WO2009104717A1 - Polymer compound - Google Patents

Polymer compound Download PDF

Info

Publication number
WO2009104717A1
WO2009104717A1 PCT/JP2009/052971 JP2009052971W WO2009104717A1 WO 2009104717 A1 WO2009104717 A1 WO 2009104717A1 JP 2009052971 W JP2009052971 W JP 2009052971W WO 2009104717 A1 WO2009104717 A1 WO 2009104717A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
alkyl group
group
polymer compound
range
Prior art date
Application number
PCT/JP2009/052971
Other languages
French (fr)
Japanese (ja)
Inventor
修 中山
隆司 福本
峰規 川上
誠 杉浦
士朗 楠本
Original Assignee
株式会社クラレ
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ, Jsr株式会社 filed Critical 株式会社クラレ
Priority to JP2009554385A priority Critical patent/JP5466511B2/en
Publication of WO2009104717A1 publication Critical patent/WO2009104717A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D339/00Heterocyclic compounds containing rings having two sulfur atoms as the only ring hetero atoms
    • C07D339/08Six-membered rings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0395Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having a backbone with alicyclic moieties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0397Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having an alicyclic moiety in a side chain

Definitions

  • the present invention relates to a polymer compound obtained by polymerizing a raw material containing an acrylate derivative having two sulfur atoms.
  • the polymer compound of the present invention is useful as a raw material for a photoresist composition containing the polymer compound as a component.
  • photoacid generator A chemically amplified type comprising a polymer compound having an acid-dissociable functional group and a compound that generates an acid upon irradiation with radiation (hereinafter referred to as “exposure”) (hereinafter referred to as “photoacid generator”).
  • This polymer compound having an acid-dissociable functional group basically has a structure in which a part of the alkali-soluble part of the alkali-soluble polymer compound is protected with an appropriate acid-dissociable functional group.
  • the selection of the group is very important in adjusting the function as a photoresist composition.
  • As existing acid dissociable functional groups 1) those having an adamantane structure (see Patent Document 1 and Non-Patent Document 1), 2) those having a tetrahydropyranyl group (see Patent Document 2), and the like are known. .
  • the acid-dissociable functional group is required to have both high reactivity with an acid and stability that does not decompose in the baking process, and thermal stability is required to be 130 ° C. or higher (Non-patent Document 3). reference).
  • Non-patent Document 3 Non-patent Document 3
  • the tetrahydropyranyl group of 2) has an advantage of high reactivity as acid dissociation property, it lacks thermal stability and is not satisfactory in basic performance as a resist.
  • LWR line width roughness
  • the polymer compound is highly hydrophobic and does not have sufficient affinity with the developer, resulting in a portion that does not dissolve in the exposed portion during development, which causes swelling, resulting in LWR.
  • a finer resist pattern for example, a fine resist pattern having a line width of about 90 nm.
  • a fine resist pattern having a line width finer than 90 nm it is conceivable to shorten the light source wavelength of the exposure apparatus or increase the numerical aperture (NA) of the lens.
  • NA numerical aperture
  • a new expensive exposure apparatus is required to shorten the light source wavelength.
  • the lens has a high NA, the resolution and the depth of focus are in a trade-off relationship. Therefore, there is a problem that the depth of focus decreases even if the resolution is increased.
  • a liquid immersion lithography (liquid immersion lithography) method has been reported as a lithography technique that can solve such problems.
  • a liquid refractive index medium such as pure water or a fluorine-based inert liquid having a predetermined thickness is formed on at least the photoresist film between the lens and the photoresist film on the substrate.
  • a light source having the same exposure wavelength is used by replacing the exposure optical path space, which has conventionally been an inert gas such as air or nitrogen, with a liquid having a higher refractive index (n), such as pure water.
  • the refractive index of the liquid refractive index medium (immersion liquid) is higher than the refractive index of the photoresist film, for example, light is transferred from the immersion liquid to the photoresist film according to Snell's law. Difficult to enter. Therefore, there is a possibility that basic performance such as sensitivity is deteriorated.
  • the immersion liquid has a high refractive index, the difference in refractive index between the immersion liquid and the photoresist film becomes large, and light is totally reflected at the interface between the immersion liquid and the photoresist film. Therefore, no light is incident on the photoresist film, so that sufficient sensitivity cannot be obtained, and it is expected that the throughput of the resist process is significantly reduced.
  • the photoresist film formed of the material (photoresist composition) of Non-Patent Documents 4 and 5 has a high refractive index at a wavelength of 193 nm, but cannot form a resist pattern and has a function as a photoresist film. is not. Therefore, a photoresist composition that can form a photoresist film having a high refractive index at a wavelength of 193 nm (for example, a refractive index of 1.72 or more) and that can be patterned as a photoresist film is desired. ing.
  • An object of the present invention is a photoresist composition that is excellent in acid reactivity and thermal stability, has a small swelling during development, and can form a photoresist film having a refractive index at a wavelength of 193 nm of preferably 1.72 or more.
  • An object of the present invention is to provide a polymer compound for obtaining a photoresist composition that can be patterned as a photoresist film.
  • R 1 represents a hydrogen atom, a methyl group or a trifluoromethyl group.
  • the combination of R 2 , R 3 and R 4 is 1) R 2 , R 3 and R 4 are each independently a hydrogen atom, a linear alkyl group having 1 to 6 carbon atoms, a branched alkyl group having 3 to 6 carbon atoms or a cyclic group having 3 to 6 carbon atoms. Represents an alkyl group. ; 2) R 2 and R 3 are connected to represent an alkylene group having 3 to 6 carbon atoms, and R 4 is a hydrogen atom, a linear alkyl group having 1 to 6 carbon atoms, or a branched alkyl group having 3 to 6 carbon atoms.
  • R 2 represents a hydrogen atom, a linear alkyl group having 1 to 6 carbon atoms, a branched alkyl group having 3 to 6 carbon atoms or a cyclic alkyl group having 3 to 6 carbon atoms
  • R 3 and R 4 represents an alkylene group having 3 to 6 carbon atoms linked to each other. One of them.
  • a polymer compound (8) according to any one of 3. n. wherein n is 0 or 1, and R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 are hydrogen atoms. 3.
  • the content of the structural unit based on the acrylate derivative (1) is in the range of 10 to 90 mol%. ⁇ 3.
  • a photoresist composition which is excellent in acid reactivity and thermal stability, has a small swelling during development, and can form a photoresist film having a refractive index of 1.72 or more at a wavelength of 193 nm,
  • a polymer compound for obtaining a photoresist composition that can be patterned as a photoresist film can be provided.
  • R 1 represents a hydrogen atom, a methyl group or a trifluoromethyl group.
  • R 1 is preferably a hydrogen atom or a methyl group, and more preferably a methyl group.
  • R 2 , R 3 and R 4 are one of the following 1) to 3).
  • R 2 , R 3 and R 4 are each independently a hydrogen atom, a linear alkyl group having 1 to 6 carbon atoms, a branched alkyl group having 3 to 6 carbon atoms or a cyclic group having 3 to 6 carbon atoms. Represents an alkyl group.
  • R 2 and R 3 are connected to represent an alkylene group having 3 to 6 carbon atoms
  • R 4 is a hydrogen atom, a linear alkyl group having 1 to 6 carbon atoms, or a branched alkyl group having 3 to 6 carbon atoms. Or a cyclic alkyl group having 3 to 6 carbon atoms.
  • R 2 represents a hydrogen atom, a linear alkyl group having 1 to 6 carbon atoms, a branched alkyl group having 3 to 6 carbon atoms, or a cyclic alkyl group having 3 to 6 carbon atoms
  • R 3 and R 4 are And represents an alkylene group having 3 to 6 carbon atoms.
  • Examples of the linear alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-pentyl group, and an n-hexyl group.
  • Examples of the branched alkyl group having 3 to 6 carbon atoms include isopropyl group, isobutyl group, sec-butyl group and the like.
  • Examples of the cyclic alkyl group having 3 to 6 carbon atoms include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group.
  • Examples of the alkylene group having 3 to 6 carbon atoms when R 2 and R 3 are linked include a propane-1,3-diyl group, a butane-1,4-diyl group, and a pentane-1,5-diyl group. And hexane-1,6-diyl group.
  • R 3 and R 4 examples include, for example, propane-1,3-diyl group, butane-1,4-diyl group, pentane-1,5- Examples thereof include a diyl group and a hexane-1,6-diyl group.
  • the combination of R 2, R 3 and R 4 is preferably the above-mentioned 1), R 2, R 3 and R 4 are more preferably a hydrogen atom or a methyl group, respectively, in particular R 3 is a hydrogen atom It is preferable that both are hydrogen atoms.
  • R 6 and R 7 independently represents a hydrogen atom, a linear alkyl group having 1 to 6 carbon atoms, a branched alkyl group having 3 to 6 carbon atoms or a cyclic alkyl group having 3 to 6 carbon atoms; Or R 6 and R 7 are linked to each other to represent an alkylene group having 3 to 6 carbon atoms. 2)
  • R 5 , R 6 , R 7 , R 8 , R 9 and R 10 are each independently a hydrogen atom, a linear alkyl group having 1 to 6 carbon atoms, carbon A branched alkyl group having 3 to 6 carbon atoms or a cyclic alkyl group having 3 to 6 carbon atoms is represented.
  • Examples of the linear alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-pentyl group, and an n-hexyl group.
  • Examples of the branched alkyl group having 3 to 6 carbon atoms include isopropyl group, isobutyl group, sec-butyl group and the like.
  • Examples of the cyclic alkyl group having 3 to 6 carbon atoms include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group.
  • alkylene group having 3 to 6 carbon atoms in which R 6 and R 7 are linked examples include, for example, a propane-1,3-diyl group, a butane-1,4-diyl group, a pentane-1,5-diyl group, and hexane. -1,6-diyl group and the like. Of these, a butane-1,4-diyl group is preferred.
  • n is preferably 0 or 1, and more preferably 0. When n is 0, R 5 , R 6 , R 7 and R 8 are each preferably a hydrogen atom or a methyl group, and R 5 , R 6 , R 7 and R 8 are all hydrogen atoms.
  • R 5 and R 8 are both methyl groups, and R 6 and R 7 are both hydrogen atoms.
  • R 5 , R 6 , R 7 , R 8 , R 9 and R 10 are each preferably a hydrogen atom or a methyl group, and R 5 , R 6 , R 7 , R 8 , R 9 and R 10 are more preferably hydrogen atoms.
  • acrylate derivative (1) examples include, for example, the following formulas (1-a) to (1-x)
  • n is as defined above.
  • P represents 1 or 2.
  • the acrylic ester derivative (1) is, for example, the following general formula (2)
  • R 11 represents a linear alkyl group having 1 to 3 carbon atoms or a branched alkyl group having 3 to 6 carbon atoms.
  • 13 represents a linear alkyl group having 1 to 6 carbon atoms, a branched alkyl group having 3 to 6 carbon atoms, or a cyclic alkyl group having 3 to 6 carbon atoms, and
  • X represents a chlorine atom, a bromine atom or iodine Represents an atom.
  • R 12 represents a linear alkyl group having 1 to 3 carbon atoms or a branched alkyl group having 3 to 6 carbon atoms.
  • the linear alkyl group having 1 to 3 carbon atoms include a methyl group, an ethyl group, and an n-propyl group.
  • the branched alkyl group having 3 to 6 carbon atoms include isopropyl group, isobutyl group, sec-butyl group and the like.
  • R 12 is preferably a linear alkyl group having 1 to 3 carbon atoms, and more preferably a methyl group.
  • Preferred groups of R 6 , R 7 , R 8 , R 9 and R 10 are n, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R in the acrylate derivative (1).
  • 7 , R 8 , R 9 and R 10 are the same as preferred groups.
  • R 11 and R 13 are each preferably a linear alkyl group having 1 to 3 carbon atoms, and more preferably a methyl group.
  • X is preferably a chlorine atom or a bromine atom.
  • a halide (4) is synthesized by an acetal exchange reaction.
  • an acetal corresponding to the halide (4) (referred to as acetal (3))
  • an acid anhydride in the presence of an acid catalyst
  • the halide (4) can be easily synthesized (Tetrahedron, Vol. .50, No. 26, p. 7897-7902 (1994)).
  • the acetal (3) used in the first step those which are industrially available and those produced by subjecting a corresponding ⁇ -haloketone compound or ⁇ -haloaldehyde to a conventional acetalization reaction can be used.
  • Examples of the acid anhydride used in the first step include acetic anhydride, propionic anhydride, butanoic anhydride and the like, and acetic anhydride is preferable from the viewpoint of economy and ease of post-treatment.
  • the amount of the acid anhydride to be used is preferably in the range of 0.5 to 3 times mol, preferably 0.7 to 2 times mol of the acetal (3) from the viewpoint of economy and ease of post-treatment. The range is more preferable, and the range of 0.8 to 1.5 times mol is more preferable.
  • the first step can be performed in the presence or absence of a solvent.
  • the solvent is not particularly limited as long as it does not inhibit the reaction.
  • aliphatic hydrocarbons such as hexane, heptane, and octane
  • aromatic hydrocarbons such as toluene, xylene, and cymene
  • halogenated carbons such as methylene chloride and dichloroethane.
  • Hydrogen; ethers such as tetrahydrofuran (THF) and diisopropyl ether are listed. These can be used individually by 1 type or in mixture of 2 or more types.
  • an acid anhydride as a solvent and reaction agent from a viewpoint of environmental load reduction.
  • the amount used is preferably in the range of 0.1 to 10 times by mass with respect to the acetal (3), from the viewpoint of economy and ease of post-treatment, and 0.1 to 5 A range of mass times is more preferable.
  • an acid catalyst is used.
  • the acid catalyst include carboxylic acids such as acetic acid, propionic acid, and benzoic acid; sulfonic acids such as p-toluenesulfonic acid and methanesulfonic acid; and mineral acids such as sulfuric acid, hydrochloric acid, and phosphoric acid.
  • the amount of the acid catalyst used is preferably in the range of 0.0001 to 0.1 moles relative to the acetal (3), from the viewpoint of economy and ease of post-treatment, More preferably, it is in the range of double mole.
  • the reaction temperature in the first step varies depending on the types of the acetal (3) and the acid catalyst, but is generally preferably in the range of 0 to 100 ° C, more preferably in the range of 10 to 70 ° C.
  • the pressure in the first step varies depending on the types of the acetal (3), the acid catalyst, the acid anhydride and the solvent, but can be carried out at normal pressure or under reduced pressure.
  • the reaction in the first step can be stopped by neutralizing the acid catalyst or by removing the acid catalyst from the reaction system.
  • the neutralizing agent include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; alkali metal carbonates such as sodium carbonate and potassium carbonate; alkali metal hydrogen carbonates such as sodium hydrogen carbonate and potassium hydrogen carbonate; triethylamine And tertiary amines such as tributylamine; nitrogen-containing heterocyclic aromatic compounds such as pyridine.
  • alkali metal hydrogen carbonate is preferable, and sodium hydrogen carbonate is more preferable.
  • the amount used is preferably in the range of 1 to 3 equivalents with respect to the acid catalyst from the viewpoints of economy and ease of post-treatment.
  • the method for stopping the reaction by removing the acid catalyst from the reaction system include a method of diluting the reaction solution during the reaction with an appropriate reaction solvent and then washing with water or alkaline water.
  • Preferred examples of the solvent include the same solvents as those described above that can be used for the reaction in the first step.
  • the amount used is preferably in the range of 0.1 to 10 times by mass with respect to the total mass of the reaction solution from the viewpoint of economy and ease of post-treatment. A range of 1 to 5 times by mass is more preferable.
