WO2009104779A1 - Active energy ray-curable coating composition, method for formation of coating film, and coated article - Google Patents

Active energy ray-curable coating composition, method for formation of coating film, and coated article Download PDF

Info

Publication number
WO2009104779A1
WO2009104779A1 PCT/JP2009/053119 JP2009053119W WO2009104779A1 WO 2009104779 A1 WO2009104779 A1 WO 2009104779A1 JP 2009053119 W JP2009053119 W JP 2009053119W WO 2009104779 A1 WO2009104779 A1 WO 2009104779A1
Authority
WO
WIPO (PCT)
Prior art keywords
starch
active energy
parts
energy ray
coating composition
Prior art date
Application number
PCT/JP2009/053119
Other languages
French (fr)
Japanese (ja)
Inventor
稲田祐一
増田秀樹
Original Assignee
関西ペイント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008224278A external-priority patent/JP2009221457A/en
Priority claimed from JP2008306948A external-priority patent/JP2010131471A/en
Application filed by 関西ペイント株式会社 filed Critical 関西ペイント株式会社
Priority to CN2009801055348A priority Critical patent/CN101945955A/en
Publication of WO2009104779A1 publication Critical patent/WO2009104779A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D103/00Coating compositions based on starch, amylose or amylopectin or on their derivatives or degradation products
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures

Definitions

  • the present invention relates to an active energy ray-curable coating composition containing an acrylic ester of a specific acyclic oligosaccharide having an acryloyl group or a derivative thereof. Furthermore, the present invention provides a method of laminating a base coating film using a starch-based base coating composition using starch and a coating film using an active energy ray-curable aqueous coating composition using saccharides on the base coating film. Coating film forming method and a coated article obtained by the coating film forming method. Background art
  • C_ ⁇ has been required to reduce the 2 emissions, a renewable resources to replace petroleum, positively utilizing biological components not to increase the amount of released C_ ⁇ 2 in carbon dioxide circulating on earth It is demanded.
  • Typical materials for such renewable resources include polysaccharide starch, modified starch such as acetylated starch. These starches or modified starches have been conventionally used in the food industry and paper industry, but in recent years, they have also been used in fields such as food containers, packaging materials, cushioning sheets, agricultural films, and disposable ommu. It is becoming possible. In order to use starch as a raw material for industrial products, various improvements related to modified starch have been accumulated along with the modification of starch.
  • the basic structure of starch is a mixture of amylose with 0!
  • Japanese Laid-Open Patent Publication No. 54-126096 discloses a graph in which a starch resin and an acrylic resin are indirectly grafted via polyisocyanate, as well as a radical graft polymerization of unsaturated monomers in starch or modified starch.
  • An invention related to the grafted starch is disclosed.
  • Japanese Patent Laid-Open Nos. 6-2 0 7 0 47, 8-2 3 1 7 6 2 and 2 0 0 2 — 1 6 7 5 2 0 disclose starch and other
  • an invention using a polymer blend in which starch or modified starch and cellulose derivatives are combined is disclosed as a molding material.
  • an invention relating to a resin composition using a starch-based resin as a water-absorbing resin is disclosed.
  • Japanese Patent Application Laid-Open No. 2000-087-2 has a function of reacting complementarily with starch and at least one hydroxyl group contained in the starch molecule.
  • An invention relating to a curable starch composition which is a mixture of curing agents having groups, is disclosed. It is also disclosed that curable types such as an oxidation polymerization curable type, a room temperature curable type, and an active energy ray curable type are possible.
  • Japanese Patent Application Laid-Open No. 2 0 0 6 — 2 8 2 9 60 describes starch, polyisocyanate curing agent, plant-derived resin excluding starch, metal complex and Curing containing a blocking agent selected from diketones, acetoacetic esters, malonic esters, ketones having a hydroxyl group at the iS position, aldehydes having a hydroxyl group at the iS position, and esters having a hydroxyl group at the / 3 position
  • a blocking agent selected from diketones, acetoacetic esters, malonic esters, ketones having a hydroxyl group at the iS position, aldehydes having a hydroxyl group at the iS position, and esters having a hydroxyl group at the / 3 position
  • Japanese Patent Application Laid-Open No. 10-258582 discloses a (meth) acrylic acid ester of cyclodextrin and an active energy linear curing resin composition containing the same.
  • the energy ray curable resin composition has a structure in which glucose is cyclically linked by a glycosidic bond, and its steric freedom is low, so that photocurability is not sufficient. Disclosure of the invention
  • the present invention has been made in view of the above circumstances, an object of the present invention has less emissions of total C_ ⁇ 2 involved in the life cycle of the product, it is possible to reduce environmental pollution, finished appearance, pencil hardness, resistance to An object of the present invention is to provide a bioactive active energy ray-curable coating composition capable of forming a coating film having excellent scratch resistance, weather resistance, solvent resistance and photocurability.
  • Another object of the present invention is to use a saccharide or a derivative thereof, or starch or modified starch as a raw material for a coating composition, and finish, pencil hardness, scratch resistance, interlayer adhesion, weather resistance, resistance
  • An object of the present invention is to provide a method for forming a coating film, which is excellent in alkalinity and solvent resistance, and can obtain a multilayer coating film capable of reducing the amount of organic solvent used.
  • the present inventors apply a starch-based coating composition containing a starch-based resin and a coloring pigment and / or a luster pigment on a substrate to form a base coating film, A step of coating an active energy ray-curable aqueous coating composition containing an aqueous dispersion of a saccharide or a derivative thereof (b 1) and a photopolymerization initiator (b 2) on the base coating film.
  • said another objective could be achieved by the coating-film formation method characterized by the step of irradiating an active energy ray, and came to complete this invention.
  • the present invention relates to the following aspects.
  • An active energy ray-curable coating composition comprising:
  • the acyclic oligosaccharide or derivative thereof is sucrose or treha
  • an active energy one-line curable aqueous coating composition containing an aqueous dispersion of an acrylic ester (b 1) of a saccharide or a derivative thereof and a photopolymerization initiator (b 2) on the base coating film;
  • acrylate ester (bl) of a saccharide or a derivative thereof has a weight average molecular weight of 400 to 2,00,000 and an average of 3.0 to 12.0 acryloyl groups per molecule
  • the saccharide or derivative thereof is an acyclic oligosaccharide or derivative thereof.
  • the active energy ray curable coating composition of the present invention has less emissions of total C_ ⁇ 2 involved in the life cycle of the product, both when possible to reduce the environmental pollution, finished appearance, pencil hardness, mar resistance, weather resistance, A coating film excellent in solvent resistance and photocurability can be formed.
  • the coating film forming method of the present invention reduces the amount of petroleum resources used, reduces the total carbon dioxide emissions related to the product life cycle, reduces environmental pollution, and also provides finish, pencil hardness, and scratch resistance.
  • a multilayer coating film excellent in interlayer adhesion, weather resistance, alkali resistance and solvent resistance can be obtained.
  • the aqueous coating composition is used as a part of the coating composition to be used, the amount of the organic solvent used can be reduced.
  • the active energy ray-curable coating composition of the present invention contains an acrylic acid ester (a 1) and a photopolymerization initiator (a 2). Below in detail explain.
  • the acrylic acid ester (a 1) used in the present invention is an acrylic acid ester of an acyclic oligosaccharide or a derivative thereof, and has a weight average molecular weight of 400 to 2, 2,000, and 1 It has an average of 3.0 to 12.0 acryloyl groups per molecule.
  • an acyclic oligosaccharide is an oligosaccharide having a structure in which a plurality of monosaccharides are cyclically linked by glycosidic bonds (cyclic oligosaccharide), specifically, for example, unlike cyclodextrins, This refers to an oligosaccharide having a structure in which a plurality of monosaccharides are linked in a chain by daricoside bonds.
  • oligosaccharide means a saccharide from disaccharide to decasaccharide.
  • non-cyclic oligosaccharides include disaccharides such as reducing disaccharides (maltose, cellobiose, lactose, etc.), non-reducing disaccharides (sucrose, trehalose, etc.); Examples thereof include oligosaccharides having three or more sugars such as monosaccharide, notose, stachyose and dextrin. Among these, dextrin is preferable because it can be obtained with any molecular weight by hydrolyzing starch. Non-reducing sucrose and trehalose do not cause browning due to the mailer reaction (browning reaction). Therefore, it is preferable from the viewpoint of durability of the coating film.
  • a part of the hydroxyl group in acyclic oligosaccharide is a saturated carboxylic acid having 2 to 22 carbon atoms (saturated carboxylic acid, saturated carboxylic acid ester, saturated force sulfonic acid halai
  • saturated carboxylic acid, saturated carboxylic acid ester, saturated force sulfonic acid halai A compound that has been converted to a carboxylic acid ester by at least one selected from (ii) can be suitably used. Specific examples include acetate esters and laurate esters.
  • Acrylic acid esters (a 1) of acyclic oligosaccharides or their derivatives usually have better photocurability than acrylic acid esters of cyclic oligosaccharides. It is. This is because the acyclic oligosaccharide or its derivative has a chain structure in which a plurality of monosaccharides are linked in a chain form by glycosidic bonds, and thus has a higher degree of steric freedom than the cyclic oligosaccharide. Presumed. And as a result of being excellent in photocurability, the coating film obtained by photocuring the active energy ray-curable coating composition of the present invention is usually more pencil-hardened than the coating film obtained by photocuring a cyclic oligosaccharide.
  • the acrylic ester (a 1) used in the present invention having excellent scratch resistance can be produced according to a conventional method and is not particularly limited.
  • the acrylic ester (a 1) used in the present invention can be obtained by reacting an acyclic oligosaccharide or a derivative thereof with an acrylic ester such as acrylic acid or methyl acrylate.
  • an acrylic ester such as acrylic acid or methyl acrylate.
  • the total mass of the acyclic oligosaccharide or the derivative thereof and an acrylate ester such as acrylic acid or methyl acrylate is used as a reference.
  • the non-cyclic oligosaccharide or derivative thereof is 50 to 99% by mass, preferably 60 to 98% by mass, and acrylic acid or acrylic acid ester such as methyl acrylate is 1 to 50% by mass, preferably
  • An organic solvent for example, a hydrocarbon solvent such as toluene, xylene, cyclohexane, n-hexane, etc .; acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl amyl in an amount ranging from 2 to 40% by mass Ketone-based solvents such as ketones; or a mixture of these in a mixture, etc., adding a basic compound as appropriate, and stirring at 60 ° C. to 100 ° C. Properly at temperatures of 7 0-9 0, 3 0 minutes to 1 0 hours, more preferably, to manufacture by 1 hour to about 5 hours, to esterification or transesterification.
  • the amount of acryloyl group introduced can be adjusted by the reaction temperature and reaction time during production.
  • the average number of acryloyl groups per molecule of the acrylate ester (al) used in the present invention is determined, for example, by quantifying the generated alcohol by gas chromatography or the like in the case of production by transesterification. be able to.
  • the acrylic ester (a 1) used in the present invention is produced by dissolving the above acyclic oligosaccharide or a derivative thereof in an organic solvent and adding acrylic acid halide (for example, acrylic acid chloride). It can also be obtained by neutralizing the acid and washing with water (dehydrochlorination method)
  • the weight average molecular weight of the acrylic acid ester (al) used in the present invention thus obtained is 400 to 2 , 0 00, preferably 5 0 0 to 1, 8 0 0, from the viewpoint of easy production, paint viscosity, and finish.
  • the number average molecular weight and the weight average molecular weight are in accordance with the method described in JISK 0 1 2 4-8 3 as “TSKGEL 4 0 00 HX L”, “TSKG 3 0 0 HX L” as separation columns.
  • L “ TSKG 2 500 HX L ”,“ TSKG 2 00 HX L ”(manufactured by Tosohichi Co., Ltd.), and 4 using GPC tetrahydrofuran as eluent, It was obtained from the chromatogram obtained with the RI refractometer and the calibration curve of polystyrene at 0, a flow rate of 1 and O mLZ.
  • the acrylate (a1) used in the present invention has an average of 3.0 to 12.0, preferably 4.0 to 9.0, acryloyl groups per molecule. This increases the reactivity during irradiation with active energy rays and improves the scratch resistance and adhesion of the resulting coating film. Can be made.
  • the acrylic ester (al) used in the present invention is preferably dispersed in water from the viewpoint of water resistance and storage stability.
  • the method for dispersing the acrylic ester (al) used in the present invention in water is not particularly limited.
  • Specific examples of the water dispersion method include a method of forced emulsification using an emulsifier.
  • an acrylic ester (al) used in the present invention or an organic solvent solution thereof and an emulsifier are mixed, and then water is gradually added while stirring.
  • a method of dispersing in water by adding When the acrylic ester (al) or the organic solvent solution thereof used in the present invention and the emulsifier are mixed, a photopolymerization initiator (a2) described later may be further mixed.
  • the water dispersion obtained by the above method may be further treated with a homogenizer, a high-pressure emulsifier or the like.
  • the organic solvent may be completely or partially removed and then dispersed in water, or after obtaining an aqueous dispersion. All or part of the organic solvent may be removed. This can reduce the amount of organic solvent in the aqueous dispersion.
  • the emulsifier is not particularly limited.
  • emulsifiers include reactive emulsifiers and non-reactive emulsifiers.
  • the reactive emulsifier include nonionic reactive emulsifiers such as polyethylene glycol mono (meth) acrylate, polyethylene glycol di (meth) acrylate, and polyoxyethylene nonylphenyl ether acrylate; 1 0 (Product name, made by Daiichi Industry New Frontier A— 2 29 E (trade name, manufactured by Daiichi Kogyo Co., Ltd.), Ade force rear soap SE—10 N (trade name, manufactured by Asahi Denka Kogyo Co., Ltd.), Sulfoethyl methacrylate
  • Anionic reactive emulsifiers having an anionic group such as sodium salt and ⁇ , ⁇ monoethylenic double bond; polyoxyethylene-1 mono (aryloxymethyl) alkyl ether sulfate ammonium salt, a —
  • the reactive polymer emulsifier examples include a copolymer of a monofunctional acrylic monomer having a hydrophilic group such as sulfate ester, phosphate ester, carboxylic acid, amino group, and polyethylene glycol chain, and other copolymerizable monomers. Then, a reactive polymer emulsifier in which a double bond is introduced into the terminal or side chain is exemplified. Specifically, for example, a monomer mixture containing an epoxy group-containing unsaturated monomer, a hydroxyl group-containing unsaturated monomer, and a hydrophobic unsaturated monomer is polymerized to obtain an acryl polymer. After
  • a graft acrylic polymer is obtained by polymerizing a monomer mixture containing a carboxyl group-containing unsaturated monomer, a hydroxyl group-containing unsaturated monomer, and a hydrophilic unsaturated monomer. And reactive polymer emulsifiers produced by adding an unsaturated monomer having an isocyanate group to the hydroxyl group of the graft acrylic polymer.
  • non-reactive emulsifier examples include sodium alkylbenzene sulfonate, sodium lauryl sulfate, sodium dioctyl sulfosuccinate, and alkylphenyl polyoxyethylene sulfate.
  • Anionic emulsifiers such as Da salt or ammonium salt, polyoxyethylene alkyl phenyl ether, polyoxyethylene alkyl ether, polyoxyethylene monopolyoxypropylene block copolymer, and the like.
  • emulsifiers it is preferable from the viewpoint of water resistance to use reactive emulsifiers.
  • the amount of the emulsifier is not particularly limited. Preferably, it is 0.2 to 20 parts by mass, and more preferably 2 to 15 parts by mass with respect to 100 parts by mass of the acrylic acid ester (a 1) used in the present invention.
  • the lower limit of these ranges is significant in that a stable aqueous dispersion can be obtained.
  • the upper limit of these ranges is significant in terms of water resistance.
  • the photopolymerization initiator (a 2) generates radicals by being excited by the light energy of the active energy ray, and the radical polymerizable unsaturated group (specifically, the acrylate ester (al) used in the present invention has Initiates a radical polymerization reaction of (acryloyl group).
  • photopolymerization initiator (a 2) include, for example, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isobutyl ether, ketoxiacephenone, 2-hydroxyl 2-methyl-1 1 1 Phenylpropane 1-one, benzyldimethyl ketal, 1-hydroxycyclohexyl roofyl ketone, 2-methyl-2-morpholino (4-thiomethylphenyl) propane 1-one, 2-benzyl-2-dimethyla Minnow 1 — (4 -Morpholinophenyl) -Evenone, 2, 4, 6 — Trimethylbenzoylphenylphosphine oxide, 2, 4, 6 — Trimethylbenzoylphenyloxyphosphine oxide, benzophenone O-Benzyl methyl benzoate, Hydroxybenzophenone, 2-Isopropylthioxanthone, 2,4-Dimethylthioxanthone, 2,4-Diethylthi
  • photopolymerization initiators (b 2) can be used alone or in combination of two or more.
  • the content of the photopolymerization initiator (a 2) is 0 with respect to 100 parts by mass of the total amount of the saccharide or its derivative acrylic acid ester (a 1) and the active energy ray-curable compound (a 3) described later. 1 to: L 0 parts by mass, preferably 0.2 to 5 parts by mass.
  • the active energy ray-curable coating composition of the present invention in order to promote radical polymerization reaction by irradiation with active energy rays, in addition to the photopolymerization initiator (a 2), the sensitivity of radical generation is improved and the Z or wavelength region A photosensitizer may be used in combination for the purpose of expansion.
  • photosensitizers examples include triethylamine, triethanolamine, methyljetanolamine, methyl 4-dimethylaminobenzoate, ethyl 4-dimethylaminobenzoate, isoamyl 4-dimethylaminoaminobenzoate, benzoic acid (2-dimethylamino) ) Tertiary amines such as ethyl, Michler's ketone, 4,4, -jetylaminobenzenphenone, alkyl phosphines such as triphenylphosphine, and thioethers such as 6-thiodiglycol.
  • These photosensitizers are acrylic acid esters used in the present invention.
  • a range of 0.1 to 5 parts by mass is preferable with respect to 100 parts by mass of (a 1) and the total amount of the active energy ray-curable compound (a 3) described later.
  • the active energy ray-curable coating composition of the present invention can be blended with an active energy ray-curable compound (a 3) as necessary.
  • the active energy ray-curable compound (a 3) to be combined is a radical polymerizable unsaturated monomer other than the acrylate ester (a 1) used in the present invention, a radical polymerizable unsaturated group-containing resin, and a radical. It is preferably at least one monomer and / or resin selected from the group consisting of resins having both a polymerizable unsaturated group and a thermosetting functional group.
  • the radical polymerizable unsaturated monomer include a monofunctional polymerizable monomer, a bifunctional polymerizable monomer, and a trifunctional or higher functional polymerizable monomer.
  • Monofunctional polymerizable monomers include styrene, methyl (meth) acrylate, ethyl (meth) acrylate, and butyl (meth) acrylate.
  • (meta) acrylate means “medium” and / or “acrylate”.
  • bifunctional polymerizable monomer examples include, for example, ethylene glycol
  • (Meth) acrylate Polypropylene glycol di (meth) Acrylate, neopentyl alcoholic acid (Meth) acrylate, 1 4 Butanediol (meth) acrylic, 1, 6 _Hexanediorn ( (Meta) alkyl 'J ret bisphenol-A ethylenic acid-modified di (meth) acrylic, bisphenol-A propylene oxide modified di (me) Acryl, 2-hydroxyl-oxyloxy 3 -Metal U mouth xip mouth mouth, ⁇ ⁇ ⁇ U cyclodecane dimethanol (meta), u re ret (meyu), acryloyloxy tyrosid phosphate, etc. HX-2 2 0 ”,“ Carrad 6 ”
  • Examples of the tri- or higher functional polymerizable monomers include trimethylol propane bread U (metha) ack U les, ⁇ methylolpropane ethylene oxide modified tri (meth) acrylate, trimethylol propane pan Propylene oxide modified tri (meth) acrylate, Dali Serine tri (meth) acrylate, glycerin ethylene oxide modified tri (meth) acrylate, glycerin propylene oxide modified tri (meth) acrylate, pen erythritol tri (meth) acrylate, pen erythritol tetra
  • Preferred examples of the radically polymerizable unsaturated monomer include (meth) acrylic acid ⁇ , isocyanuric acid ethylene oxide-modified triacrylate, dipentaerythritol hexa (meth) acrylate, and the like.
  • Photo-curing property, adhesion property From the viewpoint of scratch resistance, etc., it is a bifunctional polymerizable mono
  • radical polymerizable unsaturated group-containing resin examples include unsaturated acrylic resin, unsaturated urethane resin, unsaturated epoxy resin, polyester (meth) acrylate, unsaturated silicone resin, and the like. 1 type, or 2 or more types selected from can be used. Among these, a resin having at least one radical polymerizable unsaturated group and one thermosetting functional group in each molecule can be used. From the viewpoint of the curability of the coating film, the unsaturated group and the thermosetting It is preferable to use a resin having a plurality of functional groups.
  • thermosetting performance group examples include functional groups such as a hydroxyl group, an acid group, an epoxy group, and an isocyanate group.
  • acid group examples include a strong lpoxyl group and a phosphoric acid group.
  • the resin having one or more radically polymerizable unsaturated groups and one or more thermosetting functional groups in one molecule include, for example, a radically polymerizable unsaturated group and epoxy group-containing acryl resin, Examples thereof include saturated group and isocyanate group-containing acryl resins.
  • the active energy ray curable compound (a 3) has a thermosetting functional group
  • an amino resin or a polyisocyanate compound is used. It is preferable from the viewpoint of improving the hardness of the coating film that the product and the epoxy group-containing compound are used in combination.
  • an amino resin a melamine resin, a guanamine resin, a urea resin etc. can be used, for example.
  • the blending ratio of the active energy line curable compound (a 3) to the acrylic acid ester (a 1) used in the present invention is as follows.
  • the acrylic acid ester (a 1) used in the present invention is 100 parts by mass.
  • the active energy ray-curable compound (a 3) is preferably 0 to 90 parts by mass, more preferably 30 to 400 parts by mass, from the viewpoint of finish and scratch resistance.
  • the active energy ray-curable coating composition of the present invention includes, if necessary, an anti-fogging agent, a surface conditioner, an ultraviolet absorber, a light stabilizer, an antifoaming agent, an organic colorant, a natural dye and an inorganic pigment Can be used.
  • Examples of the organic colorant include those specified by Ministry of Health and Welfare Ordinance No. 37. Specifically, for example, Red No. 20 (Resolu Rubin BCA), Red No. 203 (Lake Red C), Red No. 20 (Lake Red CBA), Red No. 20 (Riso Red Red) , Red No. 2 06 (Reso Red Red CA), Red No. 2 07 (Reso Red Red BA), Red No. 2 08 (Reso Red Red SR), Red No.
  • natural pigments include carotenoids, Carotene, forceful chinal, capsanthin, lycopene, bixin, sucrose cin, canthaxanthin, anato, etc., flavonoids,
  • Antophanenins such as sonin, raphanin, enosyanin, saffs, onuloles, chalcones such as safflowers, flavonols such as rutin and quercetin, furans such as cacao pigments, flavin, riboflavin, etc.
  • chloroquine anthraquinones such as lacaic acid, carminic acid (cochineal), kermesic acid, alizarin
  • Naphthoquinones such as shikonin, alginine, echinochrome, etc., chlorophyll, hemoglobin, etc. for polyphyllin, curcumin (turmeric), etc. for diken, etc. Then, there are benin and the like.
  • inorganic pigments include caustic anhydride, magnesium silicate, talc, kaolin, bentonite, my strength, titanium mica, bismuth oxychloride, zirconium oxide, magnesium oxide, zinc oxide, titanium oxide, and light carbonic acid.
  • the blending ratio of the organic colorant, natural colorant and inorganic pigment may be appropriately determined according to the intended use and / or required performance.
  • the active energy ray-curable coating composition of the present invention may be any of an organic solvent type, an insoluble type, and an aqueous type coating composition. Making the active energy ray-curable coating composition of the present invention water-based is preferable because the amount of solvent used can be reduced without impairing the coating workability.
  • examples of the organic solvent to be used include acetonitrile, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methyl amyl ketone, ethyl isoamyl ketone, and diisopetite.
  • Ketones such as ruketone and methylhexylketone; esters such as ethyl acetate, ethyl acetate, methyl benzoate and methyl propionate; ethers such as tetrahydrofuran, dioxane and dimethoxetane; ethylene glycol monomethyl ether, ethylene glycol No-ethyl ether, diethylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, darlicol ethers such as 3-methyl butyl acetate; alcohols such as ethyl alcohol and benzyl alcohol; aromatic hydrocarbons, aliphatic carbonization Hydrogen etc. are mentioned.
  • the method of making the active energy ray-curable coating composition of the present invention aqueous is not particularly limited.
  • a method for making the aqueous solution for example, the acrylic acid ester (a 1) or the organic solvent solution, the photopolymerization initiator (a 2) and the emulsifier used in the present invention are mixed, and then gradually stirred.
  • An example is a method in which water is dispersed to form an aqueous solution by adding water.
  • an aqueous dispersion obtained by making the acrylic ester (al) used in the present invention aqueous and other components such as a photopolymerization initiator (a 2) in an aqueous medium A method of mixing and making it aqueous according to a conventional method can be mentioned.
  • the active energy ray-curable compound (a 3) When the active energy ray-curable compound (a 3) is used, it is preferable from the viewpoint of mixing stability that an aqueous dispersion obtained by previously dispersing the compound in water is used.
  • the method for dispersing the active energy line curable compound (a3) in water can be the same as the method for dispersing the acrylic ester (al) used in the present invention.
  • the photopolymerization initiator (a 2) is a solid photopolymerization initiator having low solubility in water, it can be uniformly added and dissolved in the active energy ray-curable compound (a 3). It is preferable from the viewpoints of photocuring, finish, and scratch resistance.
  • a photopolymerization initiator (a 2) is Irgacure 500 (trade name, Ciba's Specialty • Chemicals, 1—Hydroxyshiki Hexroof Elulu ketone and benzofuenone 1: 1 (mass ratio) mixture), Darocur 1 1 7 3 (Product name, Ciba 'Specialty' manufactured by Chemicals, 2 Hydroxyl-2-Methyl-1, 1-Propane 1-On), etc. From the viewpoint of sex.
  • Irgacure 500 trade name, Ciba's Specialty • Chemicals, 1—Hydroxyshiki Hexroof Elulu ketone and benzofuenone 1: 1 (mass ratio) mixture
  • Darocur 1 1 7 3 Product name, Ciba 'Specialty' manufactured by Chemicals, 2 Hydroxyl-2-Methyl-1, 1-Propane 1-On
  • the object to be coated with the active energy ray-curable coating composition of the present invention is not particularly limited, such as metal, plastic, and wood.
  • the metal include a cold-rolled steel plate, a tin-plated steel plate, a zinc-plated steel plate, a chrome-plated steel plate, and an aluminum plate. These metal plates can be used after being subjected to surface treatment such as power phosphate treatment, zirconium salt treatment, chromate treatment, etc., which can be used without treatment.
  • the plastic include acrylic resin, polyester resin, polyamide resin, polycarbonate resin, ABS resin, polypropylene resin, and polyethylene resin.
  • coated materials may be coated with a base coat paint containing an undercoat and / or a brightening agent, if necessary.
  • the coating is formed by coating the active energy ray curable coating composition with a dry film thickness of 0.1 to 30 m, preferably l to 25 m, more preferably 5 to 20 ⁇ m, and A cured coating film can be obtained by combining irradiation, or heating and irradiation of active energy rays.
  • the coating means include roller coating, brush coating, dip coating, spray coating (non-electrostatic coating, electrostatic coating, etc.), curtain flow coating, screen printing, letterpress printing, and the like.
  • the non-volatile concentration of the active energy ray-curable coating composition is not particularly limited as long as it can be applied, but is preferably in the range of 10 to 50% by mass when spray coating is performed.
  • an active energy ray-curable coating composition containing an organic solvent or water it is desirable to volatilize the organic solvent or water by heating or setting after coating, and then irradiate the active energy ray.
  • the means for heating is not particularly limited, and for example, a drying facility such as a hot air furnace, an electric furnace, or infrared induction heating can be applied.
  • the heating temperature is not particularly limited, but is usually in the range of 35 to 100 ° C., preferably 40 to 90 ° C.
  • the heating time is not particularly limited, but usually a range of 1 to 30 minutes is preferable.
  • the active energy ray used for the curing is not particularly limited, and may be any of electron beam, ultraviolet ray, visible light, and infrared ray.
  • an irradiation source having a highly sensitive wavelength can be appropriately selected and used.
  • the active energy ray irradiation source include a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a xenon lamp, a carbon arc, a metal halide lamp, and sunlight.
  • the conditions for irradiating the coating with active energy rays are usually in the range where the integrated light quantity is 1, 0 00 to 20 , OOOJ Zm 2 , preferably 2, 0 0 0 to 1 5, 0 0 0 J Zm 2 Is suitable.
  • the coating film can be cured with an irradiation time of about 1 second to about 5 minutes. It is preferable that it is in the above range from the viewpoint of photocurability of the coating film, yellowing resistance and the like.
  • the active energy ray-curable coating composition of the present invention is water or organic. Regardless of the presence or absence of a solvent, heating can also be performed as an auxiliary crosslinking means after irradiation with active energy rays.
  • the coated article obtained by applying the active energy ray-curable coating composition of the present invention can be used, for example, as a material or a part of an electrical component, a mobile phone, lighting, an electrical element, a semiconductor, a vending machine, or the like. it can.
  • the coated material used in the coating film forming method of the present invention can be the same as the coated material described in the section “A. Active energy ray-curable coating composition”. Further, for example, a primer layer and / or an electrodeposition coating layer may be formed in advance by applying a primer coating, a cationic electrodeposition coating, or the like to the object to be coated.
  • the starch-based base coating composition to be coated on the article to be coated contains a starch-based resin and a coloring pigment and / or a luster pigment.
  • the starch-based resin means starch, modified starch, and a resin having a structure derived from starch or modified starch. Specifically, for example, the following starch-based resin;
  • Starch-based resin (I) Starch and Z or modified starch
  • Starch Resin (II) Reaction of Starch Resin (I) with Product (X) with Isocyanate Group Obtained by Reaction of Polyisocyanate Compound (xl) and Polyhydric Alcohol (x2) Starch-based resin obtained by allowing
  • Starch resin (III) obtained by reacting starch resin (I) with polyisocyanate compound (xl) and polyhydric alcohol (x2).
  • a starch-based resin obtained by reacting a product (X) having an isocyanate group with a vinyl copolymer resin (Y);
  • Starch-based resin (IV) starch-based resin obtained by subjecting starch-based resin (I) to radical-polymerizable unsaturated monomer graph polymerization;
  • starch in the starch-based resin (I) examples include corn starch, high amylose starch, wheat starch, unmodified starch of cereals such as rice starch, potato unmodified starch such as potato starch, evening pio force starch, etc. It is done. As starch modified with starch resin (I), starch is esterified.
  • starch-substituted derivatives etherified, oxidized, acid-treated or dextrinized Specifically, for example, an organic functional group such as an aliphatic saturated hydrocarbon group, an aliphatic unsaturated hydrocarbon group, or an aromatic hydrocarbon group is added to the starch or starch degradation product via an ester bond and / or an ether bond. And modified starches bound together.
  • examples of the starch degradation product include those obtained by subjecting starch to a low molecular weight treatment with an enzyme, an acid, or an oxidizing agent.
  • the starch or starch degradation product has a number average molecular weight of 1, 0 0 0 to 2, 0 0 0, 0 0 0, more preferably 3, 0 0 0 to 5 0 0, 0 0 0, particularly 5, 0 0 0 It is preferable from the viewpoint of force, film-forming property, etc. to be in the range of ⁇ 100,000.
  • Examples of the modification method of the modified starch include esterification modification.
  • a preferred modifying group is an acyl group having 2 to 18 carbon atoms.
  • the modification can be performed by using organic acids having 2 to 18 carbon atoms alone or in combination of two or more.
  • the degree of modification of the modified starch is preferably in the range of 0.1 to 2.8 in terms of the degree of substitution, particularly preferably in the range of 1.0 to 2.5. If the degree of substitution exceeds 2.8, biodegradability may be reduced.
  • Modified starch has a glass transition point below the starch decomposition temperature (about 3500 ° C), and has a glass transition point, and the degree of change is adjusted to have thermoplasticity and biodegradability. It is desirable that Therefore, when the number of carbon atoms of the substituent used for modification is large, the level of modification is low. For example, when the substituent is a stearoyl group having 18 carbon atoms, the degree of ester substitution is 0.:! To 1.8. It is preferably within the range, and when the number of carbon atoms of the substituent is small, it is highly modified.For example, when the substituent is a acetyl group having 2 carbon atoms, the degree of ester substitution is 1, 5 to 2. It is preferably within the range of 8.
  • the degree of substitution is the average number of hydroxyl groups substituted by a denaturing agent per monosaccharide unit constituting the starch.
  • the degree of substitution 3 is in one monosaccharide unit constituting the starch. This means that all three hydroxyl groups present are substituted by a modifier, and a substitution degree of 1 means that only one of the three hydroxyl groups present in one monosaccharide unit constituting the starch is a modifier. It means that it is replaced by.
  • modified starch is obtained by mixing anhydrous starch having an amylose content of 50% or more with an esterification reagent in a non-protonic solvent and reacting between the starch and the esterification reagent.
  • Hydrophobic biodegradable starch ester product see Japanese Patent Publication No. Hei 8-500 25 2
  • starch ester modified with vinyl ester as an esterifying reagent Carbon number of the group Is a starch ester obtained by reacting with starch using an esterification catalyst in a non-aqueous organic solvent (refer to Japanese Patent Laid-Open No.
  • a short-chain single-long-chain mixed starch ester obtained by substituting hydrogen of the reactive hydroxyl group of the same starch molecule with a short-chain acyl group having 2 to 4 carbon atoms and a long-chain acyl group having 6 to 18 carbon atoms. 0 0 0 — 1 5 9 8 0 1)
  • the reactive hydroxyl group of the same starch molecule is a short chain hydrocarbon-containing group having 2 to 4 carbon atoms and a long chain hydrocarbon-containing group having 6 to 24 carbon atoms.
  • Substituted short chain and long chain mixed starch substituted derivatives see Japanese Patent Laid-Open No. 2 0 0 0-1 5 9 8 0 2
  • These modified starches are biodegradable because they are based on starch, and are particularly excellent in solubility in solvents and Z or compatibility.
  • starches and / or modified starches can be used alone or in combination.
  • the product (X) having an isocyanate group can be obtained by reacting the polyisocyanate compound (xl) with a polyhydric alcohol (x 2).
  • Polyisocyanate compounds (X 1) include, for example, isophorone diisocyanate, tolylene diisocyanate, diphenylmethane diisocyanate, lysine diisocyanate, naphthenic diisocyanate, triphenylmethane triisocyanate.
  • D 1 110 or D _ 1 2 3 N "(Mitsui Chemicals Polyurethane Co., Ltd. product),” 3 Roneichi EH, L, HL or 20 3 "(Nihon Polyuretan Kogyo Co., Ltd.) Product) or “deyuranate 2 4 A 1 90 CX” (product of Asahi Kasei Chemicals Corporation).
  • polyhydric alcohol (x2) examples include alkylene diols, trivalent or higher valent alkane polyols, ether polyols, polyester polyols, and other polyols.
  • alkylene diol examples include ethylene glycol, plastic Lopylene glycol, 1,3-butylene glycol, 1,4-butylenediol, 1,5-pentanediol, 1,6-hexanediol, neopentyl glycol, cyclohexane-1,4 Examples include dimethylol, 2-methyl-2,4 monopentanediol, and hydrogenated bisphenol A.
  • trivalent or higher-valent alkane polyols examples include triols such as glycerin, trimethylolethane, trimethylolpropane; and higher-valent alkane polyols such as pen erythritol, ⁇ -methyldaricoside, and sorbitol.
  • ether polyol examples include those produced by ring-opening addition reaction of alkylene oxides such as ethylene oxide, propylene oxide, butylene oxide, and tetrahydrofuran, diethylene glycol, dipropylene glycol, polyethylene glycol, Polypropylene glycol, polytetramethylene glycol, triethylene glycol, poly (oxyethylene oxypropylene) glycol, bisphenol ⁇ ⁇ ⁇ polyethylene glycol ether, bisphenol A polypropylene glycol ether, sucrose, dipentyl erythritol, and the like.
  • alkylene oxides such as ethylene oxide, propylene oxide, butylene oxide, and tetrahydrofuran
  • diethylene glycol dipropylene glycol
  • polyethylene glycol Polypropylene glycol, polytetramethylene glycol, triethylene glycol
  • poly (oxyethylene oxypropylene) glycol bisphenol ⁇ ⁇ ⁇ polyethylene glycol ether
  • polyester polyol examples include those obtained by subjecting an organic dicarboxylic acid or an anhydride thereof to a polycondensation reaction with an organic diol component under conditions of excess organic diol.
  • a polyester polyol which is a condensate of adipic acid and ethylene glycol and a condensate of adipic acid and neopentyl dallicol can be mentioned.
  • organic dicarboxylic acid examples include aliphatic, alicyclic or aromatic dicarboxylic acids having 2 to 4 carbon atoms, particularly 4 to 36 carbon atoms, such as succinic acid, adipic acid, azelaic acid, sebacic acid, maleic acid. Acid, fumar Acid, glutaric acid, hexaclonal heptane dicarboxylic acid, cyclohexane dicarboxylic acid, O-phthalic acid, isophthalic acid, terephthalic acid, tetrahydrobutyric acid, and tetraclofuuric acid.
  • a small amount of polycarboxylic acid anhydrides and / or unsaturated fatty acid adducts having three or more carboxyl groups can be used in combination.
  • the organic diol component include alkylene glycols such as ethylene glycol, propylene glycol, 1,4 monobutanediol, 1,5-pentanediol, 1,6-hexanediol, and neopentyldarlicol.
  • 1,4-cyclohexanedimethanol 2-butyl-2-ethyl-1,3-propanediol, 3_methyl_1,5 monopentanediol, 2-methyl-2,4 monopentanediol, etc.
  • these may be used in combination with a small amount of a trivalent or higher valent polyol such as trimethylolpropane, glycerin, or penicillin erythritol.
  • the reaction of the polyisocyanate compound (xl) and the polyhydric alcohol (X 2) is performed by an organic solvent such as toluene, xylene, cyclohexane.
  • organic solvent such as toluene, xylene, cyclohexane.
  • Hydrocarbon solvents such as xane and n-hexane; ester solvents such as methyl acetate, ethyl acetate, and butyl acetate; ketone solvents such as acetone, methyl ethyl ketone, methyl isoptyl ketone, and methyl amyl ketone; or It can be carried out in a mixture of these.
  • the reaction ratio of the polyisocyanate compound (xl) and the polyhydric alcohol (x 2) is not particularly limited as long as the reaction ratio is such that free isocyanate is left.
  • a catalyst such as monobutyltin oxide or dibutyltin oxide can be used as appropriate.
  • the temperature and time of the above reaction are not particularly limited. For example, at a temperature of 50 ° C.
  • the NCO value of the product (X) having an isocyanate group obtained by the above reaction is preferably in the range of SSSO mg NCO / g, particularly 7 to 200 mg NC OZ g.
  • the reaction between the starch-based resin (I) and the product (X) having an isocyanate group is an organic solvent, for example, a hydrocarbon solvent such as toluene, xylene, cyclohexane, n-hexane, methyl acetate, It can be carried out in ester solvents such as ethyl acetate and butyl acetate; ketone solvents such as acetone, methyl ethyl ketone, methyl isoptyl ketone and methyl amyl ketone; or a mixture thereof.
  • the blending ratio of the starch-based resin (I) and the product (X) having an isocyanate group can be appropriately adjusted according to the required coating film performance.
  • the blending ratio is determined based on the starch-based resin (I) and the product having isocyanate group ( X) is a product having an isocyanate group in which the starch-based resin (I) is in an amount ranging from 50 to 99% by mass, preferably from 60 to 98% by mass, based on the total non-volatile content of X (X) is an amount in the range of 1 to 50 mass%, preferably 2 to 40 mass%.
  • a catalyst such as monobutyltin oxide or dibutyltin oxide can be appropriately used.
  • the temperature and time of the above reaction are not particularly limited.
  • the number average molecular weight of the starch-based resin (II) obtained by the above reaction is preferably in the range of 3, 0 00 to 2 0 0, 0 0 0, more preferably 5, 0 0 0 to 1 0 0, 0 0 The range is 0.
  • the starch-based resin (II) produced in this manner is suitable as a binder for a starch-based base coating composition formed by dissolving or dispersing the starch-based resin (II) in an organic solvent solvent.
  • the starch-based resin (III) comprises a starch-based resin (I), a product (X) having an isocyanate group obtained by reacting a polyisocyanate compound (xl) and a polyhydric alcohol (x2), It is obtained by reacting with vinyl copolymer resin (Y).
  • the vinyl copolymer resin (Y) can be obtained by subjecting a mixture of radically polymerizable unsaturated monomers to a radical polymerization reaction in the presence of an organic solvent and a polymerization initiator.
  • the mixture of the radical polymerizable unsaturated monomer is 1 to 90% by mass of the aromatic radical polymerizable unsaturated monomer based on the total mass of the mixture, Preferably 5 to 80 mass%, more preferably 1.0 to 85 mass%, hydroxyl-containing radically polymerizable unsaturated monomer 1 to 50 mass%, preferably 2 to 40 mass%, More preferably 5 to 30% by mass and other radical polymerizable unsaturated monomers 0 to 98% by mass, preferably 2 to 93% by mass, and more preferably 5 to 85% by mass.
  • Radical polymerizability When it is a mixture of unsaturated monomers, it is possible to form a coating film excellent in finish, adhesion, solvent resistance, alkali resistance, impact resistance and flex resistance.
  • aromatic radical polymerizable unsaturated monomer examples include styrene, vinyltoluene, 2-methylstyrene, t_butylstyrene, chlorostyrene, vinylnaphthalene, and the like.
  • the hydroxyl group-containing radically polymerizable unsaturated monomers include 2 —hydroxychetyl (meth) acrylate, 2 —hydroxypropyl (methyl) acrylate, and 3 —hydroxypropyl.
  • At least one selected from hydroxybutyl acrylate has improved compatibility with starch-based resins (I) and / or products having isocyanate groups (X) to improve paint stability. This is particularly preferable from the viewpoint of ensuring the above.
  • radical polymerizable unsaturated monomers examples include (meth) acrylic acid, maleic acid, crotonic acid, itaconic acid, fumaric acid and the like.
  • radical polymerizable unsaturated monomer containing lpoxyl group examples include (meth) acrylic acid, maleic acid, crotonic acid, itaconic acid, fumaric acid and the like.
  • radical polymerizable unsaturated monomer containing lpoxyl group methyl (meta)
  • radical polymerizable unsaturated monomer examples include fatty acid-modified radical polymerizable unsaturated monomers.
  • the fatty acid-modified radically polymerizable unsaturated monomer includes a radically polymerizable unsaturated monomer having a radically polymerizable unsaturated group at the terminal of a fatty acid-derived hydrocarbon chain.
  • Examples of the fatty acid-modified radical polymerizable unsaturated monomer include those obtained by reacting a fatty acid with an epoxy group-containing radical polymerizable unsaturated monomer or a hydroxyl group-containing radical polymerizable unsaturated monomer. be able to.
  • Examples of the fatty acid include dry oil fatty acid, semi-dry oil fatty acid and non-dry oil fatty acid.
  • dry oil fatty acid and semi-dry oil fatty acid include fish oil fatty acid, dehydrated castor oil fatty acid, safflower oil fatty acid, linseed oil fatty acid, soybean oil fatty acid, sesame oil fatty acid, poppy oil fatty acid, eno oil fatty acid, grape oil fatty acid, grape Nuclear oil fatty acid, corn oil fatty acid, tall oil fatty acid, castor oil fatty acid, cottonseed oil fatty acid, curd Examples include coconut oil fatty acid, rubber seed oil fatty acid, and hyogen acid fatty acid.
  • non-drying oil fatty acid examples include coconut oil fatty acid, hydrogenated coconut oil fatty acid, and palm oil fatty acid. Each of these can be used alone or in combination of two or more. Furthermore, these fatty acids can be used in combination with cabronic acid, strong puric acid, lauric acid, myristic acid, palmitic acid, stearic acid and the like.
  • the monomer that can be reacted with the fatty acid is preferably a radical polymerizable unsaturated monomer containing an epoxy group, for example , Glycidyl (meth) acrylate, jS —Methyldaricidyl (meth) 7 acrylate, 3,4_epoxycyclohexylmethyl (meth) acrylate, 3,4-epoxycyclohexylethyl (meth) acrylate Examples thereof include 3,4_epoxycyclohexylpropyl (meth) acrylate, allylglycidyl ether, and the like.
  • a radical polymerizable unsaturated monomer containing an epoxy group for example , Glycidyl (meth) acrylate, jS —Methyldaricidyl (meth) 7 acrylate, 3,4_epoxycyclohexylmethyl (meth) acrylate, 3,4-epoxycyclohexylethyl
  • the vinyl copolymer resin (Y) can be easily prepared, for example, by subjecting a mixture of the above-mentioned radical polymerizable unsaturated monomers to a radical polymerization reaction in an organic solvent in the presence of a polymerization initiator. Can do.
  • a mixture of a radical polymerizable unsaturated monomer and a mixture of a polymerization initiator are uniformly dropped to 60 to 200 ° C., preferably 80 to 180. At a reaction temperature of 30 minutes to 6 hours, preferably 1 to 5 hours.
  • organic solvent examples include hydrocarbon solvents such as toluene, xylene, cyclohexane, and n-hexane; ester solvents such as methyl acetate, ethyl acetate, and butyl acetate; acetone, methyl ethyl ketone, and methyl isoform.
  • Ketone solvents such as butyl ketone and methyl amyl ketone; or a mixture thereof.
  • Vinyl copolymer resin (Y) has a hydroxyl value of 5 to 40 O mg KOH / g, and the weight average molecular weight is preferably in the range of 3, 0 00 to 1 0 0, 0 0 0, particularly 5, 0 0 0 to 2 0, 0 0 0.
  • the reaction between the starch-based resin (I) and the product (X) having an isocyanate group can be carried out in an organic solvent similar to that described in the production of the starch-based resin (I I).
  • the blending ratio of the starch-based resin (I), the product having an isocyanate group (X), and the vinyl copolymer resin (Y) can be appropriately adjusted according to the required coating film performance. .
  • the blending ratio of starch-based resin (I), starch-based resin (I) is 50% based on the total non-volatile content of product (X) and vinyl copolymer resin (Y) having isocyanate group.
  • the product (X) having an isocyanate group is 1 to 49% by mass, preferably 2 to 33% by mass. %
  • the vinyl copolymer resin (Y) is in the range of 1 to 49% by mass, preferably 2 to 33% by mass.
  • a tin catalyst such as monobutyltin oxide or dibutyltin oxide can be appropriately used.
  • the temperature and time of the above reaction are not particularly limited. For example, the reaction is performed at a temperature of 50 ° C. to 200 ° C., preferably 60 ° C. to 150 ° C., for 30 minutes to 10 ° C. Time, preferably 1 to 5 hours.
  • the number average molecular weight of the starch-based resin (III) obtained by the above reaction is preferably in the range of 3, 0 00 to 2 0 0, 0 0 0, more preferably 5, 0 0 0 to 1 0 0, The range is 0 0 0.
  • the starch-based resin (III) thus produced can be suitably used as a binder for a starch-based base coating composition dissolved or dispersed in an organic solvent-based solvent.
  • the amount of the starch-based resin (I) is less than 50% by mass, the biological component is decreased, and when it exceeds 98% by mass, the chemical resistance and / or adhesion of the coating film is lowered. There are things to do.
  • the starch-based resin (IV) is obtained by graph-polymerizing a radical polymerizable unsaturated monomer with the starch-based resin (I).
  • U.S. Pat. Nos. 3 4 2 5 9 7 1, 3 9 8 1 1 0 0 and JP 5 6-1 6 7 7 4 6 disclose an aqueous dispersion or Discloses a graft polymerization of vinyl monomers using a cerium salt as a radical polymerization initiation catalyst in slurry-like starch or modified starch.
  • Japanese Patent Application Laid-Open Nos. 54-102086 and 55-1900-5 disclose styrene for starch modified with maleic acid, which is a compound containing an unsaturated group, and Graft polymerization of acrylic monomers has been disclosed.
  • the target starch resin (IV) can be produced by these known methods. Alternatively, it can be produced by other known methods. Can.
  • the ratio of the starch-based resin (I) and the radically polymerizable unsaturated monomer there are no particular limitations on the ratio of the starch-based resin (I) and the radically polymerizable unsaturated monomer.
  • the radical polymerizable unsaturated monomer it is preferable to use a mixture of monomers having different properties.
  • the above-mentioned mixture of radically polymerizable unsaturated monomers is, for example, radically polymerizable from the viewpoint of forming a coating film excellent in finish, adhesion, solvent resistance, alkali resistance, impact resistance and flex resistance.
  • aromatic radically polymerizable unsaturated monomer examples include aromatic radically polymerizable unsaturated monomers exemplified in the above-mentioned vinyl copolymer resin (Y) section.
  • hydroxyl group-containing radical polymerizable unsaturated monomer examples include the hydroxyl group-containing radical polymerizable unsaturated monomer exemplified in the above-mentioned section of the pinyl copolymer resin (Y).
  • Examples of the other radically polymerizable unsaturated monomer include other radically polymerizable unsaturated monomers exemplified in the above-mentioned section of the vinyl copolymer resin (Y).
  • a method for graft polymerization of a radically polymerizable unsaturated monomer to starch and / or modified starch specifically, for example, a mixture of a radically polymerizable unsaturated monomer and a polymerization initiator are mixed with a starch-based resin.
  • a method of radical polymerization reaction by dropping it into the organic solvent solution (I) is simple.
  • the above reaction may be carried out, for example, by adding dropwise a mixture of radically polymerizable unsaturated monomers and a mixture of polymerization initiators to 60 to 200, preferably 8
  • the reaction is carried out at a reaction temperature of 0 to 180 ° C. for 30 minutes to 6 hours, preferably 1 to 5 hours.
  • the polymerization initiator a known radical polymerization initiator can be used, but the radical polymerizable unsaturated monomer mixture and the polymerization initiator are dropped into the organic solvent solution of the starch resin (I).
  • a peroxide-based initiator examples include t-butyl didropoxide, p-men drip drop oxide, cumene high drop oxide, diisopropylbenzene drop drop oxide, and the like.
  • organic solvent examples include hydrocarbon solvents such as toluene, xylene, cyclohexane, and n-hexane; ester solvents such as methyl acetate, ethyl acetate, and butyl acetate; acetone, methyl ethyl ketone, and methyl isoform.
  • Ketone solvents such as butyl ketone and methyl amyl ketone; or a mixture thereof.
  • the number average molecular weight of the starch-based resin (IV) obtained by the above reaction is preferably in the range of 3,000 to 200,000, more preferably 5,0, from the viewpoint of film forming property and the like.
  • the range is from 0 0 to 1 0 0, 0 0 0.
  • the starch resin (V) comprises a resin (Z) obtained by graft polymerization of a radically polymerizable unsaturated monomer to the starch resin (I), and a polyisocyanate. It is obtained by reacting a product (X) having an isocyanate group obtained by reacting an nate compound (xl) and a polyhydric alcohol (x 2).
  • the resin ( ⁇ ) obtained by graft polymerizing a radical polymerizable unsaturated monomer to the starch resin (I) can be the same as the starch resin (IV).
  • Specific methods for obtaining the resin (() include the same methods as those for obtaining the starch-based resin (IV) described in the production of the starch-based resin (IV).
  • the blending ratio of the resin (() and the product (X) having an isocyanate group can be appropriately adjusted according to the required coating film performance.
  • the blending ratio is 50 to 99% by mass, preferably 60 to 99% by mass of the resin ( ⁇ ) based on the total nonvolatile mass of the resin ( ⁇ ) and the product (X) having an isocyanate group.
  • the amount of the product (X) having an isocyanate group is 1 to 50% by mass, preferably 2 to 40% by mass.
  • a catalyst such as monobutyltin oxide or dibutyltin oxide can be appropriately used.
  • the temperature and time of the above reaction are not particularly limited.
  • the reaction is carried out at a temperature of 50 ° C. to 200 ° C., preferably 60 ° C. to 150 ° C. for 30 minutes to 10 ° C.
  • the time is preferably 1 to 5 hours.
  • the number average molecular weight of the starch-based resin (V) obtained by the above reaction is preferably in the range of 3, 0 00 to 2 0 0, 0 0 0, more preferably 5 0 0 0, from the viewpoint of film forming property and the like.
  • the range is 0 to 1 0 0, 0 0 0.
  • Coloring pigments include white pigments such as titanium oxide, zinc white, lead white, basic lead sulfate, lead sulfate, lithobon, zinc sulfide, antimony white, etc .; Power Pon Black, Acetylene Black, Lamp Black, Pon Black Black pigments such as black, graphite, iron black, and aniline black;
  • Yellow pigments such as S, Hansaero I, Pigment Yellow L, Benzidine Yellow, Permanent Yellow, etc .
  • Orange pigments such as chrome orange, chrome virion, and permanent orange
  • Brown pigments such as iron oxide and amber
  • Bengala lead Red pigments such as red, permanent red and quinacridone red pigments
  • purple pigments such as cobalt violet, fast violet, methyl violet lake, blue pigments such as ultramarine, bitumen, cobalt blue, phthalocyanine blue, indigo
  • chrome green And green pigments such as pigment green B and phthalocyanine green.
  • Examples of the luster pigment include aluminum powder, bronze powder, copper powder, tin powder, lead powder, zinc powder, iron phosphate, pearl metal coating mica powder, and micaceous iron oxide.
  • the blending ratio of the color pigment and / or the luster pigment may be appropriately determined according to the intended use and / or required performance, but it is generally 0.
  • the range is from 0 to 1 to 400 parts by mass, and preferably from 0.01 to 200 parts by mass.
  • the starch-based base coating composition used in the present invention may be blended with other plant-derived resins as necessary.
  • plant-derived resins other than starch-based resins include plant fiber or cellulose resin, polyhydroxycarboxylic acid typified by polylactic acid, polystrength prolactam, and modified polyvinyl alcohol.
  • the starch-based base coating composition used in the present invention can contain a cross-linking agent as required.
  • cross-linking agents include A lysocyanine monovalent compound is mentioned.
  • the polyisocyanate compound for example, the above-mentioned polyisocyanate compound
  • starch-based coating composition used in the present invention examples include the polyisocyanate compounds exemplified in the section (X 1), as necessary, known plasticizers, UV stabilizers, metal dryers, fluids It is possible to add property modifiers, anti-repellent agents, anti-sagging agents, antioxidants, anti-fogging agents, anti-fogging agents, antiseptics, curing accelerators, scratch-proofing agents, antifoaming agents, and the like.
  • the starch-based coating composition used in the present invention can be used in known liquid coating systems such as water-based coatings and organic solvent-based coatings.
  • organic solvent-type paints include, for example, hydrocarbon organic solvents such as toluene, xylene, cyclohexane and n-hexane, ester organic solvents such as methyl acetate, ethyl acetate and butyl acetate, acetone , Methylethylketone, Methylisoptylketone, Methylamylketone and other ketone-based organic solvents used alone or in combination as a dilution solvent are easy to paint as a lacquer, dry It can be made into a very easy-to-use paint with excellent speed.
  • hydrocarbon organic solvents such as toluene, xylene, cyclohexane and n-hexane
  • ester organic solvents such as methyl acetate, ethyl
  • the base coating film in the present invention is formed by coating the starch-based base coating composition on an object to be coated.
  • a known coating method can be applied as a coating method for forming the base coating film.
  • drying or set After painting, dry or set.
  • the drying conditions are not particularly limited, but usually the drying is less than 100 ° C, preferably Perform for 1 to 40 minutes at a temperature between 40 ° C and 90 ° C. Alternatively, it can be performed by leaving it set for 10 minutes or more at a temperature of less than 40 ° C.
  • the film thickness of the base coating film is not particularly limited, but the dry film thickness is generally 0.1 to 30 m, preferably 0.5 to 20 rn, more preferably 1 to 1. 0 m.
  • the active energy ray-curable aqueous coating composition used in the present invention contains an aqueous dispersion of an acrylic ester (bl) of a saccharide or a derivative thereof and a photopolymerization initiator (b2).
  • An aqueous dispersion of saccharide or its derivative acrylic ester (bl) is a sugar or its derivative, acrylic acid, acrylic acid such as methyl acrylate, etc.
  • Ester (bl) or acrylic acid halide such as acrylic acid chloride is reacted to form acrylic acid ester (bl), and then acrylic acid ester (b 1) is dispersed in water.
  • the saccharides or derivatives thereof include monosaccharides, sugar alcohols, cyclic alcohols, oligosaccharides, polysaccharides and derivatives thereof.
  • Specific examples of the sugar alcohol include sorbitol, dulci-zyl, and xylitol.
  • oligosaccharide means a saccharide from disaccharide to decasaccharide.
  • examples of the oligosaccharide include a cyclic oligosaccharide and a non-cyclic oligosaccharide.
  • the cyclic oligosaccharide means an oligosaccharide having a structure in which a plurality of monosaccharides are linked in a cyclic form by glycosidic bonds.
  • non-cyclic oligosaccharide means an oligosaccharide having a structure in which a plurality of monosaccharides are linked in a chain and non-cyclic manner by glycosidic bonds, unlike the above-mentioned cyclic oligosaccharide.
  • Ring Specific examples of the oligosaccharide include cyclodextrins.
  • non-cyclic oligosaccharides include disaccharides such as reducing disaccharides (maltose, cellobiose, lactose, etc.) and non-reducing disaccharides (sucrose, trehalose, etc.); Examples thereof include oligosaccharides having three or more sugars such as pathose, swath, dextrin and the like. Of these, dextrin is preferred because starch can be obtained by hydrolyzing starch. Non-reducing sucrose and trehalose are not browned by the Maillard reaction (browning reaction). Therefore, it is preferable from the viewpoint of durability of the coating film.
  • the polysaccharide means a saccharide in which a plurality of monosaccharides are linked by glycosidic bonds, and the number of monosaccharides to be bonded is larger than that of oligosaccharides.
  • Specific examples of the polysaccharide include cellulose, chitin, starch, glycogen, agarose, pectin and the like.
  • a small part of the hydroxyl group in the saccharide is selected from saturated carboxylic acids having 2 to 22 carbon atoms (saturated carboxylic acid, saturated sulfonate ester and / or saturated sulfonate sulfonate).
  • a carboxylic acid ester can be suitably used by at least one kind. Specifically, for example, acetate ester, laurate ester and the like can be mentioned.
  • the method for producing the acrylate ester (bl) used in the present invention is the same as that for the acrylate ester (al).
  • the method for adjusting the amount of acryloyl group introduced in the production of the acrylic acid ester (b 1) used in the present invention is the same as in the case of the acrylic acid ester (al).
  • the acrylic ester (b 1) of a saccharide or its derivative is obtained by dissolving the saccharide or its derivative in an organic solvent and adding acrylic acid halide (for example, acrylic acid chloride) to produce the acid produced. Neutralize and wash Can also be obtained (dehydrochlorination method).
  • acrylic acid halide for example, acrylic acid chloride
  • the weight average molecular weight of the acrylic acid ester (b 1) of the saccharide or derivative thereof thus obtained may have a range of 400 to 2, 2,000, preferably 5,000 to 1,800. From the viewpoint of ease of production, paint viscosity, and finish.
  • the acrylic ester (bl) of the saccharide or its derivative preferably has an average of 3.0 to 12.0, more preferably an average of 4.0 to 9.0 acryloyl groups per molecule.
  • the method and emulsifier of the saccharide or its derivative acrylic ester (bl) dispersed in water to form an aqueous dispersion are the same as in the case of the acrylic ester (a1).
  • the photopolymerization initiator (b 2) generates a radical by being excited by the light energy of the active energy ray, and the radical polymerizable unsaturated group (specifically, the acrylic ester (bl) of the present invention (specifically, Acryloyl group) radical polymerization reaction.
  • the radical polymerizable unsaturated group specifically, the acrylic ester (bl) of the present invention (specifically, Acryloyl group) radical polymerization reaction.
  • photopolymerization initiator (b 2) include the same ones as the photopolymerization initiator (a 2).
  • Photopolymerization initiators (b 2) can be used alone or in combination of two or more.
  • Photopolymerization initiator (b 2) is Irgacure 500 [trade name, manufactured by Ciba Specialty Chemicals Co., Ltd .: 1—Hydroxy-cyclohexyl monophenyl ketone and benzophenone 1: 1 mixture by mass]
  • Darocur 1 1 7 3 (trade name, Ciba ⁇ Specialties Chemicals, 2-Hydroxy-2-methyl-1-phenyl-1-propane) b 2) is preferred from the viewpoint of mixing stability.
  • the content of the photopolymerization initiator (b 2) is 0 with respect to the total amount of acrylic ester (b 1) of the saccharide or its derivative and the active energy ray-curable compound (b 3) described later, 100 parts by mass. Within the range of 1 to 10 parts by weight, preferably 0.2 to 5 parts by weight.
  • the active energy ray-curable aqueous coating composition used in the coating film forming method of the present invention contains a radical in addition to the photopolymerization initiator (b 2) in order to accelerate the radical polymerization reaction by irradiation with active energy rays.
  • a photosensitizer may be used in combination for the purpose of improving the generation sensitivity and extending the Z or wavelength region.
  • photosensitizer that can be used in combination are the same as those of the photosensitizer in the photopolymerization initiator (a 2).
  • These photosensitizers are acrylic acid esters of sugars or their derivatives.
  • the range of 0.1 to 5 parts by mass is preferable with respect to 100 parts by mass of (b 1) and the total amount of the active energy ray-curable compound (b 3) described later.
  • the active energy ray-curable aqueous coating composition of the present invention may contain an active energy ray-curable compound (b 3) other than the acrylate ester (bl) of the saccharide or a derivative thereof as necessary.
  • the active energy ray-curable compound (b3) to be blended is a radically polymerizable unsaturated monomer, a radically polymerizable unsaturated group-containing resin, or a radical polymer other than an acrylic ester (b1) of a saccharide or its derivative. It is preferably at least one monomer and / or resin selected from the group consisting of polymerizable unsaturated group- and thermosetting functional group-containing resins.
  • radical polymerizable unsaturated monomer examples include a monofunctional polymerizable monomer, a bifunctional polymerizable monomer, and a trifunctional or higher functional polymerizable monomer.
  • monofunctional polymerizable monomer bifunctional polymerizable monomer, and trifunctional or higher polymerizable monomer, those described in the section of the active energy ray-curable compound (a 3) can be used.
  • Preferred radical polymerizable unsaturated monomers are bifunctional polymerizable monomers and Z or trifunctional or higher polymerizable monomers from the viewpoint of photocurability, adhesion, and scratch resistance.
  • radical polymerizable unsaturated group-containing resin those described in the section of the active energy ray-curable compound (a 3) can be used.
  • the energy ray-curable compound (b 3) is preferably 0 to 90 parts by mass, and more preferably 30 to 400 parts by mass, from the viewpoint of finish and scratch resistance.
  • the active energy ray-curable water-based coating composition used in the present invention includes, as necessary, a defoaming agent, a surface conditioner, an ultraviolet absorber, a light stabilizer, an antifoaming agent, an organic colorant, a natural colorant, Dyes and inorganic pigments can be used. Examples thereof include those described in the section “A. Active energy ray-curable coating composition”.
  • the method of making the aqueous composition when producing the active energy ray-curable aqueous coating composition used in the coating film forming method of the present invention.
  • a method of making it aqueous for example, after mixing an acrylic ester (bl) of a saccharide or a derivative thereof or an organic solvent solution thereof, a photopolymerization initiator (b 2) and an emulsifier, water is gradually added while stirring.
  • a photopolymerization initiator (b 2) and an emulsifier water is gradually added while stirring.
  • the method of making it water-dispersed by making it water-based is mentioned.
  • an aqueous dispersion obtained by dispersing an acrylic ester (bl) of a saccharide or a derivative thereof in water, and a photopolymerization initiator (b 2) And other components in an aqueous medium according to a conventional method.
  • the active energy ray-curable compound (b 3) it is preferable from the viewpoint of mixing stability to use an aqueous dispersion obtained by previously dispersing the compound in water.
  • the method for dispersing the active energy ray-curable compound (b 3) in water can be the same as the method for dispersing the acrylate or acrylate ester (b 1) in water.
  • the photopolymerization initiator (b 2) is a solid photopolymerization initiator (b 2) having a low water solubility, it can be uniformly added and dissolved in the active energy ray-curable compound (b 3). It is preferable from the viewpoint of photocuring, finish, and scratch resistance.
  • a known coating method can be applied as a coating method when the active energy ray-curable aqueous coating composition used in the present invention is applied.
  • roller coating brush coating, immersion coating, spray coating (non-electrostatic coating, electrostatic coating, etc.), curtain flow coating, screen printing, letterpress printing, and the like.
  • spray coating is preferred.
  • the film thickness of the coating film formed by the above coating is not particularly limited, but the dry film thickness is 0.1 to 30 m, preferably 1 to 25 im, more preferably 5 to 2 0 m.
  • the concentration of the non-volatile content of the active energy ray-curable aqueous coating composition is not particularly limited as long as it can be applied. However, when spray coating is performed, it is preferably in the range of 10 to 50% by mass. is there.
  • the means for heating is not particularly limited.
  • a hot air furnace an electric furnace ⁇ Drying equipment such as infrared induction heating can be applied.
  • the heating temperature is not particularly limited, but is usually in the range of 35 to 100 ° C., preferably 40 to 90 ° C.
  • the heating time is not particularly limited, but usually a range of 1 to 30 minutes is preferable.
  • the active energy ray to be irradiated is not particularly limited, and may be any of electron beam, ultraviolet ray, visible light, and infrared ray.
  • an irradiation source having a wavelength with high sensitivity can be appropriately selected and used according to the type of the photopolymerization initiator (b 2).
  • Examples of the active energy ray irradiation source include a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a xenon lamp, a carbon arc, a metal halide lamp, and sunlight.
  • the conditions for irradiating active energy rays are usually in the range where the integrated light quantity is 1, 0 0 0 to 2 0, OOOJ Zm 2 , preferably 2, 0 0 0 to 1 5, 0 0 0 J / m 2 ing.
  • the coating film can be cured in about 1 second to 5 minutes. The above range is preferable from the viewpoints of the photocurability of the coating film and resistance to yellowing.
  • the active energy ray-curable water-based coating composition can be heated as an auxiliary crosslinking means after or simultaneously with irradiation of the active energy line.
  • the coated article obtained by the coating film forming method of the present invention can be used as a material or a part of, for example, an electric part, a mobile phone, lighting, an electric element, a semiconductor, a vending machine or the like.
  • Parts and % mean “parts by mass” and “% by mass” unless otherwise specified.
  • dextrin (I) glucose polymer having an average polymerization number of 4 and having an average of 14 hydroxyl groups per molecule
  • methylisoptyl ketone 1 100 parts
  • 0.16 parts of methylhydroquinone 5.9 parts of lithium hydroxide monohydrate
  • 50.6.2 parts of methyl acrylate were charged.
  • reaction solution is concentrated under reduced pressure, and ethyl acetate is added to the residue to obtain a nonvolatile content concentration of 25%, a weight average molecular weight of 1,100, and an average of 6.0 acryloyl groups per molecule.
  • An acrylic ester No. A-1 solution of the present invention was obtained.
  • dextrin (I) is a glucose polymer having an average polymerization number of 3 and having an average of 11 hydroxyl groups per molecule.
  • the reaction was traced by measuring the methanol and distilled methanol in the reaction vessel by gas chromatography until 0 hydroxyl groups were converted to acrylate, and the weight average molecular weight was 9500 and 1 molecule.
  • Production Example A-1 the same procedure as in Production Example A-1 except that dextrin (III), which is a glucose polymer having an average polymerization number of 6 and has an average of 20 hydroxyl groups per molecule, was used.
  • dextrin (III) which is a glucose polymer having an average polymerization number of 6 and has an average of 20 hydroxyl groups per molecule.
  • the methanol and distilled methanol in the reaction vessel were measured by gas chromatography until an average of 6.0 hydroxyl groups per molecule of dextrin (III) was converted to acrylate.
  • the reaction is followed by quantifying the weight average molecular weight of 1,500 and An acrylate ester No. A-4 solution of the present invention having an average of 6.0 acryloyl groups per molecule was obtained.
  • Production Example A-1 the reaction was traced by quantifying methanol and distilled methanol in the reaction vessel by gas chromatography, and an average of 2.0 per molecule of dextrin (I) Acrylic acid ester having a weight average molecular weight of 800 and an average of 2.0 acryloyl groups per molecule in the same manner as in Production Example A-1 except that cooling is performed when the hydroxyl group is converted to an acrylic ester. A No. A 15 solution was obtained.
  • Example A-1 the same procedure as in Production Example A-1 except that dextrin (IV), which is a glucose polymer having an average polymerization number of 8 and has an average of 26 hydroxyl groups per molecule, is used. Among the 26 hydroxyl groups averaged per molecule possessed by the dextrin (IV), an average of 10.0 hydroxyl groups is converted into acrylic acid ester until the methacrylic acid in the reaction vessel. The reaction was traced by determining the amount of methanol and distilled methanol by gas chromatography, and acrylic acid having a weight average molecular weight of 2,100 and an average of 10.0 acryloyl groups per molecule. An ester No. A-7 solution was obtained.
  • dextrin (IV) which is a glucose polymer having an average polymerization number of 8 and has an average of 26 hydroxyl groups per molecule.
  • an average of 10.0 hydroxyl groups is converted into acrylic acid ester until the methacrylic acid in the reaction vessel.
  • the reaction was traced by determining the
  • sucrose was used instead of dextrin (I), and the reaction was traced by quantifying the methanol in the reaction vessel and the distilled methanol by gas chromatography, and per molecule of the sucrose. Except for cooling when an average of 6.0 hydroxyl groups was esterified with acrylic acid, the same as in Production Example A-1, the weight average molecular weight was 7800 and the average of 6.0 acryloyl per molecule. An acrylic ester N 0 .A-12 solution containing a thio group was obtained.
  • Acrylic ester N o A— 1 3
  • Example of making solution In a 1-liter glass round bottom four-necked flask equipped with a distillation apparatus, thermometer and stirrer, add 79.5 parts of j6-cyclodextrin, 400 parts of dimethylformamide, and 0 part of methylhydroquinone. 1 Prepared 6 copies. Next, after stirring this mixed liquid to a uniform state, 17.4 parts of dibutyltinoxide (corresponding to 2 parts relative to 100 parts of 3-cyclodextrin) was added, and air was added to the mixed liquid. Was heated to 110 ° C. while blowing the solution at 10 ml LZ and stirring the solution.
  • the catalyst in the reaction solution was filtered off, and the filtrate was concentrated under reduced pressure. Then, isopropanol was added to the residue to crystallize the desired product, and the crystal was separated. The obtained crystals were washed with isopropanol and dried to obtain 72.6 parts of 4.0-functional acrylic acid ester of / 3-cyclodextrin.
  • the obtained acrylic acid ester was dissolved in butyl acetate, and the acrylic acid ester having a nonvolatile content concentration of 25%, a weight average molecular weight of 1520 and an average of 4.0 acryloyl groups per molecule No. A-1 3 A solution was obtained.
  • Photo curable resin solution No. A— 1 production example (equivalent to active energy ray curable compound (a 3))
  • the mixture was cooled to obtain a photocurable resin solution No. A-1 having a resin non-volatile content of 80%.
  • the number average molecular weight of this resin was about 1,500.
  • a copolymer was obtained by maintaining at the same temperature for 0.5 hours, and then 20 parts of styrene, 4 parts of n-butyl methacrylate, 2 parts of 2-hydroxychetyl methacrylate. A mixture of 15 parts of 1 part, 60 parts of acrylic acid, 10 parts of methyl methacrylate, and 10 parts of t-methyl paroxyl-2-ethylhexanoate was added dropwise from a dropping tank over 1 hour.
  • Ciba Specialty Chemicals Co., Ltd., photopolymerization initiator 3 parts added and dissolved, diluted with butyl acetate to a non-volatile content concentration of 20%, organic solvent type active energy ray curable coating composition N o. A-1 was obtained.
  • the solvent was distilled off from the acrylic acid ester No. A-1 solution obtained in Production Example A-1 to obtain a solution having a nonvolatile content of 70%. 1 4 2. 9 parts of this solution (non-volatile content: 100 parts) were added to Darocur 1 1 7 3 (trade name, manufactured by Ciba 'Specialty' Chemicals, 2 — Hydroxy 2 — Methyl 1 1_ON, photopolymerization initiator) 3 parts, and RMA-5 0 6 (trade name, manufactured by Nippon Emulsifier Co., Ltd., polyoxyethylene nonyl phenyl ether acrylate, nonionic reactive emulsifier) 6 parts While stirring, 20.4 parts of deionized water was gradually added to disperse in water.
  • B YK-3 4 8 (trade name, manufactured by Bicchemi Co., Ltd., surface conditioner) was added, and 30% non-volatile water-based active energy-line curable coating composition No. A-1 2 was added. Obtained.
  • the solvent was distilled off from the acrylic ester No. A-1 solution obtained in Production Example A-1 to obtain a solution having a nonvolatile content of 70%. 1 4 2. 9 parts of this solution (non-volatile content 100 parts), Darocur 1 1 7 3 3 parts, and the reactive polymer emulsifier obtained in Production Example A-1 5 No. A-1 1 4 3 parts (10 parts of non-volatile content) was added, and 2 18.8 parts of deionized water was gradually added while stirring to disperse in water. Furthermore, 1 part of B YK-3 4 8 was added to obtain an aqueous active energy ray-curable coating composition No. A-15 having a nonvolatile content of 30%.
  • Aqueous active energy ray-curable coating compositions No. A—24 to No. A—26 were obtained in the same manner as in Example A—12 except that the content of Table A-4 was used. It was.
  • a water-based active energy ray-curable coating composition No. A-2 7 was obtained in the same manner as in Example A-1-6 except that the content of Table A-4 was changed.
  • a polycarbonate resin plate (trade name, Dialite P, manufactured by Mitsubishi Rayon Co., Ltd., 70 mmXl 50 mmX2 mm) was used as an object to be coated.
  • Each of the active energy ray-curing coating compositions obtained in Examples and Comparative Examples No. A 1 l to No. A-2 7 is applied by air spray so that the dry coating film becomes 12 m.
  • Example A— 1 to A— 1 1 and Comparative Example A— 1 to A_ 7 at 60 at 5 minutes, Example A— 1 2 to A— 1 6 and Comparative Example A— 8 to A— 1 1 was dried at 60 ° C. for 10 minutes.
  • test plate corresponding to No of each active energy ray-curing coating composition is cured by irradiating with UV light of 6,00 0 J Zm 2 with a high-pressure mercury lamp and photocuring. ⁇ No o A-2 7 was obtained.
  • Test plates No. A—l to No. A—27 were subjected to the test according to the following test method. The results of the examples are shown in Table A-5, and the results of the comparative examples are shown in Table A-6.
  • V VeryGood
  • G Slightly at least one of swell, glossy pickle, and chilli skin but good finish (pass as product)
  • P o o r (P) At least one of swell, glossy pickle, and chilli skin is noticeable and the finish is poor (failed as a product)
  • a commercially available business card was pressed against the coating film on each coating film and rubbed back and forth 20 times.
  • V G V er y Go o d (V G): Not scratched at all.
  • test plate was subjected to a 500-hour weather resistance test using Sunshine Weathering according to JISK 5600-0-7-8 (1 9 9 9), according to the following criteria: evaluated.
  • V Very Good
  • G ood (G) Slight yellowing is observed, and the color difference ⁇ ⁇ ⁇ in accordance with JISZ 8 7 3 0 is 0.3 or more and less than 0.5 in the initial and post-test test plates.
  • At least one of the coating films has a slight bulge and / or abnormalities such as galling.
  • High amylose corn starch (manufactured by Nippon Corn Starch Co., Ltd., hydroxy group value 500 mg KOHZ g) 2 5 parts are suspended in 20 parts of dimethyl sulfoxide (DMSO) and heated to 90 ° C while stirring. Warm and hold at that temperature for 20 minutes to gelatinize.
  • DMSO dimethyl sulfoxide
  • 20 parts of sodium bicarbonate was added as a catalyst
  • 17 parts of vinyl laurate was added while maintaining 90 ° C., and the mixture was reacted at that temperature for 1 hour.
  • another 7 parts of vinyl acetate 37 was added and reacted at 80 ° C for 1 hour. Thereafter, the reaction solution was poured into tap water, stirred at high speed, pulverized, filtered, dehydrated and dried to prepare a starch-based resin (I 1 1).
  • the C 2 O value was 55 mg N C OZ g.
  • a 1 L reaction vessel equipped with a thermometer, thermostat, stirrer, condenser, and dripping device was charged with 1 2 5 parts of toluene and 1 2 3 parts of isophorone diisocyanate and stirred in a nitrogen atmosphere.
  • the mixture was mixed and heated to 80 ° C.
  • 7 parts of triethylene glycol 1 1 7 parts were added dropwise over 3 hours.
  • the mixture was aged for 30 minutes at 80 ° C, and a product having an isocyanate group of 80% non-volatile content (X-2 )
  • the solution was prepared.
  • the N C O value of the product (X-2) having an isocyanate group thus obtained was 57 mg N C O / g.
  • a starch-based resin (II-12) to (II-4) solution was obtained in the same manner as in Production Example B-5 except that the composition shown in Table B_1 was used.
  • Table B-1 shows the N C O values of the resins obtained.
  • Starch-based resin (III 1 1) A vinyl copolymer resin with a non-volatile content of 60% obtained in Production Example B-4 in a 1 L reaction vessel equipped with a thermometer, thermostat, stirrer, and condenser, in a 1 L capacity vessel. (Y-1) The solution was charged with 33.4 parts, and the temperature was raised to 50 ° C. with stirring in a nitrogen atmosphere. Next, the starch-based resin (I 1 1) 160 obtained in Production Example B-1 was maintained at 50 ° C. in a reaction vessel with stirring, and the temperature was raised to 100 ° C. Thus, all of the charged starch resin (I-1) was dissolved.
  • a starch-based resin (III-12) to (III-14) solution was obtained in the same manner as in Production Example B-9 except that the composition shown in Table B-1 was used.
  • Table B-1 shows the NC values of the resins obtained.
  • blending represents a mass part,
  • the inside of () represents a non volatile matter.
  • Styrene 2 8 parts Methyl methacrylate 4 parts Acrylic acid n —Ptyl 4 parts Methacrylic acid 2 —Hydrochetil 4 parts Pour force CH— 5 0 L 4 parts
  • the amount of starch-based resin (I 1 1) charged is 180 parts.
  • a starch-based resin (IV-4) with a nonvolatile content of 30% was prepared in the same manner as in Production Example B-13, except that "Mixture B-5" having the following composition was used instead of "2".
  • Starch resin 1J V— 5 A starch-based resin (IV-5) with a non-volatile content of 30% was prepared in the same manner as in Production Example B_l3, except that “Mixture B — 6” having the following composition was used instead of “Mixture B-2”. A solution was obtained.
  • a 1 L reaction vessel equipped with a thermometer, thermostat, stirrer, condenser, and dripping device was charged with 12.5 parts of toluene and 2 parts of hexamethylene diisocyanate, and stirred under a nitrogen atmosphere. While mixing, the temperature was raised to 80. Next, 20 parts of triethylene glycol was added dropwise over 3 hours. After completion of the dropwise addition, the mixture was aged for 30 minutes at 80 ° C. to obtain a product having an isocyanate group having a nonvolatile content of 80% (X-3 ) A solution was obtained.
  • the obtained product (X-3) having an isocyanate group had an N 2 C 3 O value of 58 mg N C0 / g.
  • 25 parts of the product (X-4) solution having an isocyanate group having a non-volatile content of 80% obtained above was charged, stirred until uniform, and dibutyltin dilaurate as a catalyst. 4 parts were added and reacted for 6 hours at 100 ° C. with stirring in a nitrogen atmosphere to obtain a starch-based resin (V-2) solution having a nonvolatile content of 30%.
  • the N C0 value of the obtained starch-based resin (V-2) was 0.4 mg N C O Z g.
  • Nitrified cotton for industrial use BNC-HIGG-2: Product name, manufactured by Bergerac N.C. France, dissolved in 2-ethylcellulose cellulose in ethyl acetate
  • dex ⁇ phosphorus (I) (glucose polymer having an average polymerization number of 4 and having an average of 14 hydroxyl groups per molecule) 80 parts, methyl isobutyl ketone 100 parts, 0.16 parts of methylhydroquinone, 5.9 parts of lithium hydroxide monohydrate and 50.6.2 parts of methyl acrylate were charged.
  • nitrogen was blown into the solution and heated to 90 ° C. with stirring, and methyl acrylate, methanol, and methyl isobutyl ketone were gradually distilled out of the system.
  • Methyl acrylate and methyl isopropyl ketone which decrease with distillation, were added to the reaction vessel.
  • the reaction was traced by quantifying the methanol in the reaction vessel and the distilled methanol by gas chromatography, and an average of 6.0 hydroxyl groups per molecule of the above dexterin (I) was acrylic acid. Cooled where esterified.
  • the reaction solution is concentrated under reduced pressure, and ethyl acetate is added to the residue to have a nonvolatile content of 25%, a weight average molecular weight of 1,100, and an average of 6.0 acryloyl groups per molecule.
  • An acrylate ester N o .B-1 solution was obtained.
  • Production Example B-41 the same as Production Example B-41 except that dextrin (II), which is a glucose polymer with an average polymerization number of 3 and has an average of 11 hydroxyl groups per molecule, is used.
  • the methanol in the reaction vessel and the distilled methanol were used until an average of 6.0 hydroxyl groups out of an average of 11 hydroxyl groups per molecule of the dextrin (II) was converted to an acrylate ester.
  • the reaction was traced by quantification by gas chromatography, and an acrylic acid ester No. B-3 solution having a weight average molecular weight of 950 and an average of 6.0 acryloyl groups per molecule was obtained. .
  • Production Example B-41 Production Example B-41, except that dextrin (III), which is a glucose polymer with an average polymerization number of 6 and has an average of 20 hydroxyl groups per molecule, is used. Similarly, until an average of 6.0 hydroxyl groups out of an average of 20 hydroxyl groups per molecule of dextrin (III) is acrylated, The reaction was traced by quantifying the methanol in it and the distilled methanol by gas chromatography, and a carboxylic acid ester having a weight average molecular weight of 1,500 and an average of 6.0 acryloyl groups per molecule. A No. B-4 solution was obtained.
  • dextrin (III) which is a glucose polymer with an average polymerization number of 6 and has an average of 20 hydroxyl groups per molecule
  • sucrose was used instead of dextrin (I), and the reaction was traced by quantifying the methanol in the reaction vessel and the distilled methanol by gas chromatography. Except for cooling when 6.0 hydroxyl groups on average per molecule of acryloyl ester were converted to acrylic acid ester, the same as in Production Example B-41, the weight average molecular weight was 7 80 and the average was 6.0 per molecule. Acrylic acid ester N o .B-6 solution having an acryloyl group was obtained.
  • Thermometer, thermostat, stirrer, reflux condenser and air blowing device Into a reaction vessel equipped with 8 8 parts of isophorone diisocyanate, 2 6 parts of hydroxetyl acrylate and 0.7 part of hydroquinone monomethyl ether, and blow air into the reaction vessel. However, after raising the temperature to 80 ° C. and maintaining that temperature for 5 hours, it was confirmed that substantially all of the hydroxyl groups of the added 2-hydroxyxetyl acrylate had reacted.
  • the copolymer was obtained by maintaining at the same temperature for 0.5 hours, and in this, 20 parts of styrene, 45 parts of n_methyl methacrylate, 2-hydroxychetyl methacrylate A mixture of 15 parts, 60 parts of acrylic acid, 10 parts of methyl methacrylate, and 10 parts of t-butylperoxy-2-ethylhexanoe was added dropwise from a dropping tank over 1 hour.
  • the solvent was distilled off from the acrylic ester No. B-1 solution obtained in Production Example B-41 to obtain a solution having a nonvolatile content of 70%.
  • Darocur 1 1 7 3 (trade name, manufactured by Ciba 'Specialty' Chemicals Co., Ltd., 2-hydroxy-2-methyl 1-phenyl-propane) 1—one, photopolymerization initiator) 3 parts, and RMA—500 6 (trade name, manufactured by Nippon Emulsifier Co., Ltd., polyoxyethylene nonyl phenyl ether acrylate, nonionic reactive emulsifier) 6 parts While stirring, 20.4 parts of deionized water was gradually added to disperse in water.
  • B YK-3 4 8 (trade name, manufactured by Bicchemi Co., Ltd., surface conditioner) was added to obtain an active energy ray-curable aqueous coating composition No. B-1 having a nonvolatile content of 30%. .
  • the solvent was distilled off from the acrylic ester No. B-1 solution obtained in Production Example B_41 to obtain a solution having a nonvolatile content of 70%.
  • 12.9 parts (non-volatile content, 100 parts), Darocur 1 1 7 3 3 parts, and the reactive polymer emulsifier No. B-1 1 4. obtained in Production Example B-4 8 3 parts (10 parts of non-volatile content) was added, and 2 18.8 parts of deionized water was gradually added while stirring to disperse in water. Further, 1 part of B YK-3 4 8 was added to obtain an active energy ray-curable aqueous coating composition No. B-7 having a nonvolatile content of 30%.
  • Butyl acetate was added to the active energy ray-curable compound (b 3) No. B-1 obtained in Production Example B-47 to obtain a solution having a nonvolatile content of 70%.
  • Darocur 1 1 7 3 3 parts and RMA — 5 0 6 6 parts are added to 1 2.29 parts (non-volatile content 1 100 parts) of this solution, and 2 1 0. 4 parts of deionized water are gradually added while stirring.
  • an aqueous dispersion was obtained.
  • 1 part of BYK-3 4 8 was added to obtain a composition having a nonvolatile content of 30%.
  • Active energy ray-curable coating composition No. B-9 (for comparative example)
  • Butyl acetate was added to the active energy ray-curable compound (b 3) No. B-1 obtained in Production Example B-47 to obtain a solution having a nonvolatile content of 70%.
  • Darocur 1 1 7 3 3 parts and RMA — 5 0 6 6 parts are added to 1 2.29 parts (non-volatile content 1 100 parts) of this solution, and 2 1 0. 4 parts of deionized water are gradually added while stirring.
  • an aqueous dispersion was obtained.
  • 1 part of BYK-3 4 8 was added to obtain an active energy ray-curable aqueous coating composition No. B-10 having a nonvolatile content of 30%.
  • a multilayer coating film No. B-1 was prepared by the following steps.
  • Step 1 A polycarbonate resin plate (trade name, Dialite P, manufactured by Mitsubishi Rayon Co., Ltd., 70 mmX 150 mmX 2 mm) was used as an object to be coated. Apply the starch-based paint composition No. B-1 obtained in Production Example B- 20 to the coating material degreased with isopropanol by air spray so that the dry coating film is 8 m. The base coating film was prepared by heating and drying at 60 ° C. for 15 minutes.
  • Step 2 On the base coating film prepared in Step 1, the active energy ray-curable aqueous coating composition N 0. B— 1 obtained in Production Example B—4 9 is air sprayed to form a dry coating 1 2 im And dried by heating at 60 for 5 minutes.
  • Process 3 Apply the high-pressure mercury lamp to the coating film dried in Process 2, By ultraviolet irradiation of OOOJ / m 2, it was created Fukusonurimaku N o. B- 1.
  • a multilayer coating film No. B according to the same procedure as Example B-1 except that each starch-based base coating composition and each active energy ray-curable aqueous coating composition shown in Table B-4 are used. — 2 to B— 2 9 were created. About the coating board which has the obtained multilayer coating film, it used for the following test. The test results are shown in Table B-4.
  • Table B-5 (starch-based) base coating composition, active energy ray curable (aqueous) Multi-layer coating film by the same process as Example B-1 except that the coating composition is used. 3 0 to B— 3 3 were created. The obtained coated plate having a multilayer coating film was subjected to the following test. The test results are shown in Table B-5.
  • Each (starch-based) base coating composition and active energy ray-curable (aqueous) coating composition were evaluated for the presence or absence of blending of biologically derived components according to the following criteria.
  • N o Starch-based resin or acrylate or derivative of saccharide or its derivative (bl) (component derived from living body) is not included in paint.
  • the active energy ray-curable coating composition of the present invention has a low total CO 2 emission related to the product life cycle and can reduce environmental pollution, as well as finish, pencil hardness, scratch resistance, weather resistance and resistance. Since it is possible to form a coating film having excellent solvent and photocuring properties, it is industrially useful.
  • the coating film forming method of the present invention reduces the amount of petroleum resources used, reduces the total carbon dioxide emissions related to the product life cycle, reduces environmental pollution, and also provides finish, pencil hardness, and scratch resistance. It is possible to obtain a multi-layer coating film having excellent interlayer adhesion, weather resistance, alkali resistance and solvent resistance, and since an aqueous coating composition is used as a part of the coating composition to be used, Since the amount used can be reduced, Industrially useful

