WO2009107322A1 - Pharmaceutical composition for treatment of cancer - Google Patents

Pharmaceutical composition for treatment of cancer Download PDF

Info

Publication number
WO2009107322A1
WO2009107322A1 PCT/JP2009/000310 JP2009000310W WO2009107322A1 WO 2009107322 A1 WO2009107322 A1 WO 2009107322A1 JP 2009000310 W JP2009000310 W JP 2009000310W WO 2009107322 A1 WO2009107322 A1 WO 2009107322A1
Authority
WO
WIPO (PCT)
Prior art keywords
cancer
dfo
pharmaceutical composition
effect
deferoxamine
Prior art date
Application number
PCT/JP2009/000310
Other languages
French (fr)
Japanese (ja)
Inventor
坂井田功
Original Assignee
国立大学法人山口大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人山口大学 filed Critical 国立大学法人山口大学
Publication of WO2009107322A1 publication Critical patent/WO2009107322A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/243Platinum; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/407Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with other heterocyclic ring systems, e.g. ketorolac, physostigmine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/513Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim having oxo groups directly attached to the heterocyclic ring, e.g. cytosine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/01Hydrolysed proteins; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • the present invention relates to a pharmaceutical composition that can be used as a therapeutic agent for cancer that requires iron ions for growth, and more specifically, has been used as a therapeutic agent for hyperchromatosis.
  • a pharmaceutical composition for the treatment of cancers that require iron ions for growth particularly a composition for the treatment of liver cancers such as hepatocellular carcinoma, comprising deferoxamine, an iron chelator, as an active ingredient It relates to things.
  • Liver cancer is a general term for cancer that occurs in the liver, and is classified into primary liver cancer that occurs when liver cells become cancerous and metastatic liver cancer that results from metastasis of cancer that occurs elsewhere.
  • Hepatocellular carcinoma (HCC) which occurs when hepatocytes become cancerous, accounts for 90% of primary liver cancer, and most hepatocellular cancers are known to occur from chronic hepatitis through cirrhosis. Yes. Onset is common among men in their 50s and 60s, and about 95% of hepatocellular carcinomas are characterized by infection with hepatitis B virus (HBV; 25%) or hepatitis C virus (HCV; 70%). It is.
  • Liver cancer is the fourth most common cancer in Japan and the third highest number of deaths (2004: National Cancer Center statistics). Efforts have been made.
  • the internal treatment is percutaneous ethanol injection (direct injection of pure ethanol into the liver and cancer tissue).
  • Necrosis percutaneous radiocautery therapy (necrosis of cancer tissue by direct irradiation of radio waves), hepatic artery embolization therapy (embedding the hepatic artery and cutting off blood supply to the cancer) Necrosis), chemotherapy by administration of various anticancer agents, and the like, and in fact, treatments combining these as necessary are performed.
  • liver cancer is recognized as an indication for liver cancer in 2007 (insurance coverage) anti-metabolites such as alkylating agents cyclophosphamide and 5-fluorouracil, doxorubicin, mitomycin C, etc.
  • antibiotics and platinum preparations such as cisplatin. Development was anxious.
  • Deferoxamine and some of its derivatives are drugs that have an iron chelating action and are known to be effective against hemochromatosis, a disease in which iron (iron ions) are present in excess in the body ( Patent Documents 1 and 2). Furthermore, a metal chelating agent containing deferoxamine is used for cancer treatment as an apoptosis-inducing compound (Patent Documents 3 and 4), a ribonucleotide reductase inhibitor (Patent Document 5), or an inhibitor of fibrous adhesions (Patent Document 6). The possibility of use is suggested.
  • Patent Document 7 as a result of examining the effects of a cytostatic and deferoxamine on a 6-week-old congenital acute leukemia patient in whom the effect of chemotherapy was not observed and a mouse transplanted with Lewis lung cancer cells, deferoxamine or cell proliferation was examined. When the inhibitor was administered alone, no effect was observed, but it was clarified that a synergistic antiproliferative effect was observed by administering deferoxamine in combination with a cell growth inhibitor.
  • Patent Document 8 several types of established tumor cells (breast cancer, colorectal cancer, erythroleukemia, sarcoma cancer, scaly cancer, testicular cancer, ovarian cancer, and bladder cancer-derived cell lines) are cultured in vitro.
  • an antigen fork preferably a bispecific antibody
  • deferoxamine or cisplatin a bispecific antibody
  • the effect of deferoxamine alone is to obtain an effect of stopping or delaying the growth of cultured cancer cells or an effect of reducing by about 10-20% (317G5-454A12 strain).
  • the effect of deferoxamine is only to increase the effect of the antigen fork by using it together with the antigen fork. It was.
  • Non-patent Document 1 discloses that deferoxamine inhibits and reduces liver damage caused by acetaminophen and pre-tumor lesions in a rat diet model (Cholin-deficient L-amino acid defined diet) even in the rat body.
  • the present invention focuses on deferoxamine as a therapeutic agent for cancer (particularly liver cancer) that requires iron ions for growth, and includes deferoxamine, a derivative thereof, or a salt thereof as an active ingredient.
  • the purpose is to provide a pharmaceutical composition for the treatment of cancer.
  • the present inventor may progress from cirrhosis to liver cancer in patients with hemochromatosis, which is a disease in which iron is excessively deposited in the liver, without treatment. Focusing on the findings, he found that hepatocytes around carcinogenic lesions had excessive iron deposition, whereas hepatic cancer sites (inside liver cancer cells) no longer had excessive iron deposition. . In addition, it is hypothesized that iron is necessary for the growth of hepatoma cells, and deferoxamine, which has an iron chelating effect, is effective as an inhibitor of liver cancer. As a result, the present invention has been completed.
  • the present invention includes (1) deferoxamine (Deferoxamine), a derivative thereof, and a pharmacologically acceptable salt thereof as an active ingredient, and has an iron ion requirement for growth.
  • a pharmaceutical composition for treating cancer (2) a pharmaceutical composition according to (1) above, wherein the cancer requiring iron ion for growth is liver cancer, and (3) the liver
  • the pharmaceutical composition according to (1) or (2) above, which is a hepatocyte cancer, or (4) a pharmacologically acceptable salt is an organic acid salt
  • the pharmaceutical composition according to any one of (1) to (3) above, or (5) the organic acid salt is an organic acid salt having 2 or 1 carbon atoms, 4)
  • the present invention also provides (9) a method for treating cancer having an iron ion requirement for growth, comprising administering the pharmaceutical composition according to any one of (1) to (8) above, 10)
  • the method of the above-mentioned (9), wherein the cancer requiring iron ion for proliferation is liver cancer, or (11) the liver cancer is characterized by hepatocellular carcinoma.
  • the above (9) or (10) relates to the treatment method.
  • the present invention relates to (12) use of the pharmaceutical composition according to any one of (1) to (8) above in the manufacture of a medicament for treating cancer having an iron ion requirement for proliferation,
  • the use according to (12) above, wherein the cancer having an iron ion requirement for proliferation is liver cancer, or (14) the above, wherein the liver cancer is hepatocellular carcinoma ( The use according to 12) or (13).
  • Deferoxamine which is an active ingredient of the present invention, has already been established in safety, such as being used as a hemochromatosis therapeutic drug, and is expected to greatly shorten clinical trials, and far more than existing anticancer drugs. Therefore, it is possible to effectively proceed with treatment without lowering the quality of life (QOL) of the patient. Furthermore, combining with other cancer treatments other than chemotherapy is expected to increase the cancer treatment effect.
  • the effect of deferoxamine (DFO) on Huh-7 cells is shown.
  • the effect of DFO on HepG2 cells is shown.
  • the effect of DFO on HLF cells is shown.
  • the effect of 5-FU on Huh-7 cells is shown.
  • the effect of 5-FU on HepG2 cells is shown.
  • the effect of 5-FU on HLF cells is shown.
  • the effect of ADM on Huh-7 cells is shown.
  • the effect on Huh-7 cells by the combined use of DFO and 5-FU is shown.
  • the effect to HepG2 cell by combined use of DFO and 5-FU is shown.
  • the effect on HLF cells by the combined use of DFO and 5-FU is shown.
  • the effect on Huh-7 cells by the combined use of DFO and ADM is shown.
  • the time-dependent change of the expression level of the tumor marker by DFO processing is shown.
  • the CT image before the treatment in case 1 is shown.
  • the CT image after the treatment in case 1 is shown.
  • the transition of the tumor marker after DFO administration in case 1 is shown.
  • the transition of the tumor marker after DFO administration in case 2 is shown.
  • the transition of the tumor marker after DFO administration in case 3 is shown.
  • the transition of the tumor marker after DFO re-administration in case 3 is shown.
  • the pharmaceutical composition for the treatment of cancer requiring iron ions for growth of the present invention includes at least one of deferoxamine, its derivatives, and pharmacologically acceptable salts as an active ingredient.
  • the deferoxamine is not particularly limited, and the deferoxamine is a deferoxamine-producing strain belonging to the genus Streptomyces, for example, Streptomyces 403 pilosus (stored as JCM4403 in RIKEN and ATCC 19797 in the United States). In addition to being obtained by culturing, it can also be synthesized by the method of Proleg et al. (Helv Chim Acta, 45, 31, 1962).
  • the deferoxamine derivative has any structure as long as it is a compound represented by the following chemical formula (I) and has an inhibitory effect on cancer, particularly liver cancer. There may be.
  • the substituent R1 may be hydrogen or other group, that is, sulfonyl group, oxy group, thio group, sulfinyl group, imino group, oxycarbonyl group, aromatic group, etc. Furthermore, an organic acid, a hydrocarbon chain, or the like may be bonded through these bonds.
  • X represents an adduct such as an organic acid adduct, and the adduct is preferably an organic acid adduct, more preferably an organic acid adduct having 1 or 2 carbon atoms. .
  • the salt of deferoxamine or a derivative thereof is not particularly limited as long as it is a conventional non-toxic acid addition salt that is pharmacologically acceptable, and specifically, an inorganic acid addition salt (for example, hydrochloride, odor) Hydrohalates, sulfates, phosphates, etc.), organic carboxylic acid addition salts or organic sulfonic acid addition salts (eg formate, acetate, trifluoroacetate, maleate, tartrate, methanesulfonate, Examples thereof include benzene sulfonate, p-toluene sulfonate, etc., salts with basic amino acids or acidic amino acids (eg arginine, aspartic acid, glutamic acid, etc.).
  • an inorganic acid addition salt for example, hydrochloride, odor
  • Hydrohalates for example, hydrochloride, odor
  • sulfates for example, hydrochloride, odor
  • sulfates for
  • Deferoxamine mesylate which is a particularly preferred example is shown as the salt of deferoxamine of the present invention in the following chemical formula (II). Deferoxamine mesylate is commercially available as a reagent or pharmaceutical.
  • Cancers that require iron ions for growth are not particularly limited as long as they require iron ions to grow or are affected by excessive deposition of iron or iron ions.
  • precancerous or cancerous for example, liver cancer (hepatocellular carcinoma, cholangiocellular carcinoma), melanoma (melanoma), fibrosarcoma, mucosal sarcoma, liposarcoma, chondrosarcoma, osteogen Sarcoma, chordoma, angiosarcoma, lymphangiosarcoma, lymphatic endothelial sarcoma, synovial tumor, mesothelioma, Ewing tumor, leiomyosarcoma, rhabdomyosarcoma, gastric cancer, esophageal cancer, colon cancer, colon Cancer, rectal cancer, pancreatic cancer, breast cancer, ovarian cancer, prostate cancer, squamous cell cancer, basal cell cancer, adenocarcinoma, sweat gland cancer, sebaceous gland
  • the pharmaceutical composition for the treatment of cancer requiring iron ions for proliferation of the present invention may further contain an anticancer agent or the like as a secondary component, and the anticancer agent includes an existing anticancer agent.
  • an anticancer agent developed in the future, for example, 5-Fluorouracil (5-FU), Adriamycin (ADM), Mitomycin, Cisplatin (Cisplatin), paclitaxel (Paclitaxel), docetaxel (Docetaxel), etoposide (Etoposide), lomustine (Melphalan), mercaptopurine (Mercaptopurine), etc.
  • 5-FU or ADM can be preferably mentioned.
  • deferoxamine mesylate when used in combination with 5-FU or ADM, it is 1/2 to 1/10 of the normal dose for 5-FU, and the normal dose for ADM. Since the effect was recognized even in an amount of 1/10 to 1/100, the effect was obtained by combining the anticancer agent as a secondary component with the main component deferoxamine having an effect as a single agent. It is possible to develop drugs for the treatment of cancer that have a synergistic effect with large side effects.
  • the anticancer agent contained as an accessory component in the pharmaceutical composition for treating cancer that requires iron ions for growth of the present invention is an amount of 1/2 to 1/100 of the amount used as a single agent.
  • the dose of 5-fluorouracil is 600 mg / m 2 or less at a time, preferably 50-300 mg in total, more preferably 240-260 mg in total, and administration of adriamycin
  • the amount is 500 mg / m 2 or less per dose, preferably 50-450 mg / m 2 , more preferably 300-400 mg / m 2.
  • the dose of 5-fluorouracil is The total amount per patient is 600 mg or less, preferably 50-450 mg, more preferably 100-300 mg.
  • the dose of adriamycin is The amount 600 mg / m 2 or less, preferably 50-500 mg / m 2, more preferably 200-300 mg / m 2, the dose of mitomycin is total 60mg or less at a time, preferably 5-50 mg, more preferably It is 10-30 mg, and these anticancer agents are preferably included in combination, and more preferably all three types of anticancer agents are included.
  • the method for treating cancer having an iron ion requirement for growth according to the present invention is not particularly limited as long as it is a therapeutic method for administering the pharmaceutical composition of the present invention
  • the pharmaceutical composition of the present invention includes: Various pharmaceutical compounding ingredients such as usual pharmaceutically acceptable carriers, binders, stabilizers, excipients, diluents, pH buffers, disintegrants, solubilizers, solubilizers, isotonic agents, etc. Can be added and administered.
  • the dosage form of the pharmaceutical composition of the present invention is not particularly limited as long as it is a commonly used dosage form.
  • oral, rectal, intravaginal, parenteral, intramuscular, intraperitoneal, intraarterial can be appropriately selected from administration routes such as subarachnoid, intrabronchial, subcutaneous, intradermal, intravenous, intranasal, buccal, or sublingual. It is preferred to administer the product parenterally in the form of an injection.
  • the pharmaceutical composition for cancer treatment of the present invention may be systemic administration or local administration (local injection) to the affected area, but it may be local administration. preferable.
  • the topical administration means that the therapeutic agent is administered directly to the affected part, that is, the cancerous lesion part, and is not particularly limited to the route, but is preferably transhepatic arterial administration, more preferably transcutaneous.
  • Catheter administration can be mentioned as an example.
  • deferoxamine When using an injection used for systemic administration, deferoxamine is continuously used for 12-24 hours, more preferably 24 hours, depending on the administration route selected from any one of arterial injection, intravenous injection, and subcutaneous injection.
  • deferoxamine in an amount of 10 to 80 mg / kg suspended in 1 to 10 ml (10 ml or less) of an oily contrast medium at a time. months Once, or at appropriate dosing schedule depending on the condition, the form preferably administered by transhepatic arterial pathways.
  • the oil-based contrast agent in the above embodiment is used for the purpose of stagnating deferoxamine, which is the main component, in cancer cells by local administration, and is used in cancer treatment, particularly in embolization treatment of liver cancer.
  • the composition is not particularly limited as long as stagnation is observed, but iodinated poppy oil fatty acid ethyl ester is a suitable example as a commonly used oily contrast agent.
  • the pharmaceutical composition of the present invention can be used in the manufacture of a medicament for the treatment of cancer having an iron ion requirement for proliferation, and in particular, a medicament for the treatment of liver cancer such as hepatocellular carcinoma. It can be suitably used in production.
  • MTT [3- (4,5-Dimethylthiazol-2-yl) -2,5-Diphenylthetrazolium bromide] assay widely used in cultured cell survival experiments was used.
  • the principle of this assay is that MTT is specifically taken up into the mitochondria of living cells and measured by fluorescence at a wavelength of 570 nm.
  • Assay results are expressed as the average of two experiments. Figures 1 to 3 show the results of these experiments.
  • FIG. 1 is a graph showing the effect on Huh-7 cells.
  • the horizontal axis of the graph represents the time (hour) after addition of DFO, and the vertical axis represents the survival rate at each time when the control group is 100.
  • the survival rate decreased in the 5 ⁇ M DFO addition group (- ⁇ -), and further decreased in the 10 ⁇ M DFO addition group (- ⁇ -).
  • the survival rate after 96 hours of the 10 ⁇ M DFO addition group was 24% of the control. Even when 100 ⁇ M (...,%), 500 ⁇ M (...,%), Or 1000 ⁇ M (...,...) DFO was added, the same effect as the addition of 10 ⁇ M was observed. That is, DFO showed an antitumor effect on cultured hepatoma cells in a time-dependent and concentration-dependent manner.
  • FIG. 2 is a diagram showing the effect of DFO on HepG2, the horizontal axis of the graph shows the time after the start of culture (hour), and the vertical axis shows the survival rate at each time when the control group is 100.
  • the survival rate decreased in the 5 ⁇ M DFO addition group (- ⁇ -), and further decreased in the 10 ⁇ M DFO addition group (- ⁇ -).
  • the survival rate after 96 hours in the 100 ⁇ M DFO addition group was 28% of the control.
  • DFO showed a time-dependent and concentration-dependent antitumor effect.
  • FIG. 3 is a diagram showing the effect of DFO on HLF, where the horizontal axis of the graph shows the time after the start of culture (hour), and the vertical axis shows the survival of each time when the control group is 100.
  • the survival rate decreased in the 5 ⁇ M DFO addition group (- ⁇ -), and further decreased in the 10 ⁇ M DFO addition group (- ⁇ -).
  • the survival rate after 96 hours in the 100 ⁇ M DFO addition group was 36% of the control.
  • DFO exhibited a time-dependent and concentration-dependent antitumor effect.
  • FIG. 4 shows the effect of 5-FU on Huh-7 cells.
  • the horizontal axis of the graph is the time after addition of 5-FU, and the vertical axis is relative to the control group (no drug added) as 100.
  • a good survival rate Compared with the control group (- ⁇ -), when 5-FU was added to a concentration of 0.1 ⁇ g / ml (- ⁇ -), almost no effect was seen, and 0.5 ⁇ g / ml (- (2) The effect was small even at 1.0 ⁇ g / ml (... ⁇ ).
  • the survival rate at the addition of 1.0 ⁇ g / ml was 75% of the control.
  • FIG. 5 shows the effect of 5-FU on HepG2 cells.
  • the horizontal axis of the graph shows the time after addition of 5-FU, and the vertical axis shows the relative survival rate when the control group is 100.
  • the control group - ⁇ -
  • the effect was small, and the survival rate after 96 hours was 81 times that of the control.
  • %Met A certain antitumor effect was observed at 0.5 ⁇ g / ml (- ⁇ -) and 1.0 ⁇ g / ml (... ⁇ ).
  • the survival rate at the addition of 1.0 ⁇ g / ml was 43% of the control.
  • FIG. 6 shows the effect of 5-FU on HLF cells.
  • the horizontal axis of the graph shows the time after addition of 5-FU, and the vertical axis shows the relative survival rate when the control group is 100.
  • the control group - ⁇ -
  • the survival rate after 96 hours was 95% of the control.
  • the survival rate after 96 hours is as high as 83% and 79%. From these results, it is widely used as an anticancer agent.
  • 5-FU is not expected to be very effective for hepatocellular carcinoma, and there are cell types with little effect, whereas deferoxamine provided by the present invention can be used as a single agent. It showed excellent antitumor effect exceeding 5-FU, and it was shown that the effect does not vary so much depending on the cell type.
  • FIG. 7 shows the effect of ADM on Huh-7 cells.
  • the horizontal axis of the graph shows the time after addition of ADM, and the vertical axis shows relative survival when the control group is 100.
  • the control group (- ⁇ -)
  • the effect increased, and the survival rate after 96 hours was 40% of the control.
  • 10 ⁇ M a more prominent effect was observed, and the survival rate after 96 hours was 9% of the control.
  • ADM is known as an anticancer agent having a very strong side effect such as myocardial injury and equivalent to 10 ⁇ M. Is a numerical value that should be used as a reference value because it is a clinically impractical number.
  • FIG. 8 is a graph showing the combined effect of DFO and 5-FU on Huh-7 cells.
  • the horizontal axis of the graph represents the time after the addition of each drug (hour), and the vertical axis represents the relative value when the control group is 100.
  • the black bar graph is the control
  • the dark gray is the one with the addition of 5 ⁇ M DFO alone
  • the light gray is the one with the addition of 0.1 ⁇ g / ml 5-FU
  • the white bar graph is the addition of DFO and 5-FU at the same time Is the result of things.
  • the survival after 96 hours was 61% of the control.
  • FIG. 9 is a graph showing the combined effect of DFO and 5-FU on HepG2 cells.
  • the horizontal axis of the graph is the time after the addition of each drug (hour), and the vertical axis is the relative survival when the control group is 100. Indicates the rate.
  • the black bar graph is the control, the dark gray is the one added with 5 ⁇ M DFO alone, the light gray is the one added with 5-FUg0.1 ⁇ g / ml alone, the white bar graph is the one added with DFO and 5-FU at the same time It is a result.
  • the effect similar to Huh-7 cell was seen also in HepG2 cell, and the survival rate after 96 hours was 68% of control.
  • FIG. 10 is a graph showing the combined effect of DFO and 5-FU on HLF cells.
  • the horizontal axis of the graph is the time after the addition of each drug (hour), and the vertical axis is the relative survival when the control group is 100. Indicates the rate.
  • the black bar graph is the control, the dark gray is the one added with 5 ⁇ M DFO alone, the light gray is the one added with 5-FUg0.1 ⁇ g / ml alone, the white bar graph is the one added with DFO and 5-FU at the same time It is a result. HLF cells were less effective than Huh-7 and HepG2 cells, and survival after 96 hours was 79% of controls.
  • FIG. 11 is a graph showing the combined effect of DFO and ADM on Huh-7 cells, where the horizontal axis of the graph is the time after the addition of each drug (hour), and the vertical axis is the relative survival when the control group is 100. Indicates the rate.
  • Black bar graph is a control, dark gray is ADM 10 nM added alone, white is DFO 5 ⁇ M added alone, light gray is DFO 5 ⁇ M and ADM 0.1 nM added simultaneously, lighter
  • the gray color is the result of adding DFO 5 ⁇ M and ADM 1 nM at the same time, and the light gray color is the result of adding DFO 5 ⁇ M and ADM 10 nM at the same time.
  • Huh-7 cells and HepG2 cells cultured by the above method are washed with ice-cooled Phosphate-buffered saline (PBS) and put into a Cell lysis buffer containing 1 mM Phenylmethanesulfonyl fluoride (manufactured by Cell Signaling Technology). Suspended. The cell membrane was crushed with an ultrasonic crusher, and the membrane components were removed by centrifugation to obtain a whole cell protein sample. Mitochondrial protein and cytoplasmic protein were each separated and purified by Mitochondria / cytosol fractionation kit (manufactured by Biovision), and the expression levels of each tumor marker were compared by Western blotting.
  • PBS Phosphate-buffered saline
  • FIG. 12 shows the results of comparison of tumor marker protein expression.
  • the left lane in the figure represents the expression level of each marker in Huh-7 cells (the marker name is shown at the left end), and the right lane represents the expression level of each marker in HepG2 cells.
  • Huh-7 cells there was no change in the expression level of ⁇ -actin as a control, whereas the expression of Cyclin D1, Cyclin D3, cdk4, and p-Rb decreased, whereas the amount of Cytochrome c protein increased. did.
  • Cyclin D1, Cyclin D3, and cdk are proteins related to the cell cycle, and the expression level of these proteins is reduced by the addition of DFO, so DFO suppresses cell growth of cultured hepatoma cells. It was shown that.
  • Cytochrome c is known to increase in cell death, and this result showed that DFO also induced cell death of hepatoma cells. Since p-Rb also decreased with time, it was shown that DFO stopped the cell cycle at the G0 / G1 phase. In HepG2 cells, the expression of CyclinD1, Cyclin D3, cdk4, and p-Rb decreased and Cytochrome c tended to increase in the same manner as Huh-7 cells, supporting the results in Huh-7 cells.
  • HCC hepatocellular carcinoma frequently occurring in the liver
  • TACE transarterial chemoembolization
  • Blood data at the start of treatment were as follows: TP 7.8 g / dl, Alb 2.5 g / dl, FBS 144 mg / dl, BUN 9 mg / dl, Cre 0.64 mg / dl, T.P. Bil 1.3 mg / dl, D.I.
  • the tumor marker data at the start of treatment were as follows: AFP (L3) 36.4 ng / ml (L3 is 0.5% or less normal), PIVKA2 603 AU (normal 40 AU or less) Background liver cirrhosis (B Type) and Child-Pug B (7 points).
  • the administration schedule of the weekly DFO intraarterial administration therapy is as follows: One administration is 24 hours and administration is 1 to 5 administrations per week. 2 weeks is 1 course, and at least 2 courses are repeated, and this course is repeated as appropriate for the cases where the effect can be expected. Effectiveness is determined by tumor markers or diagnostic imaging. Specifically, chemotherapy is performed from a gripper needle punctured in the reservoir port. DFO (deferoxamine mesylate; trade name Desferral; manufactured by Novartis; common in clinical trials) 80 mg / kg or less is adjusted to a total volume of 240 ml with physiological saline and administered with an infusion pump for 24 hours. After completion, heparin Na 5000 units / A is injected to finish.
  • DFO deferoxamine mesylate
  • Desferral manufactured by Novartis; common in clinical trials
  • FIG. 13 is a CT image before treatment.
  • an intrahepatic tumor is observed in the part indicated by the white circle and the black arrow, and in the simple CT images of B and C, the part indicated by the white arrow in the figure. Lung metastases were confirmed.
  • FIG. 14 is a CT image after 3 months from the start of treatment.
  • the tumor marker data at the start of treatment were as follows: AFP (L3) 1.6 ng / ml (L3 is normal at 5% or less), PIVKA2 4942 AU (normal 40 AU or less) Background liver is cirrhosis (C type) And Child-Pugh C (11 points).
  • DFO 50 mg / kg / day 4 times (once 24 hours continuous administration) / week was started.
  • mild appetite decline and mild renal dysfunction were observed without major side effects.
  • the tumor marker PIVKA2 rapidly decreased and normalized after 2 weeks in the second half after a 1-week withdrawal.
  • the transition of the tumor marker is shown in FIG.
  • the horizontal axis of the graph shows the time elapsed from the start of treatment, the vertical axis shows the marker value, and the DFO administration schedule is shown on the graph.
  • the PIVKA2 marker was rapidly decreased by DFO administration. He later died in February 2007 due to a sudden rupture of esophageal varices when he was not treated with DFO.
  • Blood data at the start of treatment were as follows: TP 7.2 g / dl, Alb 3.1 g / dl, BUN 15 mg / dl, Cre 1.05 mg / dl, T.P. Bil 2.0 mg / dl, D.D.
  • FIG. 17 shows the transition of the tumor marker.
  • the horizontal axis of the graph represents the time elapsed from the start of treatment, and the vertical axis represents the marker value.
  • the timing of DFO administration is shown in the upper part of the graph. As shown in the graph, it was clarified that the marker rapidly decreased by administration of DFO.
  • FIG. 18 shows the transition of the tumor marker at the time of DFO re-administration.
  • the horizontal axis of the graph represents the time elapsed from the start of treatment, the vertical axis represents the marker value, and the timing of DFO administration is shown at the top of the graph.
  • the tumor marker rapidly increased when DFO administration was stopped at home temporarily, the number of metastases in the lung increased, the tumor in the liver also increased, and the treatment resumed, but died at the end of April 2007. Survived 1 year and 1 month after DFO administration. Compared to the usual course of no treatment, both hepatic and pulmonary metastases did not increase rapidly, and the growth was slow. Case.
  • liver cancer particularly hepatocellular carcinoma
  • Deferoxamine has already been established as a safe drug for iron overload, which leads to the development of a highly effective liver cancer drug with few side effects.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Disclosed is a pharmaceutical composition which is effective as a therapeutic agent for cancer which requires an iron ion for its expansion, particularly liver cancer. Specifically disclosed is a pharmaceutical composition which comprises, as an active ingredient, deferoxamine which is one of the iron chelating agents that have been used as therapeutic agents for hemochromatosis. The pharmaceutical composition is effective as a therapeutic agent for liver cancer.