  • the basic substance in alkaline water include inorganic bases such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium hydrogen carbonate, potassium carbonate, and potassium hydrogen carbonate.
  • the amount of the basic substance used is preferably in the range of 0.1 to 3 equivalents relative to the acid catalyst from the viewpoints of economy and ease of post-treatment.
  • the purity of the product in the first step can be increased by usual organic compound separation and purification operations such as solvent extraction, distillation, column chromatography, and recrystallization.
  • the second step is a step of reacting dithiol (2) with a base (hereinafter referred to as second step-1), and a halide (4) is added to the reaction solution obtained in the second step-1, thereby adding alcohol. (5) is obtained (hereinafter referred to as second step-2), and if necessary, the step of hydrolyzing the ester (6) by-produced in the second step-2 (hereinafter referred to as second step-3). And post-processing steps.
  • alcohol (5) obtained in the second step include, but are not limited to, alcohols of the following formula.
  • the second step-1 is a step of producing a salt of dithiol (2) by reacting dithiol (2) with a base.
  • the dithiol (2) used in the second step-1 include 1,2-ethanedithiol, 1,3-propanedithiol, 1,4-butanedithiol, 2,3-butanedithiol, 2,3-dimethyl- 2,3-butanedithiol, 1,2-propanedithiol, 2-methyl-1,2-propanedithiol, 2-methyl-2,3-butanedithiol, 3,4-hexanedithiol, 2,5-dimethyl-3 , 4-hexanedithiol, 1,2-butanedithiol, 1,2-pentanedithiol, 3,4-octanedithiol, 3,3-dimethyl-1,2-butanedithiol, 1,2-cyclopentanedithiol, 1, 2-cyclohexanedit
  • the second step-1 is preferably carried out in the presence of a solvent.
  • the solvent is not particularly limited as long as it does not inhibit the reaction.
  • dialkyl ethers such as diethyl ether, tetrahydrofuran, diisopropyl ether, t-butyl methyl ether, cyclopropyl methyl ether; 1,2-dimethoxyethane, diethylene glycol dimethyl ether, (Poly) alkylene glycol dialkyl ethers such as ethylene glycol dimethyl ether; amides such as N, N-dimethylformamide and the like. You may use these individually by 1 type or in mixture of 2 or more types.
  • ether solvents for example, dialkyl ethers and (poly) alkylene glycol dialkyl ethers
  • 1,2-dimethoxyethane is more preferable.
  • the amount of the solvent used is preferably in the range of 1 to 15 times by mass with respect to dithiol (2), and more preferably in the range of 3 to 10 times by mass, from the viewpoint of economy and ease of post-treatment. preferable.
  • the base used in the second step-1 may be either an inorganic base or an organic base.
  • the inorganic base include alkali metal hydrides such as sodium hydride, lithium hydride and potassium hydride; alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; alkali metal carbonates such as sodium carbonate and potassium carbonate Etc.
  • the organic base include sodium methoxide, triethylamine, 4- (N, N-dimethylamino) pyridine, N, N-dimethylaniline, pyridine, tributylamine, diazabicyclo [2.2.2] octane, and the like. It is done. You may use these individually by 1 type or in mixture of 2 or more types.
  • alkali metal hydrides are preferable and sodium hydride is more preferable from the viewpoints of availability, handling, reaction yield, and economy.
  • the amount of the base used is preferably in the range of 0.8 to 4 mol, more preferably in the range of 1.5 to 2.5 mol with respect to 1 mol of dithiol (2), from the viewpoints of economy and post-treatment. Is more preferable. If the base is within the above range, the yield of alcohol (5) in the second step-2 will be good.
  • the procedure of the second step-1 is not particularly limited.
  • dithiol (2) is dropped into a solution in which sodium hydride is suspended in an appropriate solvent.
  • the method is preferred.
  • the reaction temperature in the second step-1 varies depending on the type of dithiol (2) and the base, but is generally preferably in the range of 0 to 100 ° C, more preferably in the range of 5 to 70 ° C. More preferably, it is in the range of ⁇ 50 ° C.
  • the pressure in the second step-1 varies depending on the type of dithiol (2), base and solvent used, but can be carried out under any pressure, and is preferably carried out under normal pressure.
  • the reaction time in the second step-1 is preferably in the range of 0.1 to 5 hours, more preferably in the range of 0.1 to 2 hours after the addition of dithiol (2).
  • sodium hydride used as the base, it is preferably in the range of 0.1 to 3 hours and more preferably in the range of 0.1 to 1.5 hours after the addition of dithiol (2).
  • sodium hydride used as the base, hydrogen is generated as the reaction proceeds, but hydrogen generation is stopped within the range of 0.1 to 3 hours.
  • the second step-2 is carried out by reacting the reaction liquid containing the salt of dithiol (2) obtained in the second step-1 with the halide (4) obtained in the first step.
  • the procedure of the second step-2 is not particularly limited.
  • the halide (4) obtained in the first step is added dropwise to the reaction solution containing the dithiol (2) salt obtained in the second step-1. Can be done in a way.
  • the reaction temperature in the second step-2 varies depending on the type of dithiol (2), base, solvent and halide (4) obtained in the first step used in the second step-1, but is generally 0-100 ° C. Is preferable, and a range of 10 to 80 ° C. is more preferable.
  • the pressure in the second step-2 varies depending on the type of dithiol (2), base, solvent and halide (4) obtained in the first step used in the second step-1, but can be carried out under any pressure. It is preferable to carry out under normal pressure.
  • the reaction time of the second step-2 is preferably in the range of 0.1 to 10 hours after the addition of the halide (4) obtained in the first step, and more preferably in the range of 0.5 to 5 hours. preferable.
  • sodium hydride when sodium hydride is used as the base, it is preferably in the range of 0.1 to 8 hours, preferably in the range of 0.5 to 4 hours after the addition of the halide (4) obtained in the first step. Is more preferable. If it is this range, the conversion rate of the halide (4) obtained at the 1st process will become 98% or more normally.
  • the ester (6) is by-produced together with the target alcohol (5).
  • the second step-3 is a step of improving the yield of the target alcohol (5) by appropriately hydrolyzing the by-produced ester (6) after completion of the reaction of the second step-2.
  • the second step-3 is performed by adding water or alkaline water to the reaction solution obtained in the second step-2 and stirring.
  • the pH of the solution is generally in the range of 10-14 (alkaline), more often in the range of 11-13.
  • the amount of water used is 0 with respect to the total liquid mass in the second step-2, considering not only the theoretical amount necessary to hydrolyze the by-produced ester (6) but also the post-treatment step.
  • the range is preferably 1 to 5 times by mass, more preferably 0.1 to 1 times by mass.
  • the basic substance in the alkaline water is preferably an inorganic salt.
  • the inorganic salt include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; sodium carbonate and potassium carbonate.
  • Alkali metal carbonates such as sodium hydrogen carbonate and potassium hydrogen carbonate.
  • the amount of the basic substance used is preferably in the range of 0.1 to 5 moles, preferably 0.5 to 3 moles per mole of ester (6), from the viewpoints of economy and ease of post-treatment. A range is more preferable.
  • the concentration of the alkaline water is not particularly limited, and usually a range of 0.01 to 20% by mass can be used.
  • the temperature when water or alkaline water is added in the second step-3 is preferably in the range of 0 to 100 ° C., more preferably in the range of 10 to 80 ° C., and in the range of 20 to 50 ° C. More preferably.
  • the temperature during mixing after adding water or alkaline water is not particularly limited, but is preferably in the range of 20 to 100 ° C., and more preferably 50 to 100 ° C. from the viewpoint of shortening the reaction time.
  • the pressure in the second step-3 varies depending on the dithiol (2) used in the second step-1, the base, the solvent and the type of the halide (4) obtained in the first step. It is possible to carry out under normal pressure.
  • the reaction time of the second step-3 the change with time of the alcohol (5) and the ester (6) is traced by gas chromatography or the like, and mixing is performed when the yield of the alcohol (5) is not increased. It is desirable to quit. Mixing may be continued beyond this point, but the yield of alcohol (5) tends to decrease gradually.
  • the hydrolysis reaction in Step 2-3 can be stopped by neutralizing excess base.
  • the neutralizing agent include mineral acids such as sulfuric acid, hydrochloric acid, and phosphoric acid. These acids may be diluted to an appropriate concentration with water.
  • the target pH for neutralization is preferably in the range of 7-8.
  • the target alcohol (5) in the liquid after completion of the hydrolysis reaction in the second step-3 can be increased in purity by ordinary organic compound separation and purification operations such as solvent extraction, distillation, column chromatography, and recrystallization. Is possible.
  • the third step is a step of introducing a polymerizable group into the alcohol (5) obtained in the second step.
  • the third step is a step of introducing a polymerizable group into the alcohol (5) obtained in the second step.
  • the reaction is carried out in the presence.
  • any of R 1 also the same as R 1 in the acrylic acid ester derivative (1), it is also preferred group same.
  • X 1 represents a chlorine atom, a bromine atom or an iodine atom.
  • R 14 represents a t-butyl group or a 2,4,6-trichlorophenyl group.
  • R 15 represents a methyl group or a p-tolyl group.
  • polymerizable group-introducing agent represented by the general formula CH 2 ⁇ CR 1 COX 1 used in the third step include acrylic acid chloride, methacrylic acid chloride, 2-trifluoromethylacrylic acid chloride and the like. It is done.
  • polymerizable group-introducing agent represented by the general formula (CH 2 ⁇ CR 2 CO) 2 O include acrylic acid anhydride, methacrylic acid anhydride, and anhydrous 2-trifluoromethyl acrylic acid.
  • polymerizable group-introducing agent represented by the general formula CH 2 ⁇ CR 2 COOC ( ⁇ O) R 14 include, for example, acrylic acid pivalic acid anhydride, acrylic acid 2,4,6-trichlorobenzoic acid anhydride, Methacrylic acid pivalic anhydride, methacrylic acid 2,4,6-trichlorobenzoic anhydride, 2-trifluoromethylacrylic acid pivalic anhydride, 2-trifluoromethylacrylic acid 2,4,6-trichlorobenzoic anhydride Such as things.
  • the amount of the polymerizable group-introducing agent used is preferably in the range of 0.8 to 5 moles relative to 1 mole of the alcohol (5), from the viewpoint of economy and ease of post-treatment, and 0.8 to 3 More preferred is the molar range.
  • an inorganic base or an organic base can be used as the basic substance used in the third step.
  • the inorganic base include alkali metal hydrides such as sodium hydride and potassium hydride; alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; alkali metal carbonates such as sodium carbonate and potassium carbonate.
  • the organic base include tertiary amines such as triethylamine, tributylamine, N, N-dimethylaniline and diazabicyclo [2.2.2] octane; pyridine, 4- (N, N-dimethylamino) pyridine and the like. Examples thereof include nitrogen heteroaromatic compounds.
  • the amount of the basic substance used is preferably in the range of 0.8 to 5 mol, more preferably in the range of 0.8 to 3 mol with respect to 1 mol of the alcohol (5), from the viewpoints of economy and post-treatment. Is more preferable.
  • the third step can be performed in the presence or absence of a solvent.
  • the solvent is not particularly limited as long as it does not adversely influence the reaction.
  • ethers such as diethyl ether, diisopropyl ether and tetrahydrofuran; aliphatic hydrocarbons such as hexane, heptane and octane; methylene chloride, 1,2-dichloroethane and the like Halogenated hydrocarbons; aromatic hydrocarbons such as toluene, xylene, and cymene; N, N-dimethylformamide; dimethyl sulfoxide and the like. You may use these individually by 1 type or in mixture of 2 or more types.
  • the amount used is not particularly limited, but it is usually preferably in the range of 0.1 to 20 parts by weight, preferably 0.1 to 10 parts by weight with respect to 1 part by weight of the alcohol (5). More preferred is the range of parts.
  • the third step is preferably performed in the range of ⁇ 80 to 100 ° C., more preferably in the range of ⁇ 50 to 80 ° C., and further preferably performed at ⁇ 20 to 40 ° C.
  • the reaction time varies depending on the type and amount of the alcohol (5) and the polymerizable group introducing agent, the type and amount of the basic substance, the type and amount of the solvent, the reaction temperature, etc. The range is 10 hours.
  • the reaction can be stopped by adding water and / or alcohol.
  • examples of such alcohol include methanol, ethanol, n-propanol, i-propanol and the like.
  • the amount of water and / or alcohol used is 1 mol of excess of the polymerizable group-introducing agent relative to the alcohol (5). It is preferable to use 1 mol or more.
  • the acrylic ester derivative (1) obtained through the third step is preferably separated and purified by a conventional method as necessary.
  • the reaction mixture can be washed with water, concentrated, and the purity can be increased by a method used for separation and purification of ordinary organic compounds such as distillation, column chromatography, or recrystallization.
  • metal in nitrilotriacetic acid, ethylenediaminetetraacetic acid treatment with chelating agent, zeta plus (trade name: manufactured by Cuno Co., Ltd.) or protego (product name: manufactured by Nihon Microlith Co., Ltd.) It is also possible to reduce the metal content in the obtained acrylic ester derivative (1) by the removal filter treatment.
  • the polymer compound (8) By polymerizing a raw material containing at least the acrylic ester derivative (1) to obtain a polymer compound (8), it can be used as a component of a photoresist composition.
  • the polymer compound (8) is a polymer obtained by polymerizing the acrylic ester derivative (1) alone or a copolymer obtained by copolymerizing the acrylic ester derivative (1) and another polymerizable compound.
  • a structural unit based on the acrylate derivative (1) is Usually, the content ratio of the structural unit based on the acrylate derivative (1) in the polymer compound (8) is not particularly limited. From the viewpoint of reduction, it is preferably in the range of 10 to 90 mol%, more preferably in the range of 20 to 80 mol%. Specific examples of the structural unit based on the acrylate derivative (1) include those represented by the following formulas (1′-a) to (1′-x), but are not limited thereto.
  • copolymerizable monomer (7) Other raw materials that can be copolymerized with the acrylate derivative (1), that is, other polymerizable compounds [hereinafter referred to as copolymerizable monomer (7).
  • copolymerizable monomer (7) other polymerizable compounds [hereinafter referred to as copolymerizable monomer (7).
  • R 16 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
  • R 17 represents a polymerizable group
  • R 18 represents a hydrogen atom or —COOR 19
  • R 19 represents 1 to 3 carbon atoms
  • R 20 represents an alkyl group or a cycloalkyl group in which the carbon atoms forming the ring may be substituted with oxygen atoms.
  • examples of the alkyl group having 1 to 3 carbon atoms independently represented by R 16 and R 19 include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group.
  • Examples of the alkyl group represented by R 20 include alkyl having 1 to 8 carbon atoms such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, and t-butyl. Group and the like.
  • Examples of the cycloalkyl group in which the carbon atom forming the ring represented by R 20 may be substituted with an oxygen atom include a cyclopentyl group, a cyclohexyl group, a 1-methylcyclohexyl group, a cyclooctyl group, a tetrahydropyran-2-yl group, And 4-methyltetrahydropyran-4-yl group.
  • Examples of the polymerizable group represented by R 17 include an acryloyl group, a methacryloyl group, a 2-trifluoromethylacryloyl group, a vinyl group, and a crotonoyl group.
  • R 16 is preferably a hydrogen atom, a methyl group, an ethyl group, or an isopropyl group.
  • R 17 is preferably an acryloyl group or a methacryloyl group.
  • R 18 is preferably a hydrogen atom.
  • R 20 is preferably an alkyl group having 1 to 8 carbon atoms.