Abstract

Disclosed is an active energy ray-curable coating composition which is characterized by comprising: (a1) an acrylic acid ester of a non-cyclic oligosaccharide or a derivative thereof, which has an weight average molecular weight of 400 to 2,000 and contains 3.0 to 12.0 acryloyl groups on average per molecule; and (a2) a photopolymerization initiator. The active energy ray-curable coating composition is a bio-derived active energy ray-curable coating composition, and can form a coating film having excellent finished appearance, pencil hardness, scratch resistance, weather resistance and solvent resistance.

Description

明 細 書 活性エネルギー線硬化塗料組成物及び塗膜形成方法並びに塗装物品 技術分野  Description Active energy ray curable coating composition, coating film forming method, and coated article Technical Field
本発明は、 ァクリロイル基を有する特定の非環状のオリゴ糖又は その誘導体のアクリル酸エステルを含有する活性エネルギー線硬化 塗料組成物に関する。 さらに、 本発明は、 澱粉を利用した澱粉系べ ース塗料組成物によるベース塗膜と、 当該ベース塗膜上に糖類を利 用した活性エネルギー線硬化型水性塗料組成物による塗膜を積層す る塗膜形成方法、 及び当該塗膜形成方法により得られる塗装物品に 関する。 背景技術  The present invention relates to an active energy ray-curable coating composition containing an acrylic ester of a specific acyclic oligosaccharide having an acryloyl group or a derivative thereof. Furthermore, the present invention provides a method of laminating a base coating film using a starch-based base coating composition using starch and a coating film using an active energy ray-curable aqueous coating composition using saccharides on the base coating film. Coating film forming method and a coated article obtained by the coating film forming method. Background art
近年、 地球温暖化に対する影響低減の視点から、 世界的レベルで In recent years, from the perspective of reducing the impact on global warming,
C〇 2 排出量の削減が求められており、 石油に替わる再生可能な資 源であって、 地球上の炭酸ガス循環において c〇 2 の放出量を増大 させない生体由来成分を積極的に利用することが求められている。 そのような再生可能な資源の代表的な材料として、 多糖類である 澱粉、 あるいはァセチル化澱粉等の変性澱粉がある。 これら澱粉又 は変性澱粉は、 従来から、 食品工業関連、 製紙工業関連で用いられ ているが、 近年は、 食品容器、 包装材、 緩衝材シート、 農業用フィ ルム、 使い捨てォムッ等の分野でも用いられるようになつている。 澱粉を工業製品原料として利用するために、 澱粉の改質とともに 、 変性澱粉に関する様々な改良が積み重ねられてきた。 澱粉の基本 構造は、 0!— D —グルコースが 1, 4 一結合により直鎖状に連結し たアミロースと分枝構造を有するアミ口べクチンとの混合物であり 、 構造中に水酸基を持つことを利用して、 エステル化、 エーテル化 等による変性が 1 9 6 0年代になされてきた。 C_〇 has been required to reduce the 2 emissions, a renewable resources to replace petroleum, positively utilizing biological components not to increase the amount of released C_〇 2 in carbon dioxide circulating on earth It is demanded. Typical materials for such renewable resources include polysaccharide starch, modified starch such as acetylated starch. These starches or modified starches have been conventionally used in the food industry and paper industry, but in recent years, they have also been used in fields such as food containers, packaging materials, cushioning sheets, agricultural films, and disposable ommu. It is becoming possible. In order to use starch as a raw material for industrial products, various improvements related to modified starch have been accumulated along with the modification of starch. The basic structure of starch is a mixture of amylose with 0! —D—glucose linearly linked by one or four single bonds and amycin bectin with a branched structure. Modifications by esterification, etherification, etc. have been made in the 1960's by utilizing the hydroxyl group in the structure.
特開昭 5 4— 1 2 0 6 9 8号公報、 特開昭 5 5— 9 0 5 1 8号公 報、 特開昭 5 6— 1 6 7 7 4 6号公報及び特開平 8 — 2 3 9 4 0 2 号公報には、 澱粉樹脂とアクリル樹脂とを、 ポリイソシァネートを 介して間接的にグラフ トさせたグラフ 卜澱粉、 並びに澱粉又は変性 澱粉に不飽和モノマーをラジカルグラフ ト重合させたグラフ ト澱粉 に関する発明が開示されている。  Japanese Laid-Open Patent Publication No. 54-126096, Japanese Laid-Open Patent Publication No. 5-5900-5, Japanese Laid-Open Patent Publication No. Sho 56-16-27746, and Japanese Laid-Open Patent Publication No. 8-2-2. No. 3 9 4 0 2 discloses a graph in which a starch resin and an acrylic resin are indirectly grafted via polyisocyanate, as well as a radical graft polymerization of unsaturated monomers in starch or modified starch. An invention related to the grafted starch is disclosed.
また、 特開平 6 — 2 0 7 0 4 7号公報、 特開平 8— 2 3 1 7 6 2 号公報及び特開 2 0 0 2 — 1 6 7 5 2 0号公報には、 澱粉及び他の 植物由来の樹脂を組合せた例として、 澱粉又は変性澱粉とセルロー ス誘導体とを組合せたポリマーブレンドを成型材料として用いた発 明が開示されている。 その他に、 澱粉系樹脂を吸水性樹脂として用 いた樹脂組成物に関する発明が開示されている。  In addition, Japanese Patent Laid-Open Nos. 6-2 0 7 0 47, 8-2 3 1 7 6 2 and 2 0 0 2 — 1 6 7 5 2 0 disclose starch and other As an example of combining plant-derived resins, an invention using a polymer blend in which starch or modified starch and cellulose derivatives are combined is disclosed as a molding material. In addition, an invention relating to a resin composition using a starch-based resin as a water-absorbing resin is disclosed.
これらの先行特許文献からも明らかなように、 種々のポリマーを 組み合わせた、 又はグラフ トさせた澱粉系樹脂自体は公知の技術で ある。 しかしながら、 これらの技術は、 何れも澱粉系樹脂の用途と して、 接着剤、 構造材料、 射出成型材料、 シート等を想定したもの であり、 塗料としての用途が開示されたものはほとんどない。  As is clear from these prior patent documents, a starch-based resin itself obtained by combining or grafting various polymers is a known technique. However, all of these technologies assume adhesives, structural materials, injection molding materials, sheets, etc. as the applications of starch resins, and few have been disclosed for use as paints.
澱粉系樹脂を用いた塗料に関して、 特開 2 0 0 4— 2 2 4 8 8 7 号公報には、 澱粉、 及び当該澱粉分子中に含まれる少なく とも 1個 の水酸基と相補的に反応する官能基を有する硬化剤の混合物である 硬化型澱粉組成物に関する発明が開示されている。 また、 酸化重合 硬化型、 常温硬化型、 活性エネルギー線硬化型等の硬化型のタイプ が可能であることが開示されている。  Regarding a paint using a starch-based resin, Japanese Patent Application Laid-Open No. 2000-087-2 has a function of reacting complementarily with starch and at least one hydroxyl group contained in the starch molecule. An invention relating to a curable starch composition, which is a mixture of curing agents having groups, is disclosed. It is also disclosed that curable types such as an oxidation polymerization curable type, a room temperature curable type, and an active energy ray curable type are possible.
また、 特開 2 0 0 6 — 2 8 2 9 6 0号公報には、 澱粉、 ポリイソ シァネート硬化剤、 澱粉を除く植物由来の樹脂、 金属錯体及び^一 ジケトン類、 ァセト酢酸エステル類、 マロン酸エステル類、 iS位に 水酸基を持つケトン類、 iS位に水酸基を持つアルデヒ ド類及び /3位 に水酸基を持つエステル類から選ばれるブロック剤を含有する硬化 型澱粉組成物に関する発明が開示されている。 Japanese Patent Application Laid-Open No. 2 0 0 6 — 2 8 2 9 60 describes starch, polyisocyanate curing agent, plant-derived resin excluding starch, metal complex and Curing containing a blocking agent selected from diketones, acetoacetic esters, malonic esters, ketones having a hydroxyl group at the iS position, aldehydes having a hydroxyl group at the iS position, and esters having a hydroxyl group at the / 3 position An invention relating to a modified starch composition is disclosed.
しかし、 これらの澱粉系塗料に関して、 被塗物上において、 仕上 り性、 鉛筆硬度、 耐擦り傷性、 付着性、 耐候性、 耐アルカリ性及び 耐溶剤性に優れた塗膜を形成できる塗膜形成方法はなかった。 また 、 使用する塗料全般において有機溶剤系塗料を使用するため溶剤の 使用量が多くなるという問題点があつた。  However, with respect to these starch-based paints, a coating film forming method capable of forming a coating film excellent in finish, pencil hardness, scratch resistance, adhesion, weather resistance, alkali resistance, and solvent resistance on an object to be coated. There was no. In addition, the use of organic solvent-based paints in all paints used has a problem of increasing the amount of solvent used.
また、 特開平 1 0 — 2 5 8 2 0 2号公報には、 シクロデキス トリ ンの (メタ) アクリル酸エステル及びそれを含有する活性エネルギ 一線硬化型樹脂組成物が開示されているが、 上記活性エネルギー線 硬化型樹脂組成物では、 グルコースがグリコシド結合によって環状 に結合した構造をしており、 立体的な自由度が低いため光硬化性が 十分ではなかった。 発明の開示  In addition, Japanese Patent Application Laid-Open No. 10-258582 discloses a (meth) acrylic acid ester of cyclodextrin and an active energy linear curing resin composition containing the same. The energy ray curable resin composition has a structure in which glucose is cyclically linked by a glycosidic bond, and its steric freedom is low, so that photocurability is not sufficient. Disclosure of the invention
本発明は上記事情に鑑みてなされたものであり、 本発明の目的は 、 製品のライフサイクルに関わる総 C〇 2 の排出量が少なく、 環境 汚染を低減できると共に、 仕上り性、 鉛筆硬度、 耐擦り傷性、 耐候 性、 耐溶剤性、 光硬化性に優れる塗膜を形成することができる生物 由来の活性エネルギー線硬化塗料組成物を提供することにある。 The present invention has been made in view of the above circumstances, an object of the present invention has less emissions of total C_〇 2 involved in the life cycle of the product, it is possible to reduce environmental pollution, finished appearance, pencil hardness, resistance to An object of the present invention is to provide a bioactive active energy ray-curable coating composition capable of forming a coating film having excellent scratch resistance, weather resistance, solvent resistance and photocurability.
さらに、 本発明の別の目的は、 糖類若しくはその誘導体、 又は澱 粉若しくは変性澱粉を塗料組成物の原料に使用し、 かつ仕上り性、 鉛筆硬度、 耐擦り傷性、 層間付着性、 耐候性、 耐アルカリ性、 耐溶 剤性に優れ、 さらに有機溶剤の使用量を低減することができる複層 塗膜を得ることができる塗膜形成方法を提供することにある。 本発明者らは、 上記した従来技術の問題点を解消するために鋭意 検討した結果、 特定の分子量及び特定の個数のァクリ ロイル基を有 する、 非環状のオリゴ糖又はその誘導体のアクリル酸エステル ( a 1 ) と、 光重合開始剤 ( a 2 ) とを含有する活性エネルギー線硬化 塗料組成物によって、 上記目的を達成できることを見出し、 本発明 を完成するに至った。 Furthermore, another object of the present invention is to use a saccharide or a derivative thereof, or starch or modified starch as a raw material for a coating composition, and finish, pencil hardness, scratch resistance, interlayer adhesion, weather resistance, resistance An object of the present invention is to provide a method for forming a coating film, which is excellent in alkalinity and solvent resistance, and can obtain a multilayer coating film capable of reducing the amount of organic solvent used. As a result of intensive studies to solve the above-described problems of the prior art, the present inventors have found that an acyclic oligosaccharide having a specific molecular weight and a specific number of acryloyl groups or an acrylate ester thereof. The inventors have found that the above object can be achieved by an active energy ray-curable coating composition containing (a 1) and a photopolymerization initiator (a 2), and have completed the present invention.
さらに、 本発明者らは、 被塗物上に澱粉系樹脂並びに着色顔料及 び /"又は光輝性顔料を含有する澱粉系べ一ス塗料組成物を塗装して ベース塗膜を形成するステップ、 上記ベース塗膜上に、 糖類又はそ の誘導体のアクリル酸エステル (b 1 ) の水分散体及び光重合開始 剤 ( b 2 ) を含有する活性エネルギー線硬化型水性塗料組成物を塗 装するステップ、 そして活性エネルギー線を照射するステップを特 徴とする塗膜形成方法によって、 上記別の目的を達成できることを 見出し、 本発明を完成するに至った。  Furthermore, the present inventors apply a starch-based coating composition containing a starch-based resin and a coloring pigment and / or a luster pigment on a substrate to form a base coating film, A step of coating an active energy ray-curable aqueous coating composition containing an aqueous dispersion of a saccharide or a derivative thereof (b 1) and a photopolymerization initiator (b 2) on the base coating film. And it discovered that said another objective could be achieved by the coating-film formation method characterized by the step of irradiating an active energy ray, and came to complete this invention.
すなわち本発明は、 以下の態様に関する。  That is, the present invention relates to the following aspects.
[態様 1 ]  [Aspect 1]
重量平均分子量が 4 0 0〜 2, 0 0 0で、 かつ 1分子あたり平均 3 . 0〜 1 2 . 0個のァクリ ロイル基を有する、 非環状のオリゴ糖 又はその誘導体のアクリル酸エステル ( a l ) と、 光重合開始剤 ( a 2 ) とを含有することを特徴とする活性エネルギー線硬化塗料組 成物。  Acrylic esters of non-cyclic oligosaccharides or derivatives thereof having a weight average molecular weight of 400 to 2,00,000 and an average of 3.0 to 12.0 acryloyl groups per molecule (al ) And a photopolymerization initiator (a 2). An active energy ray-curable coating composition comprising:
[態様 2 ]  [Aspect 2]
上記非環状のオリゴ糖又はその誘導体が、 デキス トリン又は変性 デキス トリ ンである、 態様 1 に記載の活性エネルギー線硬化塗料組 成物。  The active energy ray-curable coating composition according to embodiment 1, wherein the acyclic oligosaccharide or derivative thereof is dextrin or modified dextrin.
[態様 3 ]  [Aspect 3]
上記非環状のオリゴ糖又はその誘導体が、 スクロース又はトレハ ロースである、 態様 1 に記載の活性エネルギー線硬化塗料組成物。 The acyclic oligosaccharide or derivative thereof is sucrose or treha The active energy ray-curable coating composition according to embodiment 1, which is a loin.
[態様 4 ]  [Aspect 4]
さらに、 活性エネルギー線硬化性化合物 ( a 3 ) を含有する、 態 様 1 に記載の活性エネルギー線硬化塗料組成物。  The active energy ray-curable coating composition according to aspect 1, further comprising an active energy ray-curable compound (a 3).
[態様 5 ]  [Aspect 5]
非環状のオリゴ糖又はその誘導体のアクリル酸エステル ( a 1 ) が、 水分散体である、 態様 1 に記載の活性エネルギー線硬化塗料組 成物。  The active energy ray-curable coating composition according to embodiment 1, wherein the acrylic ester (a 1) of the acyclic oligosaccharide or derivative thereof is an aqueous dispersion.
[態様 6 ]  [Aspect 6]
態様 1 に記載の活性エネルギー線硬化塗料組成物を塗装して得ら れた塗装物品。  A coated article obtained by coating the active energy ray-curable coating composition according to aspect 1.
[態様 7 ]  [Aspect 7]
被塗物上に澱粉系樹脂並びに着色顔料及び Z又は光輝性顔料を含 有する澱粉系ベース塗料組成物を塗装してベース塗膜を形成するス テツプ、 ,  A step of forming a base coating film by coating a starch-based base coating composition containing a starch-based resin, a color pigment, and Z or a luster pigment on an object to be coated;
上記ベース塗膜上に、 糖類又はその誘導体のアクリル酸エステル (b 1 ) の水分散体及び光重合開始剤 ( b 2 ) を含有する活性エネ ルギ一線硬化型水性塗料組成物を塗装するステップ、 そして  Coating an active energy one-line curable aqueous coating composition containing an aqueous dispersion of an acrylic ester (b 1) of a saccharide or a derivative thereof and a photopolymerization initiator (b 2) on the base coating film; And
活性エネルギー線を照射するステップ、  Irradiating active energy rays;
を特徴とする塗膜形成方法。  A method of forming a coating film characterized by
[態様 8 ]  [Aspect 8]
糖類又はその誘導体のアクリル酸エステル ( b l ) が、 重量平均 分子量が 4 0 0〜 2, 0 0 0で、 かつ 1分子あたり平均 3. 0〜 1 2. 0個のァクリ ロイル基を有する、 態様 7 に記載の塗膜形成方法  An embodiment wherein the acrylate ester (bl) of a saccharide or a derivative thereof has a weight average molecular weight of 400 to 2,00,000 and an average of 3.0 to 12.0 acryloyl groups per molecule Method for forming a coating film according to 7
[態様 9 ] [Aspect 9]
上記糖類又はその誘導体が、 非環状のオリゴ糖又はその誘導体で ある、 態様 7に記載の塗膜形成方法。 The saccharide or derivative thereof is an acyclic oligosaccharide or derivative thereof. The coating film forming method according to embodiment 7, wherein
[態様 1 0 ]  [Aspect 1 0]
上記非環状のオリゴ糖又はその誘導体が、 デキス トリン又は変性 デキス トリンである、 態様 9に記載の塗膜形成方法。  The coating film forming method according to embodiment 9, wherein the acyclic oligosaccharide or derivative thereof is dextrin or modified dextrin.
[態様 1 1 ]  [Aspect 1 1]
上記非環状のオリゴ糖又はその誘導体が、 スクロース又は卜レハ ロースである、 態様 9 に記載の塗膜形成方法。  The coating film forming method according to embodiment 9, wherein the acyclic oligosaccharide or derivative thereof is sucrose or coconut rehalose.
[態様 1 2 ]  [Aspect 1 2]
態様 7に記載の塗膜形成方法により得られた塗装物品。  A coated article obtained by the coating film forming method according to aspect 7.
本発明の活性エネルギー線硬化塗料組成物は、 製品のライフサイ クルに関わる総 C〇 2 の排出量が少なく、 環境汚染を低減できると 共に、 仕上り性、 鉛筆硬度、 耐擦り傷性、 耐候性、 耐溶剤性及び光 硬化性に優れる塗膜を形成することができる。 The active energy ray curable coating composition of the present invention has less emissions of total C_〇 2 involved in the life cycle of the product, both when possible to reduce the environmental pollution, finished appearance, pencil hardness, mar resistance, weather resistance, A coating film excellent in solvent resistance and photocurability can be formed.
さらに、 本発明の塗膜形成方法は、 石油資源の使用量を低減し、 製品のライフサイクルに関わる総二酸化炭素の排出量が少なく環境 汚染を低減できると共に、 仕上り性、 鉛筆硬度、 耐擦り傷性、 層間 付着性、 耐候性、 耐アルカリ性及び耐溶剤性に優れる複層塗膜を得 ることができる。 また、 使用する塗料組成物の一部に水性塗料組成 物を使用するため有機溶剤の使用量を低減することができる。 発明を実施するための最良の形態  Furthermore, the coating film forming method of the present invention reduces the amount of petroleum resources used, reduces the total carbon dioxide emissions related to the product life cycle, reduces environmental pollution, and also provides finish, pencil hardness, and scratch resistance. A multilayer coating film excellent in interlayer adhesion, weather resistance, alkali resistance and solvent resistance can be obtained. In addition, since the aqueous coating composition is used as a part of the coating composition to be used, the amount of the organic solvent used can be reduced. BEST MODE FOR CARRYING OUT THE INVENTION
引き続いて、 本発明の好ましい実施の形態を説明する。 なお、 本 発明は、 以下に記載する特定の実施の形態によって限定されるもの ではないことを理解されたい。  Subsequently, a preferred embodiment of the present invention will be described. It should be understood that the present invention is not limited to the specific embodiments described below.
< < A . 活性エネルギー線硬化塗料組成物 > > <<A. Active energy ray curable coating composition>>
本発明の活性エネルギー線硬化塗料組成物は、 ァクリル酸エステ ル ( a 1 ) と、 光重合開始剤 ( a 2 ) とを含有する。 以下、 詳細に 説明する。 The active energy ray-curable coating composition of the present invention contains an acrylic acid ester (a 1) and a photopolymerization initiator (a 2). Below in detail explain.
[ァクリル酸エステル ( a 1 ) ]  [Acrylic acid ester (a 1)]
本発明に用いられるアクリル酸エステル ( a 1 ) は、 非環状のォ リゴ糖又はその誘導体のァクリル酸エステルであって、 重量平均分 子量が 4 0 0〜 2 , 0 0 0で、 かつ 1分子あたり平均 3 . 0〜 1 2 . 0個のァクリ ロイル基を有する。  The acrylic acid ester (a 1) used in the present invention is an acrylic acid ester of an acyclic oligosaccharide or a derivative thereof, and has a weight average molecular weight of 400 to 2, 2,000, and 1 It has an average of 3.0 to 12.0 acryloyl groups per molecule.
本明細書において、 非環状のオリゴ糖とは、 複数の単糖がグリコ シド結合によって環状に結合した構造のオリゴ糖 (環状オリゴ糖) 、 具体的には、 例えば、 シクロデキス トリ ンとは異なり、 複数の単 糖がダリコシド結合によって鎖状に結合した構造のオリゴ糖を意味 する。 また本明細書において、 オリゴ糖は、 二糖から十糖の糖類を 意味する。 非環状のオリゴ糖としては、 具体的には、 還元性二糖 ( マルトース、 セロビオース、 ラク ト一ス等) 、 非還元性二糖 (スク ロース、 トレハロ一ス等) 等の二糖 ; ラフイ ノ一ス、 ノ°ト一ス、 ス タキオース、 デキス トリン等の三糖以上のオリゴ糖等を挙げること ができる。 これらの中でも、 デキス トリンがデンプンを加水分解す ることで任意の分子量のものが得られる点から好ましく、 還元性の ないスクロース及びトレハロースが、 メイラ一ド反応 (褐変反応) による褐色化が起こらないので、 塗膜の耐久性の面から好ましい。 非環状のオリゴ糖の誘導体としては、 例えば、 非環状のオリゴ糖 における水酸基の一部が、 炭素数 2〜 2 2個の飽和カルボン酸類 ( 飽和カルボン酸、 飽和カルボン酸エステル、 飽和力ルポン酸ハライ ド) から選ばれる少なく とも 1種によって、 カルボン酸エステル化 されたものを、 好適に使用することができる。 具体的には、 例えば 、 酢酸エステル、 ラウリン酸エステル等が挙げられる。  In the present specification, an acyclic oligosaccharide is an oligosaccharide having a structure in which a plurality of monosaccharides are cyclically linked by glycosidic bonds (cyclic oligosaccharide), specifically, for example, unlike cyclodextrins, This refers to an oligosaccharide having a structure in which a plurality of monosaccharides are linked in a chain by daricoside bonds. In the present specification, oligosaccharide means a saccharide from disaccharide to decasaccharide. Specific examples of non-cyclic oligosaccharides include disaccharides such as reducing disaccharides (maltose, cellobiose, lactose, etc.), non-reducing disaccharides (sucrose, trehalose, etc.); Examples thereof include oligosaccharides having three or more sugars such as monosaccharide, notose, stachyose and dextrin. Among these, dextrin is preferable because it can be obtained with any molecular weight by hydrolyzing starch. Non-reducing sucrose and trehalose do not cause browning due to the mailer reaction (browning reaction). Therefore, it is preferable from the viewpoint of durability of the coating film. As a derivative of acyclic oligosaccharide, for example, a part of the hydroxyl group in acyclic oligosaccharide is a saturated carboxylic acid having 2 to 22 carbon atoms (saturated carboxylic acid, saturated carboxylic acid ester, saturated force sulfonic acid halai A compound that has been converted to a carboxylic acid ester by at least one selected from (ii) can be suitably used. Specific examples include acetate esters and laurate esters.
非環状のオリゴ糖又はその誘導体のアク リル酸エステル ( a 1 ) は、 通常、 環状オリゴ糖のアクリル酸エステルより も光硬化性に優 れる。 それは、 上記非環状のオリゴ糖又はその誘導体は、 複数の単 糖がグリコシド結合によって鎖状に結合した鎖状の構造であること から、 上記環状オリゴ糖よりも立体的な自由度が高いためと推定さ れる。 そして、 光硬化性に優れる結果、 本発明の活性エネルギー線 硬化塗料組成物を光硬化して得られる塗膜は、 環状オリゴ糖を光硬 化して得られる塗膜よりも、 通常、 鉛筆硬度、 耐擦り傷性に優れる 本発明に用いられるアクリル酸エステル ( a 1 ) の製造は、 常法 に従って行う ことができ、 特に限定されるものではない。 例えば、 本発明に用いられるアクリル酸エステル ( a 1 ) は、 非環状のオリ ゴ糖又はその誘導体を、 ァクリル酸又はメチルァクリ レート等のァ クリル酸エステルと反応させることにより得ることができる。 具体 的には、 例えば、 非環状のオリゴ糖又はその誘導体を有機溶剤に溶 解した後、 非環状のオリゴ糖又はその誘導体及びアクリル酸又はメ チルァクリ レート等のァクリル酸エステルの合計質量を基準にして 、 非環状のオリゴ糖又はその誘導体を 5 0〜 9 9質量%、 好ましく は 6 0〜 9 8質量%、 及びアクリル酸又はメチルァクリ レート等の アクリル酸エステルを 1〜 5 0質量%、 好ましくは 2〜 4 0質量% の範囲となる量で、 有機溶剤、 例えば、 トルエン、 キシレン、 シク 口へキサン、 n —へキサン等の炭化水素系溶剤 ; アセトン、 メチル ェチルケトン、 メチルイソプチルケトン、 メチルアミルケトン等の ケトン系溶剤 ; あるいはこれらの混合物等中で混合し、 適宜に、 塩 基性化合物を加え、 攪拌下で 6 0 °C〜 1 0 0で、 より好ましくは 7 0〜 9 0 の温度で、 3 0分間〜 1 0時間、 より好ましくは 1時間 〜 5時間程度、 エステル化又はエステル交換反応することにより製 造することができる。 Acrylic acid esters (a 1) of acyclic oligosaccharides or their derivatives usually have better photocurability than acrylic acid esters of cyclic oligosaccharides. It is. This is because the acyclic oligosaccharide or its derivative has a chain structure in which a plurality of monosaccharides are linked in a chain form by glycosidic bonds, and thus has a higher degree of steric freedom than the cyclic oligosaccharide. Presumed. And as a result of being excellent in photocurability, the coating film obtained by photocuring the active energy ray-curable coating composition of the present invention is usually more pencil-hardened than the coating film obtained by photocuring a cyclic oligosaccharide. The acrylic ester (a 1) used in the present invention having excellent scratch resistance can be produced according to a conventional method and is not particularly limited. For example, the acrylic ester (a 1) used in the present invention can be obtained by reacting an acyclic oligosaccharide or a derivative thereof with an acrylic ester such as acrylic acid or methyl acrylate. Specifically, for example, after dissolving an acyclic oligosaccharide or a derivative thereof in an organic solvent, the total mass of the acyclic oligosaccharide or the derivative thereof and an acrylate ester such as acrylic acid or methyl acrylate is used as a reference. The non-cyclic oligosaccharide or derivative thereof is 50 to 99% by mass, preferably 60 to 98% by mass, and acrylic acid or acrylic acid ester such as methyl acrylate is 1 to 50% by mass, preferably An organic solvent, for example, a hydrocarbon solvent such as toluene, xylene, cyclohexane, n-hexane, etc .; acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl amyl in an amount ranging from 2 to 40% by mass Ketone-based solvents such as ketones; or a mixture of these in a mixture, etc., adding a basic compound as appropriate, and stirring at 60 ° C. to 100 ° C. Properly at temperatures of 7 0-9 0, 3 0 minutes to 1 0 hours, more preferably, to manufacture by 1 hour to about 5 hours, to esterification or transesterification.
本発明に用いられるアクリル酸エステル ( a 1 ) の製造において 導入されるァクリロイル基の量は、 製造の際の反応温度、 反応時間 により調節することができる。 また、 本発明に用いられるアクリル 酸エステル ( a l ) の 1分子あたりのァクリ ロイル基の平均個数は 、 例えば、 エステル交換反応による製造の場合、 生成するアルコー ルをガスクロマトグラフィ等で定量することにより求めることがで きる。 In the production of the acrylic ester (a 1) used in the present invention The amount of acryloyl group introduced can be adjusted by the reaction temperature and reaction time during production. In addition, the average number of acryloyl groups per molecule of the acrylate ester (al) used in the present invention is determined, for example, by quantifying the generated alcohol by gas chromatography or the like in the case of production by transesterification. be able to.
また、 本発明に用いられるアクリル酸エステル ( a 1 ) は、 上記 非環状のオリゴ糖又はその誘導体を有機溶剤に溶解し、 ァクリル酸 ハライ ド (例えば、 アクリル酸クロライ ド) を加えて、 生成する酸 を中和して水洗することによつても得ることができる (脱塩酸法) このようにして得られる本発明に用いられるアクリル酸エステル ( a l ) の重量平均分子量は、 4 0 0〜 2, 0 0 0、 好ましくは 5 0 0〜 1 , 8 0 0 を有することが、 製造が容易となる点、 塗料粘度 、 及び仕上り性の点から好ましい。  The acrylic ester (a 1) used in the present invention is produced by dissolving the above acyclic oligosaccharide or a derivative thereof in an organic solvent and adding acrylic acid halide (for example, acrylic acid chloride). It can also be obtained by neutralizing the acid and washing with water (dehydrochlorination method) The weight average molecular weight of the acrylic acid ester (al) used in the present invention thus obtained is 400 to 2 , 0 00, preferably 5 0 0 to 1, 8 0 0, from the viewpoint of easy production, paint viscosity, and finish.
なお本明細書において、 数平均分子量及び重量平均分子量は、 J I S K 0 1 2 4— 8 3 に記載の方法に準じ、 分離カラムとして 「T S K G E L 4 0 0 0 HX L」 、 「T S K G 3 0 0 0 HX L 」 、 「T S K G 2 5 0 0 HX L」 、 「T S K G 2 0 0 0 HX L 」 (東ソ一株式会社製) の 4本を用いて、 溶離液として G P C用テ トラヒ ドロフランを用いて、 4 0 及び流速 1 , O mLZ分におい て、 R I屈折計で得られたクロマトグラム及びポリスチレンの検量 線から求めた。  In this specification, the number average molecular weight and the weight average molecular weight are in accordance with the method described in JISK 0 1 2 4-8 3 as “TSKGEL 4 0 00 HX L”, “TSKG 3 0 0 0 HX L” as separation columns. L ”,“ TSKG 2 500 HX L ”,“ TSKG 2 00 HX L ”(manufactured by Tosohichi Co., Ltd.), and 4 using GPC tetrahydrofuran as eluent, It was obtained from the chromatogram obtained with the RI refractometer and the calibration curve of polystyrene at 0, a flow rate of 1 and O mLZ.
本発明に用いられるアク リル酸エステル ( a 1 ) は、 1分子あた り平均 3. 0〜 1 2. 0個、 好ましくは平均 4. 0〜 9. 0個のァ クリ ロイル基を有する。 このことにより、 活性エネルギー線照射時 の反応性を高めて、 得られた塗膜の耐擦り傷性及び付着性を向上さ せることができる。 The acrylate (a1) used in the present invention has an average of 3.0 to 12.0, preferably 4.0 to 9.0, acryloyl groups per molecule. This increases the reactivity during irradiation with active energy rays and improves the scratch resistance and adhesion of the resulting coating film. Can be made.
本発明の活性エネルギー線硬化塗料組成物を水性化する場合には When making the active energy ray-curable coating composition of the present invention aqueous
、 本発明に用いられるアクリル酸エステル ( a l ) が水分散化され ていることが、 耐水性、 貯蔵安定性の点から好ましい。 The acrylic ester (al) used in the present invention is preferably dispersed in water from the viewpoint of water resistance and storage stability.
本発明に用いられるアクリル酸エステル ( a l ) を水分散化する 方法は、 特に限定されるものではない。 水分散化する方法としては 、 具体的には、 例えば、 乳化剤を用いて強制乳化する方法が挙げら れる。  The method for dispersing the acrylic ester (al) used in the present invention in water is not particularly limited. Specific examples of the water dispersion method include a method of forced emulsification using an emulsifier.
乳化剤を用いて強制乳化する方法としては、 具体的には、 例えば 、 本発明に用いられるアクリル酸エステル ( a l ) 又はその有機溶 剤溶液と、 乳化剤とを混合した後、 攪拌しながら徐々に水を加える ことによって水分散化する方法が挙げられる。 本発明に用いられる アクリル酸エステル ( a l ) 又はその有機溶剤溶液と、 乳化剤とを 混合する際には、 後述する光重合開始剤 ( a 2 ) をさらに混合して もよい。 水分散化して得られる水分散体の粒子径を小さく したい場 合には、 上記方法で得られた水分散体をさらにホモジナイザ一、 高 圧乳化装置等で処理すればよい。 また、 本発明に用いられるァクリ ル酸エステル ( a l ) の有機溶剤溶液を用いる場合には、 有機溶剤 を全部若しくは一部除去してから水分散化してもよいし、 水分散体 を得てから有機溶剤を全部若しくは一部除去してもよい。 このこと により水分散体中の有機溶剤量を減らすことができる。  As a method of forced emulsification using an emulsifier, specifically, for example, an acrylic ester (al) used in the present invention or an organic solvent solution thereof and an emulsifier are mixed, and then water is gradually added while stirring. There is a method of dispersing in water by adding. When the acrylic ester (al) or the organic solvent solution thereof used in the present invention and the emulsifier are mixed, a photopolymerization initiator (a2) described later may be further mixed. In order to reduce the particle size of the water dispersion obtained by water dispersion, the water dispersion obtained by the above method may be further treated with a homogenizer, a high-pressure emulsifier or the like. In the case of using an organic solvent solution of acrylate (al) used in the present invention, the organic solvent may be completely or partially removed and then dispersed in water, or after obtaining an aqueous dispersion. All or part of the organic solvent may be removed. This can reduce the amount of organic solvent in the aqueous dispersion.
上記乳化剤は、 特に限定されるものではない。 乳化剤としては、 例えば、 反応性乳化剤、 非反応性乳化剤等が挙げられる。 上記反応 性乳化剤としては、 例えば、 ポリエチレングリコールモノ (メタ) ァクリ レー卜、 ポリエチレングリコールジ (メタ) ァクリ レート、 ポリオキシエチレンノニルフエニルエーテルァクリ レート等のノニ オン性反応性乳化剤 ; アクアロン H S— 1 0 (商品名、 第一工業製 薬社製) 、 ニューフロンティア A— 2 2 9 E (商品名、 第一工業製 薬社製) 、 アデ力リアソープ S E— 1 0 N (商品名、 旭電化工業社 製) 、 スルホェチルメタクリ レートナトリウム塩等のァニオン性基 及び α , β 一エチレン性二重結合を有するァニオン性反応性乳化剤 ; ポリオキシエチレン— 1 一 (ァリルォキシメチル) アルキルエー テル硫酸エステルアンモニゥム塩、 a —スルホ _ ω— ( 1 — (アル コキシ) メチルー 2 — ( 2—プロぺニルォキシ) エトキシ) 一ポリ (ォキシー 1 、 2 —エタンジィル) のアンモニゥム塩等のァニオン • ノニオン性反応性乳化剤 ; 第 4級アンモニゥム塩基及び a , - エチレン性二重結合を有するカチオン性反応性乳化剤 ; 反応性高分 子乳化剤等が挙げられる。 The emulsifier is not particularly limited. Examples of emulsifiers include reactive emulsifiers and non-reactive emulsifiers. Examples of the reactive emulsifier include nonionic reactive emulsifiers such as polyethylene glycol mono (meth) acrylate, polyethylene glycol di (meth) acrylate, and polyoxyethylene nonylphenyl ether acrylate; 1 0 (Product name, made by Daiichi Industry New Frontier A— 2 29 E (trade name, manufactured by Daiichi Kogyo Co., Ltd.), Ade force rear soap SE—10 N (trade name, manufactured by Asahi Denka Kogyo Co., Ltd.), Sulfoethyl methacrylate Anionic reactive emulsifiers having an anionic group such as sodium salt and α, β monoethylenic double bond; polyoxyethylene-1 mono (aryloxymethyl) alkyl ether sulfate ammonium salt, a — Sulfo_ ω— (1 — (alkoxy) methyl-2 — (2-propenyloxy) ethoxy) monopoly (oxyl 1, 2 — ethanedyl) ammonium salts and other anions • Nonionic reactive emulsifiers; quaternary ammonia And a cationic reactive emulsifier having a base and an a, -ethylenic double bond; a reactive high molecular emulsifier, and the like.
上記反応性高分子乳化剤としては、 例えば、 硫酸エステル、 燐酸 エステル、 カルボン酸、 アミノ基、 ポリエチレングリコール鎖等の 親水性基を有する単官能アクリルモノマーと、 その他の共重合可能 なモノマーとを共重合した後、 末端又は側鎖に二重結合を導入した 反応性高分子乳化剤等が挙げられる。 具体的には、 例えば、 ェポキ シ基含有不飽和単量体、 水酸基含有不飽和単量体及び疎水性の不飽 和単量体を含有する単量体混合液を重合しァクリル重合体を得た後 Examples of the reactive polymer emulsifier include a copolymer of a monofunctional acrylic monomer having a hydrophilic group such as sulfate ester, phosphate ester, carboxylic acid, amino group, and polyethylene glycol chain, and other copolymerizable monomers. Then, a reactive polymer emulsifier in which a double bond is introduced into the terminal or side chain is exemplified. Specifically, for example, a monomer mixture containing an epoxy group-containing unsaturated monomer, a hydroxyl group-containing unsaturated monomer, and a hydrophobic unsaturated monomer is polymerized to obtain an acryl polymer. After
、 当該アクリル重合体存在下でカルボキシル基含有不飽和単量体、 水酸基含有不飽和単量体及び親水性の不飽和単量体を含有する単量 体混合液を重合することによりグラフ トアクリル重合体を得て、 さ らに当該グラフ トアクリル重合体の水酸基にイソシァネート基を有 する不飽和単量体を付加させて製造した反応性高分子乳化剤等が挙 げられる。 In the presence of the acrylic polymer, a graft acrylic polymer is obtained by polymerizing a monomer mixture containing a carboxyl group-containing unsaturated monomer, a hydroxyl group-containing unsaturated monomer, and a hydrophilic unsaturated monomer. And reactive polymer emulsifiers produced by adding an unsaturated monomer having an isocyanate group to the hydroxyl group of the graft acrylic polymer.
上記非反応性乳化剤としては、 例えば、 アルキルベンゼンスルホ ン酸ソーダ、 ラウリル硫酸ソーダ、 ナトリウムジォクチルスルホサ クシネート、 アルキルフエ二ルポリオキシエチレンサルフェートソ —ダ塩又はアンモニゥム塩等のァニオン性乳化剤、 ポリオキシェチ レンアルキルフエニルエーテル、 ポリオキシエチレンアルキルエー テル、 ポリオキシエチレン一ポリオキシプロピレンブロック共重合 体等が挙げられる。 Examples of the non-reactive emulsifier include sodium alkylbenzene sulfonate, sodium lauryl sulfate, sodium dioctyl sulfosuccinate, and alkylphenyl polyoxyethylene sulfate. —Anionic emulsifiers such as Da salt or ammonium salt, polyoxyethylene alkyl phenyl ether, polyoxyethylene alkyl ether, polyoxyethylene monopolyoxypropylene block copolymer, and the like.
これら乳化剤の中でも反応性乳化剤を用いることが、 耐水性の点 から好ましい。  Among these emulsifiers, it is preferable from the viewpoint of water resistance to use reactive emulsifiers.
上記乳化剤の量は、 特に限定されるものではない。 好ましくは、 本発明に用いられるアクリル酸エステル ( a 1 ) 1 0 0質量部に対 して 0. 2〜 2 0質量部であり、 より好ましくは、 2〜 1 5質量部 である。 これら範囲の下限値は、 安定な水分散体を得ることができ る点で意義がある。 これら範囲の上限値は、 耐水性の点で意義があ る。  The amount of the emulsifier is not particularly limited. Preferably, it is 0.2 to 20 parts by mass, and more preferably 2 to 15 parts by mass with respect to 100 parts by mass of the acrylic acid ester (a 1) used in the present invention. The lower limit of these ranges is significant in that a stable aqueous dispersion can be obtained. The upper limit of these ranges is significant in terms of water resistance.
[光重合開始剤 ( a 2 ) ]  [Photoinitiator (a 2)]
光重合開始剤 ( a 2 ) は、 活性エネルギー線の光エネルギーで励 起されることでラジカルを発生し、 本発明に用いられるアクリル酸 エステル ( a l ) が有するラジカル重合性不飽和基 (具体的には、 ァクリロイル基) のラジカル重合反応を開始するものである。  The photopolymerization initiator (a 2) generates radicals by being excited by the light energy of the active energy ray, and the radical polymerizable unsaturated group (specifically, the acrylate ester (al) used in the present invention has Initiates a radical polymerization reaction of (acryloyl group).
光重合開始剤 ( a 2 ) の具体例としては、 例えば、 ベンゾイン、 ベンゾインメチルェ一テル、 ベンゾインェチルエーテル、 ベンゾィ ンイソブチルエーテル、 ジェトキシァセ卜フエノン、 2—ヒ ドロキ シ一 2—メチル一 1 一フエニルプロパン一 1 —オン、 ベンジルジメ チルケタール、 1 ーヒ ドロキシシクロへキシルーフエ二ルケトン、 2 —メチル— 2—モルフォリノ ( 4—チオメチルフエニル) プロパ ン一 1 —オン、 2—ベンジル— 2—ジメチルアミノー 1 — ( 4—モ ルホリノフエニル) ーブ夕ノン、 2, 4 , 6 — トリメチルベンゾィ ルフエニルフォスフィ ンオキサイ ド、 2 , 4, 6 — トリメチルベン ゾィルフエニルェトキシフォスフィ ンォキサイ ド、 ベンゾフエノン 、 o—ベンゾィル安息香酸メチル、 ヒ ドロキシベンゾフエノン、 2 一イソプロピルチォキサントン、 2 , 4—ジメチルチオキサントン 、 2, 4一ジェチルチオキサントン、 2, 4—ジクロロチォキサン トン、 2 , 4, 6— トリス (トリクロロメチル) 一 S— トリアジン 、 2 —メチルー 4, 6 —ビス (トリクロ口) 一 S— トリアジン、 2 - ( 4ーメ トキシフエ二ル) 一 4, 6 —ビス (トリクロロメチル) 一 S— 卜リアジン等が挙げられる。 これらの光重合開始剤 ( b 2 ) は、 単独で又は 2種類以上を組合せて使用できる。 光重合開始剤 ( a 2 ) の含有量は、 糖類又はその誘導体のアクリル酸エステル ( a 1 ) 及び後述する活性エネルギー線硬化性化合物 ( a 3 ) の総量 1 0 0質量部に対して、 0. 1〜: L 0質量部、 好ましくは 0. 2〜 5 質量部の範囲内である。 Specific examples of the photopolymerization initiator (a 2) include, for example, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isobutyl ether, ketoxiacephenone, 2-hydroxyl 2-methyl-1 1 1 Phenylpropane 1-one, benzyldimethyl ketal, 1-hydroxycyclohexyl roofyl ketone, 2-methyl-2-morpholino (4-thiomethylphenyl) propane 1-one, 2-benzyl-2-dimethyla Minnow 1 — (4 -Morpholinophenyl) -Evenone, 2, 4, 6 — Trimethylbenzoylphenylphosphine oxide, 2, 4, 6 — Trimethylbenzoylphenyloxyphosphine oxide, benzophenone O-Benzyl methyl benzoate, Hydroxybenzophenone, 2-Isopropylthioxanthone, 2,4-Dimethylthioxanthone, 2,4-Diethylthioxanthone, 2,4-Dichlorothixanthone, 2, 4, 6 — Tris (trichloromethyl) 1 S— Triazine, 2 — Methyl-4, 6 — Bis (Trichloromethyl) 1 S— Triazine, 2 – (4 -Methoxyphenyl) 1 4, 6 — Bis (Trichloromethyl) 1 S — Some examples include lyazine. These photopolymerization initiators (b 2) can be used alone or in combination of two or more. The content of the photopolymerization initiator (a 2) is 0 with respect to 100 parts by mass of the total amount of the saccharide or its derivative acrylic acid ester (a 1) and the active energy ray-curable compound (a 3) described later. 1 to: L 0 parts by mass, preferably 0.2 to 5 parts by mass.
本発明の活性エネルギー線硬化塗料組成物には、 活性エネルギー 線の照射によるラジカル重合反応を促進させるために、 光重合開始 剤 ( a 2 ) に加えて、 ラジカル発生の感度向上及び Z又は波長領域 拡張を目的として光増感剤を併用してもよい。  In the active energy ray-curable coating composition of the present invention, in order to promote radical polymerization reaction by irradiation with active energy rays, in addition to the photopolymerization initiator (a 2), the sensitivity of radical generation is improved and the Z or wavelength region A photosensitizer may be used in combination for the purpose of expansion.
併用し得る光増感剤としては、 例えば、 トリェチルァミン、 トリ エタノールァミン、 メチルジェタノ一ルァミン、 4ージメチルアミ ノ安息香酸メチル、 4—ジメチルァミノ安息香酸ェチル、 4ージメ チルァミノ安息香酸イソアミル、 安息香酸 ( 2 —ジメチルァミノ) ェチル、 ミヒラーケトン、 4, 4, ージェチルァミノべンゾフエノ ン等の 3級ァミン系、 トリフエニルホスフィ ン等のアルキルフォス フィ ン系、 ;6—チォジグリコール等のチォエーテル系等が挙げられ る。 これらの光増感剤は、 本発明に用いられるアクリル酸エステル Examples of photosensitizers that can be used in combination include triethylamine, triethanolamine, methyljetanolamine, methyl 4-dimethylaminobenzoate, ethyl 4-dimethylaminobenzoate, isoamyl 4-dimethylaminoaminobenzoate, benzoic acid (2-dimethylamino) ) Tertiary amines such as ethyl, Michler's ketone, 4,4, -jetylaminobenzenphenone, alkyl phosphines such as triphenylphosphine, and thioethers such as 6-thiodiglycol. These photosensitizers are acrylic acid esters used in the present invention.
( a 1 ) 及び後述する活性エネルギー線硬化性化合物 ( a 3 ) の総 量 1 0 0質量部に対して、 0. 1〜 5質量部の範囲が好ましい。 A range of 0.1 to 5 parts by mass is preferable with respect to 100 parts by mass of (a 1) and the total amount of the active energy ray-curable compound (a 3) described later.
