WO2009107524A1 - Method for manufacturing optical compensation sheet and optical compensation sheet - Google Patents

Method for manufacturing optical compensation sheet and optical compensation sheet Download PDF

Info

Publication number
WO2009107524A1
WO2009107524A1 PCT/JP2009/052742 JP2009052742W WO2009107524A1 WO 2009107524 A1 WO2009107524 A1 WO 2009107524A1 JP 2009052742 W JP2009052742 W JP 2009052742W WO 2009107524 A1 WO2009107524 A1 WO 2009107524A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
optical compensation
compensation sheet
temperature
crystalline compound
Prior art date
Application number
PCT/JP2009/052742
Other languages
French (fr)
Japanese (ja)
Inventor
一尋 塩尻
和宏 沖
浩和 西村
俊 中村
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2009107524A1 publication Critical patent/WO2009107524A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements

Definitions

  • the present invention relates to an optical compensation sheet manufacturing method and an optical compensation sheet used for liquid crystal displays and the like, and more particularly to a technique for forming an optically anisotropic layer containing a nematic liquid crystalline compound.
  • the optical compensation sheet (retardation plate) is provided between the pair of polarizing plates and the liquid crystal cell in order to improve the viewing angle characteristics of the liquid crystal display.
  • a general method for producing an optical compensation sheet for example, there is a method in which a coating liquid containing a nematic liquid crystalline compound is applied on a transparent film on which an alignment film is formed, and then heated and aligned, and then fixed by cooling or a crosslinking reaction. It is used.
  • Patent Document 2 proposes that in a method for manufacturing a liquid crystal element, heating to a temperature higher than the glass transition temperature of a liquid crystal polymer by 50 ° C. or more and exhibiting a liquid crystal phase. Thereby, it is said that the domain-like alignment defects (also referred to as Schlieren defects) can be eliminated in a shorter time than when heating is continued at a low temperature. On the other hand, it is limited to liquid crystal polymers, and there is an aspect that it cannot be applied to liquid crystal compounds whose glass transition temperature cannot be defined.
  • Patent Document 3 discloses that in a method for producing an optical compensation sheet, a liquid crystalline compound is generalized in a nematic liquid crystal and heated at 25 to 300 ° C. for at least 30 seconds.
  • Patent Document 4 in the method of manufacturing an optical compensation sheet, a discotic liquid crystal is aligned by heating a coating layer containing a discotic liquid crystal at a temperature of 50 ° C. or higher and 200 ° C. or lower for 10 seconds or longer and 240 seconds or shorter. It has been proposed.
  • Patent Documents 1 to 4 in order to stably align the nematic liquid crystalline compound, it is necessary to heat it for a certain time at a relatively high temperature.
  • JP-A-8-5837 Japanese Patent Laid-Open No. 11-271532 JP 2004-46194 A JP 2004-29789 A
  • the present invention has been made in view of such circumstances, and can be applied to increase the product area and mass production, and can improve the alignment of the nematic liquid crystalline compound without impairing the productivity. It aims at providing the manufacturing method of a sheet
  • the first aspect of the present invention comprises a step of applying a coating liquid containing a nematic liquid crystalline compound on an alignment film previously formed on the surface of a traveling long film, and the coating After the layer is dried, an optical compensation sheet comprising a step of aligning the nematic liquid crystalline compound by heating at a liquid crystal forming temperature T1 (° C.), and a step of polymerizing and curing the aligned coating layer
  • the liquid crystal formation temperature T1 (° C.) is in the range of T2-10 ⁇ T1 ⁇ T2 when the liquid-liquid crystal phase transition temperature of the nematic liquid crystalline compound is T2 (° C.), and the heating time is
  • a method for producing an optical compensation sheet characterized by maintaining for at least 25 seconds.
  • the liquid crystal forming temperature is maintained at T1 (° C.) and the temperature range of T2-10 ⁇ T1 ⁇ T2 is maintained for at least 25 seconds.
  • a constant high orientation can be stably obtained with a short heating time.
  • the reason for setting the heating time to at least 25 seconds is that if the heating time is 25 seconds or more, a substantially constant high orientation can be obtained regardless of the heating time.
  • the heating time can be 25 to 90 seconds, preferably 25 to 35 seconds in view of the safety factor.
  • the liquid-liquid crystal phase transition temperature of the nematic liquid crystal compound refers to a temperature at which the nematic liquid crystal compound undergoes a phase transition from the liquid crystal phase to the liquid phase.
  • the liquid crystal formation temperature T1 (° C.) is in a range of T2-5 ⁇ T1 ⁇ T2, and the heating time is maintained for at least 30 seconds. .
  • a constant high orientation can be obtained in a shorter heating time.
  • the third aspect of the present invention is characterized in that, in the first or second aspect, the wet thickness of the coating layer is 50 ⁇ m or less.
  • the wet thickness of the coating layer is 50 ⁇ m or less, the alignment regulating force of the alignment film can be effectively functioned.
  • the nematic liquid crystalline compound is a discotic liquid crystalline compound.
  • an optical compensation sheet using a discotic liquid crystalline compound as a nematic liquid crystalline compound is suitable for a liquid crystal display.
  • any one of the first to fourth aspects in the step of orienting, hot air is blown onto the surface of the applied layer of the long film, and the same surface is sprayed. By discharging hot air on at least one of the upstream side and the downstream side, an air flow along the running direction of the long film is generated.
  • the heating temperature can be maintained in the above temperature range without causing uneven distribution.
  • the hot air temperature while sensing the ambient temperature in the vicinity of the coating layer, the hot air temperature can be controlled so that the ambient temperature is in the above temperature range. Thereby, it can set accurately so that an application layer may become the said temperature range.
  • the seventh aspect of the present invention is characterized in that, in the fifth or sixth aspect, the air flow along the running direction of the long film has a wind speed of 20 m / sec or less.
  • the coating layer can be heated without producing a non-uniform temperature distribution.
  • an optical compensation sheet manufactured by the method for manufacturing an optical compensation sheet according to any one of the first to seventh aspects, in order to achieve the above object.
  • the present invention it is possible to cope with an increase in product area and mass production, and the orientation of the nematic liquid crystalline compound can be improved without impairing productivity.
  • FIG. 1 is a schematic view showing an example of a manufacturing process of an optical compensation sheet in the present embodiment
  • FIG. 2 is a schematic diagram showing an example of the configuration of the heating device in the present embodiment
  • FIG. 3 is a schematic view showing the air outlet of the heating device in the present embodiment.
  • FIG. 1 is a schematic view showing an example of the optical compensation sheet manufacturing process 10 in the present embodiment.
  • An alignment film forming resin layer is formed in advance on the surface of the long transparent film 16 delivered from the film roll 12 by the delivery device 14.
  • the traveling speed of the transparent film 16 can be set to 0.1 to 1.5 m / second, for example.
  • the transparent film 16 is conveyed to a rubbing device 18 and subjected to a rubbing process.
  • the rubbing device 18 includes a rubbing roller 20, a guide roller 22 fixed to a roller stage with a spring, and a dust remover 23 provided on the rubbing roller.
  • the surface of the alignment film thus formed is dedusted by a surface dust remover 24 provided on the downstream side of the rubbing device 18.
  • the transparent film 16 on which the alignment film is formed is conveyed to a coating machine 26 by a driving roller, and a coating liquid containing a discotic nematic compound is applied onto the alignment film.
  • the coating layer may have a wet thickness of 50 ⁇ m or less.
  • a well-known coating device for example, various bar coaters, a gravure coater, a die coater etc. can be used.
  • the transparent film 16 on which the coating layer has been formed is dried at room temperature to 100 ° C. in a drying device 28, for example.
  • the residual solvent evaporates by 50% or more, preferably evaporates to 75% or more and is dried.
  • the coating layer in which the solvent has evaporated to some extent is heated in the heating device 30 at a discotic nematic phase formation temperature (liquid crystal formation temperature) for a predetermined time. This orients the discotic nematic phase.
  • the coating layer is crosslinked by being irradiated with ultraviolet rays from an ultraviolet (UV) lamp 32.
  • UV ultraviolet
  • this ultraviolet irradiation step is omitted and the liquid crystal is immediately cooled. In this case, the cooling needs to be performed rapidly so that the discotic nematic phase is not destroyed during cooling.
  • the transparent film 16 on which the coating layer (optically anisotropic layer) is formed in this way is measured for optical characteristics on the surface of the transparent film by the inspection device 34 and inspected for any abnormality.
  • the protective film 36 is laminated on the surface of the optically anisotropic layer by a laminating machine 38 and wound up by a winding device 40.
  • the example in which the optically anisotropic layer is formed using the winding film having the alignment film forming resin layer once wound up has been described. From the step of forming the alignment film forming resin layer, You may perform the process from making an optical compensation sheet to winding up continuously by integrated production.
  • heating is performed at a predetermined liquid crystal forming temperature in order to align the coating layer of the coating liquid for the optically anisotropic layer.
  • the inventors have remarkably improved the orientation at a certain temperature above the liquid-liquid crystal phase transition temperature, and the desired orientation in a short heating time in this temperature range. It was found that can be obtained.
  • the discotic nematic compound becomes isotropic phase above the liquid-liquid crystal phase transition temperature, it does not show orientation. Therefore, it is preferable to maintain the coating solution at a temperature lower than the liquid-liquid crystal phase transition temperature and very close to the liquid-liquid crystal phase transition temperature.
  • variations in temperature are likely to occur in an actual manufacturing process, it is extremely difficult to maintain the temperature at a high temperature that is not lower than the liquid-liquid crystal phase transition temperature and is close to the liquid-liquid crystal phase transition temperature.
  • a temperature range in which a certain high orientation is stably obtained is defined in consideration of temperature variations in an actual manufacturing process.
  • the liquid-liquid crystal phase transition temperature is T2 (° C.)
  • the liquid crystal formation temperature T1 (° C.) is in the range of T2-10 ⁇ T1 ⁇ T2, and preferably in the range of T2-5 ⁇ T1 ⁇ T2.
  • the liquid crystal forming temperature is lower than (T2-10) ° C., it is not preferable because it takes about twice or more of the heating time to obtain a certain high orientation, and the productivity is lowered.
  • the liquid-liquid crystal phase transition temperature is mainly determined by the type of nematic liquid crystalline compound contained in the coating liquid for the optically anisotropic layer, but also depends on the composition of the coating liquid for the optically anisotropic layer. For this reason, it is necessary to obtain the liquid-liquid crystal phase transition temperature by conducting a test in advance with the coating solution for the optically anisotropic layer to be used.
  • a coating solution for an optically anisotropic layer containing a discotic liquid crystalline compound is spun on a transparent glass substrate so as to have a desired film thickness (for example, 5 ⁇ m).
  • a desired film thickness for example, 5 ⁇ m.
  • the temperature that becomes the boundary of whether or not this light leakage occurs can be set as a liquid-liquid crystal phase transition temperature.
  • the method for measuring the liquid-liquid crystal phase transition temperature is not limited to the above embodiment.
  • the orientation of the nematic liquid crystal is related to the fluidity of the liquid crystal molecules.
  • the heating temperature condition of the present application can be applied to any nematic liquid crystal.
  • FIG. 2 is a schematic diagram illustrating an example of the configuration of the heating device 30.
  • the heating device 30 is formed of a rectangular casing 42 that is open at the top and bottom, and is mainly coated with a coating liquid 16A for the optically anisotropic layer on the transparent film 16 that runs while being guided by a plurality of pass rollers 44.
  • the blow-out part 46 that blows hot air and the discharge part 48 that discharges the hot air are arranged on the side on which the coating layer is formed.
  • the main body of the heating device 30 is partitioned in the casing 42 such that the blowout portion 46 and the discharge portion 48 are positioned on the upstream side and the downstream side in the traveling direction of the transparent film 16 by the partition plate 49.
  • a plurality of outlets 50 are provided below the outlet 46, and an outlet fan 54 whose rotation speed can be changed is provided at a hot air supply port 52 connected to a hot air generator (not shown).
  • a discharge port 56 is provided below the discharge unit 48, and a discharge fan 58 whose rotation speed can be changed is provided above.
  • the blower fan 54, the exhaust fan 58, and the hot air generator are controlled by a controller 60 that controls the heating device 30.
  • the hot air supply port 52 is preferably provided with a filter 53 for removing impurities in the air.
  • the hot air taken into the blow-out part 46 from the hot air generator (not shown) is blown onto the coating layer 16A of the transparent film 16 traveling from the blow-out opening 50 and taken into the discharge part 48 from the discharge port 56. , Discharged outside the device.
  • the hot air blown to the coating layer 16A forms an air flow along the traveling direction of the transparent film 16 from the outlet 50 side to the outlet 56 side on the surface of the coating layer 16A.
  • the wind speed generated in the width direction of the transparent film 16 is preferably 1 m / second or less, more preferably 0.8 m / second or less.
  • the wind speed in the traveling direction is preferably 20 m / second or less.
  • FIG. 3 is a schematic view showing the air outlet 50, and is an example in which a plurality of slit nozzles 50 ⁇ / b> A that are long in the width direction of the transparent film 16 are arranged in the running direction of the transparent film 16. It is preferable that the width (L1) of the air outlet 50 be in the range of 1.05 to 2 times the width of the transparent film 16. Thereby, the wind speed of the airflow in the traveling direction of the transparent film 16 can be made substantially uniform over the width direction of the transparent film 16.
  • a temperature sensor 64 is provided in the casing 42 of the blow-out portion 46, and a three-dimensional wind speed sensor 66 is disposed immediately above the coating layer 16A.
  • the hot air temperature and the blown air speed blown to the coating layer 16A are monitored by the temperature sensor 64 and the three-dimensional wind speed sensor 66 and input to the controller 60. Based on the monitoring result, the controller 60 adjusts the rotation speed of the blower fan 54 and the discharge fan 58 and the hot air temperature of the hot air generator so that the wind speed and hot air temperature in the vicinity of the coating layer 16A satisfy the above-described conditions. Feedback control. For example, the hot air temperature is feedback-controlled so that the ambient temperature in the vicinity of the coating layer 16A is within the range of the liquid crystal formation temperature described above.
  • the wind speed measuring device for example, a three-dimensional ultrasonic anemometer (WA-390 type) manufactured by Kaijo Co., Ltd. can be used.
  • the heating time at the liquid crystal forming temperature may be adjusted by changing the traveling speed of the transparent film 16, or may be adjusted by changing the length of the heating zone in the film traveling direction.
  • a heating device that makes the film running direction length of the heating zone variable for example, a plurality of heating devices 30 as shown in FIG. 2 may be arranged in parallel and operated as much as necessary.
  • a movable partition plate is installed on the upstream side in the casing 42, and the partition plate covers the outlet 50 of the outlet portion 46 only in a desired region. do it.
  • the heating device 30 is not limited to the above-described aspect, and may be a hot air heating device having another configuration, a heater heating device, or the like.
  • the transparent film used in the present embodiment is not particularly limited as long as it is a transparent material, but a transparent film having a light transmittance of 80% or more is used. Is preferred.
  • the transparent film is preferably one that does not easily exhibit birefringence due to external force.
  • the transparent film contains a hydrolyzable bond (bond to be saponified) such as an ester bond or an amide bond.
  • An ester bond is preferred, and it is more preferred that the ester bond be present on the side chain of the polymer.
  • a typical example of the polymer having an ester bond in the side chain is a cellulose ester.
  • the degree of acetylation means the amount of bound acetic acid per unit mass of cellulose.
  • the degree of acetylation follows the measurement and calculation of the degree of acetylation in ASTM: D-817-91 (test method for cellulose acetate and the like).
  • the transparent film When a transparent film is used for the optical compensation sheet, the transparent film preferably has a high retardation value.
  • the Re retardation value and Rth retardation value of the film are defined by the following formulas (I) and (II), respectively.
  • Re and Rth preferably satisfy the following formulas (R-1) and (R-2).
  • Formula (R-1) 0 nm ⁇ Re ⁇ 300 nm
  • Formula (R-2) 10 nm ⁇ Rth ⁇ 300 nm More preferably, the following formulas (R-3) and (R-4) are satisfied.
  • Formula (R-3) 20 nm ⁇ Re ⁇ 200 nm
  • Formula (R-4) 20 nm ⁇ Rth ⁇ 200 nm
  • Re and Rth are in-plane retardation and retardation in the thickness direction, respectively, and are represented by the following formulas (R-5) and (R-6).
  • the optically anisotropic layer in the present embodiment is formed directly from a liquid crystalline compound on the transparent film 16 or from a liquid crystalline compound via an alignment film.
  • the alignment film preferably has a thickness of 10 ⁇ m or less. A preferable example of the alignment film is described in JP-A-8-338913.
  • the optically anisotropic layer is prepared by preparing a coating liquid (optically anisotropic layer coating liquid) containing at least one liquid crystalline compound described below and additives such as a polymerization initiator and a fluorine-based polymer as required. It can be formed by applying and drying the coating solution on the surface of the alignment film.
  • a coating liquid optically anisotropic layer coating liquid
  • additives such as a polymerization initiator and a fluorine-based polymer as required.
  • fluorine compound examples include conventionally known compounds. Specific examples include fluorine compounds described in paragraphs [0028] to [0056] of JP-A-2001-330725. It is done.
  • organic solvent As the solvent used for preparing the coating solution, an organic solvent is preferably used.
  • organic solvents include amides (eg N, N-dimethylformamide), sulfoxides (eg dimethyl sulfoxide), heterocyclic compounds (eg pyridine), hydrocarbons (eg benzene, hexane), alkyl halides (eg , Chloroform, dichloromethane, tetrachloroethane), esters (eg, methyl acetate, butyl acetate), ketones (eg, acetone, methyl ethyl ketone), ethers (eg, tetrahydrofuran, 1,2-dimethoxyethane). Alkyl halides and ketones are preferred. Two or more organic solvents may be used in combination.
  • the surface tension of the coating solution is preferably 25 mN / m or less, and more preferably 22 mN / m or less.
  • nematic liquid crystalline compound for example, a discotic liquid crystalline compound can be used.
  • the liquid crystal compound used in the present embodiment includes a discotic liquid crystal compound.
  • the discotic liquid crystalline compound may be a polymer liquid crystal or a low molecular liquid crystal.
  • Discotic liquid crystalline compounds include C.I. Benzene derivatives described in a research report of Destrade et al. (Mol. Cryst. 71, 111 (1981)), C.I. Destrode et al. (Mol. Cryst. 122, 141 (1985), Physics lett, A, 78, 82 (1990)), a truxene derivative described in B.
  • the discotic liquid crystalline compound for example, a discotic liquid crystalline compound can be used.
  • the discotic liquid crystalline compound also includes a compound having a structure in which a linear alkyl group, an alkoxy group, and a substituted benzoyloxy group are radially substituted as a side chain of the mother nucleus with respect to the mother nucleus at the center of the molecule.
  • the molecule or the assembly of molecules is preferably a compound having rotational symmetry and imparting a certain orientation.
  • the optically anisotropic layer formed from the discotic liquid crystalline compound does not necessarily require that the compound finally contained in the optically anisotropic layer is a discotic liquid crystalline compound.
  • discotic liquid crystalline compound examples include JP-A-8-50206.
  • the polymerization of discotic liquid crystalline compounds is described in JP-A-8-27284.
  • the discotic liquid crystalline compound having a polymerizable group is preferably a compound represented by the following formula (5).
  • D is a discotic core
  • L is a divalent linking group
  • Q is a polymerizable group
  • r is an integer of 4 to 12.
  • the divalent linking group (L) is selected from the group consisting of an alkylene group, an alkenylene group, an arylene group, —CO—, —NH—, —O—, —S—, and combinations thereof. It is preferable that it is a bivalent coupling group.
  • the divalent linking group (L) is a divalent combination of at least two divalent groups selected from the group consisting of an alkylene group, an arylene group, —CO—, —NH—, —O—, and —S—. More preferably, it is a linking group.
  • the divalent linking group (L) is most preferably a divalent linking group in which at least two divalent groups selected from the group consisting of an alkylene group, an arylene group, —CO— and —O— are combined. .
  • the number of carbon atoms of the alkylene group is preferably 1-12.
  • the alkenylene group preferably has 2 to 12 carbon atoms.
  • the number of carbon atoms in the arylene group is preferably 6-10.
  • Examples of the divalent linking group (L) are shown below.
  • the left side is bonded to the discotic core (D), and the right side is bonded to the polymerizable group (Q).
  • AL represents an alkylene group or an alkenylene group
  • AR represents an arylene group.
  • the alkylene group, alkenylene group and arylene group may have a substituent (eg, an alkyl group).
  • the polymerizable group (Q) of the general formula (5) is determined according to the type of polymerization reaction. Examples of the polymerizable group (Q) are shown below.
  • the polymerizable group (Q) is preferably an unsaturated polymerizable group (Q1, Q2, Q3, Q7, Q8, Q15, Q16, Q17) or an epoxy group (Q6, Q18). More preferably, it is most preferably an ethylenically unsaturated polymerizable group (Q1, Q7, Q8, Q15, Q16, Q17).
  • a specific value of r is determined according to the type of the disk-shaped core (D). In addition, although the combination of several L and Q may differ, it is preferable that it is the same.
  • the angle between the major axis (disk surface) of the discotic liquid crystalline compound and the surface of the support that is, the inclination angle is in the direction of the depth of the optically anisotropic layer (that is, perpendicular to the transparent support). And it increases or decreases as the distance from the plane of the polarizing film increases.
  • the angle preferably increases with increasing distance.
  • the change in the tilt angle can be continuous increase, continuous decrease, intermittent increase, intermittent decrease, change including continuous increase and continuous decrease, or intermittent change including increase and decrease.
  • the intermittent change includes a region where the inclination angle does not change in the middle of the thickness direction. Even if a region where the angle does not change is included, it may be increased or decreased as a whole. However, it is preferred that the tilt angle changes continuously.
  • the average direction of the major axis (disk surface) of the discotic liquid crystalline compound (average of the major axis direction of each molecule) is generally selected by selecting the discotic liquid crystalline compound or the material of the alignment film, or selecting the rubbing treatment method. By doing so, it can be adjusted.
  • the major axis (disk surface) direction of the discotic liquid crystalline compound on the surface side (air side) is generally adjusted by selecting the type of additive used together with the discotic liquid crystalline compound or the discotic liquid crystalline compound. be able to.
  • Examples of the additive used together with the discotic liquid crystalline compound include a plasticizer, a surfactant, a polymerizable monomer, and a polymer.
  • the degree of change in the orientation direction of the major axis can also be adjusted by selecting liquid crystalline molecules and additives as described above.
  • the plasticizer, surfactant and polymerizable monomer used together with the discotic liquid crystalline compound are compatible with the discotic liquid crystalline compound, and can change the tilt angle of the discotic liquid crystalline compound or change the orientation. It is preferable not to inhibit.
  • a polymerizable monomer eg, a compound having a vinyl group, a vinyloxy group, an acryloyl group and a methacryloyl group
  • the amount of the above compound added is generally in the range of 1 to 50% by mass and preferably in the range of 5 to 30% by mass with respect to the discotic liquid crystalline compound.
  • adhesion between the alignment film and the optically anisotropic layer can be improved.
  • the optically anisotropic layer may contain a polymer together with the discotic liquid crystalline compound.
  • the polymer preferably has a certain degree of compatibility with the discotic liquid crystalline compound and can change the tilt angle of the discotic liquid crystalline compound.
  • a cellulose ester can be mentioned as an example of a polymer.
  • Preferable examples of the cellulose ester include cellulose acetate, cellulose acetate propionate, hydroxypropyl cellulose and cellulose acetate butyrate.
  • the amount of the polymer added is preferably in the range of 0.1 to 10% by mass, preferably 0.1 to 8% by mass with respect to the discotic liquid crystalline compound. More preferably, it is in the range of 0.1 to 5% by mass.
  • Aligned liquid crystalline molecules can be fixed while maintaining the alignment state.
  • the immobilization is preferably performed by a polymerization reaction.
  • the polymerization reaction includes a thermal polymerization reaction using a thermal polymerization initiator and a photopolymerization reaction using a photopolymerization initiator. A photopolymerization reaction is preferred.
  • photopolymerization initiators examples include ⁇ -carbonyl compounds (described in US Pat. Nos. 2,367,661 and 2,367,670), acyloin ethers (described in US Pat. No. 2,448,828), ⁇ -hydrocarbon substituted aromatic acyloin compounds ( US Pat. No. 2,722,512), polynuclear quinone compounds (described in US Pat. Nos. 3,046,127 and 2,951,758), a combination of triarylimidazole dimer and p-aminophenyl ketone (described in US Pat. No. 3,549,367), Phenazine compounds (described in JP-A-60-105667 and US Pat. No. 4,239,850) and oxadiazole compounds (described in US Pat. No. 4,221,970) are included.
  • the amount of the photopolymerization initiator used is preferably in the range of 0.01 to 20% by mass, more preferably in the range of 0.5 to 5% by mass, based on the solid content of the coating solution.
  • the irradiation energy is preferably in the range of 20mJ / cm 2 ⁇ 50J / cm 2, more preferably in the range of 20mJ / cm 2 ⁇ 5000mJ / cm 2, a range of 100mJ / cm 2 ⁇ 800mJ / cm 2 More preferably.
  • light irradiation may be performed under heating conditions.
  • Example A As the transparent film 16, a 2 weight percent solution of a long chain alkyl-modified bhopal [MP-203, manufactured by Kuraray Co., Ltd.] on triacetyl cellulose (Fujitack, manufactured by Fuji Film Co., Ltd.) having a width of 1000 mm and a thickness of 80 ⁇ m. After applying a predetermined amount, a film formed by drying to form an alignment film resin layer was used.
  • the transparent film 16 on which the alignment film resin was formed was run at 30 m / min, a rubbing treatment was performed on the surface of the alignment film resin layer to form an alignment film.
  • the coating liquid for optical anisotropic layer below is rotated continuously with the alignment film surface of the roll film by rotating the wire bar # 3.2 in the same direction as the running direction of the transparent film 16.
  • the film surface wind speed which hits a discotic liquid crystalline compound layer will be 1.5 m / sec in parallel with a film running direction.
  • the liquid crystal forming temperature T1 (° C.) shown in Table 1 below was heated for a predetermined time t (seconds). Thereby, the discotic liquid crystalline compound was aligned.
  • the coating layer on the transparent film 16 is irradiated with ultraviolet rays having an illuminance of 600 mW for 4 seconds by an ultraviolet irradiation device (ultraviolet lamp 32: output 160 W / cm, light emission length 1.6 m), and the crosslinking reaction is allowed to proceed.
  • the liquid crystal compound was fixed to the orientation. Then, it stood to cool to room temperature, and obtained the optical compensation sheet in which the optically anisotropic layer was formed.
  • the thickness of the optically anisotropic layer was 1.3 ⁇ m.
  • composition of coating liquid for optically anisotropic layer The following composition was dissolved in 107 parts by mass of methyl ethyl ketone to prepare a coating solution.
  • Discotic liquid crystalline compound TE-8 41.01 parts by mass Ethylene oxide modified trimethylolpropane triacrylate (V # 360, manufactured by Osaka Organic Chemical Co., Ltd.): 4.06 parts by mass Cellulose acetate butyrate (CAB551-0.
  • the liquid-liquid crystal phase transition temperature of the coating liquid for the optically anisotropic layer is determined in advance by the following method.
  • the optically anisotropic layer coating solution was spin-coated on a transparent glass substrate to a thickness of 5 ⁇ m to prepare a sample plate. This sample plate was observed with a polarizing microscope while raising the temperature, and the temperature at which the light leakage from the sample plate occurred was defined as the liquid-liquid crystal phase transition temperature.
  • the liquid crystal-liquid phase transition temperature (T2) of the coating liquid for optically anisotropic layer in this example was measured and found to be 140 ° C.
  • the optical compensation sheet thus obtained was sampled to a predetermined size, and the orientation was evaluated using (... apparatus name). That is, the evaluation was made according to the following three stages according to the number of schlieren defects within 1 mm square of the optical compensation sheet.
  • The number of schlieren defects within 1 mm square is 15 or less.
  • The number of schlieren defects within 1 mm square is 16 or more.
  • ⁇ ... The number of schlieren defects within 1 mm square is 26 or more.
  • the liquid crystal forming temperature is the temperature range of the present invention
  • high orientation is obtained when the heating time is 25 seconds or more, and there is almost no change even if the heating time is further increased.
  • the liquid crystal forming temperature is 135 ° C.
  • good orientation can be obtained in a shorter time.
  • the liquid crystal forming temperature is 125 ° C., a heating time of 45 seconds or more is required to show a certain orientation, and thus productivity is lowered.
  • the liquid crystal formation temperature T1 (° C.) is set to a temperature range below and close to the liquid crystal-liquid phase transition temperature, that is, T2-10 ⁇ T1 ⁇ T2, preferably T2-5 ⁇ T1 ⁇ T2.
  • T2-10 ⁇ T1 ⁇ T2 preferably T2-5 ⁇ T1 ⁇ T2.
  • the orientation of the optical compensation sheet was similarly evaluated by changing the liquid crystal formation temperature (T1) and the heating time (t) as shown in Table 2 below. The results are shown in Table 2.
  • the liquid crystal forming temperature is 140 ° C., which is the temperature range of the present invention
  • orientation is obtained when the heating time is 25 seconds or more, and almost constant high orientation is obtained after 35 seconds. It was.
  • the liquid crystal forming temperature is 130 ° C.
  • a heating time of 65 seconds or more is required to show a certain orientation, and the productivity is lowered.
  • the liquid crystal formation temperature T1 (° C.) is set to a temperature range below and close to the liquid crystal-liquid phase transition temperature, that is, T2-10 ⁇ T1 ⁇ T2, preferably T2-5 ⁇ T1 ⁇ T2. As a result, it was confirmed that a constant high orientation was stably obtained in a short time of less than 30 seconds.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided is a method for manufacturing an optical compensation sheet characterized by comprising the steps of applying an application liquid containing a nematic liquid crystal compound onto an alignment film previously formed on the surface of a long film that is running, aligning the nematic liquid crystal compound by drying the applied layer and thereafter heating the applied layer at a liquid crystal forming temperature T1 (°C), and polymerizing and curing the aligned applied layer, wherein the liquid crystal forming temperature T1 (°C) is in the range of T2-10≤T1<T2 when the liquid-liquid crystal phase transition temperature of the nematic liquid crystal compound is T2 (°C), and the heating time is maintained for at least 25 seconds.