Description

がん治療用医薬組成物Pharmaceutical composition for cancer treatment
 本発明は、増殖に鉄イオン要求性のあるがんの治療用薬剤として利用可能な医薬組成物に関し、より詳しくは、これまで鉄沈着過剰症(ヘモクロマトーシス)の治療剤として用いられてきた鉄キレート剤の一種であるデフェロキサミン(Deferoxamine)を有効成分として含む、増殖に鉄イオン要求性のあるがんの治療用医薬組成物、特に、肝細胞がん等の肝がんの治療用医薬組成物等に関する。 The present invention relates to a pharmaceutical composition that can be used as a therapeutic agent for cancer that requires iron ions for growth, and more specifically, has been used as a therapeutic agent for hyperchromatosis. A pharmaceutical composition for the treatment of cancers that require iron ions for growth, particularly a composition for the treatment of liver cancers such as hepatocellular carcinoma, comprising deferoxamine, an iron chelator, as an active ingredient It relates to things.
 肝がんは肝臓に生じるがんを総称し、肝臓の細胞ががん化して起こる原発性肝がんと他の箇所で生じたがんが転移して起こる転移性肝がんに分類される。原発性肝がんの9割を肝細胞ががん化して起こる「肝細胞がん(Hepatocellularcarcinoma;HCC)」が占め、肝細胞がんの多くは慢性肝炎から肝硬変を経て起こることが知られている。発症は50-60代の男性に多く、また肝細胞がんの約95%でB型肝炎ウィルス(HBV;25%)またはC型肝炎ウィルス(HCV;70%)の感染が見られるのが特徴である。 Liver cancer is a general term for cancer that occurs in the liver, and is classified into primary liver cancer that occurs when liver cells become cancerous and metastatic liver cancer that results from metastasis of cancer that occurs elsewhere. . “Hepatocellular carcinoma (HCC)”, which occurs when hepatocytes become cancerous, accounts for 90% of primary liver cancer, and most hepatocellular cancers are known to occur from chronic hepatitis through cirrhosis. Yes. Onset is common among men in their 50s and 60s, and about 95% of hepatocellular carcinomas are characterized by infection with hepatitis B virus (HBV; 25%) or hepatitis C virus (HCV; 70%). It is.
 肝がんは日本におけるがん全体の中で罹患数が4番目、死亡数が3番目に多い(2004年:国立がんセンター統計)極めて重大な疾患であり、その治療のためには様々な努力がなされてきた。治療法には罹患部を切除する外科的治療法と薬剤投与などによる内科的治療法があり、内科的治療法には経皮的エタノール局注療法(直接肝臓に純エタノールを注入しがん組織を壊死させる)、経皮的ラジオ焼灼療法(ラジオ波の直接照射によりがん組織を壊死させる)、肝動脈塞栓療法(肝動脈を塞栓しがんへの血液供給を絶つことでがん細胞を壊死させる)、種々の抗がん剤投与による化学療法などがあって、実際にはこれらを必要に応じ組み合わせた治療が行われている。しかしながら、外科的治療においては切除後に残った肝臓からがんが新たに生じるという問題(特にウィルス感染肝臓で顕著)があり、また内科的治療法もそれぞれ効果は見られるものの未だ十分とは言えず、特に抗がん剤をはじめとする化学療法については、様々な有効物質が報告されているが、他の悪性腫瘍に対する場合の様に対照群を伴って検討されたものがほとんど無く、進行性の肝がんに対する治療法として化学療法は未だ確立されていないのが現状であった。実際、2007年時点で肝がんが適応疾患として認められている(保険適用)抗がん剤は、アルキル化剤のシクロホスファミドや5-フルオロウラシルなどの代謝拮抗薬、ドキソルビシン、マイトマイシンCなどの抗生物質、白金製剤のシスプラチンなどごく限られたものであり、有効的な肝がんの治療法を確立するために、医科学的な根拠に基づいた臨床的に効果のある医薬組成物の開発が切望されていた。 Liver cancer is the fourth most common cancer in Japan and the third highest number of deaths (2004: National Cancer Center statistics). Efforts have been made. There are two types of treatment: surgical treatment to remove the affected area and medical treatment such as drug administration. The internal treatment is percutaneous ethanol injection (direct injection of pure ethanol into the liver and cancer tissue). Necrosis), percutaneous radiocautery therapy (necrosis of cancer tissue by direct irradiation of radio waves), hepatic artery embolization therapy (embedding the hepatic artery and cutting off blood supply to the cancer) Necrosis), chemotherapy by administration of various anticancer agents, and the like, and in fact, treatments combining these as necessary are performed. However, in surgical treatment, there is a problem that cancer newly arises from the liver remaining after resection (particularly in the case of virus-infected liver), and although medical treatment methods are also effective, they are still not sufficient. In particular, various effective substances have been reported for chemotherapy including anticancer agents, but there are few that have been studied with a control group as in the case of other malignant tumors. Chemotherapy has not yet been established as a treatment for liver cancer. In fact, liver cancer is recognized as an indication for liver cancer in 2007 (insurance coverage) anti-metabolites such as alkylating agents cyclophosphamide and 5-fluorouracil, doxorubicin, mitomycin C, etc. In order to establish an effective treatment for liver cancer, there are only a limited number of antibiotics and platinum preparations such as cisplatin. Development was anxious.
 デフェロキサミンやそのいくつかの誘導体は、鉄キレート作用を持つ薬剤であり、身体中に鉄(鉄イオン)が過剰に存在する疾患であるヘモクロマトーシスに対して有効であることが知られている(特許文献1、2)。さらに、デフェロキサミンを含む金属キレート剤が、アポトーシス誘導化合物(特許文献3、4)、リボヌクレオチドレダクターゼ阻害剤(特許文献5)、または、線維性癒着の抑制剤(特許文献6)としてがん治療に利用できる可能性が示唆されている。特許文献7では、化学療法の効果が認められなかった生後6週間の先天性急性白血病患者と、ルイス肺癌細胞移植マウスとに対する、細胞増殖抑制剤及びデフェロキサミンの効果を検討した結果、デフェロキサミン又は細胞増殖抑制剤を単独で投与した場合には効果が認められなかったが、デフェロキサミンと細胞増殖抑制剤とを組み合わせて投与することにより、相乗的な抗増殖作用が認められることを明らかにした。特許文献8は、数種類の株化腫瘍細胞(乳癌、結腸直腸癌、赤白血病、肉腫癌、鱗状癌、睾丸癌、卵巣癌、及び膀胱癌由来の株化細胞)をin vitroで培養し、細胞障害性を有する抗原フォーク(好ましくは二重特異性抗体)と、デフェロキサミン又はシスプラチンとを組み合わせて培養液に添加した時の細胞数の変化を検討した結果、上記抗原フォークの培養細胞に対する細胞傷害作用がデフェロキサミンにより増加することを明らかにしているが、デフェロキサミン単独の効果としては培養癌細胞の増殖を停止または遅らせる効果、或いは10-20%程度減少させる効果(317G5-454A12株)が得られるのみであり、デフェロキサミンの効果はあくまで、前記抗原フォークと併用することで抗原フォークの効果を高めるというものであった。以上のように、デフェロキサミンやその他のキレート剤の、がん治療への有効性に関してはいくつかの研究が行われてきているが、そのほとんどは、培養細胞を用いたin vitroでの実験にすぎず、生体レベルでのデフェロキサミンの作用に関してはほとんど明らかにされていない。また、肝がんに及ぼすデフェロキサミンの影響については、培養細胞レベルにおいても全く明らかにされていない。 Deferoxamine and some of its derivatives are drugs that have an iron chelating action and are known to be effective against hemochromatosis, a disease in which iron (iron ions) are present in excess in the body ( Patent Documents 1 and 2). Furthermore, a metal chelating agent containing deferoxamine is used for cancer treatment as an apoptosis-inducing compound (Patent Documents 3 and 4), a ribonucleotide reductase inhibitor (Patent Document 5), or an inhibitor of fibrous adhesions (Patent Document 6). The possibility of use is suggested. In Patent Document 7, as a result of examining the effects of a cytostatic and deferoxamine on a 6-week-old congenital acute leukemia patient in whom the effect of chemotherapy was not observed and a mouse transplanted with Lewis lung cancer cells, deferoxamine or cell proliferation was examined. When the inhibitor was administered alone, no effect was observed, but it was clarified that a synergistic antiproliferative effect was observed by administering deferoxamine in combination with a cell growth inhibitor. In Patent Document 8, several types of established tumor cells (breast cancer, colorectal cancer, erythroleukemia, sarcoma cancer, scaly cancer, testicular cancer, ovarian cancer, and bladder cancer-derived cell lines) are cultured in vitro. As a result of examining changes in the number of cells when an antigen fork (preferably a bispecific antibody) having a disorder is combined with deferoxamine or cisplatin and added to the culture solution, the cytotoxic effect of the antigen fork on cultured cells However, the effect of deferoxamine alone is to obtain an effect of stopping or delaying the growth of cultured cancer cells or an effect of reducing by about 10-20% (317G5-454A12 strain). Yes, the effect of deferoxamine is only to increase the effect of the antigen fork by using it together with the antigen fork. It was. As described above, several studies have been conducted on the effectiveness of deferoxamine and other chelating agents for cancer treatment, but most of them are in vitro experiments using cultured cells. However, little is known about the action of deferoxamine at the biological level. In addition, the effect of deferoxamine on liver cancer has not been clarified at the level of cultured cells.
 本発明者らは、これまでに内科学的な手法により肝臓細胞及び肝がんの研究を行い、その中で、細胞に酸化ストレス障害を与える薬剤であるTBHP(Tert-butyl hydroperoxide)により誘導される培養肝細胞の細胞死において鉄イオンが必要であること、さらに、その細胞死がデフェロキサミンにより阻害されることを明らかにした(非特許文献1)。また、本発明者らは、デフェロキサミンがラット生体においても、アセトアミノフェンによる肝臓障害やラットダイエットモデル(Cholin-deficient L-amino acid defined diet)での前腫瘍病変を阻害し減少させることを明らかにしてきた(非特許文献2、3)。
特表平7-507288 特公平8-013795 特表2004-532245 特表2005-514322 特表2004-523497 特表2007-504273 特開昭62-223130 特表平8-510116 Sakaida I. et al. 1990. Molecular Pharmacology 37(3): 435-442. Sakaida I. et al. 1995. Scandinavian J. Gastroenterology. 30(1): 61-67. Sakaida I. et al. 1999. Digestive diseases and Sciences. 44(3): 560-569.
The present inventors have so far conducted research on liver cells and liver cancer by means of internal medicine, and among them, induced by TBHP (Tert-butyl hydroperoxide), which is a drug that causes oxidative stress damage to cells. It was clarified that iron ions are necessary for cell death of cultured hepatocytes, and that cell death is inhibited by deferoxamine (Non-patent Document 1). In addition, the present inventors clearly show that deferoxamine inhibits and reduces liver damage caused by acetaminophen and pre-tumor lesions in a rat diet model (Cholin-deficient L-amino acid defined diet) even in the rat body. (Non-Patent Documents 2 and 3).
Special table flat 7-507288 Japanese Patent Fair 8-013795 Special table 2004-532245 Special table 2005-514322 Special table 2004-523497 Special table 2007-504273 JP 62-223130 Special table hei 8-510116 Sakaida I. et al. 1990. Molecular Pharmacology 37 (3): 435-442. Sakaida I. et al. 1995. Scandinavian J. Gastroenterology. 30 (1): 61-67. Sakaida I. et al. 1999. Digestive diseases and Sciences. 44 (3): 560-569.
 上記の現状に鑑み、本発明は、増殖に鉄イオン要求性のあるがん(特に肝がん)の治療薬としてデフェロキサミンに注目し、デフェロキサミン、その誘導体、又はその塩を有効成分として含む、がん治療用医薬組成物等を提供することをその目的とする。 In view of the above situation, the present invention focuses on deferoxamine as a therapeutic agent for cancer (particularly liver cancer) that requires iron ions for growth, and includes deferoxamine, a derivative thereof, or a salt thereof as an active ingredient. The purpose is to provide a pharmaceutical composition for the treatment of cancer.
 上記課題の解決のため、本発明者は、肝臓内に鉄が過剰に沈着する疾患であるヘモクロマトーシスの患者において、加療を行わないと肝硬変から肝がんへと進行する場合があることに着目し、発がん病変周囲の肝細胞には鉄が過剰に沈着しているのに対し、肝がん部位(肝がん細胞内)にはもはや鉄の過剰沈着が認められないという事実を見い出した。さらに、このことから肝がん細胞の増殖には鉄が必要であり、鉄のキレート作用を持つデフェロキサミンが肝がんの抑制剤として有効であるとの仮説を立て、臨床的な治験によりこの仮説を実証することにより本発明を完成するに至った。 In order to solve the above problems, the present inventor may progress from cirrhosis to liver cancer in patients with hemochromatosis, which is a disease in which iron is excessively deposited in the liver, without treatment. Focusing on the findings, he found that hepatocytes around carcinogenic lesions had excessive iron deposition, whereas hepatic cancer sites (inside liver cancer cells) no longer had excessive iron deposition. . In addition, it is hypothesized that iron is necessary for the growth of hepatoma cells, and deferoxamine, which has an iron chelating effect, is effective as an inhibitor of liver cancer. As a result, the present invention has been completed.
 すなわち本発明は、(1)デフェロキサミン(Deferoxamine)、その誘導体、及び薬理学上許容可能なそれらの塩のうち少なくとも1以上を有効成分として含むことを特徴とする、増殖に鉄イオン要求性のあるがんの治療用医薬組成物や、(2)増殖に鉄イオン要求性のあるがんが、肝がんであることを特徴とする上記(1)記載の医薬組成物や、(3)肝がんが、肝細胞がんであることを特徴とする上記(1)又は(2)記載の医薬組成物や、(4)薬理学上許容可能な塩が、有機酸塩であることを特徴とする上記(1)~(3)のいずれかに記載の医薬組成物や、(5)有機酸塩が、炭素数が2又は1の有機酸塩であることを特徴とする上記(1)~(4)のいずれかに記載の医薬組成物や、(6)デフェロキサミンメシル酸塩(Deferoxamine mesilate)であることを特徴とする上記(5)に記載の医薬組成物や、(7)抗がん剤をさらに含むことを特徴とする上記(1)~(6)のいずれかに記載の医薬組成物や、(8)抗がん剤が、5-フルオロウラシル、アドリアマイシン、シスプラチン、及びマイトマイシンから選択される1以上の抗がん剤であることを特徴とする上記(1)~(7)のいずれかに記載の医薬組成物に関する。 That is, the present invention includes (1) deferoxamine (Deferoxamine), a derivative thereof, and a pharmacologically acceptable salt thereof as an active ingredient, and has an iron ion requirement for growth. A pharmaceutical composition for treating cancer, (2) a pharmaceutical composition according to (1) above, wherein the cancer requiring iron ion for growth is liver cancer, and (3) the liver However, the pharmaceutical composition according to (1) or (2) above, which is a hepatocyte cancer, or (4) a pharmacologically acceptable salt is an organic acid salt The pharmaceutical composition according to any one of (1) to (3) above, or (5) the organic acid salt is an organic acid salt having 2 or 1 carbon atoms, 4) The pharmaceutical composition according to any one of (4) and (6) Deferoxamine mesylate (Deferoxamine) mesilate), the pharmaceutical composition according to (5) above, and (7) the anticancer agent further comprising (1) to (6) above (1) to (7), wherein the pharmaceutical composition or (8) the anticancer agent is one or more anticancer agents selected from 5-fluorouracil, adriamycin, cisplatin, and mitomycin The pharmaceutical composition according to any one of the above.
 また本発明は、(9)上記(1)~(8)のいずれかに記載の医薬組成物を投与することを特徴とする、増殖に鉄イオン要求性のあるがんの治療方法や、(10)増殖に鉄イオン要求性のあるがんが、肝がんであることを特徴とする上記(9)記載の治療方法や、(11)肝がんが、肝細胞がんであることを特徴とする上記(9)又は(10)記載の治療方法に関する。 The present invention also provides (9) a method for treating cancer having an iron ion requirement for growth, comprising administering the pharmaceutical composition according to any one of (1) to (8) above, 10) The method of the above-mentioned (9), wherein the cancer requiring iron ion for proliferation is liver cancer, or (11) the liver cancer is characterized by hepatocellular carcinoma. The above (9) or (10) relates to the treatment method.
 さらに本発明は、(12)増殖に鉄イオン要求性のあるがんの治療用医薬品の製造における、上記(1)~(8)のいずれかに記載の医薬組成物の使用や、(13)増殖に鉄イオン要求性のあるがんが、肝がんであることを特徴とする上記(12)記載の使用や、(14)肝がんが、肝細胞がんであることを特徴とする上記(12)又は(13)記載の使用に関する。 Furthermore, the present invention relates to (12) use of the pharmaceutical composition according to any one of (1) to (8) above in the manufacture of a medicament for treating cancer having an iron ion requirement for proliferation, The use according to (12) above, wherein the cancer having an iron ion requirement for proliferation is liver cancer, or (14) the above, wherein the liver cancer is hepatocellular carcinoma ( The use according to 12) or (13).