[活性エネルギー線硬化性化合物 ( a 3 ) ] 本発明の活性エネルギー線硬化塗料組成物には、 必要に応じて活 性エネルギー線硬化性化合物 ( a 3 ) を配合することができる。 配 合される活性エネルギー線硬化性化合物 ( a 3 ) は、 本発明に用い られるアク リル酸エステル ( a 1 ) 以外のラジカル重合性不飽和モ ノマー、 ラジカル重合性不飽和基含有樹脂、 及びラジカル重合性不 飽和基と熱硬化性官能基とを併有する樹脂からなる群から選ばれる 少なく とも 1種のモノマー及び 又は樹脂であることが好ましい。 なお、 ラジカル重合性不飽和モノマーとしては、 1官能重合性モノ マ一、 2官能重合性モノマー、 3官能以上の重合性モノマー等が挙 げられる。 [Active energy ray curable compound (a 3)] The active energy ray-curable coating composition of the present invention can be blended with an active energy ray-curable compound (a 3) as necessary. The active energy ray-curable compound (a 3) to be combined is a radical polymerizable unsaturated monomer other than the acrylate ester (a 1) used in the present invention, a radical polymerizable unsaturated group-containing resin, and a radical. It is preferably at least one monomer and / or resin selected from the group consisting of resins having both a polymerizable unsaturated group and a thermosetting functional group. Examples of the radical polymerizable unsaturated monomer include a monofunctional polymerizable monomer, a bifunctional polymerizable monomer, and a trifunctional or higher functional polymerizable monomer.
1官能重合性モノマーとしては、 スチレン 、 メチル (メタ) ァク リ レー ト、 ェチル (メタ) ァク リ レー 卜、 ブチル (メタ) ァク リ レ Monofunctional polymerizable monomers include styrene, methyl (meth) acrylate, ethyl (meth) acrylate, and butyl (meth) acrylate.
― 卜、 2一ェチルへキシル (メタ) ァク リ レ一ト、 ラウリル (メタ― 卜, 2-ethyl hexyl (meth) acrylic acid, lauryl (meta)
) ァク リ レー 卜、 シクロへキシル (メタ) ァク リ レー ト、 シクロへ キセニル (メタ) ァクリ レ — 卜、 2 -ヒ ド Dキシル (メタ) ァク リ レ一 卜 、 ヒ ドロキシプロピル (メタ) ァク U レ一卜、 テ トラヒ ドロ フルフリル (メタ) ァク リ レー卜、 ε—力プ Πラク トン変性テトラ ヒ ド dフルフリル (メタ) ァク リ レー卜、 フ Xノキシェチル (メタ) Acrylate 卜, Cyclohexyl (meth) acrylate, Cyclohexenyl (meth) acrylate — 卜, 2-Hydroxyl (meth) acrylate, Hydroxypropyl (Meth) Arc U, I. Tetrahydro Furfuryl (Meth) Acrylate, ε-Force Pactone Modified Tetrahydr d Furfuryl (Meth) Acrylate, F X
) ァク リ レー 卜、 フエノキシポリエチレング U コール (メタ) ァク リ レー 卜、 ジシクロペンテニル (メタ) ァク U レー ト、 ジシクロべ ンテニルォキシェチル (メ夕) ァク リ レー 卜 、 イソポルニル (メタ) Acrylate 卜, Phenoxypolyethylene U-Cole (Meth) Acrylate 卜, Dicyclopentenyl (Meth) Acrylate U-Rate, Dicyclopentenyloxetyl (Meyu) Acrylateイ ソ, Isoponil (meta
) ァク リ レー 卜、 ベンジル (メタ) ァク リ レ一ト、 ε—力プロラク トン変性ヒ ドロキシェチル (メタ) ァク リ レ 卜、 ポリエチレング リコールモノ (メタ) ァク リ レー 卜、 ポリ プ口ピレングリコールモ ノ (メ夕) ァク リ レート、 2 —ヒ ドロキシ 3 —フエノキシプロピ ル (メ夕) ァク リ レート、 2 —ヒ ドロキシ ― 3 —ブトキシプロピル) Acrylate 卜, benzyl (meth) acrylate, ε-force prolacton-modified hydroxychetyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polyp Methyl pyrene glycol mono (methyl), 2--hydroxy 3—phenoxypropyl (methyl), 2--hydroxy—3--butoxypropyl
(メタ) ァク リ レー ト、 フタル酸モノ ヒ ド □キシェチル (メタ) ァ クリ レー卜、 パラクミルフエノールェチレンォキサイ ド変性 (メタ(Meta) acrylate, phthalate monohydride □ Kichetil (Meta) Clear clay, paracylphenol enylene oxide modification (meta
) ァクリ レート、 N メチロール (メタ) アクリルァ S ド 、 N メ チロール (メタ) ァクリルアミ ドブチルェ テル、 ァクリロイルモ ルホリン 、 ジメチルアミノェチル (メタ) ァク リ レー卜、 N ビニ ルー 2 —ピ口リ ドン等が挙げられる。 ) Acrylates, N-methylol (meth) acrylic acid S, N-methylol (meth) acrylamidobutyl ether, acryloylmorpholine, dimethylaminoethyl (meth) acrylic acid, N vinyl roux 2 — Pichi Lidon Can be mentioned.
なお、 本明細書において、 (メタ) ァクリ レー卜は 、 メ夕ク U レ 卜及び/又はァクリ レ トを意味する。  In this specification, “(meta) acrylate” means “medium” and / or “acrylate”.
2官能重合性モノマーとしては、 例えば 、 ェチレンダリ Π―ルジ Examples of the bifunctional polymerizable monomer include, for example, ethylene glycol
(メタ) ァクリ レート、 ジエチレングリコ —ルジ (メ夕) ァクリ レ 卜、 ポリエチレンダリコールジ (メタ) ァクリ レー卜、 プロピレ ングリコ —ルジ (メタ) ァクリ レー卜、 ジプロピレンダリコ ルジ(Meth) acrylate, diethylene glycol (meth) acrylic acid, polyethylene dairy glycol (meth) acrylate, propylene glycol (meth) acrylate, dipropylene alcohol
(メタ) ァクリ レート、 ポリプロピレングリコールジ (メ夕) ァク リ レー卜、 ネオペンチルダリコールジ (メタ) ァクリ レート、 1 4 ブタンジォ一ルジ (メタ) ァクリ レー卜、 1 , 6 _へキサンジ オールン (メタ) ァク 'J レ ト ビスフェノ ―ル Aェチレンォキサ イ ド変性ジ (メタ) ァク レー 、 ビスフェノ —ル Aプロピレンォ キサイ 変性ジ (メ夕) ァクリ レ 卜、 2 -ヒ ドロキシー 1 ーァク リ ロキシ 3 —メタク U口キシプ口ノ ン 、 卜 Uシクロデカンジメタ ノールン (メタ) ァク U レ ト ジ (メ夕) ァクリ ロイルォキシェ チルァシッ ドフォスフ ト等が挙げられる Ε 能重合性 モノマ としては 、 「カャラッ ドヽ H X - 2 2 0」 、 「カャラッ ド 6(Meth) acrylate, Polypropylene glycol di (meth) Acrylate, neopentyl alcoholic acid (Meth) acrylate, 1 4 Butanediol (meth) acrylic, 1, 6 _Hexanediorn ( (Meta) alkyl 'J ret bisphenol-A ethylenic acid-modified di (meth) acrylic, bisphenol-A propylene oxide modified di (me) Acryl, 2-hydroxyl-oxyloxy 3 -Metal U mouth xip mouth mouth, シ ク ロ U cyclodecane dimethanol (meta), u re ret (meyu), acryloyloxy tyrosid phosphate, etc. HX-2 2 0 ”,“ Carrad 6 ”
2 0」 「力ャラッ ド R - 6 0 4 」 「M A N D A」 等の 品名で 日本化薬 (株) から巿販されているモノマーも使用できる Monomers marketed by Nippon Kayaku Co., Ltd. under product names such as “20”, “Riyadh R-6400” and “MANDA” can also be used.
3官能以上の重合性モノマーとしては、 例えば、 トリメチロール プ口パン卜 U (メ夕) ァク Uレ 卜、 卜リメチロールプロパンェチ レンオキサイ ド変性トリ (メタ) ァクリ レート、 トリメチロールプ 口パンプロピレンオキサイ ド変性トリ (メタ) ァクリ レート、 ダリ セリントリ (メタ) ァクリ レート、 グリセリ ンエチレンォキサイ ド 変性トリ (メタ) ァクリ レート、 グリセリ ンプロピレンォキサイ ド 変性トリ (メタ) ァクリ レート、 ペン夕エリスリ トールトリ (メタ ) ァクリ レート、 ペン夕エリスリ トールテトラ (メタ) ァクリ レー 卜、 イソシァヌル酸エチレンオキサイ ド変性トリァクリ レート、 ジ ペン夕エリスリ トールへキサ (メタ) ァクリ レート等が挙げられる 好ましいラジカル重合性不飽和モノマーとしては、 光硬化性、 付 着性、 耐擦り傷性等から 2官能重合性モノマー及び/又は 3官能以 上の重合性モノマーである。 Examples of the tri- or higher functional polymerizable monomers include trimethylol propane bread U (metha) ack U les, 卜 methylolpropane ethylene oxide modified tri (meth) acrylate, trimethylol propane pan Propylene oxide modified tri (meth) acrylate, Dali Serine tri (meth) acrylate, glycerin ethylene oxide modified tri (meth) acrylate, glycerin propylene oxide modified tri (meth) acrylate, pen erythritol tri (meth) acrylate, pen erythritol tetra Preferred examples of the radically polymerizable unsaturated monomer include (meth) acrylic acid 卜, isocyanuric acid ethylene oxide-modified triacrylate, dipentaerythritol hexa (meth) acrylate, and the like. Photo-curing property, adhesion property From the viewpoint of scratch resistance, etc., it is a bifunctional polymerizable monomer and / or a trifunctional or higher functional monomer.
ラジカル重合性不飽和基含有樹脂としては、 例えば、 不飽和ァク リル樹脂、 不飽和ウレタン樹脂、 不飽和エポキシ樹脂、 ポリエステ ル (メタ) ァクリ レート、 不飽和シリコーン樹脂等が挙げられ、 こ れらから選ばれた一種又は二種以上を使用することができる。 この 中でも 1分子中にラジカル重合性不飽和基と熱硬化性官能基とを各 1個以上有する樹脂を用いることができ、 塗膜の硬化性の点から、 上記不飽和基及び上記熱硬化性官能基を複数個有する樹脂を用いる ことが好ましい。  Examples of the radical polymerizable unsaturated group-containing resin include unsaturated acrylic resin, unsaturated urethane resin, unsaturated epoxy resin, polyester (meth) acrylate, unsaturated silicone resin, and the like. 1 type, or 2 or more types selected from can be used. Among these, a resin having at least one radical polymerizable unsaturated group and one thermosetting functional group in each molecule can be used. From the viewpoint of the curability of the coating film, the unsaturated group and the thermosetting It is preferable to use a resin having a plurality of functional groups.
上記熱硬化官性能基としては、 例えは、 水酸基、 酸基、 エポキシ 基、 イソシァネート基等の官能基が挙げられる。 上記酸基としては 、 力ルポキシル基、 リン酸基等が挙げられる。  Examples of the thermosetting performance group include functional groups such as a hydroxyl group, an acid group, an epoxy group, and an isocyanate group. Examples of the acid group include a strong lpoxyl group and a phosphoric acid group.
上記 1分子中にラジカル重合性不飽和基と熱硬化性官能基とを各 1個以上有する樹脂の具体例としては、 例えば、 ラジカル重合性不 飽和基及びエポキシ基含有ァクリル樹脂、 ラジカル重合性不飽和基 及びィソシァネート基含有ァクリル樹脂等が挙げられる。  Specific examples of the resin having one or more radically polymerizable unsaturated groups and one or more thermosetting functional groups in one molecule include, for example, a radically polymerizable unsaturated group and epoxy group-containing acryl resin, Examples thereof include saturated group and isocyanate group-containing acryl resins.
また、 活性エネルギー線硬化性化合物 ( a 3 ) が熱硬化性官能基 を有する場合には、 例えば、 ァミノ樹脂、 ポリイソシァネート化合 物、 エポキシ基含有化合物等を併用することが塗膜硬度向上の点か ら好ましい。 上記アミノ樹脂としては、 例えば、 メラミン樹脂、 グ アナミン樹脂、 尿素樹脂等を用いることができる。 Further, when the active energy ray curable compound (a 3) has a thermosetting functional group, for example, an amino resin or a polyisocyanate compound is used. It is preferable from the viewpoint of improving the hardness of the coating film that the product and the epoxy group-containing compound are used in combination. As said amino resin, a melamine resin, a guanamine resin, a urea resin etc. can be used, for example.
本発明に用いられるアクリル酸エステル ( a 1 ) に対する活性ェ ネルギ一線硬化性化合物 ( a 3 ) の配合割合としては、 本発明に用 いられるアクリル酸エステル ( a 1 ) 1 0 0質量部に対して、 活性 エネルギー線硬化性化合物 ( a 3 ) は 0〜 9 0 0質量部、 好ましく は 3 0〜 4 0 0質量部であることが、 仕上り性、 耐擦り傷性の点か ら好ましい。  The blending ratio of the active energy line curable compound (a 3) to the acrylic acid ester (a 1) used in the present invention is as follows. The acrylic acid ester (a 1) used in the present invention is 100 parts by mass. The active energy ray-curable compound (a 3) is preferably 0 to 90 parts by mass, more preferably 30 to 400 parts by mass, from the viewpoint of finish and scratch resistance.
さらに、 本発明の活性エネルギー線硬化塗料組成物には、 必要に 応じて、 艷消し剤、 表面調整剤、 紫外線吸収剤、 光安定剤、 消泡剤 、 有機着色剤、 天然色素及び無機顔料等を使用することができる。  Furthermore, the active energy ray-curable coating composition of the present invention includes, if necessary, an anti-fogging agent, a surface conditioner, an ultraviolet absorber, a light stabilizer, an antifoaming agent, an organic colorant, a natural dye and an inorganic pigment Can be used.
上記有機着色剤としては、 例えば、 厚生省令第 3 7号で定められ ているもの等が挙げられる。 具体的には、 例えば、 赤色 2 0 2号 ( リソールルビン B C A) 、 赤色 2 0 3号 (レーキレッ ド C) 、 赤色 2 0 4号 (レーキレッ ド C B A) 、 赤色 2 0 5号 (リソ一ルレッ ド ) 、 赤色 2 0 6号 (リソ一ルレッ ド C A) 、 赤色 2 0 7号 (リソ一 ルレッ ド B A ) 、 赤色 2 0 8号 (リソ一ルレッ ド S R ) 、 赤色 2 1 9号 (ブリ リアントレーキレッ ド R ) 、 赤色 2 2 0号 (ディープマ ル一ン) 、 赤色 2 2 1号 (卜ルイジンレッ ド) 、 赤色 2 2 8号 (パ 一マトンレッ ド) 、 だいだい色 2 0 3号 (パーマネン卜オレンジ) 、 だいだい色 2 0 4号 (ベンチジンオレンジ G ) 、 黄色 2 0 5号 ( ベンチジンエロ一 G) 、 赤色 4 0 4号 (ブリ リアントファス トスカ 一レッ ト) 、 赤色 4 0 5号 (パーマネントレッ ド F 5 R ) 、 だいだ い色 4 0 1号 (ハンザオレンジ) 、 黄色 4 0 1号 (八ンザエロー) 、 青色 4 0 4号 (フタロシアニンブルー) 等が挙げられる。  Examples of the organic colorant include those specified by Ministry of Health and Welfare Ordinance No. 37. Specifically, for example, Red No. 20 (Resolu Rubin BCA), Red No. 203 (Lake Red C), Red No. 20 (Lake Red CBA), Red No. 20 (Riso Red Red) , Red No. 2 06 (Reso Red Red CA), Red No. 2 07 (Reso Red Red BA), Red No. 2 08 (Reso Red Red SR), Red No. 2 1 9 (Brilliant Red Killed) R), red 2 220 (Deep Marin), red 2 2 1 (Dark Louis Red), red 2 2 8 (Parton Mutton Red), orange 20 3 (Permanen Orange) , Orange 2 0 4 (bench jin orange G), yellow 2 0 5 (bench jinero 1 G), red 4 0 4 (brilliant fast skalet), red 4 0 5 (permanent treasure) De F 5 R), Orange 4 0 1 (Hansa Orange), Yellow 4 0 1 Eight Nzaero), blue 4 0 4 issue (phthalocyanine blue), and the like.
天然色素としては、 具体的には、 例えば、 カロチノイ ド系では、 カロチン、 力口チナ一ル、 カプサンチン、 リコピン、 ビキシン、 ク 口シン、 カンタキサンチン、 アナトー等、 フラボノィ ド、系では、 シSpecific examples of natural pigments include carotenoids, Carotene, forceful chinal, capsanthin, lycopene, bixin, sucrose cin, canthaxanthin, anato, etc., flavonoids,
、、、 ,,,
ソニン、 ラファニン、 エノシァニン等のァン トシァニンン類、 サフ 口一ルイエロ一、 ベニバナ等のカルコン類 、 ルチン、 クェルセチン 等のフラボノール類、 カカオ色素のようなフラ ン類等 、 フラビン 系では、 リボフラビン等、 キノ ン系では、 ラッカイン酸 、 カルミ ン 酸 (コチニール) 、 ケルメス酸、 ァリザリ ン等のアン ラキノ ン類Antophanenins such as sonin, raphanin, enosyanin, saffs, loueroles, chalcones such as safflowers, flavonols such as rutin and quercetin, furans such as cacao pigments, flavin, riboflavin, etc. In chloroquine, anthraquinones such as lacaic acid, carminic acid (cochineal), kermesic acid, alizarin
、 シコニン、 アル力ニン、 ェキノクローム等のナフ 卜キノ ン類等、 ポリ フィ リ ン系では、 クロロフィル、 血色素等、 ジケ ン系では、 クルクミ ン (ターメ リ ック) 等、 ベ夕シァ二ジン系では 、 ベ夕ニン 等が挙げられる。 , Naphthoquinones such as shikonin, alginine, echinochrome, etc., chlorophyll, hemoglobin, etc. for polyphyllin, curcumin (turmeric), etc. for diken, etc. Then, there are benin and the like.
無機顔料としては、 例えば、 無水ケィ酸、 ケィ酸マグネシウム、 タルク、 カオリ ン、 ベン トナイ ト、 マイ力、 雲母チタン、 ォキシ塩 化ビスマス、 酸化ジルコニウム、 酸化マグネシウム、 酸化亜鉛、 酸 化チタン、 軽質炭酸カルシウム、 重質炭酸カルシウム、 軽質炭酸マ グネシゥム、 重質炭酸マグネシウム、 硫酸バリ ウム、 黄酸化鉄、 ベ ンガラ、 黒酸化鉄、 グンジヨ ウ、 酸化クロム、 水酸化クロム、 力一 ポンプラック、 カラミ ン等が挙げられる。 有機着色剤、 天然色素及 び無機顔料の配合割合は、 使用される用途及び/又は要求される性 能に応じて適宜決定すればよい。  Examples of inorganic pigments include caustic anhydride, magnesium silicate, talc, kaolin, bentonite, my strength, titanium mica, bismuth oxychloride, zirconium oxide, magnesium oxide, zinc oxide, titanium oxide, and light carbonic acid. Calcium, heavy calcium carbonate, light magnesium carbonate, heavy magnesium carbonate, barium sulfate, yellow iron oxide, bengara, black iron oxide, gunjio, chromium oxide, chromium hydroxide, Kiichi pump rack, calamin, etc. Is mentioned. The blending ratio of the organic colorant, natural colorant and inorganic pigment may be appropriately determined according to the intended use and / or required performance.
本発明の活性エネルギー線硬化塗料組成物は、 有機溶剤型、 無溶 剤型、 水性型の塗料組成物のいずれであってもよい。 本発明の活性 エネルギー線硬化塗料組成物を水性化することは、 塗装作業性を損 なう ことなく、 使用溶剤量を低減できる点で好ましい。  The active energy ray-curable coating composition of the present invention may be any of an organic solvent type, an insoluble type, and an aqueous type coating composition. Making the active energy ray-curable coating composition of the present invention water-based is preferable because the amount of solvent used can be reduced without impairing the coating workability.
有機溶剤型の場合、 使用する有機溶剤としては、 例えば、 ァセ ト ン、 メチルェチルケ トン、 メチルイソプチルケトン、 シクロへキサ ノ ン、 メチルアミルケトン、 ェチルイソアミルケ トン、 ジイソプチ ルケトン、 メチルへキシルケトン等のケトン類 ; 酢酸ェチル、 酢酸 プチル、 安息香酸メチル、 プロピオン酸メチル等のエステル類 ; テ トラヒ ドロフラン、 ジォキサン、 ジメ トキシェタン等のエーテル類 ; エチレングリコールモノメチルエーテル、 エチレングリコ一ルモ ノエチルエーテル、 ジエチレングリコールモノメチルェ一テル、 プ ロピレングリコールモノメチルエーテルアセテート、 3 —メ 卜キシ ブチルアセテート等のダリコールエーテル類 ; エチルアルコール、 ベンジルアルコール等のアルコール類 ; 芳香族炭化水素類、 脂肪族 炭化水素類等が挙げられる。 In the case of the organic solvent type, examples of the organic solvent to be used include acetonitrile, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methyl amyl ketone, ethyl isoamyl ketone, and diisopetite. Ketones such as ruketone and methylhexylketone; esters such as ethyl acetate, ethyl acetate, methyl benzoate and methyl propionate; ethers such as tetrahydrofuran, dioxane and dimethoxetane; ethylene glycol monomethyl ether, ethylene glycol No-ethyl ether, diethylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, darlicol ethers such as 3-methyl butyl acetate; alcohols such as ethyl alcohol and benzyl alcohol; aromatic hydrocarbons, aliphatic carbonization Hydrogen etc. are mentioned.
本発明の活性エネルギー線硬化塗料組成物を水性化する方法とし ては、 特に限定されるものではない。 水性化する方法としては、 例 えば、 上記本発明に用いられるアクリル酸エステル ( a 1 ) 又はそ の有機溶剤溶液、 光重合開始剤 ( a 2 ) 及び乳化剤を混合した後、 攪拌しながら徐々に水を加えることによって水分散化させ水性化す る方法が挙げられる。 また他の方法としては、 本発明に用いられる アクリル酸エステル ( a l ) を水性化させて得た水分散体と、 光重 合開始剤 ( a 2 ) 等の他の成分とを水性媒体中で常法に従い混合し て水性化する方法が挙げられる。 活性エネルギー線硬化性化合物 ( a 3 ) を使用する場合、 当該化合物をあらかじめ水分散化して得た 水分散体を使用することが混合安定性の点から好ましい。 活性エネ ルギ一線硬化性化合物 ( a 3 ) の水分散化の方法は、 本発明に用い られるアクリル酸エステル ( a l ) の水分散化と同様の方法を採る ことができる。 また、 光重合開始剤 ( a 2 ) が水に対する溶解性の 小さい固体の光重合開始剤である場合、 活性エネルギー線硬化性化 合物 ( a 3 ) に添加して溶解することが、 均一な光硬化が可能な点 、 仕上り性、 及び耐擦り傷性の点で好ましい。 また、 本発明の活性 エネルギー線硬化塗料組成物を水性化する場合には、 光重合開始剤 ( a 2 ) は、 ィルガキュア 5 0 0 (商品名、 チバ ' スペシャルティ • ケミカルズ社製、 1 —ヒ ドロキシーシク口へキシルーフエ二ルー ケトン及びべンゾフエノ ンの 1 : 1 (質量比) 混合物) 、 ダロキュ ァ 1 1 7 3 (商品名、 チバ ' スペシャルティ ' ケミカルズ社製、 2 一ヒ ドロキシ— 2 —メチルー 1 一フエ二ループロパン一 1 —オン) 等の常温で液状の光重合開始剤を用いることが混合安定性の点から 好ましい。 The method of making the active energy ray-curable coating composition of the present invention aqueous is not particularly limited. As a method for making the aqueous solution, for example, the acrylic acid ester (a 1) or the organic solvent solution, the photopolymerization initiator (a 2) and the emulsifier used in the present invention are mixed, and then gradually stirred. An example is a method in which water is dispersed to form an aqueous solution by adding water. As another method, an aqueous dispersion obtained by making the acrylic ester (al) used in the present invention aqueous and other components such as a photopolymerization initiator (a 2) in an aqueous medium. A method of mixing and making it aqueous according to a conventional method can be mentioned. When the active energy ray-curable compound (a 3) is used, it is preferable from the viewpoint of mixing stability that an aqueous dispersion obtained by previously dispersing the compound in water is used. The method for dispersing the active energy line curable compound (a3) in water can be the same as the method for dispersing the acrylic ester (al) used in the present invention. In addition, when the photopolymerization initiator (a 2) is a solid photopolymerization initiator having low solubility in water, it can be uniformly added and dissolved in the active energy ray-curable compound (a 3). It is preferable from the viewpoints of photocuring, finish, and scratch resistance. In addition, when the active energy ray-curable coating composition of the present invention is made aqueous, a photopolymerization initiator (a 2) is Irgacure 500 (trade name, Ciba's Specialty • Chemicals, 1—Hydroxyshiki Hexroof Elulu ketone and benzofuenone 1: 1 (mass ratio) mixture), Darocur 1 1 7 3 (Product name, Ciba 'Specialty' manufactured by Chemicals, 2 Hydroxyl-2-Methyl-1, 1-Propane 1-On), etc. From the viewpoint of sex.
[塗装物品]  [Coated article]
本発明の活性エネルギー線硬化塗料組成物が塗装される被塗物は 、 金属、 プラスチック、 木材等、 特に制限はない。 金属は、 例えば 、 冷延鋼板、 錫メツキ鋼板、 亜鉛メツキ鋼板、 クロムメツキ鋼板、 アルミニウム板等を挙げることができる。 これらの金属板は、 無処 理のままで用いることもできる力 リ ン酸塩処理、 ジルコニウム塩 処理、 クロメート処理等の表面処理を行ったものを用いることがで きる。 プラスチックは、 例えば、 アクリル樹脂、 ポリエステル樹脂 、 ポリアミ ド樹脂、 ポリカーポネ一卜樹脂、 A B S樹脂、 ポリプロ ピレン樹脂、 ポリエチレン樹脂が挙げられる。  The object to be coated with the active energy ray-curable coating composition of the present invention is not particularly limited, such as metal, plastic, and wood. Examples of the metal include a cold-rolled steel plate, a tin-plated steel plate, a zinc-plated steel plate, a chrome-plated steel plate, and an aluminum plate. These metal plates can be used after being subjected to surface treatment such as power phosphate treatment, zirconium salt treatment, chromate treatment, etc., which can be used without treatment. Examples of the plastic include acrylic resin, polyester resin, polyamide resin, polycarbonate resin, ABS resin, polypropylene resin, and polyethylene resin.
これら被塗物には、 必要に応じて、 下塗り塗装及び/又は光輝剤 等を含有するベースコート塗料が塗装されていてもよい。  These coated materials may be coated with a base coat paint containing an undercoat and / or a brightening agent, if necessary.
塗膜形成は、 活性エネルギー線硬化塗料組成物を乾燥膜厚として 0 . l 〜 3 0 m、 好ましくは l 〜 2 5 m、 さらに好ましくは 5 〜 2 0 ^ m塗装して、 活性エネルギー線の照射、 又は加熱及び活性 エネルギー線の照射を併用することによって硬化塗膜を得ることが できる。  The coating is formed by coating the active energy ray curable coating composition with a dry film thickness of 0.1 to 30 m, preferably l to 25 m, more preferably 5 to 20 ^ m, and A cured coating film can be obtained by combining irradiation, or heating and irradiation of active energy rays.
塗装手段としては、 例えば、 ローラー塗装、 刷毛塗装、 浸漬塗装 、 スプレー塗装 (非静電塗装、 静電塗装等) 、 カーテンフロー塗装 、 スクリーン印刷、 凸版印刷等により塗装を行う ことができる。 活性エネルギー線硬化塗料組成物の不揮発分濃度は、 塗装可能な 範囲であれば特に制限はないが、 スプレー塗装を行う場合は、 好ま しくは 1 0〜 5 0質量%の範囲である。 Examples of the coating means include roller coating, brush coating, dip coating, spray coating (non-electrostatic coating, electrostatic coating, etc.), curtain flow coating, screen printing, letterpress printing, and the like. The non-volatile concentration of the active energy ray-curable coating composition is not particularly limited as long as it can be applied, but is preferably in the range of 10 to 50% by mass when spray coating is performed.
有機溶剤又は水を含有する活性エネルギー線硬化塗料組成物を塗 装する場合、 塗装後に加熱若しくはセッティ ングすることによって 有機溶剤又は水を揮発させてから活性エネルギー線を照射すること が望ましい。 加熱する場合の手段としては、 特に限定されるもので はなく、 例えば、 熱風炉、 電気炉、 赤外線誘導加熱等の乾燥設備を 適用できる。 加熱温度は、 特に制限されるものではないが、 通常、 3 5〜 1 0 0 °C、 好ましくは 4 0〜 9 0 °Cの範囲である。 加熱時間 は、 特に制限されるものではないが、 通常、 1〜 3 0分の範囲が好 適である。  When applying an active energy ray-curable coating composition containing an organic solvent or water, it is desirable to volatilize the organic solvent or water by heating or setting after coating, and then irradiate the active energy ray. The means for heating is not particularly limited, and for example, a drying facility such as a hot air furnace, an electric furnace, or infrared induction heating can be applied. The heating temperature is not particularly limited, but is usually in the range of 35 to 100 ° C., preferably 40 to 90 ° C. The heating time is not particularly limited, but usually a range of 1 to 30 minutes is preferable.
上記硬化に用いる活性エネルギー線は、 特に制限はなく、 電子線 、 紫外線、 可視光、 赤外線のいずれであってもよい。 波長 2 0 0〜 6 0 0 n m、 好ましくは波長 3 0 0〜 4 5 0 n mの活性エネルギー 線が、 仕上り性等の点から好ましい。  The active energy ray used for the curing is not particularly limited, and may be any of electron beam, ultraviolet ray, visible light, and infrared ray. An active energy ray having a wavelength of 200 to 60 nm, preferably a wavelength of 300 to 45 nm is preferable from the viewpoint of finish.
光重合開始剤 ( a 2 ) の種類に応じて、 感度の高い波長を有する 照射源を適宜選択して使用することができる。 上記活性エネルギー 線の照射源としては、 例えば、 高圧水銀灯、 超高圧水銀灯、 キセノ ンランプ、 カーボンアーク、 メタルハライ ドランプ、 太陽光等を挙 げることができる。  Depending on the type of the photopolymerization initiator (a 2), an irradiation source having a highly sensitive wavelength can be appropriately selected and used. Examples of the active energy ray irradiation source include a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a xenon lamp, a carbon arc, a metal halide lamp, and sunlight.
塗膜に活性エネルギー線を照射する条件は、 通常、 積算光量が 1 , 0 0 0〜 2 0, O O O J Zm2 、 好ましくは 2 , 0 0 0〜 1 5, 0 0 0 J Zm2 となる範囲が適している。 1秒間〜 5分程度の照射 時間により、 塗膜を硬化することができる。 上記範囲内にあること が、 塗膜の光硬化性、 耐黄変性等の点から好ましい。 The conditions for irradiating the coating with active energy rays are usually in the range where the integrated light quantity is 1, 0 00 to 20 , OOOJ Zm 2 , preferably 2, 0 0 0 to 1 5, 0 0 0 J Zm 2 Is suitable. The coating film can be cured with an irradiation time of about 1 second to about 5 minutes. It is preferable that it is in the above range from the viewpoint of photocurability of the coating film, yellowing resistance and the like.
また、 本発明の活性エネルギー線硬化塗料組成.物は、 水又は有機 溶剤の含有の有無に関わらず、 活性エネルギー線を照射した後に補 助的な架橋手段として加熱を施すこともできる。 The active energy ray-curable coating composition of the present invention is water or organic. Regardless of the presence or absence of a solvent, heating can also be performed as an auxiliary crosslinking means after irradiation with active energy rays.
本発明の活性エネルギー線硬化塗料組成物を塗装して得られた塗 装物品は、 例えば、 電気部品、 携帯電話、 照明、 電気素子、 半導体 、 自動販売機等の材料又は部品として使用することができる。  The coated article obtained by applying the active energy ray-curable coating composition of the present invention can be used, for example, as a material or a part of an electrical component, a mobile phone, lighting, an electrical element, a semiconductor, a vending machine, or the like. it can.
<<B . 塗膜形成方法〉〉  << B. Method for forming coating film>
[被塗物]  [Coating]
本発明の塗膜形成方法に用いる被塗物は、 「A. 活性エネルギー 線硬化塗料組成物」 の項に記載される被塗物と同一であることがで きる。 また、 当該被塗物には、 例えば、 プライマー塗料、 カチオン 電着塗料等を塗装することにより、 予めプライマ一層及び/又は電 着塗膜層等が形成されていてもよい。  The coated material used in the coating film forming method of the present invention can be the same as the coated material described in the section “A. Active energy ray-curable coating composition”. Further, for example, a primer layer and / or an electrodeposition coating layer may be formed in advance by applying a primer coating, a cationic electrodeposition coating, or the like to the object to be coated.
[澱粉系ベース塗料組成物]  [Starch-based paint composition]
本発明の塗膜形成方法において、 上記被塗物上に塗装される澱粉 系ベース塗料組成物は、 澱粉系樹脂並びに着色顔料及び/又は光輝 性顔料を含有する。  In the coating film forming method of the present invention, the starch-based base coating composition to be coated on the article to be coated contains a starch-based resin and a coloring pigment and / or a luster pigment.
[澱粉系樹脂]  [Starch resin]
本明細書において、 澱粉系樹脂とは、 澱粉、 変性澱粉、 並びに澱 粉又は変性澱粉から誘導される構造を有する樹脂を意味する。 具体 的には、 例えば、 以下の澱粉系樹脂 ;  In the present specification, the starch-based resin means starch, modified starch, and a resin having a structure derived from starch or modified starch. Specifically, for example, the following starch-based resin;
澱粉系樹脂 ( I ) : 澱粉及び Z又は変性澱粉 ;  Starch-based resin (I): Starch and Z or modified starch;
澱粉系樹脂 ( I I ) : 澱粉系樹脂 ( I ) と、 ポリイソシァネート 化合物 ( x l ) 及び多価アルコール ( x 2 ) を反応させて得られた イソシァネート基を有する生成物 (X) とを反応させて得られる澱 粉系樹脂 ;  Starch Resin (II): Reaction of Starch Resin (I) with Product (X) with Isocyanate Group Obtained by Reaction of Polyisocyanate Compound (xl) and Polyhydric Alcohol (x2) Starch-based resin obtained by allowing
澱粉系樹脂 ( I I I ) : 澱粉系樹脂 ( I ) と、 ポリイソシァネー ト化合物 ( x l ) 及び多価アルコール ( x 2 ) を反応させて得られ たイソシァネート基を有する生成物 (X) と、 ビニル共重合体樹脂 ( Y) とを反応させて得られる澱粉系樹脂 ; Starch resin (III): obtained by reacting starch resin (I) with polyisocyanate compound (xl) and polyhydric alcohol (x2). A starch-based resin obtained by reacting a product (X) having an isocyanate group with a vinyl copolymer resin (Y);
澱粉系樹脂 ( I V) : 澱粉系樹脂 ( I ) にラジカル重合性不飽和 単量体をグラフ 卜重合させて得られる澱粉系樹脂 ; 及び  Starch-based resin (IV): starch-based resin obtained by subjecting starch-based resin (I) to radical-polymerizable unsaturated monomer graph polymerization; and
澱粉系樹脂 (V) : 澱粉系樹脂 ( I ) にラジカル重合性不飽和単 量体をグラフ 卜重合させて得られる樹脂 (Z ) と、 ポリイソシァネ ート化合物 (x l ) 及び多価アルコール ( x 2 ) を反応させて得ら れたイソシァネート基を有する生成物 (X) とを反応させて得られ る澱粉系樹脂 :  Starch Resin (V): Resin (Z) obtained by graph-polymerizing a radical polymerizable unsaturated monomer to starch resin (I), polyisocyanate compound (xl) and polyhydric alcohol (x 2 ) Is a starch-based resin obtained by reacting with a product (X) having an isocyanate group obtained by reacting:
を挙げることができる。  Can be mentioned.
[澱粉系樹脂 ( I ) ]  [Starch resin (I)]
澱粉系樹脂 ( I ) における澱粉としては、 コーンスターチ、 ハイ アミローススターチ、 小麦澱粉、 米澱粉等の穀類の未変性澱粉、 馬 鈴薯澱粉、 夕ピオ力澱粉等の芋類の未変性澱粉等が挙げられる。 澱粉系樹脂 ( I ) における変性澱粉としては、 澱粉をエステル化 Examples of starch in the starch-based resin (I) include corn starch, high amylose starch, wheat starch, unmodified starch of cereals such as rice starch, potato unmodified starch such as potato starch, evening pio force starch, etc. It is done. As starch modified with starch resin (I), starch is esterified.
、 エーテル化、 酸化、 酸処理化又はデキス トリン化した澱粉置換誘 導体等が挙げられる。 具体的には、 例えば、 澱粉又は澱粉分解物に 、 脂肪族飽和炭化水素基、 脂肪族不飽和炭化水素基、 芳香族炭化水 素基等の有機官能基を、 エステル結合及び 又はエーテル結合を介 して結合させた変性澱粉が挙げられる。 ここで、 澱粉分解物として は、 澱粉に酵素、 酸又は酸化剤で低分子量化処理を施したものが挙 げられる。 And starch-substituted derivatives etherified, oxidized, acid-treated or dextrinized. Specifically, for example, an organic functional group such as an aliphatic saturated hydrocarbon group, an aliphatic unsaturated hydrocarbon group, or an aromatic hydrocarbon group is added to the starch or starch degradation product via an ester bond and / or an ether bond. And modified starches bound together. Here, examples of the starch degradation product include those obtained by subjecting starch to a low molecular weight treatment with an enzyme, an acid, or an oxidizing agent.
澱粉又は澱粉分解物は、 数平均分子量が 1 , 0 0 0〜 2, 0 0 0 , 0 0 0、 さらに好ましくは 3 , 0 0 0〜 5 0 0 , 0 0 0、 特に 5 , 0 0 0〜 1 0 0, 0 0 0の範囲内にあること力 、 造膜性等の点か ら好ましい。  The starch or starch degradation product has a number average molecular weight of 1, 0 0 0 to 2, 0 0 0, 0 0 0, more preferably 3, 0 0 0 to 5 0 0, 0 0 0, particularly 5, 0 0 0 It is preferable from the viewpoint of force, film-forming property, etc. to be in the range of ˜100,000.
変性澱粉の変性方法としては、 例えば、 エステル化変性が挙げら れ、 好ましい変性基としては炭素数 2〜 1 8のァシル基が挙げられ る。 変性は炭素数 2〜 1 8の有機酸を単独で又は 2種以上組み合わ せて用いることにより行うことができる。 Examples of the modification method of the modified starch include esterification modification. A preferred modifying group is an acyl group having 2 to 18 carbon atoms. The modification can be performed by using organic acids having 2 to 18 carbon atoms alone or in combination of two or more.
変性澱粉の変性程度は、 置換度で 0 . 1〜 2 . 8の範囲内が好ま しく、 特に 1 . 0〜 2 . 5の範囲内が好ましい。 置換度が 2 . 8 を 超えると、 生分解性が低下する場合がある。  The degree of modification of the modified starch is preferably in the range of 0.1 to 2.8 in terms of the degree of substitution, particularly preferably in the range of 1.0 to 2.5. If the degree of substitution exceeds 2.8, biodegradability may be reduced.
また、 変性澱粉は、 澱粉の分解温度 (約 3 5 0 °C ) 以下にガラス 転移点を有し、 熱可塑性を有しかつ生分解性も有しているように変 性の程度が調節されていることが望ましい。 したがって変性に使用 する置換基の炭素数が多い場合には低変性レベルに、 例えば、 置換 基が炭素数 1 8のステアロイル基である場合にはエステル置換度が 0 . :! 〜 1 . 8の範囲内にあることが好ましく、 また置換基の炭素 数が少ない場合には高変性レベルに、 例えば、 置換基が炭素数 2 の ァセチル基である場合にはエステル置換度が 1 , 5〜 2 . 8 の範囲 内にあることが好ましい。  Modified starch has a glass transition point below the starch decomposition temperature (about 3500 ° C), and has a glass transition point, and the degree of change is adjusted to have thermoplasticity and biodegradability. It is desirable that Therefore, when the number of carbon atoms of the substituent used for modification is large, the level of modification is low. For example, when the substituent is a stearoyl group having 18 carbon atoms, the degree of ester substitution is 0.:! To 1.8. It is preferably within the range, and when the number of carbon atoms of the substituent is small, it is highly modified.For example, when the substituent is a acetyl group having 2 carbon atoms, the degree of ester substitution is 1, 5 to 2. It is preferably within the range of 8.
なお、 置換度は、 澱粉を構成する単糖単位 1個あたりの変性剤に より置換された水酸基の平均個数であり、 例えば、 置換度 3は、 澱 粉を構成する単糖単位 1個中に存在する 3個の水酸基が全て変性剤 により置換されていることを意味し、 置換度 1 は澱粉を構成する単 糖単位 1個中に存在する 3個の水酸基のうちの 1個だけが変性剤に より置換されていることを意味する。  The degree of substitution is the average number of hydroxyl groups substituted by a denaturing agent per monosaccharide unit constituting the starch. For example, the degree of substitution 3 is in one monosaccharide unit constituting the starch. This means that all three hydroxyl groups present are substituted by a modifier, and a substitution degree of 1 means that only one of the three hydroxyl groups present in one monosaccharide unit constituting the starch is a modifier. It means that it is replaced by.
変性澱粉の例としては、 5 0 %以上のアミロース含量をもつ無水 の澱粉を、 非プロ トン性溶媒中でエステル化試薬と混合して、 澱粉 及びエステル化試薬の間で反応させることにより得られる疎水性の 生分解性澱粉エステル生成物 (特表平 8— 5 0 2 5 5 2号公報参照 ) 、 ビニルエステルをエステル化試薬として用いて変性された澱粉 エステルであって、 当該ビニルエステルとしてエステル基の炭素数 が 2〜 1 8のものを用い、 非水有機溶媒中でエステル化触媒を使用 して澱粉と反応させて得られる澱粉エステル (特開平 8 — 1 8 8 6 0 1号公報参照) 、 エステル化とともにポリビニルエステルのダラ フ ト化がされている澱粉 (特開平 8 — 2 3 9 4 0 2号公報及び特開 平 8 — 3 0 1 9 9 4号公報参照) 、 ポリエステルグラフ ト鎖を澱粉 分子上に有し、 当該グラフ ト鎖末端及び澱粉直結の水酸基の一部又 は全てがエステル基により封鎖されているポリエステルダラフ ト重 合澱粉と、 当該ポリエステルグラフ ト鎖と同一の構成成分を有し、 末端水酸基の一部又は全部がエステル基により封鎖されている独立 ポリエステルとを均一混合して生成させたポリエステルグラフ 卜重 合澱粉ァロイ (特開平 9一 3 1 3 0 8号公報参照) 等を挙げること ができる。 An example of a modified starch is obtained by mixing anhydrous starch having an amylose content of 50% or more with an esterification reagent in a non-protonic solvent and reacting between the starch and the esterification reagent. Hydrophobic biodegradable starch ester product (see Japanese Patent Publication No. Hei 8-500 25 2), starch ester modified with vinyl ester as an esterifying reagent, Carbon number of the group Is a starch ester obtained by reacting with starch using an esterification catalyst in a non-aqueous organic solvent (refer to Japanese Patent Laid-Open No. Hei 8- 186060), esterification In addition, starch in which the polyvinyl ester is made into a dull (see Japanese Patent Laid-Open Nos. 8-239204 and JP-A-8-3010994), polyester graft chains with starch molecules A polyester-draft polymerized starch having a part of or all of hydroxyl groups directly connected to starch and blocked by ester groups, and having the same components as the polyester graft chain. And a polyester graph formed by uniformly mixing with an independent polyester in which some or all of the terminal hydroxyl groups are blocked with ester groups (see Japanese Patent Application Laid-open No. Hei 9 3 1 3 0 8), etc. Can mention .
さらには、 同一澱粉分子の反応性水酸基の水素を炭素数 2〜 4の 短鎖ァシル基及び炭素数 6〜 1 8の長鎖ァシル基で置換した短鎖一 長鎖混合澱粉エステル (特開 2 0 0 0 — 1 5 9 8 0 1号公報参照) 、 同一澱粉分子の反応性水酸基を炭素数 2〜 4の短鎖炭化水素含有 基及び炭素数 6〜 2 4の長鎖炭化水素含有基で置換した短鎖一長鎖 混合澱粉置換誘導体 (特開 2 0 0 0 — 1 5 9 8 0 2号公報参照) 等 が挙げられる。 これらの変性澱粉は、 澱粉を母体としているため生 分解性であり、 特に溶剤への溶解性及び Z又は相溶性に優れる。  Furthermore, a short-chain single-long-chain mixed starch ester obtained by substituting hydrogen of the reactive hydroxyl group of the same starch molecule with a short-chain acyl group having 2 to 4 carbon atoms and a long-chain acyl group having 6 to 18 carbon atoms. 0 0 0 — 1 5 9 8 0 1), the reactive hydroxyl group of the same starch molecule is a short chain hydrocarbon-containing group having 2 to 4 carbon atoms and a long chain hydrocarbon-containing group having 6 to 24 carbon atoms. Substituted short chain and long chain mixed starch substituted derivatives (see Japanese Patent Laid-Open No. 2 0 0 0-1 5 9 8 0 2) and the like. These modified starches are biodegradable because they are based on starch, and are particularly excellent in solubility in solvents and Z or compatibility.
これら澱粉及び/又は変性澱粉は、 単独で又は複数を併用して使 用できる。  These starches and / or modified starches can be used alone or in combination.
[澱粉系樹脂 ( I I ) ]  [Starch resin (I I)]
[イソシァネート基を有する生成物 (X) ]  [Products having isocyanate groups (X)]
イソシァネート基を有する生成物 (X) は、 ポリイソシァネート 化合物 (x l ) と、 多価アルコール (x 2 ) とを反応させて得るこ とができる。 ポリイソシァネート化合物 ( X 1 ) は、 例えば、 イソホロンジィ ソシァネート、 トリ レンジイソシァネート、 ジフエニルメタンジィ ソシァネ一卜、 卜リジンジイソシァネー卜、 ナフ夕レンジイソシァ ネート、 トリフエニルメタントリイソシァネート、 トリス (フエ二 ルイソシァネート) チォホスフェート、 フエ二レンジイソシァネ一 ト、 へキサメチレンジイソシァネート、 卜リメチルへキサメチレン ジイソシァネ一卜、 リジンジイソシァネート、 キシリ レンジイソシ ァネー卜、 ビス (イソシアナトメチル) シク □へキサン、 ジシクロ へキシルメ夕ンジイソシァネート、 イソプロピリデンビス (シクロ へキシルイソシァネー卜) 、 3— ( 2 ' ーィソシアナトシクロへキ シル) プロピルイソシァネート、 ジァニシジンジイソシァネ一卜、 ジフエニルエーテルジイソシァネート等が挙げられる。 なかでも、 イソホ口ンジイソシァネート、 へキサメチレンジイソシァネ一卜を 用いることが、 硬度、 付着性、 耐衝撃性の面から特に好ましい。 The product (X) having an isocyanate group can be obtained by reacting the polyisocyanate compound (xl) with a polyhydric alcohol (x 2). Polyisocyanate compounds (X 1) include, for example, isophorone diisocyanate, tolylene diisocyanate, diphenylmethane diisocyanate, lysine diisocyanate, naphthenic diisocyanate, triphenylmethane triisocyanate. Nate, Tris (Phenol Isocyanate) Thiophosphate, Phenyl Diisocyanate, Hexamethylene Diisocyanate, Trimethyl Hexamethylene Diisocyanate, Lysine Diisocyanate, Xylylene Diisocyanate, Bis (Isocyanatomethyl) □ □ hexane, dicyclohexylhexane diisocyanate, isopropylidenebis (cyclohexylisocyanate), 3— (2′-isocyanatocyclohexyl) propylisocyanate, dianicidindi Shiane one Bok include diphenyl ether disulfonate iso Xia sulfonate, and the like. Of these, the use of isophosphonate diisocyanate and hexamethylene diisocyanate is particularly preferred from the viewpoint of hardness, adhesion, and impact resistance.
ポリィソシァネート化合物 ( X 1 ) の市販 α  Commercial α of polyisocyanate compound (X1)
ΡΡの例としては、 「バ ーノック D一 7 5 0 、 D— 8 0 0 、 D N - 9 5 0 、 D N— 9 7 0又 は 1 5 一 4 5 5」 (以上、 大日本ィンキ化学ェ業 (株) 製品) 、 「  For example, “Barnock D 1750, D—800, DN-9500, DN 9700 or 1 5 1 4 5 5” (Dai Nippon Chemical Industries, Ltd.) Products), "
、❖  ❖
デスモンュ一ル 、 N、 H L又は N 3 3 9 0 J (ドイツ国バイエル 社製品 ) 、 「タケネー卜 D _ 1 0 2 、 D - 1 7 0 H N、 D - 2 0 2Desmonle, N, H L or N 3 3 90 J (product of Bayer, Germany), “Takenai D_ 1 0 2, D-1 700 H N, D-2 0 2
、 D一 1 1 0又は D _ 1 2 3 N」 (三井化学ポリウレ夕ン (株) 製 品) 、 「3ロネ一卜 E H、 L、 H L又は 2 0 3 」 (日本ポリウレタ ン工業 (株) 製品) 又は 「デユラネート 2 4 A一 9 0 C X」 (旭化 成ケミカルズ (株) 製品) 等が挙げられる。 , D 1 110 or D _ 1 2 3 N "(Mitsui Chemicals Polyurethane Co., Ltd. product)," 3 Roneichi EH, L, HL or 20 3 "(Nihon Polyuretan Kogyo Co., Ltd.) Product) or “deyuranate 2 4 A 1 90 CX” (product of Asahi Kasei Chemicals Corporation).
多価アルコール ( x 2 ) としては、 アルキレンジオール、 3価以 上のアルカンポリオール、 エーテルポリオール、 ポリエステルポリ オール及びその他のポリオールを挙げることができる。  Examples of the polyhydric alcohol (x2) include alkylene diols, trivalent or higher valent alkane polyols, ether polyols, polyester polyols, and other polyols.