  • the above compounds (I), (II), (IV), (V), (VI), (IX) are preferable, (II), (IV), and (VI) are more preferable.
  • the polymer compound (8) can be produced by radical polymerization according to a conventional method.
  • a method for synthesizing a polymer compound having a small molecular weight distribution includes living radical polymerization.
  • a general radical polymerization method includes, as necessary, one or more kinds of acrylic acid ester derivatives (1) and, if necessary, one or more kinds of the above copolymerizable monomers (7), a radical polymerization initiator and a solvent, In addition, the polymerization is carried out in the presence of a chain transfer agent as required.
  • this radical polymerization method will be described.
  • radical polymerization initiators include hydroperoxide compounds such as t-butyl hydroperoxide and cumene hydroperoxide; dialkyl such as di-t-butyl peroxide, t-butyl- ⁇ -cumyl peroxide, and di- ⁇ -cumyl peroxide.
  • Peroxide compounds diacyl peroxide compounds such as benzoyl peroxide and diisobutyryl peroxide; and azo compounds such as 2,2′-azobisisobutyronitrile and dimethyl-2,2′-azobisisobutyrate.
  • the amount of the radical polymerization initiator used depends on the polymerization conditions such as the acrylic ester derivative (1), the comonomer (7), the chain transfer agent and the solvent used in the polymerization reaction; the polymerization temperature and the like. Although it can select suitably, it points out the total amount of all the polymerizable compounds [Acrylic ester derivative (1) and a comonomer (7), and so on. In general, it is preferably in the range of 0.005 to 0.2 mol, more preferably in the range of 0.01 to 0.15 mol with respect to 1 mol.
  • chain transfer agent examples include thiol compounds such as dodecanethiol, mercaptoethanol, mercaptopropanol, mercaptoacetic acid, and mercaptopropionic acid. You may use these individually by 1 type or in mixture of 2 or more types.
  • the amount used is usually in the range of 0.005 to 0.2 mol and in the range of 0.01 to 0.15 mol with respect to 1 mol of all polymerizable compounds. Is preferred.
  • the radical polymerization is usually carried out in the presence of a solvent.
  • the solvent is not particularly limited as long as the polymerization reaction is not inhibited.
  • propylene glycol monoethyl ether, propylene glycol monomethyl ether acetate, ethylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monomethyl ether propionate, ethylene glycol Glycol ethers such as monobutyl ether, ethylene glycol monobutyl ether acetate, diethylene glycol dimethyl ether; esters such as ethyl lactate, methyl 3-methoxypropionate, methyl acetate, ethyl acetate, propyl acetate; acetone, methyl ethyl ketone, methyl isopropyl ketone, methyl isobutyl ketone, Methyl amyl ketone, cyclopentanone, cyclohexanone What ketone dieth
  • the amount of the solvent used is usually in the range of 0.5 to 20 parts by mass with respect to 1 part by mass of the total polymerizable compound, and is preferably in the range of 1 to 10 parts by mass from the viewpoint of economy. .
  • the reaction temperature for radical polymerization is usually preferably from 40 to 150 ° C., and more preferably from 60 to 120 ° C. from the viewpoint of the stability of the resulting polymer compound (8).
  • the reaction time for radical polymerization varies depending on the acrylic ester derivative (1), the comonomer (7), the polymerization initiator, the type and amount of the solvent used, and the polymerization conditions such as the reaction temperature. It is preferably in the range of ⁇ 48 hours, and more preferably in the range of 1 hour to 24 hours.
  • the polymer compound (8) thus obtained can be isolated by ordinary operations such as reprecipitation.
  • the solvent used in the reprecipitation operation include aliphatic hydrocarbons such as pentane and hexane; alicyclic hydrocarbons such as cyclohexane; aromatic hydrocarbons such as benzene and xylene; methylene chloride, chloroform, chlorobenzene, and dichlorobenzene.
  • Nitrogenated hydrocarbons such as nitromethane; Nitriles such as acetonitrile and benzonitrile; Ethers such as diethyl ether, diisopropyl ether, tetrahydrofuran and 1,4-dioxane; Ketones such as acetone and methyl ethyl ketone; Acetic acid and the like Carboxylic acid; Esters such as ethyl acetate and butyl acetate; Carbonates such as dimethyl carbonate, diethyl carbonate, and ethylene carbonate; Methanol, ethanol, propanol, isopropyl alcohol Include water; le, alcohols such as butanol.
  • the amount of the solvent used varies depending on the kind of the polymer compound (8) and the kind of the solvent, but usually it is preferably in the range of 0.5 to 100 parts by mass with respect to 1 part by mass of the polymer compound (8). From the viewpoint of economy, it is more preferably in the range of 1 to 50 parts by mass.
  • the polymer compound isolated in this way can also be dried by vacuum drying or the like.
  • R 21 to R 35 are Each independently represents a hydrogen atom, a methyl group or a trifluoromethyl group
  • the weight average molecular weight (Mw) of the polymer compound (8) is not particularly limited, but is preferably in the range of 500 to 50000, more preferably in the range of 1000 to 30000. Highly useful.
  • the measurement of the weight average molecular weight (Mw) is as described in Examples.
  • a photoresist composition can be prepared by blending the polymer compound (8), a solvent and a photoacid generator described later, and a basic compound, a surfactant and other additives as required.
  • a photoresist composition containing the polymer compound (8) hereinafter referred to as a photoresist composition (9)].
  • solvent examples include propylene glycol monoethyl ether, propylene glycol monomethyl ether acetate, ethylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monomethyl ether propionate, and ethylene glycol monobutyl ether.
  • Glycol ethers such as ethylene glycol monobutyl ether acetate and diethylene glycol dimethyl ether; esters such as ethyl lactate, methyl 3-methoxypropionate, methyl acetate, ethyl acetate, propyl acetate; acetone, methyl ethyl ketone, methyl isopropyl ketone, methyl isobutyl ketone, methyl amyl Ketone, cyclopentanone, cyclohexanone, etc. Ketones; diethyl ether, diisopropyl ether, dibutyl ether, tetrahydrofuran, ethers such as 1,4-dioxane.
  • the compounding amount of the solvent is usually in the range of 1 to 50 parts by mass, preferably in the range of 2 to 25 parts by mass with respect to 1 part by mass of the polymer compound (8).
  • photoacid generator there is no restriction
  • the photo-acid generator conventionally used for the chemically amplified resist can be used conventionally.
  • the photoacid generator include nitrobenzyl derivatives such as 2-nitrobenzyl p-toluenesulfonate, 2,6-dinitrobenzyl p-toluenesulfonate, and 2,4-dinitrobenzyl p-toluenesulfonate; Sulfonic acid esters such as 2,3-tris (methanesulfonyloxy) benzene, 1,2,3-tris (trifluoromethanesulfonyloxy) benzene, 1,2,3-tris (p-toluenesulfonyloxy) benzene; bis ( Benzenesulfonyl) diazomethane, bis (p-toluenesulfonyl) diazomethane
  • the compounding amount of the photoacid generator is usually 0.1 to 30 parts by mass with respect to 100 parts by mass of the polymer compound (8) from the viewpoint of ensuring the sensitivity and developability of the photoresist composition (9).
  • the range is preferably in the range of 0.5 to 10 parts by mass.
  • Basic compound In the photoresist composition (9), in order to improve the resolution by suppressing the acid diffusion rate in the photoresist film, the characteristics of the photoresist composition (9) are not hindered if necessary. It can be blended in a range of amounts. Examples of such basic compounds include formamide, N-methylformamide, N, N-dimethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, N- (1-adamantyl) acetamide, benzamide, N-acetyl.
  • the blending amount varies depending on the type of basic compound to be used, but it is usually preferably in the range of 0.01 to 10 moles per mole of the photoacid generator. More preferably, it is in the range of 0.05 to 1 mole.
  • the photoresist composition (9) may further contain a surfactant in an amount that does not impair the characteristics of the photoresist composition (9), if desired.
  • a surfactant examples include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene n-octylphenyl ether, and the like. You may use these individually by 1 type or in mixture of 2 or more types.
  • the surfactant is blended, the blending amount is usually 2 parts by mass or less with respect to 100 parts by mass of the polymer compound (8).
  • the photoresist composition (9) includes other additives such as a sensitizer, an antihalation agent, a shape improver, a storage stabilizer, an antifoaming agent, and the like. It can be blended in an amount that is not inhibited.
  • the photoresist composition (9) is applied to a substrate, usually pre-baked at 70 to 160 ° C. for 1 to 10 minutes, irradiated with radiation through a predetermined mask (exposure), and then 1 to 5 at 70 to 160 ° C.
  • a predetermined resist pattern can be formed by post-exposure baking for a minute to form a latent image pattern and then developing with a developer.
  • Exposure is preferably in the range of 0.1 ⁇ 1000mJ / cm 2, and more preferably in the range of 1 ⁇ 500mJ / cm 2.
  • the developer examples include inorganic bases such as sodium hydroxide, potassium hydroxide, sodium carbonate and aqueous ammonia; alkylamines such as ethylamine, diethylamine and triethylamine; alcohol amines such as dimethylethanolamine and triethanolamine; tetramethylammonium hydroxy And an alkaline aqueous solution in which a quaternary ammonium salt such as tetraethylammonium hydroxide is dissolved.
  • a quaternary ammonium salt such as tetraethylammonium hydroxide or tetraethylammonium hydroxide is dissolved.
  • concentration of the developer is usually preferably in the range of 0.1 to 20% by mass, and more preferably in the range of 0.1 to 10% by mass.
  • the photoresist composition (9) can be applied to an immersion exposure method.
  • pure water or an immersion exposure liquid having a refractive index greater than or equal to the refractive index of water at a wavelength of 193 nm may be used as the immersion exposure liquid. it can.
  • the immersion exposure liquid having a refractive index at a wavelength of 193 nm which is used in the immersion exposure step is equal to or higher than the refractive index of water, and has a refractive index at a wavelength of 193 nm which is higher than the refractive index of water (1.44).
  • various liquids can be used.
  • a photoresist film having a refractive index of 1.72 or more at a wavelength of 193 nm can be obtained.
  • an immersion liquid having a refractive index of 1.70 or more an immersion liquid having a high refractive index
  • the photoresist film Problems such as exposure light being totally reflected at the interface between the liquid and the immersion liquid are unlikely to occur, and deterioration of basic performance (for example, reduction in sensitivity) due to total reflection of exposure light can be prevented.
  • the refractive index of the photoresist film is determined by using a spectroscopic ellipsometer (for example, “VUV-VASE”, manufactured by JA Woollam), and irradiating light having a wavelength of 193 nm on the photoresist film having a film thickness of 30 to 300 nm. It is the value measured.
  • a spectroscopic ellipsometer for example, “VUV-VASE”, manufactured by JA Woollam
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) were measured by gel permeation chromatography (GPC) using a differential refractometer as a detector and tetrahydrofuran (THF) as an eluent under the following conditions. It calculated
  • TSK-gel SUPER HZM-H (trade name: 4.6 mm ⁇ 150 mm) and TSK-gel SUPER HZ2000 (trade name: Tosoh Corp., 4.6 mm ⁇ 150 mm) as columns )
  • measurement was performed under the conditions of a column temperature of 40 ° C., a differential refractometer temperature of 40 ° C., and an eluent flow rate of 0.35 mL / min.
  • the high boiling fraction was allowed to flow at a pressure of 1330 Pa and a temperature of 40 to 50 ° C., and 163.5 g (1.01 mol) of 2-chloro-1-methoxyethyl acetate was obtained as a colorless and transparent liquid in the low boiling fraction ( (Purity 94.0%, yield 74%).
  • the obtained liquid was transferred to a separatory funnel having an internal volume of 5 L, and extracted twice with 1670 g of diisopropyl ether. Two portions of the obtained extract were put into a separatory funnel having an internal volume of 5 L, washed sequentially with 801 g of water and 504 g of saturated brine, and the solvent was distilled off under reduced pressure to obtain 285.9 g of concentrate.
  • the obtained concentrate was charged with 47.5 g of diisopropyl ether, 85.2 g of n-hexane and a small amount of crystal seeds, and slowly cooled to 0 ° C.
  • the precipitate was collected by filtration, transferred to a 300 mL eggplant flask, added with 320 g of n-hexane, and stirred at 25 ° C. for 1 hour. The precipitate was filtered again and dried at room temperature under reduced pressure to obtain 73.8 g (0.52 mol) of 1,4-dithian-2-ol having the following physical properties as a white solid (purity 94) 0.1%, yield 53%).
  • the distillation stock solution was allowed to flow at a pressure of 13.3 to 20.0 Pa and a temperature of 40 to 45 ° C. to obtain 47.4 g of a high-boiling fraction.
  • the high-boiling fraction was flowed at a pressure of 10.7 to 13.3 Pa and a temperature of 55 to 60 ° C., and 37.8 g of 1,4-dithian-2-yl methacrylate having the following physical properties was exhibited in the low-boiling fraction. 182 mmol) was obtained as a colorless and transparent liquid (purity 98.4%, yield 76%).
  • logP which is a log value of an octanol / water partition coefficient
  • SP which is a solubility parameter were calculated using Hamiltonian PM5 of calculation software “CAChe” (trade name; Fujitsu Limited).
  • a 10% aqueous hydrochloric acid solution was added dropwise from the dropping funnel at a temperature in the range of 10 to 15 ° C. to adjust the pH to 8.2.
  • the resulting liquid was transferred to a separatory funnel having an internal volume of 5 L and extracted twice with 1650 g of diisopropyl ether. Put the resulting extract twice into a 5 L separatory funnel, wash sequentially with 800 g of water and 500 g of saturated brine, evaporate the solvent under reduced pressure, and purify the concentrate by silica gel column chromatography. Gave 40.8 g (0.26 mol) of 1,4-dithiepan-2-ol (purity 97.1%, yield 27.5%).
  • the obtained liquid was transferred to a separatory funnel having an internal volume of 200 mL and extracted three times with 25 g of ethyl acetate.
  • a 10% aqueous hydrochloric acid solution was added dropwise from the dropping funnel at a temperature in the range of 10 to 15 ° C. to adjust the pH to 8.2.
  • the obtained liquid was transferred to a separatory funnel having an internal volume of 500 mL and extracted twice with 160 g of diisopropyl ether. Put the obtained extract twice into a separatory funnel with an internal volume of 500 mL, wash sequentially with 10 g of water and 20 g of saturated brine, evaporate the solvent under reduced pressure, and purify the concentrate by silica gel column chromatography. Gave 9.09 g (54.1 mmol) of 5,6-dimethyl-1,4-dithian-2-ol (purity 97.8%, yield 57.0%).
  • k represents a rate constant (s ⁇ 1 )
  • t (s) represents time
  • X represents a conversion rate.
  • the time constant (s) was plotted on the X axis and ln (1-X) was plotted on the Y axis, and the rate constant of the deprotection reaction of the methacrylate ester at 120 ° C. was determined from the slope of the straight line.
  • 2-methacryloyloxy-2-methyladamantane which is generally used, was selected, and the rate constant at 120 ° C. was determined in the same manner as 1,4-dithian-2-yl methacrylate.
  • the acrylic acid ester derivative (1) has a high reactivity with respect to acid when compared with known methacrylic acid esters (see Reference Examples 1 to 3) and activity. It can be said that it is useful as a raw material for a chemically amplified resist because of its low chemical energy (see Reference Examples 4 to 6).