Description

光学補償シートの製造方法及び光学補償シートOptical compensation sheet manufacturing method and optical compensation sheet
 本発明は、液晶ディスプレイ等に使用される光学補償シートの製造方法及び光学補償シートに係り、特にネマチック液晶性化合物を含む光学異方性層を形成する技術に関する。 The present invention relates to an optical compensation sheet manufacturing method and an optical compensation sheet used for liquid crystal displays and the like, and more particularly to a technique for forming an optically anisotropic layer containing a nematic liquid crystalline compound.
 光学補償シート(位相差板)は、液晶ディスプレイの視野角特性を改善するため、一対の偏光板と液晶セルとの間に設けられている。光学補償シートの一般的な製造方法としては、例えば、配向膜を形成した透明フィルム上にネマチック液晶性化合物を含む塗布液を塗布した後、加熱配向させ、冷却又は架橋反応により固定化する方法が用いられている。 The optical compensation sheet (retardation plate) is provided between the pair of polarizing plates and the liquid crystal cell in order to improve the viewing angle characteristics of the liquid crystal display. As a general method for producing an optical compensation sheet, for example, there is a method in which a coating liquid containing a nematic liquid crystalline compound is applied on a transparent film on which an alignment film is formed, and then heated and aligned, and then fixed by cooling or a crosslinking reaction. It is used.
 このネマチック液晶性化合物を加熱配向させる方法として、例えば特許文献1では、光学補償シートの製造方法において、配向膜上にディスコティック液晶を塗布した後、ディスコティックネマティック液晶相-固相転移温度以上で加熱し、液晶が配向するまで加熱することが提案されている。 As a method for thermally aligning this nematic liquid crystalline compound, for example, in Patent Document 1, in a method for producing an optical compensation sheet, after applying a discotic liquid crystal on an alignment film, the discotic nematic liquid crystal phase has a solid-state transition temperature or higher. It has been proposed to heat and heat until the liquid crystal is aligned.
 特許文献2には、液晶素子の製造方法において、液晶ポリマーのガラス転移温度よりも50℃以上高く且つ液晶相を呈する温度に加熱することが提案されている。これにより、低温で加熱し続けるよりも短時間でドメイン状の配向欠陥(シュリーレン欠陥ともいう)を消滅できるとされている。一方で、液晶ポリマーに限られており、ガラス転移温度が定義できないような液晶性化合物には適用できないという側面がある。 Patent Document 2 proposes that in a method for manufacturing a liquid crystal element, heating to a temperature higher than the glass transition temperature of a liquid crystal polymer by 50 ° C. or more and exhibiting a liquid crystal phase. Thereby, it is said that the domain-like alignment defects (also referred to as Schlieren defects) can be eliminated in a shorter time than when heating is continued at a low temperature. On the other hand, it is limited to liquid crystal polymers, and there is an aspect that it cannot be applied to liquid crystal compounds whose glass transition temperature cannot be defined.
 特許文献3には、光学補償シートの製造方法において、ネマチック液晶に液晶性化合物を一般化させ、25~300℃で少なくとも30秒間加熱することが開示されている。 Patent Document 3 discloses that in a method for producing an optical compensation sheet, a liquid crystalline compound is generalized in a nematic liquid crystal and heated at 25 to 300 ° C. for at least 30 seconds.
 特許文献4には、光学補償シートの製造方法において、ディスコティック液晶を含む塗布層を50℃以上200℃以下の温度で10秒以上240秒以下の時間加熱することにより、ディスコティック液晶を配向させることが提案されている。 In Patent Document 4, in the method of manufacturing an optical compensation sheet, a discotic liquid crystal is aligned by heating a coating layer containing a discotic liquid crystal at a temperature of 50 ° C. or higher and 200 ° C. or lower for 10 seconds or longer and 240 seconds or shorter. It has been proposed.
 このように、上記特許文献1~4において、ネマチック液晶性化合物を安定に配向させるには、比較的高温である一定時間以上加熱する必要があった。
特開平8-5837号公報 特開平11-271532号公報 特開2004-46194号公報 特開2004-29789号公報
As described above, in Patent Documents 1 to 4, in order to stably align the nematic liquid crystalline compound, it is necessary to heat it for a certain time at a relatively high temperature.
JP-A-8-5837 Japanese Patent Laid-Open No. 11-271532 JP 2004-46194 A JP 2004-29789 A
 しかしながら、実際の製造工程においては、上記特許文献1~4のように高温で長時間加熱すると生産性が低下するばかりでなく、製品コストが上昇するという問題がある。また、これらの熱履歴によってベースフィルムや塗布層が熱劣化し易く、光学特性を低下させる原因ともなる。 However, in the actual manufacturing process, as described in Patent Documents 1 to 4, heating at a high temperature for a long time has a problem that not only productivity is lowered but also product cost is increased. In addition, the base film and the coating layer are likely to be thermally deteriorated due to these thermal histories, which causes a decrease in optical characteristics.
 一方、光学補償シートにおいて、一定の高い配向性が得られる加熱条件については、未だ定量的な検討はなされていなかった。 On the other hand, a quantitative study has not yet been made on the heating conditions for obtaining a certain high orientation in the optical compensation sheet.
 このため、高い光学特性を安定に維持しながらも、光学補償シートの大面積化、大量生産化に対応できる方策が求められている。 For this reason, there is a need for a policy that can cope with an increase in area and mass production of an optical compensation sheet while maintaining high optical characteristics stably.
 本発明はこのような事情に鑑みてなされたもので、製品の大面積化、大量生産化にも対応でき、生産性を損なうことなくネマチック液晶性化合物の配向性を向上させることができる光学補償シートの製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and can be applied to increase the product area and mass production, and can improve the alignment of the nematic liquid crystalline compound without impairing the productivity. It aims at providing the manufacturing method of a sheet | seat.
 本発明の第一の態様は前記目的を達成するために、走行する長尺状フィルムの表面に予め形成された配向膜上に、ネマティック液晶性化合物を含む塗布液を塗布する工程と、該塗布層を乾燥した後、液晶形成温度T1(℃)で加熱することにより前記ネマティック液晶性化合物を配向させる工程と、該配向させた塗布層を重合及び硬化させる工程とを備えた光学補償シートの製造方法において、前記液晶形成温度T1(℃)は、前記ネマティック液晶性化合物の液体-液晶相転移温度をT2(℃)としたとき、T2-10≦T1<T2の範囲とし、且つ前記加熱時間を少なくとも25秒維持することを特徴とする光学補償シートの製造方法を提供する。 In order to achieve the above object, the first aspect of the present invention comprises a step of applying a coating liquid containing a nematic liquid crystalline compound on an alignment film previously formed on the surface of a traveling long film, and the coating After the layer is dried, an optical compensation sheet comprising a step of aligning the nematic liquid crystalline compound by heating at a liquid crystal forming temperature T1 (° C.), and a step of polymerizing and curing the aligned coating layer In the method, the liquid crystal formation temperature T1 (° C.) is in the range of T2-10 ≦ T1 <T2 when the liquid-liquid crystal phase transition temperature of the nematic liquid crystalline compound is T2 (° C.), and the heating time is There is provided a method for producing an optical compensation sheet, characterized by maintaining for at least 25 seconds.
 本発明者らが、ネマティック液晶性化合物を加熱配向させる工程において、一定の配向性を得るための加熱条件(液晶形成温度、加熱時間)について定量的に鋭意検討した結果、配向性が温度勾配に対して飛躍的に向上する温度領域があることを見いだした。 As a result of quantitatively studying heating conditions (liquid crystal formation temperature, heating time) for obtaining a certain orientation in the step of thermally aligning the nematic liquid crystalline compound, the present inventors have conducted a quantitative study on the orientation. On the other hand, we have found that there is a temperature range that dramatically improves.
 本発明はこのような知見に基づいてなされたもので、第一の態様によれば、液晶形成温度をT1(℃)をT2-10≦T1<T2の温度範囲を少なくとも25秒維持することにより、短い加熱時間で一定の高い配向性を安定して得ることができる。なお、加熱時間を少なくとも25秒としたのは、加熱時間が25秒以上であれば、加熱時間によらずほぼ一定の高い配向性が得られるためである。加熱時間は、安全率をみても25~90秒、好ましくは25~35秒とすることができる。 The present invention has been made based on such findings. According to the first aspect, the liquid crystal forming temperature is maintained at T1 (° C.) and the temperature range of T2-10 ≦ T1 <T2 is maintained for at least 25 seconds. A constant high orientation can be stably obtained with a short heating time. The reason for setting the heating time to at least 25 seconds is that if the heating time is 25 seconds or more, a substantially constant high orientation can be obtained regardless of the heating time. The heating time can be 25 to 90 seconds, preferably 25 to 35 seconds in view of the safety factor.
 ここで、ネマティック液晶性化合物の液体-液晶相転移温度とは、ネマティック液晶性化合物が液晶相から液体相に相転移するときの温度をいう。 Here, the liquid-liquid crystal phase transition temperature of the nematic liquid crystal compound refers to a temperature at which the nematic liquid crystal compound undergoes a phase transition from the liquid crystal phase to the liquid phase.
 本発明の第二の態様は第一の態様において、前記液晶形成温度T1(℃)は、T2-5≦T1<T2の範囲とし、且つ前記加熱時間を少なくとも30秒維持することを特徴とする。 According to a second aspect of the present invention, in the first aspect, the liquid crystal formation temperature T1 (° C.) is in a range of T2-5 ≦ T1 <T2, and the heating time is maintained for at least 30 seconds. .
 第二の態様によれば、より短い加熱時間で一定の高い配向性を得ることができる。 According to the second aspect, a constant high orientation can be obtained in a shorter heating time.
 本発明の第三の態様は第一又は第二の態様において、前記塗布層の湿潤厚みは50μm以下であることを特徴とする。 The third aspect of the present invention is characterized in that, in the first or second aspect, the wet thickness of the coating layer is 50 μm or less.
 第三の態様によれば、塗布層の湿潤厚みを50μm以下とするので、配向膜の配向規制力を効果的に機能させることができる。 According to the third aspect, since the wet thickness of the coating layer is 50 μm or less, the alignment regulating force of the alignment film can be effectively functioned.
 本発明の第四の態様は第一乃至第三の態様のいずれかにおいて、前記ネマティック液晶性化合物は、ディスコティック液晶性化合物であることを特徴とする。 According to a fourth aspect of the present invention, in any one of the first to third aspects, the nematic liquid crystalline compound is a discotic liquid crystalline compound.
 第四の態様によれば、ネマチック液晶性化合物としてディスコティック液晶性化合物を使用した光学補償シートは、液晶ディスプレイに好適である。 According to the fourth aspect, an optical compensation sheet using a discotic liquid crystalline compound as a nematic liquid crystalline compound is suitable for a liquid crystal display.
 本発明の第五の態様は第一乃至第四の態様のいずれかにおいて、前記配向させる工程は、前記長尺状フィルムの前記塗布された層の表面に熱風を吹き付け、該吹き付けた同じ面の上流側又は下流側の少なくとも一方側で熱風を排出することにより、前記長尺状フィルムの走行方向に沿った気流を発生させることを特徴とする。 According to a fifth aspect of the present invention, in any one of the first to fourth aspects, in the step of orienting, hot air is blown onto the surface of the applied layer of the long film, and the same surface is sprayed. By discharging hot air on at least one of the upstream side and the downstream side, an air flow along the running direction of the long film is generated.
 第五の態様によれば、長尺状フィルムの走行方向に沿って熱風加熱を行うので、加熱温度を不均一な分布を生じることなく上記温度範囲に維持することができる。 According to the fifth aspect, since the hot air is heated along the running direction of the long film, the heating temperature can be maintained in the above temperature range without causing uneven distribution.
 本発明の第六の態様は第五の態様において、前記塗布層近傍の雰囲気温度を測定する工程と、前記測定した結果に基づき、前記雰囲気温度を前記液晶形成温度となるように前記塗布層に吹き付ける熱風温度を制御する工程と、を備えたことを特徴とする。 According to a sixth aspect of the present invention, in the fifth aspect, the step of measuring the ambient temperature in the vicinity of the coating layer and the coating layer based on the measurement result such that the ambient temperature becomes the liquid crystal formation temperature. And a step of controlling the temperature of the hot air to be blown.
 第六の態様によれば、塗布層近傍における雰囲気温度をセンシングしながら、該雰囲気温度が上記温度範囲にするように熱風温度を制御することができる。これにより、塗布層が上記温度範囲となるように精度よく設定することができる。 According to the sixth aspect, while sensing the ambient temperature in the vicinity of the coating layer, the hot air temperature can be controlled so that the ambient temperature is in the above temperature range. Thereby, it can set accurately so that an application layer may become the said temperature range.
 本発明の第七の態様は第五又は第六の態様において、前記長尺状フィルムの走行方向に沿った気流は風速20m/秒以下であることを特徴とする。 The seventh aspect of the present invention is characterized in that, in the fifth or sixth aspect, the air flow along the running direction of the long film has a wind speed of 20 m / sec or less.
 第七の態様によれば、塗布層を不均一な温度分布を生じることなく加熱することができる。 According to the seventh aspect, the coating layer can be heated without producing a non-uniform temperature distribution.
 本発明の第八の態様は前記目的を達成するために、第一乃至第七の態様のいずれかに係る光学補償シートの製造方法により製造したことを特徴とする光学補償シートを提供する。 According to an eighth aspect of the present invention, there is provided an optical compensation sheet manufactured by the method for manufacturing an optical compensation sheet according to any one of the first to seventh aspects, in order to achieve the above object.
 本発明によれば、製品の大面積化、大量生産化にも対応でき、生産性を損なうことなくネマチック液晶性化合物の配向性を向上させることができる。 According to the present invention, it is possible to cope with an increase in product area and mass production, and the orientation of the nematic liquid crystalline compound can be improved without impairing productivity.
図1は、本実施形態における光学補償シートの製造工程の一例を示した概略図であり;FIG. 1 is a schematic view showing an example of a manufacturing process of an optical compensation sheet in the present embodiment; 図2は、本実施形態における加熱装置の構成の一例を示す概略図であり;FIG. 2 is a schematic diagram showing an example of the configuration of the heating device in the present embodiment; 図3は、本実施形態における加熱装置の吹出口を示す概略図である。FIG. 3 is a schematic view showing the air outlet of the heating device in the present embodiment.
