WO2009107820A1 - Evaluation method for amount of fat and oil in seed and screening method for plant body with changed amount of fat and oil - Google Patents

Evaluation method for amount of fat and oil in seed and screening method for plant body with changed amount of fat and oil Download PDF

Info

Publication number
WO2009107820A1
WO2009107820A1 PCT/JP2009/053782 JP2009053782W WO2009107820A1 WO 2009107820 A1 WO2009107820 A1 WO 2009107820A1 JP 2009053782 W JP2009053782 W JP 2009053782W WO 2009107820 A1 WO2009107820 A1 WO 2009107820A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
visible light
protein
oil
fluorescence
Prior art date
Application number
PCT/JP2009/053782
Other languages
French (fr)
Japanese (ja)
Inventor
大音徳
光川典宏
林誠
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to EP09713745.9A priority Critical patent/EP2258861B1/en
Priority to CA2717067A priority patent/CA2717067C/en
Priority to AU2009218030A priority patent/AU2009218030B2/en
Priority to US12/920,098 priority patent/US8173435B2/en
Publication of WO2009107820A1 publication Critical patent/WO2009107820A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/92Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving lipids, e.g. cholesterol, lipoproteins, or their receptors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/60Fusion polypeptide containing spectroscopic/fluorescent detection, e.g. green fluorescent protein [GFP]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2405/00Assays, e.g. immunoassays or enzyme assays, involving lipids

Definitions

  • the present invention relates to a method for evaluating the amount of fats and oils in seeds and a method for screening a plant having a changed fat content.
  • Oil bodies are typesetting
  • the oil body is made up of a single phospholipid membrane containing a specific protein called oleosin, steroleosin, and force leucine.
  • the vegetable oil is in the form of triacylglycose mouth (TAG, neutral fat, neutral lipid). In particular, it accumulates in large quantities in plant seeds.
  • TAG triacylglycose mouth
  • Non-Patent Document 1 discloses that the size of the oil body is affected by the abundance of oleosin.
  • Non-patent document 2 describes the oleosin gene and GFP.
  • the oil body which is an organelle in plant cells, can be visualized by fluorescence derived from GFP by fusing a gene (green fluorescent protein).
  • a gene green fluorescent protein
  • the correlation between the number and shape of the oil bodies and the amount of fat and oil accumulated in the oil bodies was still unclear.
  • the correlation between the shape and number of oil bodies in the cotyledons and the amount of oil in the seeds has not been elucidated.
  • various storage compounds such as stored starch and stored fats and oils are decomposed while performing photosynthesis, so the shape and number of oil bodies in the cotyledons oil It was considered difficult to infer the amount of fat.
  • Non-Patent Document 1 Si loto, RMP Et al., Plant Cel 18, 1961-1974, (2006)
  • Non-Patent Document 2 Wahlroos et-al., GENESIS, 35 (2): 125-132, (2003) Disclosure
  • the present invention evaluates the amount of oil and fat in the seed non-destructively, and determines the change in the amount of oil and fat in the seed non-destructively, thereby changing the amount of oil and fat in the seed.
  • the purpose is to screen plant mutants.
  • the present inventors have conducted intensive studies, found that the oleosin-GFP fusion protein is expressed, and that the amount of fats and oils contained in plant seeds can be determined based on the GFP fluorescence intensity. It came to be completed.
  • the present invention includes the following.
  • the step of determining the fat content is characterized by calculating the sum of visible light intensities in cotyledons and making a determination based on a positive correlation between the sum and the fat content in seeds (1 ) Evaluation method described.
  • the relationship between the total visible light intensity and the oil content in the seeds is positively correlated with the total visible light intensity measurement and the measured value using the method for quantifying the oil content in nondestructive seeds using pulsed NMR.
  • the evaluation method according to (6), wherein the total measurement of visible light intensity is measured with a fluorescence microscope, a fluorescence spectrophotometer, a fluorescence titer, a single plate reader, or a fluorescence image analyzer.
  • the relationship between the total visible light intensity and the fat content in the seeds is positively correlated with the total visible light intensity measurement and the measured value using the nondestructive seed fat content determination method using pulsed NMR.
  • FIG. 1 is a block diagram schematically showing an oleosin-GFP fusion gene. ) Are fluorescence photographs of cotyledons on day 6 of germination of 01eG, mutant A and mutant B, respectively.
  • Fig. 2 is a characteristic diagram showing the relationship between the total GFP fluorescence% and the lipid content of seeds.
  • Arabidopsis thaliana which is a model plant, was transformed using the oleosin-GFP fusion gene, and the oil body contained in the cotyledon collected from the transformed Arabidopsis thaliana was visualized by fluorescence. Specifically, the oil body contained in the seed can be observed by germinating the collected seed and observing fluorescence in the expanded cotyledon. Mutations were induced in the transformed Arabidopsis thaliana (mutagen treatment), and changes in various properties such as the shape and number of oil bodies were observed, as well as changes in fat content and oil composition.
  • the evaluation method according to the present invention is based on the above-described knowledge, and quantitatively evaluates the amount of fats and oils in seeds. It is.
  • the screening method according to the present invention is based on the above-described knowledge, and is a method for screening mutant plants in which the amount of oils and fats in seeds has been genetically changed due to mutagen treatment. This screening method is effective if the amount of oil in the seed is genetically changed, and can be applied not only to mutant plants but also to plant species and plant varieties in which the amount of oil in the seed has changed. .
  • a plant that expresses a fusion protein of a protein that exists specifically in an oil body and a protein that can be detected by visible light is prepared.
  • the protein specifically present in the oil body include membrane proteins such as oleosin, normal leucine and caleosin.
  • the fusion protein one of these membrane proteins may be used, or a plurality of proteins may be used.
  • proteins that can be detected by visible light include fluorescent proteins and photoproteins. Fluorescent proteins include not only GFP (green fluorescent protein) but also various GFP mutant proteins known to have similar effects.
  • oleosin-GFP fusion protein a fusion protein of oleosin and GFP (hereinafter referred to as oleosin-GFP fusion protein) will be described as a representative example, but it is clear that the above fusion protein is not limited to oleosin-GFP fusion protein. .
  • the oleosin-GFP fusion protein can be expressed in a desired plant body by obtaining a fusion gene encoding the fusion protein by a conventionally known genetic engineering technique.
  • the base sequence of the fusion gene encoding the oleosin-GFP fusion protein and the amino acid sequence of the oleosin-GFP fusion protein are shown in SEQ ID NOs: 1 and 2, respectively.
  • the oleosin-GFP fusion protein is shown in SEQ ID NO: 2. It is not limited to the one containing the amino acid sequence, and one or more amino acid residues in the amino acid sequence shown in SEQ ID NO: 2 are deleted, substituted, or added.
  • the plurality of amino acid residues means 2 to 40, preferably 2 to 30, more preferably 2 to 20, more preferably 2 to 10, most preferably 2 to Means 5 amino acids.
  • the oleosin-GFP fusion protein may be a protein having 70% or more homology with the amino acid sequence shown in SEQ ID NO: 2.
  • the homology is preferably 80% or more, more preferably 85% or more, further preferably 90% or more, and most preferably 95% or more.
  • the amino acid deletion, addition, and substitution can be performed by modifying the gene encoding the protein by a technique known in the art. Mutation can be introduced into a gene by a known method such as the Kunkel method or the Gapped duplex method, or a method equivalent thereto.
  • a mutation introduction kit using site-directed mutagenesis for example, Mutant -Mutations are introduced using K CTAKARA Bio) or Mutant-G (TAKARA Bio)), or using LA PCR in vitro Mutagenesis series kits from TAKARA Bio.
  • Mutagenesis methods include EMS (ethinoremethansenorephonic acid), 5-bromouracinole, 2-aminopurine, hydroxynoleamine, N-methyl-N'-nitro-N nitrosoguanidine, and other carcinogenesis. It may be a method using a chemical mutagen such as a sexual compound, or a method using radiation treatment or ultraviolet treatment such as X-ray, alpha ray, beta ray, gamma ray or ion beam.
  • the oleosin-GFP fusion protein hybridizes with DNA consisting of a base sequence complementary to the base sequence shown in SEQ ID NO: 1 under stringent conditions, and exists in the oil body membrane. And DNA encoding a fluorescent protein.
  • the stringent condition refers to a condition in which a so-called specific hybrid is formed and a non-specific hybrid is not formed.
  • X SSC sodium chloride Z sodium citrate
  • Imbridation followed by washing at 50-65 ° C, 0.2-1 X SS (:, 0.1% SDS, or such conditions include 65-70 ° C, 1 Hybridization with X SSC, followed by washing at 65-70 ° C, 0.3 X SSC.
  • the gene encoding the oleosin-GFP fusion protein described above has the nucleotide sequence after the base sequence is determined, by chemical synthesis, by PCR using a cloned cDNA as a cage, or by the PCR. It can be obtained from various plants by hybridizing the DNA fragment as a probe.
  • the gene encoding the oleosin-GFP fusion protein according to the present invention described above is functionally expressed in a desired plant by modification so as to replace the wild-type oleosin gene in the plant genome. It will be.
  • the gene encoding the fusion protein may be introduced so that it can be expressed in a plant lacking the wild-type oleosin gene in the plant genome.
  • the gene encoding the fusion protein may be introduced so that the wild-type oleosin gene in the plant genome is not deleted and the gene encoding the fusion protein is overexpressed.
  • pBI vectors As vectors for introducing and expressing the gene encoding the oleosin-GFP fusion protein described above into plant cells, pBI vectors, pUC vectors, and pTRA vectors are preferably used.
  • the pBI and pTRA vectors can introduce a target gene into a plant via agrobacterium.
  • a pBI binary vector or intermediate vector system is preferably used, and examples thereof include pBI121, pBI101, ⁇ 101.2, ⁇ .3, and the like.
  • a pUC vector can directly introduce a gene into a plant, and examples thereof include pUC18, pUC19, and pUC9.
  • plant virus vectors such as cauliflower mosaic virus (CaMV), kidney bean mosaic virus (BGMV), and tabaco mosaic virus (TMV) can be used.
  • CaMV cauliflower mosaic virus
  • BGMV kidney bean mosaic virus
  • TMV tabaco mosaic virus
  • the gene encoding the above-mentioned oleosin-GFP fusion protein needs to be incorporated into a vector so that the function of the gene is exhibited. Therefore, a vector, a promoter, an enhancer, a splicing signal, a poly A addition signal, a selection marker, a 5′-UTR sequence, and the like can be linked to the vector.
  • selection markers include dihydrofolate reductase gene and ampicillin. Resistance genes, neomycin resistance genes, hygromycin resistance genes, bialaphos resistance genes, and the like.
  • a “promoter” does not have to be derived from a plant as long as it is a DNA that functions in plant cells and can induce expression in a specific tissue of a plant or in a specific developmental stage.
  • Specific examples include Cauliflower mosaic virus (CaMV) 35S promoter, nopaline synthase gene promoter (Pnos), corn-derived ubiquitin promoter, rice-derived actin promoter, and tabacco-derived PR protein promoter. It is done.
  • the “terminator” may be any sequence that can terminate transcription of a gene transcribed by the promoter. Specific examples include nopaline synthase gene terminator (Tnos) and force reflower mosaic virus poly A terminator.
  • Enhancer is used to increase the expression efficiency of a target gene.
  • an enhancer region containing an upstream sequence in the CaMV35S promoter is preferable.
  • a transformed plant can be produced according to a standard method using an expression vector having a gene encoding the oleosin-GFP fusion protein described above.
  • a transformed plant can be obtained by introducing the expression vector into a host so that the introduced gene can be expressed.
  • the target of transformation is plant tissue (eg, epidermis, phloem, soft tissue, xylem, vascular bundle, etc., including plant organs (eg, leaves, petals, stems, roots, seeds, etc.)) or plant cells.
  • plants used for transformation include dicotyledonous plants and monocotyledonous plants, such as plants belonging to the family Brassicaceae, Gramineae, Eggplant, Legume, Willow, etc. (see below). It is not limited to.
  • Abfuna larvae Arabidopsis thaliana, 7 buchuna (Brassica rapa,
  • Brainssica rapa var. Pekinensis Japanese beetle (Brassica rapa var. Chinensis) Cap (Brassica rapa var. Hakabura), Mizuna (Brassica rapa var. Lancinifol ia), Komatsuna (var. peruviridis), Nokuchoi (Brassica rapa var. chinensis) x Japanese radish (Brassica Raphanus sativus), Sasabi (Wasabia japonica).