  • Example 1 Production of polymer compound a 1,4-dithiane obtained in Synthesis Example 1-3 was placed in a round bottom flask having an internal volume of 50 ml equipped with an electromagnetic stirrer, a reflux condenser and a thermometer under a nitrogen atmosphere. 1.00 g (4.89 mmol) of -2-yl methacrylate, 4.00 g of 1,4-dioxane and 99.7 mg (0.401 mmol) of 2,2′-azobis (2,4-dimethylvaleronitrile) are charged. The polymerization reaction was performed at 60 ° C. for 3 hours.
  • the obtained reaction mixture is dropped into methanol at about 20 times the mass of the reaction mixture at room temperature while stirring, and the resulting precipitate is collected by filtration and washed with the same amount of methanol as above. Gave a white precipitate.
  • the precipitate was dried at 50 ° C. under reduced pressure (26.7 Pa) for 10 hours to obtain 0.56 g of a polymer compound a consisting of the following repeating units. Mw of the obtained polymer compound a was 23800, and the degree of dispersion was 2.90.
  • Example 2 Production of polymer compound b 1,4-dithiane obtained in Synthesis Example 1-3 was placed in a 200-ml round bottom flask equipped with an electromagnetic stirrer, a reflux condenser and a thermometer in a nitrogen atmosphere.
  • -2-yl methacrylate 8.16 g (39.1 mmol)
  • 3-hydroxy-1-adamantyl methacrylate 9.25 g (39.1 mmol)
  • the obtained reaction mixture was added dropwise with stirring to about 20 times the mass of methanol at room temperature with stirring, and the resulting precipitate was collected by filtration.
  • a solution obtained by dissolving the precipitate in 150.0 g of THF was dropped into methanol of the same mass as above while stirring, and the resulting precipitate was collected by filtration and washed with methanol of the same mass as above to obtain a white precipitate. Obtained.
  • the precipitate was dried at 50 ° C. under reduced pressure (26.7 Pa) for 10 hours to obtain 10.3 g of a polymer compound b consisting of the following repeating units. Mw of the obtained polymer compound b was 13600, and the degree of dispersion was 1.50.
  • Example 3 Production of polymer compound c 1,4-dithiane obtained in Synthesis Example 1-3 in a 200 ml round bottom flask equipped with an electromagnetic stirrer, a reflux condenser and a thermometer under a nitrogen atmosphere -2-yl methacrylate 8.00 g (38.4 mmol), 5-methacryloyloxy-2,6-norbornanecarbolactone 8.53 g (38.4 mmol), 1,4-dioxane 130.0 g and 2,2 ′ -Azobis (2,4-dimethylvaleronitrile) 3.89 g (15.7 mmol) was charged, and a polymerization reaction was performed at 60 to 65 ° C for 3 hours.
  • the obtained reaction mixture was added dropwise with stirring to about 20 times the mass of methanol at room temperature with stirring, and the resulting precipitate was collected by filtration.
  • a solution obtained by dissolving the precipitate in 80.0 g of 1,4-dioxane is added dropwise to methanol with the same mass as above while stirring, and the resulting precipitate is collected by filtration and washed with the same mass of methanol as above. Gave a white precipitate.
  • the precipitate was dried at 50 ° C. under reduced pressure (26.7 Pa) for 10 hours to obtain 12.1 g of a polymer compound c consisting of the following repeating units. Mw of the obtained polymer compound c was 10600, and the degree of dispersion was 1.83.
  • Example 4 Production of polymer compound d In Example 3, instead of 8.53 g (38.4 mmol) of 5-methacryloyloxy-2,6-norbornanecarbolactone, 6.53 g of ⁇ -methacryloyloxy- ⁇ -butyrolactone ( 38.4 mmol), and the amount of 2,2′-azobis (2,4-dimethylvaleronitrile) used was changed from 3.89 g (15.7 mmol) to 1.95 g (7.83 mmol). The polymerization reaction was carried out under the same charge and conditions as in 3. The obtained reaction mixture was added dropwise with stirring to about 20 times the mass of methanol at room temperature with stirring, and the resulting precipitate was collected by filtration.
  • a solution obtained by dissolving the precipitate in 80.0 g of 1,4-dioxane is added dropwise to methanol with the same mass as above while stirring, and the resulting precipitate is collected by filtration and washed with the same mass of methanol as above. Gave a white precipitate.
  • the precipitate was dried at 50 ° C. under reduced pressure (26.7 Pa) for 10 hours to obtain 9.4 g of a polymer compound d having the following repeating units.
  • the obtained polymer compound d had an Mw of 8600 and a dispersity of 1.67.
  • Example 5 Production of Polymer Compound e
  • the amount of ⁇ -methacryloyloxy- ⁇ -butyrolactone used was changed from 6.53 g (38.4 mmol) to 4.36 g (25.6 mmol) to 2,2 ′.
  • the obtained reaction mixture was added dropwise with stirring to about 20 times the mass of methanol at room temperature with stirring, and the resulting precipitate was collected by filtration.
  • a solution obtained by dissolving the precipitate in 80.0 g of 1,4-dioxane is added dropwise to methanol with the same mass as above while stirring, and the resulting precipitate is collected by filtration and washed with the same mass of methanol as above. Gave a white precipitate.
  • the precipitate was dried at 50 ° C. under reduced pressure (26.7 Pa) for 10 hours to obtain 10.2 g of a polymer compound e having the following repeating units.
  • the obtained polymer compound e had an Mw of 9900 and a dispersity of 1.75.
  • Example 7 Production of polymer compound g In Example 6, instead of 4.16 g (18.7 mmol) of 5-methacryloyloxy-2,6-norbornanecarbolactone, 3.18 g of ⁇ -methacryloyloxy- ⁇ -butyrolactone (The polymerization reaction was carried out under the same charge and conditions as in Example 6 except that 18.7 mmol) was used. The obtained reaction mixture was added dropwise with stirring to about 20 times the mass of methanol at room temperature with stirring, and the resulting precipitate was collected by filtration.
  • a solution obtained by dissolving the precipitate in 80.0 g of 1,4-dioxane is added dropwise to methanol with the same mass as above while stirring, and the resulting precipitate is collected by filtration and washed with the same mass of methanol as above. Gave a white precipitate.
  • the precipitate was dried at 50 ° C. under reduced pressure (26.7 Pa) for 10 hours to obtain 5.61 g of a polymer compound consisting of the following repeating units.
  • the obtained polymer compound g had an Mw of 11900 and a dispersity of 1.65.
  • Example 8 Production of polymer compound h 1,4-dithiepan obtained in Synthesis Example 1-5 was placed in a 100-ml round bottom flask equipped with an electromagnetic stirrer, reflux condenser and thermometer in a nitrogen atmosphere.
  • 1,4-dioxane 42.0 g and 2,2′-azobis 0.49 g (1.97 mmol) of (2,4-dimethylvaleronitrile) was charged, and a polymerization reaction was performed at 60 to 65 ° C. for 4 hours.
  • the obtained reaction mixture was added dropwise with stirring to about 20 times the mass of methanol at room temperature with stirring, and the resulting precipitate was collected by filtration.
  • a solution obtained by dissolving the precipitate in 37.5 g of THF was dropped into methanol of the same mass as above while stirring, and the resulting precipitate was collected by filtration and washed with methanol of the same mass as above to obtain a white precipitate. Obtained.
  • the precipitate was dried at 50 ° C. under reduced pressure (26.7 Pa) for 10 hours to obtain 2.68 g of a polymer compound h composed of the following repeating units.
  • the obtained polymer compound h had an Mw of 14400 and a dispersity of 1.59.
  • Example 9 Production of polymer compound i 1,4-dithiepan obtained in Synthesis Example 1-5 was placed in a 100-ml round bottom flask equipped with an electromagnetic stirrer, a reflux condenser and a thermometer under a nitrogen atmosphere.
  • a solution obtained by dissolving the precipitate in 40.0 g of 1,4-dioxane is dropped into methanol of the same mass as above while stirring, and the resulting precipitate is collected by filtration and washed with the same mass of methanol as described above. Gave a white precipitate.
  • the precipitate was dried at 50 ° C. under reduced pressure (26.7 Pa) for 10 hours to obtain 3.09 g of a polymer compound i comprising the following repeating units.
  • the obtained polymer compound i had an Mw of 14,000 and a dispersity of 1.77.
  • Example 10 Production of polymer compound j In Example 8, 5,6 obtained in Synthesis Example 1-7 instead of 2.18 g (9.78 mmol) of 1,4-dithiepan-2-yl methacrylate The polymerization reaction was carried out under the same charge and conditions as in Example 8, except that -dimethyl-1,4-dithian-2-yl methacrylate 2.34 (9.78 mmol) was used. The obtained reaction mixture was added dropwise with stirring to about 20 times the mass of methanol at room temperature with stirring, and the resulting precipitate was collected by filtration.
  • a solution obtained by dissolving the precipitate in 37.5 g of THF was dropped into methanol of the same mass as above while stirring, and the resulting precipitate was collected by filtration and washed with methanol of the same mass as above to obtain a white precipitate. Obtained.
  • the precipitate was dried at 50 ° C. under reduced pressure (26.7 Pa) for 10 hours to obtain 2.76 g of a polymer compound j consisting of the following repeating units. Mw of the obtained polymer compound j was 15800, and the degree of dispersion was 1.49.
  • Example 11 Production of Polymer Compound k
  • 5,6 obtained in Synthesis Example 1-7 instead of 2.09 g (9.35 mmol) of 1,4-dithiepan-2-yl methacrylate The polymerization reaction was carried out under the same charge and conditions as in Example 9, except that -dimethyl-1,4-dithian-2-yl methacrylate 2.23 (9.35 mmol) was used.
  • the obtained reaction mixture was added dropwise with stirring to about 20 times the mass of methanol at room temperature with stirring, and the resulting precipitate was collected by filtration.
  • a solution obtained by dissolving the precipitate in 40.0 g of 1,4-dioxane is dropped into methanol of the same mass as above while stirring, and the resulting precipitate is collected by filtration and washed with the same mass of methanol as described above. Gave a white precipitate.
  • the precipitate was dried at 50 ° C. under reduced pressure (26.7 Pa) for 10 hours to obtain 2.69 g of a polymer compound k having the following repeating units.
  • the obtained polymer compound k had an Mw of 15900 and a dispersity of 1.68.
  • the obtained reaction mixture was added dropwise with stirring to about 20 times the mass of methanol at room temperature with stirring, and the resulting precipitate was collected by filtration.
  • a solution obtained by dissolving the precipitate in 100.0 g of THF was dropped into methanol of the same mass as above while stirring, and the resulting precipitate was collected by filtration and washed with methanol of the same mass as above to obtain a white precipitate. Obtained.
  • the precipitate was dried at 50 ° C. under reduced pressure (26.7 Pa) for 10 hours to obtain 13.2 g of polymer compound A composed of the following repeating units.
  • the obtained polymer compound A had an Mw of 16,100 and a dispersity of 1.68.
  • Comparative Synthesis Example 2 Synthesis of Polymer Compound B
  • tetrahydropyran-2-yl methacrylate was used instead of 10.0 g (42.3 mmol) of 2-methyl-2-adamantyl methacrylate.
  • the polymerization reaction was carried out under the same charge and conditions as in Comparative Synthesis Example 1 except that 39 g (42.7 mmol) was used.
  • the obtained reaction mixture was added dropwise with stirring to about 20 times the mass of methanol at room temperature with stirring, and the resulting precipitate was collected by filtration.
  • a solution obtained by dissolving the precipitate in 100.0 g of THF was dropped into methanol of the same mass as above while stirring, and the resulting precipitate was collected by filtration and washed with methanol of the same mass as above to obtain a white precipitate. Obtained.
  • the precipitate was dried at 50 ° C. under reduced pressure (26.7 Pa) for 10 hours to obtain 9.96 g of a polymer compound B composed of the following repeating units.
  • the obtained polymer compound B had Mw of 13,200 and a dispersity of 1.71.
  • the precipitate was dried at 50 ° C. under reduced pressure (26.7 Pa) for 10 hours to obtain 11.8 g of a polymer compound C consisting of the following repeating units.
  • the obtained polymer compound C had Mw of 12,600 and a dispersity of 1.83.
  • the obtained reaction mixture was dropped into methanol of about 20 times mass at room temperature while stirring to obtain a white precipitate.
  • the precipitate was collected by filtration and dried at 50 ° C. under reduced pressure (26.7 Pa) for 10 hours to obtain 6.06 g of a polymer compound D consisting of the following repeating units.
  • the obtained polymer compound D had Mw of 10,000 and a dispersity of 1.50.
  • Comparative Synthesis Example 5 Synthesis of Polymer Compound E
  • tetrahydropyran-2-yl methacrylate 3.18 g instead of 4.39 g (18.7 mmol) of 2-methacryloyloxy-2-methyladamantane
  • the polymerization reaction was carried out under the same charge and conditions as in Comparative Synthesis Example 4 except that (18.7 mmol) was used.
  • the obtained reaction mixture was dropped into methanol of about 20 times mass at room temperature while stirring to obtain a white precipitate.
  • the precipitate was collected by filtration and dried at 50 ° C. under reduced pressure (26.7 Pa) for 10 hours to obtain 5.82 g of a polymer compound E consisting of the following repeating units.
  • the obtained polymer compound E had an Mw of 6500 and a dispersity of 1.60.
  • Comparative Synthesis Example 7 Synthesis of Polymer Compound G
  • 1,3-dithian-5-yl methacrylate was used instead of 10.0 g (42.3 mmol) of 2-methyl-2-adamantyl methacrylate.
  • the polymerization reaction was carried out under the same charging amount and conditions as in Comparative Synthesis Example 1 except that 8.98 g (42.7 mmol) of lato was used.
  • the obtained reaction mixture was added dropwise with stirring to about 20 times the mass of methanol at room temperature with stirring, and the resulting precipitate was collected by filtration.
  • a solution obtained by dissolving the precipitate in 100.0 g of THF was dropped into methanol of the same mass as above while stirring, and the resulting precipitate was collected by filtration and washed with methanol of the same mass as above to obtain a white precipitate. Obtained.
  • the precipitate was dried at 50 ° C. under reduced pressure (26.7 Pa) for 10 hours to obtain 10.22 g of a polymer compound G composed of the following repeating units. Mw of the obtained polymer compound G was 15200, and the degree of dispersion was 1.69.
  • Comparative Synthesis Example 8 Synthesis of Polymer Compound H
  • 1,3-dithian-5-yl methacrylate was used instead of 4.39 g (18.7 mmol) of 2-methacryloyloxy-2-methyladamantane.
  • the polymerization reaction was carried out under the same charge and conditions as in Comparative Synthesis Example 4 except that 3.93 g (18.7 mmol) was used.
  • the obtained reaction mixture was dropped into methanol of about 20 times mass at room temperature while stirring to obtain a white precipitate.
  • the precipitate was collected by filtration and dried at 50 ° C. under reduced pressure (26.7 Pa) for 10 hours to obtain 5.99 g of a polymer compound H composed of the following repeating units.
  • Mw of the obtained polymer compound H was 12800, and the degree of dispersion was 1.65.
  • TPS-109 product name, component; nonafluoro-n-butanesulfonate triphenylsulfon
  • Each of the obtained photoresist compositions was filtered using a filter [made of tetrafluoroethylene resin (PTFE), pore size 0.2 ⁇ m], and then a 1-inch size quartz substrate having a gold electrode vacuum-deposited on the surface thereof.
  • PTFE tetrafluoroethylene resin
  • Each was coated by a spin coating method to form a photosensitive layer having a thickness of about 300 nm.
