WO2009106668A1 - Vectors and uses of the mboumar transposon - Google Patents

Vectors and uses of the mboumar transposon Download PDF

Info

Publication number
WO2009106668A1
WO2009106668A1 PCT/ES2009/070044 ES2009070044W WO2009106668A1 WO 2009106668 A1 WO2009106668 A1 WO 2009106668A1 ES 2009070044 W ES2009070044 W ES 2009070044W WO 2009106668 A1 WO2009106668 A1 WO 2009106668A1
Authority
WO
WIPO (PCT)
Prior art keywords
recombinant peptide
seq
amino acid
acid sequence
polynucleotide
Prior art date
Application number
PCT/ES2009/070044
Other languages
Spanish (es)
French (fr)
Inventor
Pedro LORITE MARTÍNEZ
Teresa Amalia PALOMEQUE MESSÍA
José Antonio CARRILLO ÁVILA
Martín MUÑOZ LÓPEZ
Original Assignee
Universidad De Jaén
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Jaén filed Critical Universidad De Jaén
Publication of WO2009106668A1 publication Critical patent/WO2009106668A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome

Definitions

  • the present invention is included in the area of molecular biology, specifically within molecular genetics, and more specifically in the field of study of mobile genetic elements or transposons. It refers to the vectors necessary for the construction of genetic tools based on transposons, and their uses.
  • Transposons are DNA sequences that can move to different positions within the genome of a cell, a process called transposition. In general they are classified into two groups:
  • RNA is copied into the DNA by a reverse transcriptase (often also encoded by the transposon) and inserted from New in the genome.
  • transposons whose transposition mechanism does not imply RNA formation. They are generally transposed by a "cut and paste” process, using a transposase enzyme.
  • Transposases are the enzymes responsible for their mobility and are synthesized by the transposon itself. In vivo they can cause transposition of genetic material within the same chromosome, between chromosomes, and even between chromosomes and non-chromosomal genetic material, such as mitochondrial DNA. This movement of genetic material can cause serious disturbances in the organism in which it occurs, although it is also known that it has been of great importance throughout the evolution. At first the transposons were considered as "junk DNA". However, it is currently thought that they can influence the host genome in different ways. Thus, it is considered that they can modulate the gene expression by acting as promoters, activators, silencers, alternative processing sites or sites indicative of epigenetic modifications.
  • transposons can be active in somatic cells, opening the possibility that they can play an important role generating diversity between cells with the same genome. Specifically, it has been considered that this diversity could be generated by changes in the regulation of the expression of the transposase which, in turn, could affect the regulation of the gene expression of certain genes in certain cells.
  • the effects could be beneficial (as probably occurs in cases of differentiation of neuronal cells, or in the activity of RAG proteins, important in the recombination processes that occur in the genome of lymphocytes) or deleterious (carcinogenic processes) depending on the moment of development and cell type (Collier and Largaespada. Transposable elements and the dynamic somatic genome. Rewied 2007. Genome Biology 2007, 8 (Suppl 1: S5).
  • Maritime transposons are sequences capable of moving around the genome that are flanked by inverted terminal repeated sequences (inverted terminal repeats or ITRs). They encode a single protein, the transposase, which, joining these ITRs, cleaves the mariner and integrates it elsewhere in the genome.
  • the Mos1 transposase catalyzes the movement of the Mos1 transposon found in Drosophila maur ⁇ tania, which is not only the first isolated mariner element, but also the first naturally active mariner element isolated.
  • the mariner elements constitute a large family of transposons widely spread in the animal kingdom. They encode the enzyme transposase that is the only requirement for its transposition.
  • This enzyme has two domains: the N-terminal domain or DNA binding domain and the C-terminal domain or catalytic domain, which retains the DD (34) D motif.
  • DD DD
  • In vivo transposition reactions are carried out independently of the cellular or host conditions: Generally they are carried out with purified transposases, and plasmids, gene fragments, or DNA can be used as targets. genomic isolated. In successive reactions, plasmids containing transposons can be transferred to host cells.
  • transposases Since most of the transposases found are inactive, and given the large number of applications and interest that MLEs have in biotechnology, it is necessary to construct artificial transposases that are active, from the natural defects, for use as genetic tools.
  • the most commonly used procedure consists of, from defective copies of the transposases found in various organisms in a natural way, correct the mutations that inactivate the enzyme by means of directed mutagenesis. Therefore, finding a naturally active transposase, which facilitates its production as a recombinant protein, without the need to introduce modifications in the amino acid sequence, would be a notable advance in this sector of the technique.
  • the joint use of this transposase and the constructions made with the ITRs can constitute an in vitro transposition system that can be used in various experiments, such as the generation of random mutations.
  • Another possible application of this system is the transgenesis and mutagenesis randomly in the genome of prokaryotic or eukaryotic cells, by insertion between the Mboumar ITRs of the desired sequence.
  • the advantage of the use of vectors based on this type of transposable elements is their versatility, since they are not host-specific, since their only requirement is the presence of the transposase that they themselves produce.
  • a recombinant peptide hereinafter peptide of the invention, consisting essentially of the amino acid sequence SEQ ID NO: 1
  • SEQ ID NO: 1 collects the amino acid sequence of the transposase enzyme isolated from the Messorbouvier ⁇ species.
  • the global identity of the transposases homologous to Mboumar, at the amino acid level, and more specifically at the level of the amino acid sequence that is collected in SEQ ID NO: 1, is 70% or more, and more preferably 80% or more and more preferably 90, or 95% or more.
  • the correspondence between the amino acid sequence of the putative transposase (s) and the sequence of other transposases can be determined by methods known in the art. For example, those can be determined by a direct comparison of the amino acid sequence information from the putative homologous transposase, and the amino acid sequence that is collected in SEQ ID NO: 1 of this specification.
  • the amino acid sequence of the recombinant peptide has an identity of at least 70% with SEQ ID NO: 1, preferably at least 80%, more preferably at least 90% and even more preferably at least 95%.
  • the transposase activity includes its binding activity to the IRT and / or RDs elements ("Deleted regions"), the cleavage of the nucleic acid sequences between these IRT and / or RDs elements and its sequence insertion activity in A specific target
  • these peptides homologous to the Mboumar transposase have been modified to enhance the biological activity of said enzyme.
  • amino acids can be substituted in SEQ ID NO: 1 to enhance said activity.
  • the methods for producing such related derived sequences for example, by site-directed mutagenesis, random mutagenesis, or enzymatic cleavage and / or nucleic acid ligation, are well known in the art, as are the methods for determine if the nucleic acid thus modified has a significant homology with the sequence that is being considered, for example, by hybridization.
  • the recombinant peptide is homologous to the amino acid sequence of SEQ ID NO: 1.
  • the recombinant peptide of the invention is used as a transposase. In another aspect of the invention, the recombinant peptide of the invention is used as a genetic tool.
  • polynucleotide of the invention which is translated to the peptide encoded by SEQ ID NO: 1, and which is selected from the list comprising: a) nucleic acid molecules that encode a peptide comprising the amino acid sequence of SEQ ID NO: 1, b) nucleic acid molecules whose complementary chain hybridizes with the polynucleotide sequence of a), or c) nucleic acid molecules whose sequence differs of a) and / or b) due to the degeneracy of the genetic code.
  • the amino acid sequence to which the polynucleotide of the invention is translated has an identity of at least 60% with SEQ ID NO: 1.
  • the amino acid sequence to which the polynucleotide of the invention is translated it has an identity of at least 80%, more preferably, of 90% and more preferably of 95%, with SEQ ID NO: 1.
  • the polynucleotide of the invention is used to produce, in amounts not yet available, the peptide of Ia invention.
  • Another aspect of the invention relates to a genetic construction, henceforth, the first genetic construction of the invention or aid construction, which allows the expression of the peptide of the invention, as described above, in amounts so far not available Production in quantities greater than those currently available would allow the use of the peptide of the invention as a genetic tool.
  • Another aspect of the invention refers to a genetic construction, hereinafter, a second genetic construction of the invention or donor construction, which comprises the ITR regions recognized by the peptide of the invention, between which a polynucleotide of interest is inserted. Additionally, it may contain a marker, such as, but not limited to, an antibiotic resistance gene.
  • a method for obtaining a recombinant peptide of the invention which consists in placing the genetic construction described above in a suitable reaction medium.
  • This method includes the cloning and expression vectors that comprise the nucleic acid molecules of the invention.
  • expression vectors include suitable control sequences, such as, for example, control elements for translation (such as start and stop codes) and for transcription (for example, promoter-operator regions, binding sites.
  • the invention may include plasmids and viruses (comprising bacteriophages and eukaryotic viruses), in accordance with procedures well known and documented in the state of the art, and can be expressed in a variety of different expression systems, also well known and documented in the state of the art.
  • Suitable viral vectors include baculovirus and also adenovirus and vaccine viruses. Many other viral vectors are also described in the state of the art.
  • the transformed or transfected eukaryotic or prokaryotic host cells which contain a nucleic acid molecule according to the invention, as defined above, also form part of this aspect of the invention.
  • sequences (same or homologous) encoding the peptide of the invention, using a series of known techniques and expression systems, including the expression in prokaryotic cells such as E.coli and in eukaryotic cells such as yeasts or the system of baculovirus-insect cell or transformed mammalian cells and in transgenic animals and plants.
  • the fusion plasmid pMal-c2X (New England Biolabs) was used, together with the Escher ⁇ chia coli malE gene that encodes the binding protein to maltose (MBP: maltose-binding protein).
  • MBP maltose-binding protein
  • IPTG is going to express the Mboumar + MBP transposase fusion protein that will be purified thanks to the affinity that MBP has for amylose and maltose.
  • dual transposition systems have been developed. A dual system works by contacting at least two genetic constructs (which can be, for example, two plasmids), or by means of the co-transfection or introduction of these into the same cell: the donor construct and the aid construct.
  • the donor is a gene expression construct (promoter-gene-terminator) or a polynucleotide of interest, flanked by two ITRs (5 'ITR promoter-gene-terminator-3' ITR or 5 'ITR - polynucleotide of interest-marker - 3 'ITR or 5' ITR - polynucleotide of interest - 3 'ITR) and the aid Ia contains the Mboumar transposase under the control of a promoter. Additionally, the transposition can be carried out massively in vitro, producing the recombinant transposase exogenously, and putting it in contact, subsequently, with the donor construction.
  • the contact or the co-transfection of both constructions (donor and aid) in the same cell first causes the expression of the Mboumar transposase and then the Mboumar transposase cuts the donor construction by the 2 ITRs and glue all the construction in the genome of Ia host cell, or a third recipient genetic construct, which may be, for example, a plasmid (receptor plasmid).
  • the Mboumar-mediated transposition requires not only a complete and active Mboumar transposase in the aid construction, but also 2 binding sites for the transposase in the ITRs in the donor construction.
  • Another aspect of the invention relates to a method for transposition in vitro or in vivo that consists in contacting the recombinant peptide of the invention, with the genetic construction comprising the polynucleotide of interest.
  • the method for transposition in vitro or in vivo is used for the generation of random mutations.
  • the method for transposition in vitro or in vivo is used for the generation of transgenesis and random mutagenesis in the genome of prokaryotic or eukaryotic cells.
  • Another aspect of the invention relates to the use of the peptide of the invention for the generation of random mutations, both in vitro and in vivo. More preferably, the peptide of the invention is used for the generation of transgenesis and random mutagenesis in the genome of prokaryotic or eukaryotic cells, both in vitro and in vivo.
  • the function of certain genes could be identified, oncogenes identified and / or to introduce massive mutagenesis.