  • Solanum Nicotiana tabacum, eggplant (Solanum melongena), potato (Solaneum tuberosum; N ⁇ 7 ⁇ Lycopersicon lycopersicura no, ⁇ 1 ⁇ : ⁇ f, ⁇ / (Capsicum annuum), Petunia When.
  • Legumes Soybean (Glycine max), Endu (Pisum sativum), Broad bean (Vicia faba), Fun '(Wisteria floribunda), Rakkasei (Arachis. Hypogaea), Lotus corniculatus var. Japonicus li, ⁇ vulgaris)
  • Asteraceae Chrysanthemum morifo'l ium, Helianthus annuus, etc.
  • Palms Elafis (Elaeis guineensis, Elaeis oleifera) Cocos nucifera ⁇ Dates (Phoenix dactyl ifera), Copernicia oleaceae: Rhus succedanea, Cade identi (Toxicodendron vernicifiuum), Mango (angiiera indica, -Pistacia vera)
  • Cucurbitaceae Cubonaya (Cucurbita maxima ⁇ Gucurbita raoschata, Cucurbita pepo), cucumber (Cucumis sativus), cuff cucumber (Trichosanthes cucumeroides), gourd (Lagenaria siceraria var. Gourda)
  • Nola Almond (Amygdalus communis) Rosa, Strawberry (Fragaria), Prunus, Apple (Malus puraila var. Domestica), etc.
  • Dianthus Dianthus caryophyl lus etc.
  • Pula Populus trichocarpa Populus nigra., Populus tremula
  • Lily family Tulip (Tul ipa), Lily (Li l ium), etc.
  • Methods for introducing an expression vector or DNA fragment having a gene encoding the oleosin-GFP fusion protein described above into a plant include the agrobacterium method, Examples include the PEG-calcium phosphate method, the electroporation method, the ribosome method, the particle gun method (bombardment method), and the microinjection method.
  • the agro-actuary method when used, there are cases where a protoplast is used and a tissue piece is used.
  • protoplasts co-culture with agrobacterium with Ti plasmid, fusing with aglobacterium with spout plastoplast (spheroplast method), or leaf disk when using tissue pieces.
  • acetosyringone can be used to increase the transformation rate.
  • telomere length is a region of DNA sequence that has been incorporated into the plant.
  • DNA is prepared from transformed plants, and DNA-specific primers are designed and PCR is performed. After PCR, the amplified product is subjected to agarose gel electrophoresis, polyacrylamide gel electrophoresis, capillary electrophoresis, etc., stained with bromide zyme, SYBR Green solution, etc., and the amplification product as a single band. By detecting it, it can be confirmed that it has been transformed.
  • amplification products can be detected by PCR using primers previously labeled with a fluorescent dye or the like.
  • the amplification product may be bound to a solid phase such as a microplate, and the amplification product may be confirmed by fluorescence or enzymatic reaction.
  • Tumor tissue, shoots, hairy roots, seeds, etc. obtained as a result of transformation can be used for cell culture, tissue culture, or organ culture as they are, and conventionally known plant tissue culture methods can be used. It can be regenerated into plants by administration of an appropriate concentration of plant hormones (auxin, cytokinin, gibberellin, abscisic acid, ethylene, brassinolide, etc.). Generally, plant regeneration from cultured cells involves differentiating roots on a medium containing an appropriate type of auxin and cytokinin, and then transplanting the shoot into a medium rich in cytokinin. After differentiation, transplanted to soil without hormones.
  • plant hormones auxin, cytokinin, gibberellin, abscisic acid, ethylene, brassinolide, etc.
  • plant regeneration from cultured cells involves differentiating roots on a medium containing an appropriate type of auxin and cytokinin, and then transplanting the shoot into a medium rich in cytokinin. After differentiation, transplanted to soil without
  • a transformed plant into which the gene encoding the oleosin-GFP fusion protein described above has been introduced can be prepared.
  • the oleosin-GFP fusion protein is expressed in the oil body membrane, and the oil body can be visualized by observing the fluorescence derived from fluorescent proteins such as GFP. it can.
  • the fluorescence intensity in the cotyledons of the plant body expressing the oleosin-GFP fusion protein is then measured. That is, there is no particular limitation on the method and apparatus for measuring the fluorescence intensity by germinating the seed collected from the transformed plant produced as described above, and measuring the fluorescence intensity in the expanded cotyledon. Examples thereof include a microscope, a fluorescence spectrophotometer, a fluorescence titer plate reader, and a fluorescence image analyzer.
  • the fluorescence intensity and the number of pixels having each fluorescence intensity are calculated from confocal images acquired under the same conditions, the same area, and the same number of pixels.
  • the amount of fats and oils in the seed can be evaluated based on the total fluorescence intensity calculated in this way.
  • the amount of oil and fat in it can be evaluated. Specifically, the sum of the cotyledon fluorescence intensity in the plant body regenerated from the plant cell or plant cell culture treated with the mutagen is calculated, and the sum of the cotyledon fluorescence intensity in the untreated plant body is calculated. Compare.
  • the mutagen treatment is not particularly limited, and treatment with chemical mutagens and / or physical mutagens widely used for inducing mutations can be used.
  • chemical mutagens that can be used include ethyl methanesulfonate (EMS), ethyl nitrosourea (ENS), 2-aminopurine, 5-bromouracil (5-BU), and alkylating agents.
  • physical mutagens radiation, ultraviolet rays, etc. can be used. Mutagenesis using these mutagens can be performed by known methods.
  • the target for evaluating the amount of oil and fat in seeds can be not only plant mutants after mutagen treatment but also different plant species and plant varieties.
  • Oil content in seeds is the most important phenotype in oil crops such as rapeseed, soybean, sunflower and palm palm.
  • the phenotype called oil content in seeds is a so-called quantitative phenotype, which is influenced by complex genotypes.
  • the amount of oil and fat in seeds and changes thereof are simple and easy without the need for laborious steps such as crushing seeds, extracting and purifying oil components and quantitative analysis. High throughput can be determined.
  • Arabidopsis thaliana which is widely used as a model plant, was transformed to express the oleosin-GFP fusion gene, and a transformed plant capable of observing the oil body by fluorescence observation was created. After that, the obtained transformed plant was subjected to mutation treatment, and the mutant in which the amount of oil and fat in the seed was changed was identified using the change in the properties of the oil body as an index.
  • a specific experimental flow and experimental results will be described in detail.
  • RNA was isolated from Arabidopsis sheaths using Qiagen's RNeasy plant mini kit, and reverse transcription was performed using Invitrogen's Superscript III first strand synthesis system for RT-PCR. PCR was performed using the obtained cDNA and primer 1 ( 3 'AAAAAGCAGGCTCAATGGCGGATACAGCTAGAGGA 3 ': SEQ ID NO: 3) and primer 2 ( 3 'CTCGCCCTTGCTCACCATAGTAGTGTGCTGGCCACC 3 ': SEQ ID NO: 4). And DNA fragment A with a part of the GFP gene was amplified.
  • cDNA and primers 3 encoding green fluorescent protein GFP in Owankurage (3 'GGTGGCCAGCACACTACTATGGTGAGCAAGGGCGAG 3': SEQ ID NO: 5
  • primer 4 by PCR using the (3 'AGAAAGCTGGGTCTTACTTGT ACAGCTCGTCCAT 3' SEQ ID NO: 6
  • the GFP cDNA A DNA fragment B having both oleosin S3 cDNA and a part of attB2 sequence added at both ends was amplified.
  • DNA fragments A DNA fragment B, primer one 5 (3 'GGGG ACA AGT TTG TAC AAA AAA GCA GGC T 3': SEQ ID NO: 7) and primer one 6 (3 'GGGG AC CAC TTT GTA CAA GAA AGC TGG G 3 ': SEQ ID NO: 8) were mixed and further PCR was performed to create an oleosin-GFP fusion gene with attBl and attB2 sequences on both sides.
  • the nucleotide sequence of the oleosin-GFP fusion gene and the amino acid sequence of the gene product are shown in SEQ ID NOs: 1 and 2, respectively.
  • the obtained fusion gene was cloned into a Ti vector having attRl and attR2 sequences downstream of the CaMV 35S promoter and containing a kanamycin resistance marker via the PD0NR221 vector according to the Gateway system protocol of Invitrogen.
  • the obtained plasmid was agrobacterium by electroporation.
  • the oleosin-GFP fusion gene was introduced into the Arabidopsis genome using the agrobacterium.
  • Ti-OleG is added to YEB medium (5g 8 polypeptone, 5g / l beef extract, lg / 1 yeast extract, 5g / l sucrose, 0.5g / l MgS0 4 )
  • A600 0.8-1. 0
  • the cells were grown at 28 ° C until they were collected, and then collected by centrifugation.
  • the obtained microbial cells were suspended in an infiltration solution (10 mM MgCl 2 , 5% sucrose, 0.05% Silwet L-77) so as to be A600 20.8.
  • the flowering Arabidopsis flower stalks were immersed in this suspension for 1 minute, and then the seeds with fruit were collected.
  • the collected seeds were sterilized and then sown on a sterile agar medium containing 25 mg / l kanamycin, and transformed Arabidopsis thaliana in which the oleosin-GFP fusion gene was inserted into the genome was isolated using kanamycin resistance as an index.
  • the seeds were collected from the obtained transgenic Arabidopsis thaliana, and a transformant having a homozygous kanamycin resistance marker as a progeny was selected and named OleG.
  • 2 Progeny seeds were collected under 16-hour light and 8-hour drought conditions at 2 ° C and used as M2 seeds.
  • a fluorescent stereomicroscope (Carl Zeiss SteRE0 Lumar V12) was used for screening the mutants. OleG and M2 seeds were germinated on a sterile agar medium upright for 6 days in the dark. Under the fluorescent stereomicroscope (Carl Zeiss), the oleosin-GFP fusion protein in the yellow cotyledon, hypocotyl and root cells GFP fluorescence was observed. OleG was identified as a mutant with a different GFP fluorescence intensity and distribution.
  • Detection of proteins transcribed on the nitrocellulose roll using anti-protein antibodies is performed according to the GE Healthcare Bioscience protocol and TT using ECL Western blotting detection ion reagents. At that time, the primary antibody (anti-oleosin antibody or anti-GFP antibody) and the secondary antibody were both diluted 1/5000.
  • a luminescence image analyzer LAS-1000 plus made by Fuji Film was used for detection of luminescence.
  • Half-cut seeds were fixed with fixative (4% paraformaldehyde, 1% dartalaldehyde, 10% DMS0, 0.05M strength codylate buffer pH 7.4).
  • fixative 4% paraformaldehyde, 1% dartalaldehyde, 10% DMS0, 0.05M strength codylate buffer pH 7.4
  • the fixed sample was embedded in Ebon 812 resin, and an ultrathin section was prepared using a Leica microtome Ultracut UCT. Ultrathin sections were electron-stained with 4% uranium acetate and 0.4% lead citrate and then observed with an electron microscope (Hitachi Seisakusho H-7600).
  • the seeds were weighed with a precision electronic balance using a medicine wrapping paper while performing static neutralization, and weighed so that the seed weight would be 10-12 mg.
  • the seeds were put in a test tube for pulse NMR, and the fat content (% by weight) in the seed was determined from the pulse NMR relaxation time value using Resonance MARAN-23 pulse NMR. The detailed measurement procedure was in accordance with pulse NMR measurement.
  • a fusion gene (Oleosin-GFP) encoding a fusion protein of oleosin and GFP (green fluorescent protein) was prepared and ligated downstream of the cauliflower mosaic virus-derived 35S promoter DNA (Fig. 1A).
  • This DNA construct was introduced into the genomic DNA of Arabidopsis thaliana using the Agrobacterium method, and transformed Arabidopsis thaliana was prepared and named oleG.
  • Figure 1B shows the result of observation of oleG cotyledons after germination for 6 days under dark conditions using fluorescence microscopy. From Fig. 1B, it can be seen that the oil body membrane is labeled with GFP fluorescence, and that many small oil bodies are present as aggregates. In addition to the cotyledons germinated under dark black conditions, it was found that oil bodies also exist in green cotyledons, true leaves, and petals germinated under embryonic conditions.
  • oleG seeds were mutated with ethylmethanesulfonic acid to obtain progeny M2 seeds. Fluorescence microscopy of M2 plants germinated for 6 days under dark black was performed, and mutant A (Fig. 1 C) and mutant B (Fig. 1 D) with different fluorescence intensity compared to oleG were obtained. These mutants had lower GFP fluorescence intensity in germinated cotyledons than oleG.
  • an evaluation method that evaluates the amount of oil and fat in seeds in a non-destructive manner only by performing visible light measurement that is simple in operation and capable of quantitative measurement of a large number of samples at once.
  • plant species, plant varieties, or plant variants in which the amount of fats and oils in seeds is changed can be screened only by performing visible light measurement that is easy to operate and enables quantitative measurement of a large number of samples at once.
  • a screening method can be provided.
  • the evaluation method and screening method according to the present invention are very simple because the amount of fats and oils in seeds or their genetic changes can be evaluated nondestructively.
  • the amount of oil and fat in seeds is a genetic quantitative trait, and a method that can easily and quantitatively measure this amount has industrial advantages. All publications, patents and patent applications cited in this specification are used as is for reference. Incorporated herein.

