  • FIG. 1B is a cross-sectional view taken along a line XX ′
  • FIG. 2 is a cross-sectional view schematically showing a configuration of the device package according to the first embodiment of the present invention before assembly.
  • the device package is a device package having a hollow structure, and the inside of the hollow structure is decompressed and hermetically sealed.
  • a device element 1a is arranged inside a hollow structure.
  • the device package is mounted on an electronic module or electronic device.
  • the device package includes a base 1, a device element 1a, a cap 2, a spacer 3, and bonding materials 4a and 4b.
  • the base 1 is a substrate in which the device element 1a is formed in the inner region of the hollow structure.
  • the base 1 is bonded to the spacer 3 via bonding materials 4a and 4b at the peripheral edge (region on the outer periphery of the region where the device element 1a is formed).
  • FIG. 1 shows an example in which the device element 1a is formed directly on the silicon, but the present invention is not limited to this.
  • the device chip is fixed on the base 1 with a fixing material such as a die bonding material. It may be a configuration implemented via In this case, for example, glass, ceramic or the like can be used as the material of the base 1. Therefore, the material of the base 1 is not limited to silicon, and a wide range of materials can be used.
  • the device element 1 a is an element formed on the inner side of the hollow structure of the base 1.
  • the device element 1a can be, for example, a sensing device formed on a silicon wafer by silicon microfabrication technology, which is one of micromachine technologies, and fine operating parts can be arranged in a matrix.
  • the internal environment of the hollow structure required differs depending on the content of the sensing function of the device element 1a, but in general, the air resistance of gas including air and the heat conduction to the gas may affect the device characteristics.
  • These device elements 1a are required to have a high degree of vacuum due to reduced pressure.
  • the device element 1a may be a device chip and may be mounted on the base 1 via a fixing material such as a die bonding material.
  • the cap 2 is a lid having a hollow structure.
  • the cap 2 is joined to the spacer 3 via the joining materials 4a and 4b at the periphery.
  • the spacer 3 is a frame-like member disposed between the base 1 and the cap 2.
  • the spacer 3 is bonded to the base 1 via bonding materials 4a and 4b on the surface on the base 1 side.
  • the spacer 3 is bonded to the cap 2 via bonding materials 4a and 4b on the surface on the cap 2 side.
  • each thermal expansion coefficient is near, More preferably, by using the same material for all of these. is there.
  • resin, glass, metal or the like can be used.
  • the bonding materials 4a and 4b are materials for bonding between the base 1 and the spacer 3 and between the cap 2 and the spacer 3.
  • the bonding material 4a is a bonding material arranged so as to include the region of the outer peripheral edge of the spacer 3, and is arranged in a frame shape.
  • the bonding material 4b is a bonding material arranged so as to include a region of the inner peripheral edge portion of the spacer 3, and is arranged in a frame shape with a predetermined interval from the bonding material 4a on the inner peripheral side of the bonding material 4a. ing. There is a space between the bonding material 4a and the bonding material 4b.
  • As the bonding materials 4a and 4b for example, Au formed by plating or vapor deposition can be used.
  • Au—Au bonding is generally known as a material that can be thermocompression bonded at a relatively low temperature and low pressure, and since it is a proven bonding material, it is used as the bonding material 4a, 4b. It is not limited to Au.
  • the device package according to Example 1 can be manufactured by combining the components configured as shown in FIG. 2 and performing heating and pressurization in a vacuum chamber. Thereby, an airtight sealed package in which the inside of the hollow structure is decompressed can be obtained. Note that the space between the bonding materials 4a and 4b is also a reduced-pressure atmosphere as in the hollow structure.
  • FIG. 3 is a diagram for explaining the stress generated in the joint portion of the device package according to the comparative example.
  • FIG. 4 is a graph schematically showing the stress distribution applied to the bonding material of the device package according to the comparative example.
  • the bonding material 4 is provided between the base 1 and the spacer 3 and between the cap 2 and the spacer 3. (See FIG. 1).
  • the inside of the hollow structure of the device package according to the comparative example is kept at a high degree of vacuum.
  • the outside of the package is at atmospheric pressure, and atmospheric pressure is applied to the entire outer surface of the package. Since the cap 2 and the base 1 are supported by the spacer 3 at the peripheral portion, a force is generated in the cap 2 and the base 1 in a direction in which the space inside the hollow structure is narrowed. Then, as shown in FIG.
  • a moment force that is a compressive stress in the direction of the arrow is applied to the portion on the inner end side of the joint portion of the joint material 4, and a portion in the direction of the arrow is present on the outer end side of the joint portion of the joint material 4.
  • a moment force that becomes a tensile stress is applied. Therefore, in the configuration in which the bonding material 4 is provided between the base 1 and the spacer 3 and between the cap 2 and the spacer 3 as in the device package according to the comparative example, the strength of the bonding material 4 is affected by these stresses.
  • the bonding material 4 breaks, a leak path is formed from the outer end of the bonding portion to the inner end of the bonding portion, air leaks into the hollow structure, and device characteristics cannot be secured.
  • a malfunction occurs. That is, as in the comparative example (see FIG. 3A), when the joint portion is constituted by one round, a crack is likely to occur at a location where the tensile stress on the outer circumference of the spacer 3 is maximized. Once a crack occurs, even if it is a micro crack that is not broken, the crack is likely to progress and grow from the outer edge of the bonding material 4 to the inner edge of the bonding portion, leading to a leak path. If the bonding material 4 is present between the base 1 and the spacer 3 and between the cap 2 and the spacer 3, it is impossible to prevent the crack from proceeding.
  • the stress distribution applied to the bonding material 4 of the device package according to the comparative example is as shown in FIG.
  • the horizontal axis shows the position when the outer end of the bonding material 4 is zero and the bonding width of the inner end of the bonding material 4 (the end on the inner side of the hollow structure) is 1 mm.
  • the vertical axis shows the stress when the maximum stress is 1 for the tensile stress and ⁇ 1 for the compressive stress as the stress index.
  • thermal stress is not considered. From the graph of FIG. 4, the stress is concentrated near the end of the joint (in the range of 0 to 0.2 mm, 0.8 to 1 mm), and in the range of 0.2 to 0.8 mm, the stress sharply decreases. It can be seen that almost no stress is applied.
  • Example 1 (refer FIG. 1), it is set as the structure which has arrange
  • the joining area reduction rate of Example 1 is about 2/5 of the joining area of the comparative example, and the joining weight can be reduced at the same rate.
  • the bonding materials 4a and 4b protrude from the spacer 3 to the outer peripheral side and the inner peripheral side, the protruding portion does not contribute to the weight during the bonding, and therefore, the arrangement of the protruding portion does not matter.
  • the bonding material 4 a on the base 1 may be larger than the range of the spacer 3. This corresponds to the arrangement in the vicinity of both end portions of the bonding material 4 shown in FIG.
  • the bonding area can be reduced while maintaining the bonding strength of the bonding portion of the package, and the bonding load at the time of manufacturing can be reduced.
  • cracks are generated in one of the bonding materials 4a and 4b by arranging the bonding material 4a and 4b separately in the outer peripheral region and the inner peripheral region of the spacer 3, respectively. Even if a leak path is formed, since the crack does not advance in the other of the bonding materials 4a and 4b, the leak can be prevented. Therefore, an airtight package with higher airtight sealing reliability can be provided.
  • Example 1 In Conventional Example 1 (see FIG. 15), a local heating means using a laser beam or an electron beam is used as a means for joining the metal lid and the plating layer. When used, the fact that heat escapes to the entire device has been described in [Problems to be Solved by the Invention].
  • a metal material is used as a bonding material, and metal bonding is performed by applying pressure while heating the entire surface of at least one of a wafer, an individual base substrate, and a cap component. “Thermocompression bonding method” is regarded as promising, and the practical application of a package size of about 5 mm square or less is under consideration.
  • the bonding width needs to be a corresponding width.
  • the problem is that a large amount of pressure is required.
  • Au—Au thermocompression bonding is generally used as a bonding material that can be bonded at a relatively low pressure and low temperature and has high bonding reliability, but at a heating temperature of 200 to 300 ° C.
  • the load required for joining is about 300 MPa.
  • the bonding width that can withstand atmospheric pressure is calculated by simulation with a safety factor of twice, and a bonding width of about 1mm is required around the package. In this case, the pressurizing force required for joining is about 1.9 t.
  • the material properties used in this simulation are that of the base 1, the cap 2 and the spacer 3 all of which are silicon properties.
  • Example 1 the bonding area can be reduced while maintaining the bonding strength of the bonding portion of the large package, and it has succeeded in reducing the bonding weight at the time of manufacturing.
  • FIG. 5 is a cross-sectional view schematically showing the configuration of the device package according to the second embodiment of the present invention, (A) and (B) XX ′.
  • Example 2 the bonding material 4c separated from the bonding materials 4a and 4b is disposed in the space between the bonding material 4a and the bonding material 4b in order to further improve the reliability of the hermetic sealing.
  • Other configurations are the same as those of the first embodiment.
  • the bonding material 4 c is a material for bonding between the base 1 and the spacer 3 and between the cap 2 and the spacer 3.
  • the bonding material 4c is a bonding material disposed in a part of a region between the bonding material 4a and the bonding material 4b, and is disposed in a frame shape with a predetermined interval from each of the bonding material 4a and the bonding material 4b. Yes. There are voids between the bonding material 4c and the bonding material 4a and between the bonding material 4c and the bonding material 4b.
  • the bonding material 4c the same material as the bonding materials 4a and 4b can be used.
  • the risk of leakage path can be drastically reduced by increasing the number of divisions of the bonding materials 4a, 4b, and 4c.
  • the risk of cracking is reduced by placing the bonding material 4c in a region where stress is hardly generated (corresponding to 0.4 to 0.6 mm in FIG. 3), and the hermetic sealing reliability is greatly improved. be able to.
  • FIG. 6A is a cross-sectional view schematically showing the configuration of a device package according to Example 3 of the present invention
  • FIG. 6B is a cross-sectional view between XX ′.
  • Example 3 the cap 12 in which the cap (2 in FIG. 5) and the spacer (3 in FIG. 5) of Example 2 are integrated is used, and the cap (2 in FIG. 5) and the spacer (2 in FIG. 5) are used.
  • the bonding materials 4a, 4b, and 4c between 3) are omitted.
  • Other configurations are the same as those of the second embodiment.
  • the cap 12 is a hollow structure lid.
  • the cap 12 has a recess 12a formed on the surface on the base 1 side in a region including the device element 1a.
  • the cap 12 is bonded to the base 1 via bonding materials 4a, 4b, and 4c on the surface of the protruding portion on the outer periphery of the recess 12a.
  • the risk of leakage can be reduced by reducing the number of joints where a leak path may occur within the allowable range of part workability and price.
  • FIG. 6 shows an example in which the cap (2 in FIG. 5) and the spacer (3 in FIG. 5) of Example 2 are integrated, but in addition to this, the base (1 in FIG. 5) and the spacer (FIG. 5) are shown. 5-3) may be integrated. Also in this case, the number of joints is reduced, and the risk of leakage can be reduced.
  • FIG. 7 is a cross-sectional view schematically showing a pattern of a bonding material of a device package according to Example 4 of the present invention.
  • FIG. 8 is an enlarged cross-sectional view of a region C schematically showing the bonding material of the device package according to Example 4 of the present invention.
  • FIG. 7 is a cross-sectional view corresponding to FIGS. 5B and 6B.
  • the bonding material 4a and the bonding material are formed in a part of the region between the bonding material 4a and the bonding material 4c in the second embodiment (see FIG. 5B) and the third embodiment (see FIG. 6B).
  • a plurality of bonding materials 4d for connecting 4c are provided, and a plurality of bonding materials 4e for connecting the bonding material 4b and the bonding material 4c are provided in a part of a region between the bonding material 4b and the bonding material 4c.
  • Other configurations are the same as those in the second and third embodiments.
  • the bonding material 4d is a bonding material disposed in a part of a region between the bonding material 4a and the bonding material 4c.
  • the bonding material 4d partitions a space between the bonding material 4a and the bonding material 4c into a plurality.
  • As the bonding material 4d a material similar to the bonding materials 4a, 4b, and 4c can be used.
  • the bonding material 4e is a bonding material disposed in a part of a region between the bonding material 4b and the bonding material 4c.
  • the bonding material 4e partitions a space between the bonding material 4b and the bonding material 4c into a plurality.
  • the bonding material 4e can be the same material as the bonding materials 4a, 4b, and 4c.
  • both the bonding material 4e and the bonding material 4d do not exist on the radiation L from the central portion (stress generation center) of the package, that is, on the route where the crack advances due to the stress. Is provided. In this way, for example, even if the crack 7 progresses from the outer end side of the joint as shown in FIG. 8, only the crack 7 is generated in the joint materials 4a, 4d, and 4c. Cracks can be prevented from occurring.
  • Example 4 the number of vacant spaces in the region where the bonding materials 4a, 4b, 4c, 4d, and 4e are arranged increases, and a dramatic reduction in leakage risk can be expected. Further, by preventing the bonding material 4e and the bonding material 4d from being present on the radiation L from the central portion of the package, it is possible to prevent the occurrence of cracks from the outer end side of the bonding portion to the inner end side of the bonding portion. Can do.
  • FIG. 9 is a cross-sectional view schematically showing a pattern of a bonding material of a device package according to Example 5 of the present invention.
  • Example 5 the shape of the space surrounded by the bonding materials 4a, 4d, and 4c of Example 4 (see FIG. 7) and the corners of the space surrounded by the bonding materials 4b, 4e, and 4c are arcuate. It is what. Other configurations are the same as those in the fourth embodiment.
  • the corners of the voids surrounded by the bonding materials 4a, 4d, and 4c and the corners of the voids surrounded by the bonding materials 4b, 4e, and 4c are formed in an arc shape. It is possible to suppress the concentration of stress on the surface.
  • FIG. 10A is a cross-sectional view before assembly
  • FIG. 10B is a cross-sectional view after assembly, schematically showing the configuration of a device package according to Example 6 of the present invention.
  • bonding materials 4a, 4b, and 4c similar to those of the second embodiment are disposed in the bonding region of the base 1, and both surfaces of the spacer 3 are disposed.
  • the bonding material 4 is disposed in the entire bonding region, and the bonding materials 4a, 4b, and 4c similar to those of the second embodiment are disposed in the bonding region of the cap 2, and then, FIG. Assemble like this.
  • the bonding materials 4 a, 4 b, and 4 c are disposed in the bonding region between the base 1 and the cap 2, and the bonding material 4 is disposed in the entire bonding region on both surfaces of the spacer 3.
  • a space for preventing the progress of cracks can be secured in the range of the joint portion, so that the same effect as in the first to fifth embodiments can be expected.
  • FIG. 11 is sectional drawing which showed typically the structure of the base before the assembly of the device package which concerns on Example 7 of this invention.
  • FIG. 12 is an enlarged cross-sectional view of a region D schematically showing a structure of a base before assembly of a device package according to Example 7 of the present invention, and FIG. 12 (A) is a first example (B) and a second example. is there.
  • Example 7 the barrier layer 5 is disposed between the base 1 and the bonding materials 4a, 4b, and 4c.
  • a device package is assembled as in Example 2 (see FIG. 5) using the base 1 provided with such a barrier layer 5.
  • Other configurations are the same as those of the second embodiment.
  • Example 7 Au is used as the bonding material 4a, 4b, 4c.
  • the bonding material 4a, 4b, 4c is used as the bonding material 4a, 4b, 4c.
  • the bonding material By providing the barrier layer 5 as a base for 4a, 4b and 4c, the thickness can be ensured.
  • the barrier layer 5 is not particularly limited as long as it exists in the lower layer of the bonding materials 4a, 4b, and 4c, and has a structure formed only under the bonding materials 4a, 4b, and 4c as shown in FIG. Alternatively, as shown in FIG. 12B, a structure formed in a region including the lower portions of the bonding materials 4a, 4b, and 4c may be used.
  • TiN, TaN or the like can be used, and a multilayer structure may be formed by a plurality of materials. .
  • the configuration is not limited to this, and the spacer (3 in FIG. 5) and the bonding material ( A barrier layer is disposed between 4a, 4b, and 4c in FIG. 5, and a barrier layer is disposed between the cap (2 in FIG. 5) and the bonding material (4a, 4b, and 4c in FIG. 5). Is also possible.
  • Example 7 while having the same effect as Example 2, it is possible to secure a void between the bonding materials 4a, 4b, and 4c to prevent the progress of cracks by disposing the barrier layer 5.
  • the thickness between the base 1 and the spacer (3 in FIG. 2) can be secured.
  • FIG. 13 is sectional drawing which showed typically the pattern of the joining material of the device package which concerns on Example 8 of this invention, and a filling material.
  • Examples 1 to 7 a structure in which the material is intentionally not included in the space surrounded by the bonding materials 4a, 4b, and 4c in the bonding region is a reduced pressure environment equivalent to the inside of the hollow structure.
  • the filling material 6 different from the bonding materials 4a, 4b, and 4c is filled. Is.
  • Other configurations are the same as those of the second embodiment.
  • the main purpose of filling the filling material 6 into the space surrounded by the bonding materials 4a, 4b and 4c is to further improve the airtightness.
  • the elastic modulus of the filling material 6 needs to be lower than the elastic modulus of the bonding materials 4a, 4b, and 4c in the temperature range at the time of bonding. It is said.
  • the material of the filling material 6 is not specified, and for example, a resin material can be suitably used.
  • the resin material is sufficiently soft with respect to the bonding materials 4a, 4b, and 4c (for example, Au), the function of preventing the progress of cracks is not impaired by the presence of the resin material, and the bonding function is further provided. In addition, an effect of providing a function of assisting the bonding of the bonding materials 4a, 4b, and 4c can be expected, and an effect of blocking the leak path by the resin material filled in the voids can be expected.
  • a metal material can also be used for the filling material 6.
  • the filling material 6 can be a liquid material, for example, a viscous fluid, when only the effect of blocking the leak path is expected. Since the molecules of the liquid material are larger than the molecules of the gas, it is possible to prevent the leak particularly effectively against an extremely fine leak path through which only the gas passes.
  • FIG. 14 is a cross-sectional view schematically showing a configuration of a device package according to Example 9 of the present invention.
  • Embodiments 1 to 8 individual device packages are shown, but in Embodiment 9, a plurality of these device packages are connected to form multiple wafers to form a wafer.
  • Other configurations are the same as those in the first to eighth embodiments.
  • Example 9 a large number of packages can be bonded together, which is advantageous in terms of productivity.
  • a dividing device such as a dicer, a highly airtight device package equivalent to the individual package shown so far can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Micromachines (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