  • the quartz substrate on which the photosensitive layer has been formed is pre-baked on a hot plate at 110 ° C. for 90 seconds, then exposed using an ArF excimer laser (wavelength 193 nm) at an exposure amount of 100 mJ / cm 2 , and subsequently at 110 ° C. for 90 seconds. Post-exposure bake for seconds.
  • the quartz substrate was set in a quartz vibrator microbalance device “RQCM” (trade name; manufactured by Maxtek), and developed with a 2.38 mass% tetramethylammonium hydroxide aqueous solution for 120 seconds.
  • the change in frequency of the quartz substrate during development is monitored over time, and the obtained change in frequency is converted into a change in film thickness. From the increase in film thickness, the maximum swelling amount and from the change in film thickness are dissolved. The speed was calculated. The results are shown in Table 3.
  • a photoresist composition having a polymer compound concentration of 12% by mass was prepared. Each of the obtained photoresist compositions was filtered using a filter [made of tetrafluoroethylene resin (PTFE), pore size: 0.2 ⁇ m].
  • PTFE tetrafluoroethylene resin
  • a cresol novolak resin PS-6937, manufactured by Gunei Chemical Co., Ltd. is coated with a 6% by weight propylene glycol monomethyl ether acetate solution by spin coating, and baked on a hot plate at 200 ° C. for 90 seconds to obtain a film thickness of about 100 nm.
  • Each of the filtrates is applied by spin coating on a silicon wafer having a diameter of 10 cm on which an antireflection film (underlying film) is formed, and pre-baked on a hot plate at 130 ° C. for 90 seconds to form a resist having a thickness of about 300 nm.
  • a film was formed.
  • This resist film was exposed by a two-beam interference method using an ArF excimer laser having a wavelength of 193 nm. Subsequently, the film was post-exposure baked at 130 ° C. for 90 seconds, and then developed with a 2.38% by mass-tetramethylammonium hydroxide aqueous solution for 60 seconds to form a 1: 1 line and space pattern.
  • the developed wafer was cleaved and observed with a scanning electron microscope (SEM), and the pattern shape observation and line width variation (hereinafter referred to as LWR) at an exposure amount obtained by resolving a line and space with a line width of 100 nm at 1: 1. Measured).
  • LWR the pattern shape observation and line width variation
  • the line width is detected at a plurality of positions in the measurement monitor, and the dispersion (3 ⁇ ) of variations in the detected positions is used as an index.
  • Table 4 The results are shown in Table 4.
  • Examples 32-39 and Comparative Examples 17-21 Thermal Stability Evaluation Stability of each polymer compound obtained in Examples 2-5, 8-11 or Comparative Synthesis Examples 1-3, 7, 8 to heat was confirmed with a micro thermogravimetric measuring device “TGA-50” (trade name; manufactured by Shimadzu Corporation). The amount of the sample was about 5.0 mg of the polymer compound, and the measurement was performed in the range of 20 to 600 ° C. under the setting of nitrogen gas 50 mL / min and temperature increase 10 ° C./min. From the obtained graph, the starting temperature of weight reduction and the temperature when 5% of the original weight decreased were read.
  • TGA-50 micro thermogravimetric measuring device
  • restoration here shows that the high molecular compound has decomposed
  • Photoresist Composition b 100 parts by mass of the polymer compound b obtained in Example 2, 3.0 parts by mass of triphenylsulfonium nonafluoro-n-butanesulfonate as a photoacid generator, and as a basic compound
  • a solution in which each component was uniform was obtained.
  • the obtained solution was filtered using a membrane filter having a pore size of 0.2 ⁇ m to prepare a photoresist composition b (total solid content concentration of about 5% by mass).
  • the prepared photoresist composition b was spin-coated on a silicon substrate using “CLEAN TRACK ACT8” manufactured by Tokyo Electron Limited, and pre-baked at 100 ° C. for 60 seconds to form a resist film having a thickness of 120 nm. .
  • the refractive index of the resist film at a wavelength of 193 nm was measured using a spectroscopic ellipsometer (“VUV-VASE”, manufactured by JA Woollam). The results are shown in Table 6.
  • Reference Examples 8 to 14 Preparation of Photoresist Compositions d and f to k
  • the polymer compounds d and f to k obtained in Examples 4 and 6 to 11 were used. Except that it was used, an experiment was conducted in the same manner as in Reference Example 7 to prepare photoresist compositions d and f to k (total solid content concentration of about 5 mass%), respectively, and the refractive index at a wavelength of 193 nm was measured. The results are shown in Table 6.
  • the photoresist composition (9) containing the polymer compound (8) of the present invention containing the acrylate derivative (1) as a constituent unit the next-generation immersion liquid instead of water was used. Also in the immersion exposure process, the exposure light is not reflected at the interface between the immersion liquid and the photoresist film, and can sufficiently enter the photoresist film.
  • Reference Example 23 Characteristic Curve Measurement Using an 8-inch silicon wafer as a substrate, “CLEAN TRACK ACT8” (manufactured by Tokyo Electron Limited) is used on this substrate, and a 77 nm-thick underlayer antireflection film (“ARC29A”, Formed by Science). On the formed lower antireflection film, the photoresist composition b obtained in Reference Example 7 was spin-coated with “CLEAN TRACK ACT8” (manufactured by Tokyo Electron Ltd.), pre-baked at 100 ° C. for 60 seconds, and the film A resist film having a thickness of 120 nm was formed.
  • This resist film was exposed with an ArF excimer laser exposure apparatus (“NSR S306C”, manufactured by Nikon Corporation, illumination conditions: NA 0.78 sigma 0.90 / 0.52). This exposure was performed through quartz with no pattern. Thereafter, post-exposure baking was performed at 130 ° C. for 60 seconds, and development was performed at 23 ° C. for 60 seconds with a 2.38 mass% tetramethylammonium hydroxide aqueous solution. After development, the wafer was washed with water and dried to obtain a characteristic curve measurement wafer. Then, the film thickness of the resist film at each exposure amount was measured by an automatic film thickness measuring apparatus ( "VM-2010", manufactured by Dainippon Screen Mfg. Co., Ltd.), the exposure amount (mJ / cm 2) and thickness ( Angstrom ( ⁇ )) correlation was confirmed. The result is shown in FIG.
  • NSR S306C ArF excimer laser exposure apparatus
  • the photoresist film formed from the photoresist composition (9) containing the polymer compound (8) containing the acrylate derivative (1) as a constituent unit has a residual film amount by increasing the exposure amount. It was confirmed that all the photoresist films became soluble in the developer at a given exposure, and that the exposure margin (variation of the line width with respect to the change in exposure) was good (reference) See Examples 23 and 24). Therefore, the film formed by the photoresist composition (9) containing the polymer compound (8) containing the acrylic ester derivative (1) as a structural unit can be sufficiently patterned as a photoresist film. It is expected that sufficient contrast can be obtained.
  • the photoresist composition (9) containing the polymer compound (8) of the present invention containing the acrylate derivative (1) as a constituent unit can form a photoresist film having high sensitivity.
  • the polymer compound (8) of the present invention obtained by using the acrylate derivative (1) is useful as a chemically amplified resist for manufacturing semiconductor devices.
  • the polymer compound (8) of the present invention is useful as a raw material for a photoresist composition for an immersion exposure method using an immersion liquid having a refractive index of 1.70 or more, particularly as a raw material for a photoresist composition. .

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Materials For Photolithography (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Provided is a polymer compound that is a photoresist composition able to form photoresist films having excellent acid reactivity and thermal stability, minimal swelling during development, and a refractive index at a 193 nm wavelength of preferably 1.72 or higher, and that is for obtaining photoresist compositions able to be patterned as photoresist films, and that has the below compound as at least one of the starting materials.

Description

高分子化合物High molecular compound
 本発明は、2つの硫黄原子をもつアクリル酸エステル誘導体を含有する原料を重合して得られる高分子化合物に関する。本発明の高分子化合物は、当該高分子化合物を成分とするフォトレジスト組成物の原料として有用である。 The present invention relates to a polymer compound obtained by polymerizing a raw material containing an acrylate derivative having two sulfur atoms. The polymer compound of the present invention is useful as a raw material for a photoresist composition containing the polymer compound as a component.
 近年、集積回路素子製造に代表される電子デバイス製造分野においては、デバイスの高集積化に対する要求が高まっており、そのため、微細パターン形成のためのフォトリソグラフィー技術が必要とされている。このため、ArFエキシマレーザー(波長193nm)、F2エキシマレーザー(波長157nm)などの波長200nm以下の放射線を露光光としたフォトリソグラフィーに対応するフォトレジスト組成物の開発が活発に行われており、酸解離性官能基を有する高分子化合物と、放射線の照射(以下、「露光」と称する。)により酸を発生する化合物(以下、「光酸発生剤」と称する。)とからなる化学増幅型フォトレジスト組成物が数多く提案されている。この酸解離性官能基を有する高分子化合物は、アルカリ可溶性高分子化合物のアルカリ易溶性部位の一部を適当な酸解離性官能基で保護した構造が基本となっており、かかる酸解離性官能基の選択は、フォトレジスト組成物としての機能を調整する上で非常に重要となっている。
 既存の酸解離性官能基としては、1)アダマンタン構造を有するもの(特許文献1および非特許文献1参照)、2)テトラヒドロピラニル基を有するもの(特許文献2参照)などが知られている。酸解離性官能基は、酸に対する高反応性、および、ベーキング工程に分解しない安定性を両立することが要求され、熱安定性は130℃以上であることが求められている(非特許文献3参照)。しかし、2)のテトラヒドロピラニル基は、酸解離性としての反応性が高い利点をもつものの、熱安定性に欠けており、レジストとしての基本性能において満足するものではなかった。
In recent years, in the field of electronic device manufacturing typified by integrated circuit element manufacturing, there has been an increasing demand for higher integration of devices, and therefore, a photolithography technique for forming a fine pattern is required. For this reason, development of a photoresist composition corresponding to photolithography in which radiation having a wavelength of 200 nm or less such as ArF excimer laser (wavelength 193 nm), F 2 excimer laser (wavelength 157 nm), or the like has been actively conducted, A chemically amplified type comprising a polymer compound having an acid-dissociable functional group and a compound that generates an acid upon irradiation with radiation (hereinafter referred to as “exposure”) (hereinafter referred to as “photoacid generator”). Many photoresist compositions have been proposed. This polymer compound having an acid-dissociable functional group basically has a structure in which a part of the alkali-soluble part of the alkali-soluble polymer compound is protected with an appropriate acid-dissociable functional group. The selection of the group is very important in adjusting the function as a photoresist composition.
As existing acid dissociable functional groups, 1) those having an adamantane structure (see Patent Document 1 and Non-Patent Document 1), 2) those having a tetrahydropyranyl group (see Patent Document 2), and the like are known. . The acid-dissociable functional group is required to have both high reactivity with an acid and stability that does not decompose in the baking process, and thermal stability is required to be 130 ° C. or higher (Non-patent Document 3). reference). However, although the tetrahydropyranyl group of 2) has an advantage of high reactivity as acid dissociation property, it lacks thermal stability and is not satisfactory in basic performance as a resist.
 近年のリソグラフィー技術の大きな課題の1つにラインウィドゥスラフネス(以下「LWR」という)と呼ばれる、形成されたパターンの線幅変動があり、その許容値は線幅の8%未満であることが求められている(非特許文献3参照)。LWRを改善するためには、膨潤によるパターン変形を抑制すること、すなわちフォトレジスト組成物成分である高分子化合物が膨潤しにくいものであることが必要となる。
 酸解離性官能基として1)のアダマンタン構造を含むものを導入した高分子化合物は、酸に対する高反応性および熱安定性を有する。しかし、当該高分子化合物の疎水性が高く、現像液との親和性が十分とならず、現像時において露光部に溶解に至らない部分を生じてしまい、それが膨潤を引き起こし、結果としてLWRが大きくなってしまう問題が生じる。このため、より膨潤し難いフォトレジスト組成物用高分子化合物の開発が依然として切望されており、それを達成するための酸解離性官能基を有する化合物の開発が強く切望されているのが現状である。
One of the major problems in lithography technology in recent years is line width variation of the formed pattern called line width roughness (hereinafter referred to as “LWR”), and its allowable value is less than 8% of the line width. It is calculated | required (refer nonpatent literature 3). In order to improve LWR, it is necessary to suppress pattern deformation due to swelling, that is, the polymer compound that is a component of the photoresist composition is difficult to swell.
A polymer compound into which an acid-dissociable functional group having an adamantane structure of 1) is introduced has high reactivity with acids and thermal stability. However, the polymer compound is highly hydrophobic and does not have sufficient affinity with the developer, resulting in a portion that does not dissolve in the exposed portion during development, which causes swelling, resulting in LWR. There is a problem of becoming larger. For this reason, development of a polymer compound for a photoresist composition that is less likely to swell is still eagerly desired, and the development of a compound having an acid-dissociable functional group to achieve this is strongly desired. is there.
 また、今後はさらに微細なレジストパターン形成(例えば、線幅が90nm程度の微細なレジストパターン)が要求される。そして、90nmより微細な線幅のレジストパターン形成を達成させるためには、露光装置の光源波長の短波長化や、レンズの開口数(NA)を増大させることが考えられる。しかしながら、光源波長の短波長化には新たな高額の露光装置が必要となる。また、レンズの高NA化では、解像度と焦点深度がトレードオフの関係にあるため、解像度を上げても焦点深度が低下するという問題がある。 In the future, it will be required to form a finer resist pattern (for example, a fine resist pattern having a line width of about 90 nm). In order to achieve the formation of a resist pattern having a line width finer than 90 nm, it is conceivable to shorten the light source wavelength of the exposure apparatus or increase the numerical aperture (NA) of the lens. However, a new expensive exposure apparatus is required to shorten the light source wavelength. Further, when the lens has a high NA, the resolution and the depth of focus are in a trade-off relationship. Therefore, there is a problem that the depth of focus decreases even if the resolution is increased.
 最近、このような問題を解決可能とするリソグラフィー技術として、液浸露光(リキッドイマージョンリソグラフィー)法という方法が報告されている。この方法は、露光時に、レンズと基板上のフォトレジスト膜との間の少なくともフォトレジスト膜上に所定の厚さの純水またはフッ素系不活性液体などの液状屈折率媒体(液浸液)を介在させる方法である。この方法では、従来は空気や窒素などの不活性ガスであった露光光路空間を屈折率(n)のより大きい液体、例えば、純水などで置換することにより、同じ露光波長の光源を用いても、より短波長の光源を用いた場合や高NAレンズを用いた場合と同様に、高解像性が達成される(高い解像度を有する)と同時に焦点深度の低下もない。このような液浸露光を用いれば、現存の装置に実装されているレンズを用いて、低コストで、より高解像性に優れ、かつ、焦点深度にも優れるレジストパターンの形成を実現できるため、大変注目されている。 Recently, a liquid immersion lithography (liquid immersion lithography) method has been reported as a lithography technique that can solve such problems. In this method, at the time of exposure, a liquid refractive index medium (immersion liquid) such as pure water or a fluorine-based inert liquid having a predetermined thickness is formed on at least the photoresist film between the lens and the photoresist film on the substrate. It is a method of interposing. In this method, a light source having the same exposure wavelength is used by replacing the exposure optical path space, which has conventionally been an inert gas such as air or nitrogen, with a liquid having a higher refractive index (n), such as pure water. However, as in the case of using a light source with a shorter wavelength or the case of using a high NA lens, high resolution is achieved (having high resolution) and there is no reduction in the depth of focus. By using such immersion exposure, it is possible to realize the formation of a resist pattern that is low in cost, superior in resolution, and excellent in depth of focus by using a lens mounted on an existing apparatus. , Has attracted a lot of attention.