符号の説明Explanation of symbols
10…光学補償シートの製造装置
16…透明フィルム
16A…塗布層
18…ラビング装置
26…塗布機
28…乾燥装置
30…加熱装置
64…温度センサ
66…3次元風速センサ
46…コントローラ
44…吹出ファン
46…排出ファン
DESCRIPTION OF SYMBOLS 10 ... Optical compensation sheet manufacturing apparatus 16 ... Transparent film 16A ... Coating layer 18 ... Rubbing apparatus 26 ... Coating machine 28 ... Drying apparatus 30 ... Heating apparatus 64 ... Temperature sensor 66 ... Three-dimensional wind speed sensor 46 ... Controller 44 ... Blowing fan 46 ... Exhaust fan
 以下、添付図面に従って本発明に係る光学補償シートの製造方法の好ましい実施の形態について説明する。 Hereinafter, preferred embodiments of a method for producing an optical compensation sheet according to the present invention will be described with reference to the accompanying drawings.
 図1は、本実施形態における光学補償シートの製造工程10の一例を示した概略図である。 FIG. 1 is a schematic view showing an example of the optical compensation sheet manufacturing process 10 in the present embodiment.
 フィルムロール12から送出機14により送り出される長尺状の透明フィルム16の表面には、予め配向膜形成用樹脂層が形成されている。透明フィルム16の走行速度は、例えば、0.1~1.5m/秒とすることができる。 An alignment film forming resin layer is formed in advance on the surface of the long transparent film 16 delivered from the film roll 12 by the delivery device 14. The traveling speed of the transparent film 16 can be set to 0.1 to 1.5 m / second, for example.
 この透明フィルム16は、ラビング装置18に搬送され、ラビング処理が施される。ラビング装置18は、ラビングローラ20、スプリングでローラステージに固定されたガイドローラ22及びラビングローラに備え付けられた除塵機23より構成されている。このようにして形成された配向膜の表面は、ラビング装置18の下流側に設けられた表面除塵機24により除塵される。 The transparent film 16 is conveyed to a rubbing device 18 and subjected to a rubbing process. The rubbing device 18 includes a rubbing roller 20, a guide roller 22 fixed to a roller stage with a spring, and a dust remover 23 provided on the rubbing roller. The surface of the alignment film thus formed is dedusted by a surface dust remover 24 provided on the downstream side of the rubbing device 18.
 配向膜が形成された透明フィルム16は、駆動ローラにより塗布機26に搬送され、該配向膜上にディスコティックネマチック化合物を含む塗布液が塗布される。塗布層は、例えば、湿潤厚みが50μm以下とすることができる。塗布機26としては、特に制限はないが、公知の塗布装置、例えば各種バーコータ、グラビアコータ、ダイコータ等が使用できる。 The transparent film 16 on which the alignment film is formed is conveyed to a coating machine 26 by a driving roller, and a coating liquid containing a discotic nematic compound is applied onto the alignment film. For example, the coating layer may have a wet thickness of 50 μm or less. Although there is no restriction | limiting in particular as the coating device 26, A well-known coating device, for example, various bar coaters, a gravure coater, a die coater etc. can be used.
 上記塗布層が形成された透明フィルム16は、乾燥装置28において例えば、室温~100℃で乾燥される。ここでは、例えば、残留溶剤が50%以上蒸発し、好ましくは75%以上まで蒸発し、乾燥されることが好ましい。溶剤がある程度蒸発した上記塗布層は、加熱装置30においてディスコティックネマティック相形成温度(液晶形成温度)で所定時間加熱される。これにより、ディスコティックネマティック相を配向させる。 The transparent film 16 on which the coating layer has been formed is dried at room temperature to 100 ° C. in a drying device 28, for example. Here, for example, it is preferable that the residual solvent evaporates by 50% or more, preferably evaporates to 75% or more and is dried. The coating layer in which the solvent has evaporated to some extent is heated in the heating device 30 at a discotic nematic phase formation temperature (liquid crystal formation temperature) for a predetermined time. This orients the discotic nematic phase.
 上記塗布層は、紫外線(UV)ランプ32により紫外線が照射されることにより架橋する。架橋させるためには、液晶性ディスコティック化合物として架橋性官能基を有する液晶性ディスコティック化合物を使用する必要がある。架橋性官能基を持たない液晶性ディスコティック化合物を用いた場合は、この紫外線照射工程は省略され、直ちに冷却される。この場合、ディスコティックネマティック相が冷却中に破壊されないように、冷却は急速に行なう必要がある。 The coating layer is crosslinked by being irradiated with ultraviolet rays from an ultraviolet (UV) lamp 32. In order to crosslink, it is necessary to use a liquid crystalline discotic compound having a crosslinkable functional group as the liquid crystalline discotic compound. When a liquid crystal discotic compound having no crosslinkable functional group is used, this ultraviolet irradiation step is omitted and the liquid crystal is immediately cooled. In this case, the cooling needs to be performed rapidly so that the discotic nematic phase is not destroyed during cooling.
 このようにして塗布層(光学異方性層)が形成された透明フィルム16は、検査装置34により透明フィルム表面の光学特性が測定され、異状がないかどうか検査が行なわれる。次いで、光学異方性層の表面に保護フィルム36がラミネート機38によりラミネートされ、巻き取り装置40に巻き取られる。 The transparent film 16 on which the coating layer (optically anisotropic layer) is formed in this way is measured for optical characteristics on the surface of the transparent film by the inspection device 34 and inspected for any abnormality. Next, the protective film 36 is laminated on the surface of the optically anisotropic layer by a laminating machine 38 and wound up by a winding device 40.
 本実施形態では、一旦巻き取られた配向膜形成用樹脂層を有する巻取フィルムを用いて光学異方性層を形成する例について説明したが、配向膜形成用樹脂層を形成する工程から上記光学補償シートを作成して巻き取るまでの工程を連続的に、一貫生産で行なってもよい。 In the present embodiment, the example in which the optically anisotropic layer is formed using the winding film having the alignment film forming resin layer once wound up has been described. From the step of forming the alignment film forming resin layer, You may perform the process from making an optical compensation sheet to winding up continuously by integrated production.
 ところで、加熱配向させる工程では、光学異方性層用塗布液の塗布層を配向させるために所定の液晶形成温度で加熱する。本発明者らは、この加熱条件を検討する過程において、液体-液晶相転移温度未満のある一定の温度以上において配向性が著しく向上すること、及びこの温度領域では短い加熱時間で所望の配向性が得られることを見出した。 By the way, in the step of heat alignment, heating is performed at a predetermined liquid crystal forming temperature in order to align the coating layer of the coating liquid for the optically anisotropic layer. In the process of studying the heating conditions, the inventors have remarkably improved the orientation at a certain temperature above the liquid-liquid crystal phase transition temperature, and the desired orientation in a short heating time in this temperature range. It was found that can be obtained.
 一方、ディスコティックネマティック化合物は、液体-液晶相転移温度以上では等方相となるため配向性を示さなくなる。このため、塗布液を上記液体-液晶相転移温度未満且つ該液体-液晶相転移温度に極めて近い温度に維持することが好ましい。しかしながら、実際の製造工程では温度のばらつきが生じ易いため、液体-液晶相転移温度未満で限りなく液体-液晶相転移温度に近い高温に維持することは極めて困難である。 On the other hand, since the discotic nematic compound becomes isotropic phase above the liquid-liquid crystal phase transition temperature, it does not show orientation. Therefore, it is preferable to maintain the coating solution at a temperature lower than the liquid-liquid crystal phase transition temperature and very close to the liquid-liquid crystal phase transition temperature. However, since variations in temperature are likely to occur in an actual manufacturing process, it is extremely difficult to maintain the temperature at a high temperature that is not lower than the liquid-liquid crystal phase transition temperature and is close to the liquid-liquid crystal phase transition temperature.
 そこで、本発明では、実際の製造工程における温度ばらつきを考慮した上で、一定の高い配向性が安定して得られる温度範囲を規定する。具体的には、液体-液晶相転移温度をT2(℃)としたとき、液晶形成温度T1(℃)をT2-10≦T1<T2の範囲とし、好ましくはT2-5≦T1<T2の範囲とする。液晶形成温度が(T2-10)℃よりも低いと、一定の高い配向性を得るのに加熱時間が約2倍以上要することとなり、生産性が低下するため好ましくない。 Therefore, in the present invention, a temperature range in which a certain high orientation is stably obtained is defined in consideration of temperature variations in an actual manufacturing process. Specifically, when the liquid-liquid crystal phase transition temperature is T2 (° C.), the liquid crystal formation temperature T1 (° C.) is in the range of T2-10 ≦ T1 <T2, and preferably in the range of T2-5 ≦ T1 <T2. And When the liquid crystal forming temperature is lower than (T2-10) ° C., it is not preferable because it takes about twice or more of the heating time to obtain a certain high orientation, and the productivity is lowered.
 液体-液晶相転移温度は、主に、光学異方性層用塗布液に含まれるネマチック液晶性化合物の種類によって決まるが、該光学異方性層用塗布液の組成にもよる。このため、使用する光学異方性層用塗布液で予め試験することにより液体-液晶相転移温度を求めておく必要がある。 The liquid-liquid crystal phase transition temperature is mainly determined by the type of nematic liquid crystalline compound contained in the coating liquid for the optically anisotropic layer, but also depends on the composition of the coating liquid for the optically anisotropic layer. For this reason, it is necessary to obtain the liquid-liquid crystal phase transition temperature by conducting a test in advance with the coating solution for the optically anisotropic layer to be used.
 液体-液晶相転移温度の測定方法としては、例えば、透明なガラス基板上にディスコティック液晶性化合物を含む光学異方性層用塗布液を所望の膜厚(例えば、5μm)となるようにスピンコートしたサンプル板を、昇温しながら偏光顕微鏡で観察する方法がある。即ち、偏光顕微鏡の観察において、液晶性を示す温度ではサンプル板からの光漏れが生じるのに対し、液体-液晶相転移温度以上ではサンプル板からの光漏れがなくなり、完全に暗い画像となる。この光漏れを生じるか否かの境界となる温度を、液体-液晶相転移温度とすることができる。なお、液体-液晶相転移温度の測定方法は、上記態様に限定されるものではない。 As a method for measuring the liquid-liquid crystal phase transition temperature, for example, a coating solution for an optically anisotropic layer containing a discotic liquid crystalline compound is spun on a transparent glass substrate so as to have a desired film thickness (for example, 5 μm). There is a method of observing the coated sample plate with a polarizing microscope while raising the temperature. That is, in observation with a polarizing microscope, light leakage from the sample plate occurs at a temperature exhibiting liquid crystallinity, whereas light leakage from the sample plate disappears above the liquid-liquid crystal phase transition temperature, resulting in a completely dark image. The temperature that becomes the boundary of whether or not this light leakage occurs can be set as a liquid-liquid crystal phase transition temperature. The method for measuring the liquid-liquid crystal phase transition temperature is not limited to the above embodiment.
 ネマチック液晶の配向性は液晶分子の流動性と関係があり、液体-液晶相転移温度に近づけるほど液晶分子の流動性は高くなる。液晶分子が配向した状態は平衡状態であるため、固体-液晶相転移温度より高く、且つ液体-液晶相転移温度より低い温度に維持することで、いずれは配向性の高い状態にすることができる。 The orientation of the nematic liquid crystal is related to the fluidity of the liquid crystal molecules. The closer the liquid-liquid crystal phase transition temperature is, the higher the fluidity of the liquid crystal molecules is. Since the aligned state of the liquid crystal molecules is in an equilibrium state, it can eventually be brought into a highly oriented state by maintaining it at a temperature higher than the solid-liquid crystal phase transition temperature and lower than the liquid-liquid crystal phase transition temperature. .
 しかし、液晶分子の流動性が低いと配向性が上がるまでに時間を要する。このため、液体-液晶相転移温度に近づけて液晶分子の流動性を高くすることで、配向性が上がるまでに要する時間を短縮することができる。したがって、本願の加熱温度条件は、どのようなネマチック液晶に対しても適用可能である。 However, if the fluidity of the liquid crystal molecules is low, it takes time until the alignment is improved. Therefore, by increasing the fluidity of the liquid crystal molecules close to the liquid-liquid crystal phase transition temperature, the time required for improving the alignment can be shortened. Therefore, the heating temperature condition of the present application can be applied to any nematic liquid crystal.
 次に、本実施形態において上記温度領域の制御を行う加熱装置30について説明する。図2は、加熱装置30の構成の一例を示す概略図である。 Next, the heating device 30 that controls the temperature region in the present embodiment will be described. FIG. 2 is a schematic diagram illustrating an example of the configuration of the heating device 30.
 加熱装置30は、上下が開放された四角なケーシング42で形成されており、主に、複数のパスローラ44にガイドされて走行する透明フィルム16上の光学異方性層用塗布液の塗布層16Aに熱風を吹き付ける吹出部46と、該熱風を排出する排出部48と、が塗布層が形成される側に配置されることにより構成される。加熱装置30の本体は、ケーシング42内が、仕切板49により吹出部46と排出部48とが透明フィルム16の走行方向の上流側と下流側に位置するように区画される。 The heating device 30 is formed of a rectangular casing 42 that is open at the top and bottom, and is mainly coated with a coating liquid 16A for the optically anisotropic layer on the transparent film 16 that runs while being guided by a plurality of pass rollers 44. The blow-out part 46 that blows hot air and the discharge part 48 that discharges the hot air are arranged on the side on which the coating layer is formed. The main body of the heating device 30 is partitioned in the casing 42 such that the blowout portion 46 and the discharge portion 48 are positioned on the upstream side and the downstream side in the traveling direction of the transparent film 16 by the partition plate 49.