Disclosed is a device package having a decompressed hollow structure wherein structural members can be bonded even with low weighting and productivity and reliability of airtight sealing are enhanced. A device package having a device element disposed in the hollow structure of a package formed by bonding a base, a cap and a spacer is provided with a bonding material pattern having a first bonding material arranged to include the region of outer circumferential edge of the bonding regions between the base and the spacer and between the cap and the spacer, and a second bonding material arranged to include the region of inner circumferential edge of the bonding regions between the base and the spacer and between the cap and the spacer. Interior of the hollow structure is decompressed. A cavity is formed in the region between the first and second bonding materials.

Description

デバイスパッケージ、電子モジュール、及び電子機器Device package, electronic module, and electronic device
[関連出願の記載]
 本発明は、日本国特許出願:特願2008-052164号(2008年3月3日出願)の優先権主張に基づくものであり、同出願の全記載内容は引用をもって本書に組み込み記載されているものとする。
 本発明は、中空構造を有するデバイスパッケージに関し、特に、中空構造の内部が減圧され、かつ、気密封止されたデバイスパッケージ、及びこれを用いた電子モジュール、並びに電子機器に関する。
[Description of related applications]
The present invention is based on the priority claim of Japanese patent application: Japanese Patent Application No. 2008-052164 (filed on Mar. 3, 2008), the entire contents of which are incorporated herein by reference. Shall.
The present invention relates to a device package having a hollow structure, and more particularly, to a device package in which the inside of the hollow structure is decompressed and hermetically sealed, an electronic module using the device package, and an electronic apparatus.
 近年では、気密封止が必要とされるデバイスの種類が大幅に増加し、機能も多岐に渡っている。例えば、従来からあるデバイスとしては、水晶振動子、水晶フィルタ、受発光素子などであり、これらは1~5mm角程度の小型デバイスが主流である。一方、近年では、マイクロマシン技術を用いた微細な稼動部を有するデバイスが開発されるようになり、プロジェクタ用のミラーアレイデバイスや、赤外線カメラ用の赤外線検出素子アレイデバイスといった、素子がアレイ状に配されているものも開発されており、一つのパッケージサイズが10mm角を超える大型のデバイスが現れはじめている。 In recent years, the number of types of devices that require hermetic sealing has increased significantly, and their functions have been diversified. For example, conventional devices include a crystal resonator, a crystal filter, and a light emitting / receiving element, and these are mainly small devices of about 1 to 5 mm square. On the other hand, in recent years, devices having fine moving parts using micromachine technology have been developed, and elements such as mirror array devices for projectors and infrared detection element array devices for infrared cameras are arranged in an array. What is being developed has also been developed, and large devices whose package size exceeds 10 mm square are beginning to appear.
 このようなデバイスを中空構造の内部に気密封止したデバイスパッケージとして、特許文献1では、セラミック基体110と、セラミック基体110の主面周囲に周状に形成されたメタライズ層111と、メタライズ層111の上面に形成されるメッキ層112と、メッキ層112と電子ビームあるいはレーザビームにより接合される金属フタ102とからなる電子部品用パッケージ101であって、メタライズ層111は平坦度が5μm以下に平坦化されているものが開示されている(従来例1;図15参照)。これによれば、メタライズ層111の平坦度が5μm以下であるので、その上部に形成されるメッキ層112表面の平坦度も良好なものとなり、金属フタ102との電子ビームあるいはレーザビームを用いた接合の気密歩留まりが向上するとともに、接合の信頼性も向上するとしている。 As a device package in which such a device is hermetically sealed inside a hollow structure, in Patent Document 1, a ceramic base 110, a metallized layer 111 formed around the main surface of the ceramic base 110, and a metallized layer 111 are disclosed. The electronic component package 101 includes a plating layer 112 formed on the upper surface of the metal layer 102 and a metal lid 102 bonded to the plating layer 112 by an electron beam or a laser beam. The metallized layer 111 has a flatness of 5 μm or less. Is disclosed (conventional example 1; see FIG. 15). According to this, since the flatness of the metallized layer 111 is 5 μm or less, the flatness of the surface of the plating layer 112 formed thereon is also good, and an electron beam or a laser beam with the metal lid 102 is used. It is said that the airtight yield of the joint is improved and the reliability of the joint is also improved.
 また、特許文献2では、半導体基板202及びこの半導体基板202の表面202aから間隔203を介して配置されたキャップ基板204を備え、半導体基板202とキャップ基板204との間に、キャップ基板204の半導体基板202に対向する面204aから突設されたスペーサ205と、スペーサ205及び半導体基板202を接着固定する接着剤層206とが設けられている半導体パッケージ201が開示されている(従来例2;図16参照)。これによれば、半導体基板202とキャップ基板204との間隔203を均一に保ち、半導体基板202とキャップ基板204との間隔203を自由に制御した半導体パッケージ201の製造を可能にするとしている。 In Patent Document 2, a semiconductor substrate 202 and a cap substrate 204 arranged at a distance 203 from the surface 202 a of the semiconductor substrate 202 are provided, and the semiconductor of the cap substrate 204 is interposed between the semiconductor substrate 202 and the cap substrate 204. There is disclosed a semiconductor package 201 provided with a spacer 205 protruding from a surface 204a facing the substrate 202, and an adhesive layer 206 for bonding and fixing the spacer 205 and the semiconductor substrate 202 (conventional example 2; FIG. 16). According to this, it is assumed that the semiconductor package 201 can be manufactured in which the distance 203 between the semiconductor substrate 202 and the cap substrate 204 is kept uniform and the distance 203 between the semiconductor substrate 202 and the cap substrate 204 is freely controlled.
 ところで、マイクロマシン技術を用いた微細な稼動部を有するデバイスは、稼動部が空気の影響、例えば、空気抵抗、空気への熱伝導等の影響が、そのデバイスの特性確保に無視できない存在となっている。そこで、稼動部の空気の影響を軽減するために、中空構造の内部を減圧し、高い真空度を有する高気密のパッケージが強く求められるようになっている。 By the way, a device having a fine operation part using micromachine technology has an influence that the operation part is influenced by air, for example, air resistance, heat conduction to air, etc., cannot be ignored in securing the characteristics of the device. Yes. Therefore, in order to reduce the influence of air in the working part, a highly airtight package having a high degree of vacuum by reducing the pressure inside the hollow structure has been strongly demanded.
特許第3374395号公報(図1)Japanese Patent No. 3374395 (FIG. 1) 特開2006-147864号公報(図1)JP 2006-147864 A (FIG. 1)
 なお、上記特許文献1、2の全開示内容はその引用をもって本書に繰込み記載する。以下の分析は、本発明によって与えられたものである。
 しかしながら、中空構造の内部を高真空度に保つと、パッケージの構造部材に大気圧が加わり、構造部材間の接合部に大きな応力が発生する。しかも、パッケージの大型化がこの応力の増加を助長する。そのため、この応力に耐えうる構造、材料を選択することが必須となってくる。ところが、従来例2(図16参照)のようにスペーサと半導体基板の接合を接着剤を用いた構成では、中空構造の内部を高真空にした大型のパッケージとすると、接着剤の接着強度が不足し、大気圧によって発生する応力に耐えうる接合強度を確保することができないおそれがある。
The entire disclosures of Patent Documents 1 and 2 are incorporated herein by reference. The following analysis is given by the present invention.
However, if the inside of the hollow structure is kept at a high degree of vacuum, atmospheric pressure is applied to the structural members of the package, and a large stress is generated at the joint between the structural members. In addition, an increase in the size of the package helps increase this stress. For this reason, it is essential to select a structure and material that can withstand this stress. However, in the configuration using the adhesive for bonding the spacer and the semiconductor substrate as in the conventional example 2 (see FIG. 16), the adhesive strength of the adhesive is insufficient if the inside of the hollow structure is a large vacuum package. However, there is a possibility that the bonding strength that can withstand the stress generated by the atmospheric pressure cannot be secured.
 また、従来例1(図15参照)の構成において、電子素子部品にマイクロマシン技術で加工されるデバイスを用いる場合、レーザビームや電子ビームなどによる局所的な加熱手段で金属フタとメッキ層を接合させると、デバイス全域に熱が逃げてしまうので、このような局所的な加熱手段を用いることができないおそれがある。つまり、マイクロマシン技術で加工されるデバイスはシリコンウェハ上に形成されるものがほとんどであり、シリコンウェハの熱伝導率は、約160W/m・Kである。これは、SUSのような金属やセラミック材料の約10倍にもなり、レーザビームや電子ビームなどによる局所的な加熱手段では、シリコンウェハ全域に熱が逃げてしまうため、従来例1で挙げたようなレーザビームや電子ビームなどによる局所的な加熱手段が用いることができなくなるおそれがある。 Further, in the configuration of Conventional Example 1 (see FIG. 15), when a device processed by micromachine technology is used as an electronic element component, the metal lid and the plating layer are bonded by a local heating means such as a laser beam or an electron beam. Then, since heat escapes to the entire device area, there is a possibility that such a local heating means cannot be used. That is, most devices processed by micromachine technology are formed on a silicon wafer, and the thermal conductivity of the silicon wafer is about 160 W / m · K. This is about 10 times that of a metal or ceramic material such as SUS, and local heating means using a laser beam or an electron beam causes heat to escape to the entire silicon wafer. There is a possibility that a local heating means such as a laser beam or an electron beam cannot be used.
 さらに、中空構造の内部が減圧されたパッケージでは、構造部材間の接合部にクラックが発生した場合、それがたとえ微細なマイクロクラックであったとしても、パッケージ外周から中空構造の内部に至るリークパスができ、デバイスの特性を確保できなくなるおそれがある。特に、大型のパッケージになるほど、接合部への応力の増加が顕著となり、リークパスができやすくなる。このようなリークパスの発生を抑えるために、パッケージ外周方向に接合部を増やすと、パッケージサイズが大きくなるとともに、接合のための加重を更に高くせざるを得ず、これが更に生産性を低める要因となる。 Furthermore, in a package in which the inside of the hollow structure is depressurized, if a crack occurs at the joint between structural members, there is a leak path from the outer periphery of the package to the inside of the hollow structure even if it is a microcrack. There is a risk that device characteristics cannot be secured. In particular, the larger the package, the more the stress on the joint increases, and a leak path becomes easier. In order to suppress the occurrence of such a leak path, if the number of joints is increased in the package outer peripheral direction, the package size becomes large and the weight for joining must be further increased, which is a factor that further lowers productivity. Become.
 本発明の主な課題は、中空構造の内部が減圧されたデバイスパッケージにおいて、比較的低加重でも構造部材間の接合が可能で、生産性、及び気密封止信頼性を向上させることである。 The main object of the present invention is to improve the productivity and the hermetic sealing reliability in the device package in which the inside of the hollow structure is decompressed, the structural members can be joined even with a relatively low load.
 本発明の一視点においては、複数の部材が接合することによって形成されたパッケージの中空構造の内部にデバイス素子が配されたデバイスパッケージであって、前記複数の部材間の接合領域の外側周縁部の領域を含むように配設されるとともに、前記複数の部材間を接合する第1接合材料と、前記複数の部材間の接合領域の内側周縁部の領域を含むように配設されるとともに、前記複数の部材間を接合する第2接合材料と、を有する接合材料パターンを備え、前記中空構造の内部は、減圧されており、前記第1接合材料と前記第2接合材料の間の領域に空所を有することを特徴とする。 In one aspect of the present invention, a device package in which a device element is arranged inside a hollow structure of a package formed by bonding a plurality of members, and an outer peripheral edge portion of a bonding region between the plurality of members And a first bonding material for joining the plurality of members, and a region of the inner peripheral edge of the joining region between the plurality of members, A bonding material pattern having a second bonding material for bonding the plurality of members, and the inside of the hollow structure is depressurized, in a region between the first bonding material and the second bonding material. It is characterized by having a void.
 本発明によれば、パッケージの接合部の接合強度を保ったまま接合面積を低減させることができるので、製造する際の接合加重を低減させることができ、大型の減圧された気密パッケージにおいても生産性の高い気密構造を実現することができる。また、第1接合材料と第2接合材料の間の領域に空所を設けることで、この空所でクラックの進行を阻止でき、リークパスが発生しにくい気密封止信頼性の高い気密構造を実現することができる。 According to the present invention, since the bonding area can be reduced while maintaining the bonding strength of the bonding portion of the package, the bonding load at the time of manufacturing can be reduced, and even a large-sized depressurized airtight package can be produced. A highly airtight structure can be realized. In addition, by providing a space in the region between the first bonding material and the second bonding material, it is possible to prevent the progress of cracks in this space and realize a hermetic structure with high hermetic sealing reliability in which a leak path is unlikely to occur. can do.