 ところが、液浸露光プロセスにおいては、液状屈折率媒体(液浸液)の屈折率が、例えば、フォトレジスト膜の屈折率よりも高いと、スネルの法則により光が液浸液からフォトレジスト膜へ入射しづらくなる。そのため、感度などの基本性能が劣化してしまう可能性があった。さらに屈折率が高い液浸液であると、液浸液とフォトレジスト膜との屈折率の差が大きくなり、光は液浸液とフォトレジスト膜との界面で全反射してしまう。従って、光が全くフォトレジスト膜へ入射しなくなってしまうため、十分な感度が得られなくなり、レジストプロセスのスループットを著しく低下させることが予想される。 However, in the immersion exposure process, if the refractive index of the liquid refractive index medium (immersion liquid) is higher than the refractive index of the photoresist film, for example, light is transferred from the immersion liquid to the photoresist film according to Snell's law. Difficult to enter. Therefore, there is a possibility that basic performance such as sensitivity is deteriorated. Further, if the immersion liquid has a high refractive index, the difference in refractive index between the immersion liquid and the photoresist film becomes large, and light is totally reflected at the interface between the immersion liquid and the photoresist film. Therefore, no light is incident on the photoresist film, so that sufficient sensitivity cannot be obtained, and it is expected that the throughput of the resist process is significantly reduced.
 そこで、特に、波長193nmにおける屈折率が1.70以上の液浸液(屈折率が高い液浸液)を使用する場合には、例えば、この液浸液よりも高い屈折率を有するフォトレジスト膜を用いることが提案されている(非特許文献4および5参照)。 Therefore, in particular, when using an immersion liquid having a refractive index of 1.70 or more at a wavelength of 193 nm (an immersion liquid having a high refractive index), for example, a photoresist film having a refractive index higher than that of the immersion liquid. Has been proposed (see Non-Patent Documents 4 and 5).
先行技術文献Prior art documents
特開平9-73173号公報JP-A-9-73173 特開平5-88367号公報JP-A-5-88367
 しかしながら、非特許文献4および5の材料(フォトレジスト組成物)により形成されるフォトレジスト膜は、波長193nmにおける屈折率は高いが、レジストパターン形成ができず、フォトレジスト膜としての機能を有するものではない。そのため、波長193nmにおける屈折率が高い(例えば、屈折率1.72以上)フォトレジスト膜を形成し得るフォトレジスト組成物であって、且つフォトレジスト膜としてパターンニング可能なフォトレジスト組成物が切望されている。 However, the photoresist film formed of the material (photoresist composition) of Non-Patent Documents 4 and 5 has a high refractive index at a wavelength of 193 nm, but cannot form a resist pattern and has a function as a photoresist film. is not. Therefore, a photoresist composition that can form a photoresist film having a high refractive index at a wavelength of 193 nm (for example, a refractive index of 1.72 or more) and that can be patterned as a photoresist film is desired. ing.
 本発明は、上記した問題点を解決するために、酸解離性官能基を有する化合物の酸解離性官能基に着目し、鋭意検討してなされた。本発明の目的は、酸に対する反応性および熱安定性に優れ、現像時の膨潤が小さく、波長193nmにおける屈折率が好ましくは1.72以上のフォトレジスト膜を形成し得るフォトレジスト組成物であって、フォトレジスト膜としてパターンニング可能なフォトレジスト組成物を得るための高分子化合物を提供することにある。 In order to solve the above-described problems, the present invention has been made by paying attention to the acid dissociable functional group of the compound having an acid dissociable functional group and intensively examining it. An object of the present invention is a photoresist composition that is excellent in acid reactivity and thermal stability, has a small swelling during development, and can form a photoresist film having a refractive index at a wavelength of 193 nm of preferably 1.72 or more. An object of the present invention is to provide a polymer compound for obtaining a photoresist composition that can be patterned as a photoresist film.
 即ち、本発明は、
1.下記一般式(1)
That is, the present invention
1. The following general formula (1)
(式中、R1は、水素原子、メチル基またはトリフルオロメチル基を表す。R2、R3およびR4の組み合わせは、
1)R2、R3およびR4は、それぞれ独立して、水素原子、炭素数1~6の直鎖状アルキル基、炭素数3~6の分岐状アルキル基または炭素数3~6の環状アルキル基を表す。;
2)R2とR3は連結して炭素数3~6のアルキレン基を表し、R4は、水素原子、炭素数1~6の直鎖状アルキル基、炭素数3~6の分岐状アルキル基または炭素数3~6の環状アルキル基を表す。;または
3)R2は、水素原子、炭素数1~6の直鎖状アルキル基、炭素数3~6の分岐状アルキル基または炭素数3~6の環状アルキル基を表し、R3とR4は連結して炭素数3~6のアルキレン基を表す。;のいずれかである。
 n、R5、R6、R7、R8、R9およびR10の組み合わせは、
1)n=0のとき、R5およびR8は、それぞれ独立して、水素原子、炭素数1~6の直鎖状アルキル基、炭素数3~6の分岐状アルキル基または炭素数3~6の環状アルキル基を表す。R6およびR7は、それぞれ独立して、水素原子、炭素数1~6の直鎖状アルキル基、炭素数3~6の分岐状アルキル基または炭素数3~6の環状アルキル基を表すか、またはR6とR7は連結して炭素数3~6のアルキレン基を表す。;または
2)n=1または2のとき、R5、R6、R7、R8、R9およびR10は、それぞれ独立して、水素原子、炭素数1~6の直鎖状アルキル基、炭素数3~6の分岐状アルキル基または炭素数3~6の環状アルキル基を表す。;のいずれかである。)
で示されるアクリル酸エステル誘導体[以下、アクリル酸エステル誘導体(1)と称する。]を含有する原料を重合することにより得られる高分子化合物[以下、高分子化合物(8)と称する。]、
2.nが0または1であり、R3が水素原子である上記1.に記載の高分子化合物(8)、
3.nが0または1であり、R2、R3、R4、R5、R6、R7、R8、R9およびR10が水素原子である上記1.に記載の高分子化合物(8)、および
4.アクリル酸エステル誘導体(1)に基づく構成単位の含有割合が10~90モル%の範囲である、上記1.~3.のいずれかに記載の高分子化合物(8)、
を提供することにより達成される。
(Wherein R 1 represents a hydrogen atom, a methyl group or a trifluoromethyl group. The combination of R 2 , R 3 and R 4 is
1) R 2 , R 3 and R 4 are each independently a hydrogen atom, a linear alkyl group having 1 to 6 carbon atoms, a branched alkyl group having 3 to 6 carbon atoms or a cyclic group having 3 to 6 carbon atoms. Represents an alkyl group. ;
2) R 2 and R 3 are connected to represent an alkylene group having 3 to 6 carbon atoms, and R 4 is a hydrogen atom, a linear alkyl group having 1 to 6 carbon atoms, or a branched alkyl group having 3 to 6 carbon atoms. Or a cyclic alkyl group having 3 to 6 carbon atoms. Or 3) R 2 represents a hydrogen atom, a linear alkyl group having 1 to 6 carbon atoms, a branched alkyl group having 3 to 6 carbon atoms or a cyclic alkyl group having 3 to 6 carbon atoms, and R 3 and R 4 represents an alkylene group having 3 to 6 carbon atoms linked to each other. One of them.
The combination of n, R 5 , R 6 , R 7 , R 8 , R 9 and R 10 is
1) When n = 0, R 5 and R 8 are each independently a hydrogen atom, a linear alkyl group having 1 to 6 carbon atoms, a branched alkyl group having 3 to 6 carbon atoms, or 3 to 3 carbon atoms 6 cyclic alkyl groups are represented. Each of R 6 and R 7 independently represents a hydrogen atom, a linear alkyl group having 1 to 6 carbon atoms, a branched alkyl group having 3 to 6 carbon atoms or a cyclic alkyl group having 3 to 6 carbon atoms; Or R 6 and R 7 are linked to each other to represent an alkylene group having 3 to 6 carbon atoms. Or 2) When n = 1 or 2, R 5 , R 6 , R 7 , R 8 , R 9 and R 10 are each independently a hydrogen atom or a linear alkyl group having 1 to 6 carbon atoms. Represents a branched alkyl group having 3 to 6 carbon atoms or a cyclic alkyl group having 3 to 6 carbon atoms. One of them. )
An acrylic ester derivative represented by the formula [hereinafter referred to as an acrylic ester derivative (1). ] A polymer compound obtained by polymerizing a raw material containing the compound [hereinafter referred to as polymer compound (8). ],
2. 1. In the above 1., wherein n is 0 or 1, and R 3 is a hydrogen atom. A polymer compound (8) according to any one of
3. n. wherein n is 0 or 1, and R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 are hydrogen atoms. 3. The polymer compound (8) according to 4, and 1. The content of the structural unit based on the acrylate derivative (1) is in the range of 10 to 90 mol%. ~ 3. A polymer compound (8) according to any one of
Is achieved by providing
 本発明によれば、酸に対する反応性および熱安定性に優れ、現像時の膨潤が小さく、波長193nmにおける屈折率が1.72以上のフォトレジスト膜を形成し得るフォトレジスト組成物であって、フォトレジスト膜としてパターンニング可能なフォトレジスト組成物を得るための高分子化合物を提供することができる。 According to the present invention, there is provided a photoresist composition which is excellent in acid reactivity and thermal stability, has a small swelling during development, and can form a photoresist film having a refractive index of 1.72 or more at a wavelength of 193 nm, A polymer compound for obtaining a photoresist composition that can be patterned as a photoresist film can be provided.
参考例7、8で得たフォトレジスト組成物b、dにより形成したフォトレジスト膜に照射した光の露光量と上記フォトレジスト膜の膜厚の相関関係を示す図である(参考例23および24参照)。It is a figure which shows the correlation with the exposure amount of the light irradiated to the photoresist film formed with the photoresist compositions b and d obtained by the reference examples 7 and 8, and the film thickness of the said photoresist film (reference examples 23 and 24). reference).
発明を実施するための形態BEST MODE FOR CARRYING OUT THE INVENTION
[アクリル酸エステル誘導体(1)]
 まず、本発明の高分子化合物の原料となる前記アクリル酸エステル誘導体(1)について説明する。
 R1は、水素原子、メチル基またはトリフルオロメチル基を表す。R1としては、水素原子、メチル基が好ましく、メチル基がより好ましい。
[Acrylic acid ester derivative (1)]
First, the acrylate derivative (1), which is a raw material for the polymer compound of the present invention, will be described.
R 1 represents a hydrogen atom, a methyl group or a trifluoromethyl group. R 1 is preferably a hydrogen atom or a methyl group, and more preferably a methyl group.
 R2、R3およびR4の組み合わせは、以下の1)~3)のいずれかである。
 1)R2、R3およびR4は、それぞれ独立して、水素原子、炭素数1~6の直鎖状アルキル基、炭素数3~6の分岐状アルキル基または炭素数3~6の環状アルキル基を表す。
 2)R2とR3は連結して炭素数3~6のアルキレン基を表し、R4は、水素原子、炭素数1~6の直鎖状アルキル基、炭素数3~6の分岐状アルキル基または炭素数3~6の環状アルキル基を表す。
 3)R2は、水素原子、炭素数1~6の直鎖状アルキル基、炭素数3~6の分岐状アルキル基または炭素数3~6の環状アルキル基を表し、R3とR4は連結して炭素数3~6のアルキレン基を表す。
 上記の炭素数1~6の直鎖状アルキル基としては、いずれも、例えばメチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基などが挙げられる。上記の炭素数3~6の分岐状アルキル基としては、いずれも、例えばイソプロピル基、イソブチル基、sec-ブチル基などが挙げられる。また、上記の炭素数3~6の環状アルキル基としては、いずれも、例えばシクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基などが挙げられる。
 上記のR2とR3が連結した場合の炭素数3~6のアルキレン基としては、例えばプロパン-1,3-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基などが挙げられる。これらの中でも、ブタン-1,4-ジイル基が好ましい。
 また、上記のR3とR4が連結した場合の炭素数3~6のアルキレン基としては、例えばプロパン-1,3-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基などが挙げられる。
 R2、R3およびR4の組み合わせは、上記1)であるのが好ましく、R2、R3およびR4は、それぞれ水素原子またはメチル基であるのがより好ましく、特にR3が水素原子であるのが好ましく、いずれも水素原子であるのがさらに好ましい。
The combination of R 2 , R 3 and R 4 is one of the following 1) to 3).
1) R 2 , R 3 and R 4 are each independently a hydrogen atom, a linear alkyl group having 1 to 6 carbon atoms, a branched alkyl group having 3 to 6 carbon atoms or a cyclic group having 3 to 6 carbon atoms. Represents an alkyl group.
2) R 2 and R 3 are connected to represent an alkylene group having 3 to 6 carbon atoms, and R 4 is a hydrogen atom, a linear alkyl group having 1 to 6 carbon atoms, or a branched alkyl group having 3 to 6 carbon atoms. Or a cyclic alkyl group having 3 to 6 carbon atoms.
3) R 2 represents a hydrogen atom, a linear alkyl group having 1 to 6 carbon atoms, a branched alkyl group having 3 to 6 carbon atoms, or a cyclic alkyl group having 3 to 6 carbon atoms, and R 3 and R 4 are And represents an alkylene group having 3 to 6 carbon atoms.
Examples of the linear alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-pentyl group, and an n-hexyl group. Examples of the branched alkyl group having 3 to 6 carbon atoms include isopropyl group, isobutyl group, sec-butyl group and the like. Examples of the cyclic alkyl group having 3 to 6 carbon atoms include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group.
Examples of the alkylene group having 3 to 6 carbon atoms when R 2 and R 3 are linked include a propane-1,3-diyl group, a butane-1,4-diyl group, and a pentane-1,5-diyl group. And hexane-1,6-diyl group. Of these, a butane-1,4-diyl group is preferred.
Examples of the alkylene group having 3 to 6 carbon atoms when R 3 and R 4 are linked include, for example, propane-1,3-diyl group, butane-1,4-diyl group, pentane-1,5- Examples thereof include a diyl group and a hexane-1,6-diyl group.
The combination of R 2, R 3 and R 4 is preferably the above-mentioned 1), R 2, R 3 and R 4 are more preferably a hydrogen atom or a methyl group, respectively, in particular R 3 is a hydrogen atom It is preferable that both are hydrogen atoms.
 n、R5、R6、R7、R8、R9およびR10の組み合わせとしては、以下の1)または2)のいずれかである。
 1)n=0のとき、R5およびR8は、それぞれ独立して、水素原子、炭素数1~6の直鎖状アルキル基、炭素数3~6の分岐状アルキル基または炭素数3~6の環状アルキル基を表す。R6およびR7は、それぞれ独立して、水素原子、炭素数1~6の直鎖状アルキル基、炭素数3~6の分岐状アルキル基または炭素数3~6の環状アルキル基を表すか、またはR6とR7は連結して炭素数3~6のアルキレン基を表す。
 2)n=1または2のとき、R5、R6、R7、R8、R9およびR10は、それぞれ独立して、水素原子、炭素数1~6の直鎖状アルキル基、炭素数3~6の分岐状アルキル基または炭素数3~6の環状アルキル基を表す。
 上記の炭素数1~6の直鎖状アルキル基としては、いずれも、例えばメチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基などが挙げられる。上記の炭素数3~6の分岐状アルキル基としては、いずれも、例えばイソプロピル基、イソブチル基、sec-ブチル基などが挙げられる。また、上記の炭素数3~6の環状アルキル基としては、いずれも、例えばシクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基などが挙げられる。
 上記のR6とR7が連結した炭素数3~6のアルキレン基としては、例えばプロパン-1,3-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基などが挙げられる。これらの中でも、ブタン-1,4-ジイル基が好ましい。
 nは0または1であるのが好ましく、0であるのがより好ましい。
 nが0である場合、R5、R6、R7およびR8は、それぞれ水素原子またはメチル基であるのが好ましく、R5、R6、R7およびR8はいずれも水素原子であるか、R5およびR8がいずれもメチル基且つR6およびR7がいずれも水素原子であるのがより好ましい。
 nが1である場合、R5、R6、R7、R8、R9およびR10は、それぞれ水素原子またはメチル基であるのが好ましく、R5、R6、R7、R8、R9およびR10はいずれも水素原子であるのがより好ましい。
The combination of n, R 5 , R 6 , R 7 , R 8 , R 9 and R 10 is either 1) or 2) below.