  • the first ITR constructs inserted in the genome in a first generation can be massively activated by the introduction of exogenous transposases. Inactivation of genes by insertional mutagenesis with ITR would result in obtaining some mutants with the alteration of the desired phenotype. In this process, the inactivated genes are also labeled with the ITRs and their sequences can then be recovered and the genes identified.
  • recombinant peptide comprising refers to the fact that the peptide includes the amino acid sequence SEQ ID NO: 1, which can be integrated with other amino acids and peptides, including fusion peptides, provided it retains its function as a transposase enzyme, and which is the subject of the present invention. It also refers to amino acid sequences that encode a homologous peptide that encodes SEQ ID NO: 1.
  • homologous refers to the similarity between two structures due to a common evolutionary ancestry, and more specifically, to the similarity between the amino acids of two or more proteins or amino acid sequences. Since two proteins are considered homologous if they have the same evolutionary origin or if they have similar function and structure, in general, it is assumed that higher values of similarity or identity of 30% indicate homologous structures. We can consider, therefore, that identity percentages of at least 80% will maintain the transposase function of said peptide, which is the subject of the present invention.
  • identity refers to the proportion of identical amino acids between two amino acid sequences that are compared. Sequence comparison methods are known in the state of the art, and include, but are not limited to, the GAG program, including GAP (Devereux et al., Nucleic Acids Research 12: 287 (1984) Genetics Computer Group University of Wisconsin, Madison, (Wl); BLASTP or BLASTN, and FASTA (Altschul et al., J. Mol. Biol. 215: 403-410 (1999). Additionally, the Smith Waterman algorithm should be used to determine the degree of identity of two sequences.
  • fragment or derivative of a peptide refers to fragments or peptides derived from the Mboumar transposase in their natural state that lack some or some amino acids, and that still act by transposing DNA. Alternatively, this term also refers to peptides derived from The natural Mboumar transposase, where one or more amino acids have been changed, eliminated, added, or less preferably, which has undergone investments or duplications. Such modifications are preferably made by recombinant DNA technology. Other modifications can also be made by chemical alterations of the transposase. The resulting peptide (or the fragments derived therefrom) can be produced recombinantly, and retain identical characteristics, or essentially identical to the natural Mboumar transposase.
  • a “recombinant peptide” as understood herein, is one that is obtained from the expression of a “recombinant polynucleotide”.
  • polynucleotide as used herein assumes a polynucleotide of genomic, cDNA, semi-synthetic, or synthetic origin which, by virtue of its origin or manipulation: (1) is not associated with the total or a portion of a polynucleotide with which is associated in nature, (2) is linked to a polynucleotide different from that to which it is linked in nature, or (3) does not occur in nature.
  • polynucleotide refers to a polymeric form of nucleotides of any length, either ribonucleotides or deoxyribonucleotides. This term only refers to the primary structure of the molecule. Thus, this term includes double or single stranded DNA, as well as double or single stranded RNA.
  • genetic tool refers to the tools used in genetic engineering for various applications, and encompasses tools of molecular genetics, quantitative genetics, population genetics, etc.
  • genetic tool refers to a tool useful for transposition in vitro, or for transgenesis and mutagenesis randomly, both in vitro and in vivo.
  • a "vector” is a replicon to which another polynucleotide segment has been attached, to perform the replication and / or expression of the bound segment.
  • a “replicon” is any genetic element that behaves as an autonomous unit of polynucleotide replication within a cell; that is, able to replicate under its own control.
  • Control sequence refers to polynucleotide sequences that are necessary to effect the expression of the coding sequences to which they are linked. The nature of such control sequences differs depending on the host organism; in prokaryotes, said control sequences generally include a promoter, a ribosomal binding site, and termination signals; in eukaryotes, generally, said control sequences include promoters, termination signals, enhancers and, sometimes, silencers. It is intended that the term “control sequences” includes, at a minimum, all components whose presence is necessary for expression, and may also include additional components whose presence is advantageous.
  • Operaationally linked refers to a juxtaposition in which the components thus described have a relationship that allows them to function in the intended way.
  • a control sequence "operatively linked" to a coding sequence is linked in such a way that the expression of the coding sequence is achieved under conditions compatible with the control sequences.
  • a “free reading frame” is a region of a polynucleotide sequence that encodes a polypeptide; This region may represent a portion of a coding sequence or a complete coding sequence.
  • a "coding sequence” is a polynucleotide sequence that is transcribed into mRNA and / or translated into a polypeptide when under control of appropriate regulatory sequences. The limits of the coding sequence are determined by a translation start codon at the 5 'end and a translation end codon at the 3' end.
  • a coding sequence may include, but is not limited to mRNA, cDNA, and recombinant polynucleotide sequences.
  • naturally Mboumar refers to the peptide or protein encoded by the nucleotide sequence called Mboumar-9, corresponding to SEQ ID NO: 1, cloned from the genome of the Messor ant genome bouvier ⁇ .
  • Mboumar-9 corresponding to SEQ ID NO: 1, cloned from the genome of the Messor ant genome bouvier ⁇ .
  • Mboumar means in this description, the protein resulting from the modification of the "natural Mboumar” protein, preferably to enhance the biological activity of said protein.
  • a “host” or “host cell” as used herein refers to an organism, cell or tissue that serves as a target or recipient of the transposable element to insert into themselves.
  • a host or host cell can also indicate a cell or host that expresses a recombinant protein of interest where the host cell is transformed with an expression vector containing the gene of interest.
  • transgenic is used in the context of the present invention to describe animals or plants in which a non-proprietary DNA sequence introduced by a mariner element (mariner-like element MLE) has been stably incorporated into its chromosomes of such that it can pass stably to successive generations of transgenic descendants.
  • the initial transgenic organism is known as the "founder.”
  • the "founder” animal must have the non-own DNA or transgene incorporated in all its cells or in a proportion sufficient for its progeny to establish by inheritance the transgenic.
  • the organism is referred to as a chimera.
  • the present invention also extends to animals that incorporate the transgene stable or directly into their chromosomes and which express the transgene in their somatic cells without passing the transgene to their offspring.
  • these animals would serve as genetic models, for, for example, but not limited to these uses, to identify and study the function of genes, detect oncogenes, obtain biopharmaceuticals, ... Similar models described by genetic constructs derived from transposons in mice and fish zebra.
  • Transgenesis is understood herein as the process of transferring non-own DNA to an organism, which in this way becomes known as "transgenic.”
  • FIG. 1 Plasmid pITR and plasmid pITR-Kn.
  • the pITR vector is obtained from the plasmid cloned with the Mboumar-9 pGEMT easy vector mariner (Promega) by the elimination of the ampicillin resistance gene (Ampr) and the origin of replication (ori).
  • the EcoRI targets of the pGEMT easy vector have also been removed.
  • Figure 3 Procedure for removing EcoRI targets from pGEMT easy vector. A- Digestion with E. coli and generation of protruding ends. B- Filling the protruding ends with Klenow and generating blunt ends. C- Ligating of the two ends with T4 ligase. Figure 4. Scheme of the in vitro transposition assay.
  • the in vitro production of the protein is carried out by introducing its coding region (ORF) into an expression vector.
  • ORF coding region
  • the fusion plasmid pMal-c2X New England Biolabs
  • the Mboumar ORF is introduced into the pMal-c2X vector downstream of the Escherichia coli malE gene encoding the maltose binding protein (MBP: maltose-binding protein).
  • MBP maltose binding protein
  • the Mboumar transposon ORF is amplified from the Mboumar-9 clone (Palomeque et al. 2006. Detection of a mariner-Wke element and a miniature inverted-repeat transposable element (MITE) associated with the heterochromatin from ants of the genus Messor and their possible involvement for satellite DNA evolution (Gene 371: 194-205) with two primers that incorporate two cutting targets for the restriction enzymes EcoRI and BamHI, which will allow it to be introduced in phase in the polylinker of pMal-c2X.
  • MITE inverted-repeat transposable element
  • the 100 ml of culture is introduced in a French press and the bacteria are subjected to a pressure of 1,000 Psi.
  • the lysate obtained is centrifuged at 15,000 rpm for 30 minutes.
  • the supernatant is passed through a column with 1 ml of amylase (previously washed with Buffer HSG) where the fusion protein will be retained. Once all the supernatant has passed through the amylose matrix, it is washed again with Buffer HSG.
  • the sequence of the Mboumar-9 transposase obtained from the DNA sequence of the Mboumar-9 mariner, is collected in SEQ ID NO: 1.
  • the Donor Plasmid will contain the sequence to be mobilized, which must be flanked by the ITRs of the Mboumar transposon.
  • the Receptor Plasmid can be any other where the insertion of the sequence located between the two ITRs provided by the donor plasmid can be detected.
  • the Mboumar transposase will recognize the ITRs that are located in the donor plasmid.
  • the transposase will make a cut at the ends of these ITRs and integrate this DNA fragment into a TA dinucleotide (which will undergo duplication during the process) of the recipient plasmid.
  • integration takes place at a site other than the donor plasmid itself. To avoid this inconvenience, the donor plasmid must be unable to replicate in the bacteria that will be transformed with the reaction of the transposition in vitro.
  • pITR which presents the ends of the mariner element and therefore its ITRs
  • pITR-Kn derived from the previous one, but to which the kanamycin resistance gene (Knr gene) has been incorporated ( Fig. 1).
  • the Mboumar-9 plasmid containing the Mboumar-9 mariner element cloned in the plasmid pGEMT easy vector (Promega) is used.
  • the first modification that is made on the plasmid is the elimination of the ampicillin resistance gene (Ampr) and the origin of replication (ori).
  • the plasmid has been digested with the Seal and Accl enzymes, thus releasing most of the Ampr gene and the ori. This fragment is replaced by the origin of R6K replication, which will allow this plasmid to replicate only in pir + bacteria, but not in pir- strains, which will be those transformed with the transposition reaction.
  • the plasmid is digested with the restriction enzymes Mscl and Ndel (partial digestion), and the ends generated in the vector are joined by ligation.
  • These enzymes will release the central region of the mariner leaving only 173 bp of the ends, in which the two ITRs are found.
  • a target sequence for the Apol enzyme is located, which can be used to insert a DNA sequence (Fig. 2).
  • this enzyme is also able to cut on the EcoRI targets found in the pGEM-T vector, on both sides of the insert, so it is necessary to eliminate them.
  • the plasmid is digested with this enzyme, generating two fragments, one with the insert corresponding to the mariner and the other with the vector.
  • This enzyme generates protruding ends that are filled with the help of the Klenow enzyme, thus generating fragments with blunt ends that are re-bound, thus degenerating the target for EcoRI (Fig. 3), leaving the Apol target between the two ITRs as a single target for this enzyme in the plasmid (Fig. 2)
  • Plasmid pITR-Kn is derived from the pITR to which the kanamycin resistance gene (Knr gene) has been inserted into the Apol target (Fig. 1)
  • any other that confers resistance to an antibiotic other than kanamycin and is capable of replicating in pyr- bacteria can be used.
  • the pGEMT Easy Vector (Promega) vector itself has been used.
  • Plasmid receptor (pGEM-T). - Purified Mboumar transposase.
  • Reaction buffer It is the buffer in which the necessary conditions are met for the transposition by the Mboumar transposase to be carried out.
  • Donor plasmid 9 ⁇ M.
  • This reaction is incubated at 28 0 C place overnight. During this period the transposase cleaves the Knr gene along with the ITRs that flank it and integrate it into TA dinucleotide of the recipient plasmid (or donor plasmid). The mobilization of this sequence to the recipient plasmid will generate a plasmid that will confer resistance to kanamycin and ampicillin, and that will be able to replicate in pyr- bacteria.
  • competent bacteria pir- (DH5 ⁇ ) are transformed with 8 ⁇ l of the transposition reaction and the negative control (without transposase).
  • the half of the volume of the transformation with the transposition reaction is seeded in LB plates with kanamycin and ampicillin, and the other half in plates with only ampicillin.
  • the same volume is the one that is going to be sown of the transformation with the negative control in an LB plate + ampicillin + kanamycin.
  • the efficiency with which the Mboumar transposase has carried out the transposition under the conditions described is 10 ⁇ 3 . This is calculated by dividing the number of Transformer Receptor Plasmids with the Kn R gene integrated by the total number of Transformer Receptor Plasmids.