本発明の実施例1に係るデバイスパッケージの構成を模式的に示した(A)断面図、(B)X-X´間の断面図である。1A is a cross-sectional view schematically showing a configuration of a device package according to a first embodiment of the present invention, and FIG. 本発明の実施例1に係るデバイスパッケージの組立前の構成を模式的に示した断面図である。It is sectional drawing which showed typically the structure before the assembly of the device package which concerns on Example 1 of this invention. 比較例に係るデバイスパッケージの接合部に発生する応力を説明するための図である。It is a figure for demonstrating the stress which generate | occur | produces in the junction part of the device package which concerns on a comparative example. 比較例に係るデバイスパッケージの接合材料に加わる応力分布を模式的に示したグラフである。It is the graph which showed typically the stress distribution added to the joining material of the device package concerning a comparative example. 本発明の実施例2に係るデバイスパッケージの構成を模式的に示した(A)断面図、(B)X-X´間の断面図である。FIG. 4A is a cross-sectional view schematically showing a configuration of a device package according to a second embodiment of the present invention, and FIG. 4B is a cross-sectional view taken along line XX ′. 本発明の実施例3に係るデバイスパッケージの構成を模式的に示した(A)断面図、(B)X-X´間の断面図である。FIG. 6A is a cross-sectional view schematically showing a configuration of a device package according to Example 3 of the present invention, and FIG. 6B is a cross-sectional view taken along the line XX ′. 本発明の実施例4に係るデバイスパッケージの接合材料のパターンを模式的に示した断面図である。It is sectional drawing which showed typically the pattern of the joining material of the device package which concerns on Example 4 of this invention. 本発明の実施例4に係るデバイスパッケージの接合材料を模式的に示した領域Cの拡大断面図である。It is the expanded sectional view of the area | region C which showed typically the joining material of the device package which concerns on Example 4 of this invention. 本発明の実施例5に係るデバイスパッケージの接合材料のパターンを模式的に示した断面図である。It is sectional drawing which showed typically the pattern of the joining material of the device package which concerns on Example 5 of this invention. 本発明の実施例6に係るデバイスパッケージの構成を模式的に示した(A)組立前の断面図、(B)組立後の断面図である。It is sectional drawing before the assembly which showed typically the structure of the device package which concerns on Example 6 of this invention, (A) It is sectional drawing after an assembly. 本発明の実施例7に係るデバイスパッケージの組立前のベースの構成を模式的に示した断面図である。It is sectional drawing which showed typically the structure of the base before the assembly of the device package which concerns on Example 7 of this invention. 本発明の実施例7に係るデバイスパッケージの組立前のベースの構成を模式的に示した領域Dの拡大断面図であり、(A)は第1例(B)第2例である。It is the expanded sectional view of the area | region D which showed typically the structure of the base before the assembly of the device package which concerns on Example 7 of this invention, (A) is 1st example (B) 2nd example. 本発明の実施例8に係るデバイスパッケージの接合材料及び充填材料のパターンを模式的に示した断面図である。It is sectional drawing which showed typically the pattern of the joining material of the device package which concerns on Example 8 of this invention, and a filling material. 本発明の実施例9に係るデバイスパッケージの構成を模式的に示した断面図である。It is sectional drawing which showed typically the structure of the device package which concerns on Example 9 of this invention. 従来例1に係るデバイスパッケージ(電子部品用パッケージ)の構成を模式的に示した断面図である。It is sectional drawing which showed typically the structure of the device package (electronic component package) which concerns on the prior art example 1. FIG. 従来例2に係るデバイスパッケージ(半導体パッケージ)の構成を模式的に示した断面図である。It is sectional drawing which showed typically the structure of the device package (semiconductor package) concerning the prior art example 2. FIG.
符号の説明Explanation of symbols
 1 ベース
 1a デバイス素子
 2 キャップ
 3 スペーサ
 4、4a、4b、4c、4d、4e 接合材料(接合材料パターン)
 5、5a バリア層
 6 充填材料
 7 クラック
 12 キャップ
 12a 凹部
 101 セラミックパッケージ
 102 金属フタ
 103 電子部品素子
 110 セラミック基体
 111 メタライズ層
 112 メッキ層
 114、115 電極パッド
 116、117 引出電極
 201 半導体パッケージ
 202 半導体基板
 202a 半導体基板の表面
 202b 半導体基板の裏面
 203 間隔
 204 キャップ基板
 204a キャップ基板の半導体基板に対向する側の面
 205 スペーサ
 206 接着剤層
 207 機能素子
DESCRIPTION OF SYMBOLS 1 Base 1a Device element 2 Cap 3 Spacer 4, 4a, 4b, 4c, 4d, 4e Bonding material (bonding material pattern)
5, 5a Barrier layer 6 Filling material 7 Crack 12 Cap 12a Recessed portion 101 Ceramic package 102 Metal lid 103 Electronic component element 110 Ceramic substrate 111 Metallized layer 112 Plating layer 114, 115 Electrode pad 116, 117 Lead electrode 201 Semiconductor package 202 Semiconductor substrate 202a Semiconductor substrate surface 202b Semiconductor substrate back surface 203 Distance 204 Cap substrate 204a Cap substrate surface facing the semiconductor substrate 205 Spacer 206 Adhesive layer 207 Functional element
 本発明の実施形態1では、複数の部材(図1のベース1、キャップ2、スペーサ3)が接合することによって形成されたパッケージの中空構造の内部にデバイス素子(図1の1a)が配されたデバイスパッケージであって、前記複数の部材間(図1のベース1とスペーサ3の間、キャップ2とスペーサ3の間)の接合領域の外側周縁部の領域を含むように配設されるとともに、前記複数の部材間(図1のベース1とスペーサ3の間、キャップ2とスペーサ3の間)を接合する第1接合材料(図1の4a)と、前記複数の部材間(図1のベース1とスペーサ3の間、キャップ2とスペーサ3の間)の接合領域の内側周縁部の領域を含むように配設されるとともに、前記複数の部材間(図1のベース1とスペーサ3の間、キャップ2とスペーサ3の間)を接合する第2接合材料(図1の4b)と、を有する接合材料パターンを備え、前記中空構造の内部は、減圧されており、前記第1接合材料(図1の4a)と前記第2接合材料(図1の4b)の間の領域に空所を有する(形態1)。
 さらに、以下の形態も可能である。
 前記複数の部材間の接合領域のうち前記第1接合材料と前記第2接合材料の間の領域は、前記複数の部材間の接合領域のうち前記第1接合材料及び前記第2接合材料が配設された領域にかかる応力よりも小さいこと好ましい(形態1-1)。
 前記第1接合材料及び前記第2接合材料は、金属材料であること好ましい(形態1-2)。
 前記接合材料パターンは、前記第1接合材料と前記第2接合材料の間の領域の空所の一部に前記第1接合材料及び前記第2接合材料のそれぞれと所定の間隔をあけて配設されるとともに、前記複数の部材間を接合する1又は複数の第3接合材料を有し、前記第1接合材料と前記第3接合材料の間、及び前記第2接合材料と前記第3接合材料の間のそれぞれの領域に空所を有すること好ましい(形態1-3)。
 前記接合材料パターンは、前記第1接合材料と前記第3接合材料の間の領域の空所の一部に前記第1接合材料及び前記第3接合材料のそれぞれと接続されて配設されるとともに、前記複数の部材間を接合する複数の第4接合材料を有し、前記第1接合材料、前記第3接合材料、及び前記第4接合材料によって囲まれた領域に空所を有すること好ましい(形態1-4)。
 前記第1接合材料、前記第3接合材料、及び前記第4接合材料によって囲まれた領域の空所の角部の形状は、円弧状に形成されていること好ましい(形態1-5)。
 前記接合材料パターンは、前記第2接合材料と前記第3接合材料の間の領域の空所の一部に前記第2接合材料及び前記第3接合材料のそれぞれと接続されて配設されるとともに、前記複数の部材間を接合する複数の第5接合材料を有し、前記第2接合材料、前記第3接合材料、及び前記第5接合材料によって囲まれた領域に空所を有すること好ましい(形態1-6)。
 前記第2接合材料、前記第3接合材料、及び前記第5接合材料によって囲まれた領域の空所の角部の形状は、円弧状に形成されていること好ましい(形態1-7)。
 前記第4接合材料及び前記第5接合材料は、パッケージの中央部からの放射線上に少なくとも前記第4接合材料及び前記第5接合材料のいずれか1つが存在しないように配設されていること好ましい(形態1-8)。
 前記接合材料パターンは、複数の前記第3接合材料の間の領域の空所の一部に前記第3接合材料のそれぞれと接続されて配設されるとともに、前記複数の部材間を接合する複数の第6接合材料を有し、前記第3接合材料、及び前記第6接合材料によって囲まれた領域に空所を有すること好ましい(形態1-9)。
 前記第3接合材料、及び前記第6接合材料によって囲まれた領域の空所の角部の形状は、円弧状に形成されていること好ましい(形態1-10)。
 前記第4接合材料、前記第5接合材料、及び前記第6接合材料は、パッケージの中央部からの放射線上に少なくとも前記第4接合材料及び前記第5接合材料のいずれか1つが存在しないように配設されていること好ましい(形態1-11)。
 前記複数の部材の一方の部材は、前記複数の部材間の接合領域の全領域に接合材料が配設されていること好ましい(形態1-12)。
 少なくとも前記複数の部材と前記接合材料パターンの間に介在したバリア層を備えること好ましい(形態1-13)。
 前記複数の部材間の接合領域の前記空所に充填されるとともに、前記接合材料よりも弾性率の低い材料よりなる充填材料を備えること好ましい(形態1-14)。
 前記充填材料は、金属材料、樹脂材料、及び液体のいずれか一つよりなること好ましい(形態1-15)。
 前記複数の部材は、デバイス素子が形成又は実装されたベースと、前記ベースの前記デバイス素子の外周に配設された枠状のスペーサと、前記スペーサの前記ベース側の反対側に配設されるとともに前記スペーサの内周側の空間を覆うキャップと、を備え、前記第1接合材料は、前記ベースと前記スペーサの間、及び前記スペーサと前記キャップの間のそれぞれの接合領域の外側周縁部の領域を含むように配設され、前記第2接合材料は、前記ベースと前記スペーサの間、及び前記スペーサと前記キャップの間のそれぞれの接合領域の内側周縁部の領域を含むように配設されていること好ましい(形態1-16)。
 前記複数の部材は、デバイス素子が形成又は実装されたベースと、前記ベース側の面に前記デバイス素子を含む領域に凹部が形成されたキャップと、を備え、前記第1接合材料は、前記ベースと前記キャップの間の接合領域の外側周縁部の領域を含むように配設され、前記第2接合材料は、前記ベースと前記キャップの間の接合領域の内側周縁部の領域を含むように配設されていること好ましい(形態1-17)。
 本発明の実施形態2では、電子モジュールにおいて、前記デバイスパッケージを備えることを特徴とする(形態2)。
 本発明の実施形態3では、電子機器において、前記デバイスパッケージ、又は前記電子モジュールを備えることを特徴とする(形態3)。
In Embodiment 1 of the present invention, a device element (1a in FIG. 1) is arranged inside a hollow structure of a package formed by joining a plurality of members (base 1, cap 2, spacer 3 in FIG. 1). The device package is disposed so as to include an outer peripheral edge region of a bonding region between the plurality of members (between the base 1 and the spacer 3 and between the cap 2 and the spacer 3 in FIG. 1). A first bonding material (4a in FIG. 1) for bonding between the plurality of members (between the base 1 and the spacer 3 in FIG. 1, between the cap 2 and the spacer 3), and between the plurality of members (in FIG. 1). Between the plurality of members (between the base 1 and the spacer 3 in FIG. 1), the inner peripheral edge region of the joining region between the base 1 and the spacer 3 and between the cap 2 and the spacer 3 is included. Between cap 2 and spacer 3 A second bonding material (4b in FIG. 1), and the inside of the hollow structure is depressurized, and the first bonding material (4a in FIG. 1) and the above There is a void in the region between the second bonding materials (4b in FIG. 1) (form 1).
Furthermore, the following forms are also possible.
Of the bonding regions between the plurality of members, the region between the first bonding material and the second bonding material is arranged by the first bonding material and the second bonding material among the bonding regions between the plurality of members. It is preferable that the stress is smaller than the stress applied to the provided region (Mode 1-1).
The first bonding material and the second bonding material are preferably metal materials (Mode 1-2).
The bonding material pattern is disposed at a predetermined interval from each of the first bonding material and the second bonding material in a part of a space in a region between the first bonding material and the second bonding material. And having one or a plurality of third bonding materials for bonding the plurality of members, between the first bonding material and the third bonding material, and between the second bonding material and the third bonding material. It is preferable to have a void in each of the regions (Form 1-3).
The bonding material pattern is disposed in a part of a space in a region between the first bonding material and the third bonding material and connected to each of the first bonding material and the third bonding material. It is preferable to have a plurality of fourth bonding materials for bonding the plurality of members, and to have a void in a region surrounded by the first bonding material, the third bonding material, and the fourth bonding material ( Form 1-4).
It is preferable that the shape of the corner of the void in the region surrounded by the first bonding material, the third bonding material, and the fourth bonding material is formed in an arc shape (Embodiment 1-5).
The bonding material pattern is disposed in a part of a space in a region between the second bonding material and the third bonding material and connected to each of the second bonding material and the third bonding material. Preferably, the plurality of fifth bonding materials for bonding the plurality of members are provided, and a space is provided in a region surrounded by the second bonding material, the third bonding material, and the fifth bonding material ( Form 1-6).
The shape of the corner of the void in the region surrounded by the second bonding material, the third bonding material, and the fifth bonding material is preferably formed in an arc shape (Embodiment 1-7).
It is preferable that the fourth bonding material and the fifth bonding material are arranged so that at least one of the fourth bonding material and the fifth bonding material does not exist on the radiation from the center of the package. (Form 1-8).
The bonding material pattern is disposed in a part of a space in a region between the plurality of third bonding materials, and is connected to each of the third bonding materials, and a plurality of bonding members bonding the plurality of members. It is preferable to have a void in a region surrounded by the third bonding material and the sixth bonding material (Mode 1-9).
The shape of the corner of the void in the region surrounded by the third bonding material and the sixth bonding material is preferably formed in an arc shape (Embodiment 1-10).
In the fourth bonding material, the fifth bonding material, and the sixth bonding material, at least one of the fourth bonding material and the fifth bonding material does not exist on the radiation from the central portion of the package. It is preferable to be disposed (Mode 1-11).
It is preferable that one member of the plurality of members is provided with a bonding material in the entire region of the bonding region between the plurality of members (Mode 1-12).
It is preferable that at least a barrier layer interposed between the plurality of members and the bonding material pattern is provided (Mode 1-13).
It is preferable that a filling material made of a material having a lower elastic modulus than that of the bonding material is provided in the space in the bonding region between the plurality of members (Mode 1-14).
The filling material is preferably made of any one of a metal material, a resin material, and a liquid (Form 1-15).
The plurality of members are disposed on a base on which a device element is formed or mounted, a frame-shaped spacer disposed on an outer periphery of the device element of the base, and an opposite side of the spacer to the base side. And a cap that covers a space on the inner peripheral side of the spacer, and the first bonding material is formed between the base and the spacer, and the outer peripheral edge of each bonding region between the spacer and the cap. The second bonding material is disposed so as to include a region of an inner peripheral edge of each bonding region between the base and the spacer and between the spacer and the cap. It is preferable (Form 1-16).
The plurality of members include a base on which a device element is formed or mounted, and a cap in which a recess is formed in a region including the device element on a surface on the base side, and the first bonding material includes the base And the second bonding material is disposed so as to include a region of an inner peripheral edge of a bonding region between the base and the cap. It is preferable to be provided (Mode 1-17).
Embodiment 2 of the present invention is characterized in that an electronic module includes the device package (Mode 2).
Embodiment 3 of the present invention is characterized in that an electronic device includes the device package or the electronic module (Mode 3).
 本発明の実施例1に係るデバイスパッケージについて図面を用いて説明する。図1は、本発明の実施例1に係るデバイスパッケージの構成を模式的に示した(A)断面図、(B)X-X´間の断面図である。図2は、本発明の実施例1に係るデバイスパッケージの組立前の構成を模式的に示した断面図である。 The device package according to the first embodiment of the present invention will be described with reference to the drawings. FIG. 1A is a cross-sectional view schematically showing a configuration of a device package according to Embodiment 1 of the present invention, and FIG. 1B is a cross-sectional view taken along a line XX ′. FIG. 2 is a cross-sectional view schematically showing a configuration of the device package according to the first embodiment of the present invention before assembly.