1) When n = 0, R 5 and R 8 are each independently a hydrogen atom, a linear alkyl group having 1 to 6 carbon atoms, a branched alkyl group having 3 to 6 carbon atoms, or 3 to 3 carbon atoms 6 cyclic alkyl groups are represented. Each of R 6 and R 7 independently represents a hydrogen atom, a linear alkyl group having 1 to 6 carbon atoms, a branched alkyl group having 3 to 6 carbon atoms or a cyclic alkyl group having 3 to 6 carbon atoms; Or R 6 and R 7 are linked to each other to represent an alkylene group having 3 to 6 carbon atoms.
2) When n = 1 or 2, R 5 , R 6 , R 7 , R 8 , R 9 and R 10 are each independently a hydrogen atom, a linear alkyl group having 1 to 6 carbon atoms, carbon A branched alkyl group having 3 to 6 carbon atoms or a cyclic alkyl group having 3 to 6 carbon atoms is represented.
Examples of the linear alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-pentyl group, and an n-hexyl group. Examples of the branched alkyl group having 3 to 6 carbon atoms include isopropyl group, isobutyl group, sec-butyl group and the like. Examples of the cyclic alkyl group having 3 to 6 carbon atoms include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group.
Examples of the alkylene group having 3 to 6 carbon atoms in which R 6 and R 7 are linked include, for example, a propane-1,3-diyl group, a butane-1,4-diyl group, a pentane-1,5-diyl group, and hexane. -1,6-diyl group and the like. Of these, a butane-1,4-diyl group is preferred.
n is preferably 0 or 1, and more preferably 0.
When n is 0, R 5 , R 6 , R 7 and R 8 are each preferably a hydrogen atom or a methyl group, and R 5 , R 6 , R 7 and R 8 are all hydrogen atoms. More preferably, R 5 and R 8 are both methyl groups, and R 6 and R 7 are both hydrogen atoms.
When n is 1, R 5 , R 6 , R 7 , R 8 , R 9 and R 10 are each preferably a hydrogen atom or a methyl group, and R 5 , R 6 , R 7 , R 8 , R 9 and R 10 are more preferably hydrogen atoms.
 アクリル酸エステル誘導体(1)の具体例として、たとえば下記式(1-a)~(1-x) Specific examples of the acrylate derivative (1) include, for example, the following formulas (1-a) to (1-x)
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式中、nは前記定義の通りである。pは1または2を表す。)
などが挙げられるが、特にこれらに限定されるものではない。
(In the formula, n is as defined above. P represents 1 or 2.)
However, it is not particularly limited to these.
[アクリル酸エステル誘導体(1)の製造方法]
 アクリル酸エステル誘導体(1)は、例えば、下記一般式(2)
[Production method of acrylic ester derivative (1)]
The acrylic ester derivative (1) is, for example, the following general formula (2)
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式中、n、R5、R6、R7、R8、R9およびR10は前記定義の通り。)
で示されるジチオール[以下、ジチオール(2)と称する。]を塩基と反応させ、次いで下記一般式(4)
(In the formula, n, R 5 , R 6 , R 7 , R 8 , R 9 and R 10 are as defined above.)
Dithiol [hereinafter referred to as dithiol (2). ] With a base, then the following general formula (4)
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(式中、R2、R3およびR4は、前記定義の通りである。R11は炭素数1~3の直鎖状アルキル基または炭素数3~6の分岐状アルキル基を表す。R13は、炭素数1~6の直鎖状アルキル基、炭素数3~6の分岐状アルキル基、または炭素数3~6の環状アルキル基を表す。また、Xは塩素原子、臭素原子またはヨウ素原子を表す。)
で示されるハロゲン化物[以下、ハロゲン化物(4)と称する。]と反応させて下記一般式(5)
Wherein R 2 , R 3 and R 4 are as defined above. R 11 represents a linear alkyl group having 1 to 3 carbon atoms or a branched alkyl group having 3 to 6 carbon atoms. 13 represents a linear alkyl group having 1 to 6 carbon atoms, a branched alkyl group having 3 to 6 carbon atoms, or a cyclic alkyl group having 3 to 6 carbon atoms, and X represents a chlorine atom, a bromine atom or iodine Represents an atom.)
[Hereinafter referred to as halide (4). And the following general formula (5)
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(式中、R2、R3、R4、R5、R6、R7、R8、R9、R10およびnは、前記定義の通り。)で示されるアルコール[以下、アルコール(5)と称する。]を得、次いでアルコール(5)をアクリル酸エステル誘導体(1)へと変換することで製造することができる(以下の化学反応式参照。)が、特にこれに限定されるものではない。 (Wherein R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 and n are as defined above) [hereinafter referred to as alcohol (5 ). And then converting the alcohol (5) to the acrylate derivative (1) (see the chemical reaction formula below), but is not particularly limited thereto.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 上記化学反応式中、n、R1、R2、R3、R4、R5、R6、R7、R8、R9、R10、R11、R13およびXは前記定義の通りである。R12は、炭素数1~3の直鎖状アルキル基または炭素数3~6の分岐状アルキル基を表す。
 上記の炭素数1~3の直鎖状アルキル基としては、メチル基、エチル基、n-プロピル基が挙げられる。上記の炭素数3~6の分岐状アルキル基としては、例えばイソプロピル基、イソブチル基、sec-ブチル基などが挙げられる。R12としては、炭素数1~3の直鎖状アルキル基であるのが好ましく、メチル基であるのがより好ましい。
 なお、上記化学反応式中、ジチオール(2)、アセタール(3)、ハロゲン化物(4)、アルコール(5)中の、それぞれのn、R1、R2、R3、R4、R5、R6、R7、R8、R9およびR10の好ましい基は、前記したアクリル酸エステル誘導体(1)におけるn、R1、R2、R3、R4、R5、R6、R7、R8、R9およびR10の好ましい基と同一である。R11およびR13としては、いずれも炭素数1~3の直鎖状アルキル基であるのが好ましく、いずれもメチル基であるのがより好ましい。また、Xとしては、塩素原子、臭素原子が好ましい。
In the above chemical reaction formula, n, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 13 and X are as defined above. It is. R 12 represents a linear alkyl group having 1 to 3 carbon atoms or a branched alkyl group having 3 to 6 carbon atoms.
Examples of the linear alkyl group having 1 to 3 carbon atoms include a methyl group, an ethyl group, and an n-propyl group. Examples of the branched alkyl group having 3 to 6 carbon atoms include isopropyl group, isobutyl group, sec-butyl group and the like. R 12 is preferably a linear alkyl group having 1 to 3 carbon atoms, and more preferably a methyl group.
In the above chemical reaction formula, each of n, R 1 , R 2 , R 3 , R 4 , R 5 , in dithiol (2), acetal (3), halide (4), and alcohol (5), Preferred groups of R 6 , R 7 , R 8 , R 9 and R 10 are n, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R in the acrylate derivative (1). 7 , R 8 , R 9 and R 10 are the same as preferred groups. R 11 and R 13 are each preferably a linear alkyl group having 1 to 3 carbon atoms, and more preferably a methyl group. X is preferably a chlorine atom or a bromine atom.
 以下、前記第1工程~第3工程について順に説明する。
(第1工程)
 第1工程では、アセタール交換反応によりハロゲン化物(4)を合成する。
 ハロゲン化物(4)に対応するアセタール(アセタール(3)と称する。)と酸無水物を酸触媒存在下で反応させることで、容易にハロゲン化物(4)を合成することができる(Tetrahedron、Vol.50、No.26、p.7897-7902(1994)参照)。
 第1工程で使用するアセタール(3)は、工業的に入手可能なものや、対応するα-ハロケトン化合物またはα-ハロアルデヒドを通常のアセタール化反応することにより製造したものを使用できる。
 アセタール(3)の具体例としては、例えばクロロアセトアルデヒド=ジメチル=アセタール、クロロアセトアルデヒド=ジエチル=アセタール、ブロモアセトアルデヒド=ジメチル=アセタール、ブロモアセトアルデヒド=ジエチル=アセタール、1-ブロモ-2,2-ジメトキシプロパン、1-ヨード-2,2-ジエトキシプロパン、2-ブロモ-3,3-ジエトキシブタン、1-クロロ-2,2-ジメトキシヘキサン、1-クロロ-2,2-ジメトキシヘプタン、1-クロロ-2,2-ジメトキシシクロペンタン、1-クロロ-2,2-ジメトキシシクロヘキサン、1-ブロモ-2,2-ジメトキシシクロヘプタンなどが挙げられるが、これに限定されるものではない。
Hereinafter, the first to third steps will be described in order.
(First step)
In the first step, a halide (4) is synthesized by an acetal exchange reaction.
By reacting an acetal corresponding to the halide (4) (referred to as acetal (3)) with an acid anhydride in the presence of an acid catalyst, the halide (4) can be easily synthesized (Tetrahedron, Vol. .50, No. 26, p. 7897-7902 (1994)).
As the acetal (3) used in the first step, those which are industrially available and those produced by subjecting a corresponding α-haloketone compound or α-haloaldehyde to a conventional acetalization reaction can be used.
Specific examples of the acetal (3) include, for example, chloroacetaldehyde = dimethyl = acetal, chloroacetaldehyde = diethyl = acetal, bromoacetaldehyde = dimethyl = acetal, bromoacetaldehyde = diethyl = acetal, 1-bromo-2,2-dimethoxypropane, 1-iodo-2,2-diethoxypropane, 2-bromo-3,3-diethoxybutane, 1-chloro-2,2-dimethoxyhexane, 1-chloro-2,2-dimethoxyheptane, 1-chloro- Examples include, but are not limited to, 2,2-dimethoxycyclopentane, 1-chloro-2,2-dimethoxycyclohexane, 1-bromo-2,2-dimethoxycycloheptane.
 第1工程で使用する酸無水物としては、無水酢酸、無水プロピオン酸、無水ブタン酸などが挙げられ、経済性および後処理の容易さの観点から無水酢酸が好ましい。酸無水物の使用量は、経済性および後処理の容易さの観点から、アセタール(3)に対して0.5~3倍モルの範囲であるのが好ましく、0.7~2倍モルの範囲であるのがより好ましく、0.8~1.5倍モルの範囲であるのがさらに好ましい。 Examples of the acid anhydride used in the first step include acetic anhydride, propionic anhydride, butanoic anhydride and the like, and acetic anhydride is preferable from the viewpoint of economy and ease of post-treatment. The amount of the acid anhydride to be used is preferably in the range of 0.5 to 3 times mol, preferably 0.7 to 2 times mol of the acetal (3) from the viewpoint of economy and ease of post-treatment. The range is more preferable, and the range of 0.8 to 1.5 times mol is more preferable.
 第1工程は、溶媒の存在下または非存在下で実施することができる。溶媒としては、反応を阻害しなければ特に制限はないが、例えばヘキサン、ヘプタン、オクタンなどの脂肪族炭化水素;トルエン、キシレン、シメンなどの芳香族炭化水素;塩化メチレン、ジクロロエタンなどのハロゲン化炭化水素;テトラヒドロフラン(THF)、ジイソプロピルエーテルなどのエーテルなどが挙げられる。これらは1種を単独でまたは2種以上を混合して使用することができる。また、環境負荷低減の観点から、酸無水物を溶媒兼反応剤として使用することが好ましい。
 溶媒を使用する場合、その使用量は、経済性および後処理の容易さの観点から、アセタール(3)に対して0.1~10質量倍の範囲であるのが好ましく、0.1~5質量倍の範囲であるのがより好ましい。
The first step can be performed in the presence or absence of a solvent. The solvent is not particularly limited as long as it does not inhibit the reaction. For example, aliphatic hydrocarbons such as hexane, heptane, and octane; aromatic hydrocarbons such as toluene, xylene, and cymene; halogenated carbons such as methylene chloride and dichloroethane. Hydrogen; ethers such as tetrahydrofuran (THF) and diisopropyl ether are listed. These can be used individually by 1 type or in mixture of 2 or more types. Moreover, it is preferable to use an acid anhydride as a solvent and reaction agent from a viewpoint of environmental load reduction.
When a solvent is used, the amount used is preferably in the range of 0.1 to 10 times by mass with respect to the acetal (3), from the viewpoint of economy and ease of post-treatment, and 0.1 to 5 A range of mass times is more preferable.
 第1工程では、酸触媒を使用する。該酸触媒としては、例えば酢酸、プロピオン酸、安息香酸などのカルボン酸;p-トルエンスルホン酸、メタンスルホン酸などのスルホン酸;硫酸、塩酸、リン酸などの鉱酸などが挙げられる。酸触媒の使用量は、経済性および後処理の容易さの観点から、アセタール(3)に対して0.0001~0.1倍モルの範囲であるのが好ましく、0.0001~0.05倍モルの範囲であるのがより好ましい。 In the first step, an acid catalyst is used. Examples of the acid catalyst include carboxylic acids such as acetic acid, propionic acid, and benzoic acid; sulfonic acids such as p-toluenesulfonic acid and methanesulfonic acid; and mineral acids such as sulfuric acid, hydrochloric acid, and phosphoric acid. The amount of the acid catalyst used is preferably in the range of 0.0001 to 0.1 moles relative to the acetal (3), from the viewpoint of economy and ease of post-treatment, More preferably, it is in the range of double mole.
 第1工程の反応温度は、アセタール(3)および酸触媒の種類によって異なるが、概ね、0~100℃の範囲であるのが好ましく、10~70℃の範囲であるのがより好ましい。
 第1工程の圧力は、アセタール(3)、酸触媒、酸無水物および溶媒の種類によって異なるが、常圧でも減圧下でも実施可能である。
The reaction temperature in the first step varies depending on the types of the acetal (3) and the acid catalyst, but is generally preferably in the range of 0 to 100 ° C, more preferably in the range of 10 to 70 ° C.
The pressure in the first step varies depending on the types of the acetal (3), the acid catalyst, the acid anhydride and the solvent, but can be carried out at normal pressure or under reduced pressure.