Abstract

The invention relates to the recombinant production of a naturally active transposase of Messor bouvieri, transposon Mboumar-derived genetic constructions necessary for transgenesis and mutagenesis, and the uses thereof.

Description

VECTORES Y USOS DEL TRANSPOSON MBOUMAR VECTORS AND USES OF THE TRANSPOSON MBOUMAR
La presente invención se incluye en el área de biología molecular, concretamente dentro de Ia genética molecular, y más concretamente en el campo de estudio de los elementos genéticos móviles o transposones. Se refiere a los vectores necesarios para Ia construcción de herramientas genéticas basados en los transposones, y a los usos de los mismos.The present invention is included in the area of molecular biology, specifically within molecular genetics, and more specifically in the field of study of mobile genetic elements or transposons. It refers to the vectors necessary for the construction of genetic tools based on transposons, and their uses.
ESTADO DE LA TÉCNICA ANTERIORSTATE OF THE PREVIOUS TECHNIQUE
Los transposones son secuencias de ADN que pueden moverse a diferentes posiciones dentro del genoma de una célula, un proceso denominado tranposición. En general se clasifican en dos grupos:Transposons are DNA sequences that can move to different positions within the genome of a cell, a process called transposition. In general they are classified into two groups:
- Transposones de Clase I o retrotransposones, inicialmente los retrotransposones se copian a sí mismos a ARN (transcripción) pero, además de transcribirse, el ARN se copia en el ADN por una transcriptasa inversa (a menudo codificada también por el transposon) e insertada de nuevo en el genoma.- Class I transposons or retrotransposons, initially the retrotransposons copy themselves to RNA (transcription) but, in addition to transcribing, the RNA is copied into the DNA by a reverse transcriptase (often also encoded by the transposon) and inserted from New in the genome.
- Transposones de Clase II, cuyo mecanismo de transposición no implica Ia formación de RNA. Generalmente se transponen por un proceso de "cortar y pegar", mediante una enzima transposasa.- Class II transposons, whose transposition mechanism does not imply RNA formation. They are generally transposed by a "cut and paste" process, using a transposase enzyme.
Las transposasas son las enzimas responsables de su movilidad y son sintetizadas por el propio transposon. In vivo pueden originar transposición de material genético dentro de un mismo cromosoma, entre cromosomas, e incluso entre cromosomas y material genético no cromosómico como, por ejemplo, ADN mitocondrial. Este movimiento de material genético puede originar graves disturbios en el organismo en que se produce, aunque también se sabe que ha tenido una gran importancia a Io largo de Ia evolución. En un principio los transposones se consideraron como "ADN basura". Sin embargo, actualmente se piensa que pueden influir en el genoma hospedador de diferentes maneras. Así, se considera que pueden modular Ia expresión génica actuando como promotores, activadores, silenciadores, sitios de procesamiento alternativo o sitios indicativos de modificaciones epigenéticas. Igualmente, pueden contener genes que podrían ser incluidos en el genoma del huésped para Ia realización de una función celular determinada, proceso que se conoce como "domesticación molecular". Además de todo Io anterior, debido a su existencia en copias múltiples pueden actuar como sitios de recombinación originando en el genoma duplicaciones, inversiones, deleciones o translocaciones. (Charlesworth et al. 1994. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371 : 215-220; Kidwell MG. 2002. Transposable elements and the evolution of genome size in eukaryotes. Genética 115: 49-63; Ivics & Izsvak 2004. Transposable elements for transgenesis and insertional mutagenesis in vertebrates: a contemporary review of experimental strategies. Methods Mol Biol 260: 255-276.) Recientes observaciones demuestran que los transposones pueden ser activos en células somáticas, abriendo Ia posibilidad de que puedan jugar un importante papel generando diversidad entre células con un mismo genoma. Concretamente, se ha considerado que esta diversidad podría ser generada por cambios en Ia regulación de Ia expresión de Ia transposasa que a su vez, podría afectar Ia regulación de Ia expresión génica de ciertos genes en determinadas células. Los efectos podrían ser beneficiosos (como ocurre probablemente en los casos de diferenciación de células neuronales, o en Ia actividad de las proteínas RAG, importantes en los procesos de recombinación que ocurren en el genoma de los linfocitos) o deletéreos (procesos cancerígenos) dependiendo del momento del desarrollo y del tipo celular (Collier and Largaespada. Transposable elements and the dynamic somatic genome. Rewied. 2007. Genome Biology 2007, 8 (Suppl 1 : S5).Transposases are the enzymes responsible for their mobility and are synthesized by the transposon itself. In vivo they can cause transposition of genetic material within the same chromosome, between chromosomes, and even between chromosomes and non-chromosomal genetic material, such as mitochondrial DNA. This movement of genetic material can cause serious disturbances in the organism in which it occurs, although it is also known that it has been of great importance throughout the evolution. At first the transposons were considered as "junk DNA". However, it is currently thought that they can influence the host genome in different ways. Thus, it is considered that they can modulate the gene expression by acting as promoters, activators, silencers, alternative processing sites or sites indicative of epigenetic modifications. They may also contain genes that could be included in the host genome for the performance of a specific cellular function, a process known as "molecular domestication." In addition to all of the above, due to their existence in multiple copies they can act as recombination sites originating duplications, inversions, deletions or translocations in the genome. (Charlesworth et al. 1994. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371: 215-220; Kidwell MG. 2002. Transposable elements and the evolution of genome size in eukaryotes. Genetics 115: 49-63; Ivics & Izsvak 2004 Transposable elements for transgenesis and insertional mutagenesis in vertebrates: a contemporary review of experimental strategies Methods Mol Biol 260: 255-276.) Recent observations show that transposons can be active in somatic cells, opening the possibility that they can play an important role generating diversity between cells with the same genome. Specifically, it has been considered that this diversity could be generated by changes in the regulation of the expression of the transposase which, in turn, could affect the regulation of the gene expression of certain genes in certain cells. The effects could be beneficial (as probably occurs in cases of differentiation of neuronal cells, or in the activity of RAG proteins, important in the recombination processes that occur in the genome of lymphocytes) or deleterious (carcinogenic processes) depending on the moment of development and cell type (Collier and Largaespada. Transposable elements and the dynamic somatic genome. Rewied 2007. Genome Biology 2007, 8 (Suppl 1: S5).
Los transposones del tipo maríner son secuencias capaces de moverse por el genoma que se encuentran flanqueadas por secuencias repetidas terminales invertidas (inverted terminal repeats ó ITRs). Codifican una única proteína, Ia transposasa, que uniéndose a esas ITRs escinde el mariner y Io integra en otro lugar del genoma. La transposasa Mos1 cataliza el movimiento del transposón Mos1 encontrado en Drosophila maurítania, el cual es, no sólo el primer elemento maríner aislado, sino también el primer elemento maríner aislado activo de forma natural. Los elementos maríner constituyen una numerosa familia de transposones ampliamente extendidos en el reino animal. Codifican Ia enzima transposasa que es el único requerimiento para su transposición. Esta enzima tiene dos dominios: el dominio N-terminal o dominio de unión al DNA y el dominio C-terminal o dominio catalítico, el cual conserva el motivo DD(34)D. En esta enzima se han identificado además otros motivos y dominios imprescindibles para su actuación. A pesar de Io mencionado, aún hay aspectos desconocidos de su actuación, cuyo conocimiento podría proporcionar grandes ventajas para su uso como vectores, además de proporcionar interesantes datos científicos; por este motivo en los últimos años se están realizando numerosos estudios en este sentido.Maritime transposons are sequences capable of moving around the genome that are flanked by inverted terminal repeated sequences (inverted terminal repeats or ITRs). They encode a single protein, the transposase, which, joining these ITRs, cleaves the mariner and integrates it elsewhere in the genome. The Mos1 transposase catalyzes the movement of the Mos1 transposon found in Drosophila maurítania, which is not only the first isolated mariner element, but also the first naturally active mariner element isolated. The mariner elements constitute a large family of transposons widely spread in the animal kingdom. They encode the enzyme transposase that is the only requirement for its transposition. This enzyme has two domains: the N-terminal domain or DNA binding domain and the C-terminal domain or catalytic domain, which retains the DD (34) D motif. In this enzyme, other reasons and domains essential for its performance have also been identified. Despite the aforementioned, there are still unknown aspects of its performance, whose knowledge could provide great advantages for its use as vectors, in addition to providing interesting scientific data; For this reason, in recent years numerous studies are being carried out in this regard.
La amplia distribución de los elementos mariner, presentes también en humanos, y su, aparentemente, fácil transferencia horizontal entre distintos grupos de animales, implica que son capaces de funcionar en diferentes ambientes celulares, es decir, no requieren factores específicos del hospedador para llevar a cabo su transposición. Estos hechos han llevado a Ia realización de una serie de estudios para conseguir un vector de amplio uso en células animales. Sin embargo, Ia mayor parte de los elementos mariner que se han clonado hasta el momento son defectivos, ya que han sufrido mutaciones en Ia región codificante de Ia transposasa, por Io que son incapaces de producir transposasas funcionales, motivo que ha originado que los transposones usados actualmente como vectores sean mayoritariamente derivados de construcciones realizadas en el laboratorio, usando secuencias consenso. Esto parece deberse a un proceso denominado "inactivación vertical" (Lohe et al., 1995. Horizontal transmission, vertical inactivation, and stochastic loss of mariner-like transposable elements. Mol. Biol. Evol. 12: 62 72). Aunque estos elementos son inactivos de forma natural (al menos respecto su función transposasa), conservan relativamente su estructura, existiendo varias hipótesis al respecto. Así, puede que los elementos inactivos tengan algún efecto regulatorio, o que provengan de Ia introgresión reciente de un genoma a otro.The wide distribution of mariner elements, also present in humans, and their apparently easy horizontal transfer between different groups of animals, implies that they are capable of functioning in different cellular environments, that is, they do not require specific host factors to lead to Make your transposition. These facts have led to the realization of a series of studies to achieve a widely used vector in animal cells. However, most of the mariner elements that have been cloned so far are defective, since they have undergone mutations in the coding region of the transposase, so that they are unable to produce functional transposases, which has caused the transposons currently used as vectors to be mostly derived from constructions made in the laboratory, using consensus sequences. This seems to be due to a process called "vertical inactivation" (Lohe et al., 1995. Horizontal transmission, vertical inactivation, and stochastic loss of mariner-like transposable elements. Mol. Biol. Evol. 12: 62 72). Although these elements are naturally inactive (at least with respect to their transposase function), they retain their structure relatively, with several hypotheses in this regard. Thus, it may be that the inactive elements have some regulatory effect, or that they come from the recent introgression of one genome to another.
La importancia del uso de vectores basados en transposones en campos tan diversos como el estudio de genes implicados en el cáncer, en Ia generación de modelos de enfermedades humanas en ratón, en Ia generación de cerdos transgénicos con posibilidad de utilización como granjas farmacéuticas, en Ia regulación génica y diferenciación celular, en estudios de genómica funcional etc., ha llevado a Ia realización de numerosas investigaciones con estos vectores utilizados en diferentes organismos y en diferentes condiciones.The importance of using vectors based on transposons in fields as diverse as the study of genes involved in cancer, in the generation of models of human diseases in mice, in the generation of transgenic pigs with the possibility of use as pharmaceutical farms, in Ia Gene regulation and cell differentiation, in studies of functional genomics etc., has led to the carrying out of numerous investigations with these vectors used in different organisms and in different conditions.
Se han desarrollado herramientas de transposición in vivo en varios organismos. (En Ia tabla 1 se expone un resumen). En Ia mayoría de los casos, hospedadores específicos requerían vectores especiales.In vivo transposition tools have been developed in several organisms. (Table 1 shows a summary). In most cases, specific hosts required special vectors.
Las reacciones de transposición in vivo se llevan a cabo con independencia de las condiciones celulares o del hospedador: Generalmente se llevan a cabo con transposasas purificadas, y como dianas se pueden emplear plásmidos, fragmentos génicos, o ADN genómico aislado. En reacciones sucesivas, los plásmidos que contienen los transposones pueden ser transferidos a células hospedadoras.In vivo transposition reactions are carried out independently of the cellular or host conditions: Generally they are carried out with purified transposases, and plasmids, gene fragments, or DNA can be used as targets. genomic isolated. In successive reactions, plasmids containing transposons can be transferred to host cells.
La transposición in vitro ofrece muchas ventajas sobre los sistemas in vivo (Devine and Boeke 1994. Efficient integration of artificial transposons into plasmid targets in vitro: a useful tool for DNA mapping, sequencing and genetic analysis. Nucleic Acids Res, 22: 3765-3772; Biery et al. 2000. A simple in vitro Tn7- based transposition system with low target site selectivity for genome and gene analysis. Nucleic Acids Res, 28: 1067- 1077), principalmente se puede evitar Ia interferencia con factores del hospedador. Las reacciones de transposición in vitro son, generalmente, más eficientes y más flexibles en Ia elección de las dianas en el ADN (Goryshin and Reznikoff. 1998. Tn5 in vitro transposition. J Biol Chem, 273: 7367-7374). En Ia tabla 2 se resumen las distintas aplicaciones de los transposones, tanto in vitro como in vivo.In vitro transposition offers many advantages over in vivo systems (Devine and Boeke 1994. Efficient integration of artificial transposons into plasmid targets in vitro: a useful tool for DNA mapping, sequencing and genetic analysis. Nucleic Acids Res, 22: 3765-3772 ; Biery et al. 2000. A simple in vitro Tn7-based transposition system with low target site selectivity for genome and gene analysis. Nucleic Acids Res, 28: 1067-1077), mainly interference with host factors can be avoided. In vitro transposition reactions are generally more efficient and more flexible in the choice of DNA targets (Goryshin and Reznikoff. 1998. Tn5 in vitro transposition. J Biol Chem, 273: 7367-7374). Table 2 summarizes the different applications of transposons, both in vitro and in vivo.
Los autores de esta invención han descrito un MLE (mariner-like element) en Ia hormiga Messor bouvieri, del orden Hymenoptera, familia Formicidae (Palomeque et al., Detection of a mar/ner-like element and a miniature inverted-repeat transposable element (MITE) associated with the heterochromatin from ants of the genus Messor and their possible involvement for satellite DNA evolution. 2006. Gene 371 :194-205). Sin embargo, no se conoce si este MLE codifica una transposasa naturalmente activa, si al producir esta enzima de forma recombinante conservaría su posible actividad biológica, y si Ia construcciones genéticas llevadas a cabo con sus elementos serían útiles para Ia transposición in vitro y/o in vivo.The authors of this invention have described an MLE (mariner-like element) in the ant Messor bouvieri, of the order Hymenoptera, Formicidae family (Palomeque et al., Detection of a sea / ner-like element and a miniature inverted-repeat transposable element (MITE) associated with the heterochromatin from ants of the genus Messor and their possible involvement for satellite DNA evolution. 2006. Gene 371: 194-205). However, it is not known if this MLE encodes a naturally active transposase, if producing this enzyme recombinantly it would retain its possible biological activity, and if the genetic constructions carried out with its elements would be useful for in vitro transposition and / or in vivo