Abstract

The amount of fat and oil in a seed and genetic change thereof are evaluated. The amount of fat and oil contained in a seed of a plant body and change thereof are determined based on a fluorescence intensity of a fluorescent protein such as GFP in a cotyledon by expressing a fusion protein of an oil-body specific protein and a fluorescent protein such as an oleosin-GFP fusion protein.

Description

種子中の油脂量の評価方法及び油脂含量が変化した植物体のスクリーニング方法 技術分野 Method for evaluating the amount of oil and fat in seeds and screening method for plants having changed oil content
本発明は、 種子中の油脂量の評価方法及び油脂含量が変化した植物体のスクリ 一二ング方法に関する。 明  The present invention relates to a method for evaluating the amount of fats and oils in seeds and a method for screening a plant having a changed fat content. Light
背景技術 Background art
オイルボディ (油体、 リ ピッドボディ (脂質体) と呼ばれる場合もある) は植 書  Oil bodies (oil bodies, sometimes called lipid bodies) are typesetting
物、 特に油糧作物の種子細胞中に多量に存在する細胞内小器官である。 オイルボ ディはォレオシンゃステロレオシン、 力レオシンと呼ばれる特異的なタンパク質 を含んだ一層のリン脂質膜で形成ざれ、 内部には植物油脂がトリァシルグリセ口 ール(TAG、中性脂肪、中性脂質)の形で、特に植物種子中に大量に蓄積している。 従来、 オイルボディに蓄積された油脂を分析する手法としては、 種子を破壊して 油脂成分を抽出し、 ガスクロマトグラフィーゃ液体クロマトグラフィ一等を用い た分析方法であった。 このような分析方法においては、 脂質分解阻害剤の添加や 処理温度に低温条件が必要であったり、 また、 油脂成分が分解してしまうおそれ があった。 It is an intracellular organelle present in large quantities in the seed cells of foods, especially oil crops. The oil body is made up of a single phospholipid membrane containing a specific protein called oleosin, steroleosin, and force leucine. Inside, the vegetable oil is in the form of triacylglycose mouth (TAG, neutral fat, neutral lipid). In particular, it accumulates in large quantities in plant seeds. Conventionally, as a method for analyzing fat and oil accumulated in an oil body, an analysis method using gas chromatography, liquid chromatography, etc., was conducted by destroying seeds and extracting fat and oil components. In such an analytical method, there is a possibility that a low temperature condition is necessary for the addition of a lipid degradation inhibitor and the treatment temperature, and that the fat and oil component is degraded.
一方、 非特許文献 1には、 オイルボディの大きさがォレオシンの存在量に影響 されることが開示されている。 また、非特許文献 2には、ォレオシン遺伝子と GFP On the other hand, Non-Patent Document 1 discloses that the size of the oil body is affected by the abundance of oleosin. Non-patent document 2 describes the oleosin gene and GFP.
(緑色蛍光タンパク質、 green fluorescent protein) 遺伝子を融合させることに より、 GFP 由来の蛍光によって植物細胞中の小器官であるオイルボディを可視化 できることが開示されている。 しかしながら、 オイルボディを観察できたとして も、 オイルボディの数や形状と、 オイルボディに蓄積される油脂量や油脂種との 相関については未解明であった。 特に、 子葉でのオイルボディの形状や数と種子 中の油脂量との相関については未解明であった。 子葉中では発育の過程で、 光合 成も行いながらも貯蔵デンプンゃ貯蔵タンパク質、 貯蔵油脂など様々な貯蔵化合 物を分解利用していくので、 子葉中のオイルボディの形状や数から、 種子中の油 脂量を推察することは困難と考えられていた。 It is disclosed that the oil body, which is an organelle in plant cells, can be visualized by fluorescence derived from GFP by fusing a gene (green fluorescent protein). However, even though the oil bodies could be observed, the correlation between the number and shape of the oil bodies and the amount of fat and oil accumulated in the oil bodies was still unclear. In particular, the correlation between the shape and number of oil bodies in the cotyledons and the amount of oil in the seeds has not been elucidated. In the cotyledon, during storage, various storage compounds such as stored starch and stored fats and oils are decomposed while performing photosynthesis, so the shape and number of oil bodies in the cotyledons oil It was considered difficult to infer the amount of fat.
非特許文献 1 Si loto, R. M. P. Et al. , Plant Cel l 18, 1961-1974, (2006) 非特許文献 2 Wahlroos et- al. , GENESIS, 35 (2) : 125-132, (2003) 発明の開示  Non-Patent Document 1 Si loto, RMP Et al., Plant Cel 18, 1961-1974, (2006) Non-Patent Document 2 Wahlroos et-al., GENESIS, 35 (2): 125-132, (2003) Disclosure
そこで、 本発明は、 上述した実情に鑑み、 非破壊で種子中の油脂量を評価する こと、 また、 種子中の油脂量の変化を非破壊で判定することで、 種子中の油脂量 が変化した植物変異体をスクリーニングすることを目的とする。  Therefore, in view of the above-described situation, the present invention evaluates the amount of oil and fat in the seed non-destructively, and determines the change in the amount of oil and fat in the seed non-destructively, thereby changing the amount of oil and fat in the seed. The purpose is to screen plant mutants.
上述した目的を達成するため、 本発明者らが鋭意検討し、 ォレオシン- GFP融合 タンパク質を発現させ、 GFP 蛍光強度に基づいて植物体の種子に含まれる油脂量 を判定できることを見いだし、 本発明を完成するに至った。  In order to achieve the above-mentioned object, the present inventors have conducted intensive studies, found that the oleosin-GFP fusion protein is expressed, and that the amount of fats and oils contained in plant seeds can be determined based on the GFP fluorescence intensity. It came to be completed.
すなわち、 本発明は以下を包含する。  That is, the present invention includes the following.
( 1 ) オイルボディ特異的に存在するタンパク質と可視光によって検出可能な タンパク質の融合タンパク質を発現する植物体における子葉中の可視光強度を測 定する工程と、 上記工程で測定した可視光強度に基づいて種子中の油脂含量を判 定する工程とを含む、 種子中の油脂量の評価方法。  (1) A step of measuring the visible light intensity in the cotyledons in a plant expressing a fusion protein of a protein that exists specifically in the oil body and a protein that can be detected by visible light, and the visible light intensity measured in the above step. And a method for determining the fat content in the seed based on the step of determining the fat content in the seed.
( 2 ) 上記オイルボディ特異的に存在するタンパク質がォレオシン、 ステロレ オシン及ぴ力レオシンからなる群から選ばれるいずれか 1のタンパク質であるこ とを特徴とする (1 ) 記載の評価方法。  (2) The evaluation method according to (1), wherein the protein specifically present in the oil body is any one protein selected from the group consisting of oleosin, steroleosin and force leucine.
( 3 ) 上記オイルボディ特異的に存在するタンパク質がォレオシンであること を特徴とする (1 ) 記載の評価方法。  (3) The evaluation method according to (1), wherein the protein specifically present in the oil body is oleosin.
( 4 )上記可視光によって検出可能なタンパク質が GFP (緑色蛍光タンパク質、 green fluorescent protein) であることを特徴とする (1 ) 記載の評価方法。  (4) The evaluation method according to (1), wherein the protein detectable by visible light is GFP (green fluorescent protein).
( 5 )上記油脂含量を判定する工程では、子葉中の可視光強度の総和を算出し、 当該総和と種子中の油脂含量とが正に相関する関係から判定することを特徴とす る (1 ) 記載の評価方法。  (5) The step of determining the fat content is characterized by calculating the sum of visible light intensities in cotyledons and making a determination based on a positive correlation between the sum and the fat content in seeds (1 ) Evaluation method described.
( 6 ) 可視光強度総和測定と、 パルス NMRを用いた非破壊種子の油脂含量定量 方法を用いた測定値とから、 可視光強度総和と種子中の油脂含量とが正に相関す る関係を判定する工程をさらに含むことを特徴とする (5 ) 記載の評価方法 (7) 上記可視光強度総和測定が、 蛍光顕微鏡、 蛍光分光光度計、 蛍光タイタ 一プレートリーダー又は蛍光画像解析装置で測定することを特徴とする (6) 記 載の評価方法。 (6) The relationship between the total visible light intensity and the oil content in the seeds is positively correlated with the total visible light intensity measurement and the measured value using the method for quantifying the oil content in nondestructive seeds using pulsed NMR. The evaluation method according to (5), further comprising a step of determining (7) The evaluation method according to (6), wherein the total measurement of visible light intensity is measured with a fluorescence microscope, a fluorescence spectrophotometer, a fluorescence titer, a single plate reader, or a fluorescence image analyzer.
(8) 上記植物体は、 変異原処理が施された植物細胞又は植物細胞培養物から 得られたものであることを特徴とする (1) 記載の評価方法。  (8) The evaluation method according to (1), wherein the plant body is obtained from a plant cell or plant cell culture that has been subjected to a mutagen treatment.
(9) 上記植物体が油糧植物であることを特徴とする (1) 記載の評価方法。 (9) The evaluation method according to (1), wherein the plant body is an oil plant.
(1 0) 上記植物体が双子葉植物であることを特徴とする (1) 記載の評価方 法。 (1 0) The evaluation method according to (1), wherein the plant is a dicotyledonous plant.
(1 1) 上記植物体がアブラナ科植物であることを特徴とする (1) 記載の評 価方法。  (1 1) The evaluation method according to (1), wherein the plant body is a cruciferous plant.
(1 2) 上記植物体がシロイヌナズナであることを特徴とする (1) 記載の評 価方法。  (1 2) The evaluation method according to (1), wherein the plant is Arabidopsis thaliana.
(1 3) 上記可視光強度を、 蛍光顕微鏡、 蛍光分光光度計、 蛍光タイタープレ ートリーダー又は蛍光画像解析装置で測定することを特徴とする (1) 記載の評 価方法。  (13) The evaluation method according to (1), wherein the visible light intensity is measured with a fluorescence microscope, a fluorescence spectrophotometer, a fluorescence titer plate reader, or a fluorescence image analyzer.
( 14 ) オイルボディ特異的に存在するタンパク質と可視光によつて検出可能 なタンパク質の融合タンパク質を発現する植物細胞、 植物細胞培養物又は植物体 由来の子葉中の可視光強度を測定する事に基づいて、 種子中の油脂含量が変化し た植物種、 植物品種又は植物変異体を選抜するスク リーニング方法。  (14) To measure the intensity of visible light in cotyledons derived from plant cells, plant cell cultures or plant bodies that express fusion proteins of oil body-specific proteins and proteins detectable by visible light. Based on this, a screening method for selecting plant species, plant varieties or plant mutants in which the oil content in seeds has changed.
(1 5) 上記オイルボディ特異的に存在するタンパク質がォレオシン、 ステロ レオシン及び力レオシンからなる群から選ばれるいずれか 1のタンパク質である ことを特徴とする (14) 記載のスク リーニング方法。  (15) The screening method according to (14), wherein the protein specifically present in the oil body is any one protein selected from the group consisting of oleosin, steroleucine and force leucine.
(1 6) 上記オイルボディ特異的に存在するタンパク質がォレオシンであるこ とを特徴とする (14) 記載のスク リーニング方法。  (16) The screening method according to (14), wherein the protein specifically present in the oil body is oleosin.
(1 7) 上記可視光によって検出可能なタンパク質が GFP (緑色蛍光タンパク 質、 green fluorescent protein) であることを特徴とする (14) 記載のスク リ 一二ング方法。  (17) The screening method according to (14), wherein the protein detectable by visible light is GFP (green fluorescent protein).
(1 8) オイルボディ特異的に存在するタンパク質と可視光によって検出可能 なタンパク質の融合タンパク質を発現する植物細胞、 植物細胞培養物又は植物体 に変異原処理を行う工程と、 上記変異原処理後、 子葉中の可視光強度を測定する 工程と、 上記工程で測定した可視光強度に基づいて、 上記変異原処理に起因する 種子中の油脂含量の変化を判定する工程とを含む、 油脂含量が変化した植物体の スクリ一二ング方法。 (18) Plant cells, plant cell cultures or plants that express a fusion protein of an oil body-specific protein and a protein detectable by visible light And the step of measuring the visible light intensity in the cotyledon after the mutagen treatment, and the fats and oils in the seed resulting from the mutagen treatment based on the visible light intensity measured in the step And a method for screening a plant having a changed fat content.
( 1 9) 上記オイルボディ特異的に存在するタンパク質がォレオシン、 ステロ レオシン及び力レオシンからなる群から選ばれるいずれか 1のタンパク質である ことを特徴とする (1 8) 記載のスクリーニング方法。 (19) The screening method according to (18), wherein the protein specifically present in the oil body is any one protein selected from the group consisting of oleosin, steroleucine and force leucine.
(2 0) 上記オイルボディ特異的に存在するタンパク質がォレオシンであるこ とを特徴とする (1 8) 記載のスクリーニング方法。  (20) The screening method according to (18), wherein the oil body-specific protein is oleosin.
(2 1 ) 上記可視光によって検出可能なタンパク質が GFP (緑色蛍光タンパク 質、 green fluorescent protein) であることを特徴とする (1 8) 記載のスク リ 一ユング方法。  (2 1) The screening method according to (18), wherein the protein detectable by visible light is GFP (green fluorescent protein).
(2 2) 上記油脂含量の変化を判定する工程では、 子葉中の可視光強度の総和 を算出し、 当該総和と種子中の油脂含量とが正に相関する関係から判定すること を特徴とする (1 9) 記載のスクリーニング方法。  (2 2) In the step of determining the change in the fat content, the sum of visible light intensities in the cotyledons is calculated, and the sum is determined based on a positive correlation between the fat content in the seeds. (19) The screening method described.
(2 3) 可視光強度総和測定と、 パルス NMRを用いた非破壊種子の油脂含量定 量方法を用いた測定値とから、 可視光強度総和と種子中の油脂含量とが正に相関 する関係を判定する工程をさらに含むことを特徴とする (2 2) のスクリーニン グ方法。 .  (2 3) The relationship between the total visible light intensity and the fat content in the seeds is positively correlated with the total visible light intensity measurement and the measured value using the nondestructive seed fat content determination method using pulsed NMR. The screening method according to (2 2), further comprising the step of determining .
(24) 上記可視光強度総和測定が、 蛍光顕微鏡、 蛍光分光光度計、 蛍光タイ タープレートリーダ一又は蛍光画像解析装置で測定することを特徴とする(2 3) 記載のスクリーユング方法。  (24) The screening method according to (23), wherein the total measurement of visible light intensity is measured with a fluorescence microscope, a fluorescence spectrophotometer, a fluorescence titer plate reader, or a fluorescence image analyzer.
(2 5) 上記植物体が油糧植物であることを特徴とする (1 8) 記載のスク リ 一二ング方法。  (2 5) The screening method according to (18), wherein the plant body is an oil plant.
(2 6) 上記植物体が双子葉植物であることを特徴とする (1 8) 記載のスク リーニング方法。  (2 6) The screening method according to (18), wherein the plant body is a dicotyledonous plant.