アルキレンジオールとしては、 例えば、 エチレングリコール、 プ ロピレングリコ一ル、 1, 3—プチレングリコール、 1 , 4ーブ夕 ンジォ一ル、 1, 5 —ペンタンジオール、 1 , 6 —へキサンジォ一 ル、 ネオペンチルグリコール、 シクロへキサン— 1, 4 一ジメチ口 ール、 2—メチルー 2, 4 一ペンタンジオール、 水素化ビスフエノ —ル A等のジオール類が挙げられる。 Examples of the alkylene diol include ethylene glycol, plastic Lopylene glycol, 1,3-butylene glycol, 1,4-butylenediol, 1,5-pentanediol, 1,6-hexanediol, neopentyl glycol, cyclohexane-1,4 Examples include dimethylol, 2-methyl-2,4 monopentanediol, and hydrogenated bisphenol A.
3価以上のアルカンポリオールとしては、 グリセリン、 トリメチ ロールェタン、 トリメチロールプロパン等の トリオール類 ; ペン夕 エリスリ トール、 α —メチルダリコシド、 ソルビトール等の 4価以 上のアルカンポリオール類が挙げられる。  Examples of the trivalent or higher-valent alkane polyols include triols such as glycerin, trimethylolethane, trimethylolpropane; and higher-valent alkane polyols such as pen erythritol, α-methyldaricoside, and sorbitol.
エーテルポリオールとしては、 例えば、 エチレンオキサイ ド、 プ ロピレンオキサイ ド、 ブチレンオキサイ ド、 テトラヒ ドロフラン等 のアルキレンォキサイ ドの開環付加反応によって製造されるもの、 ジエチレングリコール、 ジプロピレングリコール、 ポリエチレング リコール、 ポリプロピレングリコール、 ポリテトラメチレングリコ ール、 トリエチレングリコール、 ポリ (ォキシエチレン Ζォキシプ ロピレン) グリコール、 ビスフエノール Αポリエチレングリコール エーテル、 ビスフエノール Aポリプロピレングリコ一ルエーテル、 スクロース、 ジペン夕エリスリ トール等が挙げられる。  Examples of the ether polyol include those produced by ring-opening addition reaction of alkylene oxides such as ethylene oxide, propylene oxide, butylene oxide, and tetrahydrofuran, diethylene glycol, dipropylene glycol, polyethylene glycol, Polypropylene glycol, polytetramethylene glycol, triethylene glycol, poly (oxyethylene oxypropylene) glycol, bisphenol ノ ー ル polyethylene glycol ether, bisphenol A polypropylene glycol ether, sucrose, dipentyl erythritol, and the like.
ポリエステルポリオールとしては、 例えば、 有機ジカルボン酸又 はその無水物を、 有機ジオール成分と、 有機ジオール過剰の条件下 で重縮合反応させて得られたものが挙げられる。 具体的には、 アジ ピン酸及びエチレングリコールの縮合物、 アジピン酸及びネオペン チルダリコールの縮合物であるポリエステルポリオールが挙げられ る。  Examples of the polyester polyol include those obtained by subjecting an organic dicarboxylic acid or an anhydride thereof to a polycondensation reaction with an organic diol component under conditions of excess organic diol. Specifically, a polyester polyol which is a condensate of adipic acid and ethylene glycol and a condensate of adipic acid and neopentyl dallicol can be mentioned.
上記有機ジカルボン酸としては、 炭素数が 2〜4 4、 特に 4〜 3 6の脂肪族系、 脂環式又は芳香族系ジカルボン酸、 例えば、 コハク 酸、 アジピン酸、 ァゼライン酸、 セバシン酸、 マレイン酸、 フマル 酸、 グルタル酸、 へキサクロ口ヘプタンジカルボン酸、 シクロへキ サンジカルボン酸、 O—フタル酸、 イソフタル酸、 テレフタル酸、 テトラヒ ドロフ夕ル酸、 テ卜ラクロ口フ夕ル酸等が挙げられる。 ま た、 これらのジカルボン酸に加えて、 3個以上のカルボキシル基を 有するポリカルボン酸の無水物及び 又は不飽和脂肪酸の付加物等 を少量併用することができる。 また、 上記有機ジオール成分として は、 例えば、 エチレングリコ一ル、 プロピレングリコール、 1, 4 一ブタンジオール、 1 , 5 _ペン夕ンジオール、 1 , 6 —へキサン ジオール、 ネオペンチルダリコール等のアルキレングリコール、 1 , 4—シクロへキサンジメタノール、 2 —ブチル— 2 —ェチル— 1 , 3 —プロパンジオール、 3 _メチル _ 1, 5 一ペンタンジオール 、 2 —メチルー 2, 4 一ペンタンジオール等が挙げられ、 これらは 、 場合により、 少量のトリメチロールプロパン、 グリセリ ン、 ペン 夕エリスリ トール等の 3価以上のポリオールと併用されてもよい。 上述の多価アルコール ( x 2 ) の中では、 特に、 エチレングリコ ール、 プロピレングリコール、 1 , 4—ブタンジォ一ル、 1, 6 — へキサンジオール、 ジエチレングリコール、 トリエチレングリコ一 ル、 水素化ビスフエノール A、 グリセリン、 トリメチ口一ルェタン 、 卜リメチロールプロパン、 ペンタエリスリ トール、 ジペン夕エリ スリ トール、 ポリエチレングリコール、 ポリプロピレングリコ一ル 、 ポリテ卜ラメチレングリコール、 ポリ (ォキシエチレン ォキシ プロピレン) グリコール、 ビスフエノール Aエチレングリコールェ 一テル、 ビスフエノール Aポリプロピレングリコ一ルエーテルより なる群から選ばれるものが、 耐衝撃性及び耐屈曲性の観点からも好 適でめる。 Examples of the organic dicarboxylic acid include aliphatic, alicyclic or aromatic dicarboxylic acids having 2 to 4 carbon atoms, particularly 4 to 36 carbon atoms, such as succinic acid, adipic acid, azelaic acid, sebacic acid, maleic acid. Acid, fumar Acid, glutaric acid, hexaclonal heptane dicarboxylic acid, cyclohexane dicarboxylic acid, O-phthalic acid, isophthalic acid, terephthalic acid, tetrahydrobutyric acid, and tetraclofuuric acid. In addition to these dicarboxylic acids, a small amount of polycarboxylic acid anhydrides and / or unsaturated fatty acid adducts having three or more carboxyl groups can be used in combination. Examples of the organic diol component include alkylene glycols such as ethylene glycol, propylene glycol, 1,4 monobutanediol, 1,5-pentanediol, 1,6-hexanediol, and neopentyldarlicol. 1,4-cyclohexanedimethanol, 2-butyl-2-ethyl-1,3-propanediol, 3_methyl_1,5 monopentanediol, 2-methyl-2,4 monopentanediol, etc. In some cases, these may be used in combination with a small amount of a trivalent or higher valent polyol such as trimethylolpropane, glycerin, or penicillin erythritol. Among the polyhydric alcohols (x2) mentioned above, ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, diethylene glycol, triethylene glycol, bishydride Phenolic A, Glycerin, Trimethyl Mouth Lutane, Limethylolpropane, Pentaerythritol, Dipentaerythritol, Polyethylene Glycol, Polypropylene Glycol, Polytetramethylene Glycol, Poly (oxyethyleneoxypropylene) glycol, Bisphenol A Ethylene A material selected from the group consisting of glycol ether and bisphenol A polypropylene glycol ether is preferred from the viewpoint of impact resistance and flex resistance.
上記ポリイソシァネート化合物 (x l ) 及び多価アルコール ( X 2 ) の反応は、 有機溶剤、 例えば、 トルエン、 キシレン、 シクロへ キサン、 n—へキサン等の炭化水素系溶剤 ; 酢酸メチル、 酢酸ェチ ル、 酢酸ブチル等のエステル系溶剤 ; アセトン、 メチルェチルケト ン、 メチルイソプチルケトン、 メチルアミルケトン等のケトン系溶 剤 ; あるいはこれらの混合物等中で行うことができる。 ここで、 ポ リイソシァネート化合物 (x l ) 及び多価アルコール ( x 2 ) の反 応割合としては、 フリーのイソシァネートを残存させるような反応 割合であれば特に限定されるものではない。 反応割合としては、 例 えば、 ポリイソシァネート化合物 ( X 1 ) に基づく N C〇基のモル 数に対して、 多価アルコール ( x 2 ) に基づく〇 H基のモル数が、 OH基 ZN C O基 = 0. 4 / 1. 0〜 0. 9 5 / 1. 0、 好ましく は 0. 5 / 1. 0〜 0. 9 / 1. 0である。 上記反応においては、 適宜に、 例えば、 モノブチル錫オキサイ ド、 ジブチル錫オキサイ ド 等の触媒を用いることができる。 上記反応の温度、 時間は、 特に限 定されるものではない力^ 例えば、 5 0 °C〜 2 0 0 °C、 好ましくは 6 0〜 1 5 0 °Cの温度で、 3 0分間〜 1 0時間、 好ましくは;!〜 5 時間である。 上記反応で得られるイソシァネート基を有する生成物 (X) の N C O価は、 S S S O m g N C O/ g 特に 7〜 2 0 0 m g N C OZ gの範囲であることが好ましい。 The reaction of the polyisocyanate compound (xl) and the polyhydric alcohol (X 2) is performed by an organic solvent such as toluene, xylene, cyclohexane. Hydrocarbon solvents such as xane and n-hexane; ester solvents such as methyl acetate, ethyl acetate, and butyl acetate; ketone solvents such as acetone, methyl ethyl ketone, methyl isoptyl ketone, and methyl amyl ketone; or It can be carried out in a mixture of these. Here, the reaction ratio of the polyisocyanate compound (xl) and the polyhydric alcohol (x 2) is not particularly limited as long as the reaction ratio is such that free isocyanate is left. As the reaction rate, for example, the number of moles of NC group based on polyisocyanate compound (X 1) and the number of moles of H group based on polyhydric alcohol (x 2) is OH group ZN CO Group = 0.4 / 1.0 to 0.95 / 1.0, preferably 0.5 / 1.0 to 0.9 / 1.0. In the above reaction, a catalyst such as monobutyltin oxide or dibutyltin oxide can be used as appropriate. The temperature and time of the above reaction are not particularly limited. For example, at a temperature of 50 ° C. to 200 ° C., preferably 60 ° C. to 150 ° C., 30 minutes to 1 0 hours, preferably; ~ 5 hours. The NCO value of the product (X) having an isocyanate group obtained by the above reaction is preferably in the range of SSSO mg NCO / g, particularly 7 to 200 mg NC OZ g.
澱粉系樹脂 ( I ) と、 イソシァネート基を有する生成物 (X) と の反応は、 有機溶剤、 例えば、 トルエン、 キシレン、 シクロへキサ ン、 n—へキサン等の炭化水素系溶剤 ; 酢酸メチル、 酢酸ェチル、 酢酸ブチル等のエステル系溶剤 ; アセ トン、 メチルェチルケトン、 メチルイソプチルケトン、 メチルアミルケトン等のケトン系溶剤 ; あるいはこれらの混合物等中で行うことができる。 澱粉系樹脂 ( I ) 及びイソシァネート基を有する生成物 (X) の配合割合は、 要求 される塗膜性能に応じて適宜調整することができる。 例えば、 配合 割合は、 澱粉系樹脂 ( I ) 及びイソシァネート基を有する生成物 ( X) の合計不揮発分質量を基準にして、 澱粉系樹脂 ( I ) が 5 0〜 9 9質量%、 好ましくは 6 0〜 9 8質量%の範囲の量であり、 イソ シァネート基を有する生成物 (X) が 1〜 5 0質量%、 好ましくは 2〜 4 0質量%の範囲の量である。 上記反応においては、 適宜に、 モノブチル錫ォキサイ ド、 ジブチル錫オキサイ ド等の触媒を用いる ことができる。 上記反応の温度、 時間は、 特に限定されるものでは ないが、 例えば、 5 0で〜 2 0 0 °C、 好ましくは 6 0〜 1 5 0 °Cの 温度で、 3 0分間〜 1 0時間、 好ましくは 1〜 5時間である。 上記 反応で得られる澱粉系樹脂 ( I I ) の数平均分子量は、 好ましくは 3 , 0 0 0〜 2 0 0 , 0 0 0の範囲、 より好ましくは 5 , 0 0 0〜 1 0 0, 0 0 0の範囲である。 このようにして製造される澱粉系樹 脂 ( I I ) は、 当該澱粉系樹脂 ( I I ) を有機溶剤系溶媒に溶解又 は分散させて形成された、 澱粉系ベース塗料組成物用のバインダー として好適に使用できる。 ここで、 澱粉系樹脂 ( I ) の量が 5 0質 量%未満であると生体由来成分が少なくなり、 一方 9 9質量%を超 えると塗膜の耐薬品性が低下することがある。 The reaction between the starch-based resin (I) and the product (X) having an isocyanate group is an organic solvent, for example, a hydrocarbon solvent such as toluene, xylene, cyclohexane, n-hexane, methyl acetate, It can be carried out in ester solvents such as ethyl acetate and butyl acetate; ketone solvents such as acetone, methyl ethyl ketone, methyl isoptyl ketone and methyl amyl ketone; or a mixture thereof. The blending ratio of the starch-based resin (I) and the product (X) having an isocyanate group can be appropriately adjusted according to the required coating film performance. For example, the blending ratio is determined based on the starch-based resin (I) and the product having isocyanate group ( X) is a product having an isocyanate group in which the starch-based resin (I) is in an amount ranging from 50 to 99% by mass, preferably from 60 to 98% by mass, based on the total non-volatile content of X (X) is an amount in the range of 1 to 50 mass%, preferably 2 to 40 mass%. In the above reaction, a catalyst such as monobutyltin oxide or dibutyltin oxide can be appropriately used. The temperature and time of the above reaction are not particularly limited. For example, at a temperature of 50 to -20 ° C, preferably 60 to 1550 ° C, 30 minutes to 10 hours. It is preferably 1 to 5 hours. The number average molecular weight of the starch-based resin (II) obtained by the above reaction is preferably in the range of 3, 0 00 to 2 0 0, 0 0 0, more preferably 5, 0 0 0 to 1 0 0, 0 0 The range is 0. The starch-based resin (II) produced in this manner is suitable as a binder for a starch-based base coating composition formed by dissolving or dispersing the starch-based resin (II) in an organic solvent solvent. Can be used for Here, when the amount of the starch-based resin (I) is less than 50% by mass, the bio-derived components are decreased, whereas when it exceeds 99% by mass, the chemical resistance of the coating film may be lowered.
[澱粉系樹脂 ( I I I ) ]  [Starch Resin (I I I)]
澱粉系樹脂 ( I I I ) は、 澱粉系樹脂 ( I ) と、 ポリイソシァネ —ト化合物 (x l ) 及び多価アルコール ( x 2 ) を反応させて得ら れたイソシァネート基を有する生成物 (X) と、 ビニル共重合体樹 脂 (Y) とを反応させて得られる。  The starch-based resin (III) comprises a starch-based resin (I), a product (X) having an isocyanate group obtained by reacting a polyisocyanate compound (xl) and a polyhydric alcohol (x2), It is obtained by reacting with vinyl copolymer resin (Y).
[ビニル共重合体樹脂 (Y) ]  [Vinyl copolymer resin (Y)]
ビニル共重合体樹脂 (Y) は、 ラジカル重合性不飽和単量体の混 合物を、 有機溶剤及び重合開始剤の存在下でラジカル重合反応させ て得ることができる。  The vinyl copolymer resin (Y) can be obtained by subjecting a mixture of radically polymerizable unsaturated monomers to a radical polymerization reaction in the presence of an organic solvent and a polymerization initiator.
ラジカル重合性不飽和単量体の混合物が、 当該混合物の合計質量 に対して、 芳香族系ラジカル重合性不飽和単量体 1〜 9 0質量%、 好ましくは 5〜 8 0質量%、 さ らに好ましくは 1. 0〜 8 5質量%、 水酸基含有ラジカル重合性不飽和単量体 1 〜 5 0質量%、 好ましく は 2〜 4 0質量%、 さ らに好ましくは 5〜 3 0質量%及びその他の ラジカル重合性不飽和単量体 0〜 9 8質量%、 好ましく は 2〜 9 3 質量%、 さ らに好ましく は 5〜 8 5質量%からなるラジカル重合性 不飽和単量体の混合物である場合に、 仕上り性、 付着性、 耐溶剤性 、 耐アルカ リ性、 耐衝撃性及び耐屈曲性に優れた塗膜を形成するこ とができる。 The mixture of the radical polymerizable unsaturated monomer is 1 to 90% by mass of the aromatic radical polymerizable unsaturated monomer based on the total mass of the mixture, Preferably 5 to 80 mass%, more preferably 1.0 to 85 mass%, hydroxyl-containing radically polymerizable unsaturated monomer 1 to 50 mass%, preferably 2 to 40 mass%, More preferably 5 to 30% by mass and other radical polymerizable unsaturated monomers 0 to 98% by mass, preferably 2 to 93% by mass, and more preferably 5 to 85% by mass. Radical polymerizability When it is a mixture of unsaturated monomers, it is possible to form a coating film excellent in finish, adhesion, solvent resistance, alkali resistance, impact resistance and flex resistance.
上記芳香族系ラジカル重合性不飽和単量体としては、 例えば、 ス チレン、 ビニルトルエン、 2 —メチルスチレン、 t _プチルスチレ ン、 クロルスチレン、 ビニルナフ夕レン等が挙げられる。  Examples of the aromatic radical polymerizable unsaturated monomer include styrene, vinyltoluene, 2-methylstyrene, t_butylstyrene, chlorostyrene, vinylnaphthalene, and the like.
上記水酸基含有ラジカル重合性不飽和単量体としては、 2 —ヒ ド ロキシェチル (メタ) ァク リ レー ト、 2 —ヒ ドロキシプロピル (メ 夕) ァク リ レー ト、 3 —ヒ ドロキシプロピル (メタ) ァク リ レー ト 、 4 ーヒ ドロキシブチル (メタ) ァク リ レー ト等の、 アルキル基の 炭素数が 2〜 8 のアク リル酸又はメ夕ク リル酸のヒ ドロキシアルキ ルエステル ; (メタ) アク リル酸ヒ ドロキシアルキルエステルラク トン変性物 (例えば、 ダイセル化学 (株) 製、 商品名 「ブラクセル F」 シリーズ) 等が挙げられる。 なかでも、 2 —ヒ ドロキシェチル ァク リ レー ト、 2 —ヒ ドロキシェチルメ夕ァク リ レー ト、 2 —ヒ ド ロキシプロピルァク リ レー ト、 2 —ヒ ドロキシプロピルメタァク リ レート及び 4 ーヒ ドロキシブチルァク リ レー トから選ばれる少なく とも 1種が、 澱粉系樹脂 ( I ) 及び 又はイソシァネー ト基を有す る生成物 (X ) との相溶性を向上させて、 塗料安定性を確保する観 点から、 特に好ましい。  The hydroxyl group-containing radically polymerizable unsaturated monomers include 2 —hydroxychetyl (meth) acrylate, 2 —hydroxypropyl (methyl) acrylate, and 3 —hydroxypropyl. (Meth) acrylic acid, 4-hydroxybutyl (meth) acrylic acid, etc., an alkyl group having 2 to 8 carbon atoms or a hydroxyalkyl ester of maleic acid; ) Hydroxy hydroxy ester ester modified with acrylic acid (for example, Daicel Chemical Co., Ltd., trade name “Braxel F” series) and the like. Among them, 2—Hydroxyl Chlorate, 2—Hydroxyshemethyl Acrylate, 2—Hydroxypropyl Acrylate, 2—Hydroxypropyl Metaacrylate and 4— At least one selected from hydroxybutyl acrylate has improved compatibility with starch-based resins (I) and / or products having isocyanate groups (X) to improve paint stability. This is particularly preferable from the viewpoint of ensuring the above.
その他のラジカル重合性不飽和単量体としては、 例えば、 (メタ ) アク リル酸、 マレイ ン酸、 クロ トン酸、 ィタコン酸、 フマル酸等 の力ルポキシル基含有ラジカル重合性不飽和単量体 ; メチル (メタExamples of other radical polymerizable unsaturated monomers include (meth) acrylic acid, maleic acid, crotonic acid, itaconic acid, fumaric acid and the like. Of radical polymerizable unsaturated monomer containing lpoxyl group; methyl (meta
) ァク リ レー ト、 ェチル (メタ) ァク リ レー ト、 n —プロピル (メ 夕) ァク リ レー ト、 イソプロピル (メタ) ァク リ レー ト、 n —、 i 一又は t —プチル (メタ) ァク リ レー ト、 へキシル (メタ) ァク リ レート、 2 —ェチルへキシル (メタ) ァク リ レー ト、 n —才クチル (メタ) ァク リ レート、 デシル (メタ) ァク リ レー ト、 ラウリル ( メタ) ァク リ レー ト、 シクロへキシル (メタ) ァク リ レー ト等のァ ク リル酸又はメタク リル酸の炭素数 1 〜 1 8 のアルキルエステル又 はシクロアルキルエステル ; N —メチロールアク リルアミ ド、 N— ブトキシメチルアク リルアミ ド、 N —メ トキシメチルアク リルアミ ド、 N —メチロールメ夕ク リルアミ ド、 N —ブトキシメチルメタク リルアミ ド等の N —置換アク リルアミ ド系又は N —置換メタク リル アミ ド系単量体を挙げることができる。 ) Acrylate, ethyl (meth) acrylate, n-propyl (methyl) acrylate, isopropyl (meth) acrylate, n —, i or t — ptyl ( (Meta) acrylate, Hexyl (meta) acrylate, 2—ethylhexyl (meta) acrylate, n—Yetyl hexyl (meta) acrylate, Decyl (meta) alkyl C1-C18 alkyl ester or cycloalkyl ester of acrylic acid or methacrylic acid such as relate, lauryl (meth) acrylate, cyclohexyl (meth) acrylate, etc. N—Methylol acrylamide, N—Butoxymethyl acrylamide, N—Methyl oxymethyl amide, N—Methylol methyl amide, N—Butoxymethyl methacrylamide, N — Conversion accession Riruami de type or N - it can be exemplified substituted Metaku Lil Ami de monomer.
また、 その他のラジカル重合性不飽和単量体の他の例としては、 脂肪酸変性ラジカル重合性不飽和単量体が挙げられる。  In addition, other examples of the radical polymerizable unsaturated monomer include fatty acid-modified radical polymerizable unsaturated monomers.
上記脂肪酸変性ラジカル重合性不飽和単量体には、 脂肪酸由来の 炭化水素鎖の末端にラジカル重合性不飽和基を有するラジカル重合 性不飽和単量体が含まれる。 脂肪酸変性ラジカル重合性不飽和単量 体としては、 例えば、 脂肪酸をエポキシ基含有ラジカル重合性不飽 和単量体又は水酸基含有ラジカル重合性不飽和単量体と反応させる ことにより得られるものを挙げることができる。  The fatty acid-modified radically polymerizable unsaturated monomer includes a radically polymerizable unsaturated monomer having a radically polymerizable unsaturated group at the terminal of a fatty acid-derived hydrocarbon chain. Examples of the fatty acid-modified radical polymerizable unsaturated monomer include those obtained by reacting a fatty acid with an epoxy group-containing radical polymerizable unsaturated monomer or a hydroxyl group-containing radical polymerizable unsaturated monomer. be able to.
上記脂肪酸としては、 乾性油脂肪酸、 半乾性油脂肪酸及び不乾性 油脂肪酸が挙げられる。 乾性油脂肪酸及び半乾性油脂肪酸としては 、 例えば、 魚油脂肪酸、 脱水ヒマシ油脂肪酸、 サフラワー油脂肪酸 、 亜麻仁油脂肪酸、 大豆油脂肪酸、 ゴマ油脂肪酸、 ケシ油脂肪酸、 エノ油脂肪酸、 麻実油脂肪酸、 ブドウ核油脂肪酸、 トウモロコシ油 脂肪酸、 トール油脂肪酸、 ヒマヮリ油脂肪酸、 綿実油脂肪酸、 クル ミ油脂肪酸、 ゴム種油脂肪酸、 ハイジェン酸脂肪酸等が挙げられる 。 不乾性油脂肪酸としては、 例えば、 ヤシ油脂肪酸、 水添ヤシ油脂 肪酸、 パーム油脂肪酸等が挙げられる。 これらは、 それぞれ、 単独 で又は 2種以上を組み合わせて使用することができる。 さらに、 こ れらの脂肪酸を、 カブロン酸、 力プリン酸、 ラウリン酸、 ミ リスチ ン酸、 パルミチン酸、 ステアリン酸等と併用することもできる。 上記脂肪酸変性ラジカル重合性不飽和単量体を製造するために、 上記脂肪酸と反応させることのできる単量体としては、 エポキシ基 を含有するラジカル重合性不飽和単量体が好適であり、 例えば、 グ リシジル (メタ) ァクリ レー卜、 jS —メチルダリシジル (メタ) 7 クリ レート、 3 , 4 _エポキシシクロへキシルメチル (メタ) ァク リ レート、 3 , 4—エポキシシクロへキシルェチル (メタ) ァクリ レ一卜、 3, 4 _エポキシシクロへキシルプロピル (メタ) ァクリ レート、 ァリルグリシジルエーテル等が挙げられる。 Examples of the fatty acid include dry oil fatty acid, semi-dry oil fatty acid and non-dry oil fatty acid. Examples of the dry oil fatty acid and semi-dry oil fatty acid include fish oil fatty acid, dehydrated castor oil fatty acid, safflower oil fatty acid, linseed oil fatty acid, soybean oil fatty acid, sesame oil fatty acid, poppy oil fatty acid, eno oil fatty acid, grape oil fatty acid, grape Nuclear oil fatty acid, corn oil fatty acid, tall oil fatty acid, castor oil fatty acid, cottonseed oil fatty acid, curd Examples include coconut oil fatty acid, rubber seed oil fatty acid, and hyogen acid fatty acid. Examples of the non-drying oil fatty acid include coconut oil fatty acid, hydrogenated coconut oil fatty acid, and palm oil fatty acid. Each of these can be used alone or in combination of two or more. Furthermore, these fatty acids can be used in combination with cabronic acid, strong puric acid, lauric acid, myristic acid, palmitic acid, stearic acid and the like. In order to produce the fatty acid-modified radical polymerizable unsaturated monomer, the monomer that can be reacted with the fatty acid is preferably a radical polymerizable unsaturated monomer containing an epoxy group, for example , Glycidyl (meth) acrylate, jS —Methyldaricidyl (meth) 7 acrylate, 3,4_epoxycyclohexylmethyl (meth) acrylate, 3,4-epoxycyclohexylethyl (meth) acrylate Examples thereof include 3,4_epoxycyclohexylpropyl (meth) acrylate, allylglycidyl ether, and the like.
ビニル共重合体樹脂 (Y ) は、 例えば、 上述のラジカル重合性不 飽和単量体の混合物を重合開始剤の存在下に、 有機溶剤中で、 ラジ カル重合反応させることにより簡易に調製することができる。 上記 反応においては、 例えば、 ラジカル重合性不飽和単量体の混合物と 重合開始剤の混合物とを均一に滴下して、 6 0〜 2 0 0 °C、 好まし くは 8 0〜 1 8 0 の反応温度にて 3 0分〜 6時間、 好ましくは 1 〜 5時間反応させることができる。  The vinyl copolymer resin (Y) can be easily prepared, for example, by subjecting a mixture of the above-mentioned radical polymerizable unsaturated monomers to a radical polymerization reaction in an organic solvent in the presence of a polymerization initiator. Can do. In the above reaction, for example, a mixture of a radical polymerizable unsaturated monomer and a mixture of a polymerization initiator are uniformly dropped to 60 to 200 ° C., preferably 80 to 180. At a reaction temperature of 30 minutes to 6 hours, preferably 1 to 5 hours.
上記有機溶剤としては、 例えば、 トルエン、 キシレン、 シクロへ キサン、 n—へキサン等の炭化水素系溶剤 ; 酢酸メチル、 酢酸ェチ ル、 酢酸ブチル等のエステル系溶剤 ; アセトン、 メチルェチルケト ン、 メチルイソプチルケトン、 メチルアミルケトン等のケトン系溶 剤 ; あるいはそれらの混合物等が挙げられる。  Examples of the organic solvent include hydrocarbon solvents such as toluene, xylene, cyclohexane, and n-hexane; ester solvents such as methyl acetate, ethyl acetate, and butyl acetate; acetone, methyl ethyl ketone, and methyl isoform. Ketone solvents such as butyl ketone and methyl amyl ketone; or a mixture thereof.
ビニル共重合体樹脂 (Y ) は、 水酸基価が 5〜 4 0 O m g K O H / g、 重量平均分子量が 3 , 0 0 0〜 1 0 0, 0 0 0、 特に 5, 0 0 0〜 2 0, 0 0 0の範囲内にあるのが好ましい。 Vinyl copolymer resin (Y) has a hydroxyl value of 5 to 40 O mg KOH / g, and the weight average molecular weight is preferably in the range of 3, 0 00 to 1 0 0, 0 0 0, particularly 5, 0 0 0 to 2 0, 0 0 0.
澱粉系樹脂 ( I ) と、 イソシァネート基を有する生成物 (X) と の反応は、 澱粉系樹脂 ( I I ) の製造において記載されるものと同 様の有機溶剤中で行う ことができる。 澱粉系樹脂 ( I ) と、 イソシ ァネート基を有する生成物 (X) と、 ビニル共重合体樹脂 (Y) と の配合割合は、 要求される塗膜性能に応じて適宜調整することがで きる。 例えば、 配合割合は、 澱粉系樹脂 ( I ) 、 イソシァネート基 を有する生成物 (X) 及びビニル共重合体樹脂 (Y) の合計不揮発 分質量を基準にして、 澱粉系樹脂 ( I ) が 5 0〜 9 8質量%、 好ま しくは 6 5〜 9 5質量%の範囲の量であり、 イソシァネ一ト基を有 する生成物 (X) が 1〜 4 9質量%、 好ましくは 2〜 3 3質量%の 範囲の量であり、 ビニル共重合体樹脂 (Y) が 1〜 4 9質量%、 好 ましくは 2〜 3 3質量%の範囲の量である。 上記反応においては、 適宜に、 モノブチル錫オキサイ ド、 ジブチル錫オキサイ ド等の錫触 媒を用いることができる。 上記反応の温度、 時間は、 特に限定され るものではないが、 例えば、 5 0 °C〜 2 0 0 °C、 好ましくは 6 0〜 1 5 0 °Cの温度で、 3 0分間〜 1 0時間、 好ましくは 1〜 5時間で ある。  The reaction between the starch-based resin (I) and the product (X) having an isocyanate group can be carried out in an organic solvent similar to that described in the production of the starch-based resin (I I). The blending ratio of the starch-based resin (I), the product having an isocyanate group (X), and the vinyl copolymer resin (Y) can be appropriately adjusted according to the required coating film performance. . For example, the blending ratio of starch-based resin (I), starch-based resin (I) is 50% based on the total non-volatile content of product (X) and vinyl copolymer resin (Y) having isocyanate group. ˜98% by mass, preferably 65 to 95% by mass, and the product (X) having an isocyanate group is 1 to 49% by mass, preferably 2 to 33% by mass. %, And the vinyl copolymer resin (Y) is in the range of 1 to 49% by mass, preferably 2 to 33% by mass. In the above reaction, a tin catalyst such as monobutyltin oxide or dibutyltin oxide can be appropriately used. The temperature and time of the above reaction are not particularly limited. For example, the reaction is performed at a temperature of 50 ° C. to 200 ° C., preferably 60 ° C. to 150 ° C., for 30 minutes to 10 ° C. Time, preferably 1 to 5 hours.
上記反応で得られる澱粉系樹脂 ( I I I ) の数平均分子量は、 好 ましくは 3, 0 0 0〜 2 0 0 , 0 0 0の範囲、 より好ましくは 5, 0 0 0〜 1 0 0 , 0 0 0の範囲である。 このようにして製造される 澱粉系樹脂 ( I I I ) は、 有機溶剤系溶媒に溶解又は分散させた澱 粉系ベース塗料組成物のバインダーとして好適に使用できる。 ここ で、 澱粉系樹脂 ( I ) の量が 5 0質量%未満であると、 生体由来成 分が少なくなり、 一方 9 8質量%を超えると、 塗膜の耐薬品性及び 又は付着性が低下することがある。 イソシァネート基を有する生 成物 (X) の量が 1質量%未満であると、 ワニスの貯蔵安定性及び Z又は塗膜の耐薬品性が劣ることがあり、 一方 4 9質量%を超える と、 生体由来成分が少なくなり、 かつ樹脂の溶剤溶解性が低下する ことがある。 また、 ビニル共重合体樹脂 (Y) の量が 1質量%未満 であると、 塗膜の付着性及び/又は耐薬品性が低下することがあり 、 一方 4 9質量%を超えると、 生体由来成分が少なくなる。 The number average molecular weight of the starch-based resin (III) obtained by the above reaction is preferably in the range of 3, 0 00 to 2 0 0, 0 0 0, more preferably 5, 0 0 0 to 1 0 0, The range is 0 0 0. The starch-based resin (III) thus produced can be suitably used as a binder for a starch-based base coating composition dissolved or dispersed in an organic solvent-based solvent. Here, when the amount of the starch-based resin (I) is less than 50% by mass, the biological component is decreased, and when it exceeds 98% by mass, the chemical resistance and / or adhesion of the coating film is lowered. There are things to do. Raw materials with isocyanate groups If the amount of the composition (X) is less than 1% by mass, the storage stability of the varnish and the chemical resistance of Z or the coating film may be inferior. In addition, the solvent solubility of the resin may be reduced. In addition, when the amount of the vinyl copolymer resin (Y) is less than 1% by mass, the adhesion and / or chemical resistance of the coating film may be reduced. There are fewer ingredients.
[澱粉系樹脂 ( I V) ]  [Starch Resin (IV)]
澱粉系樹脂 ( I V) は、 澱粉系樹脂 ( I ) にラジカル重合性不飽 和単量体をグラフ 卜重合させて得られる。  The starch-based resin (IV) is obtained by graph-polymerizing a radical polymerizable unsaturated monomer with the starch-based resin (I).
例えば、 米国特許第 3 4 2 5 9 7 1号明細書、 同第 3 9 8 1 1 0 0号明細書及び特開昭 5 6 — 1 6 7 7 4 6号公報には、 水分散体又 はスラリー状の澱粉又は変性澱粉にセリウム塩をラジカル重合開始 触媒として用いるビニルモノマーのグラフ ト重合が開示されている 。 また、 特開昭 5 4— 1 2 0 6 9 8号公報及び同昭 5 5 — 9 0 5 1 8号公報には不飽和基を含有する化合物であるマレイン酸で変性し た澱粉に対するスチレン及びアクリルモノマーのグラフ ト重合が開 示されている。 特開平 8 — 2 3 9 4 0 2号公報には、 有機溶剤中で の (ビニル) エステル化澱粉及びビニルモノマーのグラフ ト重合が 開示されている。 また、 特開昭 5 5— 1 3 3 4 7 2号公報、 同昭 5 6 - 1 5 7 4 6 3号公報にはラジカル開始剤を用いての溶液中での セルロースァセテ一卜プチレー卜へのビニル系モノマーのグラフ 卜 重合が開示されている。 ニトロセルロースアセテートを、 澱粉及び /又は変性澱粉に置き換えれば、 澱粉及び/又は変性澱粉にビニル 系モノマーをグラフ ト重合させることは容易である。  For example, U.S. Pat. Nos. 3 4 2 5 9 7 1, 3 9 8 1 1 0 0 and JP 5 6-1 6 7 7 4 6 disclose an aqueous dispersion or Discloses a graft polymerization of vinyl monomers using a cerium salt as a radical polymerization initiation catalyst in slurry-like starch or modified starch. In addition, Japanese Patent Application Laid-Open Nos. 54-102086 and 55-1900-5 disclose styrene for starch modified with maleic acid, which is a compound containing an unsaturated group, and Graft polymerization of acrylic monomers has been disclosed. Japanese Patent Application Laid-Open No. 8-213940 discloses the graft polymerization of (vinyl) esterified starch and vinyl monomer in an organic solvent. In addition, Japanese Patent Application Laid-Open Nos. 55-13 3 4 72 and 5 6-1 5 7 4 6 3 disclose a cellulose acetate in a solution using a radical initiator. A graph of vinyl monomers to 卜 polymerization is disclosed. If nitrocellulose acetate is replaced with starch and / or modified starch, it is easy to graft polymerize vinyl monomers to starch and / or modified starch.
以上、 グラフ ト重合に関して幾つかの公知例を述べたが、 目的と する澱粉系樹脂 ( I V) はこれらの公知の方法によって製造するこ とができる。 あるいは、 これら以外の公知の方法によっても製造す ることができる。 As described above, some known examples of graft polymerization have been described. The target starch resin (IV) can be produced by these known methods. Alternatively, it can be produced by other known methods. Can.
澱粉系樹脂 ( I ) 及びラジカル重合性不飽和単量体の比率には特 に限定は無い。 ラジカル重合性不飽和単量体としては性質の異なつ た単量体の混合物を用いることが好ましい。 上記ラジカル重合性不 飽和単量体の混合物は、 例えば、 仕上り性、 付着性、 耐溶剤性、 耐 アルカリ性、 耐衝撃性及び耐屈曲性に優れた塗膜を形成する観点か ら、 ラジカル重合性不飽和単量体の混合物の合計質量に対して、 芳 香族系ラジカル重合性不飽和単量体 1 〜 9 0質量%、 好ましくは 5 〜 8 0質量%、 水酸基含有ラジカル重合性不飽和単量体 1 〜 5 0質 量%、 好ましくは 2〜 4 0質量%及びその他のラジカル重合性不飽 和単量体 0〜 9 8質量%、 好ましくは 1 8〜 9 3質量%からなるラ ジカル重合性不飽和単量体の混合物であることが望ましい。  There are no particular limitations on the ratio of the starch-based resin (I) and the radically polymerizable unsaturated monomer. As the radical polymerizable unsaturated monomer, it is preferable to use a mixture of monomers having different properties. The above-mentioned mixture of radically polymerizable unsaturated monomers is, for example, radically polymerizable from the viewpoint of forming a coating film excellent in finish, adhesion, solvent resistance, alkali resistance, impact resistance and flex resistance. Aromatic radical polymerizable unsaturated monomer 1 to 90% by mass, preferably 5 to 80% by mass, based on the total mass of the mixture of unsaturated monomers, hydroxyl group-containing radical polymerizable unsaturated monomer 1 to 50 mass%, preferably 2 to 40 mass%, and other radical polymerizable unsaturated monomers 0 to 98 mass%, preferably 18 to 93 mass% A mixture of polymerizable unsaturated monomers is desirable.
芳香族系ラジカル重合性不飽和単量体としては、 例えば、 上述の ビニル共重合体樹脂 (Y ) の項において例示される芳香族系ラジカ ル重合性不飽和単量体が挙げられる'。  Examples of the aromatic radically polymerizable unsaturated monomer include aromatic radically polymerizable unsaturated monomers exemplified in the above-mentioned vinyl copolymer resin (Y) section.
上記水酸基含有ラジカル重合性不飽和単量体としては、 例えば、 上述のピニル共重合体樹脂 (Y ) の項において例示される水酸基含 有ラジカル重合性不飽和単量体が挙げられる。  Examples of the hydroxyl group-containing radical polymerizable unsaturated monomer include the hydroxyl group-containing radical polymerizable unsaturated monomer exemplified in the above-mentioned section of the pinyl copolymer resin (Y).
その他のラジカル重合性不飽和単量体としては、 例えば、 上述の ビニル共重合体樹脂 (Y ) の項において例示されるその他のラジカ ル重合性不飽和単量体が挙げられる。  Examples of the other radically polymerizable unsaturated monomer include other radically polymerizable unsaturated monomers exemplified in the above-mentioned section of the vinyl copolymer resin (Y).
澱粉及び/又は変性澱粉にラジカル重合性不飽和単量体をグラフ ト重合させる方法としては、 具体的には、 例えば、 ラジカル重合性 不飽和単量体の混合物と重合開始剤とを澱粉系樹脂 ( I ) の有機溶 剤溶液中に滴下し、 ラジカル重合反応させる方法が簡便である。 上 記反応は、 例えば、 ラジカル重合性不飽和単量体の混合物と重合開 始剤の混合物とを均一に滴下して、 6 0〜 2 0 0で、 好ましくは 8 0〜 1 8 0 °Cの反応温度にて 3 0分間〜 6時間、 好ましくは 1〜 5 時間行う。 As a method for graft polymerization of a radically polymerizable unsaturated monomer to starch and / or modified starch, specifically, for example, a mixture of a radically polymerizable unsaturated monomer and a polymerization initiator are mixed with a starch-based resin. A method of radical polymerization reaction by dropping it into the organic solvent solution (I) is simple. The above reaction may be carried out, for example, by adding dropwise a mixture of radically polymerizable unsaturated monomers and a mixture of polymerization initiators to 60 to 200, preferably 8 The reaction is carried out at a reaction temperature of 0 to 180 ° C. for 30 minutes to 6 hours, preferably 1 to 5 hours.
ここで、 重合開始剤としては、 公知のラジカル重合開始剤を用い ることができるが、 澱粉系樹脂 ( I ) の有機溶剤溶液中にラジカル 重合性不飽和単量体混合物及び重合開始剤を滴下し、 グラフ 卜重合 させる方法を採用する場合には、 過酸化物系の開始剤を用いること が好ましい。 そのような過酸化物系の開始剤の例としては、 t —ブ チル八ィ ドロパーォキサイ ド、 p—メン夕ン八ィ ドロパーォキサイ ド、 クメンハイ ドロパ一オキサイ ド、 ジイソプロピルベンゼン八ィ ドロパ一ォキサイ ド等の八ィ ドロパーォキサイ ド類 ; t ーブチルパ 一ォキシラウレート、 t 一ブチルパーォキシベンゾェ一ト、 t —ブ チルバ一ォキシデカノエ一ト等のパーォキシエステル類 ; 1 , 5 — ジー t 一プチルパーォキシ— 3, 3 , 5— トリメチルシクロへキサ ン等のパーォキシケ夕一ル類 ; ァセト酢酸ェチルパーォキサイ ド等 のケトンパ一ォキサイ ド類 ; 過酸化べンゾィル等のジァシルパ一ォ キサイ ド類が挙げられる。  Here, as the polymerization initiator, a known radical polymerization initiator can be used, but the radical polymerizable unsaturated monomer mixture and the polymerization initiator are dropped into the organic solvent solution of the starch resin (I). In the case of adopting the graph polymerization method, it is preferable to use a peroxide-based initiator. Examples of such peroxide-based initiators include t-butyl didropoxide, p-men drip drop oxide, cumene high drop oxide, diisopropylbenzene drop drop oxide, and the like. 8-hydroxyperoxides; peroxyesters such as t-butyl peroxylaurate, t-butyl peroxybenzoate, t-butylyloxydecanoate, etc .; 1, 5 — di-t-perylperoxy-3, 3 , 5-Peroxy ketones such as trimethylcyclohexane; Ketone peroxides such as acetoacetate acetate; Diacyl peroxides such as benzoyl peroxide.
上記有機溶剤としては、 例えば、 トルエン、 キシレン、 シクロへ キサン、 n—へキサン等の炭化水素系溶剤 ; 酢酸メチル、 酢酸ェチ ル、 酢酸ブチル等のエステル系溶剤 ; アセトン、 メチルェチルケト ン、 メチルイソプチルケトン、 メチルアミルケトン等のケトン系溶 剤 ; あるいはこれらの混合物等が挙げられる。  Examples of the organic solvent include hydrocarbon solvents such as toluene, xylene, cyclohexane, and n-hexane; ester solvents such as methyl acetate, ethyl acetate, and butyl acetate; acetone, methyl ethyl ketone, and methyl isoform. Ketone solvents such as butyl ketone and methyl amyl ketone; or a mixture thereof.
上記反応で得られる澱粉系樹脂 ( I V) の数平均分子量は、 造膜 性等の点から、 好ましくは 3, 0 0 0〜 2 0 0 , 0 0 0の範囲、 よ り好ましくは 5 , 0 0 0〜 1 0 0, 0 0 0の範囲である。  The number average molecular weight of the starch-based resin (IV) obtained by the above reaction is preferably in the range of 3,000 to 200,000, more preferably 5,0, from the viewpoint of film forming property and the like. The range is from 0 0 to 1 0 0, 0 0 0.
[澱粉系樹脂 (V) ]  [Starch resin (V)]
澱粉系樹脂 (V) は、 澱粉系樹脂 ( I ) にラジカル重合性不飽和 単量体をグラフ ト重合させて得られる樹脂 ( Z ) と、 ポリイソシァ ネート化合物 (x l ) 及び多価アルコール (x 2 ) を反応させて得 られたイソシァネート基を有する生成物 (X) とを反応させて得ら れる。 The starch resin (V) comprises a resin (Z) obtained by graft polymerization of a radically polymerizable unsaturated monomer to the starch resin (I), and a polyisocyanate. It is obtained by reacting a product (X) having an isocyanate group obtained by reacting an nate compound (xl) and a polyhydric alcohol (x 2).
澱粉系樹脂 ( I ) にラジカル重合性不飽和単量体をグラフ ト重合 させて得られる樹脂 ( Ζ ) は、 上記澱粉系樹脂 ( I V) と同じもの であることができる。 樹脂 ( Ζ ) を得る具体的な方法としては、 上 記澱粉系樹脂 ( I V) の製造において記載した澱粉系樹脂 ( I V) を得る方法と同じ方法が挙げられる。  The resin (Ζ) obtained by graft polymerizing a radical polymerizable unsaturated monomer to the starch resin (I) can be the same as the starch resin (IV). Specific methods for obtaining the resin (() include the same methods as those for obtaining the starch-based resin (IV) described in the production of the starch-based resin (IV).
樹脂 ( Ζ ) とイソシァネ一卜基を有する生成物 (X) との反応は The reaction between the resin (Ζ) and the product (X) having an isocyanine group is
、 有機溶剤中で行う ことができる。 有機溶剤としては、 例えば、 上 記澱粉系樹脂 ( I I ) の製造において記載されるものと同様の有機 溶剤が挙げられる。 上記樹脂 ( Ζ ) とイソシァネー卜基を有する生 成物 (X) との配合割合は、 要求される塗膜性能に応じて適宜調整 することができる。 例えば、 配合割合は、 上記樹脂 ( Ζ ) 及びイソ シァネート基を有する生成物 (X) の合計不揮発分質量を基準にし て、 上記樹脂 ( Ζ ) が 5 0〜 9 9質量%、 好ましくは 6 0〜 9 8質 量%の範囲の量であり、 イソシァネート基を有する生成物 (X) が 1〜 5 0質量%、 好ましくは 2〜 4 0質量%の範囲の量である。 上 記反応においては、 適宜に、 モノブチル錫オキサイ ド、 ジブチル錫 オキサイ ド等の触媒を用いることができる。 上記反応の温度、 時間 は、 特に限定されるものではないが、 例えば、 5 0 °C〜 2 0 0 °C、 好ましくは 6 0〜 1 5 0 °Cの温度で、 3 0分間〜 1 0時間、 好まし くは 1〜 5時間である。 It can be carried out in an organic solvent. Examples of the organic solvent include the same organic solvents as those described in the production of the above starch-based resin (I I). The blending ratio of the resin (() and the product (X) having an isocyanate group can be appropriately adjusted according to the required coating film performance. For example, the blending ratio is 50 to 99% by mass, preferably 60 to 99% by mass of the resin (Ζ) based on the total nonvolatile mass of the resin (Ζ) and the product (X) having an isocyanate group. The amount of the product (X) having an isocyanate group is 1 to 50% by mass, preferably 2 to 40% by mass. In the above reaction, a catalyst such as monobutyltin oxide or dibutyltin oxide can be appropriately used. The temperature and time of the above reaction are not particularly limited. For example, the reaction is carried out at a temperature of 50 ° C. to 200 ° C., preferably 60 ° C. to 150 ° C. for 30 minutes to 10 ° C. The time is preferably 1 to 5 hours.
上記反応で得られる澱粉系樹脂 (V) の数平均分子量は、 造膜性 等の点から、 好ましくは 3 , 0 0 0〜 2 0 0 , 0 0 0の範囲、 より 好ましくは 5 , 0 0 0〜 1 0 0 , 0 0 0の範囲である。  The number average molecular weight of the starch-based resin (V) obtained by the above reaction is preferably in the range of 3, 0 00 to 2 0 0, 0 0 0, more preferably 5 0 0 0, from the viewpoint of film forming property and the like. The range is 0 to 1 0 0, 0 0 0.
[着色顔料及び 又は光輝性顔料] 着色顔料としては、 酸化チタン、 亜鉛華、 鉛白、 塩基性硫酸鉛、 硫酸鉛、 リ トボン、 硫化亜鉛、 アンチモン白等の白色顔料 ; 力一ポ ンブラック、 アセチレンブラック、 ランプブラック、 ポ一ンブラッ ク、 黒鉛、 鉄黒、 ァニリンブラック等の黒色顔料 ; ナフ トールエロ[Colored pigments and / or bright pigments] Coloring pigments include white pigments such as titanium oxide, zinc white, lead white, basic lead sulfate, lead sulfate, lithobon, zinc sulfide, antimony white, etc .; Power Pon Black, Acetylene Black, Lamp Black, Pon Black Black pigments such as black, graphite, iron black, and aniline black;
— S、 ハンザエロ一、 ピグメントエロー L、 ベンジジンエロ一、 パ —マネントエロー等の黄色顔料 ; クロムオレンジ、 クロムバ一ミ リ オン、 パーマネントオレンジ等の橙色顔料 ; 酸化鉄、 アンバー等の 褐色顔料 ; ベンガラ、 鉛丹、 パーマネントレッ ド、 キナクリ ドン系 赤顔料等の赤色顔料 ; コバルト紫、 ファス トバイオレッ ト、 メチル バイオレッ トレーキ等の紫色顔料、 群青、 紺青、 コバルトブルー、 フタロシアニンブル一、 インジゴ等の青色顔料 ; クロムグリーン、 ビグメントグリーン B、 フタロシアニングリーン等の緑色顔料等が 挙げられる。 — Yellow pigments such as S, Hansaero I, Pigment Yellow L, Benzidine Yellow, Permanent Yellow, etc .; Orange pigments such as chrome orange, chrome virion, and permanent orange; Brown pigments such as iron oxide and amber; Bengala, lead Red pigments such as red, permanent red and quinacridone red pigments; purple pigments such as cobalt violet, fast violet, methyl violet lake, blue pigments such as ultramarine, bitumen, cobalt blue, phthalocyanine blue, indigo; chrome green And green pigments such as pigment green B and phthalocyanine green.
光輝性顔料としては、 アルミニウム粉、 ブロンズ粉、 銅粉、 錫粉 、 鉛粉、 亜鉛末、 リ ン化鉄、 パール状金属コーティ ング雲母粉、 マ イカ状酸化鉄等が挙げられる。  Examples of the luster pigment include aluminum powder, bronze powder, copper powder, tin powder, lead powder, zinc powder, iron phosphate, pearl metal coating mica powder, and micaceous iron oxide.
着色顔料及び/又は光輝性顔料の配合割合は、 使用される用途及 び/又は要求される性能に応じて適宜決定すればよいが、 通常、 澱 粉系樹脂 1 0 0質量部当たり、 0 . 0 0 1 〜 4 0 0質量部、 好まし くは 0 . 0 1 〜 2 0 0質量部の範囲である。  The blending ratio of the color pigment and / or the luster pigment may be appropriately determined according to the intended use and / or required performance, but it is generally 0. The range is from 0 to 1 to 400 parts by mass, and preferably from 0.01 to 200 parts by mass.