 デバイスパッケージは、中空構造を有するデバイスパッケージであり、中空構造の内部が減圧され、かつ、気密封止されている。デバイスパッケージは、中空構造の内部にデバイス素子1aが配されている。デバイスパッケージは、電子モジュールや電子機器に実装される。デバイスパッケージは、ベース1と、デバイス素子1aと、キャップ2と、スペーサ3と、接合材料4a、4bと、を有する。 The device package is a device package having a hollow structure, and the inside of the hollow structure is decompressed and hermetically sealed. In the device package, a device element 1a is arranged inside a hollow structure. The device package is mounted on an electronic module or electronic device. The device package includes a base 1, a device element 1a, a cap 2, a spacer 3, and bonding materials 4a and 4b.
 ベース1は、中空構造の内側の領域にデバイス素子1aが形成された基板である。ベース1は、周縁部(デバイス素子1aが形成された領域の外周の領域)にて、接合材料4a、4bを介してスペーサ3と接合している。なお、図1では、ベース1は、シリコン上に直にデバイス素子1aを形成した例を示しているが、これに限るものではなく、ベース1上にデバイスチップをダイボンディング材等の固定材料を介して実装した構成であってもよい。この場合には、例えば、ガラスやセラミック等をベース1の材料として利用することができる。そのため、ベース1の材料もシリコンに限るものではなく、広範な材料を使用することができる。 The base 1 is a substrate in which the device element 1a is formed in the inner region of the hollow structure. The base 1 is bonded to the spacer 3 via bonding materials 4a and 4b at the peripheral edge (region on the outer periphery of the region where the device element 1a is formed). FIG. 1 shows an example in which the device element 1a is formed directly on the silicon, but the present invention is not limited to this. The device chip is fixed on the base 1 with a fixing material such as a die bonding material. It may be a configuration implemented via In this case, for example, glass, ceramic or the like can be used as the material of the base 1. Therefore, the material of the base 1 is not limited to silicon, and a wide range of materials can be used.
 デバイス素子1aは、ベース1の中空構造の内部側に形成された素子である。デバイス素子1aは、例えば、マイクロマシン技術の一つであるシリコン微細加工技術によってシリコンウェハ上に形成されたセンシングデバイスとすることができ、微細な稼動部をマトリクス状に配置することもできる。デバイス素子1aのセンシング機能の内容によって要求される中空構造の内部の環境は異なるが、一般的には、空気を含めた気体の空気抵抗、気体への熱伝導がデバイス特性へ影響を与えることが知られており、これらのデバイス素子1aには減圧による高い真空度が求められている。なお、デバイス素子1aは、デバイスチップとし、ベース1上にダイボンディング材等の固定材料を介して実装される構成であってもよい。 The device element 1 a is an element formed on the inner side of the hollow structure of the base 1. The device element 1a can be, for example, a sensing device formed on a silicon wafer by silicon microfabrication technology, which is one of micromachine technologies, and fine operating parts can be arranged in a matrix. The internal environment of the hollow structure required differs depending on the content of the sensing function of the device element 1a, but in general, the air resistance of gas including air and the heat conduction to the gas may affect the device characteristics. These device elements 1a are required to have a high degree of vacuum due to reduced pressure. The device element 1a may be a device chip and may be mounted on the base 1 via a fixing material such as a die bonding material.
 キャップ2は、中空構造の蓋体である。キャップ2は、周縁部にて、接合材料4a、4bを介してスペーサ3と接合している。 The cap 2 is a lid having a hollow structure. The cap 2 is joined to the spacer 3 via the joining materials 4a and 4b at the periphery.
 スペーサ3は、ベース1とキャップ2の間に配された枠状の部材である。スペーサ3は、ベース1側の面にて、接合材料4a、4bを介してベース1と接合している。スペーサ3は、キャップ2側の面にて、接合材料4a、4bを介してキャップ2と接合している。 The spacer 3 is a frame-like member disposed between the base 1 and the cap 2. The spacer 3 is bonded to the base 1 via bonding materials 4a and 4b on the surface on the base 1 side. The spacer 3 is bonded to the cap 2 via bonding materials 4a and 4b on the surface on the cap 2 side.
 なお、キャップ2、スペーサ3の材料は問わないが、接合部に加わる応力を最小とするには、それぞれの熱膨張係数が近いことが好ましく、より好ましくは、これら全てに同じ材料を用いることである。キャップ2、スペーサ3には、例えば、樹脂、ガラス、金属等を用いることができる。 In addition, although the material of the cap 2 and the spacer 3 is not ask | required, in order to minimize the stress added to a junction part, it is preferable that each thermal expansion coefficient is near, More preferably, by using the same material for all of these. is there. For the cap 2 and the spacer 3, for example, resin, glass, metal or the like can be used.
 接合材料4a、4bは、ベース1とスペーサ3の間、及び、キャップ2とスペーサ3の間を接合させる材料である。接合材料4aは、スペーサ3の外側周縁部の領域を含むように配された接合材料であり、枠状に配されている。接合材料4bは、スペーサ3の内側周縁部の領域を含むように配された接合材料であり、接合材料4aの内周側にて、接合材料4aと所定の間隔をあけて枠状に配されている。接合材料4aと接合材料4bの間は空所となっている。接合材料4a、4bには、例えば、Auをめっき法又は蒸着法により形成したものを用いることができる。なお、比較的低温、低圧で熱圧着できる材料としてAu-Auの接合が一般的に知られており、実績の高い接合材料であることから、接合材料4a、4bに採用しているが、必ずしもAuに限るものではない。 The bonding materials 4a and 4b are materials for bonding between the base 1 and the spacer 3 and between the cap 2 and the spacer 3. The bonding material 4a is a bonding material arranged so as to include the region of the outer peripheral edge of the spacer 3, and is arranged in a frame shape. The bonding material 4b is a bonding material arranged so as to include a region of the inner peripheral edge portion of the spacer 3, and is arranged in a frame shape with a predetermined interval from the bonding material 4a on the inner peripheral side of the bonding material 4a. ing. There is a space between the bonding material 4a and the bonding material 4b. As the bonding materials 4a and 4b, for example, Au formed by plating or vapor deposition can be used. Note that Au—Au bonding is generally known as a material that can be thermocompression bonded at a relatively low temperature and low pressure, and since it is a proven bonding material, it is used as the bonding material 4a, 4b. It is not limited to Au.
 実施例1に係るデバイスパッケージは、図2のように構成した各部品を組み合わせて、減圧チャンバー内で加熱・加圧を行うことによって製造することができる。これにより、中空構造の内部が減圧された気密封止パッケージを得ることができる。なお、接合材料4a、4bの間の空所についても、中空構造の内部と同様に減圧された雰囲気となっている。 The device package according to Example 1 can be manufactured by combining the components configured as shown in FIG. 2 and performing heating and pressurization in a vacuum chamber. Thereby, an airtight sealed package in which the inside of the hollow structure is decompressed can be obtained. Note that the space between the bonding materials 4a and 4b is also a reduced-pressure atmosphere as in the hollow structure.
 次に、本発明の実施例1に係るデバイスパッケージの接合部に発生する応力について、比較例及び図面を用いて説明する。図3は、比較例に係るデバイスパッケージの接合部に発生する応力を説明するための図である。図4は、比較例に係るデバイスパッケージの接合材料に加わる応力分布を模式的に示したグラフである。 Next, the stress generated in the joint portion of the device package according to the first embodiment of the present invention will be described with reference to a comparative example and drawings. FIG. 3 is a diagram for explaining the stress generated in the joint portion of the device package according to the comparative example. FIG. 4 is a graph schematically showing the stress distribution applied to the bonding material of the device package according to the comparative example.
 比較例(図3参照)に係るデバイスパッケージは、ベース1とスペーサ3の間、及び、キャップ2とスペーサ3の間の全体に接合材料4を設けたものであり、その他の構成は実施例1(図1参照)と同様である。なお、比較例に係るデバイスパッケージの中空構造の内部は、高真空度に保たれている。このとき、パッケージの外部は大気圧であり、パッケージの外面全域に大気圧が加わる。キャップ2及びベース1は、周縁部にて、スペーサ3によって支えられているため、キャップ2及びベース1には中空構造の内部の空間が狭くなる方向に撓む力が発生する。そして、図3(A)に示すように、接合材料4の接合部内端側の部分では矢印方向の圧縮応力となるモーメント力が加わり、接合材料4の接合部外端側の部分では矢印方向の引張応力となるモーメント力が加わることとなる。そのため、比較例に係るデバイスパッケージのようにベース1とスペーサ3の間、及び、キャップ2とスペーサ3の間の全体に接合材料4を設けた構成では、接合材料4の強度がこれらの応力に耐えられなくなると、接合材料4が破断し、接合材料4の接合部外端から接合部内端にかけてリークパスができてしまい、中空構造の内部に空気がリークして、デバイスの特性確保ができなくなるという不具合が発生する。つまり、比較例(図3(A)参照)のように接合部が1周で構成されていた場合、スペーサ3の外周の引張応力が最大となる箇所にクラックが発生しやすい。一度クラックが発生すると、破壊しない程度の微細なマイクロクラックであっても、クラックは接合材料4の接合部外端から接合部内端へと進行・成長し、リークパスに至る可能性が高い。ベース1とスペーサ3の間、及び、キャップ2とスペーサ3の間の全体に接合材料4が存在すると、クラックが進行することを阻止することができない。 In the device package according to the comparative example (see FIG. 3), the bonding material 4 is provided between the base 1 and the spacer 3 and between the cap 2 and the spacer 3. (See FIG. 1). The inside of the hollow structure of the device package according to the comparative example is kept at a high degree of vacuum. At this time, the outside of the package is at atmospheric pressure, and atmospheric pressure is applied to the entire outer surface of the package. Since the cap 2 and the base 1 are supported by the spacer 3 at the peripheral portion, a force is generated in the cap 2 and the base 1 in a direction in which the space inside the hollow structure is narrowed. Then, as shown in FIG. 3A, a moment force that is a compressive stress in the direction of the arrow is applied to the portion on the inner end side of the joint portion of the joint material 4, and a portion in the direction of the arrow is present on the outer end side of the joint portion of the joint material 4. A moment force that becomes a tensile stress is applied. Therefore, in the configuration in which the bonding material 4 is provided between the base 1 and the spacer 3 and between the cap 2 and the spacer 3 as in the device package according to the comparative example, the strength of the bonding material 4 is affected by these stresses. If it cannot be withstood, the bonding material 4 breaks, a leak path is formed from the outer end of the bonding portion to the inner end of the bonding portion, air leaks into the hollow structure, and device characteristics cannot be secured. A malfunction occurs. That is, as in the comparative example (see FIG. 3A), when the joint portion is constituted by one round, a crack is likely to occur at a location where the tensile stress on the outer circumference of the spacer 3 is maximized. Once a crack occurs, even if it is a micro crack that is not broken, the crack is likely to progress and grow from the outer edge of the bonding material 4 to the inner edge of the bonding portion, leading to a leak path. If the bonding material 4 is present between the base 1 and the spacer 3 and between the cap 2 and the spacer 3, it is impossible to prevent the crack from proceeding.
 ここで、比較例に係るデバイスパッケージの接合材料4に加わる応力分布は、図4のようになる。横軸は、接合材料4の外端をゼロとし、接合材料4の内端(中空構造の内部側に端部)の接合幅を1mmとしたときの位置を示している。縦軸は、応力指標として、最大応力を引張応力の場合を1、圧縮応力の場合を-1としたときの応力を示している。なお、図4では、熱応力を考慮していない。図4のグラフより、接合部の端部付近(0~0.2mm、0.8~1mmの範囲)に応力が集中しており、0.2~0.8mmの範囲では応力が急減し、ほとんど応力が加わっていないことがわかる。 Here, the stress distribution applied to the bonding material 4 of the device package according to the comparative example is as shown in FIG. The horizontal axis shows the position when the outer end of the bonding material 4 is zero and the bonding width of the inner end of the bonding material 4 (the end on the inner side of the hollow structure) is 1 mm. The vertical axis shows the stress when the maximum stress is 1 for the tensile stress and −1 for the compressive stress as the stress index. In FIG. 4, thermal stress is not considered. From the graph of FIG. 4, the stress is concentrated near the end of the joint (in the range of 0 to 0.2 mm, 0.8 to 1 mm), and in the range of 0.2 to 0.8 mm, the stress sharply decreases. It can be seen that almost no stress is applied.
 そのため、図4のグラフを考察すると、接合材料4aが0~0.2mmの範囲、接合材料4bが0.8~1mmの範囲にあれば、十分な接合強度を有するといえる。そのため、実施例1(図1参照)では、圧縮応力及び引張応力が大きく加わる領域にのみ接合材料4a、4bを配した構造としている。つまり、実施例1では、比較例(図3参照)の接合強度を保つのに、比較例のように接合幅を合計1mmとする必要がなく、合計0.4mmまで低減することが可能である。実施例1の接合面積低減率は、比較例の接合面積の約2/5となり、接合加重も同率で低減させることが可能である。 Therefore, considering the graph of FIG. 4, if the bonding material 4a is in the range of 0 to 0.2 mm and the bonding material 4b is in the range of 0.8 to 1 mm, it can be said that the bonding strength is sufficient. Therefore, in Example 1 (refer FIG. 1), it is set as the structure which has arrange | positioned joining material 4a, 4b only to the area | region where a compressive stress and a tensile stress are added largely. That is, in Example 1, in order to maintain the bonding strength of the comparative example (see FIG. 3), it is not necessary to make the total bonding width 1 mm as in the comparative example, and it is possible to reduce the total to 0.4 mm. . The joining area reduction rate of Example 1 is about 2/5 of the joining area of the comparative example, and the joining weight can be reduced at the same rate.
 なお、スペーサ3より外周側及び内周側に接合材料4a、4bがはみ出した場合、はみ出した部分は接合時の加重に寄与しないことから、はみ出した部分の配置については問わない。例えば、スペーサ3の外周よりもベース1が大きい場合、ベース1上の接合材料4aはスペーサ3の範囲より大きいサイズとしてもかまわない。これは、図3(A)に示した接合材料4の両端部近傍に配したことに相当する。 In addition, when the bonding materials 4a and 4b protrude from the spacer 3 to the outer peripheral side and the inner peripheral side, the protruding portion does not contribute to the weight during the bonding, and therefore, the arrangement of the protruding portion does not matter. For example, when the base 1 is larger than the outer periphery of the spacer 3, the bonding material 4 a on the base 1 may be larger than the range of the spacer 3. This corresponds to the arrangement in the vicinity of both end portions of the bonding material 4 shown in FIG.
 実施例1によれば、パッケージの接合部の接合強度を保ったまま接合面積を低減させることができ、製造する際の接合加重を低減させることができる。 According to the first embodiment, the bonding area can be reduced while maintaining the bonding strength of the bonding portion of the package, and the bonding load at the time of manufacturing can be reduced.