(2 7) 上記植物体がアブラナ科植物であることを特徴とする (1 8) 記載の スク リーニング方法。  (2 7) The screening method according to (18), wherein the plant body is a cruciferous plant.
(2 8) 上記植物体がシロイヌナズナであることを特徴とする (1 8) 記載の スク リ一二ング方法。 (2 8) The plant according to (1 8), wherein the plant is Arabidopsis thaliana Screening method.
( 2 9 ) 上記可視光強度を、 蛍光顕微鏡、 蛍光分光光度計、 蛍光タイタープレ ートリーダー又は蛍光画像解析装置で測定することを特徴とする (1 8 ) 記載の スクリーユング方法。 本明細書は本願の優先権の基礎である日本国特許出願 2008-048485号の明細書 および Zまたは図面に記載される内容を包含する。 図面の簡単な説明 (29) The screening method according to (18), wherein the visible light intensity is measured with a fluorescence microscope, a fluorescence spectrophotometer, a fluorescence titer plate reader, or a fluorescence image analyzer. This specification includes the contents described in the specification and Z or drawings of Japanese Patent Application No. 2008-048485, which is the basis of the priority of the present application. Brief Description of Drawings
図 1は、 Aはォレオシン- GFP融合遺伝子を模式的に示す構成図であり、 B〜!)は それぞれ 01eG、変異体 A及び変異体 Bの喑所発芽 6日目における子葉の蛍光写真 である。  FIG. 1 is a block diagram schematically showing an oleosin-GFP fusion gene. ) Are fluorescence photographs of cotyledons on day 6 of germination of 01eG, mutant A and mutant B, respectively.
図 2は、 GFP蛍光総和%と種子の脂質含量との関係を示す特性図である。  Fig. 2 is a characteristic diagram showing the relationship between the total GFP fluorescence% and the lipid content of seeds.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を参照して本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail with reference to the drawings.
本発明では、ォレオシン- GFP融合遺伝子を用いてモデル植物であるシロイヌナ ズナを形質転換し、 形質転換シロイヌナズナから採取した子葉に含まれるオイル ボディを蛍光により可視化した。 具体的には、 採取した種子を発芽させ、 展開し た子葉における蛍光を観察することで種子に含まれていたオイルボディを観察す ることができる。 この形質転換シロイヌナズナに突然変異を誘発 (変異原処理) してオイルボディの形状や数といった各種性状の変化を観察するとともに、 油脂 含量や油性組成の変化を測定した。 驚くべきことに、 オイルボディの各種性状の うち子葉中の蛍光総和 (換言すれば、 単位面積あたりの蛍光強度) と、 種子に含 まれる油脂量との間に正の相関があることが明らかになった。  In the present invention, Arabidopsis thaliana, which is a model plant, was transformed using the oleosin-GFP fusion gene, and the oil body contained in the cotyledon collected from the transformed Arabidopsis thaliana was visualized by fluorescence. Specifically, the oil body contained in the seed can be observed by germinating the collected seed and observing fluorescence in the expanded cotyledon. Mutations were induced in the transformed Arabidopsis thaliana (mutagen treatment), and changes in various properties such as the shape and number of oil bodies were observed, as well as changes in fat content and oil composition. Surprisingly, it is clear that among the various properties of the oil body, there is a positive correlation between the total fluorescence in the cotyledons (in other words, the fluorescence intensity per unit area) and the amount of oil contained in the seeds. Became.
以上の知見に基づいて、 植物種子における油脂含量及びその変化は、 オイルボ ディ特異的に存在するタンパク質と可視光によって検出可能なタンパク質の融合 タンパク質をコードする遺伝子を発現する植物体において子葉中の可視光強度.を 測定することによって測定 ·評価できることが明らかとなった。 本発明に係る評 価方法は、 上述した知見に基づいており、 種子中の油脂量を定量的に評価するも のである。 また、 本発明に係るスクリーニング方法は、 上述した知見に基づいて おり、 変異原処理に起因して遺伝的に種子中の油脂量が変化した変異植物をスク リ一二ングする方法である。 このスクリ一二ング方法は遺伝的に種子中の油脂量 が変化していれば有効であり、 変異植物だけでなく、 種子中の油脂量が変化した 植物種、 植物品種にも適用可能である。 Based on the above findings, the fat content and its changes in plant seeds are determined by the fusion of the oil body-specific protein and the protein detectable by visible light in the cotyledon visible in the plant body expressing the gene encoding the protein. It became clear that measurement and evaluation can be performed by measuring the light intensity. The evaluation method according to the present invention is based on the above-described knowledge, and quantitatively evaluates the amount of fats and oils in seeds. It is. The screening method according to the present invention is based on the above-described knowledge, and is a method for screening mutant plants in which the amount of oils and fats in seeds has been genetically changed due to mutagen treatment. This screening method is effective if the amount of oil in the seed is genetically changed, and can be applied not only to mutant plants but also to plant species and plant varieties in which the amount of oil in the seed has changed. .
本発明においては、 先ず、 オイルボディ特異的に存在するタンパク質と可視光 によって検出可能なタンパク質の融合タンパク質を発現する植物体を準備する。 ここで、 オイルボディ特異的に存在するタンパク質としては、 ォレオシン、 ステ 口レオシン及びカレオシン等の膜タンパク質を挙げることができる。 また、 融合 タンパク質としては、 これら膜タンパク質のうち 1種を用いたものでも良いし、 複数種のタンパク質を用いたものでも良い。 可視光によって検出可能なタンパク 質としては、 蛍光タンパク質及び発光タンパク質を挙げることができる。 蛍光タ ンパク質としては、 GFP (緑色蛍光タンパク質、 green fluorescent protein) だ けでなく、 同様の効果を持つタンパク質と知られる各種 GFP 変異型タンパク質 In the present invention, first, a plant that expresses a fusion protein of a protein that exists specifically in an oil body and a protein that can be detected by visible light is prepared. Here, examples of the protein specifically present in the oil body include membrane proteins such as oleosin, normal leucine and caleosin. As the fusion protein, one of these membrane proteins may be used, or a plurality of proteins may be used. Examples of proteins that can be detected by visible light include fluorescent proteins and photoproteins. Fluorescent proteins include not only GFP (green fluorescent protein) but also various GFP mutant proteins known to have similar effects.
(YFP (yel low fluorescent protein)、 RFP red fluorescent protein)、 OFP (.orange fluorescent protein) 及び BFP (blue fluorescent protein)など) や、 その他の 蛍光発光能のあるタンパク質を使用することができる。発光タンパク質としては、 例えばルシフェラーゼ等を挙げることができる。 特に、 可視光によって検出可能 なタンパク質としては、 上述したような蛍光タンパク質を使用することが好まし い。 蛍光タンパク質は、 従来公知の蛍光測定手段によって非常に高精度に定量的 解析が可能であるためである。 なお、 以下においては、 ォレオシンと GFPの融合 タンパク質 (以下、 ォレオシン - GFP融合タンパク質と表記する) を代表例として 記述するが、上記融合タンパク質としてはォレオシン- GFP融合タンパク質に限定 されないことは明らかである。 (YFP (yel low fluorescent protein), RFP red fluorescent protein), OFP (.orange fluorescent protein), BFP (blue fluorescent protein), etc.) and other proteins capable of emitting fluorescence can be used. Examples of the photoprotein include luciferase. In particular, the fluorescent protein as described above is preferably used as the protein that can be detected by visible light. This is because the fluorescent protein can be quantitatively analyzed with very high accuracy by a conventionally known fluorescence measuring means. In the following, a fusion protein of oleosin and GFP (hereinafter referred to as oleosin-GFP fusion protein) will be described as a representative example, but it is clear that the above fusion protein is not limited to oleosin-GFP fusion protein. .
ここでォレオシン- GFP融合タンパク質は、従来公知の遺伝子工学的手法によつ て当該融合タンパク質をコードする融合遺伝子を取得することで所望の植物体で 発現させることができる。 一例として、 ォレオシン- GFP融合タンパク質をコード する融合遺伝子の塩基配列及びォレオシン- GFP 融合タンパク質のアミノ酸配列 をそれぞれ配列番号 1及び 2に示す。 本発明において、 ォレオシン- GFP融合タンパク質としては、 配列番号 2に示す. アミノ酸配列を含むものに限定されず、 配列番号 2に示すアミノ酸配列において 1又は複数のアミノ酸残基が欠失、 置換、 付加又は挿入されたアミノ酸配列を含 み、オイルボディの膜中に存在し、且つ蛍光を呈するタンパク質であってもよい。 ここで、 複数のアミノ酸残基とは、 2〜4 0個、 好ましくは 2〜3 0個、 より好 ましくは 2〜 2 0個、 更に好ましくは 2〜 1 0個、 最も好ましくは 2〜 5個のァ ミノ酸を意味する。 Here, the oleosin-GFP fusion protein can be expressed in a desired plant body by obtaining a fusion gene encoding the fusion protein by a conventionally known genetic engineering technique. As an example, the base sequence of the fusion gene encoding the oleosin-GFP fusion protein and the amino acid sequence of the oleosin-GFP fusion protein are shown in SEQ ID NOs: 1 and 2, respectively. In the present invention, the oleosin-GFP fusion protein is shown in SEQ ID NO: 2. It is not limited to the one containing the amino acid sequence, and one or more amino acid residues in the amino acid sequence shown in SEQ ID NO: 2 are deleted, substituted, or added. Alternatively, it may be a protein that contains an inserted amino acid sequence, is present in the oil body membrane, and exhibits fluorescence. Here, the plurality of amino acid residues means 2 to 40, preferably 2 to 30, more preferably 2 to 20, more preferably 2 to 10, most preferably 2 to Means 5 amino acids.
また、 ォレオシン- GFP融合タンパク質としては、 配列番号 2に示したアミノ酸 配列と 70%以上の相同性を有するタンパク質でもよい。 前記相同性は、 好ましく は 80%以上であり、 より好ましくは 85%以上であり、 さらに好ましくは 90%以 上であり、 最も好ましくは 95%以上である。  The oleosin-GFP fusion protein may be a protein having 70% or more homology with the amino acid sequence shown in SEQ ID NO: 2. The homology is preferably 80% or more, more preferably 85% or more, further preferably 90% or more, and most preferably 95% or more.
前記アミノ酸の欠失、 付加、 及び置換は、 前記タンパク質をコードする遺伝子 を、当該技術分野で公知の手法によって改変することによって行うことができる。 遺伝子に変異を導入するには、 Kunkel法又は Gapped duplex法等の公知手法又は これに準ずる方法により行うことができ、 例えば部位特異的突然変異誘発法を利 用した変異導入用キッ ト (例えば Mutant- K CTAKARA Bio社製)や Mutant-G (TAKARA Bio社製))などを用いて、あるいは、 TAKARA Bio社の LA PCR in vitro Mutagenesis シリーズキッ トを用いて変異が導入される。 また、 変異導入方法としては、 EMS (ェチノレメタンスノレホン酸)、 5-ブロモウラシノレ、 2-アミノプリン、 ヒ ドロキシノレ ァミン、 N-メチル- N' -ニトロ- N ニトロソグァ二ジン、 その他の発ガン性化合物 に代表されるような化学的変異剤を使用する方法でも良いし、 X線、アルファ線、 ベータ線、 ガンマ線、 イオンビームに代表されるような放射線処理や紫外線処理 による方法でも良い。  The amino acid deletion, addition, and substitution can be performed by modifying the gene encoding the protein by a technique known in the art. Mutation can be introduced into a gene by a known method such as the Kunkel method or the Gapped duplex method, or a method equivalent thereto. For example, a mutation introduction kit using site-directed mutagenesis (for example, Mutant -Mutations are introduced using K CTAKARA Bio) or Mutant-G (TAKARA Bio)), or using LA PCR in vitro Mutagenesis series kits from TAKARA Bio. Mutagenesis methods include EMS (ethinoremethansenorephonic acid), 5-bromouracinole, 2-aminopurine, hydroxynoleamine, N-methyl-N'-nitro-N nitrosoguanidine, and other carcinogenesis. It may be a method using a chemical mutagen such as a sexual compound, or a method using radiation treatment or ultraviolet treatment such as X-ray, alpha ray, beta ray, gamma ray or ion beam.
さらに、 ォレオシン- GFP融合タンパク質をコードする遺伝子としては、 配列番 号 1に示す塩基配列と相補的な塩基配列からなる DNAとストリンジェントな条件 下でハイブリダィズし、 オイルボディの膜中に存在し、 且つ蛍光を呈するタンパ ク質をコードする DNAを含む。 ここで、 ストリンジェントな条件とは、 いわゆる 特異的なハイプリッドが形成され、 非特異的なハイプリ ッドが形成されない条件 をいう。 例えば、 45° (:、 6 X SSC (塩化ナトリウム Zクェン酸ナトリウム) でのハ イブリダィゼーシヨン、 その後の 50〜65°C、 0. 2〜1 X SS (:、 0. 1%SDSでの洗浄が 挙げられ、 或いはそのような条件として、 65〜70°C、 1 X SSCでのハイブリダィゼ ーシヨン、 その後の 65〜70°C、 0. 3 X SSCでの洗浄を挙げることができる。 Furthermore, as a gene encoding the oleosin-GFP fusion protein, it hybridizes with DNA consisting of a base sequence complementary to the base sequence shown in SEQ ID NO: 1 under stringent conditions, and exists in the oil body membrane. And DNA encoding a fluorescent protein. Here, the stringent condition refers to a condition in which a so-called specific hybrid is formed and a non-specific hybrid is not formed. For example, at 45 ° (:, 6 X SSC (sodium chloride Z sodium citrate)) Imbridation, followed by washing at 50-65 ° C, 0.2-1 X SS (:, 0.1% SDS, or such conditions include 65-70 ° C, 1 Hybridization with X SSC, followed by washing at 65-70 ° C, 0.3 X SSC.
なお、 上述したォレオシン- GFP融合タンパク質をコードする遺伝子は、 その塩 基配列が確定されると、 その後は化学合成によって、 又はクローニングされた cDNAを铸型とした PCRによって、 あるいは該塩基配列を有する DNA断片をプロ一 ブとしてハイブリダイズさせることによって、種々の植物より得ることができる。 以上で説明した本発明に係るォレオシン- GFP 融合タンパク質をコードする遺 伝子は、 植物ゲノム中における野生型のォレオシン遺伝子を置換するように改変 することで、 所望の植物内で機能的に発現することとなる。 或いは、 本発明にお いて、 上記融合タンパク質をコードする遺伝子は、 植物ゲノム内の野生型ォレオ シン遺伝子を欠損させた植物体内に発現可能なように導入しても良い。 さらに、 本発明において、 上記融合タンパク質をコードする遺伝子は、 植物ゲノム内の野 生型ォレオシン遺伝子を欠損させず、 当該融合タンパク質をコードする遺伝子が 過剰発現するように導入してもよい。  The gene encoding the oleosin-GFP fusion protein described above has the nucleotide sequence after the base sequence is determined, by chemical synthesis, by PCR using a cloned cDNA as a cage, or by the PCR. It can be obtained from various plants by hybridizing the DNA fragment as a probe. The gene encoding the oleosin-GFP fusion protein according to the present invention described above is functionally expressed in a desired plant by modification so as to replace the wild-type oleosin gene in the plant genome. It will be. Alternatively, in the present invention, the gene encoding the fusion protein may be introduced so that it can be expressed in a plant lacking the wild-type oleosin gene in the plant genome. Furthermore, in the present invention, the gene encoding the fusion protein may be introduced so that the wild-type oleosin gene in the plant genome is not deleted and the gene encoding the fusion protein is overexpressed.