 本発明を利用することにより、これまで効果的な化学療法が無かった肝がんに対して有効な薬剤を提供することが可能となる。本発明の有効成分であるデフェロキサミンは、ヘモクロマトーシス治療薬として用いられるなど既に安全性が確立されており、臨床治験の大幅な短縮が期待されるほか、既存の抗がん剤に比べてはるかに副作用が小さく、患者さんのQOL(Quality of life)を低下させることなく有効に治療を進めることが可能となる。さらに、化学療法以外のがん治療法と組み合わせる事によって、これまで以上のがん治療効果があげられると期待される。 By using the present invention, it is possible to provide an effective drug for liver cancer for which there has been no effective chemotherapy. Deferoxamine, which is an active ingredient of the present invention, has already been established in safety, such as being used as a hemochromatosis therapeutic drug, and is expected to greatly shorten clinical trials, and far more than existing anticancer drugs. Therefore, it is possible to effectively proceed with treatment without lowering the quality of life (QOL) of the patient. Furthermore, combining with other cancer treatments other than chemotherapy is expected to increase the cancer treatment effect.
デフェロキサミン(DFO)のHuh-7細胞に対する効果を示す。The effect of deferoxamine (DFO) on Huh-7 cells is shown. DFOのHepG2細胞に対する効果を示す。The effect of DFO on HepG2 cells is shown. DFOのHLF細胞に対する効果を示す。The effect of DFO on HLF cells is shown. 5-FUのHuh-7細胞に対する効果を示す。The effect of 5-FU on Huh-7 cells is shown. 5-FUのHepG2細胞に対する効果を示す。The effect of 5-FU on HepG2 cells is shown. 5-FUのHLF細胞に対する効果を示す。The effect of 5-FU on HLF cells is shown. ADMのHuh-7細胞に対する効果を示す。The effect of ADM on Huh-7 cells is shown. DFOと5-FUの併用によるHuh-7細胞への効果を示す。The effect on Huh-7 cells by the combined use of DFO and 5-FU is shown. DFOと5-FUの併用によるHepG2細胞への効果を示す。The effect to HepG2 cell by combined use of DFO and 5-FU is shown. DFOと5-FUの併用によるHLF細胞への効果を示す。The effect on HLF cells by the combined use of DFO and 5-FU is shown. DFOとADMの併用によるHuh-7細胞への効果を示す。The effect on Huh-7 cells by the combined use of DFO and ADM is shown. DFO処理による腫瘍マーカーの発現量の経時変化を示す。The time-dependent change of the expression level of the tumor marker by DFO processing is shown. 症例1における治療前のCT画像を示す。The CT image before the treatment in case 1 is shown. 症例1における治療後のCT画像を示す。The CT image after the treatment in case 1 is shown. 症例1におけるDFO投与後の腫瘍マーカーの推移を示す。The transition of the tumor marker after DFO administration in case 1 is shown. 症例2におけるDFO投与後の腫瘍マーカーの推移を示す。The transition of the tumor marker after DFO administration in case 2 is shown. 症例3におけるDFO投与後の腫瘍マーカーの推移を示す。The transition of the tumor marker after DFO administration in case 3 is shown. 症例3におけるDFO再投与後の腫瘍マーカーの推移を示す。The transition of the tumor marker after DFO re-administration in case 3 is shown.
 本発明の増殖に鉄イオン要求性のあるがんの治療用医薬組成物としては、デフェロキサミン、その誘導体、及び薬理学上許容可能なそれらの塩のうち少なくとも1以上を有効成分として含むものであれば特に制限されるものではなく、前記デフェロキサミンは、ストレプトマイセス属に属するデフェロキサミン生産菌株、例えば、ストレプトマイセス ピロサス(Streptomyces pilosus;理化学研究所ではJCM4403として、米国ではATCC19797として保存されている)を培養することにより得ることができる他、Prolegらの方法(Helv Chim Acta、45, 31, 1962)により合成することも可能である。また、前記デフェロキサミンの誘導体としては、下記化学式(I)で表される化合物であって、且つ、がん抑制、特に肝がんの抑制作用を有するものであればどの様な構造を有するものであってもよい。 The pharmaceutical composition for the treatment of cancer requiring iron ions for growth of the present invention includes at least one of deferoxamine, its derivatives, and pharmacologically acceptable salts as an active ingredient. The deferoxamine is not particularly limited, and the deferoxamine is a deferoxamine-producing strain belonging to the genus Streptomyces, for example, Streptomyces 403 pilosus (stored as JCM4403 in RIKEN and ATCC 19797 in the United States). In addition to being obtained by culturing, it can also be synthesized by the method of Proleg et al. (Helv Chim Acta, 45, 31, 1962). The deferoxamine derivative has any structure as long as it is a compound represented by the following chemical formula (I) and has an inhibitory effect on cancer, particularly liver cancer. There may be.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記化学式(I)において置換基R1は、水素であってもよいし、他の基、すなわちスルホニル基、オキシ基、チオ基、スルフィニル基、イミノ基、オシキカルボニル基、芳香族基等であってもよく、さらにこれらの結合を介して有機酸、炭化水素鎖等が結合していてもよい。また、式中Xは、有機酸付加物等の付加物を示しており、前記付加物は、好ましくは有機酸付加物であり、さらに好ましくは炭素数が1又は2の有機酸付加物である。 In the chemical formula (I), the substituent R1 may be hydrogen or other group, that is, sulfonyl group, oxy group, thio group, sulfinyl group, imino group, oxycarbonyl group, aromatic group, etc. Furthermore, an organic acid, a hydrocarbon chain, or the like may be bonded through these bonds. In the formula, X represents an adduct such as an organic acid adduct, and the adduct is preferably an organic acid adduct, more preferably an organic acid adduct having 1 or 2 carbon atoms. .
 前記デフェロキサミンやその誘導体の塩としては、薬理学上許容可能な慣用の無毒性酸付加塩であれば特に制限されるものではなく、具体的には、無機酸付加塩(例えば、塩酸塩、臭化水素酸塩、硫酸塩、燐酸塩等)、有機カルボン酸付加塩または有機スルホン酸付加塩(例えば、ギ酸塩、酢酸塩、トリフルオロ酢酸塩、マレイン酸塩、酒石酸塩、メタンスルホン酸塩、ベンゼンスルホン酸塩、p-トルエンスルホン酸塩等)、塩基性アミノ酸または酸性アミノ酸との塩(例えばアルギニン、アスパラギン酸、グルタミン酸等)等を例として挙げることができるが、なかでも有機酸付加塩であることが好ましく、炭素数が1または2の有機酸塩であることがより好ましい。下記化学式(II)に、本発明のデフェロキサミンの塩として、特に好ましい例であるデフェロキサミンメシル酸塩を示す。デフェロキサミンメシル酸塩は試薬または医薬品として市販されており入手可能である。 The salt of deferoxamine or a derivative thereof is not particularly limited as long as it is a conventional non-toxic acid addition salt that is pharmacologically acceptable, and specifically, an inorganic acid addition salt (for example, hydrochloride, odor) Hydrohalates, sulfates, phosphates, etc.), organic carboxylic acid addition salts or organic sulfonic acid addition salts (eg formate, acetate, trifluoroacetate, maleate, tartrate, methanesulfonate, Examples thereof include benzene sulfonate, p-toluene sulfonate, etc., salts with basic amino acids or acidic amino acids (eg arginine, aspartic acid, glutamic acid, etc.). It is preferable that it is an organic acid salt having 1 or 2 carbon atoms. Deferoxamine mesylate which is a particularly preferred example is shown as the salt of deferoxamine of the present invention in the following chemical formula (II). Deferoxamine mesylate is commercially available as a reagent or pharmaceutical.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 前記の増殖に鉄イオン要求性のあるがんとしては、増殖するために鉄イオンを必要とするがんや、鉄または鉄イオンの過剰沈着に影響を受けるがんであれば特に制限されるものではなく、前がん状態若しくはがん状態にある、例えば、肝がん(肝細胞がん、胆管細胞がん)、メラノーマ(黒色腫)、繊維肉腫、粘膜肉腫、脂肪肉腫、軟骨肉腫、骨原性肉腫、脊索腫、血管肉腫、リンパ管肉腫、リンパ管内皮肉腫、滑膜腫、中皮腫、ユーイング腫瘍、平滑筋肉腫、横紋筋肉腫、胃がん、食道がん、大腸がん、結腸がん、直腸がん、膵臓がん、乳がん、卵巣がん、前立腺がん、扁平上皮細胞がん、基底細胞がん、腺がん、汗腺がん、皮脂腺がん、乳頭がん、乳頭腺がん、嚢腺がん、骨髄がん、気管支原性がん、腎細胞がん、尿管がん、胆管がん、絨毛がん、精上皮腫、胎生期がん、ウィルムス腫瘍、子宮頚がん、子宮内膜がん、精巣がん、小細胞肺がん、非小細胞肺がん、膀胱がん、上皮がん、神経膠腫、星状細胞腫、骨髄芽種、頭蓋咽頭がん、喉頭がん、舌がん、脳室上衣細胞腫、松果体腫、血管芽細胞腫、聴神経腫瘍、乏突起神経膠腫、髄膜腫、腹膜播腫、奇形腫、神経芽細胞腫、髄芽腫、網膜芽細胞腫、急性骨髄性白血病、急性前骨髄性白血病、慢性骨髄性白血病、急性リンパ性白血病、慢性リンパ性白血病、Hodgkin病、非Hodgkinリンパ腫、成人T細胞白血病リンパ腫、多発性骨髄腫等を好適に挙げることができ、なかでも、肝がんに対して有効である。ここで、肝がんとは肝細胞がん及び胆管細胞がんを含むものであり、本発明の医薬組成物は、下記実施例にも示されるように、肝がんのなかでも特に肝細胞がんに対して有効である。 Cancers that require iron ions for growth are not particularly limited as long as they require iron ions to grow or are affected by excessive deposition of iron or iron ions. Not precancerous or cancerous, for example, liver cancer (hepatocellular carcinoma, cholangiocellular carcinoma), melanoma (melanoma), fibrosarcoma, mucosal sarcoma, liposarcoma, chondrosarcoma, osteogen Sarcoma, chordoma, angiosarcoma, lymphangiosarcoma, lymphatic endothelial sarcoma, synovial tumor, mesothelioma, Ewing tumor, leiomyosarcoma, rhabdomyosarcoma, gastric cancer, esophageal cancer, colon cancer, colon Cancer, rectal cancer, pancreatic cancer, breast cancer, ovarian cancer, prostate cancer, squamous cell cancer, basal cell cancer, adenocarcinoma, sweat gland cancer, sebaceous gland cancer, papillary cancer, papillary gland Cancer, cystadenocarcinoma, bone marrow cancer, bronchogenic cancer, renal cell cancer, ureteral cancer, bile duct cancer Choriocarcinoma, seminoma, fetal cancer, Wilms tumor, cervical cancer, endometrial cancer, testicular cancer, small cell lung cancer, non-small cell lung cancer, bladder cancer, epithelial cancer, glial Tumor, astrocytoma, myeloblast, craniopharyngeal cancer, laryngeal cancer, tongue cancer, ventricular ependymoma, pineal gland tumor, hemangioblastoma, acoustic neuroma, oligodendroglioma, marrow Meningiomas, peritoneal dissemination, teratomas, neuroblastoma, medulloblastoma, retinoblastoma, acute myeloid leukemia, acute promyelocytic leukemia, chronic myelogenous leukemia, acute lymphocytic leukemia, chronic lymphocytic leukemia, Preferred examples include Hodgkin disease, non-Hodgkin lymphoma, adult T-cell leukemia lymphoma, multiple myeloma and the like, and particularly effective against liver cancer. Here, liver cancer includes hepatocellular carcinoma and cholangiocellular carcinoma, and the pharmaceutical composition of the present invention is particularly hepatocyte among liver cancers as shown in the following examples. It is effective against cancer.
 本発明の増殖に鉄イオン要求性のあるがんの治療用医薬組成物は、さらに副成分として抗がん剤等を含んでいてもよく、前記抗がん剤としては、既存の抗がん剤であっても、これから開発される如何なる抗がん剤であってもよいが、例えば、5-フルオロウラシル(5-Fluorouracil;5-FU)、アドリアマイシン(Adriamycin;ADM)、マイトマイシン(Mitomycin)、シスプラチン(Cisplatin)、パクリタキセル(Paclitaxel)、ドセタキセル(Docetaxel)、エトポシド(Etoposide)、ロムスチン(Lomustine)、メルファラン(Melphalan)、メルカプトプリン(Mercaptopurine)等を具体的に挙げることができ、なかでも、5-FU又はADMを好適に挙げることができる。下記実施例に示されるように、デフェロキサミンメシル酸塩と、5-FU又はADMとを併用した場合、5-FUでは通常投与量の1/2から1/10の量、ADMでは通常投与量の1/10から1/100の量であっても効果が認められたことから、単剤で効果を持つ主成分のデフェロキサミンに、さらに副成分として上記抗がん剤を組み合せることにより、効果が大きく副作用の小さいという相乗的な作用を持つがんの治療用薬剤を開発することが可能である。 The pharmaceutical composition for the treatment of cancer requiring iron ions for proliferation of the present invention may further contain an anticancer agent or the like as a secondary component, and the anticancer agent includes an existing anticancer agent. Or any anticancer agent developed in the future, for example, 5-Fluorouracil (5-FU), Adriamycin (ADM), Mitomycin, Cisplatin (Cisplatin), paclitaxel (Paclitaxel), docetaxel (Docetaxel), etoposide (Etoposide), lomustine (Melphalan), mercaptopurine (Mercaptopurine), etc. can be specifically mentioned, among them 5- FU or ADM can be preferably mentioned. As shown in the Examples below, when deferoxamine mesylate is used in combination with 5-FU or ADM, it is 1/2 to 1/10 of the normal dose for 5-FU, and the normal dose for ADM. Since the effect was recognized even in an amount of 1/10 to 1/100, the effect was obtained by combining the anticancer agent as a secondary component with the main component deferoxamine having an effect as a single agent. It is possible to develop drugs for the treatment of cancer that have a synergistic effect with large side effects.
 また、本発明の増殖に鉄イオン要求性のあるがんの治療用医薬組成物に副成分として含まれる抗がん剤は、単剤で用いられる分量の1/2から1/100の量であることが好ましく、例えば、全身投与の場合は、5-フルオロウラシルの投与量は1回につき総量600mg/m以下、好ましくは総量50-300mg、より好ましくは総量240-260mgであり、アドリアマイシンの投与量は、1回につき総量500mg/m以下、好ましくは50-450mg/m、より好ましくは300-400mg/mであり、局所投与の場合は、5-フルオロウラシルの投与量は、1回につき総量600mg以下、好ましくは50-450mg、より好ましくは100-300mgであり、アドリアマイシンの投与量は、1回につき総量600mg/m以下、好ましくは50-500mg/m、より好ましくは200-300mg/mであり、マイトマイシンの投与量は、1回につき総量60mg以下、好ましくは5-50mg、より好ましくは10-30mgであり、これらの抗がん剤が組み合わせて含まれていることが好ましく、3種類の抗がん剤の全てが含まれていることがより好ましい。 In addition, the anticancer agent contained as an accessory component in the pharmaceutical composition for treating cancer that requires iron ions for growth of the present invention is an amount of 1/2 to 1/100 of the amount used as a single agent. For example, in the case of systemic administration, the dose of 5-fluorouracil is 600 mg / m 2 or less at a time, preferably 50-300 mg in total, more preferably 240-260 mg in total, and administration of adriamycin The amount is 500 mg / m 2 or less per dose, preferably 50-450 mg / m 2 , more preferably 300-400 mg / m 2. For topical administration, the dose of 5-fluorouracil is The total amount per patient is 600 mg or less, preferably 50-450 mg, more preferably 100-300 mg. The dose of adriamycin is The amount 600 mg / m 2 or less, preferably 50-500 mg / m 2, more preferably 200-300 mg / m 2, the dose of mitomycin is total 60mg or less at a time, preferably 5-50 mg, more preferably It is 10-30 mg, and these anticancer agents are preferably included in combination, and more preferably all three types of anticancer agents are included.
 本発明の増殖に鉄イオン要求性のあるがんの治療方法としては、上記本発明の医薬組成物を投与する治療方法であれば特に制限されるものではなく、本発明の医薬組成物に、薬学的に許容される通常の担体、結合剤、安定化剤、賦形剤、希釈剤、pH緩衝剤、崩壊剤、可溶化剤、溶解補助剤、等張剤などの各種調剤用配合成分を添加して投与することができる。また、本発明の医薬組成物の投与形態としては、通常用いられる投与形態であれば特に制限されるものではなく、例えば、経口、直腸、膣内、非経口、筋肉内、腹腔内、動脈内、くも膜下、気管支内、皮下、皮内、静脈内、鼻腔内、口腔、又は舌下等の投与経路のなかから適宜選択することができるが、溶液、乳剤、懸濁液等の剤型にしたものを注射の型で非経口的に投与することが好ましい。本発明のがん治療用医薬組成物を注射の型で投与する場合には、全身投与であっても、患部への局所投与(局注)であってもよいが、局所投与であることが好ましい。ここで局所投与とは、患部すなわちがん病変部に直接治療薬を投与するという意味であり、その経路に特段限定されるわけではないが、好ましくは経肝動脈的な投与、より好ましくは経カテーテル的な投与を例として挙げることができる。 The method for treating cancer having an iron ion requirement for growth according to the present invention is not particularly limited as long as it is a therapeutic method for administering the pharmaceutical composition of the present invention, and the pharmaceutical composition of the present invention includes: Various pharmaceutical compounding ingredients such as usual pharmaceutically acceptable carriers, binders, stabilizers, excipients, diluents, pH buffers, disintegrants, solubilizers, solubilizers, isotonic agents, etc. Can be added and administered. The dosage form of the pharmaceutical composition of the present invention is not particularly limited as long as it is a commonly used dosage form. For example, oral, rectal, intravaginal, parenteral, intramuscular, intraperitoneal, intraarterial In addition, it can be appropriately selected from administration routes such as subarachnoid, intrabronchial, subcutaneous, intradermal, intravenous, intranasal, buccal, or sublingual. It is preferred to administer the product parenterally in the form of an injection. When the pharmaceutical composition for cancer treatment of the present invention is administered by injection, it may be systemic administration or local administration (local injection) to the affected area, but it may be local administration. preferable. Here, the topical administration means that the therapeutic agent is administered directly to the affected part, that is, the cancerous lesion part, and is not particularly limited to the route, but is preferably transhepatic arterial administration, more preferably transcutaneous. Catheter administration can be mentioned as an example.