 吹出部46の下方には複数の吹出口50が設けられ、図示しない熱風発生器に接続される熱風供給口52には、回転数が変更可能な吹出ファン54が設けられる。一方、排出部48の下方には排出口56が設けられ、上部には回転数が変更可能な排出ファン58が設けられる。吹出ファン54、排出ファン58及び熱風発生器は、加熱装置30を制御するコントローラ60により制御される。なお、熱風供給口52には、エア中の不純物を除去するためのフィルタ53を設けることが好ましい。 A plurality of outlets 50 are provided below the outlet 46, and an outlet fan 54 whose rotation speed can be changed is provided at a hot air supply port 52 connected to a hot air generator (not shown). On the other hand, a discharge port 56 is provided below the discharge unit 48, and a discharge fan 58 whose rotation speed can be changed is provided above. The blower fan 54, the exhaust fan 58, and the hot air generator are controlled by a controller 60 that controls the heating device 30. The hot air supply port 52 is preferably provided with a filter 53 for removing impurities in the air.
 これにより、図示しない熱風発生器から吹出部46内に取り込まれた熱風は、吹出口50から走行する透明フィルム16の塗布層16Aに吹き付けられ、排出口56から排出部48内に取り込まれた後、装置外に排出される。これにより、塗布層16Aに吹き付けられた熱風は、塗布層16Aの表面上を吹出口50側から排出口56側へと透明フィルム16の走行方向に沿った気流を形成する。 Thereby, after the hot air taken into the blow-out part 46 from the hot air generator (not shown) is blown onto the coating layer 16A of the transparent film 16 traveling from the blow-out opening 50 and taken into the discharge part 48 from the discharge port 56. , Discharged outside the device. Thereby, the hot air blown to the coating layer 16A forms an air flow along the traveling direction of the transparent film 16 from the outlet 50 side to the outlet 56 side on the surface of the coating layer 16A.
 この気流において、加熱ムラを抑制する観点から、透明フィルム16の幅方向に生じる風速は1m/秒以下、更には0.8m/秒以下であることが好ましい。走行方向の風速は、20m/秒以下が好ましい。 In this air flow, from the viewpoint of suppressing uneven heating, the wind speed generated in the width direction of the transparent film 16 is preferably 1 m / second or less, more preferably 0.8 m / second or less. The wind speed in the traveling direction is preferably 20 m / second or less.
 吹出口50としては、スリットノズルやスリット板、或いはパンチングメタルのような多孔開口部を有する部材を使用することができる。図3は、吹出口50を示す概略図であり、透明フィルム16の幅方向に長いスリットノズル50Aが透明フィルム16の走行方向に複数配列された例である。吹出口50の幅(L1)が透明フィルム16の幅の1.05倍~2倍の範囲になるようにすることが好ましい。これにより、透明フィルム16の走行方向の気流の風速を、透明フィルム16の幅方向に渡ってほぼ均等にすることができる。 As the outlet 50, a slit nozzle, a slit plate, or a member having a porous opening such as punching metal can be used. FIG. 3 is a schematic view showing the air outlet 50, and is an example in which a plurality of slit nozzles 50 </ b> A that are long in the width direction of the transparent film 16 are arranged in the running direction of the transparent film 16. It is preferable that the width (L1) of the air outlet 50 be in the range of 1.05 to 2 times the width of the transparent film 16. Thereby, the wind speed of the airflow in the traveling direction of the transparent film 16 can be made substantially uniform over the width direction of the transparent film 16.
 また、吹出部46のケーシング42内には温度センサ64が設けられ、塗布層16Aのすぐ上には3次元風速センサ66が配置されている。 Further, a temperature sensor 64 is provided in the casing 42 of the blow-out portion 46, and a three-dimensional wind speed sensor 66 is disposed immediately above the coating layer 16A.
 これにより、塗布層16Aに吹き付けられる熱風温度や吹出し風速は、温度センサ64と、3次元風速センサ66によりモニタリングされ、コントローラ60に入力される。コントローラ60は、モニタリングの結果に基づいて、塗布層16A近傍における熱風の風速及び熱風温度が上記した条件になるように、吹出ファン54及び排出ファン58の回転数、及び熱風発生器の熱風温度をフィードバック制御する。例えば、塗布層16Aの近傍における雰囲気温度が上述した液晶形成温度の範囲内となるように、熱風温度をフィードバック制御する。 Thereby, the hot air temperature and the blown air speed blown to the coating layer 16A are monitored by the temperature sensor 64 and the three-dimensional wind speed sensor 66 and input to the controller 60. Based on the monitoring result, the controller 60 adjusts the rotation speed of the blower fan 54 and the discharge fan 58 and the hot air temperature of the hot air generator so that the wind speed and hot air temperature in the vicinity of the coating layer 16A satisfy the above-described conditions. Feedback control. For example, the hot air temperature is feedback-controlled so that the ambient temperature in the vicinity of the coating layer 16A is within the range of the liquid crystal formation temperature described above.
 風速測定器としては、例えば、(株)カイジョー製三次元超音波風速計(WA-390型)を用いることができる。 As the wind speed measuring device, for example, a three-dimensional ultrasonic anemometer (WA-390 type) manufactured by Kaijo Co., Ltd. can be used.
 液晶形成温度での加熱時間は、透明フィルム16の走行速度を変えることにより調整してもよいし、加熱ゾーンのフィルム走行方向長さを可変にすることにより調整してもよい。このように、加熱ゾーンのフィルム走行方向長さを可変にする加熱装置としては、例えば、図2のような加熱装置30を複数並設し、必要な分だけ稼動させるようにすればよい。或いは、加熱時間を短縮したい場合は、例えば図2において、ケーシング42内の上流側に可動式の仕切板を設置し、該仕切板で吹出部46の吹出口50を所望の領域だけ塞ぐようにすればよい。 The heating time at the liquid crystal forming temperature may be adjusted by changing the traveling speed of the transparent film 16, or may be adjusted by changing the length of the heating zone in the film traveling direction. As described above, as a heating device that makes the film running direction length of the heating zone variable, for example, a plurality of heating devices 30 as shown in FIG. 2 may be arranged in parallel and operated as much as necessary. Alternatively, when it is desired to shorten the heating time, for example, in FIG. 2, a movable partition plate is installed on the upstream side in the casing 42, and the partition plate covers the outlet 50 of the outlet portion 46 only in a desired region. do it.
 なお、本実施形態では、加熱装置30としては上記態様に限定されることはなく、その他の構成の熱風加熱装置でもよいし、ヒータ加熱装置等でもよい。 In the present embodiment, the heating device 30 is not limited to the above-described aspect, and may be a hot air heating device having another configuration, a heater heating device, or the like.
 以上に説明したように、本発明に係る光学補償シートの製造方法によれば、短い加熱時間で一定の高い配向性を安定して得ることができる。このため、生産性を損なうこともなく、製品の品質を維持することができる。また、液晶性化合物の種類や光学異方性層用塗布液の組成が異なる場合でも、本発明を適用することで、高い配向性を安定して得ることができる。 As described above, according to the method for producing an optical compensation sheet according to the present invention, a constant high orientation can be stably obtained in a short heating time. For this reason, the quality of a product can be maintained without impairing productivity. Moreover, even when the kind of liquid crystalline compound and the composition of the coating liquid for the optically anisotropic layer are different, high orientation can be stably obtained by applying the present invention.
 以下、本実施形態で使用される各素材について説明する。 Hereinafter, each material used in this embodiment will be described.
 本実施形態において使用する透明フィルム(配向膜を形成する前のベースとなる透明フィルム)としては、透明な材料であれば特に制限はないが、光透過率が80%以上の透明フィルムを用いることが好ましい。透明フィルムとしては、外力により複屈折が発現しにくいものが好ましい。透明フィルムは、エステル結合あるいはアミド結合のような加水分解できる結合(鹸化処理の対象となる結合)を含む。エステル結合が好ましく、エステル結合がポリマーの側鎖に存在していることがさらに好ましい。エステル結合が側鎖に存在しているポリマーとしては、セルロースエステルが代表的である。セルロースの低級脂肪酸エステルがより好ましく、セルロースアセテートがさらに好ましく、酢化度が59.0~61.5%であるセルロースアセテートが最も好ましい。酢化度とは、セルロース単位質量当たりの結合酢酸量を意味する。酢化度は、ASTM:D-817-91(セルロースアセテート等の試験法)におけるアセチル化度の測定および計算に従う。 The transparent film used in the present embodiment (the transparent film serving as a base before forming the alignment film) is not particularly limited as long as it is a transparent material, but a transparent film having a light transmittance of 80% or more is used. Is preferred. The transparent film is preferably one that does not easily exhibit birefringence due to external force. The transparent film contains a hydrolyzable bond (bond to be saponified) such as an ester bond or an amide bond. An ester bond is preferred, and it is more preferred that the ester bond be present on the side chain of the polymer. A typical example of the polymer having an ester bond in the side chain is a cellulose ester. Lower fatty acid esters of cellulose are more preferable, cellulose acetate is more preferable, and cellulose acetate having an acetylation degree of 59.0 to 61.5% is most preferable. The degree of acetylation means the amount of bound acetic acid per unit mass of cellulose. The degree of acetylation follows the measurement and calculation of the degree of acetylation in ASTM: D-817-91 (test method for cellulose acetate and the like).
 透明フィルムを光学補償シートに用いる場合、透明フィルムは、高いレターデーション値を有することが好ましい。フィルムのReレターデーション値およびRthレターデーション値は、それぞれ、下記式(I)および(II)で定義される。 When a transparent film is used for the optical compensation sheet, the transparent film preferably has a high retardation value. The Re retardation value and Rth retardation value of the film are defined by the following formulas (I) and (II), respectively.
 Re、Rthは下式(R-1)および(R-2)を満足することが好ましい。 Re and Rth preferably satisfy the following formulas (R-1) and (R-2).
 式(R-1):0nm≦Re≦300nm
 式(R-2):10nm≦Rth≦300nm
 より好ましくは下式(R-3)および(R-4)を満足することが好ましい。
Formula (R-1): 0 nm ≦ Re ≦ 300 nm
Formula (R-2): 10 nm ≦ Rth ≦ 300 nm
More preferably, the following formulas (R-3) and (R-4) are satisfied.
 式(R-3):20nm≦Re≦200nm
 式(R-4):20nm≦Rth≦200nm
 なお、ここでいうRe、Rthとは各々面内のレターデーション、厚み方向のレターデーションであり、下記式(R-5)、(R-6)で示される。
Formula (R-3): 20 nm ≦ Re ≦ 200 nm
Formula (R-4): 20 nm ≦ Rth ≦ 200 nm
Here, Re and Rth are in-plane retardation and retardation in the thickness direction, respectively, and are represented by the following formulas (R-5) and (R-6).
 式(R-6):Re=|nx―ny|×d
 式(R-7):Rth={(nx+ny)/2-nz}×d
 (nx、ny,nzはそれぞれ遅相軸、進相軸方向、厚み方向の屈折率、dはフィルム厚み)
 本実施形態における光学異方性層は、透明フィルム16上に直接液晶性化合物から形成するか、もしくは配向膜を介して液晶性化合物から形成する。配向膜は、10μm以下の膜厚を有することが好ましい。配向膜として好ましい例は、特開平8-338913号公報に記載されている。
Formula (R-6): Re = | nx−ny | × d
Formula (R-7): Rth = {(nx + ny) / 2−nz} × d
(Nx, ny, and nz are the slow axis, the fast axis direction, and the refractive index in the thickness direction, respectively, and d is the film thickness)
The optically anisotropic layer in the present embodiment is formed directly from a liquid crystalline compound on the transparent film 16 or from a liquid crystalline compound via an alignment film. The alignment film preferably has a thickness of 10 μm or less. A preferable example of the alignment film is described in JP-A-8-338913.
 光学異方性層は、後述する液晶性化合物の少なくとも一種と、所望により重合性開始剤、フッ素系ポリマー等の添加剤を含有する塗布液(光学異方性層用塗布液)を調製し、該塗布液を配向膜表面に塗布・乾燥することで形成することができる。 The optically anisotropic layer is prepared by preparing a coating liquid (optically anisotropic layer coating liquid) containing at least one liquid crystalline compound described below and additives such as a polymerization initiator and a fluorine-based polymer as required. It can be formed by applying and drying the coating solution on the surface of the alignment film.
 フッ素系化合物としては、従来公知の化合物が挙げられるが、具体的には、例えば特開2001-330725号公報明細書中の段落番号[0028]~[0056]に記載のフッ素系化合物等が挙げられる。 Examples of the fluorine compound include conventionally known compounds. Specific examples include fluorine compounds described in paragraphs [0028] to [0056] of JP-A-2001-330725. It is done.
 塗布液の調製に使用する溶媒としては、有機溶媒が好ましく用いられる。有機溶媒の例には、アミド(例、N,N-ジメチルホルムアミド)、スルホキシド(例、ジメチルスルホキシド)、ヘテロ環化合物(例、ピリジン)、炭化水素(例、ベンゼン、ヘキサン)、アルキルハライド(例、クロロホルム、ジクロロメタン、テトラクロロエタン)、エステル(例、酢酸メチル、酢酸ブチル)、ケトン(例、アセトン、メチルエチルケトン)、エーテル(例、テトラヒドロフラン、1,2-ジメトキシエタン)が含まれる。アルキルハライドおよびケトンが好ましい。2種類以上の有機溶媒を併用してもよい。 As the solvent used for preparing the coating solution, an organic solvent is preferably used. Examples of organic solvents include amides (eg N, N-dimethylformamide), sulfoxides (eg dimethyl sulfoxide), heterocyclic compounds (eg pyridine), hydrocarbons (eg benzene, hexane), alkyl halides (eg , Chloroform, dichloromethane, tetrachloroethane), esters (eg, methyl acetate, butyl acetate), ketones (eg, acetone, methyl ethyl ketone), ethers (eg, tetrahydrofuran, 1,2-dimethoxyethane). Alkyl halides and ketones are preferred. Two or more organic solvents may be used in combination.
 均一性の高い光学補償シートを作製する場合には、前記塗布液の表面張力が25mN/m以下であることが好ましく、22mN/m以下であることが更に好ましい。 When producing a highly uniform optical compensation sheet, the surface tension of the coating solution is preferably 25 mN / m or less, and more preferably 22 mN / m or less.
 ネマチック液晶性化合物としては、例えば、ディスコティック液晶性化合物を使用できる。本実施形態に使用する液晶性化合物としては、ディスコティック液晶性化合物が含まれる。ディスコティック液晶性化合物は、高分子液晶でも低分子液晶でもよい。 As the nematic liquid crystalline compound, for example, a discotic liquid crystalline compound can be used. The liquid crystal compound used in the present embodiment includes a discotic liquid crystal compound. The discotic liquid crystalline compound may be a polymer liquid crystal or a low molecular liquid crystal.
 ディスコティック液晶性化合物には、C.Destradeらの研究報告(Mol.Cryst.71巻、111頁(1981年))に記載されているベンゼン誘導体、C.Destradeらの研究報告(Mol.Cryst.122巻、141頁(1985年)、Physics lett,A,78巻、82頁(1990))に記載されているトルキセン誘導体、B.Kohneらの研究報告(Angew.Chem.96巻、70頁(1984年))に記載されたシクロヘキサン誘導体およびJ.M.Lehnらの研究報告(J.C.S.,Chem.Commun.,1794頁(1985年))、J.Zhangらの研究報告(J.Am.Chem.Soc.116巻、2655頁(1994年))に記載されているアザクラウン系やフェニルアセチレン系マクロサイクルが含まれる。 Discotic liquid crystalline compounds include C.I. Benzene derivatives described in a research report of Destrade et al. (Mol. Cryst. 71, 111 (1981)), C.I. Destrode et al. (Mol. Cryst. 122, 141 (1985), Physics lett, A, 78, 82 (1990)), a truxene derivative described in B. The cyclohexane derivatives described in the research report of Kohne et al. (Angew. Chem. 96, 70 (1984)) and M.M. Lehn et al. (JCS, Chem. Commun., 1794 (1985)), J.C. Azacrown-type and phenylacetylene-type macrocycles described in the research report of Zhang et al. (J. Am. Chem. Soc. 116, 2655 (1994)) are included.