 また、実施例1によれば、スペーサ3の外側周縁部の領域と内側周縁部の領域にそれぞれ接合材料4a、4bに分けて配設することで、接合材料4a、4bの一方にクラックが発生してリークパスができたとしても、接合材料4a、4bの他方にクラックが進行しないため、リークを阻止できる。そのため、より気密封止信頼性の高い気密パッケージを提供できる。 Further, according to the first embodiment, cracks are generated in one of the bonding materials 4a and 4b by arranging the bonding material 4a and 4b separately in the outer peripheral region and the inner peripheral region of the spacer 3, respectively. Even if a leak path is formed, since the crack does not advance in the other of the bonding materials 4a and 4b, the leak can be prevented. Therefore, an airtight package with higher airtight sealing reliability can be provided.
 ここで、接合面積を低減させ、製造する際の接合加重を低減させる趣旨について説明する。 Here, the purpose of reducing the bonding area when reducing the bonding area and manufacturing will be described.
 従来例1(図15参照)では、金属フタとメッキ層を接合させる手段としてレーザビームや電子ビームなどによる局所的な加熱手段を用いているが、電子素子部品にマイクロマシン技術で加工されるデバイスを用いる場合、デバイス全域に熱が逃げてしまうということは、[発明が解決しようとする課題]で説明した。このような課題を解決するべく、接合材料に金属材料を用い、ウェハまたは個片化されたベース基板、若しくはキャップ部品の少なくともどちらか一方の全面を加熱しつつ、加圧することによって金属接合する「熱圧着工法」が有望視されており、パッケージサイズが5mm角程度以下のものについては実用化が検討されている。 In Conventional Example 1 (see FIG. 15), a local heating means using a laser beam or an electron beam is used as a means for joining the metal lid and the plating layer. When used, the fact that heat escapes to the entire device has been described in [Problems to be Solved by the Invention]. In order to solve such problems, a metal material is used as a bonding material, and metal bonding is performed by applying pressure while heating the entire surface of at least one of a wafer, an individual base substrate, and a cap component. “Thermocompression bonding method” is regarded as promising, and the practical application of a package size of about 5 mm square or less is under consideration.
 しかしながら、パッケージサイズが10mm角を超えるような大型パッケージにおいて、大気圧によって発生する応力の大きさに耐えうる接合強度を得るためには、接合幅をそれに対応した幅とする必要があり、この接合面積の増大化に伴い、多大な加圧力が必要となることが課題となっている。 However, in a large package whose package size exceeds 10 mm square, in order to obtain a bonding strength that can withstand the magnitude of stress generated by atmospheric pressure, the bonding width needs to be a corresponding width. Along with the increase in area, the problem is that a large amount of pressure is required.
 具体例を挙げて説明すると、比較的低圧・低温で接合でき、接合信頼性も高い接合材料としてAu-Auの熱圧着接合が一般的に利用されているが、200~300℃の加熱温度で接合に必要とされる加重は、300MPa程度必要である。例えば、パッケージサイズが17mm角、接合材料をAu-Auとした場合、大気圧に絶えうる接合幅は、安全率を2倍としたシミュレーションによる計算値では、パッケージ外周に約1mmの接合幅が必要とされ、この場合の接合に必要な加圧力は、約1.9tとなる。なお、このシミュレーションで使用した材料物性は、ベース1、キャップ2及びスペーサ3の全てをシリコンの物性値とした。このようなパッケージが多面取りされたウェハ同士の接合を行う場合には、数十tもの加圧力が必要であり、真空雰囲気中で、しかも高精度に搭載する装置を実現することは非常に困難であり、もし可能であったとしても大型で高価な設備となることが容易に想定される。 As a specific example, Au—Au thermocompression bonding is generally used as a bonding material that can be bonded at a relatively low pressure and low temperature and has high bonding reliability, but at a heating temperature of 200 to 300 ° C. The load required for joining is about 300 MPa. For example, if the package size is 17mm square and the bonding material is Au-Au, the bonding width that can withstand atmospheric pressure is calculated by simulation with a safety factor of twice, and a bonding width of about 1mm is required around the package. In this case, the pressurizing force required for joining is about 1.9 t. Note that the material properties used in this simulation are that of the base 1, the cap 2 and the spacer 3 all of which are silicon properties. When bonding wafers having such a multi-sided package, a pressure of several tens of t is required, and it is very difficult to realize a device that can be mounted in a vacuum atmosphere with high accuracy. Even if possible, it is easily assumed that the equipment will be large and expensive.
 そこで、低加重化を図るには接合面積を低減する必要があるが、接合幅を狭くした場合には、幅が狭まることによって、低減した面積以上に前述したモーメントが大きくなり、著しく接合強度が低下する。そのため、熱圧着工法を大型のパッケージに適用する際においては、如何に接合強度を保ったまま接合面積を低減させるかが大きな課題と言える。その点、実施例1では、大型のパッケージの接合部の接合強度を保ったまま接合面積を低減させることができ、製造する際の接合加重を低減させることに成功している。 Therefore, it is necessary to reduce the bonding area in order to reduce the load, but when the bonding width is narrowed, the above-mentioned moment becomes larger than the reduced area due to the narrowing of the width, and the bonding strength is remarkably increased. descend. Therefore, when the thermocompression bonding method is applied to a large package, it can be said that how to reduce the bonding area while maintaining the bonding strength is a big problem. In that respect, in Example 1, the bonding area can be reduced while maintaining the bonding strength of the bonding portion of the large package, and it has succeeded in reducing the bonding weight at the time of manufacturing.
 本発明の実施例2に係るデバイスパッケージについて図面を用いて説明する。図5は、本発明の実施例2に係るデバイスパッケージの構成を模式的に示した(A)断面図、(B)X-X´間の断面図である。 A device package according to the second embodiment of the present invention will be described with reference to the drawings. FIG. 5 is a cross-sectional view schematically showing the configuration of the device package according to the second embodiment of the present invention, (A) and (B) XX ′.
 実施例2では、気密封止に対する信頼性を更に高めるために、接合材料4aと接合材料4bの間の空所に、接合材料4a、4bと分離した接合材料4cを配設したものである。その他の構成は、実施例1と同様である。 In Example 2, the bonding material 4c separated from the bonding materials 4a and 4b is disposed in the space between the bonding material 4a and the bonding material 4b in order to further improve the reliability of the hermetic sealing. Other configurations are the same as those of the first embodiment.
 接合材料4cは、ベース1とスペーサ3の間、及び、キャップ2とスペーサ3の間を接合させる材料である。接合材料4cは、接合材料4aと接合材料4bの間の領域の一部に配された接合材料であり、接合材料4a及び接合材料4bのそれぞれと所定の間隔をあけて枠状に配されている。接合材料4cと接合材料4aの間、及び接合材料4cと接合材料4bの間は空所となっている。接合材料4cは、接合材料4a、4bと同様な材料を用いることができる。 The bonding material 4 c is a material for bonding between the base 1 and the spacer 3 and between the cap 2 and the spacer 3. The bonding material 4c is a bonding material disposed in a part of a region between the bonding material 4a and the bonding material 4b, and is disposed in a frame shape with a predetermined interval from each of the bonding material 4a and the bonding material 4b. Yes. There are voids between the bonding material 4c and the bonding material 4a and between the bonding material 4c and the bonding material 4b. As the bonding material 4c, the same material as the bonding materials 4a and 4b can be used.
 実施例2によれば、接合材料4a、4b、4cの分割数を高めて配置することで、リークパスの発生リスクを飛躍的に低減させることができる。また、接合材料4cを応力がほとんど発生しない領域(図3の0.4~0.6mmに相当)へ配置したことによってクラックの発生リスクも低減しており、気密封止信頼性を大幅に高めることができる。 According to the second embodiment, the risk of leakage path can be drastically reduced by increasing the number of divisions of the bonding materials 4a, 4b, and 4c. In addition, the risk of cracking is reduced by placing the bonding material 4c in a region where stress is hardly generated (corresponding to 0.4 to 0.6 mm in FIG. 3), and the hermetic sealing reliability is greatly improved. be able to.
 本発明の実施例3に係るデバイスパッケージについて図面を用いて説明する。図6は、本発明の実施例3に係るデバイスパッケージの構成を模式的に示した(A)断面図、(B)X-X´間の断面図である。 A device package according to the third embodiment of the present invention will be described with reference to the drawings. FIG. 6A is a cross-sectional view schematically showing the configuration of a device package according to Example 3 of the present invention, and FIG. 6B is a cross-sectional view between XX ′.
 実施例3では、実施例2のキャップ(図5の2)とスペーサ(図5の3)を一体化したキャップ12を用い、実施例2のキャップ(図5の2)とスペーサ(図5の3)の間の接合材料4a、4b、4cを省略したものである。その他の構成は、実施例2と同様である。 In Example 3, the cap 12 in which the cap (2 in FIG. 5) and the spacer (3 in FIG. 5) of Example 2 are integrated is used, and the cap (2 in FIG. 5) and the spacer (2 in FIG. 5) are used. The bonding materials 4a, 4b, and 4c between 3) are omitted. Other configurations are the same as those of the second embodiment.
 キャップ12は、中空構造の蓋体である。キャップ12は、ベース1側の面に、デバイス素子1aを含む領域に凹部12aが形成されている。キャップ12は、凹部12aの外周にある突出部の面にて、接合材料4a、4b、4cを介してベース1と接合している。 The cap 12 is a hollow structure lid. The cap 12 has a recess 12a formed on the surface on the base 1 side in a region including the device element 1a. The cap 12 is bonded to the base 1 via bonding materials 4a, 4b, and 4c on the surface of the protruding portion on the outer periphery of the recess 12a.
 実施例3によれば、部品の加工性、価格等が許容できる範囲でリークパスが発生する可能性がある接合箇所を減らすことで、リークリスクを低減させることができる。 According to the third embodiment, the risk of leakage can be reduced by reducing the number of joints where a leak path may occur within the allowable range of part workability and price.
 なお、図6では実施例2のキャップ(図5の2)とスペーサ(図5の3)を一体化した例を示しているが、この他にもベース(図5の1)とスペーサ(図5の3)を一体化した構成とすることができる。この場合も、接合箇所が減少し、リークリスクを低減させることができる。 FIG. 6 shows an example in which the cap (2 in FIG. 5) and the spacer (3 in FIG. 5) of Example 2 are integrated, but in addition to this, the base (1 in FIG. 5) and the spacer (FIG. 5) are shown. 5-3) may be integrated. Also in this case, the number of joints is reduced, and the risk of leakage can be reduced.
 本発明の実施例4に係るデバイスパッケージについて図面を用いて説明する。図7は、本発明の実施例4に係るデバイスパッケージの接合材料のパターンを模式的に示した断面図である。図8は、本発明の実施例4に係るデバイスパッケージの接合材料のを模式的に示した領域Cの拡大断面図である。なお、図7は、図5(B)、図6(B)に対応する断面図である。 A device package according to Example 4 of the present invention will be described with reference to the drawings. FIG. 7 is a cross-sectional view schematically showing a pattern of a bonding material of a device package according to Example 4 of the present invention. FIG. 8 is an enlarged cross-sectional view of a region C schematically showing the bonding material of the device package according to Example 4 of the present invention. FIG. 7 is a cross-sectional view corresponding to FIGS. 5B and 6B.
 実施例4では、実施例2(図5(B)参照)及び実施例3(図6(B)参照)の接合材料4aと接合材料4cの間の領域の一部に接合材料4aと接合材料4cを接続する複数の接合材料4dを設け、接合材料4bと接合材料4cの間の領域の一部に接合材料4bと接合材料4cを接続する複数の接合材料4eを設けたものである。その他の構成は実施例2、3と同様である。 In the fourth embodiment, the bonding material 4a and the bonding material are formed in a part of the region between the bonding material 4a and the bonding material 4c in the second embodiment (see FIG. 5B) and the third embodiment (see FIG. 6B). A plurality of bonding materials 4d for connecting 4c are provided, and a plurality of bonding materials 4e for connecting the bonding material 4b and the bonding material 4c are provided in a part of a region between the bonding material 4b and the bonding material 4c. Other configurations are the same as those in the second and third embodiments.
 接合材料4dは、接合材料4aと接合材料4cの間の領域の一部に配された接合材料である。接合材料4dは、接合材料4a及び接合材料4cの間の空所を複数に仕切る。接合材料4dは、接合材料4a、4b、4cと同様な材料を用いることができる。 The bonding material 4d is a bonding material disposed in a part of a region between the bonding material 4a and the bonding material 4c. The bonding material 4d partitions a space between the bonding material 4a and the bonding material 4c into a plurality. As the bonding material 4d, a material similar to the bonding materials 4a, 4b, and 4c can be used.
 接合材料4eは、接合材料4bと接合材料4cの間の領域の一部に配された接合材料である。接合材料4eは、接合材料4b及び接合材料4cの間の空所を複数に仕切る。接合材料4eは、接合材料4a、4b、4cと同様な材料を用いることができる。 The bonding material 4e is a bonding material disposed in a part of a region between the bonding material 4b and the bonding material 4c. The bonding material 4e partitions a space between the bonding material 4b and the bonding material 4c into a plurality. The bonding material 4e can be the same material as the bonding materials 4a, 4b, and 4c.
 接合材料4eと接合材料4dの位置について、パッケージの中央部(応力の発生中心)からの放射線L上、すなわち応力によりクラックが進行するルート上に接合材料4eと接合材料4dの両方が存在しないように設けられている。このようにすることで、例えば、図8のように接合部外端側からクラック7が進行しても、接合材料4a、4d、4cにクラック7が発生するだけで、接合材料4e、4bにクラックが発生しないようにすることができる。 As for the positions of the bonding material 4e and the bonding material 4d, both the bonding material 4e and the bonding material 4d do not exist on the radiation L from the central portion (stress generation center) of the package, that is, on the route where the crack advances due to the stress. Is provided. In this way, for example, even if the crack 7 progresses from the outer end side of the joint as shown in FIG. 8, only the crack 7 is generated in the joint materials 4a, 4d, and 4c. Cracks can be prevented from occurring.
 実施例4によれば、接合材料4a、4b、4c、4d、4eが配された領域内の空所の分割数が高まり、劇的なリークリスク低減が期待できる。また、パッケージの中央部からの放射線L上に接合材料4eと接合材料4dの両方が存在しないように構成することで、接合部外端側から接合部内端側に通ずるクラックの発生を阻止することができる。 According to Example 4, the number of vacant spaces in the region where the bonding materials 4a, 4b, 4c, 4d, and 4e are arranged increases, and a dramatic reduction in leakage risk can be expected. Further, by preventing the bonding material 4e and the bonding material 4d from being present on the radiation L from the central portion of the package, it is possible to prevent the occurrence of cracks from the outer end side of the bonding portion to the inner end side of the bonding portion. Can do.
 本発明の実施例5に係るデバイスパッケージについて図面を用いて説明する。図9は、本発明の実施例5に係るデバイスパッケージの接合材料のパターンを模式的に示した断面図である。 A device package according to Embodiment 5 of the present invention will be described with reference to the drawings. FIG. 9 is a cross-sectional view schematically showing a pattern of a bonding material of a device package according to Example 5 of the present invention.
 実施例5では、実施例4(図7参照)の接合材料4a、4d、4cに囲まれた空所、及び接合材料4b、4e、4cに囲まれた空所の角部の形状を円弧状としたものである。その他の構成は実施例4と同様である。 In Example 5, the shape of the space surrounded by the bonding materials 4a, 4d, and 4c of Example 4 (see FIG. 7) and the corners of the space surrounded by the bonding materials 4b, 4e, and 4c are arcuate. It is what. Other configurations are the same as those in the fourth embodiment.