上述したォレオシン- GFP 融合タンパク質をコードする遺伝子を植物細胞へ導 入し、発現させるためのベクターとしては、 pBI系のベクター、 pUC系のベクター、 pTRA系のベクターが好適に用いられる。 pBI系及び pTRA系のベクターは、 ァグロ バクテリゥムを介して植物に目的遺伝子を導入することができる。 pBI 系のバイ ナリーべクタ一又は中間ベクター系が好適に用いられ、例えば、 pBI 121、 pBI101、 ρΒΙ 101. 2、 ρΒΙ ΙΟΙ. 3等が挙げられる。 pUC系のベクターは、 植物に遺伝子を直接 導入することができ、 例えば、 pUC18、 pUC19、 pUC9等が挙げられる。 また、 カリ フラワーモザイクウイ^^ス (CaMV)、 インゲンマメモザイクウイ ^/ス (BGMV)、 タ バコモザイクウィルス (TMV) 等の植物ウィルスベクターも用いることができる。 上述したォレオシン- GFP融合タンパク質をコードする遺伝子は、その遺伝子の 機能が発揮されるようにベクターに組み込まれることが必要である。 そこで、 ベ クタ一には、プロモーター、所望によりェンハンサー、スプライシングシグナル、 ポリ A付加シグナル、 選択マーカー、 5' - UTR配列などを連結することができる。 なお、 選択マーカーとしては、 例えばジヒ ドロ葉酸還元酵素遺伝子、 アンピシリ ン耐性遺伝子、 ネオマイシン耐性遺伝子、 ハイグロマイシン耐性遺伝子、 ビアラ ホス耐性遺伝子等が挙げられる。 As vectors for introducing and expressing the gene encoding the oleosin-GFP fusion protein described above into plant cells, pBI vectors, pUC vectors, and pTRA vectors are preferably used. The pBI and pTRA vectors can introduce a target gene into a plant via agrobacterium. A pBI binary vector or intermediate vector system is preferably used, and examples thereof include pBI121, pBI101, ρΒΙ101.2, ρΒΙΒΙ.3, and the like. A pUC vector can directly introduce a gene into a plant, and examples thereof include pUC18, pUC19, and pUC9. In addition, plant virus vectors such as cauliflower mosaic virus (CaMV), kidney bean mosaic virus (BGMV), and tabaco mosaic virus (TMV) can be used. The gene encoding the above-mentioned oleosin-GFP fusion protein needs to be incorporated into a vector so that the function of the gene is exhibited. Therefore, a vector, a promoter, an enhancer, a splicing signal, a poly A addition signal, a selection marker, a 5′-UTR sequence, and the like can be linked to the vector. Examples of selection markers include dihydrofolate reductase gene and ampicillin. Resistance genes, neomycin resistance genes, hygromycin resistance genes, bialaphos resistance genes, and the like.
「プロモーター」 としては、 植物細胞において機能し、 植物の特定の組織内あ るいは特定の発育段階において発現を導くことのできる DNAであれば、 植物由来 のものでなくてもよレ、。 具体例と しては、 カリ フラワーモザイクウィルス (CaMV) 35Sプロモーター、 ノパリン合成酵素遺伝子のプロモーター (Pnos)、 トウ モロコシ由来ュビキチンプロモーター、 イネ由来のァクチンプロモーター、 タバ コ由来 PRタンパク質プロモーター等が挙げられる。  A “promoter” does not have to be derived from a plant as long as it is a DNA that functions in plant cells and can induce expression in a specific tissue of a plant or in a specific developmental stage. Specific examples include Cauliflower mosaic virus (CaMV) 35S promoter, nopaline synthase gene promoter (Pnos), corn-derived ubiquitin promoter, rice-derived actin promoter, and tabacco-derived PR protein promoter. It is done.
「ターミネータ一」 は、 前記プロモーターにより転写された遺伝子の転写を終 結できる配列であればよい。 具体例としては、 ノパリン合成酵素遺伝子のターミ ネーター(Tnos)、力リフラワーモザィクウィルスポリ Aターミネータ一等が挙げ られる。  The “terminator” may be any sequence that can terminate transcription of a gene transcribed by the promoter. Specific examples include nopaline synthase gene terminator (Tnos) and force reflower mosaic virus poly A terminator.
「ェンハンサー」 は、 目的遺伝子の発現効率を高めるために用いられ、 例えば CaMV35Sプロモーター内の上流側の配列を含むェンハンサー領域が好適である。 また、上述したォレオシン -GFP融合タンパク質をコードする遺伝子を有する発 現ベクターを用いて、 形質転換植物を定法に従って作製することができる。 形質 転換植物は、 上記発現ベクターを、 導入した遺伝子が発現し得るように宿主中に 導入することにより得ることができる。形質転換の対象は、植物組織(例えば表皮、 師部、 柔組織、 木部、 維管束等、 植物器官(例えば葉、 花弁、 茎、 根、 種子等)を 含む)又は植物細胞である。  “Enhancer” is used to increase the expression efficiency of a target gene. For example, an enhancer region containing an upstream sequence in the CaMV35S promoter is preferable. In addition, a transformed plant can be produced according to a standard method using an expression vector having a gene encoding the oleosin-GFP fusion protein described above. A transformed plant can be obtained by introducing the expression vector into a host so that the introduced gene can be expressed. The target of transformation is plant tissue (eg, epidermis, phloem, soft tissue, xylem, vascular bundle, etc., including plant organs (eg, leaves, petals, stems, roots, seeds, etc.)) or plant cells.
形質転換に用いられる植物としては、 双子葉植物、 単子葉植物、 例えばァブラ ナ科、 イネ科、 ナス科、 マメ科、 ャナギ科等に属する植物 (下記参照) が挙げら れるが、 これらの植物に限定されるものではない。  Examples of plants used for transformation include dicotyledonous plants and monocotyledonous plants, such as plants belonging to the family Brassicaceae, Gramineae, Eggplant, Legume, Willow, etc. (see below). It is not limited to.
アブフナ禾斗:シ口.ィヌナスナ (Arabidopsis thal iana) 、 7ブフナ (Brassica rapa、Abfuna larvae: Arabidopsis thal iana, 7 buchuna (Brassica rapa,
Brassica napus; N =rャへッ (Brassica oleracea var. capitata)、ナタネ (Brassica rapa、 Brassica napus) N ナノノヽナ (Brassica rapa^ Brassica napus) ^ ノヽクサィBrassica napus; N = r hehet (Brassica oleracea var. Capitata), rapeseed (Brassica rapa, Brassica napus) N Nanosona (Brassica rapa ^ Brassica napus) ^
(Brassica rapa var. pekinensis)、テンゲンサイ (Brassica rapa var. chinensis) カプ (Brassica rapa var. rapa) ノザヮナ (Brassica rapa var. hakabura) 、 ミズナ (Brassica rapa var. lancinifol ia)、 コマツナ (Brassica rapa var. peruviridis)、 ノ クチョィ (Brassica rapa var. chinensis) x ダイコン (Brassica Raphanus sativus)、 ヮサビ (Wasabia japonica) など。 (Brassica rapa var. Pekinensis), Japanese beetle (Brassica rapa var. Chinensis) Cap (Brassica rapa var. Hakabura), Mizuna (Brassica rapa var. Lancinifol ia), Komatsuna (var. peruviridis), Nokuchoi (Brassica rapa var. chinensis) x Japanese radish (Brassica Raphanus sativus), Sasabi (Wasabia japonica).
ナス科 : タノくコ (Nicotiana tabacum)、 ナス (Solanum melongena)、 ンャガイモ ( Solaneum tuberosum; N 卜 7 卜 Lycopersicon lycopersicuraノ、 卜 1^ :^フ、</ (Capsicum annuum)、 へテュニァ (Petunia) なと。 Solanum: Nicotiana tabacum, eggplant (Solanum melongena), potato (Solaneum tuberosum; N卜 7 卜 Lycopersicon lycopersicura no, 卜1 ^: ^ f, </ (Capsicum annuum), Petunia When.
マメ科:ダイズ (Glycine max)、エンドゥ (Pisum sativum)、ソラマメ (Vicia faba)、 フン' (Wisteria floribunda)、ラッカセィ (Arachis. hypogaea)、ミヤコグサ (Lotus corniculatus var. japonicusリ、 Λ ンヮ ンマ (Phaseolus vulgaris) /ズャLegumes: Soybean (Glycine max), Endu (Pisum sativum), Broad bean (Vicia faba), Fun '(Wisteria floribunda), Rakkasei (Arachis. Hypogaea), Lotus corniculatus var. Japonicus li, Λ vulgaris)
(Vigna angularis) アカシア (Acacia) など。 (Vigna angularis) Acacia etc.
キク科: キク (Chrysanthemum morifo'l ium)、 ヒマヮリ (Helianthus annuus) な ど。 Asteraceae: Chrysanthemum morifo'l ium, Helianthus annuus, etc.
ヤシ科: アブラャシ (Elaeis guineensis、 Elaeis oleifera) ココヤシ (Cocos nucifera) ^ ナツメヤシ (Phoenix dactyl ifera)、 ロウヤシ (Copernicia) ウノレシ科 : ノヽゼノ キ (Rhus succedanea)、 カシュ一ナツ 卜ノキ (Anacardium occidentale)、 フノレシ (Toxicodendron vernicifiuum)、 マンゴ― ( angiiera indica 、 -ピスタテオ (Pistacia vera) Palms: Elafis (Elaeis guineensis, Elaeis oleifera) Cocos nucifera ^ Dates (Phoenix dactyl ifera), Copernicia oleaceae: Rhus succedanea, Cade identi (Toxicodendron vernicifiuum), Mango (angiiera indica, -Pistacia vera)
ゥリ科:カボナヤ (Cucurbita maxima^ Gucurbita raoschata、 Cucurbita pepo)、 キユウリ (Cucumis sativus)、 カフスゥリ (Trichosanthes cucumeroides)、 ヒ ョ ウタン (Lagenaria siceraria var. gourda) Cucurbitaceae: Cubonaya (Cucurbita maxima ^ Gucurbita raoschata, Cucurbita pepo), cucumber (Cucumis sativus), cuff cucumber (Trichosanthes cucumeroides), gourd (Lagenaria siceraria var. Gourda)
ノ ラ科: アーモンド (Amygdalus communis) ノヽフ (Rosa)、 イチゴ' (Fragaria)、 サクラ (Prunus)、 リンゴ (Malus puraila var. domestica) など。 Nola: Almond (Amygdalus communis) Rosa, Strawberry (Fragaria), Prunus, Apple (Malus puraila var. Domestica), etc.
ナデシコ科:カーネーシ 3 ン (Dianthus caryophyl lus) など。 Dianthus: Dianthus caryophyl lus etc.
ャナキ科: プラ (Populus trichocarpa Populus nigra.、 Populus tremulaノ イネ科 : トウモロコシ (Zea mays)、 イネ (Oryza sativa)、 ォォムギ■ (Hordeura vulgare)、 コム = (Triticum aestivum)、 タケ (Phyllostachys)、 サトウ ヒClanaceae: Pula (Populus trichocarpa Populus nigra., Populus tremula) Gramineae: Maize (Zea mays), Rice (Oryza sativa), Barley (Hordeura vulgare), Com = (Triticum aestivum), Bamboo (Phyllostachys), Sato
(Saccharum officinarum) など。 (Saccharum officinarum) etc.
ユリ科: チューリップ (Tul ipa)、 ユリ (Li l ium) など。 Lily family: Tulip (Tul ipa), Lily (Li l ium), etc.
上述したォレオシン- GFP 融合タンパク質をコードする遺伝子を有する発現べ クタ一又は DNA断片を植物中に導入する方法としては、 ァグロパクテリゥム法、 PEG-リン酸カルシウム法、 エレク ト口ポレーシヨン法、 リボソーム法、 パーティ クルガン法(ボンバードメント法)、マイクロインジヱクション法等が挙げられる。 例えばァグロパクテリゥム法を用いる場合は、 プロ トプラストを用いる場合と組 織片を用いる場合がある。 プロ トプラストを用いる場合は、 Tiプラスミ ドをもつ ァグロパクテリゥムと共存培養する方法、 スフヱ口プラスト化したァグロバクテ リゥムと融合する方法 (スフエロプラスト法)、 組織片を用いる場合は、 リーフデ イスクにより対象植物の無菌培養葉片に感染させる方法(リーフディスク法)、力 ルス (未分化培養細胞) に感染させる方法、 直接花組織に浸透させる方法等によ り行うことができる。 また、 単子葉植物のァグロパクテリゥム法による形質転換 には、 ァセトシリンゴンが形質転換率を高めるのに使用できる。 Methods for introducing an expression vector or DNA fragment having a gene encoding the oleosin-GFP fusion protein described above into a plant include the agrobacterium method, Examples include the PEG-calcium phosphate method, the electroporation method, the ribosome method, the particle gun method (bombardment method), and the microinjection method. For example, when the agro-actuary method is used, there are cases where a protoplast is used and a tissue piece is used. When using protoplasts, co-culture with agrobacterium with Ti plasmid, fusing with aglobacterium with spout plastoplast (spheroplast method), or leaf disk when using tissue pieces. Can be performed by a method of infecting a sterile cultured leaf piece of a target plant (leaf disc method), a method of infecting vigorous (undifferentiated cultured cells), a method of directly infiltrating a flower tissue, or the like. Also, for the transformation of monocotyledons by the agrobacterium method, acetosyringone can be used to increase the transformation rate.
上述したォレオシン- GFP 融合タンパク質をコードする遺伝子が植物に組み込 まれたか否かの確認は、 PCR 法、 サザンハイブリダィゼーシヨン法、 ノーザンハ イブリダィゼーシヨン法等により行うことができる。 例えば、 形質転換植物から DNAを調製し、 DNA特異的プライマーを設計して PCRを行う。 PCRを行った後は、 増幅産物についてァガロースゲル電気泳動、 ポリアクリルアミ ドゲル電気泳動又 はキヤピラリー電気泳動等を行い、 臭化工チジゥム、 SYBR Green液等により染色 し、 そして増幅産物を 1本のバンドとして検出することにより、 形質転換された ことを確認することができる。 また、 予め蛍光色素等により標識したプライマー を用いて PCRを行い、 増幅産物を検出することもできる。 さらに、 マイクロプレ 一ト等の固相に増幅産物を結合させ、 蛍光又は酵素反応等により増幅産物を確認 する方法でもよい。  Whether or not the gene encoding the oleosin-GFP fusion protein described above has been incorporated into the plant can be confirmed by a PCR method, Southern hybridization method, Northern hybridization method, or the like. For example, DNA is prepared from transformed plants, and DNA-specific primers are designed and PCR is performed. After PCR, the amplified product is subjected to agarose gel electrophoresis, polyacrylamide gel electrophoresis, capillary electrophoresis, etc., stained with bromide zyme, SYBR Green solution, etc., and the amplification product as a single band. By detecting it, it can be confirmed that it has been transformed. Alternatively, amplification products can be detected by PCR using primers previously labeled with a fluorescent dye or the like. Furthermore, the amplification product may be bound to a solid phase such as a microplate, and the amplification product may be confirmed by fluorescence or enzymatic reaction.
形質転換の結果、 得られる腫瘍組織やシュート、 毛状根、 種子などは、 そのま ま細胞培養、 組織培養又は器官培養に用いることが可能であり、 また従来知られ ている植物組織培養法を用い、 適当な濃度の植物ホルモン (オーキシン、 サイ ト カイニン、 ジベレリン、 アブシジン酸、 エチレン、 ブラシノライ ド等) の投与な どにより植物体に再生させることができる。 培養細胞からの植物体の再生は、 一 般的には、 適当な種類のオーキシンとサイ トカイニンを混ぜた培地の上で根を分 化させてから、 サイ トカイニンを多く含む培地に移植させシュートを分化させた 後にホルモンを含まない土壌に移植することによって行う。 このようにして、上述したォレオシン- GFP融合タンパク質をコードする遺伝子 が導入された形質転換植物を準備することができる。 得られた形質転換植物にお いては、 オイルボディの膜中にォレオシン- GFP 融合タンパク質が発現しており、 GFP などの蛍光タンパク質に由来する蛍光を観察することでオイルボディを可視 化することができる。 Tumor tissue, shoots, hairy roots, seeds, etc. obtained as a result of transformation can be used for cell culture, tissue culture, or organ culture as they are, and conventionally known plant tissue culture methods can be used. It can be regenerated into plants by administration of an appropriate concentration of plant hormones (auxin, cytokinin, gibberellin, abscisic acid, ethylene, brassinolide, etc.). Generally, plant regeneration from cultured cells involves differentiating roots on a medium containing an appropriate type of auxin and cytokinin, and then transplanting the shoot into a medium rich in cytokinin. After differentiation, transplanted to soil without hormones. In this way, a transformed plant into which the gene encoding the oleosin-GFP fusion protein described above has been introduced can be prepared. In the resulting transformed plant, the oleosin-GFP fusion protein is expressed in the oil body membrane, and the oil body can be visualized by observing the fluorescence derived from fluorescent proteins such as GFP. it can.