本発明に用いられる澱粉系ベース塗料組成物には、 必要に応じて 、 その他の植物由来樹脂が配合されてもよい。 澱粉系樹脂以外の植 物由来樹脂の例としては、 植物性繊維又はセルロース樹脂、 ポリ乳 酸に代表されるポリ ヒ ドロキシカルボン酸、 ポリ力プロラクタム、 変性ポリ ビニルアルコール等が挙げられる。  The starch-based base coating composition used in the present invention may be blended with other plant-derived resins as necessary. Examples of plant-derived resins other than starch-based resins include plant fiber or cellulose resin, polyhydroxycarboxylic acid typified by polylactic acid, polystrength prolactam, and modified polyvinyl alcohol.
本発明に用いられる澱粉系ベース塗料組成物は、 必要に応じて、 架橋剤を含有することができる。 架橋剤としては、 具体的には、 ポ リイソシァネ一卜化合物が挙げられる。 ポリイソシァネート化合物 としては、 具体的には、 例えば、 上述のポリイソシァネート化合物The starch-based base coating composition used in the present invention can contain a cross-linking agent as required. Specific examples of cross-linking agents include A lysocyanine monovalent compound is mentioned. Specifically, as the polyisocyanate compound, for example, the above-mentioned polyisocyanate compound
( X 1 ) の項で例示されるポリイソシァネート化合物が挙げられる 本発明に用いられる澱粉系ベース塗料組成物には、 必要に応じて 、 公知の可塑剤、 紫外線安定剤、 金属ドライヤー、 流動性調整剤、 ハジキ防止剤、 垂れ止め防止剤、 酸化防止剤、 艷消し剤、 艷出し剤 、 防腐剤、 硬化促進剤、 擦り傷防止剤、 消泡剤等を添加することが できる。 Examples of the starch-based coating composition used in the present invention include the polyisocyanate compounds exemplified in the section (X 1), as necessary, known plasticizers, UV stabilizers, metal dryers, fluids It is possible to add property modifiers, anti-repellent agents, anti-sagging agents, antioxidants, anti-fogging agents, anti-fogging agents, antiseptics, curing accelerators, scratch-proofing agents, antifoaming agents, and the like.
本発明に用いられる澱粉系ベース塗料組成物は、 水性塗料、 有機 溶剤型塗料等の公知の液状塗料系で用いることができる。 これらの なかでも、 有機溶剤型塗料として、 例えば、 トルエン、 キシレン、 シクロへキサン、 n —へキサン等の炭化水素系有機溶剤、 酢酸メチ ル、 酢酸ェチル、 酢酸ブチル等のエステル系有機溶剤、 アセトン、 メチルェチルケトン、 メチルイソプチルケトン、 メチルアミルケト ン等のケトン系有機溶剤を単独で又は 2種以上組合せて希釈溶剤と して使用したものは、 ラッカ一として塗装のし易さ、 乾燥の早さに すぐれた非常に使い易い塗料とすることができる。  The starch-based coating composition used in the present invention can be used in known liquid coating systems such as water-based coatings and organic solvent-based coatings. Among these, organic solvent-type paints include, for example, hydrocarbon organic solvents such as toluene, xylene, cyclohexane and n-hexane, ester organic solvents such as methyl acetate, ethyl acetate and butyl acetate, acetone , Methylethylketone, Methylisoptylketone, Methylamylketone and other ketone-based organic solvents used alone or in combination as a dilution solvent are easy to paint as a lacquer, dry It can be made into a very easy-to-use paint with excellent speed.
[ベース塗膜の形成]  [Formation of base coating film]
本発明におけるベース塗膜は、 被塗物上に上記澱粉系ベース塗料 組成物を塗装して形成される。 ベース塗膜を形成する際の塗装方法 には、 公知の塗装方法が適用できる。 例えば、 ローラー塗装、 刷毛 塗装、 浸漬塗装、 スプレー塗装 (非静電塗装、 静電塗装等) 、 カー テンフロー塗装、 スクリーン印刷、 凸版印刷等が挙げられる。 なか でも、 スプレー塗装が好ましい。  The base coating film in the present invention is formed by coating the starch-based base coating composition on an object to be coated. A known coating method can be applied as a coating method for forming the base coating film. For example, roller coating, brush coating, immersion coating, spray coating (non-electrostatic coating, electrostatic coating, etc.), curtain flow coating, screen printing, letterpress printing, and the like. Of these, spray coating is preferred.
塗装後には、 乾燥又はセッティ ングを行う。 乾燥条件は特に限定 されるものではないが、 通常、 乾燥は、 1 0 0 °c未満、 好ましくは 4 0 °C〜 9 0 °Cの温度で、 1〜 4 0分間行う。 あるいは、 4 0 °C未 満の温度で 1 0分間以上放置 (セッティ ング) することにより行う ことができる。 After painting, dry or set. The drying conditions are not particularly limited, but usually the drying is less than 100 ° C, preferably Perform for 1 to 40 minutes at a temperature between 40 ° C and 90 ° C. Alternatively, it can be performed by leaving it set for 10 minutes or more at a temperature of less than 40 ° C.
上記ベース塗膜の膜厚は、 特に制限されるものではないが、 乾燥 膜厚として、 一般には、 0. l〜 3 0 m、 好ましくは 0. 5〜 2 0 rn, より好ましくは 1〜 1 0 mである。  The film thickness of the base coating film is not particularly limited, but the dry film thickness is generally 0.1 to 30 m, preferably 0.5 to 20 rn, more preferably 1 to 1. 0 m.
[活性エネルギー線硬化型水性塗料組成物]  [Active energy ray-curable water-based coating composition]
本発明に用いられる活性エネルギー線硬化型水性塗料組成物は、 糖類又はその誘導体のアクリル酸エステル ( b l ) の水分散体及び 光重合開始剤 ( b 2 ) を含有する。  The active energy ray-curable aqueous coating composition used in the present invention contains an aqueous dispersion of an acrylic ester (bl) of a saccharide or a derivative thereof and a photopolymerization initiator (b2).
[糖類又はその誘導体のアクリル酸エステル ( b l ) の水分散体] 糖類又はその誘導体のアクリル酸エステル ( b l ) の水分散体は 、 糖類又はその誘導体に、 アクリル酸、 メチルァクリ レート等のァ クリル酸エステル ( b l ) 、 又はアクリル酸クロライ ド等のァク リ ル酸ハライ ド等を反応させてアクリル酸エステル ( b l ) とし、' さ らにアクリル酸エステル ( b 1 ) を水分散化させたものである。 上記糖類又はその誘導体としては、 単糖、 糖アルコール、 環状ァ ルコ一ル、 オリゴ糖、 多糖及びその誘導体が挙げられる。 糖アルコ —ルとしては、 具体的には、 例えば、 ソルビトール、 ダルシ卜一ル 、 キシリ トール等が挙げられる。 環状アルコールとしては、 具体的 には、 例えば、 イノシトールが挙げられる。 本明細書において、 ォ リゴ糖とは、 二糖から十糖の糖類を意味する。 オリゴ糖としては、 環状のオリゴ糖、 非環状のオリゴ糖が挙げられる。 本明細書におい て、 環状のオリゴ糖とは、 複数の単糖がグリコシド結合によって環 状に結合した構造のオリゴ糖を意味する。 また非環状のオリゴ糖と は、 上記環状のオリゴ糖と異なり、 複数の単糖がグリコシド結合に よって鎖状かつ非環状に結合した構造のオリゴ糖を意味する。 環状 のオリゴ糖としては、 具体的にはシクロデキス トリ ンが挙げられる 。 非環状のオリゴ糖としては、 具体的には、 還元性二糖 (マルト一 ス、 セロビオース、 ラク トース等) 、 非還元性二糖 (スクロース、 トレハロース等) 等の二糖 ; ラフイ ノ一ス、 パト一ス、 ス夕キォー ス、 デキス トリン等の三糖以上のオリゴ糖等を挙げることができる 。 これらの中でも、 デンプンを加水分解することで任意の分子量の ものが得られる点からデキス トリンが好ましく、 還元性のないスク ロースやトレハロースが、 メイラ一ド反応 (褐変反応) による褐色 化が起こらないので、 塗膜の耐久性の面から好ましい。 本明細書に おいて、 多糖とは、 単糖がグリコシド結合によって複数結合された 糖であって、 結合する単糖の数がオリゴ糖よりも多い糖を意味する 。 多糖としては、 具体的には、 セルロース、 キチン、 澱粉、 グリコ 一ゲン、 ァガロース、 ぺクチン等が挙げられる。 [Aqueous dispersion of saccharide or its derivative acrylic ester (bl)] An aqueous dispersion of saccharide or its derivative acrylic ester (bl) is a sugar or its derivative, acrylic acid, acrylic acid such as methyl acrylate, etc. Ester (bl) or acrylic acid halide such as acrylic acid chloride is reacted to form acrylic acid ester (bl), and then acrylic acid ester (b 1) is dispersed in water. It is. Examples of the saccharides or derivatives thereof include monosaccharides, sugar alcohols, cyclic alcohols, oligosaccharides, polysaccharides and derivatives thereof. Specific examples of the sugar alcohol include sorbitol, dulci-zyl, and xylitol. Specific examples of the cyclic alcohol include inositol. In the present specification, oligosaccharide means a saccharide from disaccharide to decasaccharide. Examples of the oligosaccharide include a cyclic oligosaccharide and a non-cyclic oligosaccharide. In the present specification, the cyclic oligosaccharide means an oligosaccharide having a structure in which a plurality of monosaccharides are linked in a cyclic form by glycosidic bonds. In addition, the non-cyclic oligosaccharide means an oligosaccharide having a structure in which a plurality of monosaccharides are linked in a chain and non-cyclic manner by glycosidic bonds, unlike the above-mentioned cyclic oligosaccharide. Ring Specific examples of the oligosaccharide include cyclodextrins. Specific examples of non-cyclic oligosaccharides include disaccharides such as reducing disaccharides (maltose, cellobiose, lactose, etc.) and non-reducing disaccharides (sucrose, trehalose, etc.); Examples thereof include oligosaccharides having three or more sugars such as pathose, swath, dextrin and the like. Of these, dextrin is preferred because starch can be obtained by hydrolyzing starch. Non-reducing sucrose and trehalose are not browned by the Maillard reaction (browning reaction). Therefore, it is preferable from the viewpoint of durability of the coating film. In the present specification, the polysaccharide means a saccharide in which a plurality of monosaccharides are linked by glycosidic bonds, and the number of monosaccharides to be bonded is larger than that of oligosaccharides. Specific examples of the polysaccharide include cellulose, chitin, starch, glycogen, agarose, pectin and the like.
上記誘導体としては、 例えば、 糖類における水酸基の一部が、 炭 素数 2〜 2 2個の飽和カルボン酸類 (飽和カルボン酸、 飽和力ルポ ン酸エステル及び 又は飽和力ルポン酸ハライ ド) から選ばれる少 なく とも 1種によって、 カルボン酸エステル化されたものが好適に 使用できる。 具体的には、 例えば、 酢酸エステル、 ラウリン酸エス テル等が挙げられる。  As the derivative, for example, a small part of the hydroxyl group in the saccharide is selected from saturated carboxylic acids having 2 to 22 carbon atoms (saturated carboxylic acid, saturated sulfonate ester and / or saturated sulfonate sulfonate). A carboxylic acid ester can be suitably used by at least one kind. Specifically, for example, acetate ester, laurate ester and the like can be mentioned.
本発明に用いられるアクリル酸エステル ( b l ) の製造方法は、 アクリル酸エステル ( a l ) の場合と同様である。  The method for producing the acrylate ester (bl) used in the present invention is the same as that for the acrylate ester (al).
本発明に用いられるァクリル酸エステル ( b 1 ) の製造において 導入されるァクリ ロイル基の量の調整方法は、 アクリル酸エステル ( a l ) の場合と同様である。  The method for adjusting the amount of acryloyl group introduced in the production of the acrylic acid ester (b 1) used in the present invention is the same as in the case of the acrylic acid ester (al).
また、 糖類又はその誘導体のアクリル酸エステル ( b 1 ) は、 糖 類又はその誘導体を有機溶剤に溶解し、 アク リル酸ハライ ド (例え ば、 アクリル酸クロライ ド) を加えて、 生成する酸を中和して水洗 することによつても得ることができる (脱塩酸法) 。 In addition, the acrylic ester (b 1) of a saccharide or its derivative is obtained by dissolving the saccharide or its derivative in an organic solvent and adding acrylic acid halide (for example, acrylic acid chloride) to produce the acid produced. Neutralize and wash Can also be obtained (dehydrochlorination method).
このようにして得られる糖類又はその誘導体のアクリル酸エステ ル ( b 1 ) の重量平均分子量は、 4 0 0〜 2 , 0 0 0、 好ましくは 5 0 0〜 1, 8 0 0 を有することが、 製造が容易となる点、 塗料粘 度、 及び仕上り性の点から好ましい。  The weight average molecular weight of the acrylic acid ester (b 1) of the saccharide or derivative thereof thus obtained may have a range of 400 to 2, 2,000, preferably 5,000 to 1,800. From the viewpoint of ease of production, paint viscosity, and finish.
糖類又はその誘導体のアクリル酸エステル ( b l ) は、 好ましく は 1分子あたり平均 3. 0〜 1 2. 0個、 より好ましくは平均 4. 0〜 9. 0個のァクリロイル基を有する。 このことにより、 活性ェ ネルギ一線照射時の反応性を高めて、 得られた塗膜の耐擦り傷性及 び Z又は付着性を向上させることができる。  The acrylic ester (bl) of the saccharide or its derivative preferably has an average of 3.0 to 12.0, more preferably an average of 4.0 to 9.0 acryloyl groups per molecule. As a result, the reactivity during irradiation with the active energy line can be increased, and the scratch resistance and Z or adhesion of the obtained coating film can be improved.
糖類又はその誘導体のアクリル酸エステル ( b l ) を水分散化し 水分散体とする方法及び乳化剤に関しては、 アクリル酸エステル ( a 1 ) の場合と同様である。  The method and emulsifier of the saccharide or its derivative acrylic ester (bl) dispersed in water to form an aqueous dispersion are the same as in the case of the acrylic ester (a1).
[光重合開始剤 ( b 2 ) ]  [Photoinitiator (b 2)]
光重合開始剤 ( b 2 ) は、 活性エネルギー線の光エネルギーで励 起されることでラジカルを発生し、 本発明のアクリル酸エステル ( b l ) が有するラジカル重合性不飽和基 (具体的にはァクリロイル 基) のラジカル重合反応を開始するものである。  The photopolymerization initiator (b 2) generates a radical by being excited by the light energy of the active energy ray, and the radical polymerizable unsaturated group (specifically, the acrylic ester (bl) of the present invention (specifically, Acryloyl group) radical polymerization reaction.
光重合開始剤 ( b 2 ) の具体例としては、 光重合開始剤 ( a 2 ) のものと同一のものを挙げることができる。  Specific examples of the photopolymerization initiator (b 2) include the same ones as the photopolymerization initiator (a 2).
これらの光重合開始剤 ( b 2 ) は、 単独で又は 2種類以上を組合 せて使用できる。 光重合開始剤 (b 2 ) は、 ィルガキュア 5 0 0 [ 商品名、 チバ · スペシャルティ · ケミカルズ社製、 1 —ヒ ドロキシ ーシクロへキシル一フエ二ルーケトン及びべンゾフエノンの 1 : 1 (質量比) 混合物] 、 ダロキュア 1 1 7 3 (商品名、 チバ ♦ スぺシ ャルティ ' ケミカルズ社製、 2—ヒ ドロキシ— 2 —メチル— 1 ーフ ェニループロパン一 1 一オン) 等の常温で液状の光重合開始剤 (b 2 ) を用いることが混合安定性の点から好ましい。 光重合開始剤 ( b 2 ) の含有量は、 糖類又はその誘導体のアクリル酸エステル (b 1 ) 及び後述する活性エネルギー線硬化性化合物 (b 3 ) の総量 1 0 0質量部に対して、 0. 1〜 1 0質量部、 好ましくは 0. 2〜 5 質量部の範囲内である。 These photopolymerization initiators (b 2) can be used alone or in combination of two or more. Photopolymerization initiator (b 2) is Irgacure 500 [trade name, manufactured by Ciba Specialty Chemicals Co., Ltd .: 1—Hydroxy-cyclohexyl monophenyl ketone and benzophenone 1: 1 mixture by mass] , Darocur 1 1 7 3 (trade name, Ciba ♦ Specialties Chemicals, 2-Hydroxy-2-methyl-1-phenyl-1-propane) b 2) is preferred from the viewpoint of mixing stability. The content of the photopolymerization initiator (b 2) is 0 with respect to the total amount of acrylic ester (b 1) of the saccharide or its derivative and the active energy ray-curable compound (b 3) described later, 100 parts by mass. Within the range of 1 to 10 parts by weight, preferably 0.2 to 5 parts by weight.
本発明の塗膜形成方法に用いられる活性エネルギー線硬化型水性 塗料組成物には、 活性エネルギー線の照射によるラジカル重合反応 を促進させるために、 光重合開始剤 ( b 2 ) に加えて、 ラジカル発 生の感度向上及び Z又は波長領域拡張を目的として光増感剤を併用 してもよい。  The active energy ray-curable aqueous coating composition used in the coating film forming method of the present invention contains a radical in addition to the photopolymerization initiator (b 2) in order to accelerate the radical polymerization reaction by irradiation with active energy rays. A photosensitizer may be used in combination for the purpose of improving the generation sensitivity and extending the Z or wavelength region.
併用し得る光増感剤の具体例は、 光重合開始剤 ( a 2 ) における 光増感剤の場合と同様である。  Specific examples of the photosensitizer that can be used in combination are the same as those of the photosensitizer in the photopolymerization initiator (a 2).
これらの光増感剤は、 糖類又はその誘導体のアクリル酸エステル These photosensitizers are acrylic acid esters of sugars or their derivatives.
( b 1 ) 及び後述する活性エネルギー線硬化性化合物 (b 3 ) の総 量 1 0 0質量部に対して、 0. 1〜 5質量部の範囲が好ましい。 The range of 0.1 to 5 parts by mass is preferable with respect to 100 parts by mass of (b 1) and the total amount of the active energy ray-curable compound (b 3) described later.
[活性エネルギー線硬化性化合物 ( b 3 ) ]  [Active energy ray-curable compound (b 3)]
本発明の活性エネルギー線硬化型水性塗料組成物には、 必要に応 じて上記糖類又はその誘導体のアクリル酸エステル ( b l ) 以外の 活性エネルギー線硬化性化合物 (b 3 ) を配合することができる。 配合する活性エネルギー線硬化性化合物 ( b 3 ) は、 糖類又はその 誘導体のアクリル酸エステル ( b 1 ) 以外の、 ラジカル重合性不飽 和モノマー、 ラジカル重合性不飽和基含有樹脂、 並びにラジカル重 合性不飽和基及び熱硬化性官能基含有樹脂からなる群から選ばれる 少なく とも 1種のモノマー及び/又は樹脂であることが好ましい。 なお、 ラジカル重合性不飽和モノマーとしては、 1官能重合性モノ マー、 2官能重合性モノマー、 3官能以上の重合性モノマー等が挙 げられる。 1官能重合性モノマー、 2官能重合性モノマー、 3官能以上の重 合性モノマーとしては、 活性エネルギー線硬化性化合物 ( a 3 ) の 項で説明されるものを用いることができる。 The active energy ray-curable aqueous coating composition of the present invention may contain an active energy ray-curable compound (b 3) other than the acrylate ester (bl) of the saccharide or a derivative thereof as necessary. . The active energy ray-curable compound (b3) to be blended is a radically polymerizable unsaturated monomer, a radically polymerizable unsaturated group-containing resin, or a radical polymer other than an acrylic ester (b1) of a saccharide or its derivative. It is preferably at least one monomer and / or resin selected from the group consisting of polymerizable unsaturated group- and thermosetting functional group-containing resins. Examples of the radical polymerizable unsaturated monomer include a monofunctional polymerizable monomer, a bifunctional polymerizable monomer, and a trifunctional or higher functional polymerizable monomer. As the monofunctional polymerizable monomer, bifunctional polymerizable monomer, and trifunctional or higher polymerizable monomer, those described in the section of the active energy ray-curable compound (a 3) can be used.
好ましいラジカル重合性不飽和モノマーとしては、 光硬化性、 付 着性、 耐擦り傷性等から 2官能重合性モノマー及び Z又は 3官能以 上の重合性モノマーである。  Preferred radical polymerizable unsaturated monomers are bifunctional polymerizable monomers and Z or trifunctional or higher polymerizable monomers from the viewpoint of photocurability, adhesion, and scratch resistance.
ラジカル重合性不飽和基含有樹脂としては、 活性エネルギー線硬 化性化合物 ( a 3 ) の項で説明されるものを用いることができる。  As the radical polymerizable unsaturated group-containing resin, those described in the section of the active energy ray-curable compound (a 3) can be used.
糖類又はその誘導体のアクリル酸エステル ( b l ) に対する活性 エネルギー線硬化性化合物 ( b 3 ) の配合割合としては、 糖類又は その誘導体のアクリル酸エステル ( b 1 ) 1 0 0質量部に対して、 活性エネルギー線硬化性化合物 (b 3 ) は 0〜 9 0 0質量部、 好ま しくは 3 0〜 4 0 0質量部であることが、 仕上り性、 耐擦り傷性の 点から好ましい。  Activity of saccharide or its derivative with respect to acrylic ester (bl) As a blending ratio of the energy ray curable compound (b 3), saccharide or its derivative with acrylic ester (b 1) 100 parts by mass is active. The energy ray-curable compound (b 3) is preferably 0 to 90 parts by mass, and more preferably 30 to 400 parts by mass, from the viewpoint of finish and scratch resistance.
さらに、 本発明に用いられる活性エネルギー線硬化型水性塗料組 成物には、 必要に応じて、 艷消し剤、 表面調整剤、 紫外線吸収剤、 光安定剤、 消泡剤、 有機着色剤、 天然色素及び無機顔料等を使用す ることができる。 これらの例としては、 「A. 活性エネルギー線硬 化塗料組成物」 の項で説明されるものを挙げることができる。  Further, the active energy ray-curable water-based coating composition used in the present invention includes, as necessary, a defoaming agent, a surface conditioner, an ultraviolet absorber, a light stabilizer, an antifoaming agent, an organic colorant, a natural colorant, Dyes and inorganic pigments can be used. Examples thereof include those described in the section “A. Active energy ray-curable coating composition”.
本発明の塗膜形成方法に用いられる活性エネルギー線硬化型水性 塗料組成物を製造する際の水性化する方法としては、 特に限定され るものではない。 水性化する方法としては、 例えば、 糖類又はその 誘導体のアクリル酸エステル (b l ) 又はその有機溶剤溶液、 光重 合開始剤 ( b 2 ) 及び乳化剤を混合した後、 攪拌しながら徐々に水 を加えることによって水分散化させ水性化する方法が挙げられる。 また他の方法としては、 糖類又はその誘導体のアクリル酸エステル (b l ) を水分散化させて得た水分散体と、 光重合開始剤 ( b 2 ) 等の他の成分とを水性媒体中で常法に従い混合して水性化する方法 が挙げられる。 活性エネルギー線硬化性化合物 ( b 3 ) を使用する 場合、 当該化合物をあらかじめ水分散化して得た水分散体を使用す ることが、 混合安定性の点から好ましい。 活性エネルギー線硬化性 化合物 (b 3 ) の水分散化の方法は糖類又はその誘導体のアクリル 酸エステル ( b 1 ) の水分散化と同様の方法を採ることができる。 また、 光重合開始剤 (b 2 ) が水溶解度の小さい固体の光重合開始 剤 ( b 2 ) である場合、 活性エネルギー線硬化性化合物 (b 3 ) に 添加して溶解させることが、 均一な光硬化が可能な点、 仕上り性、 及び耐擦り傷性の点で好ましい。 There is no particular limitation on the method of making the aqueous composition when producing the active energy ray-curable aqueous coating composition used in the coating film forming method of the present invention. As a method of making it aqueous, for example, after mixing an acrylic ester (bl) of a saccharide or a derivative thereof or an organic solvent solution thereof, a photopolymerization initiator (b 2) and an emulsifier, water is gradually added while stirring. The method of making it water-dispersed by making it water-based is mentioned. As another method, an aqueous dispersion obtained by dispersing an acrylic ester (bl) of a saccharide or a derivative thereof in water, and a photopolymerization initiator (b 2) And other components in an aqueous medium according to a conventional method. When the active energy ray-curable compound (b 3) is used, it is preferable from the viewpoint of mixing stability to use an aqueous dispersion obtained by previously dispersing the compound in water. The method for dispersing the active energy ray-curable compound (b 3) in water can be the same as the method for dispersing the acrylate or acrylate ester (b 1) in water. Further, when the photopolymerization initiator (b 2) is a solid photopolymerization initiator (b 2) having a low water solubility, it can be uniformly added and dissolved in the active energy ray-curable compound (b 3). It is preferable from the viewpoint of photocuring, finish, and scratch resistance.
[活性エネルギー線硬化型水性塗料組成物の塗装方法]  [Method of coating active energy ray-curable aqueous coating composition]
本発明に用いられる活性エネルギー線硬化型水性塗料組成物を塗 装する際の塗装方法は、 公知の塗装方法を適用することができる。 例えば、 ローラー塗装、 刷毛塗装、 浸漬塗装、 スプレー塗装 (非静 電塗装、 静電塗装等) 、 カーテンフロー塗装、 スクリーン印刷、 凸 版印刷等が挙げられる。 なかでも、 スプレー塗装が好ましい。  A known coating method can be applied as a coating method when the active energy ray-curable aqueous coating composition used in the present invention is applied. For example, roller coating, brush coating, immersion coating, spray coating (non-electrostatic coating, electrostatic coating, etc.), curtain flow coating, screen printing, letterpress printing, and the like. Of these, spray coating is preferred.
上記塗装により形成される塗膜の膜厚は、 特に制限されるもので はないが、 乾燥膜厚として、 0. 1〜 3 0 m、 好ましくは 1〜 2 5 i m、 より好ましくは 5〜 2 0 mである。  The film thickness of the coating film formed by the above coating is not particularly limited, but the dry film thickness is 0.1 to 30 m, preferably 1 to 25 im, more preferably 5 to 2 0 m.
活性エネルギー線硬化型水性塗料組成物の不揮発分濃度は、 塗装 可能な範囲であれば特に制限されるものではないが、 スプレー塗装 を行う場合は、 好ましくは 1 0〜 5 0質量%の範囲である。  The concentration of the non-volatile content of the active energy ray-curable aqueous coating composition is not particularly limited as long as it can be applied. However, when spray coating is performed, it is preferably in the range of 10 to 50% by mass. is there.
[活性エネルギー線を照射するステツプ]  [Step of irradiating active energy rays]
活性エネルギー線硬化型水性塗料組成物を塗装した後には、 加熱 又はセッティ ングすることによって、 水等の溶剤を揮発させてから 活性エネルギー線を照射することが望ましい。 加熱する場合の手段 としては、 特に限定されるものではなく、 例えば、 熱風炉、 電気炉 、 赤外線誘導加熱等の乾燥設備を適用できる。 加熱温度は、 特に制 限されるものではないが、 通常、 3 5〜 1 0 0 °C、 好ましくは 4 0 〜 9 0 °Cの範囲である。 加熱時間は、 特に制限されるものではない が、 通常、 1〜 3 0分の範囲が好適である。 After applying the active energy ray-curable aqueous coating composition, it is desirable to volatilize a solvent such as water by heating or setting and then irradiate the active energy ray. The means for heating is not particularly limited. For example, a hot air furnace, an electric furnace ・ Drying equipment such as infrared induction heating can be applied. The heating temperature is not particularly limited, but is usually in the range of 35 to 100 ° C., preferably 40 to 90 ° C. The heating time is not particularly limited, but usually a range of 1 to 30 minutes is preferable.
照射する活性エネルギー線は、 特に制限はなく、 電子線、 紫外線 、 可視光、 赤外線のいずれであってもよい。 波長 2 0 0〜 6 0 0 n m、 好ましくは波長 3 0 0〜 4 5 0 n mの活性エネルギー線が、 仕 上り性等の点から好ましい。  The active energy ray to be irradiated is not particularly limited, and may be any of electron beam, ultraviolet ray, visible light, and infrared ray. An active energy ray having a wavelength of 200 to 600 nm, preferably a wavelength of 300 to 45 nm is preferable from the viewpoint of finish.
活性エネルギー線の照射源としては、 光重合開始剤 (b 2 ) の種 類に応じて、 感度の高い波長を有する照射源を適宜選択して使用す ることができる。 上記活性エネルギー線の照射源としては、 例えば 、 高圧水銀灯、 超高圧水銀灯、 キセノンランプ、 カーボンアーク、 メタルハライ ドランプ、 太陽光等を挙げることができる。  As the active energy ray irradiation source, an irradiation source having a wavelength with high sensitivity can be appropriately selected and used according to the type of the photopolymerization initiator (b 2). Examples of the active energy ray irradiation source include a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a xenon lamp, a carbon arc, a metal halide lamp, and sunlight.
活性エネルギー線を照射する条件は、 通常、 積算光量が 1, 0 0 0〜 2 0, O O O J Zm2 、 好ましくは 2, 0 0 0〜 1 5, 0 0 0 J /m2 となる範囲が適している。 照射時間としては、 1秒間〜 5 分程度で塗膜を硬化することができる。 上記範囲であることが、 塗 膜の光硬化性、 耐黄変性等の点から好ましい。 The conditions for irradiating active energy rays are usually in the range where the integrated light quantity is 1, 0 0 0 to 2 0, OOOJ Zm 2 , preferably 2, 0 0 0 to 1 5, 0 0 0 J / m 2 ing. As the irradiation time, the coating film can be cured in about 1 second to 5 minutes. The above range is preferable from the viewpoints of the photocurability of the coating film and resistance to yellowing.
また、 上記活性エネルギー線硬化型水性塗料組成物は、 活性エネ ルギ一線を照射した後又は同時に補助的な架橋手段として加熱を施 すこともできる。  In addition, the active energy ray-curable water-based coating composition can be heated as an auxiliary crosslinking means after or simultaneously with irradiation of the active energy line.
本発明の塗膜形成方法により得られた塗装物品は、 例えば、 電気 部品、 携帯電話、 照明、 電気素子、 半導体、 自動販売機等の材料又 は部品として使用することができる。 実施例  The coated article obtained by the coating film forming method of the present invention can be used as a material or a part of, for example, an electric part, a mobile phone, lighting, an electric element, a semiconductor, a vending machine or the like. Example
以下、 実施例を挙げて本発明をさらに具体的に説明するが、 本発 明はこれにのみに限定されるものではない。 なお、 「部」 及び 「 % 」 は、 特にことわらない限り、 「質量部」 及び 「質量%」 を意味す る。 Hereinafter, the present invention will be described more specifically with reference to examples. Akira is not limited to this. “Parts” and “%” mean “parts by mass” and “% by mass” unless otherwise specified.
<< A. 活性エネルギー線硬化塗料組成物に関する実施例 >> <製造例 A— 1 >  << A. Examples of active energy ray curable coating compositions >> <Production example A— 1>
アクリル酸エステル N o . A_ l溶液の製造例 (実施例用) Example of production of acrylic ester N o. A_ l solution (for examples)
蒸留装置、 温度計、 及び攪拌機を備えた反応容器にデキス トリン ( I ) (平均重合数 4のグルコース重合体、 1分子あたり平均 1 4 個の水酸基を有する) 8 0部、 メチルイソプチルケトン 1 0 0部、 メチルヒ ドロキノン 0. 1 6部、 水酸化リチウム 1水和物 5. 9部 及びメチルァクリ レート 5 0 6. 2部を仕込んだ。  In a reaction vessel equipped with a distillation apparatus, thermometer, and stirrer, dextrin (I) (glucose polymer having an average polymerization number of 4 and having an average of 14 hydroxyl groups per molecule) 80 parts, methylisoptyl ketone 1 100 parts, 0.16 parts of methylhydroquinone, 5.9 parts of lithium hydroxide monohydrate, and 50.6.2 parts of methyl acrylate were charged.
次いで、 この溶液中に窒素を吹き込み、 攪拌しながら 9 0 °Cに加 熱し、 メチルァクリ レート、 メタノール、 メチルイソプチルケトン を少しずつ系外へ留去した。 留去に伴い減少するメチルァクリ レー 卜及びメチルイソプチルケトンは、 減少分を反応容器内へ添加した 次いで、 反応容器中のメタノール及び留去したメタノールをガス クロマトグラフィの測定によって定量することで反応を追跡し、 上 記デキス トリン ( I ) の 1分子あたり平均 6. 0個の水酸基がァク リル酸エステル化されたところで冷却した。 さらに、 反応液を減圧 下で濃縮し、 残留物に酢酸ェチルを添加して不揮発分濃度 2 5 %、 重量平均分子量 1 , 1 0 0かつ 1分子あたり平均 6. 0個のァクリ ロイル基を有する本発明のアクリル酸エステル N o . A— 1溶液を 得た。  Next, nitrogen was blown into this solution and heated to 90 ° C. with stirring, and methyl acrylate, methanol, and methyl isoptyl ketone were gradually distilled out of the system. Methyl acrylate and methyl isobutyl ketone, which decrease with distillation, are added to the reaction vessel, and then the reaction is traced by measuring the amount of methanol in the reaction vessel and the distilled methanol by gas chromatography. Then, the mixture was cooled when 6.0 hydroxyl groups per molecule of the above dextrin (I) were converted to acrylate. Furthermore, the reaction solution is concentrated under reduced pressure, and ethyl acetate is added to the residue to obtain a nonvolatile content concentration of 25%, a weight average molecular weight of 1,100, and an average of 6.0 acryloyl groups per molecule. An acrylic ester No. A-1 solution of the present invention was obtained.
<製造例 A— 2 >  <Production example A-2>
アクリル酸エステル N o . A— 2溶液の製造例 (実施例用) Example of production of acrylic ester No. A-2 solution (for examples)
製造例 A— 1 において、 デキス トリ ン ( I ) が有する 1分子あた り平均 1 4個の水酸基のうち平均 1 0. 0個の水酸基がアクリル酸 エステル化されるまで、 反応容器中のメタノール及び留去したメタ ノールをガスクロマトグラフィの測定によって定量することで反応 を追跡し、 反応時間を延長した以外は、 製造例 A— 1 と同様にして 、 重量平均分子量 1, 4 0 0かつ 1分子あたり平均 1 0. 0個のァ クリ ロイル基を有する本発明のアクリル酸エステル N o . A— 2溶 液を得た。 In Production Example A-1, 1 molecule per dextrin (I) The reaction was traced by quantifying the methanol and distilled methanol in the reaction vessel by gas chromatography until an average of 10.0 hydroxyl groups out of an average of 14 hydroxyl groups was converted to acrylate ester. The acrylic acid of the present invention having a weight average molecular weight of 1,400 and an average of 10.0 acryloyl groups per molecule was the same as in Production Example A-1 except that the reaction time was extended. An ester No. A-2 solution was obtained.
<製造例 A - 3 > <Production example A-3>
アクリル酸エステル N o . A— 3溶液の製造例 (実施例用) Example of production of acrylic ester No. A-3 solution (for examples)
製造例 A— 1 において、 平均重合数 3のグルコース重合体であり 、 かつ 1分子あたり平均 1 1個の水酸基を有するデキス トリン ( I In Production Example A-1, dextrin (I) is a glucose polymer having an average polymerization number of 3 and having an average of 11 hydroxyl groups per molecule.
I ) を用いる以外は、 製造例 A— 1 と同様にして、 該デキス トリ ン ( I I ) が有する 1分子あたり平均 1 1個の水酸基のうち平均 6.In the same manner as in Production Example A-1 except that I) is used, an average of 6 hydroxyl groups per molecule of the dextrin (I I) is 6.
0個の水酸基がアクリル酸エステル化されるまで、 反応容器中のメ 夕ノール及び留去したメタノールをガスクロマトグラフィの測定に よって定量することで反応を追跡し、 重量平均分子量 9 5 0かつ 1 分子あたり平均 6. 0個のァクリロイル基を有する本発明のァクリ ル酸エステル N o . A— 3溶液を得た。 The reaction was traced by measuring the methanol and distilled methanol in the reaction vessel by gas chromatography until 0 hydroxyl groups were converted to acrylate, and the weight average molecular weight was 9500 and 1 molecule. An acrylic acid ester No. A-3 solution of the present invention having an average of 6.0 acryloyl groups per unit was obtained.
<製造例 A - 4 > <Production example A-4>
アクリル酸エステル N o . A— 4溶液の製造例 (実施例用) Example of production of acrylic ester No 4 A-4 solution (for examples)
製造例 A— 1 において、 平均重合数 6のグルコース重合体であり 、 かつ 1分子あたり平均 2 0個の水酸基を有するデキス トリン ( I I I ) を用いる以外は製造例 A— 1 と同様にして、 該デキス トリン ( I I I ) が有する 1分子あたり平均個の水酸基のうち平均 6. 0 個の水酸基がァクリル酸エステル化されるまで、 反応容器中のメタ ノール及び留去したメタノールをガスクロマトグラフィの測定によ つて定量することで反応を追跡し、 重量平均分子量 1, 5 0 0かつ 1分子あたり平均 6. 0個のァクリロイル基を有する本発明のァク リル酸エステル N o . A— 4溶液を得た。 In Production Example A-1, the same procedure as in Production Example A-1 except that dextrin (III), which is a glucose polymer having an average polymerization number of 6 and has an average of 20 hydroxyl groups per molecule, was used. The methanol and distilled methanol in the reaction vessel were measured by gas chromatography until an average of 6.0 hydroxyl groups per molecule of dextrin (III) was converted to acrylate. The reaction is followed by quantifying the weight average molecular weight of 1,500 and An acrylate ester No. A-4 solution of the present invention having an average of 6.0 acryloyl groups per molecule was obtained.
<製造例 A— 5 > <Production example A-5>
アクリル酸エステル N o . A— 5溶液の製造例 (比較例用) Example of production of acrylic ester No. A-5 solution (for comparison)
製造例 A— 1 において、 反応容器中のメタノール及び留去したメ 夕ノールをガスクロマトグラフィの測定によって定量することで反 応を追跡し、 デキス トリン ( I ) の 1分子あたり平均 2. 0個の水 酸基がアクリル酸エステル化されたところで冷却する以外は、 製造 例 A— 1 と同様にして、 重量平均分子量 8 0 0かつ 1分子あたり平 均 2. 0個のァクリロイル基を有するアクリル酸エステル N o . A 一 5溶液を得た。  In Production Example A-1, the reaction was traced by quantifying methanol and distilled methanol in the reaction vessel by gas chromatography, and an average of 2.0 per molecule of dextrin (I) Acrylic acid ester having a weight average molecular weight of 800 and an average of 2.0 acryloyl groups per molecule in the same manner as in Production Example A-1 except that cooling is performed when the hydroxyl group is converted to an acrylic ester. A No. A 15 solution was obtained.
<製造例 A - 6 > <Production example A-6>
アクリル酸エステル N o . A— 6溶液の製造例 (比較例用) Acrylic ester No. A-6 production example (for comparative example)
製造例 A— 1 において、 反応容器中のメタノール及び留去したメ 夕ノールをガスクロマトグラフィの測定によって定量することで反 応を追跡し、 デキス トリン ( I ) の 1分子あたり平均 1 3. 0個の 水酸基がァクリル酸エステル化されたところで冷却する以外は、 製 造例 A_ l と同様にして、 重量平均分子量 1, 6 0 0かつ 1分子あ たり平均 1 3. 0個のァクリ ロイル基を有するアクリル酸エステル N o . A— 6溶液を得た。  In Production Example A-1, the reaction was traced by quantifying methanol and distilled methanol in the reaction vessel by gas chromatography, and an average of 13.0 molecules per molecule of dextrin (I). Except for cooling when the hydroxyl group is converted to acrylic acid ester, it has a weight average molecular weight of 1,600 and an average of 13.0 acryloyl groups per molecule in the same manner as in Production Example A_ l An acrylic ester No. A-6 solution was obtained.
<製造例 A— 7 > <Production example A-7>
アクリル酸エステル N o . A— 7溶液の製造例 (比較例用) Acrylic acid ester N o. A—Production example of 7 solution (for comparative example)
製造例 A— 1 において、 平均重合数 8のグルコース重合体であり 、 かつ 1分子あたり平均 2 6個の水酸基を有するデキス トリ ン ( I V) を用いる以外は製造例 A— 1 と同様にして、 該デキス トリン ( I V) が有する 1分子あたり平均 2 6個の水酸基のうち平均 1 0. 0個の水酸基がァクリル酸エステル化されるまで、 反応容器中のメ 夕ノール及び留去したメタノールをガスクロマトグラフィの測定に よって定量することで反応を追跡し、 重量平均分子量 2 , 1 0 0か つ 1分子あたり平均 1 0. 0個のァクリ ロイル基を有するアクリル 酸エステル N o . A— 7溶液を得た。 In Production Example A-1, the same procedure as in Production Example A-1 except that dextrin (IV), which is a glucose polymer having an average polymerization number of 8 and has an average of 26 hydroxyl groups per molecule, is used. Among the 26 hydroxyl groups averaged per molecule possessed by the dextrin (IV), an average of 10.0 hydroxyl groups is converted into acrylic acid ester until the methacrylic acid in the reaction vessel. The reaction was traced by determining the amount of methanol and distilled methanol by gas chromatography, and acrylic acid having a weight average molecular weight of 2,100 and an average of 10.0 acryloyl groups per molecule. An ester No. A-7 solution was obtained.
<製造例 A— 8 > <Production example A-8>
アクリル酸エステル N o . A— 8溶液の製造例 (実施例用) Example of production of acrylic ester No. A-8 solution (for examples)
製造例 A— 1 において、 デキス トリン ( I ) の代わりにトレハロ In Production Example A-1, trehalo was substituted for dextrin (I).
—スを用い、 反応容器中のメタノール及び留去したメタノールをガ スクロマトグラフィの測定によって定量することで反応を追跡し、 上記トレハロースの 1分子あたり平均 6. 0個の水酸基がアクリル 酸エステル化されたところで冷却する以外は、 製造例 A— 1 と同様 にして、 重量平均分子量 7 8 0かつ 1分子あたり平均 6. 0個のァ クリロイル基を有するアクリル酸エステル N o . A— 8溶液を得た -The reaction was traced by measuring the amount of methanol in the reaction vessel and the distilled methanol by gas chromatography, and an average of 6.0 hydroxyl groups per molecule of trehalose was converted to an acrylate ester. Acrylate ester No. A-8 solution having a weight average molecular weight of 780 and an average of 6.0 acryloyl groups per molecule was obtained in the same manner as in Production Example A-1 except that the sample was cooled in the middle. The
<製造例 A— 9 > <Production example A-9>
アクリル酸エステル N o . A— 9溶液の製造例 (実施例用) Example of production of acrylic ester No. A-9 solution (for examples)
製造例 A— 1 において、 デキス トリ ン ( I ) の代わりにトレハロ ースを用い、 反応容器中のメタノール及び留去したメタノールをガ スクロマトグラフィの測定によって定量することで反応を追跡し、 上記トレハロースの 1分子あたり平均 3. 2個の水酸基がァクリル 酸エステル化されたところで冷却する以外は、 製造例 A— 1 と同様 にして、 重量平均分子量 5 6 0かつ 1分子あたり平均 3. 2個のァ クリロイル基を有するアクリル酸エステル N o . A— 9溶液を得た  In Production Example A-1, the reaction was traced by using trehalose instead of dextrin (I), and quantifying the methanol in the reaction vessel and the distilled methanol by gas chromatography. The average weight per molecule of 3. In the same manner as in Production Example A-1 except that cooling is performed when two hydroxyl groups have been converted to acrylates, the weight average molecular weight is 5 60 and the average is 3.2 per molecule. Acrylic acid ester N o .A-9 solution containing acryloyl group was obtained
<製造例 A— 1 0 > <Production example A— 1 0>
アクリル酸エステル N o . A— 1 0溶液の製造例 (比較例用) Acrylic ester No. A—10 Example of production of solution (for comparative example)
製造例 A— 1 においてデキス トリン ( I ) の代わりにトレハロー スを用い、 反応容器中のメタノール及び留去したメタノールをガス クロマトグラフィの測定によって定量することで反応を追跡し、 上 記トレハロースの 1分子あたり平均 2 . 0個の水酸基がァクリル酸 エステル化されたところで冷却する以外は、 製造例 A— 1 と同様に して、 重量平均分子量 4 9 0かつ 1分子あたり平均 2 . 0個のァク リ ロイル基を有するアクリル酸エステル N o . A— 1 0溶液を得た ぐ製造例 A— 1 1 > Instead of dextrin (I) in Production Example A-1 Trehalo The reaction was followed by quantifying the methanol in the reaction vessel and the distilled methanol by gas chromatography, and an average of 2.0 hydroxyl groups per molecule of trehalose was esterified with acrylic acid. By the way, except for cooling, in the same manner as in Production Example A-1, an acrylate ester having a weight average molecular weight of 4900 and an average of 2.0 acryloyl groups per molecule No. A-10 Production Example A-1 1 1>
アクリル酸エステル N o . A— 1 1溶液の製造例 (実施例用) Acrylic acid ester No. A— 1 1 Example of production of solution (for examples)
製造例 A— 1 においてデキス トリン ( I ) の代わりにマルト一ス を用い、 反応容器中のメタノール及び留去したメタノールをガスク ロマ卜グラフィの測定によって定量することで反応を追跡し、 上記 マルトースの 1分子あたり平均 6 . 0個の水酸基がァクリル酸エス テル化されたところで冷却する以外は、 製造例 A— 1 と同様にして 、 重量平均分子量 7 8 0かつ 1分子あたり平均 6 . 0個のァクリ ロ ィル基を有するアクリル酸エステル N o , A— 1 1溶液を得た。 <製造例 A— 1 2 >  In Production Example A-1, maltose was used in place of dextrin (I), and the reaction was traced by quantifying the methanol in the reaction vessel and the distilled methanol by gas chromatography. Except for cooling when an average of 6.0 hydroxyl groups per molecule was esterified with acrylic acid, in the same manner as in Production Example A-1, the weight average molecular weight was 780 and an average of 6.0 per molecule. An acrylic ester N o, A-11 solution having an acryloyl group was obtained. <Production example A— 1 2>