Puesto que Ia mayoría de las transposasas encontradas son inactivas, y dado el gran número de aplicaciones e interés que tienen los MLE en biotecnología, hace necesario Ia construcción de transposasas artificiales que sean activas, a partir de las naturales defectivas, para su empleo como herramientas genéticas. El procedimiento más empleado consiste en, a partir de copias defectuosas de las transposasas encontradas en diversos organismos de forma natural, corregir las mutaciones que inactivan Ia enzima mediante mutagénesis dirigida. Por tanto, encontrar una transposasa naturalmente activa, que facilite su producción como proteína recombinante, sin necesidad de introducir modificaciones en Ia secuencia aminoacídica, supondría un avance notable en este sector de Ia técnica.Since most of the transposases found are inactive, and given the large number of applications and interest that MLEs have in biotechnology, it is necessary to construct artificial transposases that are active, from the natural defects, for use as genetic tools. The most commonly used procedure consists of, from defective copies of the transposases found in various organisms in a natural way, correct the mutations that inactivate the enzyme by means of directed mutagenesis. Therefore, finding a naturally active transposase, which facilitates its production as a recombinant protein, without the need to introduce modifications in the amino acid sequence, would be a notable advance in this sector of the technique.
Tabla 1. Ejemplos de elementos transponibles útiles en las aplicaciones de transposones en diferentes organismos in vivo.Table 1. Examples of transposable elements useful in transposon applications in different organisms in vivo.
Figure imgf000007_0001
Tabla 2. Aplicaciones de los transposones.
Figure imgf000007_0001
Table 2. Applications of transposons.
Figure imgf000008_0001
Figure imgf000008_0001
EXPLICACIÓN DE LA INVENCIÓNEXPLANATION OF THE INVENTION
Los autores de Ia invención han encontrado que el MLE descrito en Messor bouvierí codifica Ia transposasa Mboumar, Ia cual, producida en el laboratorio de forma recombinante es objeto de esta solicitud de patente junto con los vectores y demás construcciones necesarias para su utilización, y es activa naturalmente. Como indicamos en diferentes puntos de esta solicitud, las restantes transposasas activas se han reconstruido en el laboratorio a partir de elementos defectivos presentes en los correspondientes genomas.The authors of the invention have found that the MLE described in Messor bouvierí encodes the Mboumar transposase, which, produced in the laboratory recombinantly, is the subject of this patent application together with the vectors and other constructions necessary for its use, and it is naturally active. As indicated at different points in this application, the remaining active transposases have been reconstructed in the laboratory from defective elements present in the corresponding genomes.
La posibilidad de contar con una transposasa naturalmente activa, facilita su utilización y Ia construcción de nuevos vectores adaptados a necesidades concretas de Ia biotecnología y sus aplicaciones.The possibility of having a naturally active transposase facilitates its use and the construction of new vectors adapted to the specific needs of biotechnology and its applications.
Así pues, el uso conjunto de esta transposasa y las construcciones realizadas con las ITRs pueden constituir un sistema de transposición in vitro que puede ser utilizado en diversos experimentos, tales como Ia generación de mutaciones aleatorias. Otra posible aplicación de este sistema es Ia transgénesis y mutagénesis de forma aleatoria en el genoma de células procariotas o eucariotas, mediante Ia inserción entre las ITRs Mboumar de Ia secuencia deseada. La ventaja del uso de vectores basados en este tipo de elementos transponibles es su versatilidad, ya que no son específicos de hospedador, puesto que su único requerimiento es Ia presencia de Ia transposasa que ellos mismos producen.Thus, the joint use of this transposase and the constructions made with the ITRs can constitute an in vitro transposition system that can be used in various experiments, such as the generation of random mutations. Another possible application of this system is the transgenesis and mutagenesis randomly in the genome of prokaryotic or eukaryotic cells, by insertion between the Mboumar ITRs of the desired sequence. The advantage of the use of vectors based on this type of transposable elements is their versatility, since they are not host-specific, since their only requirement is the presence of the transposase that they themselves produce.
De acuerdo con un primer aspecto de Ia presente invención, se proporciona un péptido recombinante, de ahora en adelante péptido de Ia invención, que consiste esencialmente en Ia secuencia de aminoácidos SEQ ID NO: 1In accordance with a first aspect of the present invention, there is provided a recombinant peptide, hereinafter peptide of the invention, consisting essentially of the amino acid sequence SEQ ID NO: 1
La SEQ ID NO: 1 recoge Ia secuencia de aminoácidos de Ia enzima transposasa aislada de Ia especie Messorbouvierí.SEQ ID NO: 1 collects the amino acid sequence of the transposase enzyme isolated from the Messorbouvierí species.
Cuando comparamos Ia secuencia de Ia transposasa Mboumar (de Messor bouvieri) con Ia secuencia de otras transposasas aisladas en otras especies, es evidente que existen ciertas regiones en que están más conservadas que otras, y Io mismo ocurre con el transposón. Esta información puede ser indicativa de que esas zonas son cruciales para mantener Ia estructura o función de Ia proteína. Así, los ITRs de diferentes subfamilias de elementos maríner (Himari , Hpmari , Hsmar2, Mos1 , CsmaM , Ammari ,..), así como Mboumar, presentan conservadas diferentes regiones (Langin et al., 1995. The transposable element Impala, a fungal member of the Td -mariner superfamily. Mol. Gen. Genet. 246,19-28 (Lampe et al., 2001. Loss of transposase DNA interaction may underlie the divergence of maríner family transposable elements and the ability of more than one maríner to occupy the same genome. Mol. BIoI. Evol. 18, 954-961 ) Tanto las regiones activas que determina Ia especificidad de las transposasas como las cisteínas conservadas entre las que se establecen puentes disulfuro, importantes para Ia conformación de Ia proteína, estarán más conservadas entre ambas proteínas, mientras que en otras regiones Ia divergencia es más aparente. En concreto, estas enzimas presentan dos dominios: el dominio N-terminal o dominio de unión al DNA y el dominio C-terminal o dominio catalítico, el cual conserva el motivo DD(34)D (Robertson HM .1996. Members of the pogo superfamily of DNA-mediated transposons in the human genome. Mol Gen Genet 252: 761-766., Lohe et al. 1997. Mutations in the maríner transposase: the D,D(35)E consensus sequence is non-functional. Proc Nati Acad Sci USA 94: 1293-1297). En esta enzima se han identificado además otros motivos y dominios imprescindibles para su actuación (Pietrokovski & Henikoff 1997. A helix-turn-helix DNA-binding motif predicted for transposases of DNA transposons. Mol Gen Genet 254: 689-695., Hickman et al. 2005. Molecular architecture of a eukaryotic DNA transposase. Nat Struct Mol Biol 12: 715-721 ).When we compare the sequence of the Mboumar transposase (from Messor bouvieri) with the sequence of other transposases isolated in other species, it is clear that there are certain regions where they are more conserved than others, and the same occurs with the transposon. This information may be indicative that these areas are crucial to maintain the structure or function of the protein. Thus, the ITRs of different subfamilies of mariner elements (Himari, Hpmari, Hsmar2, Mos1, CsmaM, Ammari, ..), as well as Mboumar, have different regions conserved (Langin et al., 1995. The transposable element Impala, a fungal member of the Td-mariner superfamily. Mol. Gen. Genet. 246, 19-28 (Lampe et al., 2001. Loss of transposase DNA interaction may underlie the divergence of mariner family transposable elements and the ability of more than one mariner to occupy the same genome Mol. BIoI. Evol. 18, 954-961) Both the active regions determined by the specificity of the transposases and the conserved cysteines between which disulfide bridges are established, important for the conformation of the protein, will be more conserved between both proteins, while in other regions the divergence is more apparent, specifically, these enzymes have two domains: the N-terminal domain or DNA binding domain and the C-terminal domain or catalytic domain co, which retains the motive DD (34) D (Robertson HM. 1996. Members of the pogo superfamily of DNA-mediated transposons in the human genome. Mol Gen Genet 252: 761-766., Lohe et al. 1997. Mutations in the maríner transposase: the D, D (35) E consensus sequence is non-functional. Proc Nati Acad Sci USA 94: 1293-1297). Other enzymes and domains essential for its performance have also been identified in this enzyme (Pietrokovski & Henikoff 1997. A helix-turn-helix DNA-binding motif predicted for transposases of DNA transposons. Mol Gen Genet 254: 689-695., Hickman et al. 2005. Molecular architecture of a eukaryotic DNA transposase. Nat Struct Mol Biol 12: 715-721).
Por todo Io dicho anteriormente, puede esperarse que Ia identidad global de las transposasas homologas a Mboumar, a nivel de los aminoácidos, y más concretamente a nivel de Ia secuencia aminoacídica que se recoge en Ia SEQ ID NO: 1 , sea de un 70% o mayor, y más preferiblemente de un 80% o mayor y más preferiblemente de un 90, o un 95% o mayor. La correspondencia entre Ia secuencia aminoacídica de la(s) transposasa(s) putativa(s) y Ia secuencia de otras transposasas se puede determinar por métodos conocidos en Ia técnica. Por ejemplo, aquéllas se pueden determinar por una comparación directa de Ia información de secuencia aminoacídica procedente de Ia transposasa homologa putativa, y Ia secuencia aminoacídica que se recoge en Ia SEQ ID NO: 1 de esta memoria.For all the above, it can be expected that the global identity of the transposases homologous to Mboumar, at the amino acid level, and more specifically at the level of the amino acid sequence that is collected in SEQ ID NO: 1, is 70% or more, and more preferably 80% or more and more preferably 90, or 95% or more. The correspondence between the amino acid sequence of the putative transposase (s) and the sequence of other transposases can be determined by methods known in the art. For example, those can be determined by a direct comparison of the amino acid sequence information from the putative homologous transposase, and the amino acid sequence that is collected in SEQ ID NO: 1 of this specification.
En una realización preferida de este aspecto de Ia invención, Ia secuencia de aminoácidos del péptido recombinante presenta una identidad de, al menos, un 70% con Ia SEQ ID NO: 1 , preferiblemente al menos de un 80%, más preferiblemente al menos de un 90% y aún más preferiblemente al menos de un 95%.In a preferred embodiment of this aspect of the invention, the amino acid sequence of the recombinant peptide has an identity of at least 70% with SEQ ID NO: 1, preferably at least 80%, more preferably at least 90% and even more preferably at least 95%.
Péptidos homólogos a Ia transposasa Mboumar de Messor bouvierí (SEQ ID NO: 1 ) mantendrían su función biológica. Por ejemplo, Ia actividad transposasa incluye su actividad de unión a los elementos IRT y/o RDs ("Deleted regions"), Ia escisión de las secuencias de ácidos nucleicos entre estos elementos IRT y/o RDs y su actividad de inserción de secuencias en una diana específica.Peptides homologous to the Mboumar transposase of Messor bouvierí (SEQ ID NO: 1) would maintain their biological function. For example, the transposase activity includes its binding activity to the IRT and / or RDs elements ("Deleted regions"), the cleavage of the nucleic acid sequences between these IRT and / or RDs elements and its sequence insertion activity in A specific target
Más preferiblemente, estos péptidos homólogos a Ia transposasa Mboumar han sido modificados para potenciar Ia actividad biológica de dicha enzima. Así, por ejemplo, se pueden sustituir aminoácidos en Ia SEQ ID NO: 1 para potenciar dicha actividad. Los métodos para producir tales secuencias derivadas afines, por ejemplo, por mutagénesis dirigida al sitio, mutagénesis aleatoria, o escisión enzimática y/o ligación de ácidos nucleicos, son bien conocidos en Ia técnica, como Io son los métodos para determinar si el ácido nucleico así modificado tiene una homología significativa con Ia secuencia que se está considerando, por ejemplo, por hibridación. En otra realización más preferida de este aspecto de Ia invención el péptido recombinante es homólogo a Ia secuencia de aminoácidos de Ia SEQ ID NO: 1.More preferably, these peptides homologous to the Mboumar transposase have been modified to enhance the biological activity of said enzyme. Thus, for example, amino acids can be substituted in SEQ ID NO: 1 to enhance said activity. The methods for producing such related derived sequences, for example, by site-directed mutagenesis, random mutagenesis, or enzymatic cleavage and / or nucleic acid ligation, are well known in the art, as are the methods for determine if the nucleic acid thus modified has a significant homology with the sequence that is being considered, for example, by hybridization. In another more preferred embodiment of this aspect of the invention, the recombinant peptide is homologous to the amino acid sequence of SEQ ID NO: 1.
En otro aspecto de Ia invención el péptido recombinante de Ia invención se usa como transposasa. En otro aspecto de Ia invención el péptido recombinante de Ia invención se usa como herramienta genética.In another aspect of the invention, the recombinant peptide of the invention is used as a transposase. In another aspect of the invention, the recombinant peptide of the invention is used as a genetic tool.
Otro aspecto de Ia invención se refiere a una secuencia de ácidos nucleicos o polinucleótido recombinante, de aquí en adelante polinucleótido de Ia invención, que se traduce al péptido codificado por Ia SEQ ID NO: 1 , y que se selecciona de Ia lista que comprende: a) moléculas de ácido nucleico que codifican un péptido que comprende Ia secuencia aminoacídica de Ia SEQ ID NO: 1 , b) moléculas de ácido nucleico cuya cadena complementaria híbrida con Ia secuencia polinucleotídica de a), o c) moléculas de ácido nucleico cuya secuencia difiere de a) y/o b) debido a Ia degeneración del código genético.Another aspect of the invention relates to a sequence of nucleic acids or recombinant polynucleotide, hereinafter polynucleotide of the invention, which is translated to the peptide encoded by SEQ ID NO: 1, and which is selected from the list comprising: a) nucleic acid molecules that encode a peptide comprising the amino acid sequence of SEQ ID NO: 1, b) nucleic acid molecules whose complementary chain hybridizes with the polynucleotide sequence of a), or c) nucleic acid molecules whose sequence differs of a) and / or b) due to the degeneracy of the genetic code.
En una realización preferida de este aspecto de Ia invención Ia secuencia de aminoácidos a Ia que se traduce el polinucleótido de Ia invención, presenta una identidad de, al menos un 60% con Ia SEQ ID NO: 1. Preferiblemente, Ia Ia secuencia de aminoácidos a Ia que se traduce el polinucleótido de Ia invención, presenta una identidad de, al menos un 80%, más preferiblemente, de un 90% y más preferiblemente de un 95%, con Ia SEQ ID NO: 1.In a preferred embodiment of this aspect of the invention the amino acid sequence to which the polynucleotide of the invention is translated, has an identity of at least 60% with SEQ ID NO: 1. Preferably, the amino acid sequence to which the polynucleotide of the invention is translated, it has an identity of at least 80%, more preferably, of 90% and more preferably of 95%, with SEQ ID NO: 1.
En otro aspecto de Ia invención, el polinucleótido de Ia invención se usa para producir, en cantidades hasta ahora no disponibles, el péptido de Ia invención.In another aspect of the invention, the polynucleotide of the invention is used to produce, in amounts not yet available, the peptide of Ia invention.
Otro aspecto de Ia invención se relaciona con una construcción genética, de aquí en adelante, primera construcción genética de Ia invención o construcción de ayuda, que permite Ia expresión del péptido de Ia invención, tal y como se ha descrito anteriormente, en cantidades hasta ahora no disponibles. La producción en cantidades superiores a las actualmente disponibles permitiría el uso del péptido de Ia invención como herramienta genética.Another aspect of the invention relates to a genetic construction, henceforth, the first genetic construction of the invention or aid construction, which allows the expression of the peptide of the invention, as described above, in amounts so far not available Production in quantities greater than those currently available would allow the use of the peptide of the invention as a genetic tool.
Otro aspecto de Ia invención se refiere a una construcción genética, de aquí en adelante, segunda construcción genética de Ia invención o construcción donante, que comprende las regiones ITR reconocidas por el péptido de Ia invención, entre las que se inserta un polinucleótido de interés. Adicionalmente, puede contener un marcador, como por ejemplo, pero sin limitarse a ello, un gen de resistencia a un antibiótico.Another aspect of the invention refers to a genetic construction, hereinafter, a second genetic construction of the invention or donor construction, which comprises the ITR regions recognized by the peptide of the invention, between which a polynucleotide of interest is inserted. Additionally, it may contain a marker, such as, but not limited to, an antibiotic resistance gene.