 全身投与に用いられる注射薬を用いる場合には、デフェロキサミンが動脈注射、静脈注射、及び皮下注射のうちいずれか1つより選択される投与経路により、12-24時間、より好ましくは24時間の連続投与を1回とし、1週間に1-5回の割合で、2週間の投与と1週間の非投与(休薬)とを合わせて1クールとし、1回につき10-80mg/kg、さらに好ましくは40-60mg/kgの量にて投与されることが好ましく、また、患部への局所投与(局注)に用いられる注射薬を用いる場合には、好ましくは1-30分(30分以内)、より好ましくは10-15分の患部への局所投与を1回とし、1回につき1-10ml(10ml以下)の油性造影剤に懸濁された10-80mg/kgの量のデフェロキサミンを、数ヶ月に1度、ないし症状に応じた適切な投与スケジュールで、経肝動脈的な経路により投与されることが好ましい形態である。なお、上記態様における油性造影剤は、局所投与により主成分であるデフェロキサミンをがん細胞に停滞させる目的で用いられるものであり、がん治療、特に肝がんの塞栓治療等において、がん細胞への停滞が認められているものであればその組成など特に限定されるものではないが、一般に用いられる油性造影剤としてヨード化ケシ油脂肪酸エチルエステルが好適な例である。さらに上記本発明の医薬組成物は、増殖に鉄イオン要求性のあるがんの治療用医薬品の製造において使用することができ、なかでも、肝細胞がん等の肝がんの治療用医薬品の製造において好適に使用することができる。 When using an injection used for systemic administration, deferoxamine is continuously used for 12-24 hours, more preferably 24 hours, depending on the administration route selected from any one of arterial injection, intravenous injection, and subcutaneous injection. One administration, 1-5 times a week, 2 weeks of administration and 1 week of non-administration (withdrawal) combined into one course, 10-80 mg / kg per dose, more preferably Is preferably administered in an amount of 40-60 mg / kg, and preferably 1-30 minutes (within 30 minutes) when an injection used for local administration (local injection) to the affected area is used. More preferably, 10 to 15 minutes of local administration to the affected area is performed once, and deferoxamine in an amount of 10 to 80 mg / kg suspended in 1 to 10 ml (10 ml or less) of an oily contrast medium at a time. months Once, or at appropriate dosing schedule depending on the condition, the form preferably administered by transhepatic arterial pathways. The oil-based contrast agent in the above embodiment is used for the purpose of stagnating deferoxamine, which is the main component, in cancer cells by local administration, and is used in cancer treatment, particularly in embolization treatment of liver cancer. The composition is not particularly limited as long as stagnation is observed, but iodinated poppy oil fatty acid ethyl ester is a suitable example as a commonly used oily contrast agent. Furthermore, the pharmaceutical composition of the present invention can be used in the manufacture of a medicament for the treatment of cancer having an iron ion requirement for proliferation, and in particular, a medicament for the treatment of liver cancer such as hepatocellular carcinoma. It can be suitably used in production.
 以下に本発明の実施例を示すが、本発明は実施例にのみ限定されるものではない。 Examples of the present invention are shown below, but the present invention is not limited to the examples.
 (安全性に関する基礎的治験)
 最初に、デフェロキサミンの細胞に対する安全性を確認するため、ヒト培養肝細胞を2つの群に分け、片方の群にデフェロキサミンメシル酸塩(ノバルティス社製、商品名デスフェラール;以下、DFOということもある)を50μMの濃度で添加して4日間培養し、細胞の死亡率を無添加群との間で比較した。培養方法はWilliams E培地(Gibco Laboratories社製)に10%子ウシ血清、10IU/mlペニシリン、10μg/mlストレプトマイシン、0.05mg/mlゲンタマイシン、0.02U/mlインシュリンを加えてComplete Williams E培地とし、培養皿1Dishに2×10個の培養肝細胞と3mlの前記培地を加え、37℃、5%CO、95%Room airで培養した。細胞の死亡率はトリパンブルー染色により確認した。この結果、DFO添加群の死亡率が5±2%であったのに対して、無添加群では6±3%(n=3)であり、両者の間に有意な差が見られなかったことから、50μMのデフェロキサミンがヒト培養肝細胞に有害な効果を持たないことが示された。
(Basic safety trials)
First, in order to confirm the safety of deferoxamine to cells, human cultured hepatocytes are divided into two groups, and one group is deferoxamine mesylate (trade name Desferal; hereinafter referred to as DFO). Was added at a concentration of 50 μM and cultured for 4 days, and the cell mortality was compared with the non-added group. The culture method is Williams E medium (Gibco Laboratories) with 10% calf serum, 10 IU / ml penicillin, 10 μg / ml streptomycin, 0.05 mg / ml gentamicin, 0.02 U / ml insulin to form Complete Williams E medium. Then, 2 × 10 5 cultured hepatocytes and 3 ml of the medium were added to the culture dish 1Dish and cultured at 37 ° C., 5% CO 2 , 95% Room Air. Cell mortality was confirmed by trypan blue staining. As a result, the mortality rate in the DFO addition group was 5 ± 2%, whereas in the non-addition group, it was 6 ± 3% (n = 3), and there was no significant difference between the two. This indicates that 50 μM deferoxamine has no harmful effect on cultured human hepatocytes.
 (デフェロキサミンの腫瘍細胞に対する効果)
 3種類の培養肝がん細胞、Huh-7、HepG2、HLFを、10%子ウシ血清と1mMのピルビン酸Naを加えたRPMI1640培地(Gibco Laboratories社製)に培養皿1Dishあたり1×10細胞をまき、実施例1と同じ条件の培養系で培養し、ここにDFOを種々の濃度で添加して抗腫瘍効果を検討した。独立した2回の培養細胞系実験を行い、Cell viability assayを行って無添加の対照群の生存率を100とした際の相対値として求めた。Cell viability assayには培養細胞の生存実験で広く用いられているMTT[3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenylthetrazolium bromide]アッセイを用いた。本アッセイの原理は、生きた細胞のミトコンドリアにMTTが特異的に取り込まれ、それを波長570nmの蛍光により測定するというものである。アッセイ結果は2回の実験の平均値として表す。図1~3に、これらの実験結果を示す。
(Effect of deferoxamine on tumor cells)
Three types of cultured hepatoma cells, Huh-7, HepG2, HLF, RPMI 1640 medium (Gibco Laboratories) supplemented with 10% calf serum and 1 mM Na pyruvate, 1 × 10 6 cells per dish in dish Was cultured in a culture system under the same conditions as in Example 1, and DFO was added thereto at various concentrations to examine the antitumor effect. Two independent cell culture experiments were performed, and the cell viability assay was performed to determine the relative value when the survival rate of the control group without addition was defined as 100. For the cell viability assay, MTT [3- (4,5-Dimethylthiazol-2-yl) -2,5-Diphenylthetrazolium bromide] assay widely used in cultured cell survival experiments was used. The principle of this assay is that MTT is specifically taken up into the mitochondria of living cells and measured by fluorescence at a wavelength of 570 nm. Assay results are expressed as the average of two experiments. Figures 1 to 3 show the results of these experiments.
 図1はHuh-7細胞に対する効果を示す図であり、グラフ横軸はDFO添加後の時間(hour)を、縦軸は対照群を100としたときの各時間における生存率を示している。対照群(―●―)と比較して、5μM DFO添加群(―▲―)では生存率が低下しており、10μM DFO添加群(―■―)ではさらに低下していた。10μM DFO添加群の96時間後の生存率は対照の24%であった。100μM(…○…)、500μM(…△…)、1000μM(…□…)のDFOを添加した場合でも、10μM添加と同様の効果が見られた。すなわちDFOは、時間依存的・濃度依存的に培養肝がん細胞への抗腫瘍効果を示した。 FIG. 1 is a graph showing the effect on Huh-7 cells. The horizontal axis of the graph represents the time (hour) after addition of DFO, and the vertical axis represents the survival rate at each time when the control group is 100. Compared with the control group (-●-), the survival rate decreased in the 5 μM DFO addition group (-▲-), and further decreased in the 10 μM DFO addition group (-■-). The survival rate after 96 hours of the 10 μM DFO addition group was 24% of the control. Even when 100 μM (...,...), 500 μM (...,...), Or 1000 μM (...,...) DFO was added, the same effect as the addition of 10 μM was observed. That is, DFO showed an antitumor effect on cultured hepatoma cells in a time-dependent and concentration-dependent manner.
 図2は、HepG2に対するDFOの効果を示す図であり、グラフ横軸は培養開始後の時間(hour)を、縦軸は対照群を100としたときの各時間の生存率を示している。対照群(―●―)と比較して、5μM DFO添加群(―▲―)では生存率が低下しており、10μM DFO添加群(―■―)ではさらに低下していた。100μM(…○…)、500μM(…△…)、1000μM(…□…)のDFOを添加した場合でも、10μM添加と同様の効果が見られた。100μM DFO添加群のでの96時間後の生存率は対照の28%であった。HepG2細胞に対しても、DFOは時間依存的・濃度依存的な抗腫瘍効果を示した。 FIG. 2 is a diagram showing the effect of DFO on HepG2, the horizontal axis of the graph shows the time after the start of culture (hour), and the vertical axis shows the survival rate at each time when the control group is 100. Compared with the control group (-●-), the survival rate decreased in the 5 μM DFO addition group (-▲-), and further decreased in the 10 μM DFO addition group (-■-). Even when 100 μM (...,...), 500 μM (...,...), Or 1000 μM (...,...) DFO was added, the same effect as that with 10 μM was observed. The survival rate after 96 hours in the 100 μM DFO addition group was 28% of the control. Also for HepG2 cells, DFO showed a time-dependent and concentration-dependent antitumor effect.
 図3は、HLFに対するDFOの効果を示す図であり、グラフ横軸は培養開始後の時間(hour)を、縦軸は対照群を100としたときの各時間の生存を示している。対照群(―●―)と比較して、5μM DFO添加群(―▲―)では生存率が低下しており、10μM DFO添加群(―■―)ではさらに低下していた。100μM(…○…)、500μM(…△…)、1000μM(…□…)のDFOを添加した場合でも、10μM添加と同様の効果が見られた。100μM DFO添加群での96時間後の生存率は対照の36%であった。HLF細胞に対しても、DFOは時間依存的・濃度依存的な抗腫瘍効果を示した。 FIG. 3 is a diagram showing the effect of DFO on HLF, where the horizontal axis of the graph shows the time after the start of culture (hour), and the vertical axis shows the survival of each time when the control group is 100. Compared with the control group (-●-), the survival rate decreased in the 5 μM DFO addition group (-▲-), and further decreased in the 10 μM DFO addition group (-■-). Even when 100 μM (...,...), 500 μM (...,...), Or 1000 μM (...,...) DFO was added, the same effect as the addition of 10 μM was observed. The survival rate after 96 hours in the 100 μM DFO addition group was 36% of the control. Also for HLF cells, DFO exhibited a time-dependent and concentration-dependent antitumor effect.
 (デフェロキサミンと他種薬剤との併用の検討)
 既存の抗腫瘍剤として広く用いられている5-フルオロウラシル(5-FU)及びアドリアマイシン(ADM)について、DFOとの組合せによる効果を検証した。検証に先立ち、培養肝がん細胞に対して5-FU及びADMの単独で添加し、その効果を調べた。培養細胞系実験は実施例2に記載の方法で行い、値は2回の独立した培養細胞系実験の平均値として算出した。図4~6は5-FUの結果を、図7はADMの結果をそれぞれ表す。
(Examination of combined use of deferoxamine and other drugs)
For 5-fluorouracil (5-FU) and adriamycin (ADM), which are widely used as existing antitumor agents, the effect of combination with DFO was verified. Prior to verification, 5-FU and ADM were added alone to cultured hepatoma cells, and the effects were examined. The cultured cell line experiment was performed by the method described in Example 2, and the value was calculated as an average value of two independent cultured cell line experiments. 4 to 6 show the 5-FU results, and FIG. 7 shows the ADM results.
 図4はHuh-7細胞に対する5-FUの効果を示すものであり、グラフ横軸は5-FU添加後の時間を、縦軸は対照群(薬剤無添加)を100としたときの相対的な生存率を示す。対照群(―●―)と比較して、5-FUを0.1μg/mlの濃度になるように添加した場合(―▲―)ではほとんど効果が見られず、0.5μg/ml(―■―)、1.0μg/ml(…○…)でもその効果は小さかった。1.0μg/ml添加での生存率は、対照の75%であった。 FIG. 4 shows the effect of 5-FU on Huh-7 cells. The horizontal axis of the graph is the time after addition of 5-FU, and the vertical axis is relative to the control group (no drug added) as 100. A good survival rate. Compared with the control group (-●-), when 5-FU was added to a concentration of 0.1 µg / ml (-▲-), almost no effect was seen, and 0.5 µg / ml (- (2) The effect was small even at 1.0 μg / ml (... ○ ...). The survival rate at the addition of 1.0 μg / ml was 75% of the control.
 図5はHepG2細胞に対する5-FUの効果を示すものであり、グラフ横軸は5-FU添加後の時間を、縦軸は対照群を100としたときの相対的な生存率を示す。対照群(―●―)と比較して、5-FUを0.1μg/mlの濃度になるように添加した場合(―▲―)では効果が小さく、96時間後の生存率は対照の81%であった。0.5μg/ml(―■―)、1.0μg/ml(…○…)では一定の抗腫瘍効果が見られた。1.0μg/ml添加での生存率は、対照の43%であった。 FIG. 5 shows the effect of 5-FU on HepG2 cells. The horizontal axis of the graph shows the time after addition of 5-FU, and the vertical axis shows the relative survival rate when the control group is 100. Compared with the control group (-●-), when 5-FU was added to a concentration of 0.1 µg / ml (-▲-), the effect was small, and the survival rate after 96 hours was 81 times that of the control. %Met. A certain antitumor effect was observed at 0.5 μg / ml (-■-) and 1.0 μg / ml (... ○ ...). The survival rate at the addition of 1.0 μg / ml was 43% of the control.
 図6はHLF細胞に対する5-FUの効果を示すものであり、グラフ横軸は5-FU添加後の時間を、縦軸は対照群を100としたときの相対的な生存率を示す。Huh-7、HepG2細胞と比べても、対照群(―●―)との間で5-FUの明瞭な効果は見られなかった。0.1μg/mlの濃度になるように添加した場合(―▲―)では96時間後の生存率は対照の95%であった。0.5μg/ml(―■―)、1.0μg/ml(…○…)でも96時間後の生存率は83%、79%と高く、これらの結果から、広く抗がん剤として利用されている5-FUも肝細胞がんにはあまり効果が望めず、しかもほとんど効果の見られない細胞種も存在すること、それに対して本発明の提供するデフェロキサミンは単剤として使用した場合にも5-FUを越える優れた抗腫瘍効果を示し、その効果は細胞種によってもそれほど変動しないという事が示された。 FIG. 6 shows the effect of 5-FU on HLF cells. The horizontal axis of the graph shows the time after addition of 5-FU, and the vertical axis shows the relative survival rate when the control group is 100. Even when compared with Huh-7 and HepG2 cells, no clear effect of 5-FU was observed with the control group (-●-). When added to a concentration of 0.1 μg / ml (-▲-), the survival rate after 96 hours was 95% of the control. Even at 0.5 μg / ml (-■-) and 1.0 μg / ml (... ○ ...), the survival rate after 96 hours is as high as 83% and 79%. From these results, it is widely used as an anticancer agent. 5-FU is not expected to be very effective for hepatocellular carcinoma, and there are cell types with little effect, whereas deferoxamine provided by the present invention can be used as a single agent. It showed excellent antitumor effect exceeding 5-FU, and it was shown that the effect does not vary so much depending on the cell type.