 ディスコティック液晶性化合物としては、例えば、ディスコティック液晶性化合物を使用できる。ディスコティック液晶性化合物としては、分子中心の母核に対して、直鎖のアルキル基、アルコキシ基、置換ベンゾイルオキシ基が母核の側鎖として放射線状に置換した構造の化合物も含まれる。分子または分子の集合体が、回転対称性を有し、一定の配向を付与できる化合物であることが好ましい。ディスコティック液晶性化合物から形成する光学異方性層は、最終的に光学異方性層に含まれる化合物がディスコティック液晶性化合物である必要はなく、例えば、低分子のディスコティック液晶性分子が熱や光で反応する基を有しており、結果的に熱、光で反応により重合または架橋し、高分子量化し液晶性を失った化合物も含まれる。ディスコティック液晶性化合物の好ましい例は、特開平8-50206号公報に記載されている。また、ディスコティック液晶性化合物の重合については、特開平8-27284号公報に記載がある。 As the discotic liquid crystalline compound, for example, a discotic liquid crystalline compound can be used. The discotic liquid crystalline compound also includes a compound having a structure in which a linear alkyl group, an alkoxy group, and a substituted benzoyloxy group are radially substituted as a side chain of the mother nucleus with respect to the mother nucleus at the center of the molecule. The molecule or the assembly of molecules is preferably a compound having rotational symmetry and imparting a certain orientation. The optically anisotropic layer formed from the discotic liquid crystalline compound does not necessarily require that the compound finally contained in the optically anisotropic layer is a discotic liquid crystalline compound. Also included are compounds having a group that reacts with heat or light and, as a result, polymerized or cross-linked by reaction with heat or light, resulting in a high molecular weight and loss of liquid crystallinity. Preferred examples of the discotic liquid crystalline compound are described in JP-A-8-50206. The polymerization of discotic liquid crystalline compounds is described in JP-A-8-27284.
 ディスコティック液晶性化合物を重合により固定するためには、ディスコティック液晶性化合物の円盤状コアに、置換基として重合性基を結合させる必要がある。ただし、円盤状コアに重合性基を直結させると、重合反応において配向状態を保つことが困難になる。そこで、円盤状コアと重合性基との間に、連結基を導入する。従って、重合性基を有するディスコティック液晶性化合物は、下記式(5)で表わされる化合物であることが好ましい。 In order to fix the discotic liquid crystalline compound by polymerization, it is necessary to bond a polymerizable group as a substituent to the discotic core of the discotic liquid crystalline compound. However, when the polymerizable group is directly connected to the disc-shaped core, it becomes difficult to maintain the orientation state in the polymerization reaction. Therefore, a linking group is introduced between the discotic core and the polymerizable group. Therefore, the discotic liquid crystalline compound having a polymerizable group is preferably a compound represented by the following formula (5).
 一般式(5)
 D(-LQ)r
(一般式(5)中、Dは円盤状コアであり、Lは二価の連結基であり、Qは重合性基であり、rは4~12の整数である。)
 円盤状コア(D)の例を以下に示す。以下の各例において、LQ(またはQL)は、二価の連結基(L)と重合性基(Q)との組み合わせを意味する。
General formula (5)
D (-LQ) r
(In the general formula (5), D is a discotic core, L is a divalent linking group, Q is a polymerizable group, and r is an integer of 4 to 12.)
An example of the disk-shaped core (D) is shown below. In each of the following examples, LQ (or QL) means a combination of a divalent linking group (L) and a polymerizable group (Q).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 一般式(5)において、二価の連結基(L)は、アルキレン基、アルケニレン基、アリーレン基、-CO-、-NH-、-O-、-S-およびそれらの組み合わせからなる群より選ばれる二価の連結基であることが好ましい。二価の連結基(L)は、アルキレン基、アリーレン基、-CO-、-NH-、-O-および-S-からなる群より選ばれる二価の基を少なくとも二つ組み合わせた二価の連結基であることがさらに好ましい。二価の連結基(L)は、アルキレン基、アリーレン基、-CO-および-O-からなる群より選ばれる二価の基を少なくとも二つ組み合わせた二価の連結基であることが最も好ましい。アルキレン基の炭素原子数は、1~12であることが好ましい。アルケニレン基の炭素原子数は、2~12であることが好ましい。アリーレン基の炭素原子数は、6~10であることが好ましい。 In the general formula (5), the divalent linking group (L) is selected from the group consisting of an alkylene group, an alkenylene group, an arylene group, —CO—, —NH—, —O—, —S—, and combinations thereof. It is preferable that it is a bivalent coupling group. The divalent linking group (L) is a divalent combination of at least two divalent groups selected from the group consisting of an alkylene group, an arylene group, —CO—, —NH—, —O—, and —S—. More preferably, it is a linking group. The divalent linking group (L) is most preferably a divalent linking group in which at least two divalent groups selected from the group consisting of an alkylene group, an arylene group, —CO— and —O— are combined. . The number of carbon atoms of the alkylene group is preferably 1-12. The alkenylene group preferably has 2 to 12 carbon atoms. The number of carbon atoms in the arylene group is preferably 6-10.
 二価の連結基(L)の例を以下に示す。左側が円盤状コア(D)に結合し、右側が重合性基(Q)に結合する。ALはアルキレン基またはアルケニレン基、ARはアリーレン基を意味する。なお、アルキレン基、アルケニレン基およびアリーレン基は、置換基(例、アルキル基)を有していてもよい。 Examples of the divalent linking group (L) are shown below. The left side is bonded to the discotic core (D), and the right side is bonded to the polymerizable group (Q). AL represents an alkylene group or an alkenylene group, and AR represents an arylene group. The alkylene group, alkenylene group and arylene group may have a substituent (eg, an alkyl group).
  L1:-AL-CO-O-AL-、
  L2:-AL-CO-O-AL-O-、
  L3:-AL-CO-O-AL-O-AL-、
  L4:-AL-CO-O-AL-O-CO-、
  L5:-CO-AR-O-AL-、
  L6:-CO-AR-O-AL-O-、
  L7:-CO-AR-O-AL-O-CO-、
  L8:-CO-NH-AL-、
  L9:-NH-AL-O-、
  L10:-NH-AL-O-CO-、
  L11:-O-AL-、
  L12:-O-AL-O-、
  L13:-O-AL-O-CO-、
  L14:-O-AL-O-CO-NH-AL-、
  L15:-O-AL-S-AL-、
  L16:-O-CO-AL-AR-O-AL-O-CO-、
  L17:-O-CO-AR-O-AL-CO-、
  L18:-O-CO-AR-O-AL-O-CO-、
  L19:-O-CO-AR-O-AL-O-AL-O-CO-、
  L20:-O-CO-AR-O-AL-O-AL-O-AL-O-CO-、
  L21:-S-AL-、
  L22:-S-AL-O-、
  L23:-S-AL-O-CO-、
  L24:-S-AL-S-AL-、
  L25:-S-AR-AL-。
L1: -AL-CO-O-AL-,
L2: -AL-CO-O-AL-O-,
L3: -AL-CO-O-AL-O-AL-,
L4: -AL-CO-O-AL-O-CO-,
L5: -CO-AR-O-AL-,
L6: -CO-AR-O-AL-O-,
L7: -CO-AR-O-AL-O-CO-,
L8: -CO-NH-AL-,
L9: -NH-AL-O-,
L10: —NH—AL—O—CO—,
L11: -O-AL-,
L12: -O-AL-O-,
L13: -O-AL-O-CO-,
L14: -O-AL-O-CO-NH-AL-,
L15: -O-AL-S-AL-,
L16: -O-CO-AL-AR-O-AL-O-CO-
L17: -O-CO-AR-O-AL-CO-,
L18: —O—CO—AR—O—AL—O—CO—,
L19: -O-CO-AR-O-AL-O-AL-O-CO-,
L20: -O-CO-AR-O-AL-O-AL-O-AL-O-CO-,
L21: -S-AL-,
L22: -S-AL-O-,
L23: -S-AL-O-CO-,
L24: -S-AL-S-AL-,
L25: -S-AR-AL-.
 一般式(5)の重合性基(Q)は、重合反応の種類に応じて決定する。重合性基(Q)の例を以下に示す。
Figure JPOXMLDOC01-appb-I000010
The polymerizable group (Q) of the general formula (5) is determined according to the type of polymerization reaction. Examples of the polymerizable group (Q) are shown below.
Figure JPOXMLDOC01-appb-I000010
 重合性基(Q)は、不飽和重合性基(Q1、Q2、Q3、Q7、Q8、Q15、Q16、Q17)またはエポキシ基(Q6、Q18)であることが好ましく、不飽和重合性基であることがさらに好ましく、エチレン性不飽和重合性基(Q1、Q7、Q8、Q15、Q16、Q17)であることが最も好ましい。具体的なrの値は、円盤状コア(D)の種類に応じて決定される。なお、複数のLとQの組み合わせは、異なっていてもよいが、同一であることが好ましい。 The polymerizable group (Q) is preferably an unsaturated polymerizable group (Q1, Q2, Q3, Q7, Q8, Q15, Q16, Q17) or an epoxy group (Q6, Q18). More preferably, it is most preferably an ethylenically unsaturated polymerizable group (Q1, Q7, Q8, Q15, Q16, Q17). A specific value of r is determined according to the type of the disk-shaped core (D). In addition, although the combination of several L and Q may differ, it is preferable that it is the same.
 ハイブリッド配向では、ディスコティック液晶性化合物の長軸(円盤面)と支持体の面との角度、すなわち傾斜角が、光学異方性層の深さ(すなわち、透明支持体に垂直な)方向でかつ偏光膜の面からの距離の増加と共に増加または減少している。角度は、距離の増加と共に増加することが好ましい。さらに、傾斜角の変化としては、連続的増加、連続的減少、間欠的増加、間欠的減少、連続的増加と連続的減少を含む変化、あるいは、増加および減少を含む間欠的変化が可能である。間欠的変化は、厚さ方向の途中で傾斜角が変化しない領域を含んでいる。角度が変化しない領域を含んでいても、全体として増加または減少していればよい。しかしながら、傾斜角は連続的に変化することが好ましい。 In the hybrid alignment, the angle between the major axis (disk surface) of the discotic liquid crystalline compound and the surface of the support, that is, the inclination angle is in the direction of the depth of the optically anisotropic layer (that is, perpendicular to the transparent support). And it increases or decreases as the distance from the plane of the polarizing film increases. The angle preferably increases with increasing distance. Further, the change in the tilt angle can be continuous increase, continuous decrease, intermittent increase, intermittent decrease, change including continuous increase and continuous decrease, or intermittent change including increase and decrease. . The intermittent change includes a region where the inclination angle does not change in the middle of the thickness direction. Even if a region where the angle does not change is included, it may be increased or decreased as a whole. However, it is preferred that the tilt angle changes continuously.
 ディスコティック液晶性化合物の長軸(円盤面)の平均方向(各分子の長軸方向の平均)は、一般にディスコティック液晶性化合物あるいは配向膜の材料を選択することにより、またはラビング処理方法を選択することにより、調整することができる。また、表面側(空気側)のディスコティック液晶性化合物の長軸(円盤面)方向は、一般にディスコティック液晶性化合物あるいはディスコティック液晶性化合物と共に使用する添加剤の種類を選択することにより調整することができる。 The average direction of the major axis (disk surface) of the discotic liquid crystalline compound (average of the major axis direction of each molecule) is generally selected by selecting the discotic liquid crystalline compound or the material of the alignment film, or selecting the rubbing treatment method. By doing so, it can be adjusted. The major axis (disk surface) direction of the discotic liquid crystalline compound on the surface side (air side) is generally adjusted by selecting the type of additive used together with the discotic liquid crystalline compound or the discotic liquid crystalline compound. be able to.
 ディスコティック液晶性化合物と共に使用する添加剤の例としては、可塑剤、界面活性剤、重合性モノマーおよびポリマーなどを挙げることができる。長軸の配向方向の変化の程度も、上記と同様に、液晶性分子と添加剤との選択により調整できる。 Examples of the additive used together with the discotic liquid crystalline compound include a plasticizer, a surfactant, a polymerizable monomer, and a polymer. The degree of change in the orientation direction of the major axis can also be adjusted by selecting liquid crystalline molecules and additives as described above.
 ディスコティック液晶性化合物と共に使用する可塑剤、界面活性剤および重合性モノマーは、ディスコティック液晶性化合物と相溶性を有し、ディスコティック液晶性化合物の傾斜角の変化を与えられるか、あるいは配向を阻害しないことが好ましい。添加成分の中でも重合性モノマー(例、ビニル基、ビニルオキシ基、アクリロイル基およびメタクリロイル基を有する化合物)の添加が好ましい。上記化合物の添加量は、ディスコティック液晶性化合物に対して一般に1~50質量%の範囲にあり、5~30質量%の範囲にあることが好ましい。なお、重合性の反応性官能基数が4以上のモノマーを混合して用いると、配向膜と光学異方性層間の密着性を高めることができる。 The plasticizer, surfactant and polymerizable monomer used together with the discotic liquid crystalline compound are compatible with the discotic liquid crystalline compound, and can change the tilt angle of the discotic liquid crystalline compound or change the orientation. It is preferable not to inhibit. Among the additive components, addition of a polymerizable monomer (eg, a compound having a vinyl group, a vinyloxy group, an acryloyl group and a methacryloyl group) is preferable. The amount of the above compound added is generally in the range of 1 to 50% by mass and preferably in the range of 5 to 30% by mass with respect to the discotic liquid crystalline compound. In addition, when a monomer having 4 or more polymerizable reactive functional groups is mixed and used, adhesion between the alignment film and the optically anisotropic layer can be improved.
 前記光学異方性層は、ディスコティック液晶性化合物とともにポリマーを含有していてもよい。該ポリマーは、ディスコティック液晶性化合物とある程度の相溶性を有し、ディスコティック液晶性化合物に傾斜角の変化を与えられることが好ましい。ポリマーの例としては、セルロースエステルを挙げることができる。セルロースエステルの好ましい例としては、セルロースアセテート、セルロースアセテートプロピオネート、ヒドロキシプロピルセルロースおよびセルロースアセテートブチレートを挙げることができる。ディスコティック液晶性化合物の配向を阻害しないように、上記ポリマーの添加量は、ディスコティック液晶性化合物に対して0.1~10質量%の範囲にあることが好ましく、0.1~8質量%の範囲にあることがより好ましく、0.1~5質量%の範囲にあることがさらに好ましい。 The optically anisotropic layer may contain a polymer together with the discotic liquid crystalline compound. The polymer preferably has a certain degree of compatibility with the discotic liquid crystalline compound and can change the tilt angle of the discotic liquid crystalline compound. A cellulose ester can be mentioned as an example of a polymer. Preferable examples of the cellulose ester include cellulose acetate, cellulose acetate propionate, hydroxypropyl cellulose and cellulose acetate butyrate. In order not to inhibit the orientation of the discotic liquid crystalline compound, the amount of the polymer added is preferably in the range of 0.1 to 10% by mass, preferably 0.1 to 8% by mass with respect to the discotic liquid crystalline compound. More preferably, it is in the range of 0.1 to 5% by mass.
 配向させた液晶性分子を、配向状態を維持して固定することができる。固定化は、重合反応により実施することが好ましい。重合反応には、熱重合開始剤を用いる熱重合反応と光重合開始剤を用いる光重合反応とが含まれる。光重合反応が好ましい。 Aligned liquid crystalline molecules can be fixed while maintaining the alignment state. The immobilization is preferably performed by a polymerization reaction. The polymerization reaction includes a thermal polymerization reaction using a thermal polymerization initiator and a photopolymerization reaction using a photopolymerization initiator. A photopolymerization reaction is preferred.