本発明においては、 次に、 ォレオシン - GFP融合タンパク質を発現する植物体の 子葉における蛍光強度を測定する。 すなわち、 上述したように作製された形質転 換植物から採取した種子を発芽させ、展開した子葉における蛍光強度を測定する、 蛍光強度を測定する手法及び装置としては、 特に限定されないが、 例えば、 蛍光 顕微鏡、 蛍光分光光度計、 蛍光タイタープレートリーダー又は蛍光画像解析装置 等を挙げることができる。  In the present invention, the fluorescence intensity in the cotyledons of the plant body expressing the oleosin-GFP fusion protein is then measured. That is, there is no particular limitation on the method and apparatus for measuring the fluorescence intensity by germinating the seed collected from the transformed plant produced as described above, and measuring the fluorescence intensity in the expanded cotyledon. Examples thereof include a microscope, a fluorescence spectrophotometer, a fluorescence titer plate reader, and a fluorescence image analyzer.
ここで、 子葉の蛍光強度としては、 子葉において観察される蛍光強度の総和を 算出する。 具体的には、 画像の蛍光総和 a=Sum (蛍光強度 X画素数)として算出す ることができる。 ただし、 蛍光強度と各蛍光強度をもつ画素数は同一条件 ·同一 面積 ·同一画素数で取得した共焦点画像から計算する。 Here, the total fluorescence intensity observed in the cotyledons is calculated as the cotyledon fluorescence intensity. Specifically, it can be calculated as the total fluorescence of the image a = S um (fluorescence intensity X number of pixels). However, the fluorescence intensity and the number of pixels having each fluorescence intensity are calculated from confocal images acquired under the same conditions, the same area, and the same number of pixels.
このように算出した蛍光強度の総和に基づいて種子中の油脂量を評価すること ができる。 すなわち、 子葉における GFPなどの蛍光タンパク質由来蛍光強度の総 和と、 種子中の油脂量とは正の相関関係があり、 これにより、 子葉における GFP などの蛍光タンパク質由来蛍光強度の総和に基づいて種子中の油脂量を評価する ことができる。 具体的には、 変異原処理を施した植物細胞又は植物細胞培養物か ら再生された植物体における子葉の蛍光強度の総和を算出し、 未処理の植物体に おける子葉の蛍光強度の総和と比較する。 その結果、 未処理の植物体における子 葉の蛍光強度の総和と比較して、 変異原処理後の植物体における子葉の蛍光強度 の総和が有意に増加していれば、 変異原処理によって種子中の油脂量が増加する ような変異が導入されたことになる。 このように、 変異原処理後に得られた植物 体における子葉の蛍光強度の総和を算出することによって、 種子中の油脂量が増 加するといつた特徴を有する変異植物体をスクリーエングすることができる。 逆 に、 未処理の植物体における子葉の蛍光強度の総和と比較して、 変異原処理後の 植物体における子葉の蛍光強度の総和が有意に低下していれば、 変異原処理によ つて種子中の油脂量が低下するような変異が導入されたことになる。このように、 変異原処理後に得られた植物体における子葉の蛍光強度の総和を算出することに よって、 種子中の油脂量が低下するといつた特徴を有する変異植物体をスクリ一 ユングすることができる。 The amount of fats and oils in the seed can be evaluated based on the total fluorescence intensity calculated in this way. In other words, there is a positive correlation between the sum of the fluorescence intensities derived from fluorescent proteins such as GFP in the cotyledon and the amount of oil and fat in the seeds. The amount of oil and fat in it can be evaluated. Specifically, the sum of the cotyledon fluorescence intensity in the plant body regenerated from the plant cell or plant cell culture treated with the mutagen is calculated, and the sum of the cotyledon fluorescence intensity in the untreated plant body is calculated. Compare. As a result, if the sum of the cotyledon fluorescence intensity in the plant body after the mutagen treatment is significantly increased compared to the sum of the cotyledon fluorescence intensity in the untreated plant body, A mutation that increases the amount of oil and fat was introduced. Thus, by calculating the sum of the cotyledon fluorescence intensity in the plant body obtained after the mutagen treatment, it is possible to screen a mutant plant having characteristics when the amount of oil in the seeds increases. . Conversely, if the sum of the cotyledon fluorescence intensity in the plant body after the mutagen treatment is significantly lower than the sum of the cotyledon fluorescence intensity in the untreated plant body, Therefore, a mutation that reduces the amount of oil in the seeds was introduced. Thus, by calculating the sum of the cotyledon fluorescence intensity in the plant body obtained after the mutagen treatment, it is possible to screen a mutant plant having characteristics when the amount of oil in the seeds decreases. it can.
ここで、 変異原処理としては、 特に限定されず、 広く突然変異の誘発に用いら れている化学的変異原及び/又は物理的変異原による処理を用いることができる。 化学的突然変異源として、例えばメタンスルホン酸ェチル(EMS)、 ェチル二トロソ 尿素(ENS)、 2-ァミノプリン、 5-ブロモウラシル(5-BU)、 アルキル化剤などが用い ることができる。 また、 物理的変異原としては、 放射線、 紫外線等を用いること ができる。これらの変異原を用いた変異の誘発は公知の方法で行うことができる。 種子中の油脂量を評価する対象は、 変異原処理後の植物変異体だけでなく、 異 なる植物種や植物品種を対象とする事もできる。  Here, the mutagen treatment is not particularly limited, and treatment with chemical mutagens and / or physical mutagens widely used for inducing mutations can be used. Examples of chemical mutagens that can be used include ethyl methanesulfonate (EMS), ethyl nitrosourea (ENS), 2-aminopurine, 5-bromouracil (5-BU), and alkylating agents. As physical mutagens, radiation, ultraviolet rays, etc. can be used. Mutagenesis using these mutagens can be performed by known methods. The target for evaluating the amount of oil and fat in seeds can be not only plant mutants after mutagen treatment but also different plant species and plant varieties.
種子中の油脂量は、 ナタネ、 ダイズ、 ヒマヮリ、 パームヤシなどの油糧作物に おいて最も重要な表現型である。 種子中の油脂量と言った表現型はいわゆる量的 表現型であり、 複雑な遺伝子型がからみあって影響している。 本発明に係る評価 方法及びスク リーニング方法によれば、 種子中の油脂量及びその変化を、 種子を 破砕し油脂成分を抽出精製し定量分析すると言った手間のかかる工程を必要とせ ず、 簡便でハイスループットに判定することができる。  Oil content in seeds is the most important phenotype in oil crops such as rapeseed, soybean, sunflower and palm palm. The phenotype called oil content in seeds is a so-called quantitative phenotype, which is influenced by complex genotypes. According to the evaluation method and the screening method of the present invention, the amount of oil and fat in seeds and changes thereof are simple and easy without the need for laborious steps such as crushing seeds, extracting and purifying oil components and quantitative analysis. High throughput can be determined.
以下、 実施例により本発明をより詳細に説明するが、 本発明の技術的範囲は以 下の実施例に限定されるものではない。  EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the technical scope of the present invention is not limited to the following examples.
〔実施例 1〕  Example 1
本実施例では、 モデル植物として広く利用されているシロイヌナズナを、 ォレ ォシン- GFP融合遺伝子を発現するように形質転換し、蛍光観察によりオイルボデ ィを観察できる形質転換植物を作出した。 その後、 得られた形質転換植物に変異 処理を施し、 オイルボディの性状の変化を指標にして、 種子内の油脂量が変動し た変異体を同定した。 以下、 具体的な実験フロー及び実験結果を詳述する。  In this example, Arabidopsis thaliana, which is widely used as a model plant, was transformed to express the oleosin-GFP fusion gene, and a transformed plant capable of observing the oil body by fluorescence observation was created. After that, the obtained transformed plant was subjected to mutation treatment, and the mutant in which the amount of oil and fat in the seed was changed was identified using the change in the properties of the oil body as an index. Hereinafter, a specific experimental flow and experimental results will be described in detail.
材料と方法  Materials and methods
ぐ植物材料〉 Plant material>
シロイヌナズナ(Arabidopsis thal iana) コロンビア生態型を用いた。植物は、 定法に従い、 種子滅菌、 無菌寒天培地 (1/2 ムラシゲスクーグ培地、 0. 8%寒天) で 7日間 2 2 °C明条件下で発芽させた。 その後、 バーミキユライ ト :パーライ ト =1 : 1を入れた鉢に植え、 2 2 °Cで 1 6時間明、 8時間暗条件下で育成した。 <ォレオシン一 GFP遺伝子の作成 > Arabidopsis thal iana Colombian ecotype was used. Plant According to a conventional method, germination was carried out on a sterilized seed and a sterile agar medium (1/2 Murashige scoog medium, 0.8% agar) for 7 days at 22 ° C light conditions. After that, it was planted in a pot containing vermiculite: perlite = 1: 1, and was grown at 22 ° C. for 16 hours light and 8 hours dark. <Creation of oleosin GFP gene>
キアゲン社の RNeasy plant mini kitを用いてシロイヌナズナの鞘から RNAを 単離し、 インビ卜ロジェン社の Superscript III first strand synthesis system for RT-PCR を用いて逆転写反応を行った。 得られた cDNA とプライマー 1 (3' AAAAAGCAGGCTCAATGGCGGATACAGCTAGAGGA3 ' : 配列番号 3 ) とプライマー 2 ( 3 ' CTCGCCCTTGCTCACCATAGTAGTGTGCTGGCCACC3' :配列番号 4 ) を用いて PCR を行い、 ォレオシン S3 cDNAの両端に attBl配列の一部と GFP遺伝子の一部を持つ DNA断 片 Aを増幅した。 同時に、 ォワンクラゲの緑色蛍光タンパク質 GFPをコードする cDNAとプライマー 3 (3'GGTGGCCAGCACACTACTATGGTGAGCAAGGGCGAG3':配列番号 5 )、 プライマー 4 ( 3 ' AGAAAGCTGGGTCTTACTTGT ACAGCTCGTCCAT3 ' :配列番号 6 ) を用い た PCRにより、 GFP cDNAの両端にォレオシン S3 cDNAの一部と attB2配列の一部 が付加された DNA断片 Bを増幅した。 次いで、 DNA断片 Aと DNA断片 B、 プライマ 一 5 (3' GGGG ACA AGT TTG TAC AAA AAA GCA GGC T3' :配列番号 7 ) とプライマ 一 6 (3' GGGG AC CAC TTT GTA CAA GAA AGC TGG G3':配列番号 8 ) を混ぜ合わせ、 さらに PCRをおこなうことで、 両側に attBlおよび attB2配列を持つォレオシン -GFP融合遺伝子を作成した。ォレオシン- GFP融合遺伝子の塩基配列及び当該遺伝 子産物のアミノ酸配列を、 それぞれ配列番号 1及び 2に示した。 RNA was isolated from Arabidopsis sheaths using Qiagen's RNeasy plant mini kit, and reverse transcription was performed using Invitrogen's Superscript III first strand synthesis system for RT-PCR. PCR was performed using the obtained cDNA and primer 1 ( 3 'AAAAAGCAGGCTCAATGGCGGATACAGCTAGAGGA 3 ': SEQ ID NO: 3) and primer 2 ( 3 'CTCGCCCTTGCTCACCATAGTAGTGTGCTGGCCACC 3 ': SEQ ID NO: 4). And DNA fragment A with a part of the GFP gene was amplified. At the same time, cDNA and primers 3 encoding green fluorescent protein GFP in Owankurage (3 'GGTGGCCAGCACACTACTATGGTGAGCAAGGGCGAG 3': SEQ ID NO: 5), primer 4: by PCR using the (3 'AGAAAGCTGGGTCTTACTTGT ACAGCTCGTCCAT 3' SEQ ID NO: 6), the GFP cDNA A DNA fragment B having both oleosin S3 cDNA and a part of attB2 sequence added at both ends was amplified. Then, DNA fragments A DNA fragment B, primer one 5 (3 'GGGG ACA AGT TTG TAC AAA AAA GCA GGC T 3': SEQ ID NO: 7) and primer one 6 (3 'GGGG AC CAC TTT GTA CAA GAA AGC TGG G 3 ': SEQ ID NO: 8) were mixed and further PCR was performed to create an oleosin-GFP fusion gene with attBl and attB2 sequences on both sides. The nucleotide sequence of the oleosin-GFP fusion gene and the amino acid sequence of the gene product are shown in SEQ ID NOs: 1 and 2, respectively.
得られた融合遺伝子は、インビトロジヱン社の Gateway systemプロ トコールに 従い、 PD0NR221ベクターを介して、 CaMV 35Sプロモーターの下流に attRl と attR2 配列を持ち、 カナマイシン耐性マーカーを含む Tiベクターにクローニングした。 得られたプラスミ ドは、 エレク トロポレーション法によりァグロバクテリ ゥム The obtained fusion gene was cloned into a Ti vector having attRl and attR2 sequences downstream of the CaMV 35S promoter and containing a kanamycin resistance marker via the PD0NR221 vector according to the Gateway system protocol of Invitrogen. The obtained plasmid was agrobacterium by electroporation.
(Agrobacterium tumefacience C58C1 rifR) へ導入、 これを Ti_01eGとした。 <シロイヌナズナヘの形質転換 > Introduced into (Agrobacterium tumefacience C58C1 rifR) and named Ti_01eG. <Transformation of Arabidopsis thaliana>
ォレオシン- GFP融合遺伝子は、 ァグロバタテリゥム法を用いてシロイヌナズナ のゲノムへ導入した。 まず、 Ti- OleGを YEB培地 (5g八 polypeptone、 5g/l beef extract, lg/1 yeast extract, 5g/l sucrose, 0. 5g/l MgS04) にて A600=0. 8 - 1. 0 になるまで 28°Cで増殖させた後、 遠心分離により集菌した。 得られた菌体は A600二 0. 8になるように infi ltration液 (10mM MgCl2、 5% sucrose, 0. 05% Si lwet L-77)に懸濁した。開花中のシロイヌナズナ花茎をこの懸濁液に 1分間浸した後、 結実した種子を採取した。 採取した種子は、 種子滅菌処理後に 25mg/l カナマイ シンを含む無菌寒天培地に播種し、 カナマイシン耐性を指標にしてォレオシン - GFP融合遺伝子がゲノムに挿入された形質転換シロイヌナズナを単離した。得ら れた形質転換シロイヌナズナから種子を採取し、 後代でカナマイシン耐性マーカ 一をホモで持つ形質転換体を選抜し、 これを OleGと名付けた。 The oleosin-GFP fusion gene was introduced into the Arabidopsis genome using the agrobacterium. First, Ti-OleG is added to YEB medium (5g 8 polypeptone, 5g / l beef extract, lg / 1 yeast extract, 5g / l sucrose, 0.5g / l MgS0 4 ) A600 = 0.8-1. 0 The cells were grown at 28 ° C until they were collected, and then collected by centrifugation. The obtained microbial cells were suspended in an infiltration solution (10 mM MgCl 2 , 5% sucrose, 0.05% Silwet L-77) so as to be A600 20.8. The flowering Arabidopsis flower stalks were immersed in this suspension for 1 minute, and then the seeds with fruit were collected. The collected seeds were sterilized and then sown on a sterile agar medium containing 25 mg / l kanamycin, and transformed Arabidopsis thaliana in which the oleosin-GFP fusion gene was inserted into the genome was isolated using kanamycin resistance as an index. The seeds were collected from the obtained transgenic Arabidopsis thaliana, and a transformant having a homozygous kanamycin resistance marker as a progeny was selected and named OleG.
<形質転換体の変異原処理 > <Mutagen treatment of transformant>
OleGの種子を 0. 2%ェチルメタンスルホン酸液で 1 6時間処理後、バーミキユラ ィ ト :パーライ ト =1 : 1 を入れた鉢に播種した。 2 2 °Cで 1 6時間明、 8時間喑 条件下で後代の種子を採取し、 これを M2種子とした。  OleG seeds were treated with 0.2% ethylmethanesulfonic acid solution for 16 hours, and then sown in a pot containing vermiculite: parrite = 1: 1. 2 Progeny seeds were collected under 16-hour light and 8-hour drought conditions at 2 ° C and used as M2 seeds.
< GFP蛍光観察 > <GFP fluorescence observation>