 図7は、Huh-7細胞に対するADMの効果を示すものであり、グラフ横軸はADM添加後の時間を、縦軸は対照群を100としたときの相対的な生存を示す。対照群(―●―)と比較して、10nMの濃度で添加した場合(―▲―)ではほとんど効果が見られないものの、100nM(―■―)では一定の効果が見られ、さらに1μM(…○…)ではその効果が増大し、96時間後の生存率は対照の40%であった。10μMではより顕著な効果が見られ、96時間後の生存率は対照の9%であったが、ADMは非常に強い心筋障害などの副作用を持つ抗がん剤として知られており、10μM相当の投与は臨床的に見て現実的でない数字であるため、参考値とすべき数値である。 FIG. 7 shows the effect of ADM on Huh-7 cells. The horizontal axis of the graph shows the time after addition of ADM, and the vertical axis shows relative survival when the control group is 100. Compared to the control group (-●-), when added at a concentration of 10 nM (-▲-), almost no effect is seen, but at 100 nM (-■-), a certain effect is seen, and further 1 μM ( ... ○ ...), the effect increased, and the survival rate after 96 hours was 40% of the control. At 10 μM, a more prominent effect was observed, and the survival rate after 96 hours was 9% of the control. However, ADM is known as an anticancer agent having a very strong side effect such as myocardial injury and equivalent to 10 μM. Is a numerical value that should be used as a reference value because it is a clinically impractical number.
 DFO、5-FU、及びADM単剤での添加実験の結果から、併用での効果を検証するために単剤では効果の見られなかった濃度、すなわち5-FUの濃度0.1μg/ml、ADMの濃度10nMの条件において、5μMの濃度のDFOとの併用を検証した。ADMについては細胞自体に対する作用の強い薬剤であることから、より低い濃度である0.1nMと1nMでの併用効果もあわせて検証した。培養細胞系実験は上記と同様の手順で行い、2回の独立した実験を行ってその平均値を算出した。図8~11に、これらの結果を示す。 From the results of the addition experiment with DFO, 5-FU, and ADM alone, in order to verify the effect of the combined use, the concentration at which the effect was not seen with the single agent, that is, the concentration of 5-FU of 0.1 μg / ml, The combined use with DFO having a concentration of 5 μM was verified under the condition of ADM concentration of 10 nM. Since ADM is a drug having a strong action on the cell itself, the combined effect at lower concentrations of 0.1 nM and 1 nM was also verified. The cultured cell system experiment was performed in the same procedure as described above, and the average value was calculated by performing two independent experiments. Figures 8-11 show these results.
 図8はHuh-7細胞に対するDFOと5-FUの併用効果を示す図であり、グラフ横軸は各薬剤添加後の時間(hour)を、縦軸は対照群を100としたときの相対的な生存率を示す。黒色の棒グラフが対照であり、濃い灰色がDFO 5μMを単独で添加したもの、薄い灰色が5-FU 0.1μg/mlを単独で添加したもの、白い棒グラフがDFOと5-FUを同時に添加したものの結果である。グラフが示すとおり、DFOと5-FUを併用した場合には単独添加よりも高い効果が見られ、96時間後における生存は対照の61%であった。併用による効果をDFO単剤の場合とより詳しく比較してみると、5μM(3.38395μg/ml)のDFOに、5-FUの代わりに0.1μg/mlのDFOを加えたと仮定した場合、添加量はDFO5.15μM相当で、0→5μMでの減少率から5.15μM添加で期待される値は対照の74.25%となり、DFOと5-FUの組合せで得られた61%はこの値よりも小さく、併用の効果があると考えられた。 FIG. 8 is a graph showing the combined effect of DFO and 5-FU on Huh-7 cells. The horizontal axis of the graph represents the time after the addition of each drug (hour), and the vertical axis represents the relative value when the control group is 100. A good survival rate. The black bar graph is the control, the dark gray is the one with the addition of 5 μM DFO alone, the light gray is the one with the addition of 0.1 μg / ml 5-FU, and the white bar graph is the addition of DFO and 5-FU at the same time Is the result of things. As shown in the graph, when DFO and 5-FU were used in combination, an effect higher than that of the single addition was observed, and the survival after 96 hours was 61% of the control. When the effect of the combined use is compared in more detail with the case of DFO alone, it is assumed that 0.1 μg / ml DFO is added to 5 μM (3.338395 μg / ml) DFO instead of 5-FU. The amount added was equivalent to 5.15 μM DFO, and the expected value with 5.15 μM addition was 74.25% of the control from the decrease rate from 0 → 5 μM, and 61% obtained with the combination of DFO and 5-FU was this The value was smaller than the value, and it was considered that there was an effect of combined use.
 図9はHepG2細胞に対するDFOと5-FUの併用効果を示す図であり、グラフ横軸は各薬剤添加後の時間(hour)を、縦軸は対照群を100としたときの相対的な生存率を示す。黒色の棒グラフが対照であり、濃い灰色がDFO5μMを単独で添加したもの、薄い灰色が5-FU 0.1μg/mlを単独で添加したもの、白い棒グラフがDFOと5-FUを同時に添加したものの結果である。HepG2細胞においてもHuh-7細胞と同様の効果が見られ、96時間後の生存率は対照の68%であった。併用による効果をDFO単剤の場合とより詳しく比較してみると、5μMのDFOに、5-FUの代わりに0.1μg/mlのDFOを加えたと仮定した場合、添加量はDFO5.15μM相当で、0→5μMでの減少率から5.15μM添加で期待される値は対照の80.43%となり、DFOと5-FUの組合せで得られた68%はこの値よりも小さく、併用の効果があると考えられた。 FIG. 9 is a graph showing the combined effect of DFO and 5-FU on HepG2 cells. The horizontal axis of the graph is the time after the addition of each drug (hour), and the vertical axis is the relative survival when the control group is 100. Indicates the rate. The black bar graph is the control, the dark gray is the one added with 5 μM DFO alone, the light gray is the one added with 5-FUg0.1 μg / ml alone, the white bar graph is the one added with DFO and 5-FU at the same time It is a result. The effect similar to Huh-7 cell was seen also in HepG2 cell, and the survival rate after 96 hours was 68% of control. When the effect of the combined use is compared in more detail with the case of DFO alone, when it is assumed that 0.1 μg / ml DFO is added to 5 μM DFO instead of 5-FU, the addition amount is equivalent to 5.15 μM DFO. From the decrease rate from 0 to 5 μM, the expected value when 5.15 μM was added was 80.43% of the control, and 68% obtained with the combination of DFO and 5-FU was smaller than this value. It was considered effective.
 図10はHLF細胞に対するDFOと5-FUの併用効果を示す図であり、グラフ横軸は各薬剤添加後の時間(hour)を、縦軸は対照群を100としたときの相対的な生存率を示す。黒色の棒グラフが対照であり、濃い灰色がDFO5μMを単独で添加したもの、薄い灰色が5-FU 0.1μg/mlを単独で添加したもの、白い棒グラフがDFOと5-FUを同時に添加したものの結果である。HLF細胞においてはHuh-7細胞やHepG2細胞に比べ効果が小さく、96時間後の生存は対照の79%であった。併用による効果をDFO単剤の場合とより詳しく比較してみると、5μMのDFOに、5-FUの代わりに0.1μg/mlのDFOを加えたと仮定した場合、添加量はDFO 5.15μM相当で、0→5μMでの減少率から5.15μM添加で期待される値は対照の83.52%となり、DFOと5-FUの組合せで得られた79%はこの値よりも小さく、併用の効果があると考えられた。 FIG. 10 is a graph showing the combined effect of DFO and 5-FU on HLF cells. The horizontal axis of the graph is the time after the addition of each drug (hour), and the vertical axis is the relative survival when the control group is 100. Indicates the rate. The black bar graph is the control, the dark gray is the one added with 5 μM DFO alone, the light gray is the one added with 5-FUg0.1 μg / ml alone, the white bar graph is the one added with DFO and 5-FU at the same time It is a result. HLF cells were less effective than Huh-7 and HepG2 cells, and survival after 96 hours was 79% of controls. When the effect of the combined use is compared in more detail with the case of DFO alone, when it is assumed that 0.1 μg / ml DFO is added to 5 μM DFO instead of 5-FU, the addition amount is DFO 5.15 μM Correspondingly, from the rate of decrease from 0 to 5 μM, the expected value when 5.15 μM was added was 83.52% of the control, and 79% obtained with the combination of DFO and 5-FU was smaller than this value. It was thought that there was an effect.
 図11はHuh-7細胞に対するDFOとADMの併用効果を示す図であり、グラフ横軸は各薬剤添加後の時間(hour)を、縦軸は対照群を100としたときの相対的な生存率を示す。黒色の棒グラフが対照であり、濃い灰色がADM10nMを単独で添加したもの、白色がDFO 5μMを単独で添加したものであり、薄い灰色がDFO 5μMとADM 0.1nMを同時に添加したもの、より薄い灰色がDFO 5μMとADM 1nMを同時に添加したもの、さらに薄い灰色がDFO 5μMとADM 10nMを同時に添加したものの結果である。結果が示すとおり、ADMの効果が認められない濃度や、それ以下の濃度においても、DFOとの併用により72時間後以降で顕著な抗腫瘍効果が観察され、96時間後における細胞の生存率は、DFO 5μMとADM 10nMを併用した場合で対照の55%にまで低下していた。この値はDFO 5μM単剤(75%)とADM 10nM単剤(91%)の単純な相加効果の理論値68.25%よりもはるかに小さく、併用の効果が相乗的な効果であることが示された。 FIG. 11 is a graph showing the combined effect of DFO and ADM on Huh-7 cells, where the horizontal axis of the graph is the time after the addition of each drug (hour), and the vertical axis is the relative survival when the control group is 100. Indicates the rate. Black bar graph is a control, dark gray is ADM 10 nM added alone, white is DFO 5 μM added alone, light gray is DFO 5 μM and ADM 0.1 nM added simultaneously, lighter The gray color is the result of adding DFO 5 μM and ADM 1 nM at the same time, and the light gray color is the result of adding DFO 5 μM and ADM 10 nM at the same time. As shown in the results, a remarkable antitumor effect was observed after 72 hours in combination with DFO even at a concentration at which the effect of ADM was not observed or at a concentration lower than that, and the cell viability after 96 hours was When DFO 5 μM and ADM 10 nM were used in combination, it decreased to 55% of the control. This value is much smaller than the theoretical value 68.25% of the simple additive effect of DFO 5 μM single agent (75%) and ADM 10 nM single agent (91%), and the combined effect is a synergistic effect It has been shown.
 (腫瘍マーカーの検出)
 デフェロキサミンの肝がん細胞に対する抗腫瘍効果の詳細を明らかにするため、DFO添加後の培養肝がん細胞における腫瘍マーカータンパク質の発現を抗原抗体法により検出した。細胞からのタンパク質の抽出及び抗原抗体反応によるマーカータンパク質の検出はJin H.ら(J. Gastroenterol. 42: 475-484, 2007)の方法に従った。具体的には、上記の方法により培養したHuh-7細胞及びHepG2細胞を氷冷したPhosphate-buffered saline(PBS)で洗浄し、1mMのPhenylmethanesulfonyl fluorideを含むCell lysis buffer(Cell Signaling Technology社製)に懸濁した。細胞膜を超音波破砕機で破砕し、膜成分を遠心で除いて全細胞タンパク質試料を得た。ミトコンドリアタンパク質と細胞質タンパク質を、それぞれMitochondria/cytosol fractionation kit(Biovision社製)で分離精製し、ウェスタンブロッティングによりそれぞれの腫瘍マーカーの発現量を比較した。各腫瘍マーカーに対する1次抗体は以下の通り入手した:Cyclin D1、Cyclin D3(Cell Signaling Technology社製);Cytochrome c、cdk4、p-Rb(Santa Cruz Biotechnology社製);β-actin(Abcam社製)。また、2次抗体についてはAmersham Bioscience社製から入手したものを用いた。これらの抗体を用い、Huh-7細胞についてはCyclin D1、Cyclin D3、cdk4、Cytochrome c、p-Rb及びβ-アクチン(コントロール)の発現、HepG2細胞についてはCyclin D1、cdk4、Cytochrome c、p-Rbの発現をタンパク質レベルでそれぞれ比較した。
(Detection of tumor markers)
In order to clarify the antitumor effect of deferoxamine on liver cancer cells, the expression of tumor marker protein in cultured hepatoma cells after addition of DFO was detected by the antigen-antibody method. Extraction of proteins from cells and detection of marker proteins by antigen-antibody reaction followed the method of Jin H. et al. (J. Gastroenterol. 42: 475-484, 2007). Specifically, Huh-7 cells and HepG2 cells cultured by the above method are washed with ice-cooled Phosphate-buffered saline (PBS) and put into a Cell lysis buffer containing 1 mM Phenylmethanesulfonyl fluoride (manufactured by Cell Signaling Technology). Suspended. The cell membrane was crushed with an ultrasonic crusher, and the membrane components were removed by centrifugation to obtain a whole cell protein sample. Mitochondrial protein and cytoplasmic protein were each separated and purified by Mitochondria / cytosol fractionation kit (manufactured by Biovision), and the expression levels of each tumor marker were compared by Western blotting. Primary antibodies for each tumor marker were obtained as follows: Cyclin D1, Cyclin D3 (manufactured by Cell Signaling Technology); Cytochrome c, cdk4, p-Rb (manufactured by Santa Cruz Biotechnology); β-actin (manufactured by Abcam) ). As the secondary antibody, one obtained from Amersham Bioscience was used. Using these antibodies, expression of Cyclin D1, Cyclin D3, cdk4, Cytochrome c, p-Rb and β-actin (control) for Huh-7 cells, and Cyclin D1, cdk4, Cytochrome c, p- for HepG2 cells. Rb expression was compared at the protein level.
 図12に、腫瘍マーカータンパク質の発現比較の結果を示す。図中左側のレーンは、Huh-7細胞における各マーカーの発現量を表し(マーカー名は左端に記載)、右側のレーンはHepG2細胞における各マーカーの発現量を表している。Huh-7細胞において、コントロールのβ-アクチンの発現量に変化が見られないのに対し、Cyclin D1、Cyclin D3,cdk4、p-Rbの発現が減少し、反対にCytochrome cのタンパク質量は増加した。Cyclin D1、Cyclin D3、cdkは細胞周期に関連するタンパク質であり、DFOの添加によりこれらのタンパク質の発現量が減少していることから、DFOが培養肝がん細胞の細胞増殖を抑制していることが示された。一方、Cytochrome cは細胞死において増加することが知られており、この結果からDFOが肝がん細胞の細胞死も誘導していることが示された。p-Rbも経時的に低下していることから、DFOが細胞周期をG0/G1期で停止させていることが示された。HepG2細胞においても、Huh-7細胞同様、CyclinD1、Cyclin D3、cdk4、p-Rbの発現が減少しCytochrome cが増加する傾向が見られ、Huh-7細胞での結果を支持した。 FIG. 12 shows the results of comparison of tumor marker protein expression. The left lane in the figure represents the expression level of each marker in Huh-7 cells (the marker name is shown at the left end), and the right lane represents the expression level of each marker in HepG2 cells. In Huh-7 cells, there was no change in the expression level of β-actin as a control, whereas the expression of Cyclin D1, Cyclin D3, cdk4, and p-Rb decreased, whereas the amount of Cytochrome c protein increased. did. Cyclin D1, Cyclin D3, and cdk are proteins related to the cell cycle, and the expression level of these proteins is reduced by the addition of DFO, so DFO suppresses cell growth of cultured hepatoma cells. It was shown that. On the other hand, Cytochrome c is known to increase in cell death, and this result showed that DFO also induced cell death of hepatoma cells. Since p-Rb also decreased with time, it was shown that DFO stopped the cell cycle at the G0 / G1 phase. In HepG2 cells, the expression of CyclinD1, Cyclin D3, cdk4, and p-Rb decreased and Cytochrome c tended to increase in the same manner as Huh-7 cells, supporting the results in Huh-7 cells.
 (臨床治験に向けた動物へのDFO投与)
 臨床でのデフェロキサミン投与の安全性を確保するため、ラットを用いた過剰投与実験を行った。ラット10匹に対し、DFOのヒトでの投与上限量である80mg/kg/dayの5倍量である、400mg/kg/dayを腹腔内に投与し、24時間経過を観察した。24時間後も全てのラットは生存しており、生体への投与の安全性が確認された。
(DFO administration to animals for clinical trials)
In order to ensure the safety of clinical deferoxamine administration, an overdose experiment using rats was conducted. Ten rats were administered intraperitoneally with 400 mg / kg / day, which is 5 times the dose of 80 mg / kg / day, which is the upper limit dose of DFO in humans, and the course of 24 hours was observed. Even after 24 hours, all the rats survived, confirming the safety of administration to the living body.
 以下の臨床治験は全て、山口大学付属病院で行われ、治験に際しては山口大学附属病院の倫理委員会の承認を受け、また関係法令等を遵守するとともに被験者の方にはインフォームド・コンセントを徹底し治療への同意を書面で得た上で行った。 The following clinical trials are all conducted at the Yamaguchi University Hospital, and are approved by the Ethics Committee of the Yamaguchi University Hospital, complying with relevant laws and regulations, and informed consent is given to the subjects. It was done with thorough consent in writing.
 (臨床治験-症例1、63歳、男性)
 2005年9月に肝内に多発する肝細胞がん(以下、HCCということもある)を認め、以降HCCに対してtransarterial chemoembolization(以下、TACEということもある)を繰り返した。2006年2月にリザーバーを留置し動注化学療法(Low dose FP療法+Isovorin)を施行するも効果はなく、4月には多発肺転移が認められた。よって、5月よりDFO投与による加療を開始した。