En otro aspecto de Ia invención se describe un método para Ia obtención de un péptido recombinante de Ia invención que consiste en poner Ia construcción genética descrita anteriormente en un medio de reacción adecuado.In another aspect of the invention, a method for obtaining a recombinant peptide of the invention is described, which consists in placing the genetic construction described above in a suitable reaction medium.
Este método incluye los vectores de clonación y expresión que comprenden las moléculas de ácidos nucleicos de Ia invención. Tales vectores de expresión incluyen secuencias de control adecuadas, como por ejemplo, elementos de control de Ia traducción (como códigos de iniciación y de parada) y de Ia transcripción (por ejemplo, regiones de promotor-operador, sitios de unión. Los vectores conforme a Ia invención pueden incluir plásmidos y virus (comprendiendo bacteriófagos y virus eucarióticos), de acuerdo con procedimientos bien conocidos y documentados en el estado de Ia técnica, y pueden expresarse en una variedad de sistemas de expresión diferentes, asimismo bien conocidos y documentados en el estado de Ia técnica. Los vectores virales adecuados incluyen baculovirus y también adenovirus y virus vacunales. Muchos otros vectores virales también están descritos en el estado de Ia técnica.This method includes the cloning and expression vectors that comprise the nucleic acid molecules of the invention. Such expression vectors include suitable control sequences, such as, for example, control elements for translation (such as start and stop codes) and for transcription (for example, promoter-operator regions, binding sites. The invention may include plasmids and viruses (comprising bacteriophages and eukaryotic viruses), in accordance with procedures well known and documented in the state of the art, and can be expressed in a variety of different expression systems, also well known and documented in the state of the art. Suitable viral vectors include baculovirus and also adenovirus and vaccine viruses. Many other viral vectors are also described in the state of the art.
Se conoce una variedad de técnicas que pueden utilizarse para introducir tales vectores en células procarióticas o eucarióticas para Ia expresión, o en una línea germinal o en células somáticas, para formar animales transgénicos. Técnicas adecuadas de transformación o transfección están bien descritas en Ia bibliografía.A variety of techniques are known that can be used to introduce such vectors into prokaryotic or eukaryotic cells for expression, or in a germ line or in somatic cells, to form transgenic animals. Appropriate transformation or transfection techniques are well described in the literature.
Las células hospedantes eucarióticas o procarióticas transformadas o transfectadas, que contienen una molécula de ácido nucleico conforme a Ia invención, como se definió anteriormente, también forman parte de este aspecto de Ia invención.The transformed or transfected eukaryotic or prokaryotic host cells, which contain a nucleic acid molecule according to the invention, as defined above, also form part of this aspect of the invention.
La expresión de las secuencias (igual u homologa) codificadoras del péptido de Ia invención, utilizando una serie de técnicas y sistemas de expresión conocidos, incluyendo Ia expresión en células procarióticas tales como E.coli y en células eucarióticas tales como levaduras o el sistema de baculovirus-célula de insecto o células de mamíferos transformadas y en animales transgénicos y plantas.The expression of the sequences (same or homologous) encoding the peptide of the invention, using a series of known techniques and expression systems, including the expression in prokaryotic cells such as E.coli and in eukaryotic cells such as yeasts or the system of baculovirus-insect cell or transformed mammalian cells and in transgenic animals and plants.
En una realización particular de este aspecto de Ia invención, como vector donde se introduce el ORF de Mboumar, se empleó el plásmido de fusión pMal-c2X (New England Biolabs), junto con el gen malE de Escheríchia coli que codifica Ia proteína de unión a Ia maltosa (MBP: maltose-binding protein). Cuando se induce el promotor tac de este vector en presencia deIn a particular embodiment of this aspect of the invention, as a vector where the Mboumar ORF is introduced, the fusion plasmid pMal-c2X (New England Biolabs) was used, together with the Escheríchia coli malE gene that encodes the binding protein to maltose (MBP: maltose-binding protein). When the tac promoter of this vector is induced in the presence of
IPTG se va a expresar Ia proteína de fusión transposasa Mboumar + MBP que va a ser purificada gracias a Ia afinidad que presenta MBP por Ia amilosa y Ia maltosa. Para controlar Ia inserción de moléculas de ácidos nucleicos utilizando el transposón Mboumar, se han desarrollado sistemas duales de transposición. Un sistema dual funciona poniendo en contacto, al menos, dos construcciones genéticas (que pueden ser por ejemplo, dos plásmidos), o mediante Ia cotransfección o introducción de éstas en Ia misma célula: Ia construcción donante y Ia de ayuda. La donante es una construcción de expresión del gen (promotor-gen-terminador) o un polinucleótido de interés, flanqueado por dos ITR (5' ITR promotor- gen- terminador-3' ITR ó 5' ITR - polinucleótido de interés- marcador -3' ITR ó 5' ITR - polinucleótido de interés- 3' ITR) y Ia de ayuda contiene Ia transposasa Mboumar bajo el control de un promotor. Adicionalmente, Ia transposición se puede llevar a cabo de forma masiva in vitro, produciendo Ia transposasa recombinante de forma exógena, y poniéndola en contacto, posteriormente, con Ia construcción donante.IPTG is going to express the Mboumar + MBP transposase fusion protein that will be purified thanks to the affinity that MBP has for amylose and maltose. To control the insertion of nucleic acid molecules using the Mboumar transposon, dual transposition systems have been developed. A dual system works by contacting at least two genetic constructs (which can be, for example, two plasmids), or by means of the co-transfection or introduction of these into the same cell: the donor construct and the aid construct. The donor is a gene expression construct (promoter-gene-terminator) or a polynucleotide of interest, flanked by two ITRs (5 'ITR promoter-gene-terminator-3' ITR or 5 'ITR - polynucleotide of interest-marker - 3 'ITR or 5' ITR - polynucleotide of interest - 3 'ITR) and the aid Ia contains the Mboumar transposase under the control of a promoter. Additionally, the transposition can be carried out massively in vitro, producing the recombinant transposase exogenously, and putting it in contact, subsequently, with the donor construction.
El contacto o Ia cotransfección de ambas construcciones (donante y de ayuda) en una misma célula, provoca primero Ia expresión de Ia transposasa Mboumar y después Ia transposasa Mboumar corta Ia construcción donante por las 2 ITR y pega toda Ia construcción en el genoma de Ia célula huésped, o de una tercera construcción genética receptora, que puede ser, por ejemplo, un plásmido (plásmido receptor). Para poder cortar y pegar las ITR de Ia construcción donante, Ia transposición mediada por Mboumar no sólo requiere una transposasa Mboumar completa y activa en Ia construcción de ayuda, sino también 2 sitios de unión para Ia transposasa en las ITR en Ia construcción donante.The contact or the co-transfection of both constructions (donor and aid) in the same cell, first causes the expression of the Mboumar transposase and then the Mboumar transposase cuts the donor construction by the 2 ITRs and glue all the construction in the genome of Ia host cell, or a third recipient genetic construct, which may be, for example, a plasmid (receptor plasmid). In order to cut and paste the ITRs from the donor construction, the Mboumar-mediated transposition requires not only a complete and active Mboumar transposase in the aid construction, but also 2 binding sites for the transposase in the ITRs in the donor construction.
Otro aspecto de Ia invención se relaciona con un método para Ia transposición in vitro o in vivo que consiste en poner en contacto el péptido recombinante de Ia invención, con Ia construcción genética que comprende el polinucleótido de interés. En una realización preferida de este aspecto de Ia invención el método para Ia transposición in vitro o in vivo se usa para Ia generación de mutaciones aleatorias. En una realización aún más preferida de Ia invención, el método para Ia transposición in vitro o in vivo se usa para Ia generación de transgénesis y mutagénesis aleatoria en el genoma de células procariotas o eucariotas.Another aspect of the invention relates to a method for transposition in vitro or in vivo that consists in contacting the recombinant peptide of the invention, with the genetic construction comprising the polynucleotide of interest. In a preferred embodiment of this aspect of the invention the method for transposition in vitro or in vivo is used for the generation of random mutations. In an even more preferred embodiment of the invention, the method for transposition in vitro or in vivo is used for the generation of transgenesis and random mutagenesis in the genome of prokaryotic or eukaryotic cells.
Otro aspecto de Ia invención se refiere al uso del péptido de Ia invención para Ia generación de mutaciones aleatorias, tanto in vitro como in vivo. Más preferiblemente, el péptido de Ia invención se usa para Ia generación de transgénesis y mutagénesis aleatoria en el genoma de células procariotas o eucariotas, tanto in vitro como in vivo.Another aspect of the invention relates to the use of the peptide of the invention for the generation of random mutations, both in vitro and in vivo. More preferably, the peptide of the invention is used for the generation of transgenesis and random mutagenesis in the genome of prokaryotic or eukaryotic cells, both in vitro and in vivo.
Mediante mutagénesis insercional inducida por Ia transposasa Mboumar se podría identificar Ia función de determinados genes, identificar oncogenes y/o para introducir mutagénesis masiva. Para aumentar el número de inactivaciones insercionales, las primeras construcciones ITR insertadas en el genoma en una primera generación se pueden activar masivamente mediante Ia introducción de transposasas exógenas. La inactivación de genes por mutagénesis insercional con ITR resultaría en Ia obtención de algunos mutantes con Ia alteración del fenotipo deseado. En este proceso, los genes inactivados están además marcados con las ITR y sus secuencias pueden entonces recuperarse y los genes identificarse.By insertion mutagenesis induced by Mboumar transposase, the function of certain genes could be identified, oncogenes identified and / or to introduce massive mutagenesis. To increase the number of insertional inactivations, the first ITR constructs inserted in the genome in a first generation can be massively activated by the introduction of exogenous transposases. Inactivation of genes by insertional mutagenesis with ITR would result in obtaining some mutants with the alteration of the desired phenotype. In this process, the inactivated genes are also labeled with the ITRs and their sequences can then be recovered and the genes identified.
Una vez que los genes implicados se han identificado se podrían utilizar métodos tradicionales de selección genética para obtener líneas con el carácter deseado.Once the genes involved have been identified, traditional methods of genetic selection could be used to obtain lines with the desired character.
El término "péptido recombinante que comprende" tal y como se emplea en esta memoria, hace referencia a que el péptido incluye Ia secuencia aminoacídica SEQ ID NO: 1 , pudiendo ésta integrarse con otros aminoácidos y péptidos, incluso péptidos de fusión, siempre que conserve su función como enzima transposasa, y que es objeto de Ia presente invención. También hace referencia a secuencias de aminoácidos que codifiquen un péptido homólogo al que codifica Ia SEQ ID NO: 1.The term "recombinant peptide comprising" as used herein, refers to the fact that the peptide includes the amino acid sequence SEQ ID NO: 1, which can be integrated with other amino acids and peptides, including fusion peptides, provided it retains its function as a transposase enzyme, and which is the subject of the present invention. It also refers to amino acid sequences that encode a homologous peptide that encodes SEQ ID NO: 1.
El término "homología", tal y como se utiliza en esta memoria, hace referencia a Ia semejanza entre dos estructuras debida a una ascendencia evolutiva común, y más concretamente, a Ia semejanza entre los aminoácidos de dos o más proteínas o secuencias aminoacídicas. Puesto que dos proteínas se consideran homologas si tienen el mismo origen evolutivo o si tienen función y estructura similares, en general, se asume que valores superiores de similitud o identidad del 30% indican estructuras homologas. Podemos considerar, por tanto, que porcentajes de identidad de, al menos, un 80%, mantendrán Ia función transposasa de dicho péptido, que es objeto de Ia presente invención.The term "homology", as used herein, refers to the similarity between two structures due to a common evolutionary ancestry, and more specifically, to the similarity between the amino acids of two or more proteins or amino acid sequences. Since two proteins are considered homologous if they have the same evolutionary origin or if they have similar function and structure, in general, it is assumed that higher values of similarity or identity of 30% indicate homologous structures. We can consider, therefore, that identity percentages of at least 80% will maintain the transposase function of said peptide, which is the subject of the present invention.
El término "identidad", tal y como se utiliza en esta memoria, hace referencia a Ia proporción de aminoácidos idénticos entre dos secuencias aminoácidicas que se comparan. Los métodos de comparación de secuencias son conocidos en el estado de Ia técnica, e incluyen, aunque sin limitarse a ellos, el programa GAG, incluyendo GAP (Devereux et al., Nucleic Acids Research 12: 287 (1984) Genetics Computer Group University of Wisconsin, Madison, (Wl); BLASTP o BLASTN, y FASTA (Altschul et al., J. Mol. Biol. 215: 403-410 (1999). Adicionalmente, el algoritmo de Smith Waterman debe usarse para determinar el grado de identidad de dos secuencias.The term "identity", as used herein, refers to the proportion of identical amino acids between two amino acid sequences that are compared. Sequence comparison methods are known in the state of the art, and include, but are not limited to, the GAG program, including GAP (Devereux et al., Nucleic Acids Research 12: 287 (1984) Genetics Computer Group University of Wisconsin, Madison, (Wl); BLASTP or BLASTN, and FASTA (Altschul et al., J. Mol. Biol. 215: 403-410 (1999). Additionally, the Smith Waterman algorithm should be used to determine the degree of identity of two sequences.
El término "fragmento o derivado" de un péptido, "que posea actividad transposasa" se refiere a fragmentos o péptidos derivados de Ia transposasa Mboumar en su estado natural que carecen de algún o algunos aminoácidos, y que aún actúan transponiendo ADN. Alternativamente, este término también se refiere a péptidos derivados de Ia transposasa Mboumar natural, donde se ha cambiado uno o más aminoácidos, eliminados, añadidos, o menos preferentemente, que ha sufrido inversiones o duplicaciones. Tales modificaciones se hacen, preferentemente, mediante tecnología de ADN recombinante. Otras modificaciones pueden hacerse, también, mediante alteraciones químicas de Ia transposasa. El péptido resultante (o los fragmentos derivados del mismo) pueden ser producidos recombinantemente, y retener características idénticas, o esencialmente idénticas a Ia transposasa natural Mboumar.The term "fragment or derivative" of a peptide, "which possesses transposase activity" refers to fragments or peptides derived from the Mboumar transposase in their natural state that lack some or some amino acids, and that still act by transposing DNA. Alternatively, this term also refers to peptides derived from The natural Mboumar transposase, where one or more amino acids have been changed, eliminated, added, or less preferably, which has undergone investments or duplications. Such modifications are preferably made by recombinant DNA technology. Other modifications can also be made by chemical alterations of the transposase. The resulting peptide (or the fragments derived therefrom) can be produced recombinantly, and retain identical characteristics, or essentially identical to the natural Mboumar transposase.
Un "péptido recombinante" tal y como se entiende en esta memoria, es aquel que se obtiene a partir de Ia expresión de un "polinucleótido recombinante".A "recombinant peptide" as understood herein, is one that is obtained from the expression of a "recombinant polynucleotide".
El término "polinucleótido recombinante" tal como se usa aquí supone un polinucleótido de origen genómico, ADNc, semisintético, o sintético que, en virtud de su origen o manipulación: (1 ) no está asociado con el total o una porción de un polinucleótido con el que está asociado en Ia naturaleza, (2) está unido a un polinucleótido diferente de aquel al que está unido en Ia naturaleza, o (3) no ocurre en Ia naturaleza.The term "recombinant polynucleotide" as used herein assumes a polynucleotide of genomic, cDNA, semi-synthetic, or synthetic origin which, by virtue of its origin or manipulation: (1) is not associated with the total or a portion of a polynucleotide with which is associated in nature, (2) is linked to a polynucleotide different from that to which it is linked in nature, or (3) does not occur in nature.