 光重合開始剤の例には、α-カルボニル化合物(米国特許2367661号、同2367670号の各公報記載)、アシロインエーテル(米国特許2448828号公報記載)、α-炭化水素置換芳香族アシロイン化合物(米国特許2722512号公報記載)、多核キノン化合物(米国特許3046127号、同2951758号の各公報記載)、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせ(米国特許3549367号公報記載)、アクリジンおよびフェナジン化合物(特開昭60-105667号、米国特許4239850号の各公報記載)およびオキサジアゾール化合物(米国特許4212970号公報記載)が含まれる。 Examples of photopolymerization initiators include α-carbonyl compounds (described in US Pat. Nos. 2,367,661 and 2,367,670), acyloin ethers (described in US Pat. No. 2,448,828), α-hydrocarbon substituted aromatic acyloin compounds ( US Pat. No. 2,722,512), polynuclear quinone compounds (described in US Pat. Nos. 3,046,127 and 2,951,758), a combination of triarylimidazole dimer and p-aminophenyl ketone (described in US Pat. No. 3,549,367), Phenazine compounds (described in JP-A-60-105667 and US Pat. No. 4,239,850) and oxadiazole compounds (described in US Pat. No. 4,221,970) are included.
 光重合開始剤の使用量は、塗布液の固形分の0.01~20質量%の範囲にあることが好ましく、0.5~5質量%の範囲にあることがさらに好ましい。 The amount of the photopolymerization initiator used is preferably in the range of 0.01 to 20% by mass, more preferably in the range of 0.5 to 5% by mass, based on the solid content of the coating solution.
 液晶性分子の重合のための光照射は、紫外線を用いることが好ましい。照射エネルギーは、20mJ/cm2~50J/cm2の範囲にあることが好ましく、20mJ/cm2~5000mJ/cm2の範囲にあることがより好ましく、100mJ/cm2~800mJ/cm2の範囲にあることがさらに好ましい。また、光重合反応を促進するため、加熱条件下で光照射を実施してもよい。 It is preferable to use ultraviolet rays for light irradiation for polymerization of liquid crystalline molecules. The irradiation energy is preferably in the range of 20mJ / cm 2 ~ 50J / cm 2, more preferably in the range of 20mJ / cm 2 ~ 5000mJ / cm 2, a range of 100mJ / cm 2 ~ 800mJ / cm 2 More preferably. In order to accelerate the photopolymerization reaction, light irradiation may be performed under heating conditions.
 以下、実施例を挙げて本発明の特徴を更に具体的に説明するが、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
〔実施例A〕
 透明フィルム16としては、幅1000mm、厚さ80μmのトリアセチルセルロース〔フジタック、富士フィルム(株)製〕上に、長鎖アルキル変性ボパール〔MP-203、クラレ(株)製〕の2重量パーセント溶液を所定量塗布した後、乾燥させて配向膜樹脂層を形成したものを使用した。
Hereinafter, the features of the present invention will be described more specifically with reference to examples. However, the scope of the present invention should not be construed as being limited by the specific examples shown below.
[Example A]
As the transparent film 16, a 2 weight percent solution of a long chain alkyl-modified bhopal [MP-203, manufactured by Kuraray Co., Ltd.] on triacetyl cellulose (Fujitack, manufactured by Fuji Film Co., Ltd.) having a width of 1000 mm and a thickness of 80 μm. After applying a predetermined amount, a film formed by drying to form an alignment film resin layer was used.
 配向膜樹脂が形成された透明フィルム16を、30m/分で走行させながら、配向膜樹脂層の表面にラビング処理を行い配向膜を形成した。得られた配向膜上に、下記光学異方性層用塗布液を、#3.2のワイヤーバーを透明フィルム16の走行方向と同じ方向に回転させて、上記ロールフィルムの配向膜面に連続的に塗布した。そして、室温から100℃に連続的に加温して溶媒を乾燥させた後、加熱装置30において、ディスコティック液晶性化合物層にあたる膜面風速がフィルム走行方向に平行に1.5m/秒となるようにし、以下の表1に示す液晶形成温度T1(℃)、所定時間t(秒間)加熱した。これにより、ディスコティック液晶性化合物を配向させた。 While the transparent film 16 on which the alignment film resin was formed was run at 30 m / min, a rubbing treatment was performed on the surface of the alignment film resin layer to form an alignment film. On the obtained alignment film, the coating liquid for optical anisotropic layer below is rotated continuously with the alignment film surface of the roll film by rotating the wire bar # 3.2 in the same direction as the running direction of the transparent film 16. Was applied. And after heating from room temperature to 100 degreeC continuously and drying a solvent, in the heating apparatus 30, the film surface wind speed which hits a discotic liquid crystalline compound layer will be 1.5 m / sec in parallel with a film running direction. Thus, the liquid crystal forming temperature T1 (° C.) shown in Table 1 below was heated for a predetermined time t (seconds). Thereby, the discotic liquid crystalline compound was aligned.
 次に、透明フィルム16上の塗布層に、紫外線照射装置(紫外線ランプ32:出力160W/cm、発光長1.6m)により照度600mWの紫外線を4秒間照射し、架橋反応を進行させ、ディスコティック液晶性化合物をその配向に固定した。その後、室温まで放冷し、光学異方性層を形成した光学補償シートを得た。光学異方性層の厚みは1.3μmであった。 Next, the coating layer on the transparent film 16 is irradiated with ultraviolet rays having an illuminance of 600 mW for 4 seconds by an ultraviolet irradiation device (ultraviolet lamp 32: output 160 W / cm, light emission length 1.6 m), and the crosslinking reaction is allowed to proceed. The liquid crystal compound was fixed to the orientation. Then, it stood to cool to room temperature, and obtained the optical compensation sheet in which the optically anisotropic layer was formed. The thickness of the optically anisotropic layer was 1.3 μm.
 <光学異方性層用塗布液の組成>
 107質量部のメチルエチルケトンに下記組成物を溶解させて塗布液を調製した。
<Composition of coating liquid for optically anisotropic layer>
The following composition was dissolved in 107 parts by mass of methyl ethyl ketone to prepare a coating solution.
 ディスコティック液晶性化合物TE-8:41.01質量部
 エチレンオキサイド変成トリメチロールプロパントリアクリレート(V#360、大阪有機化学(株)製):4.06質量部
 セルロースアセテートブチレート(CAB551-0.2、イーストマンケミカル社製):0.9質量部
 セルロースアセテートブチレート(CAB531-1、イーストマンケミカル社製):0.21質量部
 フルオロ脂肪族基含有ポリマー(メガファックF780、大日本インキ(株)社製):0.14質量部
 光重合開始剤(イルガキュア907、日本チバガイギー(株)製):1.35質量部
 増感剤(カヤキュア-DETX、日本化薬(株)製):0.45質量部
 本実施例では、上記光学異方性層用塗布液の液体-液晶相転移温度は予め以下の方法で求めた。
<液体-液晶相転移温度の測定方法>
 透明なガラス基板上に上記光学異方性層用塗布液を膜厚5μmとなるようにスピンコートし、サンプル板を用意した。このサンプル板を、昇温しながら偏光顕微鏡で観察し、サンプル板からの光漏れを生じるか否かの境界となる温度を、液体-液晶相転移温度とした。本実施例における光学異方性層用塗布液の液晶-液体相転移温度(T2)を測定したところ、140℃であった。
Discotic liquid crystalline compound TE-8: 41.01 parts by mass Ethylene oxide modified trimethylolpropane triacrylate (V # 360, manufactured by Osaka Organic Chemical Co., Ltd.): 4.06 parts by mass Cellulose acetate butyrate (CAB551-0. 2, Eastman Chemical Co., Ltd.): 0.9 parts by mass Cellulose acetate butyrate (CAB531-1, Eastman Chemical Co., Ltd.): 0.21 parts by mass Fluoro aliphatic group-containing polymer (Megafac F780, Dainippon Ink ( Co., Ltd.): 0.14 parts by mass Photopolymerization initiator (Irgacure 907, manufactured by Nippon Ciba Geigy Co., Ltd.): 1.35 parts by mass Sensitizer (Kayacure-DETX, manufactured by Nippon Kayaku Co., Ltd.): 0 .45 parts by mass In this example, the liquid-liquid crystal phase transition temperature of the coating liquid for the optically anisotropic layer is determined in advance by the following method. Asked.
<Measurement method of liquid-liquid crystal phase transition temperature>
The optically anisotropic layer coating solution was spin-coated on a transparent glass substrate to a thickness of 5 μm to prepare a sample plate. This sample plate was observed with a polarizing microscope while raising the temperature, and the temperature at which the light leakage from the sample plate occurred was defined as the liquid-liquid crystal phase transition temperature. The liquid crystal-liquid phase transition temperature (T2) of the coating liquid for optically anisotropic layer in this example was measured and found to be 140 ° C.
 このようにして得られた光学補償シートを所定サイズにサンプリングし、(・・・装置名)を用いて配向性を評価した。即ち、光学補償シートの1mm角内におけるシュリーレン欠陥の数により、以下の3段階で評価した。 The optical compensation sheet thus obtained was sampled to a predetermined size, and the orientation was evaluated using (... apparatus name). That is, the evaluation was made according to the following three stages according to the number of schlieren defects within 1 mm square of the optical compensation sheet.
   ○…1mm角内におけるシュリーレン欠陥の数が15個以下
   △…1mm角内におけるシュリーレン欠陥の数が16個以上
   ×…1mm角内におけるシュリーレン欠陥の数が26個以上
 この結果を表1に示す。
○: The number of schlieren defects within 1 mm square is 15 or less. Δ: The number of schlieren defects within 1 mm square is 16 or more. × ... The number of schlieren defects within 1 mm square is 26 or more.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表1の試験1~4に示すように、液晶形成温度を140℃(液晶-液体相転移温度)に設定すると、上記加熱時間の範囲では配向性を示さないのに対し、試験5~19に示すように、液晶形成温度を140℃未満に設定すると、一定時間以上加熱を行うことで高い配向性を示すことがわかった。 As shown in Tests 1 to 4 in Table 1, when the liquid crystal formation temperature is set to 140 ° C. (liquid crystal-liquid phase transition temperature), the alignment does not show in the above heating time range, whereas in Tests 5 to 19 As shown, it was found that when the liquid crystal formation temperature was set to less than 140 ° C., high orientation was exhibited by heating for a predetermined time or longer.
 特に、液晶形成温度が本発明の温度範囲である130℃、135℃においては、加熱時間を25秒以上としたときに高い配向性が得られ、それ以上加熱時間を増やしてもほとんど変わらないことがわかった。さらに、液晶形成温度が135℃であると、より短時間で良好な配向性が得られることがわかった。これに対し、液晶形成温度が125℃では、一定の配向性を示すのに45秒以上の加熱時間を要するため、生産性が低下することがわかった。 In particular, at 130 ° C and 135 ° C where the liquid crystal forming temperature is the temperature range of the present invention, high orientation is obtained when the heating time is 25 seconds or more, and there is almost no change even if the heating time is further increased. I understood. Furthermore, it has been found that when the liquid crystal forming temperature is 135 ° C., good orientation can be obtained in a shorter time. On the other hand, it was found that when the liquid crystal forming temperature is 125 ° C., a heating time of 45 seconds or more is required to show a certain orientation, and thus productivity is lowered.
 以上より、加熱配向工程において、液晶形成温度T1(℃)を、液晶-液体相転移温度未満且つそれに近い温度領域、即ちT2-10≦T1<T2、好ましくはT2-5≦T1<T2の範囲とすることで、30秒未満の短時間で一定の高い配向性が安定して得られることを確認できた。
〔実施例B〕
 光学異方性層用塗布液の組成において、エチレンオキサイド変成トリメチロールプロパントリアクリレート(V#360、大阪有機化学(株)製)を3.25質量部とした以外は実施例Aと同様に光学補償シートを作製した。この場合の光学異方性層用塗布液の液晶-液体相転移温度(T2)は150℃であった。
From the above, in the heating alignment step, the liquid crystal formation temperature T1 (° C.) is set to a temperature range below and close to the liquid crystal-liquid phase transition temperature, that is, T2-10 ≦ T1 <T2, preferably T2-5 ≦ T1 <T2. As a result, it was confirmed that a constant high orientation was stably obtained in a short time of less than 30 seconds.
[Example B]
Optical composition was the same as in Example A except that the composition of the coating liquid for the optically anisotropic layer was 3.25 parts by mass of ethylene oxide-modified trimethylolpropane triacrylate (V # 360, manufactured by Osaka Organic Chemical Co., Ltd.). A compensation sheet was prepared. In this case, the liquid crystal-liquid phase transition temperature (T2) of the coating solution for the optically anisotropic layer was 150 ° C.
 また、液晶形成温度(T1)、加熱時間(t)を以下の表2のように変えて、光学補償シートの配向性について同様に評価した。この結果を表2に示す。 Further, the orientation of the optical compensation sheet was similarly evaluated by changing the liquid crystal formation temperature (T1) and the heating time (t) as shown in Table 2 below. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
  表2の試験1~5に示すように、液晶形成温度を150℃(液晶-液体相転移温度)に設定すると、上記加熱時間の範囲では配向性を示さないのに対し、試験6~15に示すように、液晶形成温度を150℃未満に設定すると、一定時間以上加熱を行うことで高い配向性を示すことがわかった。 As shown in Tests 1 to 5 in Table 2, when the liquid crystal formation temperature is set to 150 ° C. (liquid crystal-liquid phase transition temperature), the alignment does not show in the above heating time range, whereas in Tests 6 to 15 As shown, it was found that when the liquid crystal formation temperature was set to less than 150 ° C., high orientation was exhibited by heating for a predetermined time or longer.
 特に、液晶形成温度が本発明の温度範囲である140℃においては、加熱時間を25秒以上としたときに配向性が得られ、35秒以上でほぼ一定の高い配向性が得られることがわかった。一方、液晶形成温度が130℃では、一定の配向性を示すのに65秒以上の加熱時間を要し、生産性が低下することがわかった。 In particular, when the liquid crystal forming temperature is 140 ° C., which is the temperature range of the present invention, orientation is obtained when the heating time is 25 seconds or more, and almost constant high orientation is obtained after 35 seconds. It was. On the other hand, it was found that when the liquid crystal forming temperature is 130 ° C., a heating time of 65 seconds or more is required to show a certain orientation, and the productivity is lowered.
 以上より、加熱配向工程において、液晶形成温度T1(℃)を、液晶-液体相転移温度未満且つそれに近い温度領域、即ちT2-10≦T1<T2、好ましくはT2-5≦T1<T2の範囲とすることで、30秒未満の短時間で一定の高い配向性が安定して得られることを確認できた。 From the above, in the heating alignment step, the liquid crystal formation temperature T1 (° C.) is set to a temperature range below and close to the liquid crystal-liquid phase transition temperature, that is, T2-10 ≦ T1 <T2, preferably T2-5 ≦ T1 <T2. As a result, it was confirmed that a constant high orientation was stably obtained in a short time of less than 30 seconds.