ァクリル酸エステル N o . A— 1 2溶液の製造例 (実施例用) Example of production of acrylic acid ester N o. A— 1 2 solution (for Examples)
製造例 A— 1 においてデキス トリン ( I ) の代わりにスクロース を用い、 反応容器中のメタノール及び留去したメタノールをガスク 口マトグラフィの測定によって定量することで反応を追跡し、 上記 スクロースの 1分子あたり平均 6 . 0個の水酸基がアクリル酸エス テル化されたところで冷却する以外は、 製造例 A— 1 と同様にして 、 重量平均分子量 7 8 0かつ 1分子あたり平均 6 . 0個のァクリ ロ ィル基を有するアクリル酸エステル N 0 . A— 1 2溶液を得た。 <製造例 A— 1 3 >  In Production Example A-1, sucrose was used instead of dextrin (I), and the reaction was traced by quantifying the methanol in the reaction vessel and the distilled methanol by gas chromatography, and per molecule of the sucrose. Except for cooling when an average of 6.0 hydroxyl groups was esterified with acrylic acid, the same as in Production Example A-1, the weight average molecular weight was 7800 and the average of 6.0 acryloyl per molecule. An acrylic ester N 0 .A-12 solution containing a thio group was obtained. <Production example A— 1 3>
アクリル酸エステル N o . A— 1 3溶液の製诰例 (比較例用) 蒸留装置、 温度計及び撹拌機を備えた容量 1 リ ッ トルのガラス製 丸底四つ口フラスコに、 j6—サイクロデキス トリン 7 9 . 5部、 ジ メチルホルムアミ ド 4 0 0部及びメチルヒ ドロキノン 0 . 1 6部を 仕込んだ。 次に、 この混合液を撹拌して均一状態にした後、 ジブチ ルスズォキシド 1 7 . 4部 ( 3—サイクロデキス ト リ ン 1 0 0部に 対し 2 2部に相当) を加え、 混合液体中に空気を 1 0 m L Z分で吹 き込みながら、 かつ、 溶液を撹拌しながら 1 1 0 °Cまで加熱した。 次に、 反応液の温度を 1 1 0 °Cに保ちながら、 反応液中にメチルァ クリ レート 1 , 0 0 0部を約 4 0部 Z時の速度で 2 5時間かけて滴 下した。 留去を開始してから 2 5時間後、 留去液中に含まれるメタ ノール量は 9 . 2 7部であり、 脱メタノール量から、 ^—サイクロ デキス トリ ンの 1分子あたり平均 4 . 0個の水酸基がァクリル酸ェ ステル化されていることを確認した。 Acrylic ester N o. A— 1 3 Example of making solution (for comparison) In a 1-liter glass round bottom four-necked flask equipped with a distillation apparatus, thermometer and stirrer, add 79.5 parts of j6-cyclodextrin, 400 parts of dimethylformamide, and 0 part of methylhydroquinone. 1 Prepared 6 copies. Next, after stirring this mixed liquid to a uniform state, 17.4 parts of dibutyltinoxide (corresponding to 2 parts relative to 100 parts of 3-cyclodextrin) was added, and air was added to the mixed liquid. Was heated to 110 ° C. while blowing the solution at 10 ml LZ and stirring the solution. Next, while maintaining the temperature of the reaction solution at 110 ° C., 1,000 parts of methyl acrylate were dropped into the reaction solution at a rate of about 40 parts Z over 25 hours. Twenty-five hours after the start of distillation, the amount of methanol contained in the distillate was 9.27 parts. From the amount of methanol removed, an average of 4.0 per molecule of ^ -cyclodextrin was obtained. It was confirmed that each hydroxyl group was esterified with acrylic acid.
反応液中の触媒を濾別し、 濾液を減圧下で濃縮した後、 残留物に ィソプロパノールを添加して目的物を結晶化し、 結晶を瀘別した。 得られた結晶をイソプロパノールで洗浄し、 乾燥させて /3—サイク ロデキス トリンの 4 . 0官能のアクリル酸エステル 7 2 . 6部を得 た。 得られたアクリル酸エステルを酢酸ブチルに溶解させ、 不揮発 分濃度 2 5 %、 重量平均分子量 1 5 2 0かつ 1分子あたり平均 4 . 0個のァクリロイル基を有するァクリル酸エステル N o . A - 1 3 溶液を得た。  The catalyst in the reaction solution was filtered off, and the filtrate was concentrated under reduced pressure. Then, isopropanol was added to the residue to crystallize the desired product, and the crystal was separated. The obtained crystals were washed with isopropanol and dried to obtain 72.6 parts of 4.0-functional acrylic acid ester of / 3-cyclodextrin. The obtained acrylic acid ester was dissolved in butyl acetate, and the acrylic acid ester having a nonvolatile content concentration of 25%, a weight average molecular weight of 1520 and an average of 4.0 acryloyl groups per molecule No. A-1 3 A solution was obtained.
<製造例 A— 1 4 > <Production example A—1 4>
光硬化性樹脂溶液 N o . A— 1 の製造例 (活性エネルギー線硬化性 化合物 ( a 3 ) に相当) Photo curable resin solution No. A— 1 production example (equivalent to active energy ray curable compound (a 3))
温度計、 サーモスタッ ト、 撹拌機、 還流冷却器及び空気吹込装置 を備え付けた反応容器に、 イソホロンジイソシァネート 8 8 8部、 2 —ヒ ドロキシェチルァクリ レート 4 6 4部及びハイ ド口キノンモ ノメチルエーテル 0 . 7部を仕込み、 反応容器内に空気を吹き込み ながら、 8 0 X に昇温してその温度に 5時間保ち、 加えた 2—ヒ ド ロキシェチルァクリ レートの水酸基が実質的に全て反応したのを確 認した後、 ペンタエリスリ トール 1 3 6部、 酢酸ブチル 3 7 2部及 ぴジブチルチンジラウレート 0 . 2部を添加してさらに 8 0 °Cに保 持し、 イソホロンジイソシァネー トのイソシァネート基が実質的に 全て反応したのを確認した後冷却し、 樹脂不揮発分 8 0 %の光硬化 性樹脂溶液 N o . A— 1 を得た。 この樹脂の数平均分子量は約 1 , 5 0 0であった。 In a reaction vessel equipped with a thermometer, thermostat, stirrer, reflux condenser, and air blowing device, isophorone diisocyanate 8 8 8 parts, 2 — Hydroxy sheryl acrylate 4 6 4 parts and a feed port Kinonmo Charge 0.7 parts of nomethyl ether, blow the air into the reaction vessel, raise the temperature to 80 X and keep at that temperature for 5 hours, and the added hydroxyl group of 2-hydroxychetyl acrylate is substantially After confirming that all of the reaction had occurred, 13.6 parts of pentaerythritol, 37.2 parts of butyl acetate and 0.2 part of dibutyltin dilaurate were added, and the temperature was further maintained at 80 ° C. After confirming that substantially all of the isocyanate groups of the isocyanate had reacted, the mixture was cooled to obtain a photocurable resin solution No. A-1 having a resin non-volatile content of 80%. The number average molecular weight of this resin was about 1,500.
<製造例 A— 1 5 > <Production example A— 1 5>
反応性高分子乳化剤 N o . A— 1溶液の製造 Reactive polymer emulsifiers No. A-1 Production of solutions
攪拌機、 還流冷却器、 温度計、 滴下漏斗及び窒素導入口を備えた 4つ口フラスコにプロピレングリコールモノメチルェ一テルァセテ ート 1 , 0 0 0部を加え、 窒素ガスを導入しつつかき混ぜながら、 1 2 0 °Cに加熱した。 次にスチレン 1 3 0部、 n —ブチルメタクリ レート 5 9 0部、 2 —ヒ ドロキシェチルメ夕クリ レート 8 5部、 グ リシジルメ夕クリ レート 5部、 メチルメタクリ レート 4 0部、 2, 2 ' —ァゾビス— 2 _メチルプチロニトリル 2 0部の混合物を滴下 槽から 3時間にわたって滴下した。 滴下終了後、 同温で 0 . 5時間 保持して共重合体を得た後、 この中に、 スチレン 2 0部、 n—プチ ルメ夕クリ レート 4 5部、 2—ヒ ドロキシェチルメタクリ レ一ト 1 5部、 アクリル酸 6 0部、 メチルメタクリ レート 1 0部、 t 一プチ ルパ一ォキシ一 2 —ェチルへキサノエート 1 0部の混合物を滴下槽 から 1時間にわたって滴下した。 滴下終了後、 同温で 0 . 5時間保 持した後、 さらにプロピレングリコールモノメチルエーテルァセテ 一卜 4 0部に t 一ブチルパーォキシ一 2 —ェチルへキサノエート 1 0部を溶解した溶液 5 0部を 3 0分かけて滴下した。 ついで 1時間 熟成した。 8 0 °Cまで冷却した後、 2 —ァクリロイルォキシェチル イソシァネ一ト 5 0部及びネオスタン U— 1 0 0 (錫系触媒) 0 . 1部を加えて 2時間攪拌した。 不揮発分濃度 7 0 %になるまで溶剤 を留去して反応性高分子乳化剤 N o . A— 1溶液を得た。 Add 1 part of propylene glycol monomethyl ether acetate to a four-necked flask equipped with a stirrer, reflux condenser, thermometer, dropping funnel and nitrogen inlet, and stir while introducing nitrogen gas. Heated to 20 ° C. Next, styrene 1 30 parts, n-butyl methacrylate 5 90 parts, 2-hydroxychestyl methacrylate 8 parts, glycidyl methacrylate 5 parts, methyl methacrylate 40 parts, 2, 2 '—azobis — A mixture of 20 parts of 2_methylbutylonitrile was added dropwise from the dropping tank over 3 hours. After completion of the dropwise addition, a copolymer was obtained by maintaining at the same temperature for 0.5 hours, and then 20 parts of styrene, 4 parts of n-butyl methacrylate, 2 parts of 2-hydroxychetyl methacrylate. A mixture of 15 parts of 1 part, 60 parts of acrylic acid, 10 parts of methyl methacrylate, and 10 parts of t-methyl paroxyl-2-ethylhexanoate was added dropwise from a dropping tank over 1 hour. After completion of the dropwise addition, the mixture was kept at the same temperature for 0.5 hours, and further, 3 parts of 50 parts of a solution of 10 parts of 1-butyl peroxy-2-ethyl hexanoate dissolved in 40 parts of propylene glycol monomethyl ether acetate. It was added dropwise over 0 minutes. 1 hour Aged. After cooling to 80 ° C., 50 parts of 2-acryloyloxychetyl isocyanate and 0.1 part of neostane U—100 (tin-based catalyst) were added and stirred for 2 hours. The solvent was distilled off to a non-volatile content concentration of 70% to obtain a reactive polymer emulsifier No. A-1 solution.
<実施例 A— 1 > <Example A-1>
活性エネルギー線硬化塗料組成物 N o . A— 1の製造 Production of active energy ray curable coating composition No. A-1
製造例 A— 1で得られたァクリル酸エステル N o . A - 1溶液 4 0 0部 (不揮発分 1 0 0部) に対してィルガキュア 1 8 4 (商品名  Production Example A— Irgacure 1 8 4 (Product Name) against acryloyl ester No. A-1 solution 4 0 0 parts (nonvolatile content 1 0 0 parts) obtained in A-1
5 5  5 5
、 チバ · スペシャルティ · ケミカルズ社製、 光重合開始剤) 3部を 添加して溶解した後、 酢酸プチルで不揮発分濃度 2 0 %に希釈して 、 有機溶剤型の活性エネルギー線硬化塗料組成物 N o . A— 1 を得 た。 Ciba Specialty Chemicals Co., Ltd., photopolymerization initiator) 3 parts added and dissolved, diluted with butyl acetate to a non-volatile content concentration of 20%, organic solvent type active energy ray curable coating composition N o. A-1 was obtained.
<実施例 A— 2〜A— 1 1〉  <Example A-2 to A-1 1>
活性エネルギー線硬化塗料組成物 N o . A— 2〜N o . A— 1 1の 製造 Production of active energy ray curable coating composition No. A— 2 to No. A— 1 1
下記表 A— 1 の配合内容とする以外は、 実施例 A— 1 と同様にし て、 有機溶剤型の活性エネルギー線硬化塗料組成物 N o . A— 2〜 N o . A _ 1 1 を得た。 Except for the contents shown in Table A-1 below, the organic solvent type active energy ray curable coating compositions No. A-2 to No. A_11 were obtained in the same manner as Example A-1. It was.
表 A— 1 Table A— 1
Figure imgf000057_0001
Figure imgf000057_0001
配合における数値は不揮発分を示す。 The numerical value in a mixing | blending shows a non volatile matter.
<実施例 A— 1 2 > <Example A— 1 2>
活性エネルギー線硬化塗料組成物 N o . A— 1 2の製造 Production of active energy ray-curable coating composition No. A— 1 2
製造例 A— 1で得られたァクリル酸エステル N o . A - 1溶液か ら溶剤を留去して不揮発分 7 0 %の溶液を得た。 この溶液 1 4 2. 9部 (不揮発分 1 0 0部) に、 ダロキュア 1 1 7 3 (商品名、 チバ ' スペシャルティ ' ケミカルズ社製、 2 —ヒ ドロキシー 2 —メチル 一 1 —フエ二ループロパン一 1 _オン、 光重合開始剤) 3部、 及び RMA- 5 0 6 (商品名、 日本乳化剤社製、 ポリオキシエチレンノ ニルフエニルエーテルァクリ レー卜、 ノニオン性反応性乳化剤) 6 部を加え、 攪拌しながら脱イオン水 2 1 0. 4部を徐々に加えて水 分散化した。 さらに B YK— 3 4 8 (商品名、 ビックケミ一社製、 表面調整剤) を 1部加えて不揮発分 3 0 %の水性型の活性エネルギ —線硬化塗料組成物 N o . A— 1 2 を得た。  The solvent was distilled off from the acrylic acid ester No. A-1 solution obtained in Production Example A-1 to obtain a solution having a nonvolatile content of 70%. 1 4 2. 9 parts of this solution (non-volatile content: 100 parts) were added to Darocur 1 1 7 3 (trade name, manufactured by Ciba 'Specialty' Chemicals, 2 — Hydroxy 2 — Methyl 1 1_ON, photopolymerization initiator) 3 parts, and RMA-5 0 6 (trade name, manufactured by Nippon Emulsifier Co., Ltd., polyoxyethylene nonyl phenyl ether acrylate, nonionic reactive emulsifier) 6 parts While stirring, 20.4 parts of deionized water was gradually added to disperse in water. In addition, 1 part of B YK-3 4 8 (trade name, manufactured by Bicchemi Co., Ltd., surface conditioner) was added, and 30% non-volatile water-based active energy-line curable coating composition No. A-1 2 was added. Obtained.
<実施例 A— 1 3及び A— 1 4 > <Examples A-1 3 and A-1 4>
活性エネルギー線硬化塗料組成物 N o . A— 1 3、 N o . A— 1 4 の製造 Production of active energy ray curable coating compositions No. A— 1 3 and No. A— 14
アクリル酸エステル N o . A— 1溶液を、 アクリル酸エステル N o . A— 8溶液、 アクリル酸エステル N o . A— 1 2溶液に変更し た以外は、 表 A— 2の配合に従い実施例 A— 1 2 と同様にして、 不 揮発分 3 0 %の水性型の活性エネルギー線硬化塗料組成物 N o . A 一 1 3及び N o . A— 1 4を得た。  Examples according to the formulation in Table A-2 except that the acrylic ester No. A-1 solution was changed to an acrylic ester No. A-8 solution and an acrylic ester No. A-12 solution. In the same manner as A-1 2, aqueous type active energy ray curable coating compositions having a non-volatile content of 30% were obtained.
<実施例 A— 1 5 > <Example A— 1 5>
活性エネルギー線硬化塗料組成物 N o . A— 1 5の製造 Production of active energy ray-curable coating composition No. A—15
製造例 A— 1で得られたアクリル酸エステル N o . A— 1溶液か ら溶剤を留去して不揮発分 7 0 %の溶液を得た。 この溶液 1 4 2. 9部 (不揮発分 1 0 0部) に、 ダロキュア 1 1 7 3 3部、 及び製 造例 A— 1 5で得た反応性高分子乳化剤 N o . A - 1 1 4. 3部 (不揮発分 1 0部) を加え、 攪拌しながら脱イオン水 2 1 8. 8部 を徐々に加えて水分散化した。 さらに B YK— 3 4 8 を 1部加えて 不揮発分 3 0 %の水性型の活性エネルギー線硬化塗料組成物 N o . A - 1 5 を得た。 The solvent was distilled off from the acrylic ester No. A-1 solution obtained in Production Example A-1 to obtain a solution having a nonvolatile content of 70%. 1 4 2. 9 parts of this solution (non-volatile content 100 parts), Darocur 1 1 7 3 3 parts, and the reactive polymer emulsifier obtained in Production Example A-1 5 No. A-1 1 4 3 parts (10 parts of non-volatile content) was added, and 2 18.8 parts of deionized water was gradually added while stirring to disperse in water. Furthermore, 1 part of B YK-3 4 8 was added to obtain an aqueous active energy ray-curable coating composition No. A-15 having a nonvolatile content of 30%.
<実施例 A— 1 6 > <Example A— 1 6>
活性エネルギー線硬化塗料組成物 N o . A— 1 6の製造 Production of active energy ray curable coating composition No. A—16
製造例 A— 1 4で得られた光硬化性樹脂溶液 N o . A— 1 に酢酸 プチルを加えて不揮発分 7 0 %の溶液を得た。 この溶液 1 4 2. 9 部 (不揮発分 1 0 0部) に、 ダロキュア 1 1 7 3 3部、 RMA— 5 0 6 6部を加え、 攪拌しながら脱イオン水 2 1 0. 4部を徐々 に加えて水分散体を得た。 さらに B YK— 3 4 8 を 1部加えて不揮 発分 3 0 %の組成物を得た。 この組成物 3 0部と、 実施例 A— 1 2 で得た不揮発分 3 0 %の水性型の活性エネルギー線硬化塗料組成物 N o . A— 1 2 7 0部とを、 攪拌しながら混合して、 不揮発分 3 0 %の水性型の活性エネルギー線硬化塗料組成物 N o . A_ l 6を 得た。 To the photocurable resin solution No. A-1 obtained in Production Example A-14, butyl acetate was added to obtain a solution having a nonvolatile content of 70%. Darocur 1 1 7 3 3 parts and RMA — 5 0 6 6 parts are added to 1 4 2.9 parts of this solution (non-volatile content 1 100 parts), and 2 1 0. 4 parts of deionized water are gradually added while stirring. In addition, an aqueous dispersion was obtained. Further, 1 part of BYK-3 4 8 was added to obtain a composition having a nonvolatile content of 30%. 30 parts of this composition was mixed with 30 parts of an aqueous active energy ray-curable coating composition of 30% non-volatile content obtained in Example A-1 2 with stirring. As a result, an aqueous active energy ray-curable coating composition No. A_l 6 having a nonvolatile content of 30% was obtained.
表 A— 2 Table A-2
Figure imgf000060_0001
Figure imgf000060_0001
配合における数値は不揮発分を示す。 The numerical value in a mixing | blending shows a non volatile matter.
<比較例 A— 1〜A— 7 > <Comparative Example A— 1 to A— 7>
活性エネルギー線硬化塗料組成物 N o . A— 1 7〜N o . A— 2 3 の製造 Production of active energy ray curable coating compositions No. A—17 to No. A—23
表 A— 3の配合内容とする以外は、 実施例 A— 1 と同様にして、 有機溶剤型の活性エネルギー線硬化塗料組成物 N o . A— 1 7〜N o . A _ 2 3 を得た。 Except for the contents shown in Table A-3, the organic solvent-type active energy ray-curable coating composition No. A—17 to No. A — 23 was obtained in the same manner as in Example A-1. It was.
表 A— 3 Table A-3
Figure imgf000062_0001
Figure imgf000062_0001
配合における数値は不揮発分を示す。 The numerical value in a mixing | blending shows a non volatile matter.
<比較例 A— 8〜A— 1 0 > <Comparative Example A— 8 to A— 1 0>
活性エネルギー線硬化塗料組成物 N o . A— 2 4〜N o . A - 2 6 の製造 Production of active energy ray curable coating compositions No. A—24-No.A-26
表 A— 4の配合内容とする以外は、 実施例 A— 1 2 と同様にして 、 水性型の活性エネルギー線硬化塗料組成物 N o . A— 2 4〜N o . A— 2 6 を得た。  Aqueous active energy ray-curable coating compositions No. A—24 to No. A—26 were obtained in the same manner as in Example A—12 except that the content of Table A-4 was used. It was.
<比較例 A— 1 1 > <Comparative Example A— 1 1>
活性エネルギー線硬化塗料組成物 N o . A - 2 7の製造 Production of active energy ray curable coating composition No. A-2 7
表 A— 4の配合内容とする以外は、 実施例 A— 1 6 と同様にして 、 水性型の活性エネルギー線硬化塗料組成物 N o . A— 2 7 を得た A water-based active energy ray-curable coating composition No. A-2 7 was obtained in the same manner as in Example A-1-6 except that the content of Table A-4 was changed.
表 A— 4 Table A— 4
Figure imgf000064_0001
Figure imgf000064_0001
配合における数値は不揮発分を示す。 The numerical value in a mixing | blending shows a non volatile matter.
[試験用塗装板の作成] [Preparation of test paint plate]
被塗物としてポリカーボネート樹脂板 (商品名、 ダイヤライ ト P 、 三菱レイヨン社製、 7 0 mmX l 5 0 mmX 2mm) を用いた。 実施例及び比較例で得た活性エネルギー線硬化塗料組成物 N o . A 一 l〜N o . A— 2 7の各々を、 エアスプレーで乾燥塗膜が 1 2 mになるように塗装して、 実施例 A— 1〜A— 1 1及び比較例 A— 1〜A_ 7 については 6 0でで 5分間、 実施例 A— 1 2〜A— 1 6 及び比較例 A— 8〜 A— 1 1 については 6 0 °Cで 1 0分間乾燥させ た。 さらに、 高圧水銀ランプで 6 , 0 0 0 J Zm 2 の紫外線を照射 し光硬化して、 各活性エネルギー線硬化塗料組成物の N oに対応す る試験用塗装板 N o . A— ;! 〜 N o . A— 2 7 を得た。 A polycarbonate resin plate (trade name, Dialite P, manufactured by Mitsubishi Rayon Co., Ltd., 70 mmXl 50 mmX2 mm) was used as an object to be coated. Each of the active energy ray-curing coating compositions obtained in Examples and Comparative Examples No. A 1 l to No. A-2 7 is applied by air spray so that the dry coating film becomes 12 m. Example A— 1 to A— 1 1 and Comparative Example A— 1 to A_ 7 at 60 at 5 minutes, Example A— 1 2 to A— 1 6 and Comparative Example A— 8 to A— 1 1 was dried at 60 ° C. for 10 minutes. Furthermore, the test plate corresponding to No of each active energy ray-curing coating composition is cured by irradiating with UV light of 6,00 0 J Zm 2 with a high-pressure mercury lamp and photocuring. ~ No o A-2 7 was obtained.
試験用塗装板 N o . A— l〜N o . A— 2 7について、 下記の試 験方法に従って試験に供した。 実施例の結果を表 A— 5に、 比較例 の結果を表 A— 6 に併せて示す。 Test plates No. A—l to No. A—27 were subjected to the test according to the following test method. The results of the examples are shown in Table A-5, and the results of the comparative examples are shown in Table A-6.
表 A— 5 Table A-5
Figure imgf000066_0001
Figure imgf000066_0001
表 A— 5 (続き) Table A—5 (continued)
Figure imgf000067_0001
Figure imgf000067_0001
表 A— 6 Table A—6
Figure imgf000068_0001
Figure imgf000068_0001
表 A— 6 (続き) Table A—6 (continued)
Figure imgf000069_0001
Figure imgf000069_0001
[試験方法] [Test method]
(注 A— 1 ) 仕上り性  (Note A— 1) Finishability
各塗膜の塗面外観を目視で評価した。  The coated surface appearance of each coating film was visually evaluated.
V e r y G o o d ( V G) : うねり、 ツヤピケ及びチリ肌がな く、 仕上りが良好である (製品として合格)  VeryGood (VG): No waviness, glossy pickle, or chilli skin, and a good finish (passed as a product)
G o o d ( G) : うねり、 ツヤピケ及びチリ肌の少なく とも 1つ がごくわずかにあるが、 仕上りが良好である (製品として合格) Good (G): Slightly at least one of swell, glossy pickle, and chilli skin but good finish (pass as product)
F i r ( F ) : うねり、 ツヤピケ及びチリ肌の少なく とも 1つ が見られる (製品として不合格) F i r (F): At least one of swell, glossy pickle, and chilli skin is seen (failed as a product)
P o o r ( P ) : うねり、 ツヤピケ及びチリ肌の少なく とも 1つ が著しく見られ仕上り性が不良である (製品として不合格)  P o o r (P): At least one of swell, glossy pickle, and chilli skin is noticeable and the finish is poor (failed as a product)
(注 A— 2 ) 鉛筆硬度  (Note A—2) Pencil hardness
J I S K 5 6 0 0— 5— 4 ( 1 9 9 9 ) に準じて、 各塗膜面 に対し約 4 5 ° の角度に鉛筆の芯を当て、 芯が折れない程度に強く 試験塗板面に押し付けながら前方に均一な速さで約 1 0 mm動かし た。 この操作を、 試験箇所を変えて 5回繰り返して塗膜が破れなか つた場合のもつとも硬い鉛筆の硬度記号を鉛筆硬度とした。  In accordance with JISK 5 6 0 0— 5— 4 (1 9 9 9), apply a pencil lead at an angle of approximately 45 ° to each coating surface, and press against the test coating surface to the extent that the lead does not break. However, it moved about 10 mm forward at a uniform speed. This operation was repeated 5 times with different test locations, and the hardness symbol of the hardest pencil when the coating did not break was designated as pencil hardness.
(注 A - 3 ) 耐擦り傷性 ( 1 )  (Note A-3) Scratch resistance (1)
各塗膜面に、 市販の名刺を塗膜に押し当てて 2 0往復こすった後 、 どの程度傷がつくかにより判定した。  A commercially available business card was pressed against the coating film on each coating film and rubbed back and forth 20 times.
V e r y G o o d ( V G) : 全く傷がつかない (製品として合 格)  V er y Go o d (V G): Not scratched at all.
G o o d (G) : ほとんど傷がつかず、 近づかないと ( 5 c mく らい) 傷がわからない (製品として合格)  G o o d (G): Scratches are scarce and must be approached (5 cm). Scratches not visible (pass as product)
F a i r (F) : うすく擦り傷がある (製品として不合格)  F a i r (F): Slightly scratched (not acceptable as a product)
P o o r (P ) : 擦り傷の程度がひどい (製品として不合格) P o o r (P): Scratch is severe (failed as a product)
_11主 A— 4 ) 耐擦り傷性 ( 2 ) 各試験用塗装板について、 A S TM D 1 0 4 4に準じて、 テー バー磨耗性試験 (磨耗輪 C F— 1 0 P、 荷重 5 0 0 g、 1 0 0回転 ) を行なった。 試験前後の塗膜について、 J I S K 5 6 0 0 - 4 - 7 ( 1 9 9 9 ) の鏡面光沢度 ( 6 0度) に準じて、 各塗面の光 沢度を測定した。 試験前の光沢度に対する試験後の光沢度を光沢保 持率 (%) として求め、 下記基準により評価した。 _11 Main A — 4) Scratch resistance (2) Each coated plate for test was subjected to a Taber abrasion test (abrasion wheel CF—10 P, load: 500 g, 100 rpm) in accordance with AS TM D 10 4 4. With respect to the coating film before and after the test, the luminosity of each coating surface was measured according to the specular glossiness (60 degrees) of JISK 5600-0-7 (199). The glossiness after the test relative to the glossiness before the test was determined as the gloss retention (%) and evaluated according to the following criteria.
V e r y G o o d ( V G) : 光沢保持率 9 0 %以上  VeryGood (VG): Gloss retention 90% or more
G o o d ( G) : 光沢保持率 8 0 %以上 9 0 %未満  G o o d (G): Gloss retention 80% or more and less than 90%
F a i r ( F ) : 光沢保持率 6 0 %以上 8 0 %未満  F a i r (F): Gloss retention 60% or more and less than 80%
P o o r ( P ) : 光沢保持率 6 0 %未満  P o o r (P): Gloss retention less than 60%
(注 A - 5 ) 耐候性  (Note A-5) Weather resistance
各試験板について、 J I S K 5 6 0 0 - 7 - 8 ( 1 9 9 9 ) に準拠して、 サンシャインゥェザオメ一夕一を用いて 5 0 0時間の 耐候性試験を行い、 下記基準により評価した。  Each test plate was subjected to a 500-hour weather resistance test using Sunshine Weathering according to JISK 5600-0-7-8 (1 9 9 9), according to the following criteria: evaluated.
V e r y G o o d ( V G) : 塗膜表面に異常が全く認められず 、 初期と試験後における試験板において、 J I S Z 8 7 3 0に 準拠する色差 Δ Εが 0. 3未満である (製品として合格)  Very Good (VG): No abnormalities were observed on the paint film surface, and the color difference ΔΕ conforming to JISZ 87 30 was less than 0.3 in the test plate at the initial stage and after the test. )
G o o d (G) : 僅かな黄変が認められ、 初期と試験後における 試験板において、 J I S Z 8 7 3 0 に準拠する色差 Δ Εが 0. 3以上〜 0. 5未満である (製品として合格)  G ood (G): Slight yellowing is observed, and the color difference Δ 準 拠 in accordance with JISZ 8 7 3 0 is 0.3 or more and less than 0.5 in the initial and post-test test plates. )
F a i r (F) : 塗膜に黄変が認められ、 初期と試験後における 試験板において、 J I S Z 8 7 3 0に準拠する色差△ Eが 0. 5以上〜 0. 8未満である (製品として不合格)  F air (F): Yellowing is observed in the paint film, and the color difference △ E based on JISZ 8 7 30 is between 0.5 and less than 0.8 in the test plate in the initial stage and after the test. failure)
P o o r ( P ) : 塗膜の黄変が著しく、 初期と試験後における試 験板において、 J I S Z 8 7 3 0 に準拠する色差 Δ Εが 0. 8 以上である (製品として不合格)  P o o r (P): The yellowing of the paint film is remarkable, and the color difference Δ 準 拠 in accordance with JISZ 8 7 3 0 is 0.8 or more in the initial and post-test test plates.
(注 Α— 6 ) 耐溶剤性 各塗膜面に、 ろ紙を 2枚並べて置き、 各ろ紙上にスポイ トで 7 8 %ェタノール及び 2 %ホルマリンをそれぞれ別個に滴下し、 ろ紙を 湿潤させた。 このスポイ トによる滴下を 1時間間隔で 5回行い、 そ の後 2時間経過後にろ紙を除いた塗膜表面を目視で評価した。 (Note Α-6) Solvent resistance Two filter papers were placed side by side on each coating surface, and 78% ethanol and 2% formalin were separately dropped on each filter paper with a spot to wet the filter paper. Dropping with this spot was performed 5 times at 1 hour intervals, and after 2 hours, the surface of the coating film with the filter paper removed was visually evaluated.
G o o d (G) : フクレ及び Z又はハガレ等の異常がない  G o o d (G): No abnormalities such as bulge and Z or peeling
F a i r (F) : 少なく とも一方の塗膜に目視で軽度なフクレ及 び/又は八ガレ等の異常がある  F a i r (F): At least one of the coating films has a slight bulge and / or abnormalities such as galling.
P o o r ( P ) : 少なく とも一方の塗膜が溶解する  P o o r (P): At least one of the coatings dissolves
<< B . 塗膜形成方法に関する実施例 >> << B. Examples of coating film formation method >>
澱粉系樹脂 ( I ) の製造 Manufacture of starch-based resin (I)
<製造例 B - 1 > <Production example B-1>
澱粉系樹脂 ( I 一 1 ) Starch-based resin (I 1 1)
ハイアミロースコーンスターチ (日本コーンスターチ社製、 水酸 基価 5 0 0 m g KOHZ g) 2 5部をジメチルスルホキシド (DM S〇) 2 0 0部に懸濁させ、 攪姅しながら 9 0 °Cまで昇温し、 2 0 分間その温度に保持して糊化させた。 この溶液に重炭酸ナトリゥム 2 0部を触媒として添加し、 9 0 °Cを維持してラウリン酸ビニル 1 7部を添加し、 その温度で 1時間反応させた。 次に、 さらに酢酸ビ ニル 3 7部を添加して、 同じく 8 0 °Cで 1時間反応させた。 その後 、 反応液を水道水中に流し込み、 高速で攪拌して粉砕を行い、 濾過 し、 脱水乾燥して、 澱粉系樹脂 ( I 一 1 ) を調製した。  High amylose corn starch (manufactured by Nippon Corn Starch Co., Ltd., hydroxy group value 500 mg KOHZ g) 2 5 parts are suspended in 20 parts of dimethyl sulfoxide (DMSO) and heated to 90 ° C while stirring. Warm and hold at that temperature for 20 minutes to gelatinize. To this solution, 20 parts of sodium bicarbonate was added as a catalyst, 17 parts of vinyl laurate was added while maintaining 90 ° C., and the mixture was reacted at that temperature for 1 hour. Next, another 7 parts of vinyl acetate 37 was added and reacted at 80 ° C for 1 hour. Thereafter, the reaction solution was poured into tap water, stirred at high speed, pulverized, filtered, dehydrated and dried to prepare a starch-based resin (I 1 1).
イソシァネート基を有する生成物 (X) の製造 Production of a product (X) having an isocyanate group
<製造例 B— 2 > <Production example B-2>
イソシァネート基を有する牛成物 (X— 1 ) Adult cattle with isocyanate groups (X— 1)
温度計、 サーモスタッ ト、 攪拌機、 冷却管及び滴下装置を備えた 容量 1 Lの反応容器にトルエン 1 2 5部、 イソホロンジイソシァネ ート 3 7 7部を仕込み、 窒素雰囲気下で、 攪拌しながら混合して、 8 0 °Cまで昇温した。 次いで、 1 , 4—ブタンジオール 1 2 3部を 3時間かけて滴下し、 滴下終了後 8 0 °Cで 3 0分間熟成して、 不揮 発分 8 0 %のイソシァネート基を有する生成物 (X— 1 ) 溶液を調 製した。 得られたイソシァネート基を有する生成物 (X— 1 ) の NCharge a 1 L reaction vessel equipped with a thermometer, thermostat, stirrer, condenser, and dripping device. 1 25 5 parts of toluene and 7 7 parts of isophorone diisocyanate are stirred in a nitrogen atmosphere. Mix while The temperature was raised to 80 ° C. Subsequently, 1,3-butanediol 1 2 3 parts were added dropwise over 3 hours, and after completion of the addition, the mixture was aged for 30 minutes at 80 ° C., and a product having an isocyanate group with a non-volatile content of 80% ( X— 1) A solution was prepared. N of the obtained product (X-1) having an isocyanate group
C O価は、 5 5 m g N C OZ gであった。 The C 2 O value was 55 mg N C OZ g.
<製造例 B— 3 >  <Production example B-3>
イソシァネート基を有する生成物 (X— 2 ) Products with isocyanate groups (X— 2)
温度計、 サーモスタッ ト、 攪拌機、 冷却管及び滴下装置を備えた 容量 1 Lの反応容器に トルエン 1 2 5部、 イソホロンジイソシァネ 一卜 3 2 5部を仕込み、 窒素雰囲気下で、 攪拌しながら混合して、 8 0 °Cまで昇温した。 次いで、 トリエチレングリコール 1 1 7部を 3時間かけて滴下し、 滴下終了後 8 0 °Cで 3 0分間熟成して、 不揮 発分 8 0 %のイソシァネート基を有する生成物 (X— 2 ) 溶液を調 製した。 得られたイソシァネート基を有する生成物 (X— 2 ) の N C O価は、 5 7 m g N C O/ gであった。  A 1 L reaction vessel equipped with a thermometer, thermostat, stirrer, condenser, and dripping device was charged with 1 2 5 parts of toluene and 1 2 3 parts of isophorone diisocyanate and stirred in a nitrogen atmosphere. The mixture was mixed and heated to 80 ° C. Next, 7 parts of triethylene glycol 1 1 7 parts were added dropwise over 3 hours. After completion of the addition, the mixture was aged for 30 minutes at 80 ° C, and a product having an isocyanate group of 80% non-volatile content (X-2 ) The solution was prepared. The N C O value of the product (X-2) having an isocyanate group thus obtained was 57 mg N C O / g.
ビニル共重合体樹脂 (Y) の製造 Manufacture of vinyl copolymer resin (Y)
ぐ製造例 B - 4 > Production Example B-4>
ビニル共重合体樹脂 (Y— 1 ) Vinyl copolymer resin (Y—1)
温度計、 サーモスタッ ト、 攪拌機、 冷却管及び滴下装置を備えた 容量 1 Lの反応容器にトルエン 3 3 3部を仕込み、 窒素雰囲気下で 、 攪拌しながら混合して、 1 0 0 °Cまで昇温した。 次いで、 下記組 成の 「混合物 B— 1」 を 4時間かけて滴下し、 滴下終了後 1 0 0で で 1時間熟成して、 不揮発分 6 0 %のビニル共重合体樹脂 ( Y— 1 ) 溶液を得た。 得られたビニル共重合体樹脂 (Y— 1 ) の水酸基価 は、 8 6 m g KOHZ gであった。  Charge 33.3 parts of toluene into a 1 L reaction vessel equipped with a thermometer, thermostat, stirrer, condenser and dripping device, mix under stirring in a nitrogen atmosphere, and rise to 100 ° C Warm up. Next, “Mixture B-1” having the following composition was added dropwise over 4 hours. After completion of the dropwise addition, the mixture was aged at 100 ° C. for 1 hour to obtain a vinyl copolymer resin (Y-1) having a nonvolatile content of 60%. A solution was obtained. The obtained vinyl copolymer resin (Y-1) had a hydroxyl value of 86 mg KOHZ g.
「混合物 B— 1」  “Mixture B— 1”
スチレン 2 0 0部 メタクリル酸メチル 1 5 0部 ァクリル酸 n—ブチル 5 0部 メタクリル酸 2—ヒ ドロキシェチル 1 0 0部Styrene 2 0 0 parts Methyl methacrylate 1 5 0 parts n-Butyl acrylate 5 0 parts Methacrylic acid 2-hydroxychetyl 1 0 0 parts
2 , 2 , —ァゾビス ( 2—メチルプチロニトリル) 2 5部 澱粉系樹脂 ( I I ) の製造 2, 2, —Azobis (2-methylpropylonitrile) 2 5 parts Manufacture of starch-based resin (I I)
<製造例 B— 5 > <Production example B-5>
澱粉系樹脂 ( I I 一 1 ) Starch-based resin (I I 1 1)
温度計、 サーモスタッ ト、 攪拌機及び冷却管を備えた容量 1 Lの 反応容器に酢酸ブチル 5 9 5. 0部を仕込み、 窒素雰囲気下で攪捽 しながら 5 0 °Cまで昇温した。 次いで、 5 0 °Cを保持して製造例 B 一 1で得た澱粉系樹脂 ( I 一 1 ) 1 8 0部を反応容器中に仕込み、 その後 1 0 0 °Cに昇温して、 仕込んだ澱粉系樹脂 ( I — 1 ) の全て が溶解するまで攪拌した。 次に、 製造例 B— 2で得た不揮発分 8 0 %のイソシァネート基を有する生成物 (X— 1 ) 溶液を 2 5部仕込 み、 均一になるまで攪拌した後、 触媒としてジブチル錫ジラウレー ト 0 , 0 2部を添加し、 窒素雰囲気下で攪拌しながら 1 0 0 °Cで 6 時間反応を行って、 不揮発分 2 5 %の澱粉系樹脂 ( I I 一 1 ) 溶液 を得た。 得られた澱粉系樹脂 ( I I 一 1 ) の N C O価は、 0. 4 m g N C OZ gであった。  Into a 1 L reaction vessel equipped with a thermometer, thermostat, stirrer and condenser, 5.95.0 parts of butyl acetate was charged, and the temperature was raised to 50 ° C. while stirring in a nitrogen atmosphere. Next, 1 80 parts of the starch-based resin (I 1 1) obtained in Production Example B 1-1 while being kept at 50 ° C was charged into a reaction vessel, and then heated to 100 ° C and charged. The starch-based resin (I-1) was stirred until all was dissolved. Next, after adding 25 parts of the product (X-1) solution having an isocyanate group having a non-volatile content of 80% obtained in Production Example B-2 and stirring until homogeneous, dibutyltin dilaurate was used as a catalyst. 0,02 parts were added, and the mixture was reacted at 100 ° C. for 6 hours with stirring under a nitrogen atmosphere to obtain a starch resin (II 1 1) solution having a nonvolatile content of 25%. The N C O value of the obtained starch-based resin (I I 1 1) was 0.4 mg N C OZ g.
ぐ製造例 B— 6〜 B _ 8 > Manufacturing Example B— 6 to B _ 8>
澱粉系樹脂 ( I 1 — 2 ) 〜 ( I 1 — 4 ) Starch-based resin (I 1-2) to (I 1-4)
表 B _ 1 に示す配合組成とした以外は、 製造例 B— 5 と同様にし て、 澱粉系樹脂 ( I I 一 2 ) 〜 ( I 1 — 4 ) 溶液を得た。 得られた 樹脂の N C O価を併せて表 B— 1 に示す。  A starch-based resin (II-12) to (II-4) solution was obtained in the same manner as in Production Example B-5 except that the composition shown in Table B_1 was used. Table B-1 shows the N C O values of the resins obtained.
澱粉系樹脂 ( I I I ) の製造 Manufacture of starch-based resin (I I I)
<製造例 B - 9 > <Production example B-9>
澱粉系樹脂 ( I I I 一 1 ) 温度計、 サーモスタッ ト、 攪拌機及ぴ冷却管を備えた容量 1 Lの 反応容器に、 酢酸ブチル 5 8 1. 6部、 製造例 B— 4で得た不揮発 分 6 0 %のビニル共重合体樹脂 (Y— 1 ) 溶液を 3 3. 4部仕込み 、 窒素雰囲気下で攪拌しながら 5 0 °Cまで昇温した。 次いで、 5 0 °Cを保持して製造例 B— 1で得た澱粉系樹脂 ( I 一 1 ) 1 6 0部を 攪拌下に反応容器中に仕込み、 その後 1 0 0 °Cに昇温して、 仕込ん だ澱粉系樹脂 ( I — 1 ) の全てを溶解させた。 次に、 製造例 B— 2 で得た不揮発分 8 0 %のイソシァネート基を有する生成物 (X— 1 ) 溶液を 2 5部仕込み、 均一になるまで攪拌した後、 触媒としてジ プチル錫ジラウレート 0. 0 2部を添加し、 窒素雰囲気下で攪拌し ながら 1 0 0 °Cで 6時間反応させて、 不揮発分 2 5 %の澱粉系樹脂 ( I I I 一 1 ) 溶液を得た。 得られた澱粉系樹脂 ( I I I — 1 ) の N C O価は、 0. 4m g N C〇 / であった。 Starch-based resin (III 1 1) A vinyl copolymer resin with a non-volatile content of 60% obtained in Production Example B-4 in a 1 L reaction vessel equipped with a thermometer, thermostat, stirrer, and condenser, in a 1 L capacity vessel. (Y-1) The solution was charged with 33.4 parts, and the temperature was raised to 50 ° C. with stirring in a nitrogen atmosphere. Next, the starch-based resin (I 1 1) 160 obtained in Production Example B-1 was maintained at 50 ° C. in a reaction vessel with stirring, and the temperature was raised to 100 ° C. Thus, all of the charged starch resin (I-1) was dissolved. Next, 25 parts of a product (X-1) solution having an isocyanate group having a nonvolatile content of 80% obtained in Production Example B-2 was charged and stirred until homogeneous, and then dipyltin dilaurate as a catalyst. 0.02 part was added, and the mixture was reacted at 100 ° C. for 6 hours with stirring under a nitrogen atmosphere to obtain a starch resin (III-11) solution having a nonvolatile content of 25%. The NCO value of the obtained starch-based resin (III-1) was 0.4 mg NC0 /.
ぐ製造例 B— 1 0〜B— 1 2 > Production Example B— 1 0 to B— 1 2>
澱粉系樹脂 ( I I I 一 2 ) 〜 ( I I I 一 4 ) Starch Resin (I I I 1 2)-(I I I 1 4)
表 B— 1 に示す配合組成とした以外は、 製造例 B— 9 と同様にし て、 澱粉系樹脂 ( I I I 一 2 ) 〜 ( I I I 一 4 ) 溶液を得た。 得ら れた樹脂の N C〇価を併せて表 B― 1 に示す。 A starch-based resin (III-12) to (III-14) solution was obtained in the same manner as in Production Example B-9 except that the composition shown in Table B-1 was used. Table B-1 shows the NC values of the resins obtained.
表 B— 1 Table B— 1
Figure imgf000076_0001
Figure imgf000076_0001
配合における数値は質量部を表し、 ( ) 内は不揮発分を表す。 The numerical value in a mixing | blending represents a mass part, The inside of () represents a non volatile matter.
澱粉系樹脂 ( I V ) の製造 Manufacture of starch-based resin (IV)
<製造例 B - 1 3 > <Production example B-1 3>
澱粉系樹脂 ( I V— 1 ) Starch resin (I V— 1)
温度計、 サーモスタッ ト、 攪拌機、 冷却管及び滴下装置を備えた 容量 1 Lの反応容器に、 酢酸ブチル 4 6 6部を仕込み、 窒素雰囲気 下で攪拌しながら 5 0 °Cまで昇温した。 次いで、 5 0 °Cに保持して 製造例 B — 1で得た澱粉系樹脂 ( I 一 1 ) 1 6 0部を反応容器中に 仕込み、 その後 1 0 0 °Cに昇温して、 仕込んだ澱粉系樹脂 ( I 一 1 ) が完全に溶解するまで攪拌した。 次いで、 下記組成の 「混合物 B — 2」 を 1時間かけて滴下し、 滴下終了後、 1 0 0 °Cで 1時間熟成 して、 不揮発分 3 0 %の澱粉系樹脂 ( I V— 1 ) 溶液を得た。  Into a reaction vessel with a capacity of 1 L equipped with a thermometer, thermostat, stirrer, condenser, and dripping device, 46 6 parts of butyl acetate was charged, and the temperature was raised to 50 ° C. while stirring in a nitrogen atmosphere. Next, hold the starch-based resin (I 1 1) 160 obtained in Production Example B-1 at 50 ° C. in a reaction vessel, and then raise the temperature to 100 ° C. The starch-based resin (I 1 1) was stirred until completely dissolved. Next, “Mixture B-2” having the following composition was added dropwise over 1 hour. After completion of the addition, the mixture was aged at 100 ° C. for 1 hour to give a starch-based resin (IV-1) solution having a nonvolatile content of 30%. Got.
「混合物 B— 2」  "Mixture B-2"
スチレン 3 2部 メ夕クリル酸メチル 4部 アクリル酸 n —ブチル 4部 パー力 ドックス C H— 5 0 L (注 B _ 1 ) 4部 Styrene 3 2 parts Methyl methacrylate 4 parts Acrylic acid n —Butyl 4 parts Par force Dock C H— 50 L (Note B _ 1) 4 parts
(注 B— 1 ) ジァシルバーオキサイ ドを 5 0 %含有する重合開 始剤 : 化薬ァクゾ株式会社製 (Note B-1) Polymerization initiator containing 50% disilver oxide: manufactured by Kayaku Akuzo Corporation
<製造例 B— 1 4 > <Production example B— 1 4>
澱粉系樹脂 ( I V— 2 ) Starch-based resin (IV-2)
「混合物 B— 2」 の代わりに下記組成の 「混合物 B— 3」 を用い た以外は、 製造例 B— 1 3 と同様にして、 不揮発分 3 0 %の澱粉系 樹脂 ( I V— 2 ) 溶液を得た。  A starch-based resin (IV-2) solution with a nonvolatile content of 30% in the same manner as in Production Example B-13, except that "Mixture B-3" having the following composition was used instead of "Mixture B-2" Got.
「混合物 B— 3」  “Mixture B-3”
スチレン 2 8部 メ夕クリル酸メチル 4部 アクリル酸 n —プチル 4部 メタク リル酸 2 —ヒ ドロキシェチル 4部 パ一力 ドックス C H— 5 0 L 4部Styrene 2 8 parts Methyl methacrylate 4 parts Acrylic acid n —Ptyl 4 parts Methacrylic acid 2 —Hydrochetil 4 parts Pour force CH— 5 0 L 4 parts
<製造例 B— 1 5 > <Production example B— 1 5>
澱粉系樹脂 ( I V— 3 ) Starch-based resin (IV-3)
「混合物 B— 2」 の代わり に下記組成の 「混合物 B— 4」 を用い た以外は、 製造例 B— 1 3 と同様にして、 不揮発分 3 0 %の澱粉系 樹脂 ( I V _ 3 ) 溶液を得た。  A starch-based resin (IV_3) solution with a nonvolatile content of 30% in the same manner as in Production Example B-13, except that "Mixture B-4" having the following composition was used instead of "Mixture B-2" Got.
「混合物 B— 4」  “Mixture B—4”
スチレン 1 6部 メタク リル酸メチル 1 6部 アク リル酸 n—ブチル 4部 メタク リル酸 2 —ヒ ドロキシェチル 4部 パー力 ドックス C H— 5 0 L 4部 ぐ製造例 B— 1 6 >  Styrene 1 6 parts Methyl methacrylate 1 6 parts N-butyl acrylate 4 parts Methacrylic acid 2 —Hydroxychetyl 4 parts Parr force Dock C H— 50 L 4 parts Production Example B— 1 6>
澱粉系樹脂 ( I V _ 4 ) Starch resin (I V _ 4)
澱粉系樹脂 ( I 一 1 ) の仕込み量を 1 8 0部とし、 「混合物 B— The amount of starch-based resin (I 1 1) charged is 180 parts.
2」 の代わり に下記組成の 「混合物 B— 5」 を用いた以外は、 製造 例 B— 1 3 と同様にして、 不揮発分 3 0 %の澱粉系樹脂 ( I V— 4A starch-based resin (IV-4) with a nonvolatile content of 30% was prepared in the same manner as in Production Example B-13, except that "Mixture B-5" having the following composition was used instead of "2".