 実施例5によれば、接合材料4a、4d、4cに囲まれた空所、及び接合材料4b、4e、4cに囲まれた空所の角部の形状を円弧状とすることで、角部に応力が集中することを抑制することができる。 According to the fifth embodiment, the corners of the voids surrounded by the bonding materials 4a, 4d, and 4c and the corners of the voids surrounded by the bonding materials 4b, 4e, and 4c are formed in an arc shape. It is possible to suppress the concentration of stress on the surface.
 本発明の実施例6に係るデバイスパッケージについて図面を用いて説明する。図10は、本発明の実施例6に係るデバイスパッケージの構成を模式的に示した(A)組立前の断面図、(B)組立後の断面図である。 A device package according to Example 6 of the present invention will be described with reference to the drawings. FIG. 10A is a cross-sectional view before assembly, and FIG. 10B is a cross-sectional view after assembly, schematically showing the configuration of a device package according to Example 6 of the present invention.
 実施例1~5では、各部材の接合領域の全て、すなわちベース1とスペーサ3の接合領域ではベース1とスペーサ3の接合領域の双方、キャップ2とスペーサ3の接合領域ではキャップ2とスペーサ3の双方の接合領域に、同じ形状の接合材料4a、4b(実施例2~5については4c、実施例4、5については4dを含む)を配置しているが、実施例6では、ベース1とスペーサ3の接合領域を異なる形状とし、キャップ2とスペーサ3の接合領域を異なる形状としたものである。その他の構成は、実施例1と同様である。 In Examples 1 to 5, all of the joining regions of the respective members, that is, both the joining region of the base 1 and the spacer 3 in the joining region of the base 1 and the spacer 3, and the cap 2 and the spacer 3 in the joining region of the cap 2 and the spacer 3 are used. The bonding materials 4a and 4b having the same shape (including 4c for Examples 2 to 5 and 4d for Examples 4 and 5) are disposed in both of the bonding regions. And the spacer 3 have different joining areas, and the cap 2 and the spacer 3 have different joining areas. Other configurations are the same as those of the first embodiment.
 デバイスパッケージの組立前の段階で、例えば、図10(A)のように、ベース1の接合領域に実施例2と同様な接合材料4a、4b、4cを配設しておき、スペーサ3の両面の接合領域の全領域に接合材料4を配設しておき、キャップ2の接合領域に実施例2と同様な接合材料4a、4b、4cを配設しておき、その後、図10(B)のように組み立てる。 At the stage before the assembly of the device package, for example, as shown in FIG. 10A, bonding materials 4a, 4b, and 4c similar to those of the second embodiment are disposed in the bonding region of the base 1, and both surfaces of the spacer 3 are disposed. The bonding material 4 is disposed in the entire bonding region, and the bonding materials 4a, 4b, and 4c similar to those of the second embodiment are disposed in the bonding region of the cap 2, and then, FIG. Assemble like this.
 なお、図10では、ベース1及びキャップ2の接合領域に接合材料4a、4b、4cを配設した構成とし、かつ、スペーサ3の両面の接合領域の全領域に接合材料4を配設した構成としているが、ベース1及びキャップ2の両方又は一方の接合領域の全領域に接合材料4を配設した構成とし、スペーサ3の両面又は片面の接合領域に接合材料4a、4b、4cを配設した構成としてもよい。つまり、接合部における2つの部材の一方に接合材料4a、4b、4cを配設した構成としておくだけでよい。ただし、この場合において、接合時の加熱・加圧により接合材料4a、4b、4cが変形して潰れた場合においても、接合部の範囲にある空所が完全になくならないよう、接合材料4a、4b、4cの厚みを厚くするなどによって空所を確保するようにする。 In FIG. 10, the bonding materials 4 a, 4 b, and 4 c are disposed in the bonding region between the base 1 and the cap 2, and the bonding material 4 is disposed in the entire bonding region on both surfaces of the spacer 3. However, it is set as the structure which has arrange | positioned the joining material 4 to the whole area | region of both the base 1 and the cap 2, or one of the joining area | regions, and arrange | positions joining material 4a, 4b, 4c to the joining area | region of both surfaces or one side of the spacer 3. It is good also as the structure which carried out. That is, it is only necessary to have a configuration in which the bonding materials 4a, 4b, and 4c are disposed on one of the two members in the bonding portion. However, in this case, even when the bonding materials 4a, 4b, and 4c are deformed and crushed by heating and pressurization during bonding, the bonding material 4a, A space is secured by increasing the thickness of 4b and 4c.
 実施例6によれば、図10(B)に示すように接合部の範囲にクラックの進行を阻止する空所を確保することができることから、実施例1~5と同様な効果が期待できる。 According to the sixth embodiment, as shown in FIG. 10 (B), a space for preventing the progress of cracks can be secured in the range of the joint portion, so that the same effect as in the first to fifth embodiments can be expected.
 本発明の実施例7に係るデバイスパッケージについて図面を用いて説明する。図11は、本発明の実施例7に係るデバイスパッケージの組立前のベースの構成を模式的に示した断面図である。図12は、本発明の実施例7に係るデバイスパッケージの組立前のベースの構成を模式的に示した領域Dの拡大断面図であり、(A)は第1例(B)第2例である。 A device package according to Example 7 of the present invention will be described with reference to the drawings. FIG. 11: is sectional drawing which showed typically the structure of the base before the assembly of the device package which concerns on Example 7 of this invention. FIG. 12 is an enlarged cross-sectional view of a region D schematically showing a structure of a base before assembly of a device package according to Example 7 of the present invention, and FIG. 12 (A) is a first example (B) and a second example. is there.
 実施例7では、ベース1と接合材料4a、4b、4cの間にバリア層5を配設したものである。このようなバリア層5を配設したベース1を用いて実施例2(図5参照)のようにデバイスパッケージが組み立てられる。その他の構成は、実施例2と同様である。 In Example 7, the barrier layer 5 is disposed between the base 1 and the bonding materials 4a, 4b, and 4c. A device package is assembled as in Example 2 (see FIG. 5) using the base 1 provided with such a barrier layer 5. Other configurations are the same as those of the second embodiment.
 実施例7においては、接合材料4a、4b、4cとしてAuを用いているが、めっきや蒸着法による膜形成では、原理的及びコスト的に1μm以下の薄膜で用いることが一般的である。ベース1とスペーサ(図5の3)の接合部において、接合材料4a、4b、4c間にクラックの進行を阻止する空所を確保することがAuのみの厚みでは困難な場合には、接合材料4a、4b、4cの下地としてバリア層5を配設することで厚みを確保することができる。 In Example 7, Au is used as the bonding material 4a, 4b, 4c. However, in film formation by plating or vapor deposition, it is common to use a thin film of 1 μm or less in principle and cost. When it is difficult to secure a space for preventing the progress of cracks between the bonding materials 4a, 4b, and 4c at the bonding portion between the base 1 and the spacer (3 in FIG. 5) with the thickness of only Au, the bonding material By providing the barrier layer 5 as a base for 4a, 4b and 4c, the thickness can be ensured.
 バリア層5については、接合材料4a、4b、4cの下層に存在すれば特に配置上の制約はなく、図12(A)のように接合材料4a、4b、4cの下部だけに形成した構造にしたり、図12(B)のように接合材料4a、4b、4cの下部を含めた領域に形成した構造としてもよい。バリア層5には、接合材料4a、4b、4c及びベース1の密着性を有する材料を用いることが好ましく、例えば、TiN、TaN等を用いることができ、複数の材料によって多層構造としてもかまわない。 The barrier layer 5 is not particularly limited as long as it exists in the lower layer of the bonding materials 4a, 4b, and 4c, and has a structure formed only under the bonding materials 4a, 4b, and 4c as shown in FIG. Alternatively, as shown in FIG. 12B, a structure formed in a region including the lower portions of the bonding materials 4a, 4b, and 4c may be used. For the barrier layer 5, it is preferable to use a material having adhesion between the bonding materials 4 a, 4 b, 4 c and the base 1. For example, TiN, TaN or the like can be used, and a multilayer structure may be formed by a plurality of materials. .
 なお、図12ではベース1と接合材料4a、4b、4cの間にバリア層5を配設した構成を示しているが、これに限るものではなく、スペーサ(図5の3)と接合材料(図5の4a、4b、4c)の間にバリア層を配設したり、キャップ(図5の2)と接合材料(図5の4a、4b、4c)の間にバリア層を配設することも可能である。 12 shows a configuration in which the barrier layer 5 is disposed between the base 1 and the bonding materials 4a, 4b, and 4c. However, the configuration is not limited to this, and the spacer (3 in FIG. 5) and the bonding material ( A barrier layer is disposed between 4a, 4b, and 4c in FIG. 5, and a barrier layer is disposed between the cap (2 in FIG. 5) and the bonding material (4a, 4b, and 4c in FIG. 5). Is also possible.
 実施例7によれば、実施例2と同様な効果を奏するとともに、バリア層5を配設することで、接合材料4a、4b、4c間にクラックの進行を阻止する空所を確保することが接合材料4a、4b、4cの厚みのみでは困難な場合にベース1とスペーサ(図2の3)の間の厚みを確保することができる。 According to Example 7, while having the same effect as Example 2, it is possible to secure a void between the bonding materials 4a, 4b, and 4c to prevent the progress of cracks by disposing the barrier layer 5. When it is difficult only with the thickness of the bonding materials 4a, 4b, and 4c, the thickness between the base 1 and the spacer (3 in FIG. 2) can be secured.
 本発明の実施例8に係るデバイスパッケージについて図面を用いて説明する。図13は、本発明の実施例8に係るデバイスパッケージの接合材料及び充填材料のパターンを模式的に示した断面図である。 A device package according to Example 8 of the present invention will be described with reference to the drawings. FIG. 13: is sectional drawing which showed typically the pattern of the joining material of the device package which concerns on Example 8 of this invention, and a filling material.
 実施例1~7では、接合領域の接合材料4a、4b、4cによって囲まれた空所に故意に材料を含めない構造とし、中空構造の内部と同等の減圧環境としているが、実施例8では、接合領域の接合材料4a、4b、4cによって囲まれた空所(デバイス素子が配される中空構造の内部を除く)に、接合材料4a、4b、4cとは別の充填材料6を充填したものである。その他の構成は、実施例2と同様である。 In Examples 1 to 7, a structure in which the material is intentionally not included in the space surrounded by the bonding materials 4a, 4b, and 4c in the bonding region is a reduced pressure environment equivalent to the inside of the hollow structure. In the space surrounded by the bonding materials 4a, 4b, and 4c in the bonding region (excluding the inside of the hollow structure in which the device elements are arranged), the filling material 6 different from the bonding materials 4a, 4b, and 4c is filled. Is. Other configurations are the same as those of the second embodiment.
 充填材料6を接合材料4a、4b、4cによって囲まれた空所に充填する主な目的は、気密性の更なる向上である。特に、本発明は、接合加重の低減を目的としてなされたものであるため、充填材料6の弾性率は、接合時の温度域において接合材料4a、4b、4cの弾性率よりも低いことが必要とされる。ただし、充填材料6の材料を特定するものではなく、例えば、樹脂材料が好適に利用できる。樹脂材料は、接合材料4a、4b、4c(例えば、Au)に対して十分やわらかいため、樹脂材料が介在することによってクラックの進行を阻止する機能を損ねることはなく、更に接着機能を持たせておくことで接合材料4a、4b、4cの接合を補助する機能を持たせる効果も期待できるとともに、空所に充填された樹脂材料自体によってリークパスを塞ぐ効果をも期待できる。充填材料6には、樹脂材料の他にも、金属材料も利用できる。接合材料4a、4b、4c(例えば、Au)よりも柔らかい金属材料、例えば、インジウムなどの金属を予め接合材料4a、4b、4c間にめっき法等によって形成しておくことによって、先の樹脂材料よりも高い接合強度の補助効果が期待できる。また、充填材料6は、リークパスを塞ぐ効果のみを期待する場合には、液体材料、例えば、粘性流体を用いることができる。液体材料の分子は、気体の分子よりも大きいことから、気体しか通らないような極微細なリークパスに対して特に有効にリークを防止できる。 The main purpose of filling the filling material 6 into the space surrounded by the bonding materials 4a, 4b and 4c is to further improve the airtightness. In particular, since the present invention is made for the purpose of reducing the joint load, the elastic modulus of the filling material 6 needs to be lower than the elastic modulus of the bonding materials 4a, 4b, and 4c in the temperature range at the time of bonding. It is said. However, the material of the filling material 6 is not specified, and for example, a resin material can be suitably used. Since the resin material is sufficiently soft with respect to the bonding materials 4a, 4b, and 4c (for example, Au), the function of preventing the progress of cracks is not impaired by the presence of the resin material, and the bonding function is further provided. In addition, an effect of providing a function of assisting the bonding of the bonding materials 4a, 4b, and 4c can be expected, and an effect of blocking the leak path by the resin material filled in the voids can be expected. In addition to the resin material, a metal material can also be used for the filling material 6. By forming a metal material softer than the bonding materials 4a, 4b, and 4c (for example, Au), for example, a metal such as indium, in advance between the bonding materials 4a, 4b, and 4c by a plating method or the like, the above resin material An auxiliary effect of higher bonding strength can be expected. The filling material 6 can be a liquid material, for example, a viscous fluid, when only the effect of blocking the leak path is expected. Since the molecules of the liquid material are larger than the molecules of the gas, it is possible to prevent the leak particularly effectively against an extremely fine leak path through which only the gas passes.
 本発明の実施例9に係るデバイスパッケージについて図面を用いて説明する。図14は、本発明の実施例9に係るデバイスパッケージの構成を模式的に示した断面図である。 A device package according to Example 9 of the present invention will be described with reference to the drawings. FIG. 14 is a cross-sectional view schematically showing a configuration of a device package according to Example 9 of the present invention.
 実施例1~8では個片のデバイスパッケージを示しているが、実施例9では、これら個片のデバイスパッケージを複数繋げて多面取りしてウェハ状に構成したものである。その他の構成は実施例1~8と同様である。 In Embodiments 1 to 8, individual device packages are shown, but in Embodiment 9, a plurality of these device packages are connected to form multiple wafers to form a wafer. Other configurations are the same as those in the first to eighth embodiments.
 実施例9によれば、多数個のパッケージを一括して接合することが可能であり、生産性の面で有利となる。これら一括して接合したものを、ダイサーなどの分割装置によって図の破線部で切断することにより、これまでに示した個片のパッケージと同等の高気密なデバイスパッケージを得ることができる。 According to Example 9, a large number of packages can be bonded together, which is advantageous in terms of productivity. By cutting these joined together at a broken line portion in the figure by a dividing device such as a dicer, a highly airtight device package equivalent to the individual package shown so far can be obtained.
 以上、本発明の種々実施例について述べてきたが、本名発明は前記実施例に限定されるものではなく、発明の精神を逸脱しない範囲でさらに多くの改変を施し得るのは言うまでも無いことである。 Although various embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and it goes without saying that more modifications can be made without departing from the spirit of the invention. It is.