El término "polinucleótido" como aquí se usa se refiere a una forma polimérica de nucleótidos de cualquier longitud, bien ribonucleótidos o bien desoxirribonucleótidos. Este término sólo se refiere a Ia estructura primaria de Ia molécula. Así, este término incluye ADN de cadena doble o sencilla, al igual que ARN de cadena doble o sencilla. También incluye todos los tipos de modificaciones conocidas (marcadores conocidos en Ia técnica, metilación, remates, sustitución de uno o más de los nucleótidos naturales con un análogo, modificaciones internucleótidas como, por ejemplo, aquellas con uniones sin carga (por ejemplo, fosfonatos de metilo, triésteres de fósforo, amidatos de fósforo, carbamatos, etc.) y con uniones cargadas (por ejemplo, tioatos de fósforo, ditioatos de fósforo, etc.), aquellos que contienen mitades colgantes, como, por ejemplo, proteínas (incluyendo por ejemplo, nucleasas, toxinas, anticuerpos, péptidos de señal, poli-L-lisina, etc.), aquellos con intercalantes (por ejemplo, acridina, psoralen, etc.), aquellos que contienen quelantes (por ejemplo, metales, metales radioactivos, boro, metales oxidativos, etc.), aquellos que contienen alquilantes, aquellos con uniones modificadas (por ejemplo, ácidos nucleicos alfa anoméricos, etc.), al igual que formas no modificadas del polinucleótido.The term "polynucleotide" as used herein refers to a polymeric form of nucleotides of any length, either ribonucleotides or deoxyribonucleotides. This term only refers to the primary structure of the molecule. Thus, this term includes double or single stranded DNA, as well as double or single stranded RNA. It also includes all types of known modifications (markers known in the art, methylation, auctions, replacement of one or more of the natural nucleotides with an analogue, internucleotide modifications such as, for example, those with uncharged junctions (for example, phosphonates of methyl, phosphorus tri esters, phosphorus amidates, carbamates, etc.) and with unions charged (eg, phosphorus thioates, phosphorus dithioates, etc.), those containing pendant halves, such as, for example, proteins (including, for example, nucleases, toxins, antibodies, signal peptides, poly-L-lysine, etc.), those with intercalating agents (for example, acridine, psoralen, etc.), those containing chelants (for example, metals, radioactive metals, boron, oxidative metals, etc.), those containing alkylating agents, those with modified bonds (for example, anomeric alpha nucleic acids, etc.), as well as unmodified forms of the polynucleotide.
El término "herramienta genética" tal y como se define en esta memoria, hace referencia a las herramientas empleadas en ingeniería genética para diversas aplicaciones, y engloba herramientas de genética molecular, de genética cuantitativa, genética de poblaciones, etc.. En particular, en el contexto de Ia presente invención, hace referencia a una herramienta útil para Ia transposición in vitro, o para Ia transgénesis y mutagénesis de forma aleatoria, tanto in vitro como in vivo.The term "genetic tool" as defined herein refers to the tools used in genetic engineering for various applications, and encompasses tools of molecular genetics, quantitative genetics, population genetics, etc. In particular, in The context of the present invention refers to a tool useful for transposition in vitro, or for transgenesis and mutagenesis randomly, both in vitro and in vivo.
Un "vector" es un replicón al que se ha unido otro segmento polinucleótido, para realizar Ia replicación y/o expresión del segmento unido.A "vector" is a replicon to which another polynucleotide segment has been attached, to perform the replication and / or expression of the bound segment.
Un "replicón" es cualquier elemento genético que se comporta como una unidad autónoma de replicación polinucleótida dentro de una célula; esto es, capaz de replicarse bajo su propio control.A "replicon" is any genetic element that behaves as an autonomous unit of polynucleotide replication within a cell; that is, able to replicate under its own control.
"Secuencia de control" se refiere a secuencias de polinucleótidos que son necesarias para efectuar Ia expresión de las secuencias codificadoras a las que están ligadas. La naturaleza de dichas secuencias de control difiere dependiendo del organismo huésped; en procariotas, dichas secuencias de control generalmente incluyen un promotor, un sitio de unión ribosomal, y señales de terminación; en eucariotas, generalmente, dichas secuencias de control incluyen promotores, señales de terminación, intensificadores y, en ocasiones, silenciadores. Se pretende que el término "secuencias de control" incluya, como mínimo, todos los componentes cuya presencia es necesaria para Ia expresión, y también puede incluir componentes adicionales cuya presencia sea ventajosa."Control sequence" refers to polynucleotide sequences that are necessary to effect the expression of the coding sequences to which they are linked. The nature of such control sequences differs depending on the host organism; in prokaryotes, said control sequences generally include a promoter, a ribosomal binding site, and termination signals; in eukaryotes, generally, said control sequences include promoters, termination signals, enhancers and, sometimes, silencers. It is intended that the term "control sequences" includes, at a minimum, all components whose presence is necessary for expression, and may also include additional components whose presence is advantageous.
"Unidos de forma operativa" se refiere a una yuxtaposición en Ia que los componentes así descritos tienen una relación que les permite funcionar en Ia manera intencionada. Una secuencia de control "unida de forma operativa" a una secuencia codificadora está ligada de tal manera que Ia expresión de Ia secuencia codificadora se consigue en condiciones compatibles con las secuencias de control."Operationally linked" refers to a juxtaposition in which the components thus described have a relationship that allows them to function in the intended way. A control sequence "operatively linked" to a coding sequence is linked in such a way that the expression of the coding sequence is achieved under conditions compatible with the control sequences.
Un "marco de lectura libre" (ORF) es una región de una secuencia de polinucleótidos que codifica un polipéptido; esta región puede representar una porción de una secuencia codificadora o una secuencia codificadora completa.A "free reading frame" (ORF) is a region of a polynucleotide sequence that encodes a polypeptide; This region may represent a portion of a coding sequence or a complete coding sequence.
Una "secuencia codificadora" es una secuencia de polinucleótidos que se transcribe a ARNm y/o se traduce a un polipéptido cuando está bajo control de secuencias reguladoras apropiadas. Los límites de Ia secuencia codificadora se determinan mediante un codón de inicio de traducción en el extremo 5' y un codón de finalización de Ia traducción en el extremo 3'.A "coding sequence" is a polynucleotide sequence that is transcribed into mRNA and / or translated into a polypeptide when under control of appropriate regulatory sequences. The limits of the coding sequence are determined by a translation start codon at the 5 'end and a translation end codon at the 3' end.
Una secuencia codificadora puede incluir, pero no se limita a ARNm, ADNc, y secuencias de polinucleótidos recombinantes.A coding sequence may include, but is not limited to mRNA, cDNA, and recombinant polynucleotide sequences.
El término "Mboumar natural", tal y como se emplea en esta memoria, hace referencia al péptido o proteína codificada por Ia secuencia nucleotídica denominada Mboumar-9, correspondiente a Ia SEQ ID NO: 1 , clonada a partir del genoma de Ia hormiga Messor bouvierí. El término "Mboumar muíante" significa en esta descripción, Ia proteína resultante de Ia modificación de Ia proteína "Mboumar natural", preferentemente para potenciar Ia actividad biológica de dicha proteína.The term "natural Mboumar", as used herein, refers to the peptide or protein encoded by the nucleotide sequence called Mboumar-9, corresponding to SEQ ID NO: 1, cloned from the genome of the Messor ant genome bouvierí. The term "Mutant Mboumar" means in this description, the protein resulting from the modification of the "natural Mboumar" protein, preferably to enhance the biological activity of said protein.
Un "hospedador" o "célula hospedadora" como se emplea en esta memoria se refiere a un organismo, célula o tejido que sirve como diana o recipiente del elemento transponible para insertarse dentro ellos mismos. Una célula hospedadora u hospedador puede indicar, también, una célula u hospedador que expresa una proteína recombinante de interés donde Ia célula hospedadora se transforma con un vector de expresión conteniendo el gen de interés.A "host" or "host cell" as used herein refers to an organism, cell or tissue that serves as a target or recipient of the transposable element to insert into themselves. A host or host cell can also indicate a cell or host that expresses a recombinant protein of interest where the host cell is transformed with an expression vector containing the gene of interest.
El término "transgénico" se usa en el contexto de Ia presente invención para describir animales o plantas en los que se ha incorporado de forma estable una secuencia de ADN no propio introducido por un elemento mariner (mariner-like element MLE) en sus cromosomas de tal forma que puede pasar de manera estable a las generaciones sucesivas de animales transgénicos descendientes. En tales circunstancias, el organismo transgénico inicial se conoce como "fundador". El animal "fundador" debe tener el ADN no propio o transgén incorporado en todas sus células o en una proporción suficiente para que su progenie establezca por herencia el transgénico. Cuando el transgén está presente sólo en una porción de células, el organismo se refiere como una quimera. La presente invención también se extiende a animales que incorporan el transgén estable o directamente en sus cromosomas y los cuales expresan el transgén en sus células somáticas sin pasar el transgén a su descendencia. En concreto, estos animales servirían como modelos genéticos, para, como por ejemplo, pero sin limitarse a estos usos, identificar y estudiar Ia función de los genes, detectar oncogenes, obtención de productos biofarmacéuticos,...Se han descrito modelos similares obtenidos por construcciones genéticas derivadas de transposones en ratones y peces cebra.The term "transgenic" is used in the context of the present invention to describe animals or plants in which a non-proprietary DNA sequence introduced by a mariner element (mariner-like element MLE) has been stably incorporated into its chromosomes of such that it can pass stably to successive generations of transgenic descendants. In such circumstances, the initial transgenic organism is known as the "founder." The "founder" animal must have the non-own DNA or transgene incorporated in all its cells or in a proportion sufficient for its progeny to establish by inheritance the transgenic. When the transgene is present only in a portion of cells, the organism is referred to as a chimera. The present invention also extends to animals that incorporate the transgene stable or directly into their chromosomes and which express the transgene in their somatic cells without passing the transgene to their offspring. Specifically, these animals would serve as genetic models, for, for example, but not limited to these uses, to identify and study the function of genes, detect oncogenes, obtain biopharmaceuticals, ... Similar models described by genetic constructs derived from transposons in mice and fish zebra.
Se entiende por "transgénesis" en esta memoria al proceso de transferir ADN no propio a un organismo, que pasa de esta manera a denominarse "transgénico"."Transgenesis" is understood herein as the process of transferring non-own DNA to an organism, which in this way becomes known as "transgenic."
A Io largo de Ia descripción y las reivindicaciones Ia palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en Ia materia, otros objetos, ventajas y características de Ia invención se desprenderán en parte de Ia descripción y en parte de Ia práctica de Ia invención. Los siguientes ejemplos y dibujos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de Ia presente invención.Throughout the description and the claims, the word "comprises" and its variants are not intended to exclude other technical characteristics, additives, components or steps. For those skilled in the art, other objects, advantages and characteristics of the invention will emerge partly from the description and partly from the practice of the invention. The following examples and drawings are provided by way of illustration, and are not intended to be limiting of the present invention.
BREVE DESCRIPCIÓN DE LAS FIGURASBRIEF DESCRIPTION OF THE FIGURES
Figura 1. Plásmido pITR y plásmido pITR-Kn. El vector pITR se obtiene a partir del plásmido clonado con el maríner Mboumar-9 pGEMT easy vector (Promega) por Ia eliminación del gen de resistencia a Ia ampicilina (Ampr) y el origen de replicación (ori). Igualmente se han eliminado las dianas EcoRI del pGEMT easy vector.Figure 1. Plasmid pITR and plasmid pITR-Kn. The pITR vector is obtained from the plasmid cloned with the Mboumar-9 pGEMT easy vector mariner (Promega) by the elimination of the ampicillin resistance gene (Ampr) and the origin of replication (ori). The EcoRI targets of the pGEMT easy vector have also been removed.
Figura 2. Sitio de clonación del plásmido pITR con una región de corte de Ia Apo I.Figure 2. Cloning site of plasmid pITR with a cut-off region of Apo Apo I.
Figura 3. Procedimiento de eliminación de las dianas para EcoRI del pGEMT easy vector. A- Digestión con E. coli y generación de extremos protuberantes. B- Rellenado de los extremos protuberantes con Klenow y generación de extremos romos. C- Ligado de los dos extremos con ligasa T4. Figura 4. Esquema del ensayo de Ia transposición in vitro.Figure 3. Procedure for removing EcoRI targets from pGEMT easy vector. A- Digestion with E. coli and generation of protruding ends. B- Filling the protruding ends with Klenow and generating blunt ends. C- Ligating of the two ends with T4 ligase. Figure 4. Scheme of the in vitro transposition assay.
EXPOSICIÓN DETALLADA DE MODOS DE REALIZACIÓNDETAILED EXHIBITION OF REALIZATION MODES
En Ia hormiga Messor bouvierí se han clonado varias copias diferentes de elementos mariner. El análisis de Ia secuencia nucleotídica de estos mariner indica que podrían dar lugar a transposasas funcionales, ya que Ia región codificante de Ia transposasa no presenta mutaciones que generen codones de parada, y Ia proteína que originaría conserva Ia mayor parte de los motivos que se suponen son necesarios para Ia actividad de Ia transposasa.In the ant Messor bouvierí several different copies of mariner elements have been cloned. The analysis of the nucleotide sequence of these mariner indicates that they could give rise to functional transposases, since the coding region of the transposase does not present mutations that generate stop codons, and the protein that would originate retains most of the reasons that are supposed they are necessary for the activity of the transposase.
A partir de uno de los clones de mariner obtenidos (Mboumar-9) se ha aislado Ia región codificante de Ia transposasa, que se ha introducido en un vector de expresión para llevar a cabo su síntesis en E. coli. Esta transposasa se ha denominado Mboumar. Mediante experimentos de transposición in vitro se ha determinado que esta transposasa es activa, siendo capaz de movilizar al elemento mariner del cual procede.From one of the mariner clones obtained (Mboumar-9) the transposase coding region has been isolated, which has been introduced into an expression vector to carry out its synthesis in E. coli. This transposase has been called Mboumar. Through in vitro transposition experiments it has been determined that this transposase is active, being able to mobilize the mariner element from which it comes.
Se han realizado varias construcciones mediante Ia eliminación parcial de Ia región central del mariner, manteniendo las ITRs. La región eliminada se ha sustituido por un gen marcador, que en este caso es el gen de resistencia a Ia kanamicina (Kn). Mediante transposición in vitro se ha comprobado que esta construcción (ITR-gen Kn -ITR) puede ser movilizada por Ia transposasa Mboumar, y, por tanto, cualquier otra secuencia colocada entre estas ITRs.Several constructions have been made through the partial elimination of the central region of the mariner, maintaining the ITRs. The deleted region has been replaced by a marker gene, which in this case is the kanamycin resistance gene (Kn). Through in vitro transposition it has been proven that this construction (ITR-Kn -ITR gene) can be mobilized by the Mboumar transposase, and, therefore, any other sequence placed between these ITRs.
A continuación se ilustrará Ia invención mediante unos ensayos realizados por los inventores, que pone de manifiesto Ia actividad del péptido recombinante de Ia invención y Ia efectividad de las construcciones genéticas y de dicho péptido en Ia transgénesis in vitro. a) Purificación de Ia transposasa MboumarNext, the invention will be illustrated by tests carried out by the inventors, which shows the activity of the recombinant peptide of the invention and the effectiveness of the genetic constructs and of said peptide in the in vitro transgenesis. a) Purification of the Mboumar transposase
La producción in vitro de Ia proteína se realiza mediante Ia introducción de su región codificante (ORF) en un vector de expresión. De los múltiples vectores de expresión existentes en el mercado se ha usado en este caso el plásmido de fusión pMal-c2X (New England Biolabs).The in vitro production of the protein is carried out by introducing its coding region (ORF) into an expression vector. Of the multiple expression vectors available on the market, the fusion plasmid pMal-c2X (New England Biolabs) has been used in this case.