) 溶液を得た。 ) A solution was obtained.
「混合物 B— 5」  "Mixture B-5"
スチレン 1 4部 メ夕ク リル酸メチル 2部 アク リル酸 n—ブチル 2部 メ夕ク リル酸 2 —ヒ ドロキシェチル 2部 パ一力 ドックス C H— 5 0 L 2部 Styrene 1 4 parts Methyl methacrylate 2 parts N-butyl acrylate 2 parts Methyl methacrylate 2 —Hydroxychetyl 2 parts Power dox C H— 50 L 2 parts
<製造例 B— 1 7 > <Production example B— 1 7>
澱粉系樹脂 1J V— 5 ) 「混合物 B— 2」 の代わりに、 下記組成の 「混合物 B _ 6」 を用 いた以外は、 製造例 B _ l 3 と同様にして、 不揮発分 3 0 %の澱粉 系樹脂 ( I V— 5 ) 溶液を得た。 Starch resin 1J V— 5) A starch-based resin (IV-5) with a non-volatile content of 30% was prepared in the same manner as in Production Example B_l3, except that “Mixture B — 6” having the following composition was used instead of “Mixture B-2”. A solution was obtained.
「混合物 B— 6」  “Mixture B—6”
メタクリル酸メチル 3 2部 アクリル酸 n—ブチル 4部 パー力 ドックス C H— 5 0 L 4部 澱粉系樹脂 (V) の製造  Methyl methacrylate 3 2 parts N-butyl acrylate 4 parts Parr force Dock C H— 50 L 4 parts Manufacture of starch-based resin (V)
<製造例 B— 1 8 >  <Production example B— 1 8>
澱粉系樹脂 (V— 1 ) Starch-based resin (V— 1)
イソシァネート基を有する生成物 (X— 3 ) の製造 Production of products with isocyanate groups (X— 3)
温度計、 サーモスタッ ト、 攪拌機、 冷却管及び滴下装置を備えた 1 Lの反応容器にトルエン 1 2 5部、 へキサメチレンジイソシァネ ート 2 9 2部を仕込み、 窒素雰囲気下で、 攪拌しながら混合して、 8 0でまで昇温した。 次いで、 トリエチレングリコール 2 0 8部を 3時間かけて滴下し、 滴下終了後、 8 0 °Cで 3 0分間熟成して、 不 揮発分 8 0 %のイソシァネート基を有する生成物 (X— 3 ) 溶液を 得た。 得られたイソシァネート基を有する生成物 (X— 3 ) の N C O価は、 5 8 m g N C〇/ gであった。  A 1 L reaction vessel equipped with a thermometer, thermostat, stirrer, condenser, and dripping device was charged with 12.5 parts of toluene and 2 parts of hexamethylene diisocyanate, and stirred under a nitrogen atmosphere. While mixing, the temperature was raised to 80. Next, 20 parts of triethylene glycol was added dropwise over 3 hours. After completion of the dropwise addition, the mixture was aged for 30 minutes at 80 ° C. to obtain a product having an isocyanate group having a nonvolatile content of 80% (X-3 ) A solution was obtained. The obtained product (X-3) having an isocyanate group had an N 2 C 3 O value of 58 mg N C0 / g.
澱粉系樹脂 (V— 1 ) の製造 Manufacture of starch-based resin (V-1)
温度計、 サーモスタッ ト、 攪拌機及び冷却管を備えた 1 Lの反応 容器に、 酢酸プチル 4 1部、 製造例 B— 1 4で得た不揮発分 3 0 % の澱粉系樹脂 ( I V— 2 ) 溶液を 6 0 0部仕込み、 窒素雰囲気下で 攪拌しながら 1 0 0でまで昇温した。 次に、 上記で得た不揮発分 8 0 %のイソシァネ r"ト基を有する生成物 (X— 3 ) 溶液を 2 5部仕 込み、 均一になるまで攪拌した後、 触媒としてジブチル錫ジラウレ 一卜 0 , 0 4部を添加し、 窒素雰囲気で攪拌しながら 1 0 0でで 6 時間反応させて、 不揮発分 3 0 %の澱粉系樹脂 (V— 1 ) 溶液を得 た。 得られた澱粉系樹脂 (V— 1 ) の N C〇価は、 0. 4 m g N C O / gであった。 In a 1 L reaction vessel equipped with a thermometer, thermostat, stirrer and cooling tube, 4 parts of Ptyl acetate, 30% non-volatile starch resin (IV-2) solution obtained in Production Example B-14 Was heated to 100 ° C. with stirring in a nitrogen atmosphere. Next, 25 parts of the product (X-3) solution having an isocyanate r "to group having a non-volatile content of 80% obtained above was charged and stirred until homogeneous, and then dibutyltin dilaurate as a catalyst. 0, 0 4 parts are added and stirred in a nitrogen atmosphere with 1 0 0 at 6 By reacting for a period of time, a starch resin (V-1) solution having a nonvolatile content of 30% was obtained. The NC value of the obtained starch-based resin (V-1) was 0.4 mg NCO / g.
<製造例 B— 1 9 > <Production example B— 1 9>
澱粉系樹脂 ( V— 2 ) Starch resin (V— 2)
イソシァネート基を有する生成物 (X— 4 ) の製造 Production of products with isocyanate groups (X— 4)
温度計、 サーモスタッ ト、 攪拌機、 冷却管及び滴下装置を備えた 1 Lの反応容器にトルエン 1 2 5部、 イソホロンジイソシァネート 3 7 8部を仕込み、 窒素雰囲気下で、 攪拌しながら混合して、 8 0 °Cまで昇温した。 次いで、 1, 4—ブタンジオール 1 2 2部を 3時 間かけて滴下し、 滴下終了後、 8 0 °Cで 3 0分間熟成して、 不揮発 分 8 0 %のイソシァネート基を有する生成物 (X— 4 ) 溶液を得た 。 得られたイソシァネート基を有する生成物 (X— 4 ) の N C O価 は、 5 7 m g N C O/ gであった。  Into a 1 L reaction vessel equipped with a thermometer, thermostat, stirrer, condenser and dripping device, charge 12.5 parts of toluene and 37.8 parts of isophorone diisocyanate and mix in a nitrogen atmosphere while stirring. The temperature was raised to 80 ° C. Next, 1,2-butanediol 1 2 2 parts were added dropwise over 3 hours. After completion of the addition, the product was aged at 80 ° C. for 30 minutes to give a product having an isocyanate group having a nonvolatile content of 80% ( X— 4) A solution was obtained. The N C O value of the product (X-4) having an isocyanate group thus obtained was 57 mg N C O / g.
澱粉系樹脂 (V— 2 ) の製造 Manufacture of starch-based resin (V-2)
温度計、 サーモスタッ ト、 攪拌機及び冷却管を備えた 1 Lの反応 容器に、 酢酸ブチル 4 1部、 製造例 B— 1 7で得た不揮発分 3 0 % の澱粉系樹脂 ( I V— 5 ) 溶液を 6 0 0部仕込み、 窒素雰囲気下で 攪拌しながら 1 0 0 °Cまで昇温した。 次に、 上記で得た不揮発分 8 0 %のイソシァネート基を有する生成物 (X— 4 ) 溶液を 2 5部仕 込み、 均一になるまで攪拌した後、 触媒としてジブチル錫ジラウレ 一卜 0. 0 4部を添加し、 窒素雰囲気で攪拌しながら 1 0 0 °Cで 6 時間反応させて、 不揮発分 3 0 %の澱粉系樹脂 (V— 2 ) 溶液を得 た。 得られた澱粉系樹脂 ( V— 2 ) の N C〇価は、 0. 4 m g N C O Z gであった。  Starch resin (IV-5) solution with a non-volatile content of 30% obtained in Production Example B-17 in a 1 L reaction vessel equipped with a thermometer, thermostat, stirrer, and condenser. Was heated to 100 ° C. with stirring under a nitrogen atmosphere. Next, 25 parts of the product (X-4) solution having an isocyanate group having a non-volatile content of 80% obtained above was charged, stirred until uniform, and dibutyltin dilaurate as a catalyst. 4 parts were added and reacted for 6 hours at 100 ° C. with stirring in a nitrogen atmosphere to obtain a starch-based resin (V-2) solution having a nonvolatile content of 30%. The N C0 value of the obtained starch-based resin (V-2) was 0.4 mg N C O Z g.
澱粉系ベース塗料組成物の製造 Manufacture of starch-based base coating composition
<製造例 B - 2 0 > 澱粉系ベース塗料組成物 N o . B— 1 <Production example B-2 0> Starch-based paint composition No. B— 1
製造例 B - 1で得た澱粉系樹脂 ( I 一 1 ) を 1 0 0部 (不揮発分 1 0 0部) 、 アルミニウムペース ト F . X 1 4 4 0 (注 B— 2 ) 4 1. 8部 (不揮発分 2 3部) 、 ハイコンク黒 (注 B— 3 ) 3部、 及 びメチルェチルケトン 3 5 9. 2部を加え、 攪拌機により十分に混 合して、 不揮発分 2 5 %の澱粉系ベース塗料組成物 N o . B— 1 を 得た。  100 parts of starch-based resin (I 1 1) obtained in Production Example B-1 (100 parts of non-volatile content), aluminum paste F. X 1 4 4 0 (Note B— 2) 4 1. 8 Parts (non-volatile content 2 3 parts), high-conc black (Note B-3) 3 parts, and methyl ethyl ketone 3 5 9. Add 2 parts and mix well with a stirrer. A starch-based base coating composition No. B-1 was obtained.
<製造例 B— 2 1〜B— 3 9 >  <Production example B-2 1 to B-3 9>
澱粉系べ一ス塗料組成物 N o . B— 2〜N o . B— 2 0 Starch-based base coating composition N o. B— 2 to N o. B— 2 0
表 B— 2に示す配合組成とした以外は、 製造例 B— 2 0 と同様に して、 不揮発分 2 5 %の澱粉系ベース塗料組成物 N o . B— 2〜N o . B— 2 0 を得た。 Except for the blending composition shown in Table B-2, a starch-based base coating composition having a nonvolatile content of 25% No. B-2 to No. B-2 as in Production Example B-20 Got 0.
表 B— 2 Table B-2
Figure imgf000082_0001
Figure imgf000082_0001
配合における数値は質量部を表し、 ( ) 内は不揮発分を表す。 Numerical values in the formulation represent parts by mass, and () represents the nonvolatile content.
表 B— 2 (続き) Table B-2 (continued)
Figure imgf000083_0001
Figure imgf000083_0001
配合における数値は質量部を表し、 ( ) 内は不揮発分を表す。 Numerical values in the formulation represent parts by mass, and () represents the nonvolatile content.
(注 B— 2 ) アルミニウムペース ト F . X 1 4 4 0 : 商品名、 東洋 アルミニウム社製、 アルミニウムペース 卜 (Note B—2) Aluminum paste F. X 1 4 40: Product name, manufactured by Toyo Aluminum Co., Ltd. Aluminum pace 卜
(注 B— 3 ) ハイコンク黒 : 商品名、 横浜化成社製、 溶剤型塗料用 黒色着色剤  (Note B-3) High-conc black: Product name, manufactured by Yokohama Kasei Co., Ltd., black colorant for solvent-borne paints
(注 B— 4 ) 工業用硝化綿 B N C— H I G— 2 : 商品名、 フランス ベルジュラック N C社製、 二卜ロセルロースのプロパノ一ル湿潤物 を酢酸ェチルに溶解したもの  (Note B-4) Nitrified cotton for industrial use BNC-HIGG-2: Product name, manufactured by Bergerac N.C. France, dissolved in 2-ethylcellulose cellulose in ethyl acetate
(注 B— 5 ) C AB 5 5 1 - 0. 2 : 商品名、 イース トマンケミカ ルプロダクツ社製、 セルロースアセテートプチラートを酢酸ェチル に溶解したもの  (Note B-5) C AB 5 5 1-0.2: Product name, manufactured by Yeast Man Chemical Products, cellulose acetate petitate dissolved in ethyl acetate
(注 B— 6 ) タケネート D— 1 7 0 HN : 商品名、 三井化学ポリゥ レタン社製、 へキサメチレンジイソシァネートのイソシァヌレート 体  (Note B—6) Takenate D—170 HN: Trade name, manufactured by Mitsui Chemicals Polyurethane, Inc. Isocyanurate of hexamethylene diisocyanate
ベース塗料組成物の製造 (比較例用) Manufacture of base coating composition (for comparative example)
<製造例 B— 4 0 > <Production example B—4 0>
ベース塗料組成物 N o . B— 2 1 Base paint composition N o. B— 2 1
ァクリル樹脂溶液の製造 Manufacture of acrylic resin solution
温度計、 サーモスタッ ト、 攪拌機、 冷却管及び滴下装置を備えた 1 Lの反応容器にトルエン 3 3 3部を仕込み、 窒素雰囲気下で、 攪 拌しながら混合して、 1 0 0 °Cまで昇温した。 次いで、 下記組成の 「混合物 B _ 6」 を 4時間かけて滴下し、 滴下終了後 1 0 0 °Cで 1 時間熟成して、 不揮発分 6 0 %のアクリル樹脂溶液を得た。 得られ たァクリル樹脂溶液の水酸基価は、 8 6 m g K〇H/ gであった。  Into a 1 L reaction vessel equipped with a thermometer, thermostat, stirrer, condenser and dripping device, charge 33 3 parts of toluene, mix under stirring in a nitrogen atmosphere, and rise to 100 ° C. Warm up. Next, “Mixture B — 6” having the following composition was added dropwise over 4 hours. After completion of the addition, the mixture was aged at 100 ° C. for 1 hour to obtain an acrylic resin solution having a nonvolatile content of 60%. The resulting acryl resin solution had a hydroxyl value of 86 mg KOH / g.
「混合物 B— 6」  “Mixture B—6”
メタクリル酸メチル 3 5 0部 ァクリル酸 n—プチル 5 0部 メ夕クリル酸 2—ヒ ドロキシェチル 1 0 0部 2 , 2 , ーァゾビス ( 2—メチルプチロニトリル) 2 5部 ベース塗料組成物 N o . B— 2 1の製造 Methyl methacrylate 3 5 0 parts n-Ptyl acrylate 5 0 parts Methacrylic acid 2-hydroxetyl 1 0 0 parts 2, 2, -azobis (2-methyl ptyronitrile) 2 5 parts Manufacture of base coating composition No. B-2 1
上記で得たァクリル樹脂溶液を 1 6 7部 (不揮発分 1 0 0部) 、 アルミニウムペース ト F . X 1 4 4 0 4 1. 8部 (不揮発分 2 3 部) 、 ハイコンク黒 3部 (不揮発分 3部) 、 及びメチルェチルケ トン 2 9 2. 2部を加え、 攪拌機にて十分に混合し、 不揮発分 2 5 %のベース塗料組成物 N o . B— 2 1 を得た。  16.7 parts of the acrylic resin solution obtained above (non-volatile content 100 parts), aluminum paste F.X 1 4 4 0 4 1.8 parts (non-volatile content 23 parts), high-conc black 3 parts (non-volatile material) 3 parts) and 29.2 parts of methylethylketone and mixed well with a stirrer to obtain a base coating composition No. B-21 with a nonvolatile content of 25%.
糖類又はその誘導体のアクリル酸エステル ( b l ) の製造 Manufacture of acrylic ester (b l) of saccharides or derivatives
<製造例 B - 4 1 > <Production example B-4 1>
糖類又はその誘導体のアクリル酸エステル N o . B— 1 Acrylic esters of sugars or their derivatives No B. 1
蒸留装置、 温度計、 及び攪拌機を備えた反応容器にデキス 卜リン ( I ) (平均重合数 4のグルコース重合体、 1分子あたり平均 1 4 個の水酸基を有する) 8 0部、 メチルイソプチルケトン 1 0 0部、 メチルヒ ドロキノン 0. 1 6部、 水酸化リチウム 1水和物 5. 9部 及びメチルァクリ レート 5 0 6. 2部を仕込んだ。 次いで、 この溶 液中に窒素を吹き込み、 攪拌しながら 9 0 °Cに加熱し、 メチルァク リ レート、 メタノール、 メチルイソプチルケトンを少しずつ系外へ 留去した。 留去に伴い減少するメチルァクリ レート及びメチルイソ プチルケトンは、 減少分を反応容器内へ添加した。 次いで、 反応容 器中のメタノール及び留去したメタノールをガスク口マトグラフィ の測定によって定量することで反応を追跡し、 上記デキス 卜リン ( I ) の 1分子あたり平均 6. 0個の水酸基がアクリル酸エステル化 されたところで冷却した。 さらに、 反応液を減圧下で濃縮し、 残留 物に酢酸ェチルを添加して、 不揮発分 2 5 %、 重量平均分子量 1, 1 0 0かつ 1分子あたり平均 6. 0個のァクリ ロイル基を有するァ クリル酸エステル N o . B— 1溶液を得た。  In a reaction vessel equipped with a distillation apparatus, a thermometer, and a stirrer, dex 卜 phosphorus (I) (glucose polymer having an average polymerization number of 4 and having an average of 14 hydroxyl groups per molecule) 80 parts, methyl isobutyl ketone 100 parts, 0.16 parts of methylhydroquinone, 5.9 parts of lithium hydroxide monohydrate and 50.6.2 parts of methyl acrylate were charged. Next, nitrogen was blown into the solution and heated to 90 ° C. with stirring, and methyl acrylate, methanol, and methyl isobutyl ketone were gradually distilled out of the system. Methyl acrylate and methyl isopropyl ketone, which decrease with distillation, were added to the reaction vessel. Next, the reaction was traced by quantifying the methanol in the reaction vessel and the distilled methanol by gas chromatography, and an average of 6.0 hydroxyl groups per molecule of the above dexterin (I) was acrylic acid. Cooled where esterified. Furthermore, the reaction solution is concentrated under reduced pressure, and ethyl acetate is added to the residue to have a nonvolatile content of 25%, a weight average molecular weight of 1,100, and an average of 6.0 acryloyl groups per molecule. An acrylate ester N o .B-1 solution was obtained.
<製造例 B - 4 2 > 糖類又はその誘導体のァクリル酸ェステル N o . B— 2 製造例 B— 4 1 において、 デキス トリン ( I ) が有する 1分子あ たり平均 1 4個の水酸基のうち平均 1 0. 0個の水酸基がァクリル 酸エステル化されるまで、 反応容器中のメタノール及び留去したメ 夕ノールをガスクロマトグラフィの測定によって定量することで反 応を追跡し、 反応時間を延長した以外は、 製造例 B— 4 1 と同様に して、 重量平均分子量 1 , 4 0 0かつ 1分子あたり平均 1 0. 0個 のァクリ ロイル基を有するァクリル酸エステル N o . B - 2溶液を 得た。 <Production example B-4 4> Bester of sugar or its derivative No. B-2 Production Example B-41 In dextrin (I), an average of 10.0 hydroxyl groups out of an average of 14 hydroxyl groups per molecule Production Example B- 4 1 Except that the reaction was traced by quantifying the methanol and distilled methanol in the reaction vessel by gas chromatography until the reaction time was extended until the esterification was achieved. In the same manner, an acrylic acid ester No. B-2 solution having a weight average molecular weight of 1,400 and an average of 10.0 acryloyl groups per molecule was obtained.
<製造例 B— 4 3 >  <Production example B— 4 3>
糖類又はその誘導体のアクリル酸エステル N o . B - 3 Acrylic esters of sugars or their derivatives No. B-3
製造例 B— 4 1 において、 平均重合数 3のグルコース重合体であ り、 かつ 1分子あたり平均 1 1個の水酸基を有するデキス トリン ( I I ) を用いる以外は、 製造例 B— 4 1 と同様にして、 該デキス ト リン ( I I ) が有する 1分子あたり平均 1 1個の水酸基のうち平均 6. 0個の水酸基がアクリル酸エステル化されるまで、 反応容器中 のメタノール及び留去したメタノールをガスクロマトグラフィの測 定によって定量することで反応を追跡し、 重量平均分子量 9 5 0か つ 1分子あたり平均 6. 0個のァクリ ロイル基を有するァクリル酸 エステル N o . B— 3溶液を得た。  In Production Example B-41, the same as Production Example B-41 except that dextrin (II), which is a glucose polymer with an average polymerization number of 3 and has an average of 11 hydroxyl groups per molecule, is used. The methanol in the reaction vessel and the distilled methanol were used until an average of 6.0 hydroxyl groups out of an average of 11 hydroxyl groups per molecule of the dextrin (II) was converted to an acrylate ester. The reaction was traced by quantification by gas chromatography, and an acrylic acid ester No. B-3 solution having a weight average molecular weight of 950 and an average of 6.0 acryloyl groups per molecule was obtained. .
<製造例 B - 4 4 > <Production example B-4 4>
糖類又はその誘導体のアクリル酸エステル N o . B - 4 Acrylic esters of sugars or their derivatives N o. B-4
製造例 B— 4 1 において、 平均重合数 6のグルコース重合体であ り、 かつ 1分子あたり平均 2 0個の水酸基を有するデキス トリ ン ( I I I ) を用いる以外は、 製造例 B— 4 1 と同様にして、 デキス ト リン ( I I I ) が有する 1分子あたり平均 2 0個の水酸基のうち平 均 6. 0個の水酸基がアクリル酸エステル化されるまで、 反応容器 中のメタノール及び留去したメタノールをガスクロマトグラフィの 測定によって定量することで反応を追跡し、 重量平均分子量 1, 5 0 0かつ 1分子あたり平均 6 . 0個のァクリロイル基を有するァク リル酸エステル N o . B— 4溶液を得た。 In Production Example B-41, Production Example B-41, except that dextrin (III), which is a glucose polymer with an average polymerization number of 6 and has an average of 20 hydroxyl groups per molecule, is used. Similarly, until an average of 6.0 hydroxyl groups out of an average of 20 hydroxyl groups per molecule of dextrin (III) is acrylated, The reaction was traced by quantifying the methanol in it and the distilled methanol by gas chromatography, and a carboxylic acid ester having a weight average molecular weight of 1,500 and an average of 6.0 acryloyl groups per molecule. A No. B-4 solution was obtained.
<製造例 B— 4 5 > <Production example B— 4 5>
糖類又はその誘導体のアクリル酸エステル N o . B - 5 Acrylic esters of sugars or their derivatives N o. B-5
製造例 B— 4 1 において、 デキス トリン ( I ) の代わりにトレハ ロースを用い、 反応容器中のメタノール及び留去したメタノールを ガスクロマトグラフィの測定によって定量することで反応を追跡し In Production Example B-41, the reaction was followed by using trehalose instead of dextrin (I) and quantifying the methanol in the reaction vessel and the distilled methanol by gas chromatography.
、 上記卜レハロースの 1分子あたり平均 6 . 0個の水酸基がァクリ ル酸エステル化されたところで冷却する以外は、 製造例 B— 4 1 と 同様にして、 重量平均分子量 7 8 0かつ 1分子あたり平均 6 . 0個 のァクリロイル基を有するアクリル酸エステル N o . B— 5溶液を 得た。 In the same manner as in Production Example B—41, except that an average of 6.0 hydroxyl groups per molecule of the above-mentioned rehalose was cooled, the weight average molecular weight was 7800 and per molecule. An acrylic ester No. B-5 solution having an average of 6.0 acryloyl groups was obtained.
<製造例 B - 4 6 >  <Production example B-4 6>
糖類又はその誘導体のアクリル酸エステル N o . B— 6 Acrylic esters of sugars or their derivatives No. B-6
製造例 B— 4 1 において、 デキス トリン ( I ) の代わりにスクロ ースを用い、 反応容器中のメタノール及び留去したメタノールをガ スクロマトグラフィの測定によって定量することで反応を追跡し、 上記スクロースの 1分子あたり平均 6 . 0個の水酸基がァクリル酸 エステル化されたところで冷却する以外は、 製造例 B— 4 1 と同様 にして、 重量平均分子量 7 8 0かつ 1分子あたり平均 6 . 0個のァ クリ ロイル基を有するアクリル酸エステル N o . B— 6溶液を得た  In Production Example B-41, sucrose was used instead of dextrin (I), and the reaction was traced by quantifying the methanol in the reaction vessel and the distilled methanol by gas chromatography. Except for cooling when 6.0 hydroxyl groups on average per molecule of acryloyl ester were converted to acrylic acid ester, the same as in Production Example B-41, the weight average molecular weight was 7 80 and the average was 6.0 per molecule. Acrylic acid ester N o .B-6 solution having an acryloyl group was obtained.
<製造例 B - 4 7 > <Production example B-4 7>
活性エネルギー線硬化性化合物 N o . B— 1 Active energy ray-curable compound N o. B— 1
温度計、 サーモスタッ ト、 撹拌機、 還流冷却器及び空気吹込装置 を備え付けた反応容器に、 イソホロンジイソシァネート 8 8 8部、 2 —ヒ ドロキシェチルァクリ レート 4 6 4部及びハイ ドロキノンモ ノメチルエーテル 0 . 7部を仕込み、 反応容器内に空気を吹き込み ながら、 8 0 °Cに昇温してその温度に 5時間保ち、 加えた 2—ヒ ド ロキシェチルァクリ レートの水酸基が実質的に全て反応したのを確 認した後、 ペン夕エリスリ トール 1 3 6部、 酢酸ブチル 3 7 2部及 びジブチル錫ジラウレート 0 . 2部を添加してさらに 8 0 °Cに保持 し、 イソホロンジイソシァネートのイソシァネート基が実質的に全 て反応したのを確認した後冷却し、 不揮発分 8 0 %の活性エネルギ 一線硬化性化合物 N o . B— 1 を得た。 この樹脂の数平均分子量は 約 1 , 5 0 0であった。 Thermometer, thermostat, stirrer, reflux condenser and air blowing device Into a reaction vessel equipped with 8 8 parts of isophorone diisocyanate, 2 6 parts of hydroxetyl acrylate and 0.7 part of hydroquinone monomethyl ether, and blow air into the reaction vessel. However, after raising the temperature to 80 ° C. and maintaining that temperature for 5 hours, it was confirmed that substantially all of the hydroxyl groups of the added 2-hydroxyxetyl acrylate had reacted. 1 3 6 parts, butyl acetate 3 7 2 parts and dibutyl tin dilaurate 0.2 part were added and kept at 80 ° C., and the isocyanate group of isophorone diisocyanate was substantially completely reacted. After confirmation, the mixture was cooled to obtain an active energy linear curing compound No. B-1 having a nonvolatile content of 80%. The number average molecular weight of this resin was about 1,500.
ぐ製造例 B— 4 8 > Manufacturing Example B— 4 8>
反応性高分子乳化剤 N o . B— 1 Reactive polymer emulsifier N o. B— 1
攪拌機、 還流冷却器、 温度計、 滴下漏斗及び窒素導入口を備えた 4つ口フラスコにプロピレングリコールモノメチルエーテルァセテ ート 1, 0 0 0部を加え、 窒.素ガスを導入しつつかき混ぜながら、 1 2 0 °Cに加熱した。 次にスチレン 1 3 0部、 n—ブチルメタクリ レート 5 9 0部、 2 —ヒ ドロキシェチルメタクリ レート 8 5部、 グ リシジルメ夕クリ レート 5部、 メチルメタクリ レート 4 0部、 2, 2 ' ーァゾビス— 2 —メチルプチロニトリル 2 0部の混合物を滴下 槽から 3時間にわたって滴下した。 滴下終了後、 同温で 0 . 5時間 保持して共重合体を得た後、 この中に、 スチレン 2 0部、 n _プチ ルメ夕クリ レート 4 5部、 2—ヒ ドロキシェチルメタクリ レート 1 5部、 アクリル酸 6 0部、 メチルメタクリ レート 1 0部、 t —プチ ルパーォキシ一 2—ェチルへキサノエ一卜 1 0部の混合物を滴下槽 から 1時間にわたって滴下した。 滴下終了後'、 同温で 0 . 5時間保 持した後、 さらにプロピレングリコールモノメチルエーテルァセテ ート 4 0部に t 一プチルパ一ォキシ一 2—ェチルへキサノエ一卜 1 0部を溶解した溶液 5 0部を 3 0分かけて滴下した。 ついで 1時間 熟成した。 8 0 °Cまで冷却した後、 2—ァクリ ロイルォキシェチル イソシァネート 5 0部及びネオスタン U— 1 0 0 (錫系触媒) 0. 1部を加えて 2時間攪拌した。 不揮発分 7 0 %になるまで溶剤を留 去して反応性高分子乳化剤 N o . B— 1溶液を得た。 Add 100 parts of propylene glycol monomethyl ether acetate to a four-necked flask equipped with a stirrer, reflux condenser, thermometer, dropping funnel and nitrogen inlet, and stir while introducing nitrogen gas. And heated to 120 ° C. Next, styrene 13.0 parts, n-butyl methacrylate 590 parts, 2—hydroxylshethyl methacrylate 8 5 parts, glycidyl methacrylate 5 parts, methyl methacrylate 40 parts, 2, 2'-azobis — 2 —Methylptyronitrile 20 part of the mixture was added dropwise from the dropping tank over 3 hours. After completion of the dropwise addition, the copolymer was obtained by maintaining at the same temperature for 0.5 hours, and in this, 20 parts of styrene, 45 parts of n_methyl methacrylate, 2-hydroxychetyl methacrylate A mixture of 15 parts, 60 parts of acrylic acid, 10 parts of methyl methacrylate, and 10 parts of t-butylperoxy-2-ethylhexanoe was added dropwise from a dropping tank over 1 hour. After completion of dropping, after maintaining at the same temperature for 0.5 hour, further propylene glycol monomethyl ether acetate 50 parts of a solution in which 10 parts of 1-butyl methoxyl-2-ethylhexanoe was dissolved in 40 parts of the solution was added dropwise over 30 minutes. Then it was aged for 1 hour. After cooling to 80 ° C., 50 parts of 2-acryloyloxychetyl isocyanate and 0.1 part of neostane U—100 (tin-based catalyst) were added and stirred for 2 hours. The solvent was distilled off until the nonvolatile content became 70% to obtain a reactive polymer emulsifier No. B-1 solution.
活性エネルギー線硬化型水性塗料組成物 N o . B— 1の製造 Production of active energy ray-curable aqueous coating composition No. B-1
<製造例 B - 4 9 > <Production example B-4 9>
活性エネルギー線硬化型水性塗料組成物 N o . B— 1 Active energy ray-curable aqueous coating composition No. B— 1
製造例 B— 4 1で得られたアクリル酸エステル N o . B— 1溶液 から溶剤を留去して不揮発分 7 0 %の溶液を得た。 この溶液 1 4 2 . 9部 (不揮発分 1 0 0部) に、 ダロキュア 1 1 7 3 (商品名、 チ バ ' スペシャルティ ' ケミカルズ社製、 2 —ヒ ドロキシ— 2—メチ ルー 1 —フエニル—プロパン一 1 —オン、 光重合開始剤) 3部、 及 び RMA— 5 0 6 (商品名、 日本乳化剤社製、 ポリオキシエチレン ノニルフエニルエーテルァクリ レート、 ノニオン性反応性乳化剤) 6部を加え、 攪拌しながら脱イオン水 2 1 0. 4部を徐々に加えて 水分散化した。 さらに B YK— 3 4 8 (商品名、 ビックケミ一社製 、 表面調整剤) を 1部加えて不揮発分 3 0 %の活性エネルギー線硬 化型水性塗料組成物 N o . B— 1 を得た。  The solvent was distilled off from the acrylic ester No. B-1 solution obtained in Production Example B-41 to obtain a solution having a nonvolatile content of 70%. Darocur 1 1 7 3 (trade name, manufactured by Ciba 'Specialty' Chemicals Co., Ltd., 2-hydroxy-2-methyl 1-phenyl-propane) 1—one, photopolymerization initiator) 3 parts, and RMA—500 6 (trade name, manufactured by Nippon Emulsifier Co., Ltd., polyoxyethylene nonyl phenyl ether acrylate, nonionic reactive emulsifier) 6 parts While stirring, 20.4 parts of deionized water was gradually added to disperse in water. Further, 1 part of B YK-3 4 8 (trade name, manufactured by Bicchemi Co., Ltd., surface conditioner) was added to obtain an active energy ray-curable aqueous coating composition No. B-1 having a nonvolatile content of 30%. .
<製造例 B— 5 0〜: B— 5 4〉 <Production example B—5 0 ~: B—5 4>
活性エネルギー線硬化型水性塗料組成物 N o . B— 2〜 N o . B— 3_ Active energy ray-curable water-based paint composition No. B— 2 to No. B— 3_
ァクリル酸エステル N o . B— 1溶液をァクリル酸エステル N o . B— 2〜N o . B _ 6溶液へと変更した以外は、 表 B— 3の配合 に従い、 製造例 B— 4 9 と同様にして不揮発分 3 0 %の活性エネル ギ一線硬化型水性塗料組成物 N o . B— 2〜N o . B— 6 を得た。 表 B— 3 Except that the acrylic acid ester No. B-1 solution was changed to the acrylic acid ester No. B-2 to No. B_6 solution, according to the formulation in Table B-3, production example B-4 9 In the same manner, active energy one-line curable water-based coating compositions No. B-2 to No. B-6 having a nonvolatile content of 30% were obtained. Table B— 3
Figure imgf000090_0001
Figure imgf000090_0001
配合における数値は不揮発分を示す。 The numerical value in a mixing | blending shows a non volatile matter.
<製造例 B - 5 5 > <Production example B-5 5>
活性エネルギー線硬化型水性塗料組成物 N o . B— 7 Active energy ray-curable water-based coating composition No. B— 7
製造例 B _ 4 1で得られたアクリル酸エステル N o . B— 1溶液 から溶剤を留去して不揮発分 7 0 %の溶液を得た。 この溶液 1 4 2 . 9部 (不揮発分 1 0 0部) に、 ダロキュア 1 1 7 3 3部、 及び 製造例 B— 4 8で得た反応性高分子乳化剤 N o . B - 1 1 4. 3 部 (不揮発分 1 0部) を加え、 攪拌しながら脱イオン水 2 1 8. 8 部を徐々に加えて水分散化した。 さらに B YK— 3 4 8 を 1部加え て不揮発分 3 0 %の活性エネルギー線硬化型水性塗料組成物 N o . B— 7 を得た。  The solvent was distilled off from the acrylic ester No. B-1 solution obtained in Production Example B_41 to obtain a solution having a nonvolatile content of 70%. To this solution, 12.9 parts (non-volatile content, 100 parts), Darocur 1 1 7 3 3 parts, and the reactive polymer emulsifier No. B-1 1 4. obtained in Production Example B-4 8 3 parts (10 parts of non-volatile content) was added, and 2 18.8 parts of deionized water was gradually added while stirring to disperse in water. Further, 1 part of B YK-3 4 8 was added to obtain an active energy ray-curable aqueous coating composition No. B-7 having a nonvolatile content of 30%.
<製造例 B - 5 6 > <Production example B-5 5>
活性エネルギー線硬化型水性塗料組成物 N o . B— 8 Active energy ray-curable aqueous coating composition No. B— 8
製造例 B - 4 7で得られた活性エネルギー線硬化性化合物 ( b 3 ) N o . B— 1 に酢酸ブチルを加えて不揮発分 7 0 %の溶液を得た 。 この溶液 1 4 2. 9部 (不揮発分 1 0 0部) に、 ダロキュア 1 1 7 3 3部、 RMA— 5 0 6 6部を加え、 攪拌しながら脱イオン 水 2 1 0. 4部を徐々に加えて水分散体を得た。 さらに B YK— 3 4 8を 1部加えて不揮発分 3 0 %の組成物を得た。 この組成物 3 0 部及び製造例 B - 4 9で得た不揮発分 3 0 %の活性エネルギー線硬 化型水性塗料組成物 N o . B - 1 7 0部を混合攪拌して、 不揮発 分 3 0 %の活性エネルギー線硬化型水性塗料組成物 N o . B— 8 を 得た。  Butyl acetate was added to the active energy ray-curable compound (b 3) No. B-1 obtained in Production Example B-47 to obtain a solution having a nonvolatile content of 70%. Darocur 1 1 7 3 3 parts and RMA — 5 0 6 6 parts are added to 1 2.29 parts (non-volatile content 1 100 parts) of this solution, and 2 1 0. 4 parts of deionized water are gradually added while stirring. In addition, an aqueous dispersion was obtained. Further, 1 part of BYK-3 4 8 was added to obtain a composition having a nonvolatile content of 30%. 30 parts of this composition and 30% of the active energy ray-curable aqueous coating composition having a non-volatile content of 30% obtained in Production Example B-49 were mixed and stirred to obtain a non-volatile content of 3 0% active energy ray-curable aqueous coating composition No. B-8 was obtained.
<製造例 B - 5 7 >  <Production example B-5 7>
活性エネルギー線硬化型塗料組成物 N o . B - 9 (比較例用) Active energy ray-curable coating composition No. B-9 (for comparative example)
製造例 B - 4 7で得られた活性エネルギー線硬化性化合物 (b 3 ) N o . B - 1 1 2 5部 (不揮発分 1 0 0部) に、 ィルガキュア 1 8 4 (商品名、 チバ · スペシャルティ · ケミカルズ社製、 光重合 開始剤) 3部を加えて溶解させた後、 酢酸プチルで不揮発分 3 0 % に希釈して、 活性エネルギー線硬化型塗料組成物 N o . B— 9 を得 た。 Production example B-47 Active energy ray-curable compound (b 3) No. B-1 1 2 5 parts (non-volatile content 100 parts) and Irgacure 1 8 4 (trade name, Ciba · Specialty Chemicals, photopolymerization Initiator) 3 parts were added and dissolved, and then diluted to 30% non-volatile content with butyl acetate to obtain active energy ray-curable coating composition No. B-9.
<製造例 B - 5 8 >  <Production example B-5 8>
活性エネルギー線硬化型水性塗料組成物 N o . B— 1 0 (比較例用 1_ Active energy ray-curable water-based paint composition No. B— 1 0 (for comparative example 1_
製造例 B - 4 7で得られた活性エネルギー線硬化性化合物 ( b 3 ) N o . B— 1 に酢酸ブチルを加えて不揮発分 7 0 %の溶液を得た 。 この溶液 1 4 2. 9部 (不揮発分 1 0 0部) に、 ダロキュア 1 1 7 3 3部、 RMA— 5 0 6 6部を加え、 攪拌しながら脱イオン 水 2 1 0. 4部を徐々に加えて水分散体を得た。 さらに B YK— 3 4 8 を 1部加えて不揮発分 3 0 %の活性エネルギー線硬化型水性塗 料組成物 N o . B— 1 0を得た。  Butyl acetate was added to the active energy ray-curable compound (b 3) No. B-1 obtained in Production Example B-47 to obtain a solution having a nonvolatile content of 70%. Darocur 1 1 7 3 3 parts and RMA — 5 0 6 6 parts are added to 1 2.29 parts (non-volatile content 1 100 parts) of this solution, and 2 1 0. 4 parts of deionized water are gradually added while stirring. In addition, an aqueous dispersion was obtained. Further, 1 part of BYK-3 4 8 was added to obtain an active energy ray-curable aqueous coating composition No. B-10 having a nonvolatile content of 30%.
ぐ実施例 B— 1 > Example B— 1>
塗膜の形成 Formation of coating film
以下の工程により複層塗膜 N o . B— 1 を作成した。  A multilayer coating film No. B-1 was prepared by the following steps.
工程 1 : 被塗物としてポリカーボネート樹脂板 (商品名、 ダイヤ ライ ト P、 三菱レイヨン社製、 7 0 mmX 1 5 0 mmX 2 mm) を 用いた。 イソプロパノールで脱脂した該被塗物上に製造例 B— 2 0 で得られた澱粉系べ一ス塗料組成物 N o . B— 1 をエアスプレーで 乾燥塗膜が 8 ; mになるように塗装し、 6 0 °Cで 1 5分間加熱乾燥 させ、 ベース塗膜を作成した。  Step 1: A polycarbonate resin plate (trade name, Dialite P, manufactured by Mitsubishi Rayon Co., Ltd., 70 mmX 150 mmX 2 mm) was used as an object to be coated. Apply the starch-based paint composition No. B-1 obtained in Production Example B- 20 to the coating material degreased with isopropanol by air spray so that the dry coating film is 8 m. The base coating film was prepared by heating and drying at 60 ° C. for 15 minutes.
工程 2 : 工程 1で作成したベース塗膜上に、 製造例 B— 4 9で得 られた活性エネルギー線硬化型水性塗料組成物 N 0. B— 1 をエア スプレーで乾燥塗膜が 1 2 imになるように塗装して、 6 0 で 5 分間加熱乾燥させた。  Step 2: On the base coating film prepared in Step 1, the active energy ray-curable aqueous coating composition N 0. B— 1 obtained in Production Example B—4 9 is air sprayed to form a dry coating 1 2 im And dried by heating at 60 for 5 minutes.
工程 3 : 工程 2で乾燥させた塗膜に、 高圧水銀ランプにより 6, O O O J /m2 の紫外線を照射して、 複層塗膜 N o . B— 1 を作成 した。 Process 3: Apply the high-pressure mercury lamp to the coating film dried in Process 2, By ultraviolet irradiation of OOOJ / m 2, it was created Fukusonurimaku N o. B- 1.
得られた複層塗膜を有する塗装板について、 下記試験に供した。 試験結果を表 B— 4に示した。  About the coating board which has the obtained multilayer coating film, it used for the following test. The test results are shown in Table B-4.
<実施例 B— 2〜B— 2 9〉 <Example B-2 to B-2 9>
表 B— 4に示す各澱粉系ベース塗料組成物、 各活性エネルギー線 硬化型水性塗料組成物を使用する以外は、 実施例 B— 1 と同様のェ 程により、 複層塗膜 N o . B— 2〜 B— 2 9を作成した。 得られた 複層塗膜を有する塗装板について、 下記試験に供した。 試験結果を 表 B— 4に示した。 A multilayer coating film No. B according to the same procedure as Example B-1 except that each starch-based base coating composition and each active energy ray-curable aqueous coating composition shown in Table B-4 are used. — 2 to B— 2 9 were created. About the coating board which has the obtained multilayer coating film, it used for the following test. The test results are shown in Table B-4.
表 B— 4 Table B— 4
Figure imgf000094_0001
Figure imgf000094_0001
表 B— 4 (続き) Table B—4 (continued)
Figure imgf000095_0001
Figure imgf000095_0001
<比較例 B— 1〜B _ 4 > <Comparative Example B— 1 to B_4>
表 B— 5 に示す (澱粉系) ベース塗料組成物、 活性エネルギー線 硬化型 (水性) 塗料組成物を使用する以外は実施例 B— 1 と同様の 工程により複層塗膜 N o . B— 3 0〜B— 3 3 を作成した。 得られ た複層塗膜を有する塗装板について、 下記試験に供した。 試験結果 を表 B— 5 に示した。 Table B-5 (starch-based) base coating composition, active energy ray curable (aqueous) Multi-layer coating film by the same process as Example B-1 except that the coating composition is used. 3 0 to B— 3 3 were created. The obtained coated plate having a multilayer coating film was subjected to the following test. The test results are shown in Table B-5.
表 B— 5 Table B— 5
Figure imgf000097_0001
Figure imgf000097_0001
[試験方法] [Test method]
(注 B— 7 ) 生体由来成分配合  (Note B—7) Contains bio-derived ingredients
各々の (澱粉系) ベース塗料組成物及び活性エネルギー線硬化型 (水性) 塗料組成物について、 下記の基準で生体由来成分の配合の 有無を評価した。  Each (starch-based) base coating composition and active energy ray-curable (aqueous) coating composition were evaluated for the presence or absence of blending of biologically derived components according to the following criteria.
Y e s ( Y) : 澱粉系樹脂、 又は糖類若しくはその誘導体のァク リル酸エステル ( b l ) (生体由来成分) が塗料中に配合されてい る  Y e s (Y): Starch-based resin, or carboxylic acid ester (bl) (biological component) of saccharide or its derivative is included in the paint.
N o (N) : 澱粉系樹脂、 又は糖類若しくはその誘導体のァクリ ル酸エステル ( b l ) (生体由来成分) が塗料中に配合されていな い  N o (N): Starch-based resin or acrylate or derivative of saccharide or its derivative (bl) (component derived from living body) is not included in paint.
(注 B _ 8 ) 仕上り性、 (注 B— 9 ) 鉛筆硬度、 (注 B— 1 0 ) 耐 擦り傷性 ( 1 ) 及び (注 B— 1 1 ) 耐擦り傷性 ( 2 )  (Note B_8) Finishability, (Note B—9) Pencil hardness, (Note B—10) Scratch resistance (1) and (Note B—1 1) Scratch resistance (2)
仕上り性、 鉛筆硬度、 耐擦り傷性 ( 1 ) 及び耐擦り傷性 ( 2 ) の 試験及び評価方法は、 それぞれ、 (注 A— 1 ) 、 (注 A— 2 ) 、 ( 注 A _ 3 ) 及び (注 A— 4 ) に記載の方法と同一である。  The tests and evaluation methods for finish, pencil hardness, scratch resistance (1) and scratch resistance (2) are (Note A—1), (Note A—2), (Note A_3) and (Note), respectively. Note A— It is the same as the method described in 4).
(注 B— 1 2 ) 基材付着性、 層間付着性  (Note B— 1 2) Adhesion to substrate and adhesion to interlayer
J I S K 5 6 0 0 - 5 - 6 ( 1 9 9 0 ) に準じて各複層塗膜 に l mmX l mmのゴバン目 1 0 0個を作り、 その面に粘着テープ を貼着し、 急速に剥した後に、 残ったゴバン目塗膜の数を評価した 。 剥離個所が被塗物及びベース塗膜の層間であるものは、 基材付着 性において残存しなかったものとして評価した。 剥離個所が複層塗 膜の層間であるものは、 基材付着性においては残存したが、 層間付 着性においては残存しなかったとして評価した。  In accordance with JISK 5 6 0 0-5-6 (1 9 9 0), make 100 mm l mm x l mm gobangs on each multi-layer coating film, and apply adhesive tape on the surface, and quickly After peeling, the number of remaining gobang eyes was evaluated. The case where the peeled portion was between the object to be coated and the base coating film was evaluated as having not remained in the substrate adhesion. An evaluation was made on the assumption that the peeled portion remained between the layers of the multilayer coating film remained in the substrate adhesion but did not remain in the interlayer adhesion.
G o o d (G) : 残存個数 全体個数 = 1 0 0個/ 1 0 0個 G o o d (G) : Remaining number Total number = 1 0 0/1 0 0
F a i r ( F ) : 残存個数 Z全体個数 = 9 0個〜 9 9個/ ^ 1 0 0 個 P o o r ( P ) : 残存個数ノ全体個数 = 8 9個以下/ 1 0 0個 (注 B— 1 3 ) 耐候性 F air (F): Remaining number Z Total number of pieces = 90 to 99/9 pieces / ^ 1 0 0 pieces P oor (P): Remaining number of pieces = Total number of pieces = 8 9 pieces or less / 100 pieces (Note B— 1 3) Weather resistance
耐候性の試験及び評価方法は、 (注 A— 5 ) に記載の方法と同一 である。  The weather resistance test and evaluation method are the same as those described in (Note A-5).
(注 B— 1 4 ) 耐アルカリ性  (Note B— 1 4) Alkali resistance
各複層塗膜面に、 1 %水酸化ナトリウム水溶液を 0. 5 mL滴下 して、 温度 2 0 、 相対湿度 6 5 %の雰囲気下に 2 4時間放置した 後に、 塗面をガーゼで拭き、 外観を目視評価した。  Drop 0.5 mL of 1% aqueous sodium hydroxide on each multilayer coating surface and leave it in an atmosphere at a temperature of 20 and a relative humidity of 65% for 24 hours, and then wipe the coated surface with gauze. The appearance was visually evaluated.
G o o d (G) : 塗膜表面の全く異常がない。  G o o d (G): There is no abnormality on the coating surface.
F a i r (F) : 塗膜表面の変色 (白化) が認められる。  F a i r (F): Discoloration (whitening) of the coating surface is observed.
P o o r (P ) : 塗膜表面の変色 (白化) が著しい。  P o o r (P): Discoloration (whitening) of the coating surface is remarkable.
(注 B— 1 5 ) 耐溶剤性  (Note B— 1 5) Solvent resistance
耐溶剤性の試験及び評価方法は、 (注 A— 6 ) に記載の方法と同 一である。 産業上の利用の可能性  The test and evaluation method for solvent resistance is the same as the method described in (Note A-6). Industrial applicability
本発明の活性エネルギー線硬化塗料組成物は、 製品のライフサイ クルに関わる総 c o2 の排出量が少なく、 環境汚染を低減できると 共に、 仕上り性、 鉛筆硬度、 耐擦り傷性、 耐候性、 耐溶剤性及び光 硬化性に優れる塗膜を形成することができるので、 産業上有用であ る。 The active energy ray-curable coating composition of the present invention has a low total CO 2 emission related to the product life cycle and can reduce environmental pollution, as well as finish, pencil hardness, scratch resistance, weather resistance and resistance. Since it is possible to form a coating film having excellent solvent and photocuring properties, it is industrially useful.
さらに、 本発明の塗膜形成方法は、 石油資源の使用量を低減し、 製品のライフサイクルに関わる総二酸化炭素の排出量が少なく環境 汚染を低減できると共に、 仕上り性、 鉛筆硬度、 耐擦り傷性、 層間 付着性、 耐候性、 耐アルカリ性及ぴ耐溶剤性に優れる複層塗膜を得 ることができ、 また、 使用する塗料組成物の一部に水性塗料組成物 を使用するため有機溶剤の使用量を低減することができるので、 産 業上有用である Furthermore, the coating film forming method of the present invention reduces the amount of petroleum resources used, reduces the total carbon dioxide emissions related to the product life cycle, reduces environmental pollution, and also provides finish, pencil hardness, and scratch resistance. It is possible to obtain a multi-layer coating film having excellent interlayer adhesion, weather resistance, alkali resistance and solvent resistance, and since an aqueous coating composition is used as a part of the coating composition to be used, Since the amount used can be reduced, Industrially useful