Claims (8)

  1.  走行する長尺状フィルムの表面に予め形成された配向膜上に、ネマティック液晶性化合物を含む塗布液を塗布する工程と、該塗布層を乾燥した後、液晶形成温度T1(℃)で加熱することにより前記ネマティック液晶性化合物を配向させる工程と、該配向させた塗布層を重合及び硬化させる工程とを備えた光学補償シートの製造方法において、
     前記液晶形成温度T1(℃)は、前記ネマティック液晶性化合物の液体-液晶相転移温度をT2(℃)としたとき、T2-10≦T1<T2の範囲とし、且つ前記加熱時間を少なくとも25秒維持することを特徴とする光学補償シートの製造方法。
    A step of applying a coating liquid containing a nematic liquid crystalline compound on an alignment film formed in advance on the surface of a traveling long film, and drying the coating layer, followed by heating at a liquid crystal forming temperature T1 (° C.) In the method for producing an optical compensation sheet comprising the steps of orienting the nematic liquid crystalline compound and polymerizing and curing the oriented coating layer,
    The liquid crystal forming temperature T1 (° C.) is in the range of T2-10 ≦ T1 <T2 when the liquid-liquid crystal phase transition temperature of the nematic liquid crystalline compound is T2 (° C.), and the heating time is at least 25 seconds. A method for producing an optical compensation sheet, comprising: maintaining an optical compensation sheet.
  2.  前記液晶形成温度T1(℃)は、T2-5≦T1<T2の範囲とし、且つ前記加熱時間を少なくとも30秒維持することを特徴とする請求項1に記載の光学補償シートの製造方法。 2. The method of manufacturing an optical compensation sheet according to claim 1, wherein the liquid crystal forming temperature T1 (° C.) is in a range of T2-5 ≦ T1 <T2, and the heating time is maintained for at least 30 seconds.
  3.  前記塗布層の湿潤厚みは50μm以下であることを特徴とする請求項1又は2に記載の光学補償シートの製造方法。 The method for producing an optical compensation sheet according to claim 1 or 2, wherein the wet thickness of the coating layer is 50 µm or less.
  4.  前記ネマティック液晶性化合物は、ディスコティック液晶性化合物であることを特徴とする請求項1~3の何れか1項に記載の光学補償シートの製造方法。 The method for producing an optical compensation sheet according to any one of claims 1 to 3, wherein the nematic liquid crystalline compound is a discotic liquid crystalline compound.
  5.  前記配向させる工程は、
     前記長尺状フィルムの前記塗布層の表面に熱風を吹き付け、該吹き付けた同じ面の上流側又は下流側の少なくとも一方側で熱風を排出することにより、前記長尺状フィルムの走行方向に沿った気流を発生させることを特徴とする請求項1~4の何れか1項に記載の光学補償シートの製造方法。
    The step of orienting comprises
    Hot air was blown onto the surface of the coating layer of the long film, and the hot air was discharged on at least one of the upstream side or the downstream side of the same surface on which the blown film was aligned. The method for producing an optical compensation sheet according to any one of claims 1 to 4, wherein an air flow is generated.
  6.  前記塗布層近傍の雰囲気温度を測定する工程と、
     前記測定した結果に基づき、前記雰囲気温度を前記液晶形成温度となるように前記塗布層に吹き付ける熱風温度を制御する工程と、
    を備えたことを特徴とする請求項5に記載の光学補償シートの製造方法。
    Measuring the ambient temperature in the vicinity of the coating layer;
    Based on the measured result, a step of controlling the temperature of hot air sprayed on the coating layer so that the ambient temperature becomes the liquid crystal formation temperature;
    The method for producing an optical compensation sheet according to claim 5, comprising:
  7.  前記長尺状フィルムの走行方向に沿った気流は、風速が20m/秒以下であることを特徴とする請求項5又は6に記載の光学補償シートの製造方法。 The method for producing an optical compensation sheet according to claim 5 or 6, wherein the airflow along the running direction of the long film has a wind speed of 20 m / sec or less.
  8.  請求項1~7の何れか1項に記載の光学補償シートの製造方法により製造したことを特徴とする光学補償シート。 An optical compensation sheet produced by the method for producing an optical compensation sheet according to any one of claims 1 to 7.
PCT/JP2009/052742 2008-02-25 2009-02-18 Method for manufacturing optical compensation sheet and optical compensation sheet WO2009107524A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008043116A JP2009198989A (en) 2008-02-25 2008-02-25 Method for manufacturing optical compensation sheet and optical compensation sheet
JP2008-043116 2008-02-25