 加療開始時の血液データは以下の通りであった:TP 7.8g/dl, Alb 2.5g/dl, FBS 144mg/dl, BUN 9mg/dl, Cre 0.64mg/dl, T.Bil 1.3mg/dl, D.Bil 0.4mg/dl, ALP 762IU/l, γ-GTP 85IU/l, ChE 126IU/l, AST 49IU/l, ALT 27IU/l, LDH 181IU/l, WBC 3840/μl(Neutro 48.0%, Eosino 7.0%, Baso 0.3%, Mono 6.3%, Lymph 40.4%),RBC 359×104/μl,Hb 11.7g/dl, Ht 35.6%,MCV 99.2fl, MCH 32.6pg, MCHC 32.9%, Plt 9.6×104/μl, PT 13.8(11.3)sec/65.8%, APTT 36.4(27.2)sec, BT 5.5min, 24Ccr 85.3mg/min
 加療開始時の腫瘍マーカーデータは以下の通りであった:AFP(L3) 36.4ng/ml(L3は0.5%以下で正常),PIVKA2 603 AU(正常 40AU以下)背景肝は肝硬変(B型)であり、Child-Pugh B(7点)であった。
(Clinical trial-Case 1, 63 years old, male)
In September 2005, hepatocellular carcinoma frequently occurring in the liver (hereinafter sometimes referred to as HCC) was recognized, and thereafter transarterial chemoembolization (hereinafter also referred to as TACE) was repeated for HCC. In February 2006, the reservoir was placed and intraarterial chemotherapy (Low dose FP therapy + Isovorin) was not effective, but multiple lung metastases were observed in April. Therefore, treatment with DFO administration was started in May.
Blood data at the start of treatment were as follows: TP 7.8 g / dl, Alb 2.5 g / dl, FBS 144 mg / dl, BUN 9 mg / dl, Cre 0.64 mg / dl, T.P. Bil 1.3 mg / dl, D.I. Bi 0.4 mg / dl, ALP 762 IU / l, γ-GTP 85 IU / l, ChE 126 IU / l, AST 49 IU / l, ALT 27 IU / l, LDH 181 IU / l, WBC 3840 / μl (Netro 48.0%, Eosino 7.0%, Baso 0.3%, Mono 6.3%, Lymph 40.4%), RBC 359 × 104 / μl, Hb 11.7 g / dl, Ht 35.6%, MCV 99.2fl, MCH 32.6pg, MCHC 32.9%, Plt 9.6 × 10 4 / μl, PT 13.8 (11.3) sec / 65.8%, APTT 36.4 (27.2) sec, BT 5. 5min, 24Ccr 85.3mg / min
The tumor marker data at the start of treatment were as follows: AFP (L3) 36.4 ng / ml (L3 is 0.5% or less normal), PIVKA2 603 AU (normal 40 AU or less) Background liver cirrhosis (B Type) and Child-Pug B (7 points).
 1週間のDFO動注投与療法の投与スケジュールは以下の通りである:24時間連続投与を1回とし、1週間に1-5回の投与を行なう。2週間を1クールとし、最低2クール以上繰り返し、効果が期待できる症例に関しては適宜このクールを反復する。有効性は、腫瘍マーカーないし画像診断で行う。具体的にはリザーバーポートに穿刺したグリッパーニードルより、化学療法を行なう。DFO(デフェロキサミンメシル酸塩;商品名デスフェラール;ノバルティス社製;臨床治験で共通)80mg/kg以下を生理食塩水で総量240mlとし、注入ポンプにて24時間投与する。終了後、ヘパリンNa 5000単位/Aを注入し、終了とする。 The administration schedule of the weekly DFO intraarterial administration therapy is as follows: One administration is 24 hours and administration is 1 to 5 administrations per week. 2 weeks is 1 course, and at least 2 courses are repeated, and this course is repeated as appropriate for the cases where the effect can be expected. Effectiveness is determined by tumor markers or diagnostic imaging. Specifically, chemotherapy is performed from a gripper needle punctured in the reservoir port. DFO (deferoxamine mesylate; trade name Desferral; manufactured by Novartis; common in clinical trials) 80 mg / kg or less is adjusted to a total volume of 240 ml with physiological saline and administered with an infusion pump for 24 hours. After completion, heparin Na 5000 units / A is injected to finish.
 本症例では、DFO 50mg/kgを3回/週(1回につき、24時間の連続投与)、4週間を1クール(2週投与1週休薬2週投与)として2クール施行した。CT検査の結果を図13、図14に示す。図13は加療前のCT像であり、Aの腹部dynamic CT像では白丸と黒矢印で示した部分に肝内腫瘍が認められ、B,Cの単純CT像では図中白矢印で示す部分に肺転移巣が確認された。図14は加療開始から3ヶ月経過後のCT像であり、Aの腹部dynamic CT像では白丸と黒矢印で示したように3ヶ月間で肝内腫瘍の著明な縮小が確認され、またB,Cの単純CT像においても肺転移巣の消失が確認された。加療期間中における腫瘍マーカーの推移を図15に示す。図中グラフ横軸は加療開始からの時間経過を、縦軸はマーカー値を示し、グラフ上にDFO投与期間を灰色の棒で示している。投与開始後から、AFP及びPIVKA2は速やかに減少し、またL3分画についても4ヶ月後より減少していずれも正常値にまで減少した(図15)。2008年2月末現在1年10ヶ月生存中であり、肺転移は出現していない。 In this case, DFO 50 mg / kg was administered 3 times / week (24 hours of continuous administration at a time), and 4 weeks were taken as 1 course (2 weeks administration, 1 week off and 2 weeks administration). The results of the CT examination are shown in FIGS. FIG. 13 is a CT image before treatment. In the abdominal dynamic CT image of A, an intrahepatic tumor is observed in the part indicated by the white circle and the black arrow, and in the simple CT images of B and C, the part indicated by the white arrow in the figure. Lung metastases were confirmed. FIG. 14 is a CT image after 3 months from the start of treatment. In the abdominal dynamic CT image of A, a marked reduction of the intrahepatic tumor was confirmed in 3 months as indicated by white circles and black arrows, and B The disappearance of lung metastases was also confirmed in C and CT images. The transition of the tumor marker during the treatment period is shown in FIG. In the graph, the horizontal axis represents the time elapsed from the start of treatment, the vertical axis represents the marker value, and the DFO administration period is indicated by a gray bar on the graph. After the start of administration, AFP and PIVKA2 decreased rapidly, and the L3 fraction also decreased from 4 months later, and both decreased to normal values (FIG. 15). As of the end of February 2008, he has been alive for 1 year and 10 months and no pulmonary metastases have appeared.
 (臨床治験-症例2、63歳、男性)
 2003年10月にHCC初発し、TACEおよびradiofrequency ablation(RFA)を行った。その後も2005年12月にTACEを行ったが、2006年3月多発性HCCに対し、リザーバー留置し、動注化学療法(Low dose FP療法+Isovorin)を施行した。2006年末より腫瘍が増大し、DFO治療を行うこととなった。
 加療開始時の血液データは以下の通りであった:TP 7.8g/dl, Alb 2.5g/dl, FBS 184mg/dl, BUN 13mg/dl, Cre 1.03mg/dl, T.Bil 3.3mg/dl, D.Bil 1.7mg/dl, ALP 449IU/l, γ-GTP 69IU/l, ChE 60IU/l, AST 82IU/l, ALT 48IU/l, LDH 468IU/l, IV7S 12.0ng/ml, PIIIP 1.00U/ml, HA 1120ng/ml, Ferritin 691.0ng/ml, Fe 168μg/dl, WBC 6850/μl(N seg. 54.5%, N.band 4.0%, Eosino 2.0%, Baso 0.5%, Mono 2.0%, Lymph 27.0%),RBC 269×10-4/μl,Hb 10.6g/dl, Ht 30.9%, MCV 114.9fl, MCH 39.4pg, MCHC 34.3%, Plt 8.6×10-4/μl, PT 13.5(11.7)sec/67.9%, APTT 34.1(28.1)sec, BT 4.5min
 加療開始時の腫瘍マーカーデータは以下の通りであった:AFP(L3) 1.6ng/ml(L3は5%以下で正常), PIVKA2 4942 AU (正常 40AU以下) 背景肝は肝硬変(C型)であり、Child-Pugh C(11点)であった。
(Clinical trial-Case 2, 63 years old, male)
HCC was first launched in October 2003, and TACE and radiofrequency ablation (RFA) were performed. Thereafter, TACE was performed in December 2005, but in March 2006, multiple reservoirs were placed in the reservoir and intraarterial infusion chemotherapy (Low dose FP therapy + Isovorin) was performed. The tumor increased from the end of 2006, and it was decided to perform DFO treatment.
Blood data at the start of treatment were as follows: TP 7.8 g / dl, Alb 2.5 g / dl, FBS 184 mg / dl, BUN 13 mg / dl, Cre 1.03 mg / dl, T.P. Bil 3.3 mg / dl, D.I. Bi 1.7 mg / dl, ALP 449 IU / l, γ-GTP 69 IU / l, ChE 60 IU / l, AST 82 IU / l, ALT 48 IU / l, LDH 468 IU / l, IV7S 12.0 ng / ml, PIIP 1.00 U / Ml, HA 1120 ng / ml, Ferritin 691.0 ng / ml, Fe 168 μg / dl, WBC 6850 / μl (N seg. 54.5%, N. band 4.0%, Eosino 2.0%, Baso 0. 5%, Mono 2.0%, Lymph 27.0%), RBC 269 × 10-4 / μl, Hb 10.6 g / dl, Ht 30.9%, MCV 114.9 fl, MCH 39.4 pg, MCHC 34 .3%, Plt 8.6 × 10 −4 / μl, PT 13.5 (11.7) sec / 67 9%, APTT 34.1 (28.1) sec, BT 4.5min
The tumor marker data at the start of treatment were as follows: AFP (L3) 1.6 ng / ml (L3 is normal at 5% or less), PIVKA2 4942 AU (normal 40 AU or less) Background liver is cirrhosis (C type) And Child-Pugh C (11 points).
 DFO(50mg/kg/day)4回(1回24時間連続投与)/週を開始した。2週間施行した時点で、軽度の食欲低下、軽度の腎機能障害(Cre 1.8mg/dlまで上昇するも、すぐに正常化)を認めるのみで、大きな副作用なく経過した。1週間休薬の後、後半2週を行なったところ、腫瘍マーカーPIVKA2は速やかに低下し正常化した。腫瘍マーカーの推移を図16に示す。グラフ横軸は加療開始からの時間経過を、縦軸はマーカー値を示し、グラフ上にDFO投与のスケジュールを示している。グラフから明らかなとおり、DFO投与によりPIVKA2マーカーは速やかに減少していることが示された。その後、DFOによる治療を実施していない時に、突然の食道静脈瘤破裂により、2007年2月に亡くなった。 DFO (50 mg / kg / day) 4 times (once 24 hours continuous administration) / week was started. At the time of administration for 2 weeks, mild appetite decline and mild renal dysfunction (Cre increased to 1.8 mg / dl, but soon normalized) were observed without major side effects. The tumor marker PIVKA2 rapidly decreased and normalized after 2 weeks in the second half after a 1-week withdrawal. The transition of the tumor marker is shown in FIG. The horizontal axis of the graph shows the time elapsed from the start of treatment, the vertical axis shows the marker value, and the DFO administration schedule is shown on the graph. As is clear from the graph, it was shown that the PIVKA2 marker was rapidly decreased by DFO administration. He later died in February 2007 due to a sudden rupture of esophageal varices when he was not treated with DFO.
 (臨床治験-症例3、65歳、男性)
 2004年1月に多発性 HCC(Vp3,Vv3)および右心房内腫瘍栓と診断し、リザーバー留置の上、動注化学療法(low dose FP療法+Isovorin+IFN)開始となった。一旦は効果を認めたが、10月の治療でも効果は認められなかった。本症例は動注化学療法で血小板減少の副作用が強いため、その後間欠的に治療を行っていた。しかし2006年2月になり、HCCも増大傾向にあり、肺転移も出現したため、効果がないと判断しDFO治療を行うこととした。
 加療開始時の血液データは以下の通りであった:TP 7.2g/dl, Alb 3.1g/dl, BUN 15mg/dl, Cre 1.05mg/dl, T.Bil 2.0mg/dl, D.Bil 0.7mg/dl, ALP 299IU/l, γ-GTP 35IU/l, ChE 105IU/l, AST 83IU/l, ALT 86IU/l, LDH 236IU/l, T-chol 120mg/dl, CRP 0.14mg/dl, Ferritin 222.7ng/ml, Fe 216μg/dl, Na 136mmol/l, K 3.7mmol/l, Cl 104mmol/l, WBC 3600/μl(Neutro 41.7%, Eosino 2.2%, Baso 1.1%, Mono 12.2%, Lymph 42.8%),RBC 314×10-4/μl,Hb 11.1g/dl, Ht 32.8%, MCV 104.5fl, MCH 35.4pg, MCHC 33.8%, Plt 10.6×10-4/μl, PT 12.5(11.6)sec/82.4%, APTT 32.6(29.3)sec
 加療開始時の腫瘍マーカーデータは以下の通りであった:FP(L3) 52.5ng/ml(<0.5%), PIVKAII 23703 AU (正常 40AU以下)背景肝は肝硬変(C型)、Child-Pugh A(5点)であった。
(Clinical trial-Case 3, 65 years old, male)
In January 2004, the patient was diagnosed with multiple HCC (Vp3, Vv3) and right intra-atrial tumor plug, and started intraarterial infusion chemotherapy (low dose FP therapy + Isovorin + IFN) after reservoir placement. Although once effective, no effect was observed with the October treatment. In this case, arterial injection chemotherapy had strong side effects of thrombocytopenia, and was treated intermittently thereafter. However, in February 2006, HCC was also increasing and lung metastases appeared. Therefore, it was judged that there was no effect and DFO treatment was performed.
Blood data at the start of treatment were as follows: TP 7.2 g / dl, Alb 3.1 g / dl, BUN 15 mg / dl, Cre 1.05 mg / dl, T.P. Bil 2.0 mg / dl, D.D. Bil 0.7 mg / dl, ALP 299 IU / l, γ-GTP 35 IU / l, ChE 105 IU / l, AST 83 IU / l, ALT 86 IU / l, LDH 236 IU / l, T-chol 120 mg / dl, CRP 0.14 mg / Dl, Ferritin 222.7 ng / ml, Fe 216 μg / dl, Na 136 mmol / l, K 3.7 mmol / l, Cl 104 mmol / l, WBC 3600 / μl (Netro 41.7%, Eosino 2.2%, Baso 1.1%, Mono 12.2%, Lymph 42.8%), RBC 314 × 10 −4 / μl, Hb 11.1 g / dl, Ht 32.8%, MCV 104.5 fl, MCH 35.4 pg, MCHC 33.8%, Plt 10.6 × 10-4 / μl, PT 2.5 (11.6) sec / 82.4%, APTT 32.6 (29.3) sec
Tumor marker data at the start of treatment were as follows: FP (L3) 52.5 ng / ml (<0.5%), PIVKAII 23703 AU (normal 40 AU or less) Background liver cirrhosis (C type), Child -Pugh A (5 points).
 2006年4月よりDFOを50mg/kgより投与開始したが、治療前より軽度腎機能の低下があり、25-50mg/kg/dayを腎機能に応じて間欠的に投与した。治療開始後、23000あったPIVKA2は2か月後には一旦2500まで低下した。AFPは軽度低下を認めるものの大きな変化はなかった。図17に、腫瘍マーカーの推移を示す。グラフ横軸は加療開始からの時間経過を、縦軸はマーカー値を表す。またDFO投与のタイミングをグラフ上部に示している。グラフの示すとおり、DFOの投与によりマーカーが速やかに減少しているのが明らかとなった。 In April 2006, DFO was started to be administered at 50 mg / kg, but there was a slight decrease in renal function before treatment, and 25-50 mg / kg / day was intermittently administered depending on the renal function. After the start of treatment, PIVKA2, which was 23000, once decreased to 2500 after 2 months. Although AFP recognized a slight decrease, there was no significant change. FIG. 17 shows the transition of the tumor marker. The horizontal axis of the graph represents the time elapsed from the start of treatment, and the vertical axis represents the marker value. The timing of DFO administration is shown in the upper part of the graph. As shown in the graph, it was clarified that the marker rapidly decreased by administration of DFO.
 本症例ではCT画像上はSDであり、肺転移病変にも増大は認めなかった。しかし、治療を休止すると腫瘍マーカーPIVKA2の再上昇を認め、再度DFOの治療をすると反応性にPIVKA2の低下を認めた(DFOは25-50mg/kgで1回につき24時間連続投与、1-5回/週の割合で適宜行なった)。図18にDFO再投与時の腫瘍マーカーの推移を示す。グラフ横軸は加療開始からの時間経過を、縦軸はマーカー値を表し、DFO投与のタイミングをグラフ上部に示している。一時帰宅でDFO投与を中止により急速に腫瘍マーカーが上昇し、肺の転移巣も増加、肝内の腫瘍も増大し、その後治療再開するも2007年4月末に亡くなった。DFO投与から1年1ヶ月生存し、通常の無治療での経過と比べて肝内、肺の転移巣ともに腫瘍の急激な増大はなく緩徐な増大で、明らかに腫瘍の進展を抑制したと考えられる症例である。 In this case, the CT image was SD, and no increase was observed in lung metastatic lesions. However, when treatment was stopped, the tumor marker PIVKA2 was re-elevated, and when DFO was treated again, PIVKA2 decreased in response (DFO was administered at 25-50 mg / kg for 24 hours at a time, 1-5 As needed at the rate of times / week). FIG. 18 shows the transition of the tumor marker at the time of DFO re-administration. The horizontal axis of the graph represents the time elapsed from the start of treatment, the vertical axis represents the marker value, and the timing of DFO administration is shown at the top of the graph. The tumor marker rapidly increased when DFO administration was stopped at home temporarily, the number of metastases in the lung increased, the tumor in the liver also increased, and the treatment resumed, but died at the end of April 2007. Survived 1 year and 1 month after DFO administration. Compared to the usual course of no treatment, both hepatic and pulmonary metastases did not increase rapidly, and the growth was slow. Case.
 本発明の提供する医薬組成物を利用することにより、これまで有効的な化学治療法のなかった肝がん、特に肝細胞がんに対して効果のある薬剤を開発することが可能となる。デフェロキサミンは、鉄過剰症に対する治療薬としてすでに安全性が確立しており、このことは副作用が少なく、かつ効果の高い肝がん治療薬の開発につながるものである。 By using the pharmaceutical composition provided by the present invention, it is possible to develop a drug effective against liver cancer, particularly hepatocellular carcinoma, for which there has been no effective chemotherapy. Deferoxamine has already been established as a safe drug for iron overload, which leads to the development of a highly effective liver cancer drug with few side effects.