変異体のスク リーニングには、 蛍光実体顕微鏡 (Carl Zeiss SteRE0 Lumar V12) を用いた。 OleGおよび M2種子を垂直に立てた無菌寒天培地で暗所 6日間発芽さ せ、 蛍光実体顕微鏡 (Carl Zeiss) 下で黄化子葉、 胚軸および根の各細胞におけ るォレオシン- GFP融合タンパク質の GFP蛍光を観察した。 OleGとは GFP蛍光の強 度や分布が異なるものを変異体として同定した。  A fluorescent stereomicroscope (Carl Zeiss SteRE0 Lumar V12) was used for screening the mutants. OleG and M2 seeds were germinated on a sterile agar medium upright for 6 days in the dark. Under the fluorescent stereomicroscope (Carl Zeiss), the oleosin-GFP fusion protein in the yellow cotyledon, hypocotyl and root cells GFP fluorescence was observed. OleG was identified as a mutant with a different GFP fluorescence intensity and distribution.
OleGおよび変異体におけるォレオシン- GFP融合タンパク質の GFP蛍光を比較す るためには、 共焦点レーザー顕微鏡 (Carl Zeiss LSM 510) を用いた。 喑所 6 日 間発芽させた OleGおよび変異体から、 黄化子葉、 胚軸、 根を切り取り、 スライ ド クラスにマウントした。 各細胞における GFP蛍光像を同一条件下で撮影し、 顕微 鏡付属の画像解析ソフトウェアを用いて、 同一面積内での画素に対する蛍光強度 の度数分布を計算し、 蛍光総和 a=Sum (蛍光強度 X画素数)を算出した。 A confocal laser microscope (Carl Zeiss LSM 510) was used to compare the GFP fluorescence of the oleosin-GFP fusion protein in OleG and mutants. From the OleG and mutants germinated for 6 days, the yellow cotyledons, hypocotyls and roots were cut out and mounted in a slide class. GFP fluorescence images at each cell taken under the same conditions, using image analysis software microscope accessories, calculates the frequency distribution of the fluorescence intensity for pixels in the same area, the fluorescence sum a = S um (fluorescence intensity X pixel count) was calculated.
<種子タンパク質の電気泳動およびィムノブ口ット解析 > <Electrophoresis and imunobutt analysis of seed protein>
20粒の種子を 40 / 1の SDSサンプルバッファ中で破砕した後、遠心上清を種子 タンパク質のサンプルとした。 定法に従い、 15 μ 1 のサンプルを SDSポリアクリ ルアミ ドゲル電気泳動に供した。 電気泳動後のゲルは、 0. 2%クマシ一プリ リアン トブルー R250溶液 (25%メタノール、 10%酢酸を含む) で染色した。 ィムノブ口ット解析には、 5 μ 1のサンプルを SDSポリアクリルアミ ドゲルで電 気泳動した後、 セミ ドライブロット法を用いてゲル中のタンパク質をニトロセル ロール膜に転写した。 二トロセルロール膜に転写されたタンパク質の抗タンパク 質抗体を用いた検出は、 GEヘルスケアバイオサイエンスのプロ トコルに従レ、、 ECL Western blott ing detect ion reagents を用いて TTつに。 その際、 1次抗体 (抗 ォレオシン抗体もしくは抗 GFP抗体)および 2次抗体はともに 1/5000希釈したも のを用いた。 発光の検出には富士フィルム製の発光イメージアナライザー LAS - 1000 plusを用いた。 Twenty seeds were crushed in a 40/1 SDS sample buffer, and the centrifuged supernatant was used as a seed protein sample. According to a standard method, 15 μl of the sample was subjected to SDS polyacrylamide gel electrophoresis. The gel after electrophoresis was stained with 0.2% Kumashi mono-priorint blue R250 solution (containing 25% methanol and 10% acetic acid). For the Imunobutt analysis, 5 μl of the sample was electrophoresed on SDS polyacrylamide gel, and then the protein in the gel was transferred to a nitrocellulose membrane using the semi-drive lot method. Detection of proteins transcribed on the nitrocellulose roll using anti-protein antibodies is performed according to the GE Healthcare Bioscience protocol and TT using ECL Western blotting detection ion reagents. At that time, the primary antibody (anti-oleosin antibody or anti-GFP antibody) and the secondary antibody were both diluted 1/5000. A luminescence image analyzer LAS-1000 plus made by Fuji Film was used for detection of luminescence.
ぐ種子細胞の電子顕微鏡観察 > Observation of Guseed Cell by Electron Microscope>
半切した種子を固定液 (4%パラホルムアルデヒ ド、 1%ダルタルアルデヒ ド、 10% DMS0、 0. 05M力コジル酸バッファ pH7. 4) で固定した。 固定後のサンプルをエボン 812樹脂に包埋、 Le i ca製ミクロ トーム Ultracut UCTを用いて超薄切片を作成し た。超薄切片は 4%酢酸ゥランおよび 0. 4%クェン酸鉛で電子染色後、電子顕微鏡(日 立製作所 H-7600) にて観察を行った。  Half-cut seeds were fixed with fixative (4% paraformaldehyde, 1% dartalaldehyde, 10% DMS0, 0.05M strength codylate buffer pH 7.4). The fixed sample was embedded in Ebon 812 resin, and an ultrathin section was prepared using a Leica microtome Ultracut UCT. Ultrathin sections were electron-stained with 4% uranium acetate and 0.4% lead citrate and then observed with an electron microscope (Hitachi Seisakusho H-7600).
<種子の油脂量測定 > <Measurement of oil content of seeds>
静電気除電処理を行いながら薬包紙を用いて種子を精密電子天秤で重量測定し、 種子重量が 10〜12mgになるように量りとった。種子は、パルス NMR用の試験管に 入れ、 Resonance製 MARAN- 23パルス NMRを用いて パルス NMR緩和時間値から 種子中の油脂含量 (重量%) を求めた。 詳しい測定手順についてはパルス NMR測定 マ二ユアノレに従った。  The seeds were weighed with a precision electronic balance using a medicine wrapping paper while performing static neutralization, and weighed so that the seed weight would be 10-12 mg. The seeds were put in a test tube for pulse NMR, and the fat content (% by weight) in the seed was determined from the pulse NMR relaxation time value using Resonance MARAN-23 pulse NMR. The detailed measurement procedure was in accordance with pulse NMR measurement.
ぐ種子の油脂に含まれる脂肪酸組成分析 > Analysis of fatty acid composition in oil of fat
1 mg-5 mg程度の種子サンプルの重量を測定後、 1. 5 mlマイクロテス トチュー ブに入れた。 マイクロテス トチューブに 3 ιηιη φのタングステンカーバイ ドビーズ を 1粒添加後、 さらに 450 1のメタノール、 0. 2% (w/v)の濃度でメタノール溶媒 と混合したプチルヒ ドロキシトルエン溶液を 50 // 1、 内部標準物質として 0. 2% After weighing the seed sample of about 1 mg to 5 mg, it was placed in a 1.5 ml microtest tube. Add one grain of 3 ιηιη φ tungsten carbide beads to a microtest tube, and then add 50 1 methanol, 0.2% (w / v) methanol solvent in a butyl hydroxytoluene solution mixed with 50 // 1. 0.2% as internal standard substance
C15 : 0脂肪酸 10 μ 1 を加えた。 これら各種試薬とサンプルを加えたマイクロテス トチューブを Retsch製 Mi xer Mi l l Type MM301を用いて l/20s頻度で 1分間振動 させ、 種子を粉砕した。 サンプルを、 10 ml のスクリューキャップ付試験管に移 した。 さらにマイクロテストチューブ内部をメタノール 250 μ 1で 2回洗浄し、洗 浄メタノ一ル液を上記試験管に加え、 試料液を約 1 ml とした。 これに 10%塩酸 メタノール液を 1 ml添加し、 80°Cで 1時間処理をした後、 1. 5 mlの n-へキサン を加え、 ヴオルテックスミキサーで撹拌し、 n -へキサン層を 10 mlスピッツ管に 移した。 1 mlの n-へキサンでさらにメタノリシスに用いた試験管内部を洗浄し、 洗浄 n-へキサン液層を上記スピッッ管に加えた。得られた n-へキサン溶媒溶液を 40°Cで窒素ガスパージし、 脂肪酸メチルエステルを乾固した。 乾固した脂肪酸メ チルエステルを n-へキサン 500 μ 1で溶解し、 GC-FIDにより各種脂肪酸メチルェ ステルを分離 '定量した。 定量にあたっては、 内部標準 (C15 : 0 脂肪酸)の面積値 を参照した。 C15: 0 Fatty acid 10 μ 1 was added. The micro test tube to which these various reagents and samples were added was shaken for 1 minute at a frequency of l / 20 s using a Retsch Mixer Mill Type MM301 to grind the seeds. Samples were transferred to 10 ml test tubes with screw caps. Wash the inside of the micro test tube twice with 250 μl of methanol The purified methanol solution was added to the above test tube to make the sample solution about 1 ml. Add 1 ml of 10% hydrochloric acid in methanol, treat at 80 ° C for 1 hour, add 1.5 ml of n-hexane, stir with a vortex mixer, and add n-hexane layer. Transfer to a 10 ml Spitz tube. The inside of the test tube used for methanolysis was further washed with 1 ml of n-hexane, and the washed n- hexane liquid layer was added to the above-mentioned spipe tube. The obtained n-hexane solvent solution was purged with nitrogen gas at 40 ° C. to dry the fatty acid methyl ester. The dried fatty acid methyl ester was dissolved in 500 µ 1 of n-hexane, and various fatty acid methyl esters were separated and quantified by GC-FID. In quantification, the area value of the internal standard (C15: 0 fatty acid) was referred.
結果と考察 Results and discussion
<オイルボディ形成不全変異体スク リ一ユング法の確立 >  <Establishment of oil body dysplastic mutant screening method>
ォレオシンと GFP (green fluorescent protein) の融合タンノ ク質をコードす. る融合遺伝子 (Oleosin- GFP) を作製し、 これをカリフラワーモザイクウィルス由 来 35Sプロモーター DNA下流に連結した (図 1 A)。 この DNAコンストラク トをァ グロバクテリウム法を用いてシロイヌナズナ (Arabidopsis thal iana) のゲノム DNA中に導入し、 形質転換シロイヌナズナを作製、 oleGと名付けた。 暗黒条件下 で 6 日間発芽後の oleG子葉を蛍光顕微鏡観察を用いて観察した結果が図 1 Bであ る。 図 1 B より、 オイルボディ膜が GFP蛍光で標識されており、 多数の小さなォ ィルボディが凝集体として集まった状態で存在していることがわかる。 また、 喑 黒条件下で発芽した子葉以外にも胚ゃ明条件下で発芽した緑色子葉中や本葉中 · 花弁中でもオイルボディが存在することがわかった。  A fusion gene (Oleosin-GFP) encoding a fusion protein of oleosin and GFP (green fluorescent protein) was prepared and ligated downstream of the cauliflower mosaic virus-derived 35S promoter DNA (Fig. 1A). This DNA construct was introduced into the genomic DNA of Arabidopsis thaliana using the Agrobacterium method, and transformed Arabidopsis thaliana was prepared and named oleG. Figure 1B shows the result of observation of oleG cotyledons after germination for 6 days under dark conditions using fluorescence microscopy. From Fig. 1B, it can be seen that the oil body membrane is labeled with GFP fluorescence, and that many small oil bodies are present as aggregates. In addition to the cotyledons germinated under dark black conditions, it was found that oil bodies also exist in green cotyledons, true leaves, and petals germinated under embryonic conditions.
オイルボディへの植物油脂蓄積メカニズムに関与する遺伝子を決定するために、 oleG種子をェチルメタンスルホン酸で変異処理し、 後代 M2種子を得た。 喑黒下 で 6 日間発芽した M2植物の蛍光顕微鏡観察を行い、 oleG と比較して蛍光強度の 異なる変異体 A (図 1 C) 及び変異体 B (図 1 D) を取得した。 これらの変異体は発 芽した子葉中の GFP蛍光強度が oleGよりも低下していた。  In order to determine the genes involved in the mechanism of vegetable oil accumulation in the oil body, oleG seeds were mutated with ethylmethanesulfonic acid to obtain progeny M2 seeds. Fluorescence microscopy of M2 plants germinated for 6 days under dark black was performed, and mutant A (Fig. 1 C) and mutant B (Fig. 1 D) with different fluorescence intensity compared to oleG were obtained. These mutants had lower GFP fluorescence intensity in germinated cotyledons than oleG.
く GFP蛍光総和と種子の脂質含量の関係 > <Relationship between GFP fluorescence and lipid content of seeds>
OleG, 変異体 A及び変異体 Bについて、 喑黒下で 6日間発芽した子葉の GFP蛍 光を同一条件、同一面積、同一画素数のレーザー共焦点顕微鏡画像として取得し、 各画像の GFP蛍光強度に対する画素数の度数分布から GFP蛍光総和 a (a=sum (蛍 光強度 X画素数)) を求めた。 OleGの蛍光総和を 100%とすると、変異体 Aの蛍光 総和は 37. 9%、 変異体 Bは 85. 1%となった。 一方、 01eG、 変異体 A及び変異体 B の種子に含まれる脂質含量 (平均値士標準偏差) を測定したところ、 それぞれ 34. 66% ±0. 43%、 26. 91% ± 0· 34%、 32. 34% ± 0. 49%であった。 For OleG, Mutant A and Mutant B, GFP fluorescence of cotyledons germinated under dark black for 6 days was acquired as a laser confocal microscope image with the same conditions, the same area, and the same number of pixels. From the frequency distribution of the number of pixels with respect to the GFP fluorescence intensity of each image, the total GFP fluorescence a ( a = sum (fluorescence intensity X number of pixels)) was obtained. Assuming that the total fluorescence of OleG is 100%, the total fluorescence of mutant A is 37.9% and that of mutant B is 85.1%. On the other hand, the lipid content (mean standard deviation) contained in the seeds of 01eG, Mutant A, and Mutant B was measured and found to be 34. 66% ± 0.43% and 26. 91% ± 0 · 34%, respectively. 32. 34% ± 0.49%.
これらの結果に基づいて GFP蛍光総和と種子の脂質含量との関係を図 2及び表 1に示した。  Based on these results, the relationship between the total GFP fluorescence and the lipid content of seeds is shown in Fig. 2 and Table 1.
表 1  table 1
Figure imgf000019_0001
図 2及び表 1に示すように、ォレオシ- GFP融合タンパク質に起因する子葉中の 蛍光総和と非破壊で測定した種子中の油脂含量とが相関 (y=8. 1331X-180. 25、 R2=0. 9959) があることが明らかとなった。 本実施例の結果から、 ォレオシ- GFP 融合タンパク質を発現させた形質転換植物における子葉の蛍光強度を測定するだ けで、 種子中の油脂含量が容易に判定できることが明らかとなった。 産業上の利用可能性
Figure imgf000019_0001
As shown in Fig. 2 and Table 1, the total fluorescence in cotyledons caused by oleosi-GFP fusion protein correlates with the fat content in seeds measured nondestructively (y = 8.1 1331X-180. 25, R 2 = 0. 9959). From the results of this Example, it has been clarified that the oil and fat content in seeds can be easily determined only by measuring the fluorescence intensity of cotyledons in a transformed plant in which the oleosi-GFP fusion protein is expressed. Industrial applicability
本発明によれば、 操作が簡便で大量のサンプルを一度に定量計測できる可視光 計測をするだけで、 非破壊で種子中の油脂量を評価する評価方法が提供できる。 また、 本発明によれば、 操作が簡便で大量のサンプルを一度に定量計測できる可 視光計測をするだけで、 種子中の油脂量が変化した植物種、 植物品種又は植物変 異体をスクリーニングするスクリーニング方法が提供できる。 本発明に係る評価 方法及びスクリーニング方法は、 種子中の油脂量又はその遺伝的変化を非破壊で 評価できるため非常に簡便なものとなる。 種子中の油脂量は遺伝的な量的形質で あり、 これを簡便、 且つ大量に定量計測できる方法は産業上の優位性を有する。 本明細書で引用した全ての刊行物、 特許および特許出願をそのまま参考として 本明細書にとり入れるものとする。 According to the present invention, it is possible to provide an evaluation method that evaluates the amount of oil and fat in seeds in a non-destructive manner only by performing visible light measurement that is simple in operation and capable of quantitative measurement of a large number of samples at once. In addition, according to the present invention, plant species, plant varieties, or plant variants in which the amount of fats and oils in seeds is changed can be screened only by performing visible light measurement that is easy to operate and enables quantitative measurement of a large number of samples at once. A screening method can be provided. The evaluation method and screening method according to the present invention are very simple because the amount of fats and oils in seeds or their genetic changes can be evaluated nondestructively. The amount of oil and fat in seeds is a genetic quantitative trait, and a method that can easily and quantitatively measure this amount has industrial advantages. All publications, patents and patent applications cited in this specification are used as is for reference. Incorporated herein.