Claims (20)

  1.  複数の部材が接合することによって形成されたパッケージの中空構造の内部にデバイス素子が配されたデバイスパッケージであって、
     前記複数の部材間の接合領域の外側周縁部の領域を含むように配設されるとともに、前記複数の部材間を接合する第1接合材料と、
     前記複数の部材間の接合領域の内側周縁部の領域を含むように配設されるとともに、前記複数の部材間を接合する第2接合材料と、
    を有する接合材料パターンを備え、
     前記中空構造の内部は、減圧されており、
     前記第1接合材料と前記第2接合材料の間の領域に空所を有することを特徴とするデバイスパッケージ。
    A device package in which a device element is arranged inside a hollow structure of a package formed by joining a plurality of members,
    A first bonding material that is disposed so as to include an outer peripheral edge region of a bonding region between the plurality of members, and that bonds the plurality of members;
    A second bonding material that is disposed so as to include an inner peripheral edge region of a bonding region between the plurality of members, and that bonds the plurality of members;
    A bonding material pattern having
    The inside of the hollow structure is depressurized,
    A device package having a void in a region between the first bonding material and the second bonding material.
  2.  前記複数の部材間の接合領域のうち前記第1接合材料と前記第2接合材料の間の領域は、前記複数の部材間の接合領域のうち前記第1接合材料及び前記第2接合材料が配設された領域にかかる応力よりも小さいことを特徴とする請求項1記載のデバイスパッケージ。 Of the bonding regions between the plurality of members, the region between the first bonding material and the second bonding material is arranged by the first bonding material and the second bonding material among the bonding regions between the plurality of members. The device package according to claim 1, wherein the device package is smaller than a stress applied to the provided region.
  3.  前記第1接合材料及び前記第2接合材料は、金属材料であることを特徴とする請求項1又は2記載のデバイスパッケージ。 3. The device package according to claim 1, wherein the first bonding material and the second bonding material are metal materials.
  4.  前記接合材料パターンは、前記第1接合材料と前記第2接合材料の間の領域の空所の一部に前記第1接合材料及び前記第2接合材料のそれぞれと所定の間隔をあけて配設されるとともに、前記複数の部材間を接合する1又は複数の第3接合材料を有し、
     前記第1接合材料と前記第3接合材料の間、及び前記第2接合材料と前記第3接合材料の間のそれぞれの領域に空所を有することを特徴とする請求項1乃至3のいずれか一に記載のデバイスパッケージ。
    The bonding material pattern is disposed at a predetermined interval from each of the first bonding material and the second bonding material in a part of a space in a region between the first bonding material and the second bonding material. And having one or a plurality of third bonding materials for bonding the plurality of members,
    4. The device according to claim 1, further comprising a space in each region between the first bonding material and the third bonding material and between the second bonding material and the third bonding material. 5. The device package according to one.
  5.  前記接合材料パターンは、前記第1接合材料と前記第3接合材料の間の領域の空所の一部に前記第1接合材料及び前記第3接合材料のそれぞれと接続されて配設されるとともに、前記複数の部材間を接合する複数の第4接合材料を有し、
     前記第1接合材料、前記第3接合材料、及び前記第4接合材料によって囲まれた領域に空所を有することを特徴とする請求項4記載のデバイスパッケージ。
    The bonding material pattern is disposed in a part of a space in a region between the first bonding material and the third bonding material and connected to each of the first bonding material and the third bonding material. A plurality of fourth joining materials for joining the plurality of members;
    5. The device package according to claim 4, wherein a void is provided in a region surrounded by the first bonding material, the third bonding material, and the fourth bonding material.
  6.  前記第1接合材料、前記第3接合材料、及び前記第4接合材料によって囲まれた領域の空所の角部の形状は、円弧状に形成されていることを特徴とする請求項5記載のデバイスパッケージ。 The shape of the corner of the space in the region surrounded by the first bonding material, the third bonding material, and the fourth bonding material is formed in an arc shape. Device package.
  7.  前記接合材料パターンは、前記第2接合材料と前記第3接合材料の間の領域の空所の一部に前記第2接合材料及び前記第3接合材料のそれぞれと接続されて配設されるとともに、前記複数の部材間を接合する複数の第5接合材料を有し、
     前記第2接合材料、前記第3接合材料、及び前記第5接合材料によって囲まれた領域に空所を有することを特徴とする請求項4乃至6のいずれか一に記載のデバイスパッケージ。
    The bonding material pattern is disposed in a part of a space in a region between the second bonding material and the third bonding material and connected to each of the second bonding material and the third bonding material. A plurality of fifth joining materials for joining the plurality of members;
    The device package according to any one of claims 4 to 6, further comprising a void in a region surrounded by the second bonding material, the third bonding material, and the fifth bonding material.
  8.  前記第2接合材料、前記第3接合材料、及び前記第5接合材料によって囲まれた領域の空所の角部の形状は、円弧状に形成されていることを特徴とする請求項7記載のデバイスパッケージ。 The shape of the corner of the space in the region surrounded by the second bonding material, the third bonding material, and the fifth bonding material is formed in an arc shape. Device package.
  9.  前記第4接合材料及び前記第5接合材料は、パッケージの中央部からの放射線上に少なくとも前記第4接合材料及び前記第5接合材料のいずれか1つが存在しないように配設されていることを特徴とする請求項7又は8記載のデバイスパッケージ。 The fourth bonding material and the fifth bonding material are arranged such that at least one of the fourth bonding material and the fifth bonding material does not exist on the radiation from the center of the package. The device package according to claim 7 or 8, characterized in that
  10.  前記接合材料パターンは、複数の前記第3接合材料の間の領域の空所の一部に前記第3接合材料のそれぞれと接続されて配設されるとともに、前記複数の部材間を接合する複数の第6接合材料を有し、
     前記第3接合材料、及び前記第6接合材料によって囲まれた領域に空所を有することを特徴とする請求項4乃至8のいずれか一に記載のデバイスパッケージ。
    The bonding material pattern is disposed in a part of a space in a region between the plurality of third bonding materials, and is connected to each of the third bonding materials, and a plurality of bonding members bonding the plurality of members. A sixth joining material of
    The device package according to any one of claims 4 to 8, wherein a void is provided in a region surrounded by the third bonding material and the sixth bonding material.
  11.  前記第3接合材料、及び前記第6接合材料によって囲まれた領域の空所の角部の形状は、円弧状に形成されていることを特徴とする請求項9記載のデバイスパッケージ。 10. The device package according to claim 9, wherein a shape of a corner portion of a space surrounded by the third bonding material and the sixth bonding material is formed in an arc shape.
  12.  前記第4接合材料、前記第5接合材料、及び前記第6接合材料は、パッケージの中央部からの放射線上に少なくとも前記第4接合材料及び前記第5接合材料のいずれか1つが存在しないように配設されていることを特徴とする請求項10又は11記載のデバイスパッケージ。 In the fourth bonding material, the fifth bonding material, and the sixth bonding material, at least one of the fourth bonding material and the fifth bonding material does not exist on the radiation from the central portion of the package. The device package according to claim 10, wherein the device package is disposed.
  13.  前記複数の部材の一方の部材は、前記複数の部材間の接合領域の全領域に接合材料が配設されていることを特徴とする請求項1乃至12のいずれか一に記載のデバイスパッケージ。 The device package according to any one of claims 1 to 12, wherein one member of the plurality of members is provided with a bonding material in an entire region of a bonding region between the plurality of members.
  14.  少なくとも前記複数の部材と前記接合材料パターンの間に介在したバリア層を備えることを特徴とする請求項1乃至13のいずれか一に記載のデバイスパッケージ。 The device package according to claim 1, further comprising a barrier layer interposed between at least the plurality of members and the bonding material pattern.
  15.  前記複数の部材間の接合領域の前記空所に充填されるとともに、前記接合材料よりも弾性率の低い材料よりなる充填材料を備えることを特徴とする請求項1乃至14のいずれか一に記載のデバイスパッケージ。 The filling material made of a material having a lower elastic modulus than that of the bonding material is provided in the space in the bonding region between the plurality of members. Device package.
  16.  前記充填材料は、金属材料、樹脂材料、及び液体のいずれか一つよりなることを特徴とする請求項15記載のデバイスパッケージ。 16. The device package according to claim 15, wherein the filling material is made of any one of a metal material, a resin material, and a liquid.
  17.  前記複数の部材は、
     デバイス素子が形成又は実装されたベースと、
     前記ベースの前記デバイス素子の外周に配設された枠状のスペーサと、
     前記スペーサの前記ベース側の反対側に配設されるとともに前記スペーサの内周側の空間を覆うキャップと、
    を備え、
     前記第1接合材料は、前記ベースと前記スペーサの間、及び前記スペーサと前記キャップの間のそれぞれの接合領域の外側周縁部の領域を含むように配設され、
     前記第2接合材料は、前記ベースと前記スペーサの間、及び前記スペーサと前記キャップの間のそれぞれの接合領域の内側周縁部の領域を含むように配設されていることを特徴とする請求項1乃至16のいずれか一に記載のデバイスパッケージ。
    The plurality of members are:
    A base on which a device element is formed or mounted;
    A frame-shaped spacer disposed on the outer periphery of the device element of the base;
    A cap disposed on the opposite side of the spacer from the base side and covering a space on the inner peripheral side of the spacer;
    With
    The first bonding material is disposed so as to include an outer peripheral edge region of each bonding region between the base and the spacer and between the spacer and the cap,
    The said 2nd joining material is arrange | positioned so that the area | region of the inner periphery part of each joining area | region between the said base and the said spacer and between the said spacer and the said cap may be included. The device package according to any one of 1 to 16.
  18.  前記複数の部材は、
     デバイス素子が形成又は実装されたベースと、
     前記ベース側の面に前記デバイス素子を含む領域に凹部が形成されたキャップと、
    を備え、
     前記第1接合材料は、前記ベースと前記キャップの間の接合領域の外側周縁部の領域を含むように配設され、
     前記第2接合材料は、前記ベースと前記キャップの間の接合領域の内側周縁部の領域を含むように配設されていることを特徴とする請求項1乃至16のいずれか一に記載のデバイスパッケージ。
    The plurality of members are:
    A base on which a device element is formed or mounted;
    A cap having a recess formed in a region including the device element on the base-side surface;
    With
    The first bonding material is disposed so as to include an outer peripheral region of a bonding region between the base and the cap;
    The device according to any one of claims 1 to 16, wherein the second bonding material is disposed so as to include a region of an inner peripheral edge of a bonding region between the base and the cap. package.
  19.  請求項1乃至18のいずれか一に記載のデバイスパッケージを備えることを特徴とする電子モジュール。 An electronic module comprising the device package according to any one of claims 1 to 18.
  20.  請求項1乃至18のいずれか一に記載のデバイスパッケージ、又は請求項19記載の電子モジュールを備えることを特徴とする電子機器。 An electronic device comprising the device package according to any one of claims 1 to 18 or the electronic module according to claim 19.
PCT/JP2009/053165 2008-03-03 2009-02-23 Device package, electronic module, and electronic apparatus WO2009110339A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010501850A JPWO2009110339A1 (en) 2008-03-03 2009-02-23 Device package, electronic module, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-052164 2008-03-03
JP2008052164 2008-03-03