Claims (14)

  1.  デフェロキサミン(Deferoxamine)、その誘導体、及び薬理学上許容可能なそれらの塩のうち少なくとも1以上を有効成分として含むことを特徴とする、増殖に鉄イオン要求性のあるがんの治療用医薬組成物。 A pharmaceutical composition for treating cancer having an iron ion requirement for growth, comprising at least one of deferoxamine, a derivative thereof, and a pharmacologically acceptable salt thereof as an active ingredient .
  2.  増殖に鉄イオン要求性のあるがんが、肝がんであることを特徴とする請求項1記載の医薬組成物。 The pharmaceutical composition according to claim 1, wherein the cancer requiring iron ion proliferation is liver cancer.
  3.  肝がんが、肝細胞がんであることを特徴とする請求項1又は2記載の医薬組成物。 3. The pharmaceutical composition according to claim 1 or 2, wherein the liver cancer is hepatocellular carcinoma.
  4.  薬理学上許容可能な塩が、有機酸塩であることを特徴とする請求項1~3のいずれかに記載の医薬組成物。 The pharmaceutical composition according to any one of claims 1 to 3, wherein the pharmacologically acceptable salt is an organic acid salt.
  5.  有機酸塩が、炭素数が2又は1の有機酸塩であることを特徴とする請求項1~4のいずれかに記載の医薬組成物。 The pharmaceutical composition according to claim 1, wherein the organic acid salt is an organic acid salt having 2 or 1 carbon atoms.
  6.  デフェロキサミンメシル酸塩(Deferoxamine mesilate)であることを特徴とする請求項5に記載の医薬組成物。 The pharmaceutical composition according to claim 5, wherein the pharmaceutical composition is deferoxamine mesilate.
  7.  抗がん剤をさらに含むことを特徴とする請求項1~6のいずれかに記載の医薬組成物。 The pharmaceutical composition according to any one of claims 1 to 6, further comprising an anticancer agent.
  8.  抗がん剤が、5-フルオロウラシル、アドリアマイシン、シスプラチン、及びマイトマイシンから選択される1以上の抗がん剤であることを特徴とする請求項1~7のいずれかに記載の医薬組成物。 The pharmaceutical composition according to any one of claims 1 to 7, wherein the anticancer agent is one or more anticancer agents selected from 5-fluorouracil, adriamycin, cisplatin, and mitomycin.
  9.  請求項1~8のいずれかに記載の医薬組成物を投与することを特徴とする、増殖に鉄イオン要求性のあるがんの治療方法。 A method for treating cancer having an iron ion requirement for growth, comprising administering the pharmaceutical composition according to any one of claims 1 to 8.
  10.  増殖に鉄イオン要求性のあるがんが、肝がんであることを特徴とする請求項9記載の治療方法。 The method according to claim 9, wherein the cancer having an iron ion requirement for proliferation is liver cancer.
  11.  肝がんが、肝細胞がんであることを特徴とする請求項9又は10記載の治療方法。 The method according to claim 9 or 10, wherein the liver cancer is hepatocellular carcinoma.
  12.  増殖に鉄イオン要求性のあるがんの治療用医薬品の製造における、請求項1~8のいずれかに記載の医薬組成物の使用。 Use of the pharmaceutical composition according to any one of claims 1 to 8 in the manufacture of a medicament for treating cancer that requires iron ions for growth.
  13.  増殖に鉄イオン要求性のあるがんが、肝がんであることを特徴とする請求項12記載の使用。 The use according to claim 12, wherein the cancer having an iron ion requirement for proliferation is liver cancer.
  14.  肝がんが、肝細胞がんであることを特徴とする請求項12又は13記載の使用。 The use according to claim 12 or 13, wherein the liver cancer is hepatocellular carcinoma.
PCT/JP2009/000310 2008-02-25 2009-01-27 Pharmaceutical composition for treatment of cancer WO2009107322A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-042901 2008-02-25
JP2008042901A JP2009196959A (en) 2008-02-25 2008-02-25 Pharmaceutical composition for treatment of cancer