Claims

請求の範囲 The scope of the claims
1 . オイルボディ特異的に存在するタンパク質と可視光によって検出可能な タンパク質の融合タンパク質を発現する植物体における子葉中の可視光強度を測 定する工程と、 1. measuring the visible light intensity in the cotyledons in a plant expressing a fusion protein of a protein that exists specifically in the oil body and a protein detectable by visible light;
上記工程で測定した可視光強度に基づいて種子中の油脂含量を判定する工程と を含む、 種子中の油脂量の評価方法。  A method for evaluating the fat content in the seed based on the visible light intensity measured in the above step.
2 . 上記オイルボディ特異的に存在するタンパク質がォレオシン、 ステロレ ォシン及び力レオシンからなる群から選ばれるいずれか 1のタンパク質であるこ とを特徴とする請求項 1記載の評価方法。  2. The evaluation method according to claim 1, wherein the protein specifically present in the oil body is any one protein selected from the group consisting of oleosin, sterolesin and force leucine.
3 . 上記オイルボディ特異的に存在するタンパク質がォレオシンであること を特徴とする請求項 1記載の評価方法。  3. The evaluation method according to claim 1, wherein the protein specifically present in the oil body is oleosin.
4 . 上記可視光によって検出可能なタンパク質が GFP (緑色蛍光タンパク質、 green fluorescent protein) であることを特徴とする請求項 1記載の評価方法。  4. The evaluation method according to claim 1, wherein the protein detectable by visible light is GFP (green fluorescent protein).
5 . 上記油脂含量を判定する工程では、子葉中の可視光強度の総和を算出し、 当該総和と種子中の油脂含量とが正に相関する関係から判定することを特徴とす る請求項 1記載の評価方法。  5. The step of determining the fat content is characterized by calculating a sum of visible light intensities in cotyledons and judging from a relationship in which the sum and the fat content in seeds are positively correlated. The evaluation method described.
6 . 可視光強度総和測定と、 パルス NMRを用いた非破壊種子の油脂含量定量 方法を用いた測定値とから、 可視光強度総和と種子中の油脂含量とが正に相関す る関係を判定する工程をさらに含むことを特徴とする請求項 5記載の評価方法。  6. Determine the positive correlation between the total visible light intensity and the oil content in the seeds, based on the total visible light intensity measurement and the measurement using the nondestructive seed oil content determination method using pulsed NMR. 6. The evaluation method according to claim 5, further comprising the step of:
7 . 上記可視光強度総和測定が、 蛍光顕微鏡、 蛍光分光光度計、 蛍光タイタ 一プレートリーダー又は蛍光画像解析装置で測定することを特徴とする請求項 6 記載の評価方法。  7. The evaluation method according to claim 6, wherein the total measurement of visible light intensity is measured by a fluorescence microscope, a fluorescence spectrophotometer, a fluorescence titer, a single plate reader, or a fluorescence image analyzer.
.  .
8 . 上記植物体は、 変異原処理が施された植物細胞又は植物細胞培養物から 得られたものであることを特徴とする請求項 1記載の評価方法。 8. The evaluation method according to claim 1, wherein the plant body is obtained from a plant cell or a plant cell culture subjected to a mutagen treatment.
9 . 上記植物体が油糧植物であることを特徴とする請求項 1記載の評価方法。 9. The evaluation method according to claim 1, wherein the plant body is an oil plant.
1 0 . 上記植物体が双子葉植物であることを特徴とする請求項 1記載の評価 方法。 10. The evaluation method according to claim 1, wherein the plant body is a dicotyledonous plant.
1 1 . 上記植物体がアブラナ科植物であることを特徴とする請求項 1記載の 評価方法。 1 1. The plant according to claim 1, wherein the plant is a cruciferous plant. Evaluation methods.
1 2 . 上記植物体がシロイヌナズナであることを特徴とする請求項 1記載の 評価方法。  1 2. The evaluation method according to claim 1, wherein the plant is Arabidopsis thaliana.
1 3 . 上記可視光強度を、 蛍光顕微鏡、 蛍光分光光度計、 蛍光タイタープレ 一トリーダ一又は蛍光画像解析装置で測定することを特徴とする請求項 1記載の 評価方法。  1 3. The evaluation method according to claim 1, wherein the visible light intensity is measured with a fluorescence microscope, a fluorescence spectrophotometer, a fluorescence titer plate reader, or a fluorescence image analyzer.
1 4 . オイルボディ特異的に存在するタンパク質と可視光によって検出可能 なタンパク質の融合タンパク質を発現する植物細胞、 植物細胞培養物又は植物体 由来の子葉中の可視光強度を測定する事に基づいて、 種子中の油脂含量が変化し た植物種、 植物品種又は植物変異体を選抜するスクリーニング方法。  1 4. Based on measuring the intensity of visible light in plant cells, plant cell cultures, or cotyledons derived from plant bodies that express a fusion protein of oil body-specific proteins and proteins detectable by visible light. A screening method for selecting plant species, plant varieties or plant mutants in which the oil content in seeds has changed.
1 5 . 上記オイルボディ特異的に存在するタンパク質がォレオシン、 ステロ レオシン及び力レオシンからなる群から選ばれるいずれか 1のタンパク質である ことを特徴とする請求項 1 4記載のスクリーニング方法。  15. The screening method according to claim 14, wherein the protein specifically present in the oil body is any one protein selected from the group consisting of oleosin, steroleucine and force leucine.
1 6 . 上記オイルボディ特異的に存在するタンパク質がォレオシンであるこ とを特徴とする請求項 1 4記載のスクリーニング方法。  16. The screening method according to claim 14, wherein the oil body-specific protein is oleosin.
1 7 . 上記可視光によって検出可能なタンパク質が GFP (緑色蛍光タンパク 質、 green fluorescent protein) であることを特徴とする請求項 1 4記載のスク リ一ユング方法。  17. The screening method according to claim 14, wherein the protein detectable by visible light is GFP (green fluorescent protein).
1 8 . オイルボディ特異的に存在するタンパク質と可視光によって検出可能 なタンパク質の融合タンパク質を発現する植物細胞、 植物細胞培養物又は植物体 に変異原処理を行う工程と、  1 8. performing a mutagen treatment on a plant cell, plant cell culture or plant expressing a fusion protein of an oil body specific protein and a protein detectable by visible light;
上記変異原処理後、 子葉中の可視光強度を測定する工程と、  After the mutagen treatment, measuring the visible light intensity in the cotyledon,
上記工程で測定した可視光強度に基づいて、 上記変異原処理に起因する種子中 の油脂含量の変化を判定する工程とを含む、 油脂含量が変化した植物体のスクリ 一ユング方法。  A method for screening a plant having a changed oil content, comprising: determining a change in the oil content in the seed resulting from the mutagen treatment based on the visible light intensity measured in the above step.
1 9 . 上記オイルボディ特異的に存在するタンパク質がォレオシン、 ステロ レオシン及び力レオシンからなる群から選ばれるいずれか 1のタンパク質である ことを特徴とする請求項 1 8記載のスクリーニング方法。  19. The screening method according to claim 18, wherein the protein specifically present in the oil body is any one protein selected from the group consisting of oleosin, steroleucine and force leucine.
2 0 . 上記オイルボディ特異的に存在するタンパク質がォレオシンであるこ とを特徴とする請求項 1 8記載のスクリ一ユング方法。 2 0. The above oil body specific protein is oleosin. The screening method according to claim 18, wherein:
2 1 . 上記可視光によって検出可能なタンパク質が GFP (緑色蛍光タンパク 質、 green fluorescent protein) であることを特徴とする請求項 1 8記載のスク リ一二ング方法。  21. The screening method according to claim 18, wherein the protein detectable by visible light is GFP (green fluorescent protein).
2 2 . 上記油脂含量の変化を判定する工程では、 子葉中の可視光強度の総和 を算出し、 当該総和と種子中の油脂含量とが正に相関する関係から判定すること を特徴とする請求項 1 8記載のスクリーニング方法。 2 2. In the step of determining the change in the oil content, the sum of visible light intensity in the cotyledons is calculated, and the sum is determined from a relationship in which the oil content in the seed is positively correlated. Item 18. The screening method according to Item 18.
2 3 . 可視光強度総和測定と、 パルス NMRを用いた非破壊種子の油脂含量定 量方法を用いた測定値とから、 可視光強度総和と種子中の油脂含量とが正に相関 する関係を判定する工程をさらに含むことを特徴とする請求項 2 2のスクリー二 ング方法。  2 3. The relationship between the total visible light intensity and the fat content in the seeds is positively correlated with the total visible light intensity measurement and the measured value using the nondestructive seed fat content determination method using pulsed NMR. The screening method according to claim 22, further comprising a step of determining.
2 4 . 上記可視光強度総和測定が、 蛍光顕微鏡、 蛍光分光光度計、 蛍光タイ タープレートリーダ一又は蛍光画像解析装置で測定することを特徴とする請求項 2 3記載のスクリ一二ング方法。  24. The screening method according to claim 23, wherein the total measurement of the visible light intensity is measured with a fluorescence microscope, a fluorescence spectrophotometer, a fluorescence titer plate reader, or a fluorescence image analyzer.
2 5 . 上記植物体が油糧植物であることを特徴とする請求項 1 8記載のスク リ一二ング方法。  25. The screening method according to claim 18, wherein the plant body is an oil plant.
2 6 . 上記植物体が双子葉植物であることを特徴とする請求項 1 8記載のス クリ一二ング方法。  26. The screening method according to claim 18, wherein the plant body is a dicotyledonous plant.
2 7 . 上記植物体がアブラナ科植物であることを特徴とする請求項 1 8記載 のスク リ一二ング方法。  27. The screening method according to claim 18, wherein the plant body is a cruciferous plant.
2 8 . 上記植物体がシロイヌナズナであることを特徴とする請求項 1 8記載 のスク リーニング方法。  28. The screening method according to claim 18, wherein the plant is Arabidopsis thaliana.
2 9 . 上記可視光強度を、 蛍光顕微鏡、 蛍光分光光度計、 蛍光タイタープレ 一トリーダ一又は蛍光画像解析装置で測定することを特徴とする請求項 1 8記載 のスクリ一ユング方法。  29. The screening method according to claim 18, wherein the visible light intensity is measured with a fluorescence microscope, a fluorescence spectrophotometer, a fluorescence titer plate reader, or a fluorescence image analyzer.
PCT/JP2009/053782 2008-02-28 2009-02-23 Evaluation method for amount of fat and oil in seed and screening method for plant body with changed amount of fat and oil WO2009107820A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09713745.9A EP2258861B1 (en) 2008-02-28 2009-02-23 Method for evaluating oil-and-fat amount in seed and method for screening for plant exhibiting varied level of oil-and-fat
CA2717067A CA2717067C (en) 2008-02-28 2009-02-23 Method for evaluating oil-and-fat amount in seed and method for screening for plant exhibiting varied level of oil-and-fat content
AU2009218030A AU2009218030B2 (en) 2008-02-28 2009-02-23 Method for evaluating oil-and-fat amount in seed and method for screening for plant exhibiting varied level of oil-and-fat content
US12/920,098 US8173435B2 (en) 2008-02-28 2009-02-23 Method for evaluating oil-and-fat amount in seed and method for screening for plant exhibiting varied level of oil-and-fat content

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008048485A JP2009201435A (en) 2008-02-28 2008-02-28 Method for evaluating amount of oil and fat in seed, and method for screening plant body having changed oil and fat content
JP2008-048485 2008-02-28

Publications (1)

Publication Number Publication Date
WO2009107820A1 true WO2009107820A1 (en) 2009-09-03

Family

ID=41016204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053782 WO2009107820A1 (en) 2008-02-28 2009-02-23 Evaluation method for amount of fat and oil in seed and screening method for plant body with changed amount of fat and oil

Country Status (6)

Country Link
US (1) US8173435B2 (en)
EP (1) EP2258861B1 (en)
JP (1) JP2009201435A (en)
AU (1) AU2009218030B2 (en)
CA (1) CA2717067C (en)
WO (1) WO2009107820A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013101381A1 (en) * 2011-12-29 2013-07-04 Dow Agrosciences Llc Colorimetric determination of the total oil content of a plant tissue sample using alkaline saponification

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007510420A (en) * 2003-11-14 2007-04-26 セムバイオシス ジェネティクス インコーポレイテッド Production method of apolipoprotein in transgenic plants
JP2008048485A (en) 2006-08-11 2008-02-28 Toyota Industries Corp Dc/ac converter and its overcurrent protedction method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6753167B2 (en) * 1991-02-22 2004-06-22 Sembiosys Genetics Inc. Preparation of heterologous proteins on oil bodies
US5977436A (en) * 1997-04-09 1999-11-02 Rhone Poulenc Agrochimie Oleosin 5' regulatory region for the modification of plant seed lipid composition
US20020188965A1 (en) * 2001-04-20 2002-12-12 Zou-Yu Zhao Methods of transforming plants
JP2007535896A (en) * 2003-06-20 2007-12-13 セムバイオシス ジェネティクス インコーポレイテッド Modified oleosin
EP1799831A4 (en) * 2004-10-06 2007-11-21 Sembiosys Genetics Inc Methods for the modulation of oleosin expression in plants
US20090203093A1 (en) * 2006-07-11 2009-08-13 Basf Se Protein Targeting To Lipid Bodies
US20110263487A1 (en) * 2007-12-20 2011-10-27 University Of Georgia Research Foundation, Inc. Plant Production and Delivery System for Recombinant Proteins as Protein-Flour or Protein-Oil Compositions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007510420A (en) * 2003-11-14 2007-04-26 セムバイオシス ジェネティクス インコーポレイテッド Production method of apolipoprotein in transgenic plants
JP2008048485A (en) 2006-08-11 2008-02-28 Toyota Industries Corp Dc/ac converter and its overcurrent protedction method

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"Dai 3 Sho Saibonai Kozo no Kochiku to Kino no Kansatsuho Oil Body no Kozo to Kino", SAIBO KOGAKU BESSATSU SHOKUBUTSU SAIBO KOGAKU SERIES 22 NEW EDITION SHOKUBUTSU NO SAIBO O MIRU JIKKEN PROTOCOL, 3 April 2006 (2006-04-03), pages 219 - 220 *
SILOTO R.M.P. ET AL.: "The accumulation of oleosins determines the size of seed oilbodies in Arabidopsis.", PLANT CELL, vol. 18, no. 8, 2006, pages 1961 - 1974, XP008143624 *
SILOTO, R. M. P. ET AL., PLANT CELL, vol. 18, 2006, pages 1961 - 1974
TING J.T.L. ET AL.: "Oleosin genes in maize kernels having diverse oil contents are constitutively expressed independent of oil contents.", PLANTA, vol. 199, no. 1, 1996, pages 158 - 165 *
WAHLROOS ET AL., GENESIS, vol. 35, no. 2, 2003, pages 125 - 132
WAHLROOS T ET AL.: "Oleosin expression and trafficking during oil body biogenesis in tobacco leaf cells.", GENESIS., vol. 35, no. 2, 2003, pages 125 - 132, XP008141026 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013101381A1 (en) * 2011-12-29 2013-07-04 Dow Agrosciences Llc Colorimetric determination of the total oil content of a plant tissue sample using alkaline saponification
US9395377B2 (en) 2011-12-29 2016-07-19 Dow Agrosciences Llc Colorimetric determination of the total oil content of a plant tissue sample using alkaline saponification
US9664699B2 (en) 2011-12-29 2017-05-30 Dow Agrosciences Llc Colorimetric determination of the total oil content of a plant tissue sample using alkaline saponification

Also Published As

Publication number Publication date
AU2009218030A1 (en) 2009-09-03
CA2717067A1 (en) 2009-09-03
JP2009201435A (en) 2009-09-10
AU2009218030B2 (en) 2012-09-27
US8173435B2 (en) 2012-05-08
US20110006221A1 (en) 2011-01-13
EP2258861A4 (en) 2011-09-07
CA2717067C (en) 2014-05-27
EP2258861A1 (en) 2010-12-08
EP2258861B1 (en) 2015-03-25

Similar Documents

Publication Publication Date Title
Yokosho et al. Functional analysis of a MATE gene OsFRDL2 revealed its involvement in Al-induced secretion of citrate, but a lower contribution to Al tolerance in rice
Cheng et al. The bHLH transcription factor MYC3 interacts with the jasmonate ZIM-domain proteins to mediate jasmonate response in Arabidopsis
Ren et al. GLUTELIN PRECURSOR ACCUMULATION3 encodes a regulator of post-Golgi vesicular traffic essential for vacuolar protein sorting in rice endosperm
Yamanaka et al. MCA1 and MCA2 that mediate Ca2+ uptake have distinct and overlapping roles in Arabidopsis
Wang et al. The rice high-affinity potassium transporter1; 1 is involved in salt tolerance and regulated by an MYB-type transcription factor
Caño-Delgado et al. BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis
Chu et al. Successful reproduction requires the function of Arabidopsis Yellow Stripe-Like1 and Yellow Stripe-Like3 metal-nicotianamine transporters in both vegetative and reproductive structures
Zong et al. Allelic variation and transcriptional isoforms of wheat TaMYC1 gene regulating anthocyanin synthesis in pericarp
Yuchun et al. SPL36 encodes a receptor-like protein kinase that regulates programmed cell death and defense responses in rice
CN109369789B (en) ZmDRR206 protein and application of coding gene thereof in regulation and control of plant disease resistance and growth development
Tarte et al. Arabidopsis Qc-SNARE gene AtSFT12 is involved in salt and osmotic stress responses and Na+ accumulation in vacuoles
US20160355836A1 (en) Modified plants
Wang et al. GmAKT1 is involved in K+ uptake and Na+/K+ homeostasis in Arabidopsis and soybean plants
Shi et al. Natural variations of OsAUX5, a target gene of OsWRKY78, control the neutral essential amino acid content in rice grains
Li et al. WHITE PANICLE3, a novel nucleus-encoded mitochondrial protein, is essential for proper development and maintenance of chloroplasts and mitochondria in rice
Lu et al. Wheat Bax Inhibitor-1 interacts with TaFKBP62 and mediates response to heat stress
Lin et al. Top Bending Panicle1 is involved in brassinosteroid signaling and regulates the plant architecture in rice
EP2270168A1 (en) Mutant gene capable of controlling the oil-and-fat content in seed, and method for controlling the oil-and-fat content in seed
WO2009107820A1 (en) Evaluation method for amount of fat and oil in seed and screening method for plant body with changed amount of fat and oil
Zhao et al. Molecular characterization and expression analysis of GhWRI1 in Upland cotton
Watanabe et al. Gravistimulation changes the accumulation pattern of the CsPIN1 auxin efflux facilitator in the endodermis of the transition zone in cucumber seedlings
Zou et al. The Cation/H+ exchanger OsCAX2 is involved in cadmium tolerance and accumulation through vacuolar sequestration in rice
Roberts et al. Plants and the study of serpin biology
US20140187741A1 (en) Means and methods for mediating protein interference
Zhang et al. Functional divergence of BAK1 genes from Brassica rapa in regulating plant architecture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09713745

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009218030

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 12920098

Country of ref document: US

Ref document number: 2717067

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2009218030

Country of ref document: AU

Date of ref document: 20090223

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009713745

Country of ref document: EP