Claims

1. 重量平均分子量が 4 0 0〜 2 , 0 0 0で、 かつ 1分子あたり 平均 3. 0〜 1 2. 0個のァクリロイル基を有する、 非環状のオリ ゴ糖又はその誘導体のァクリル酸エステル ( a 1 ) と、 光重合開始 剤 ( a 2 ) とを含有する請ことを特徴とする活性エネルギー線硬化塗 料組成物。 1. Acrylic acid ester of an acyclic oligosaccharide or a derivative thereof having a weight average molecular weight of 400 to 2,000 and an average of 3.0 to 1 2.0 acryloyl groups per molecule An active energy ray-curable coating composition comprising (a 1) and a photopolymerization initiator (a 2).
2. 前記非環状のオリゴ糖又はその誘導体が、 デキス トリ ン又は 変性デキス トリンである、 請求項 1 に記載の活性エネルギー線硬化 塗料組成物。  2. The active energy ray-curable coating composition according to claim 1, wherein the acyclic oligosaccharide or a derivative thereof is dextrin or modified dextrin.
3. 前記非環状のオリゴ糖又はその誘導囲体が、 スクロース又はト レハロースである、 請求項 1 に記載の活性エネルギー線硬化塗料組 成物。  3. The active energy ray-curable coating composition according to claim 1, wherein the acyclic oligosaccharide or a derivative enclosure thereof is sucrose or trehalose.
4. さらに、 活性エネルギー線硬化性化合物 ( a 3 ) を含有する 、 請求項 1 に記載の活性エネルギー線硬化塗料組成物。  4. The active energy ray-curable coating composition according to claim 1, further comprising an active energy ray-curable compound (a 3).
5. 非環状のオリゴ糖又はその誘導体のアクリル酸エステル ( a 1 ) が、 水分散体である、 請求項 1 に記載の活性エネルギー線硬化 塗料組成物。  5. The active energy ray-curable coating composition according to claim 1, wherein the acrylic ester (a 1) of an acyclic oligosaccharide or a derivative thereof is an aqueous dispersion.
6. 請求項 1 に記載の活性エネルギー線硬化塗料組成物を塗装し て得られた塗装物品。  6. A coated article obtained by coating the active energy ray-curable coating composition according to claim 1.
7. 被塗物上に澱粉系樹脂並びに着色顔料及び/又は光輝性顔料 を含有する澱粉系ベース塗料組成物を塗装してベース塗膜を形成す るステップ、  7. A step of coating a starch-based base coating composition containing a starch-based resin and a color pigment and / or a luster pigment on an object to form a base coating film;
前記ベース塗膜上に、 糖類又はその誘導体のァクリル酸エステル ( b 1 ) の水分散体及び光重合開始剤 ( b 2 ) を含有する活性エネ ルギ一線硬化型水性塗料組成物を塗装するステップ、 そして  Coating an active energy one-line curable aqueous coating composition containing an aqueous dispersion of acrylic acid ester (b 1) of a saccharide or a derivative thereof and a photopolymerization initiator (b 2) on the base coating film; And
活性エネルギー線を照射するステツプ、 を特徴とする塗膜形成方法。 A step of irradiating active energy rays, A method of forming a coating film characterized by
8. 糖類又はその誘導体のアクリル酸エステル (b l ) が、 重量 平均分子量が 4 0 0〜 2 , 0 0 0で、 かつ 1分子あたり平均 3. 0 〜 1 2. 0個のァクリ ロイル基を有する、 請求項 7 に記載の塗膜形 成方法。  8. Acrylic ester (bl) of a saccharide or a derivative thereof has a weight average molecular weight of 400 to 2,000 and an average of 3.0 to 12.0 acryloyl groups per molecule. The method for forming a coating film according to claim 7.
9. 前記糖類又はその誘導体が、 非環状のオリゴ糖又はその誘導 体である、 請求項 7に記載の塗膜形成方法。  9. The method for forming a coating film according to claim 7, wherein the saccharide or a derivative thereof is an acyclic oligosaccharide or a derivative thereof.
1 0. 前記非環状のオリゴ糖又はその誘導体が、 デキス トリ ン又 は変性デキス 卜リンである、 請求項 9に記載の塗膜形成方法。  10. The method for forming a coating film according to claim 9, wherein the acyclic oligosaccharide or a derivative thereof is dextrin or modified dextrin.
1 1. 前記非環状のオリゴ糖又はその誘導体が、 スクロース又は トレハロースである、 請求項 9に記載の塗膜形成方法。  1 1. The coating film forming method according to claim 9, wherein the acyclic oligosaccharide or a derivative thereof is sucrose or trehalose.
1 2. 請求項 7に記載の塗膜形成方法により得られた塗装物品。  1 2. A coated article obtained by the coating film forming method according to claim 7.
PCT/JP2009/053119 2008-02-18 2009-02-17 Active energy ray-curable coating composition, method for formation of coating film, and coated article WO2009104779A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009801055348A CN101945955A (en) 2008-02-18 2009-02-17 Active energy line curing coating composition and film formation method and coated article

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008-036510 2008-02-18
JP2008036510 2008-02-18
JP2008224278A JP2009221457A (en) 2008-02-18 2008-09-02 Active energy ray-curable paint composition
JP2008-224278 2008-09-02
JP2008306948A JP2010131471A (en) 2008-12-02 2008-12-02 Method of forming coating film, and coated article
JP2008-306948 2008-12-02

Publications (1)

Publication Number Publication Date
WO2009104779A1 true WO2009104779A1 (en) 2009-08-27

Family

ID=40985655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053119 WO2009104779A1 (en) 2008-02-18 2009-02-17 Active energy ray-curable coating composition, method for formation of coating film, and coated article

Country Status (1)

Country Link
WO (1) WO2009104779A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2363109A3 (en) * 2010-01-25 2015-04-08 Mycone Dental Supply Company, Inc. Uv-curable nail coating formulations based on renewable polyols
US10687588B2 (en) 2014-10-22 2020-06-23 3M Innovative Properties Company Printed components and methods for making the same
US11911927B2 (en) 2018-06-19 2024-02-27 Schwan-Stabilo Cosmetics Gmbh & Co. Kg Wood-encased pencil

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5590507A (en) * 1978-12-29 1980-07-09 Kureha Chem Ind Co Ltd High molecular substance having sugar in side chain and preparation thereof
JPS59193846A (en) * 1983-04-20 1984-11-02 Asahi Chem Ind Co Ltd Crosslinking monomer
JPH0491068A (en) * 1990-08-06 1992-03-24 Nippon Kasei Chem Co Ltd Polyol derivative
JPH06157603A (en) * 1992-11-18 1994-06-07 Nippon Paint Co Ltd Photocurable starch derivative
JPH07302044A (en) * 1994-04-28 1995-11-14 Nippon Synthetic Chem Ind Co Ltd:The Laminated formed body
JP2001521639A (en) * 1997-04-09 2001-11-06 アドヴァンスト コーティングス インターナショナル リミテッド Aqueous photoresist made from urethane acrylate
JP2002241629A (en) * 2001-02-16 2002-08-28 Unitika Ltd Biodegradable resin-based aqueous dispersion and product coated therewith
JP2002292334A (en) * 2001-03-30 2002-10-08 Kansai Paint Co Ltd Method for forming coating film
JP2006111867A (en) * 2004-09-15 2006-04-27 Seikagaku Kogyo Co Ltd Photoreactive polysaccharide, its photocrosslinking polysaccharide product, and medical material
JP2006282959A (en) * 2005-04-05 2006-10-19 Kansai Paint Co Ltd Curable resin composition, its production method, method of forming curable resin coating, and plastic member
WO2008018599A1 (en) * 2006-08-11 2008-02-14 Asahi Glass Company, Limited Polymerizable fluorine compounds and treated base materials having hydrophilic regions and water-repellent reginos

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5590507A (en) * 1978-12-29 1980-07-09 Kureha Chem Ind Co Ltd High molecular substance having sugar in side chain and preparation thereof
JPS59193846A (en) * 1983-04-20 1984-11-02 Asahi Chem Ind Co Ltd Crosslinking monomer
JPH0491068A (en) * 1990-08-06 1992-03-24 Nippon Kasei Chem Co Ltd Polyol derivative
JPH06157603A (en) * 1992-11-18 1994-06-07 Nippon Paint Co Ltd Photocurable starch derivative
JPH07302044A (en) * 1994-04-28 1995-11-14 Nippon Synthetic Chem Ind Co Ltd:The Laminated formed body
JP2001521639A (en) * 1997-04-09 2001-11-06 アドヴァンスト コーティングス インターナショナル リミテッド Aqueous photoresist made from urethane acrylate
JP2002241629A (en) * 2001-02-16 2002-08-28 Unitika Ltd Biodegradable resin-based aqueous dispersion and product coated therewith
JP2002292334A (en) * 2001-03-30 2002-10-08 Kansai Paint Co Ltd Method for forming coating film
JP2006111867A (en) * 2004-09-15 2006-04-27 Seikagaku Kogyo Co Ltd Photoreactive polysaccharide, its photocrosslinking polysaccharide product, and medical material
JP2006282959A (en) * 2005-04-05 2006-10-19 Kansai Paint Co Ltd Curable resin composition, its production method, method of forming curable resin coating, and plastic member
WO2008018599A1 (en) * 2006-08-11 2008-02-14 Asahi Glass Company, Limited Polymerizable fluorine compounds and treated base materials having hydrophilic regions and water-repellent reginos

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2363109A3 (en) * 2010-01-25 2015-04-08 Mycone Dental Supply Company, Inc. Uv-curable nail coating formulations based on renewable polyols
US10687588B2 (en) 2014-10-22 2020-06-23 3M Innovative Properties Company Printed components and methods for making the same
US11911927B2 (en) 2018-06-19 2024-02-27 Schwan-Stabilo Cosmetics Gmbh & Co. Kg Wood-encased pencil

Similar Documents

Publication Publication Date Title
JP5084245B2 (en) Starch-based paint composition
US9079998B2 (en) Aqueous dispersion and aqueous coating composition, and process of forming coating film
TWI589615B (en) Radiation curable (meth) acrylated compounds
JP5030501B2 (en) Starch-based paint composition
EP3181604B1 (en) Aqueous multi-stage emulsion copolymer compositions for use in joinery applications
TWI535746B (en) Aqueous radiation curable polyurethane compositions and application methods thereof
KR102022743B1 (en) Active energy ray curable aqueous emulsions
KR20100127752A (en) Active energy ray-curable coating composition, method for formation of coating film, and coated article
JP5066586B2 (en) Lactic acid-based coating agent excellent in hydrolysis resistance and its coating
CN113518807B (en) Actinic ray-curable coating composition, cured coating film, coated article, and method for forming coating film
WO2009104779A1 (en) Active energy ray-curable coating composition, method for formation of coating film, and coated article
WO2009075369A1 (en) Method of forming multilayered coating film, multilayered coating film, and coated article
JP2009143973A (en) Coating composition
JP5030926B2 (en) Multilayer coating film forming method, multilayer coating film and coated article
JP2009221457A (en) Active energy ray-curable paint composition
JP5289013B2 (en) Multilayer coating film forming method, multilayer coating film and coated article
KR101011458B1 (en) Starch-based paint composition
KR20090066567A (en) Starch-based paint composition
JP2010162478A (en) Method of forming coating film and coated article
JP2010131471A (en) Method of forming coating film, and coated article
JP2009178652A (en) Method for forming coating film and coated article
JP2011208080A (en) Method for producing composition for water based coating

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980105534.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09712177

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107017840

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 5746/DELNP/2010

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09712177

Country of ref document: EP

Kind code of ref document: A1