Publications (1)

Publication Number Publication Date
WO2009107322A1 true WO2009107322A1 (en) 2009-09-03

Family

ID=41015729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000310 WO2009107322A1 (en) 2008-02-25 2009-01-27 Pharmaceutical composition for treatment of cancer

Country Status (2)

Country Link
JP (1) JP2009196959A (en)
WO (1) WO2009107322A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011115062A1 (en) * 2010-03-15 2011-09-22 国立大学法人 岡山大学 Adjuvant having anti-tumor effect
JP2013508448A (en) * 2009-10-26 2013-03-07 ザ ユニバーシティ オブ バーミンガム Anticancer composition comprising alginate
CN113456622A (en) * 2021-06-17 2021-10-01 新乡医学院 Application of deferoxamine mesylate in preparation of antitumor drugs

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6179904B2 (en) * 2012-11-05 2017-08-16 国立大学法人山口大学 Side effects of sorafenib
JP7103745B2 (en) * 2015-10-05 2022-07-20 国立大学法人 岡山大学 Cancer stem cell inhibitor, cancer metastasis or recurrence inhibitor, and cancer cell undifferentiated marker expression inhibitor
JP2018188419A (en) * 2017-05-11 2018-11-29 株式会社ダステック Pharmaceutical composition comprising iron chelator exhibiting antitumor activity, antibacterial activity and/or antivirus activity, and having reduced side effects

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62223130A (en) * 1985-11-25 1987-10-01 ザ ホスピタル フオ− シツク チルドレン Compound remedy, manufacture and medicine or medicine pack
JP2006511490A (en) * 2002-05-13 2006-04-06 メタバシス・セラピューティクス・インコーポレイテッド New phosphonic acid prodrugs of PMEA and its analogs

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62223130A (en) * 1985-11-25 1987-10-01 ザ ホスピタル フオ− シツク チルドレン Compound remedy, manufacture and medicine or medicine pack
JP2006511490A (en) * 2002-05-13 2006-04-06 メタバシス・セラピューティクス・インコーポレイテッド New phosphonic acid prodrugs of PMEA and its analogs

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HANN, HIE WON L. ET AL.: "Antitumor effect of deferoxamine on human hepatocellular carcinoma growing in athymic nude mice", CANCER, vol. 70, no. 8, 1992, NEW YORK, NY, UNITED STATES, pages 2051 - 2056 *
HANN, HIE WON L. ET AL.: "Effect of iron and desferoxamine on cell growth and in vitro ferritin synthesis in human hepatoma cell lines", HEPATOLOGY, vol. 11, no. 4, 1990, PHILADELPHIA, PA, UNITED STATES, pages 566 - 569 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013508448A (en) * 2009-10-26 2013-03-07 ザ ユニバーシティ オブ バーミンガム Anticancer composition comprising alginate
US9421220B2 (en) 2009-10-26 2016-08-23 The University Of Birmingham Edgbaston Anti-cancer composition comprising alginate
WO2011115062A1 (en) * 2010-03-15 2011-09-22 国立大学法人 岡山大学 Adjuvant having anti-tumor effect
CN113456622A (en) * 2021-06-17 2021-10-01 新乡医学院 Application of deferoxamine mesylate in preparation of antitumor drugs

Also Published As

Publication number Publication date
JP2009196959A (en) 2009-09-03

Similar Documents

Publication Publication Date Title
US9597325B2 (en) Inhibitors of late SV40 factor (LSF) as cancer chemotherapeutics
US11712443B2 (en) 17α-monoesters and 17α,21-diesters of cortexolone for use in the treatment of tumors
US20120316203A1 (en) Compositions and Methods for Inhibition of Cancers
WO2009107322A1 (en) Pharmaceutical composition for treatment of cancer
CN109562080B (en) Pharmaceutical composition for treating cancer and cancer complications
TW201609094A (en) Novel methods for treating cancer
EP3429582B1 (en) Combination therapy for proliferative diseases
US10392398B2 (en) Inhibitors of Late SV40 Factor (LSF) as cancer chemotherapeutics
JP2021530482A (en) Tumor-reducing preparations and how to use them
US9802948B2 (en) Inhibitors of late SV40 factor (LSF) as cancer chemotherapeutics
KR102410362B1 (en) Combination Therapy for Proliferative Diseases
TWI434680B (en) Use of diterpenes for treating prostate cancer
KR20180013758A (en) Compositions for treating liver cancer comprising a vascular disrupting agent
TWI447111B (en) Antitumor agents or postoperative adjuvant chemotherapeutic agents for hepatocellular carcinoma treatment
KR102235218B1 (en) Composition for preventing or treating cervical cancer comprising gamma-terpinene
US11696904B2 (en) Prodrug for therapeutic applications
WO2021192726A1 (en) Choline uptake inhibitor, apoptosis inducer, anticancer drug, and use thereof
US11911374B2 (en) Methods and uses for treating cancer
US20210128683A1 (en) Pharmaceutical compositions and use thereof for relieving resistance due to cancer chemotherapy and enhancing effect of cancer chemotherapy
EP3854411A1 (en) Pharmaceutical compositions and use thereof for relieving resistance due to cancer chemotherapy and enhancing effect of cancer chemotherapy
Timar et al. Basic HGF-like peptides have anti-angiogenic and anti-metastatic effects
JP2013231013A (en) Nrf2 activator and use of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09715273

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09715273

Country of ref document: EP

Kind code of ref document: A1