Publications (1)

Publication Number Publication Date
WO2009110339A1 true WO2009110339A1 (en) 2009-09-11

Family

ID=41055900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053165 WO2009110339A1 (en) 2008-03-03 2009-02-23 Device package, electronic module, and electronic apparatus

Country Status (2)

Country Link
JP (1) JPWO2009110339A1 (en)
WO (1) WO2009110339A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11515220B2 (en) * 2019-12-04 2022-11-29 Advanced Semiconductor Engineering, Inc. Semiconductor package structures and methods of manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004031499A (en) * 2002-06-24 2004-01-29 Fuji Photo Film Co Ltd Solid-state imaging device and method of manufacturing the same
JP2005528782A (en) * 2002-04-15 2005-09-22 ショット アーゲー Method of connecting board and composite elements
JP2006247833A (en) * 2005-03-07 2006-09-21 Samsung Electronics Co Ltd Mems element package and its manufacturing method
JP2007194572A (en) * 2005-12-22 2007-08-02 Matsushita Electric Works Ltd Wafer level package structure and sensor element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005528782A (en) * 2002-04-15 2005-09-22 ショット アーゲー Method of connecting board and composite elements
JP2004031499A (en) * 2002-06-24 2004-01-29 Fuji Photo Film Co Ltd Solid-state imaging device and method of manufacturing the same
JP2006247833A (en) * 2005-03-07 2006-09-21 Samsung Electronics Co Ltd Mems element package and its manufacturing method
JP2007194572A (en) * 2005-12-22 2007-08-02 Matsushita Electric Works Ltd Wafer level package structure and sensor element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11515220B2 (en) * 2019-12-04 2022-11-29 Advanced Semiconductor Engineering, Inc. Semiconductor package structures and methods of manufacturing the same

Also Published As

Publication number Publication date
JPWO2009110339A1 (en) 2011-07-14

Similar Documents

Publication Publication Date Title
JP5500904B2 (en) Method for manufacturing light emitting device
JP2012209133A (en) Airtight container, image display device, and manufacturing method thereof
US20070262440A1 (en) Sealing structure and method of manufacturing the sealing structure
US7510947B2 (en) Method for wafer level packaging and fabricating cap structures
JP2009072907A (en) Micro-machining structural element and its manufacturing method
WO2009110339A1 (en) Device package, electronic module, and electronic apparatus
JP5088373B2 (en) Manufacturing method of electronic parts
WO2018020729A1 (en) Semiconductor module and method for manufacturing semiconductor module
JP2008147243A (en) Hermetic sealing apparatus
CN108962829B (en) cover for light emitter
JP2011035436A (en) Method of manufacturing vacuum package
JP4693684B2 (en) Semiconductor submodule
JP5000096B2 (en) Cap member and optical semiconductor device
JP5432533B2 (en) Manufacturing method of electronic device
WO2016204170A1 (en) Wafer-level package and wafer-level chip-scale package
JP5783601B2 (en) Hollow package
JP7302299B2 (en) Junction structure and optical device
KR101073560B1 (en) Mask and method for manufacturing display device using the mask
JP2009038285A (en) Sealed structure
US8896132B2 (en) Electronic device and fabrication method thereof
JP2010041550A (en) Piezoelectric device and method for manufacturing the same
JP5028308B2 (en) Semiconductor package and manufacturing method thereof
JP2022541618A (en) Hermetically sealed transparent cavity and its housing
JP2008300664A (en) Packaging cap and package for mounting optical element
TWI605010B (en) Mems package structure and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09717397

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010501850

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09717397

Country of ref document: EP

Kind code of ref document: A1