El ORF de Mboumar se introduce en el vector pMal-c2X aguas abajo del gen malE de Escherichia coli que codifica Ia proteína de unión a Ia maltosa (MBP: maltose-binding protein). Cuando se induce el promotor tac de este vector en presencia de IPTG se va a expresar Ia proteína de fusión transposasa Mboumar + MBP que va a ser purificada gracias a Ia afinidad que presenta MBP por Ia amilosa y Ia maltosa.The Mboumar ORF is introduced into the pMal-c2X vector downstream of the Escherichia coli malE gene encoding the maltose binding protein (MBP: maltose-binding protein). When the tac promoter of this vector is induced in the presence of IPTG, the Mboumar + MBP transposase fusion protein will be expressed, which will be purified thanks to the affinity that MBP has for the amylose and the maltose.
El ORF del transposón Mboumar es amplificado a partir del clon Mboumar- 9 (Palomeque et al. 2006. Detection of a mariner-Wke element and a miniature inverted-repeat transposable element (MITE) associated with the heterochromatin from ants of the genus Messor and their possible involvement for satellite DNA evolution. Gene 371 :194-205) con dos primers que incorporan dos dianas de corte para las enzimas de restricción EcoRI y BamHI, Io cual va a permitir introducirlo en fase en el polylinker de pMal-c2X. Una vez se obtiene el plásmido que incluye Ia ORF de Mboumar en el lugar correcto de clonación en pMal-c2X, se introduce por transformación en bacterias E. coli de Ia cepa Rosetta 2. Con una de las colonias positivas obtenidas se inoculan 100 mi de cultivo líquido de medio LB con ampicilina (Amp), y se incuba en agitación a 37 0C hasta que se obtiene una A = 0,5. A continuación se añade IPTG a una concentración final de 0,1 mM y se mantiene en agitación durante toda Ia noche a temperatura ambiente. Posteriormente se centrifuga el cultivo a 5.000 rpm durante 10 minutos. El precipitado se resuspende en 10 mi de buffer HSG (Hepes pH=7,5 50 mM, NaCI 200 mM, EDTA 5 mM, DTT 2 mM y un 10% de glicerol) al que se Ie añade inhibidor de Ia proteasa. Los 100 mi de cultivo se introducen en una prensa francesa y se someten las bacterias a una presión de 1.000 Psi. El lisado obtenido se centrifuga a 15.000 rpm durante 30 minutos. El sobrenadante se hace pasar por una columna con 1 mi de amilasa (previamente lavada con Buffer HSG) donde va a quedar retenida Ia proteína de fusión. Una vez a pasado todo el sobrenadante a través de Ia matriz de amilosa, esta se vuelve a lavar con Buffer HSG. Finalmente, para separar Ia proteína se añade 1 mi de Buffer HSG con maltosa a una concentración de 10 mM, se diluye en buffer A (Hepes pH=7,5 50 mM, NaCI 50 mM, EDTA 5 mM, DTT 2 mM y un 5 % de glicerol) y se hace pasar por una columna de intercambio iónico (FPLC) tomándose varias fracciones. Estas fracciones se migran en un gel SDS-Page y se selecciona Ia que presente una proporción mayor de proteína completa con respecto a Ia incompleta. A Ia fracción seleccionada se Ie añade glicerol (concentración final del 10%), se alícuota y se guarda a -8O0C para su posterior uso. La concentración de proteína se cuantifica mediante el método de Bradford.The Mboumar transposon ORF is amplified from the Mboumar-9 clone (Palomeque et al. 2006. Detection of a mariner-Wke element and a miniature inverted-repeat transposable element (MITE) associated with the heterochromatin from ants of the genus Messor and their possible involvement for satellite DNA evolution (Gene 371: 194-205) with two primers that incorporate two cutting targets for the restriction enzymes EcoRI and BamHI, which will allow it to be introduced in phase in the polylinker of pMal-c2X. Once the plasmid that includes the Mboumar ORF at the correct cloning site in pMal-c2X is obtained, it is introduced by transformation into E. coli bacteria of the Rosetta 2 strain. With one of the positive colonies obtained 100 ml of inoculated liquid culture of LB medium with ampicillin (Amp), and incubated under stirring at 37 0 C until a a = 0.5 is obtained. IPTG is then added to a final concentration of 0.1 mM and kept under stirring overnight at room temperature. The culture is then centrifuged at 5,000 rpm for 10 minutes. The precipitate is resuspended in 10 ml of HSG buffer (Hepes pH = 7.5 50 mM, 200 mM NaCI, 5 mM EDTA, 2 mM DTT and 10% glycerol) to which protease inhibitor is added. The 100 ml of culture is introduced in a French press and the bacteria are subjected to a pressure of 1,000 Psi. The lysate obtained is centrifuged at 15,000 rpm for 30 minutes. The supernatant is passed through a column with 1 ml of amylase (previously washed with Buffer HSG) where the fusion protein will be retained. Once all the supernatant has passed through the amylose matrix, it is washed again with Buffer HSG. Finally, to separate the protein, 1 ml of Buffer HSG with maltose is added at a concentration of 10 mM, diluted in buffer A (Hepes pH = 7.5 50 mM, 50 mM NaCI, 5 mM EDTA, 2 mM DTT and a 5% glycerol) and is passed through an ion exchange column (FPLC) taking several fractions. These fractions are migrated on an SDS-Page gel and the one with a higher proportion of complete protein is selected with respect to the incomplete one. To the selected fraction glycerol is added (final concentration of 10%), aliquot and stored at -8O 0 C for later use. The protein concentration is quantified by the Bradford method.
La secuencia de Ia transposasa Mboumar-9, obtenida a partir de Ia secuencia de ADN del maríner Mboumar-9, se recoge en Ia SEQ ID NO: 1.The sequence of the Mboumar-9 transposase, obtained from the DNA sequence of the Mboumar-9 mariner, is collected in SEQ ID NO: 1.
b) Fundamento de Ia transposición in vitrob) Basis of in vitro transposition
Para determinar Ia actividad in vitro de Ia transposasa es necesario el desarrollo de dos vectores, uno el donador y otro el receptor. El Plásmido Donador contendrá Ia secuencia que se desea movilizar, que debe estar flanqueada por las ITRs del transposón Mboumar. El Plásmido Receptor puede ser cualquier otro donde pueda ser detectada Ia inserción de Ia secuencia localizada entre las dos ITRs que aporta el plásmido donador. Durante Ia transposición in vitro Ia transposasa Mboumar va a reconocer las ITRs que se localizan en el plásmido donador. La transposasa realizará un corte en los extremos de estas ITRs e integrará este fragmento de DNA en un dinucleótido TA (que sufrirá una duplicación durante el proceso) del plásmido receptor. Sin embargo, es también posible que se produzca integración en un sitio distinto del propio plásmido donador. Para evitar este inconveniente el plásmido donador deberá ser incapaz de replicarse en las bacterias que se transformarán con Ia reacción de Ia transposición in vitro.To determine the in vitro activity of the transposase it is necessary to develop two vectors, one the donor and the other the recipient. The Donor Plasmid will contain the sequence to be mobilized, which must be flanked by the ITRs of the Mboumar transposon. The Receptor Plasmid can be any other where the insertion of the sequence located between the two ITRs provided by the donor plasmid can be detected. During the in vitro transposition the Mboumar transposase will recognize the ITRs that are located in the donor plasmid. The transposase will make a cut at the ends of these ITRs and integrate this DNA fragment into a TA dinucleotide (which will undergo duplication during the process) of the recipient plasmid. However, it is also possible that integration takes place at a site other than the donor plasmid itself. To avoid this inconvenience, the donor plasmid must be unable to replicate in the bacteria that will be transformed with the reaction of the transposition in vitro.
c) Diseño de los vectores para Ia transposición in vitroc) Design of vectors for in vitro transposition
Se han construido dos plásmidos donadores: pITR, que presenta los extremos del elemento mariner y por tanto sus ITRs, y el pITR-Kn, derivado del anterior, pero al que se Ie ha incorporado el gen de resistencia a kanamicina (gen Knr) (Fig.1 ).Two donor plasmids have been constructed: pITR, which presents the ends of the mariner element and therefore its ITRs, and the pITR-Kn, derived from the previous one, but to which the kanamycin resistance gene (Knr gene) has been incorporated ( Fig. 1).
c.1. Plásmido pITRc.1. PITR plasmid
Para Ia construcción de este vector se parte del plásmido Mboumar-9 que contiene el elemento mariner Mboumar-9 clonado en el plásmido pGEMT easy vector (Promega). La primera modificación que se realiza sobre el plásmido es Ia eliminación del gen de resistencia a Ia ampicilina (Ampr) y el origen de replicación (ori). Para ello se ha digerido el plásmido con los enzimas Seal y Accl, liberándose así Ia mayor parte del gen Ampr y el ori. Este fragmento se sustituye por el origen de replicación R6K, el cual va a permitir a este plásmido replicarse únicamente en bacterias pir+, pero no en cepas pir- , que van a ser aquellas transformadas con Ia reacción de transposición. Posteriormente el plásmido se digiere con las enzimas de restricción Mscl y Ndel (digestión parcial), y se unen los extremos generados en el vector por ligación. Estas enzimas van a liberar Ia región central del maríner dejando solo 173 pb de los extremos, en los que se encuentran las dos ITRs. En esta región se localiza una secuencia diana para el enzima Apol, que puede ser utilizada para insertar una secuencia de DNA (Fig.2). Sin embargo, esta enzima también es capaz de cortar en las dianas para EcoRI que se encuentran en el vector pGEM-T, a ambos lados del inserto, por Io que es necesario eliminarlas.For the construction of this vector, the Mboumar-9 plasmid containing the Mboumar-9 mariner element cloned in the plasmid pGEMT easy vector (Promega) is used. The first modification that is made on the plasmid is the elimination of the ampicillin resistance gene (Ampr) and the origin of replication (ori). For this, the plasmid has been digested with the Seal and Accl enzymes, thus releasing most of the Ampr gene and the ori. This fragment is replaced by the origin of R6K replication, which will allow this plasmid to replicate only in pir + bacteria, but not in pir- strains, which will be those transformed with the transposition reaction. Subsequently, the plasmid is digested with the restriction enzymes Mscl and Ndel (partial digestion), and the ends generated in the vector are joined by ligation. These enzymes will release the central region of the mariner leaving only 173 bp of the ends, in which the two ITRs are found. In this region a target sequence for the Apol enzyme is located, which can be used to insert a DNA sequence (Fig. 2). However, this enzyme is also able to cut on the EcoRI targets found in the pGEM-T vector, on both sides of the insert, so it is necessary to eliminate them.
Para eliminar las dianas EcoRI se digiere el plásmido con este enzima, generándose dos fragmentos, uno con el inserto correspondiente al maríner y otro con el vector. Este enzima genera extremos protuberantes que son rellenados con ayuda del enzima Klenow, generándose así fragmentos con extremos romos que vuelven a ser ligados, degenerando así Ia diana para EcoRI (Fig.3), quedando Ia diana Apol entre las dos ITRs como diana única para este enzima en el plásmido (Fig. 2)To eliminate the EcoRI targets, the plasmid is digested with this enzyme, generating two fragments, one with the insert corresponding to the mariner and the other with the vector. This enzyme generates protruding ends that are filled with the help of the Klenow enzyme, thus generating fragments with blunt ends that are re-bound, thus degenerating the target for EcoRI (Fig. 3), leaving the Apol target between the two ITRs as a single target for this enzyme in the plasmid (Fig. 2)
c.2. Plásmido pITR-Knc.2. PITR-Kn plasmid
El plásmido pITR-Kn es derivado del pITR al cual se Ie ha insertado el gen de resistencia a Ia kanamicina (gen Knr) en Ia diana de Apol (Fig.1 )Plasmid pITR-Kn is derived from the pITR to which the kanamycin resistance gene (Knr gene) has been inserted into the Apol target (Fig. 1)
c.3. Plásmido receptorc.3. Receptor plasmid
Como plásmido receptor se puede usar cualquier otro que confiera resistencia a un antibiótico diferente de Ia kanamicina y que sea capaz de replicarse en bacterias pir-. Para los ensayos de transposición in vitro se ha usado el propio vector pGEMT Easy Vector (Promega).As a receptor plasmid, any other that confers resistance to an antibiotic other than kanamycin and is capable of replicating in pyr- bacteria can be used. For the in vitro transposition assays the pGEMT Easy Vector (Promega) vector itself has been used.
d) Ensayo de transposición in vitro (Figura 4) • Elementos necesarios para Ia transposición in vitro:d) In vitro transposition test (Figure 4) • Elements necessary for in vitro transposition:
Plásmido donador (pITR-Kn).Donor plasmid (pITR-Kn).
Plásmido receptor (pGEM-T). - Transposasa Mboumar purificada.Plasmid receptor (pGEM-T). - Purified Mboumar transposase.
Tampón de reacción: Es el tampón en el que se reúnen las condiciones necesarias para que se lleve a cabo Ia transposición por parte de Ia transposasa Mboumar.Reaction buffer: It is the buffer in which the necessary conditions are met for the transposition by the Mboumar transposase to be carried out.
• Reacción de transposición in vitro:• In vitro transposition reaction:
Plásmido donador: 9 μM.Donor plasmid: 9 μM.
Plásmido receptor: 9 μM.Receiving plasmid: 9 μM.
Transposasa Mboumar: 10 nM. - Buffer de reacción 1x:Mboumar transposase: 10 nM. - 1x reaction buffer:
Glicerol: 10 %.Glycerol: 10%.
Hepes (pH= 7.9): 25 mM.Hepes (pH = 7.9): 25 mM.
BSA: 12, 5 μg/ μl.BSA: 12.5 μg / μl.
DTT: 2 mM. - NaCMOO mM.DTT: 2 mM. - NaCMOO mM.
MgCI2: 10 mM.MgCl2: 10 mM.
Esta reacción se incuba a 28 0C durante toda Ia noche. Durante este período Ia transposasa escinde el gen Knr junto a las ITRs que Io flanquean y Io integra en dinucleótido TA del plásmido receptor (o del plásmido donador). La movilización de esta secuencia al plásmido receptor generará un plásmido que conferirá resistencia a Ia kanamicina y Ia ampicilina, y que será capaz de replicarse en bacterias pir-.This reaction is incubated at 28 0 C place overnight. During this period the transposase cleaves the Knr gene along with the ITRs that flank it and integrate it into TA dinucleotide of the recipient plasmid (or donor plasmid). The mobilization of this sequence to the recipient plasmid will generate a plasmid that will confer resistance to kanamycin and ampicillin, and that will be able to replicate in pyr- bacteria.
A continuación se transforman bacterias competentes pir- (DH5α) con 8 μl de Ia reacción de transposición y del control negativo (sin transposasa). La mitad del volumen de Ia transformación con Ia reacción de transposición se siembra en placas de LB con kanamicina y ampicilina, y Ia otra mitad en placas con solo ampicilina. El mismo volumen es el que se va a sembrar de Ia transformación con el control negativo en una placa LB+ ampicilina+ kanamicina.Then, competent bacteria pir- (DH5α) are transformed with 8 µl of the transposition reaction and the negative control (without transposase). The half of the volume of the transformation with the transposition reaction is seeded in LB plates with kanamycin and ampicillin, and the other half in plates with only ampicillin. The same volume is the one that is going to be sown of the transformation with the negative control in an LB plate + ampicillin + kanamycin.
En las placas con solo ampicilina podrán crecer todas aquellas bacterias que hayan incorporado el plásmido receptor original o con Ia inserción del gen Knr, ya que el plásmido receptor contiene el gen Ampr.In the plates with only ampicillin, all those bacteria that have incorporated the original receptor plasmid or with the insertion of the Kn r gene can grow, since the receptor plasmid contains the Amp r gene.
En las placas con ampicilina y kanamicina sólo podrán crecer aquellas bacterias que posean el plásmido receptor con Ia inserción del gen Knr, siempre y cuando Ia integración se haya producido fuera del gen Ampr y del origen de replicación {orí). La integración en cualquiera de estos sitios daría lugar a bacterias no viables, ya que Ia integración en el gen Ampr haría que las bacterias no fuesen resistentes a Ia ampicilina, y Ia integración en el orí impediría Ia replicación del plásmido receptor dentro de Ia bacteria.In the plates with ampicillin and kanamycin only those bacteria that have the receptor plasmid with the insertion of the Kn r gene can grow, as long as the integration has occurred outside the Amp r gene and the origin of replication {orí). The integration in any of these sites would give rise to non-viable bacteria, since the integration in the Amp r gene would make the bacteria not resistant to ampicillin, and the integration in the ori would prevent the replication of the receptor plasmid within the bacterium. .
Las bacterias que hayan incorporado el plásmido donador (con o sin el gen KnR) no sobrevivirán, ya que este plásmido no es capaz de replicarse en las bacterias pir- DH5α.Bacteria that have incorporated the donor plasmid (with or without the Kn R gene) will not survive, since this plasmid is not able to replicate in the pir-DH5α bacteria.
• Cálculo de Ia Eficiencia de Transposición:• Calculation of Transposition Efficiency:
La eficiencia con Ia que Ia transposasa Mboumar ha llevado a cabo Ia transposición en las condiciones descritas es de 10~3. Esta se calcula dividiendo en número de Plásmidos Receptores transformados con el gen KnR integrado entre el número total de Plásmidos Receptores transformados. The efficiency with which the Mboumar transposase has carried out the transposition under the conditions described is 10 ~ 3 . This is calculated by dividing the number of Transformer Receptor Plasmids with the Kn R gene integrated by the total number of Transformer Receptor Plasmids.