Publications (1)

Publication Number Publication Date
WO2009107524A1 true WO2009107524A1 (en) 2009-09-03

Family

ID=41015924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052742 WO2009107524A1 (en) 2008-02-25 2009-02-18 Method for manufacturing optical compensation sheet and optical compensation sheet

Country Status (2)

Country Link
JP (1) JP2009198989A (en)
WO (1) WO2009107524A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11271532A (en) * 1998-03-20 1999-10-08 Nitto Denko Corp Manufacture of liquid crystal element
JP2000298211A (en) * 1999-04-15 2000-10-24 Fuji Photo Film Co Ltd Manufacture of long-size optical compensation sheet
JP2001188125A (en) * 1999-12-28 2001-07-10 Nippon Mitsubishi Oil Corp Phase contrast film
JP2001314799A (en) * 2000-05-12 2001-11-13 Fuji Photo Film Co Ltd Method and device for heat treating of coating film
JP2008026824A (en) * 2006-07-25 2008-02-07 Fujifilm Corp Method of forming optical compensation film, optical compensation film, polarizing plate and liquid crystal display apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11271532A (en) * 1998-03-20 1999-10-08 Nitto Denko Corp Manufacture of liquid crystal element
JP2000298211A (en) * 1999-04-15 2000-10-24 Fuji Photo Film Co Ltd Manufacture of long-size optical compensation sheet
JP2001188125A (en) * 1999-12-28 2001-07-10 Nippon Mitsubishi Oil Corp Phase contrast film
JP2001314799A (en) * 2000-05-12 2001-11-13 Fuji Photo Film Co Ltd Method and device for heat treating of coating film
JP2008026824A (en) * 2006-07-25 2008-02-07 Fujifilm Corp Method of forming optical compensation film, optical compensation film, polarizing plate and liquid crystal display apparatus

Also Published As

Publication number Publication date
JP2009198989A (en) 2009-09-03

Similar Documents

Publication Publication Date Title
US7876502B2 (en) Optical film, polarizing plate and liquid crystal display
JP5087442B2 (en) Optical compensation film manufacturing method and manufacturing apparatus, optical compensation film, polarizing plate, liquid crystal display device
JP3616171B2 (en) Manufacturing method of long optical compensation sheet
JP3554619B2 (en) Manufacturing method of long optical compensation sheet
JP4686301B2 (en) Optical compensation film manufacturing method, optical compensation film, polarizing plate, and liquid crystal display device
JP2000086786A (en) Production of sheet having oriented film and production of long optical compensatory sheet
JP4716036B2 (en) Method for producing optical compensation film
KR101495236B1 (en) Process for producing optical compensation film, optical compensation film, polarizing plate, and liquid crystal display device
WO2009107524A1 (en) Method for manufacturing optical compensation sheet and optical compensation sheet
JP4344566B2 (en) Method for producing optical compensation film
JP2009086379A (en) Optical compensation film, polarizing plate, and liquid crystal display device
JP2009025789A (en) Method for producing optical compensation film, optical compensation film, polarizing plate and liquid crystal display device
JP2007047697A (en) Liquid crystal display device
JP2007057608A (en) Optical compensating film, polarizer using same, and liquid crystal display device
JP2012037906A (en) Manufacturing method of optical compensation film
JP2009222788A (en) Composition for optically anisotropic layer, method of manufacturing optical compensation sheet by using the same, and optical compensation sheet
JP5537009B2 (en) Liquid crystal composition, optically anisotropic film, and retardation plate
KR20060043568A (en) Optical compensation sheet and its manufacturing method
JP4687909B2 (en) Optical film manufacturing method and apparatus
JP4705769B2 (en) Homeotropically aligned liquid crystal film
JP2005202212A (en) Liquid crystal display device and elliptically polarizing plate
JP2005157330A (en) Optical compensation sheet and liquid crystal display
JP2004333720A (en) Method for manufacturing rolled optical compensation film, rolled optical compensation film, polarizing plate, and liquid crystal display device
JP2006259210A (en) Polarizing plate and liquid crystal display
JP4931837B2 (en) Optical compensation film and liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09713954

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09713954

Country of ref document: EP

Kind code of ref document: A1