Claims

REIVINDICACIONES
1. Péptido recombinante que comprende Ia secuencia de aminoácidos SEQ ID NO: 11. Recombinant peptide comprising the amino acid sequence SEQ ID NO: 1
2. Péptido recombinante según Ia reivindicación 1 cuya secuencia de aminoácidos presenta, al menos, una identidad del 70% con Ia SEQ ID NO: 12. Recombinant peptide according to claim 1 whose amino acid sequence has at least 70% identity with SEQ ID NO: 1
3. Péptido recombinante según Ia reivindicación 1 que presenta una identidad de, al menos, un 80% con Ia secuencia de aminoácidos de Ia SEQ ID NO: 1.3. Recombinant peptide according to claim 1 that has an identity of at least 80% with the amino acid sequence of SEQ ID NO: 1.
4. Péptido recombinante según Ia reivindicación 1 que presenta una identidad de, al menos, un 90% con Ia secuencia de aminoácidos de Ia4. Recombinant peptide according to claim 1 that has an identity of at least 90% with the amino acid sequence of Ia
SEQ ID NO: 1.SEQ ID NO: 1.
5. Péptido recombinante según Ia reivindicación 1 que presenta una identidad de, al menos, un 95% con Ia secuencia de aminoácidos de Ia SEQ ID NO: !5. Recombinant peptide according to claim 1 that has an identity of at least 95% with the amino acid sequence of SEQ ID NO:!
6. Péptido recombinante homólogo al péptido según cualquiera de las reivindicaciones 1-5.6. Peptide homologous recombinant peptide according to any of claims 1-5.
7. Polinucleótido aislado, que se traduce a Ia secuencia de aminoácidos de Ia SEQ ID NO: 1 , y se selecciona de Ia lista que comprende: a. moléculas de ácido nucleico que codifican un polipéptido que comprende Ia secuencia aminoacídica de Ia SEQ ID NO: 1 , b. moléculas de ácido nucleico cuya cadena complementaria híbrida con Ia secuencia polinucleotídica de a), ó c. moléculas de ácido nucleico cuya secuencia difiere de a) y/o b) debido a Ia degeneración del código genético. para su uso en Ia producción del péptido recombinante según cualquiera de las reivindicaciones 1-6.7. Isolated polynucleotide, which translates to the amino acid sequence of SEQ ID NO: 1, and is selected from the list comprising: a. nucleic acid molecules that encode a polypeptide comprising the amino acid sequence of SEQ ID NO: 1, b. nucleic acid molecules whose complementary hybrid chain with the polynucleotide sequence of a), or C. Nucleic acid molecules whose sequence differs from a) and / or b) due to the degeneracy of the genetic code. for use in the production of the recombinant peptide according to any of claims 1-6.
8. Polinucleótido según Ia reivindicación 7, donde Ia secuencia aminoacídica a Ia que se traduce presenta una identidad de, al menos un 60% con Ia SEQ ID NO: 1.8. Polynucleotide according to claim 7, wherein the amino acid sequence to which it is translated has an identity of at least 60% with SEQ ID NO: 1.
9. Polinucleótido según Ia reivindicación 7, donde Ia secuencia aminoacídica a Ia que se traduce presenta una identidad de, al menos un 80% con Ia SEQ ID NO: 1.9. Polynucleotide according to claim 7, wherein the amino acid sequence to which it is translated has an identity of at least 80% with SEQ ID NO: 1.
10. Polinucleótido según Ia reivindicación 7, donde Ia secuencia aminoacídica a Ia que se traduce presenta una identidad de, al menos un 90% con Ia SEQ ID NO: 1.10. Polynucleotide according to claim 7, wherein the amino acid sequence to which it is translated has an identity of at least 90% with SEQ ID NO: 1.
11. Polinucleótido según Ia reivindicación 7, donde Ia secuencia aminoacídica a Ia que se traduce presenta una identidad de, al menos un 95% con Ia SEQ ID NO: 1.11. Polynucleotide according to claim 7, wherein the amino acid sequence to which it is translated has an identity of at least 95% with SEQ ID NO: 1.
12. Polinucleótido según cualquiera de las reivindicaciones 7-11 , que codifica un péptido según cualquiera de las reivindicaciones 1-6.12. Polynucleotide according to any of claims 7-11, which encodes a peptide according to any of claims 1-6.
13. Construcción genética que comprende: a. un vector, b. el polinucleótido según cualquiera de las reivindicaciones 7-12, y c. una secuencia control unidos de forma operativa, de tal manera que permite Ia expresión del péptido recombinante según cualquiera de las reivindicaciones 1-6. 13. Genetic construction comprising: a. a vector, b. the polynucleotide according to any of claims 7-12, and c. a control sequence operatively linked, in such a way that it allows the expression of the recombinant peptide according to any of claims 1-6.
14. Construcción genética que comprende: a. un vector, b. las regiones ITR reconocidas por el péptido recombinante según cualquiera de las reivindicaciones 1-6, y c. un polinucleótido insertado entre las regiones ITR del paso b)14. Genetic construction comprising: a. a vector, b. the ITR regions recognized by the recombinant peptide according to any of claims 1-6, and c. a polynucleotide inserted between the ITR regions of step b)
15. Método para obtención de un péptido recombinante según cualquiera de las reivindicaciones 1-6 que comprende: a. Introducir una construcción genética según Ia reivindicación 13 en una célula hospedante. b. Incubar Ia célula hospedante según a. en un medio de reacción adecuado. c. Purificar el péptido recombinante obtenido.15. Method for obtaining a recombinant peptide according to any of claims 1-6 comprising: a. Entering a genetic construct according to claim 13 in a host cell. b. Incubate the host cell according to a. in a suitable reaction medium. C. Purify the recombinant peptide obtained.
16. Método para Ia transposición in vitro que comprende poner en contacto el péptido recombinante según cualquiera de las reivindicaciones 1-6, o el péptido obtenido según el método descrito en Ia reivindicación 15, con Ia construcción genética según Ia reivindicación 14.16. Method for in vitro transposition comprising contacting the recombinant peptide according to any of claims 1-6, or the peptide obtained according to the method described in claim 15, with the genetic construction according to claim 14.
17. Método según Ia reivindicación 16, para Ia generación de mutaciones aleatorias.17. Method according to claim 16, for the generation of random mutations.
18. Método según Ia reivindicación 16 para Ia generación de transgénesis y mutagénesis aleatoria en el genoma de células procariotas o eucariotas.18. Method according to claim 16 for the generation of transgenesis and random mutagenesis in the genome of prokaryotic or eukaryotic cells.
19. Uso del péptido recombinante, según cualquiera de las reivindicaciones 1-6, o un fragmento o derivado del mismo, como transposasa.19. Use of the recombinant peptide according to any of claims 1-6, or a fragment or derivative thereof, as a transposase.
20. Uso del péptido recombinante, según cualquiera de las reivindicaciones 1-6, como herramienta genética. 20. Use of the recombinant peptide according to any of claims 1-6, as a genetic tool.
21. Uso del péptido recombinante, según cualquiera de las reivindicaciones 1-6, para Ia generación de mutaciones aleatorias in vitro.21. Use of the recombinant peptide, according to any of claims 1-6, for the generation of random mutations in vitro.
22. Uso del péptido recombinante, según cualquiera de las reivindicaciones 1-6, para Ia generación de transgénesis y mutagénesis aleatoria in vitro, en el genoma de células procariotas o eucariotas. 22. Use of the recombinant peptide, according to any of claims 1-6, for the generation of transgenesis and random mutagenesis in vitro, in the genome of prokaryotic or eukaryotic cells.
PCT/ES2009/070044 2008-02-29 2009-02-25 Vectors and uses of the mboumar transposon WO2009106668A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200800593A ES2334087B1 (en) 2008-02-29 2008-02-29 VECTORS AND USES OF THE TRANSPOSON MBOUMAR.
ESP200800593 2008-02-29

Publications (1)

Publication Number Publication Date
WO2009106668A1 true WO2009106668A1 (en) 2009-09-03

Family

ID=41015562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2009/070044 WO2009106668A1 (en) 2008-02-29 2009-02-25 Vectors and uses of the mboumar transposon

Country Status (2)

Country Link
ES (1) ES2334087B1 (en)
WO (1) WO2009106668A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004078981A1 (en) * 2003-01-28 2004-09-16 Centre National De La Recherche Scientifique (C.N.R.S.) Hyperactive, non-phosphorylated, mutant transposases of mariner mobile genetic elements
WO2007063033A1 (en) * 2005-11-30 2007-06-07 Centre National De La Recherche Scientifique (Cnrs) Process for the production, in prokaryotes, of active, stable transposases of mariner mobile genetic elements

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004078981A1 (en) * 2003-01-28 2004-09-16 Centre National De La Recherche Scientifique (C.N.R.S.) Hyperactive, non-phosphorylated, mutant transposases of mariner mobile genetic elements
WO2007063033A1 (en) * 2005-11-30 2007-06-07 Centre National De La Recherche Scientifique (Cnrs) Process for the production, in prokaryotes, of active, stable transposases of mariner mobile genetic elements

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PALOMEQUE T. ET AL.: "Detection of a mariner-like element and a miniature inverted-repeat transposable element (MITE) associated with the heterochromatin from ants of the genus Messor and their possible involvement for satellite DNA evolution", GENE., vol. 371, 2006, pages 194 - 205 *

Also Published As

Publication number Publication date
ES2334087A1 (en) 2010-03-04
ES2334087B1 (en) 2011-01-27

Similar Documents

Publication Publication Date Title
US20220025347A1 (en) Variants of CRISPR from Prevotella and Francisella 1 (Cpf1)
US10633642B2 (en) Engineered CRISPR-Cas9 nucleases
US20220315952A1 (en) Cas 9 retroviral integrase and cas 9 recombinase systems for targeted incorporation of a dna sequence into a genome of a cell or organism
US20200149024A1 (en) Engineered CRISPR-Cas9 Nucleases
ES2784754T3 (en) Methods and compositions to modify a target locus
ES2901074T3 (en) Methods and compositions for targeted genetic modifications and methods of use
US20200080067A1 (en) Crispr-cas systems, crystal structure and uses thereof
CN107109422B (en) Genome editing using split Cas9 expressed from two vectors
US20200172895A1 (en) Using split deaminases to limit unwanted off-target base editor deamination
ES2861623T3 (en) CRISPR-Cas Systems, Methods, and Component Compositions for Sequence Manipulation
RU2721125C1 (en) Mice containing mutations, as a result of which fibrillin-1 shortened at c-terminus is expressed
WO2020049158A1 (en) Compositions and methods for improved nucleases
CN111051509A (en) Composition for dielectric calibration containing C2CL endonuclease and method for dielectric calibration using the same
ES2374418T3 (en) PSEUDOTRANSPOSONES AND HYPER-RECOMMENDING RECOMBINANT TRANSPOSITION SYSTEMS, DERIVED FROM THE MOS-1 TRANSPOSON.
ES2334087B1 (en) VECTORS AND USES OF THE TRANSPOSON MBOUMAR.
ES2363327B1 (en) MBOUMAR TRANSPOSON TRANSPOSITION SYSTEM
Forner Germline-Transmitted Genome Editing Methodology in Arabidopsis thaliana Using TAL Effector Nucleases
Chakraborty Determining the DNA-binding domain of Himar1 transposase

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09715543

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09715543

Country of ref document: EP

Kind code of ref document: A1