 第1工程の反応は、酸触媒を中和することによって、または酸触媒を反応系から除去することによって反応を停止することができる。
 中和剤としては、例えば水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物;炭酸ナトリウム、炭酸カリウムなどのアルカリ金属炭酸塩;炭酸水素ナトリウム、炭酸水素カリウムなどのアルカリ金属炭酸水素塩;トリエチルアミン、トリブチルアミンなどの第三級アミン;ピリジンなどの含窒素複素環式芳香族化合物などが挙げられる。これらの中でも、アルカリ金属炭酸水素塩が好ましく、炭酸水素ナトリウムがより好ましい。
 中和剤を使用する場合、その使用量は、経済性および後処理の容易さの観点から、酸触媒に対して1当量~3当量の範囲であるのが好ましい。なお、中和剤を添加する前に、反応に使用し得る前記溶媒を添加して希釈しておいてもよい。
 また、酸触媒を反応系から除去することによって反応を停止する方法としては、例えば、反応中の反応液を適宜適当な反応溶媒で希釈した後、水またはアルカリ水で洗浄する方法が挙げられる。溶媒としては、第1工程の反応に使用し得る前記の溶媒と同じものが好ましく挙げられる。溶媒を使用して希釈する場合、その使用量は、経済性および後処理の容易さの観点から、反応液全質量に対して0.1~10質量倍の範囲であるのが好ましく、0.1~5質量倍の範囲であるのがさらに好ましい。
 また、アルカリ水中の塩基性物質としては、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、炭酸水素カリウムなどの無機塩基などが挙げられる。アルカリ水を使用する場合、塩基性物質の使用量は、経済性および後処理の容易さの観点から、酸触媒に対して0.1当量~3当量の範囲であるのが好ましい。
The reaction in the first step can be stopped by neutralizing the acid catalyst or by removing the acid catalyst from the reaction system.
Examples of the neutralizing agent include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; alkali metal carbonates such as sodium carbonate and potassium carbonate; alkali metal hydrogen carbonates such as sodium hydrogen carbonate and potassium hydrogen carbonate; triethylamine And tertiary amines such as tributylamine; nitrogen-containing heterocyclic aromatic compounds such as pyridine. Among these, alkali metal hydrogen carbonate is preferable, and sodium hydrogen carbonate is more preferable.
When a neutralizing agent is used, the amount used is preferably in the range of 1 to 3 equivalents with respect to the acid catalyst from the viewpoints of economy and ease of post-treatment. In addition, you may dilute by adding the said solvent which can be used for reaction, before adding a neutralizing agent.
Examples of the method for stopping the reaction by removing the acid catalyst from the reaction system include a method of diluting the reaction solution during the reaction with an appropriate reaction solvent and then washing with water or alkaline water. Preferred examples of the solvent include the same solvents as those described above that can be used for the reaction in the first step. When diluting with a solvent, the amount used is preferably in the range of 0.1 to 10 times by mass with respect to the total mass of the reaction solution from the viewpoint of economy and ease of post-treatment. A range of 1 to 5 times by mass is more preferable.
Examples of the basic substance in alkaline water include inorganic bases such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium hydrogen carbonate, potassium carbonate, and potassium hydrogen carbonate. When alkaline water is used, the amount of the basic substance used is preferably in the range of 0.1 to 3 equivalents relative to the acid catalyst from the viewpoints of economy and ease of post-treatment.
 第1工程の生成物は、溶媒抽出、蒸留、カラムクロマトグラフィー、再結晶などの通常の有機化合物の分離精製操作により、純度を高めることが可能である。 The purity of the product in the first step can be increased by usual organic compound separation and purification operations such as solvent extraction, distillation, column chromatography, and recrystallization.
(第2工程)
 第2工程は、ジチオール(2)を塩基と反応させる工程(以下、第2工程-1と称する。)、第2工程-1で得られた反応液にハロゲン化物(4)を添加してアルコール(5)を得る工程(以下、第2工程-2と称する。)、必要に応じて第2工程-2で副生するエステル(6)を加水分解する工程(以下、第2工程-3と称する。)、および後処理工程を有する。
(Second step)
The second step is a step of reacting dithiol (2) with a base (hereinafter referred to as second step-1), and a halide (4) is added to the reaction solution obtained in the second step-1, thereby adding alcohol. (5) is obtained (hereinafter referred to as second step-2), and if necessary, the step of hydrolyzing the ester (6) by-produced in the second step-2 (hereinafter referred to as second step-3). And post-processing steps.
 第2工程で得られるアルコール(5)の具体例として、例えば下記式のアルコールが挙げられるが、特にこれらに限定されるものではない。 Specific examples of the alcohol (5) obtained in the second step include, but are not limited to, alcohols of the following formula.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 第2工程は、「Gazzetta Chimica Italiana、Vol.127、No.1、p.11-17(1997)」に記載の方法を参考にすることができる。 For the second step, the method described in “Gazzetta Chimica Italiana, Vol. 127, No. 1, p. 11-17 (1997)” can be referred to.
(第2工程-1)
 第2工程-1は、ジチオール(2)と塩基とを反応させ、ジチオール(2)の塩を製造する工程である。
 第2工程-1で使用するジチオール(2)としては、例えば1,2-エタンジチオール、1,3-プロパンジチオール、1,4-ブタンジチオール、2,3-ブタンジチオール、2,3-ジメチル-2,3-ブタンジチオール、1,2-プロパンジチオール、2-メチル-1,2-プロパンジチオール、2-メチル-2,3-ブタンジチオール、3,4-ヘキサンジチオール、2,5-ジメチル-3,4-ヘキサンジチオール、1,2-ブタンジチオール、1,2-ペンタンジチオール、3,4-オクタンジチオール、3,3-ジメチル-1,2-ブタンジチオール、1,2-シクロペンタンジチオール、1,2-シクロヘキサンジチオール、1,3-ブタンジチオール、2-メチル1,3-ブタンジチオール、2,4-ペンタンジチオール、2,2-ジメチル-1,3-プロパンジチオール、3-メチル-1,3-ブタンジチオール、2-メチル-2,4-ペンタンジチオール、2-エチル-1,3-プロパンジチオール、2,4-ジメチル-2,4-ペンタンジオール、2,2-ジエチル-1,3-プロパンジオール、2,4-ヘキサンジチオールなどが挙げられるが、特にこれらに限定されるものではない。
(Second step-1)
The second step-1 is a step of producing a salt of dithiol (2) by reacting dithiol (2) with a base.
Examples of the dithiol (2) used in the second step-1 include 1,2-ethanedithiol, 1,3-propanedithiol, 1,4-butanedithiol, 2,3-butanedithiol, 2,3-dimethyl- 2,3-butanedithiol, 1,2-propanedithiol, 2-methyl-1,2-propanedithiol, 2-methyl-2,3-butanedithiol, 3,4-hexanedithiol, 2,5-dimethyl-3 , 4-hexanedithiol, 1,2-butanedithiol, 1,2-pentanedithiol, 3,4-octanedithiol, 3,3-dimethyl-1,2-butanedithiol, 1,2-cyclopentanedithiol, 1, 2-cyclohexanedithiol, 1,3-butanedithiol, 2-methyl-1,3-butanedithiol, 2,4-pentanedithiol 2,2-dimethyl-1,3-propanedithiol, 3-methyl-1,3-butanedithiol, 2-methyl-2,4-pentanedithiol, 2-ethyl-1,3-propanedithiol, 2,4- Examples include, but are not limited to, dimethyl-2,4-pentanediol, 2,2-diethyl-1,3-propanediol, and 2,4-hexanedithiol.
 第2工程-1は溶媒の存在下に実施するのが好ましい。溶媒としては、反応を阻害しなければ特に制限はく、例えばジエチルエーテル、テトラヒドロフラン、ジイソプロピルエーテル、t-ブチルメチルエーテル、シクロプロピルメチルエーテルなどのジアルキルエーテル;1,2-ジメトキシエタン、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテルなどの(ポリ)アルキレングリコールジアルキルエーテル;N,N-ジメチルホルムアミドなどのアミドなどが挙げられる。これらは1種を単独でまたは2種以上を混合して使用してもよい。これらの中でも、反応の選択率の観点から、エーテル系溶媒(例えばジアルキルエーテル、(ポリ)アルキレングリコールジアルキルエーテル)が好ましく、1,2-ジメトキシエタンがより好ましい。
 溶媒の使用量は、経済性および後処理の容易さの観点から、ジチオール(2)に対して1~15質量倍の範囲であるのが好ましく、3~10質量倍の範囲であるのがより好ましい。
The second step-1 is preferably carried out in the presence of a solvent. The solvent is not particularly limited as long as it does not inhibit the reaction. For example, dialkyl ethers such as diethyl ether, tetrahydrofuran, diisopropyl ether, t-butyl methyl ether, cyclopropyl methyl ether; 1,2-dimethoxyethane, diethylene glycol dimethyl ether, (Poly) alkylene glycol dialkyl ethers such as ethylene glycol dimethyl ether; amides such as N, N-dimethylformamide and the like. You may use these individually by 1 type or in mixture of 2 or more types. Among these, from the viewpoint of reaction selectivity, ether solvents (for example, dialkyl ethers and (poly) alkylene glycol dialkyl ethers) are preferable, and 1,2-dimethoxyethane is more preferable.
The amount of the solvent used is preferably in the range of 1 to 15 times by mass with respect to dithiol (2), and more preferably in the range of 3 to 10 times by mass, from the viewpoint of economy and ease of post-treatment. preferable.
 第2工程-1で使用する塩基としては、無機塩基、有機塩基のいずれでもよい。無機塩基としては、例えば水素化ナトリウム、水素化リチウム、水素化カリウムなどのアルカリ金属水素化物;水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物;炭酸ナトリウム、炭酸カリウムなどのアルカリ金属炭酸塩などが挙げられる。また、有機塩基としては、例えばナトリウムメトキシド、トリエチルアミン、4-(N,N-ジメチルアミノ)ピリジン、N,N-ジメチルアニリン、ピリジン、トリブチルアミン、ジアザビシクロ[2.2.2]オクタンなどが挙げられる。これらは1種を単独でまたは2種以上を混合して使用してもよい。これらの中でも、入手性、取り扱い、反応収率および経済性の観点から、アルカリ金属水素化物が好ましく、水素化ナトリウムがより好ましい。塩基の使用量は、経済性および後処理の観点から、ジチオール(2)1モルに対して0.8~4モルの範囲であるのが好ましく、1.5~2.5モルの範囲であるのがより好ましい。塩基が上記範囲内であると、第2工程-2におけるアルコール(5)の収率が良好となる。 The base used in the second step-1 may be either an inorganic base or an organic base. Examples of the inorganic base include alkali metal hydrides such as sodium hydride, lithium hydride and potassium hydride; alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; alkali metal carbonates such as sodium carbonate and potassium carbonate Etc. Examples of the organic base include sodium methoxide, triethylamine, 4- (N, N-dimethylamino) pyridine, N, N-dimethylaniline, pyridine, tributylamine, diazabicyclo [2.2.2] octane, and the like. It is done. You may use these individually by 1 type or in mixture of 2 or more types. Among these, alkali metal hydrides are preferable and sodium hydride is more preferable from the viewpoints of availability, handling, reaction yield, and economy. The amount of the base used is preferably in the range of 0.8 to 4 mol, more preferably in the range of 1.5 to 2.5 mol with respect to 1 mol of dithiol (2), from the viewpoints of economy and post-treatment. Is more preferable. If the base is within the above range, the yield of alcohol (5) in the second step-2 will be good.
 第2工程-1の手順としては、特に制限はないが、例えば塩基として水素化ナトリウムを使用する場合は、水素化ナトリウムを適当な溶媒で懸濁させた溶液に、ジチオール(2)を滴下する方法が好ましい。
 第2工程-1の反応温度は、ジチオール(2)および塩基の種類によって異なるが、概ね、0~100℃の範囲であるのが好ましく、5~70℃の範囲であるのがより好ましく、10~50℃の範囲であるのがさらに好ましい。
 第2工程-1の圧力は、使用するジチオール(2)、塩基および溶媒の種類によって異なるが、任意の圧力下で実施可能であり、常圧下で実施するのが好ましい。
 第2工程-1の反応時間は、ジチオール(2)を添加終了後、0.1~5時間の範囲が好ましく、0.1~2時間の範囲であるのがより好ましい。特に、塩基として水素化ナトリウムを使用した場合は、ジチオール(2)を添加終了後、0.1~3時間の範囲が好ましく、0.1~1.5時間の範囲であるのがより好ましい。塩基として水素化ナトリウムを使用した場合は、反応の進行に伴い、水素が発生するが、0.1~3時間の範囲であれば、水素の発生は停止している。
The procedure of the second step-1 is not particularly limited. For example, when sodium hydride is used as a base, dithiol (2) is dropped into a solution in which sodium hydride is suspended in an appropriate solvent. The method is preferred.
The reaction temperature in the second step-1 varies depending on the type of dithiol (2) and the base, but is generally preferably in the range of 0 to 100 ° C, more preferably in the range of 5 to 70 ° C. More preferably, it is in the range of ˜50 ° C.
The pressure in the second step-1 varies depending on the type of dithiol (2), base and solvent used, but can be carried out under any pressure, and is preferably carried out under normal pressure.
The reaction time in the second step-1 is preferably in the range of 0.1 to 5 hours, more preferably in the range of 0.1 to 2 hours after the addition of dithiol (2). In particular, when sodium hydride is used as the base, it is preferably in the range of 0.1 to 3 hours and more preferably in the range of 0.1 to 1.5 hours after the addition of dithiol (2). When sodium hydride is used as the base, hydrogen is generated as the reaction proceeds, but hydrogen generation is stopped within the range of 0.1 to 3 hours.
(第2工程-2)
 第2工程-2は、第2工程-1で得たジチオール(2)の塩を含む反応液と、第1工程で得たハロゲン化物(4)とを反応させることにより行う。
 第2工程-2の手順としては、特に制限はないが、例えば第2工程-1で得たジチオール(2)の塩を含む反応液に、第1工程で得たハロゲン化物(4)を滴下する方法で行うことができる。
 第2工程-2の反応温度は、第2工程-1で使用したジチオール(2)、塩基、溶媒および第1工程で得たハロゲン化物(4)の種類によって異なるが、概ね、0~100℃の範囲であるのが好ましく、10~80℃の範囲であるのがより好ましい。
 第2工程-2の圧力は、第2工程-1で使用したジチオール(2)、塩基、溶媒および第1工程で得たハロゲン化物(4)の種類によって異なるが、任意の圧力下で実施可能であり、常圧下で実施するのが好ましい。
 第2工程-2の反応時間は、第1工程で得たハロゲン化物(4)の添加終了後、0.1~10時間の範囲が好ましく、0.5~5時間の範囲であるのがより好ましい。特に、塩基として水素化ナトリウムを使用する場合は、第1工程で得たハロゲン化物(4)の添加終了後、0.1~8時間の範囲が好ましく、0.5~4時間の範囲であるのがより好ましい。この範囲であれば、第1工程で得たハロゲン化物(4)の転化率が通常98%以上となる。
(Second step-2)
The second step-2 is carried out by reacting the reaction liquid containing the salt of dithiol (2) obtained in the second step-1 with the halide (4) obtained in the first step.
The procedure of the second step-2 is not particularly limited. For example, the halide (4) obtained in the first step is added dropwise to the reaction solution containing the dithiol (2) salt obtained in the second step-1. Can be done in a way.
The reaction temperature in the second step-2 varies depending on the type of dithiol (2), base, solvent and halide (4) obtained in the first step used in the second step-1, but is generally 0-100 ° C. Is preferable, and a range of 10 to 80 ° C. is more preferable.
The pressure in the second step-2 varies depending on the type of dithiol (2), base, solvent and halide (4) obtained in the first step used in the second step-1, but can be carried out under any pressure. It is preferable to carry out under normal pressure.
The reaction time of the second step-2 is preferably in the range of 0.1 to 10 hours after the addition of the halide (4) obtained in the first step, and more preferably in the range of 0.5 to 5 hours. preferable. In particular, when sodium hydride is used as the base, it is preferably in the range of 0.1 to 8 hours, preferably in the range of 0.5 to 4 hours after the addition of the halide (4) obtained in the first step. Is more preferable. If it is this range, the conversion rate of the halide (4) obtained at the 1st process will become 98% or more normally.
 第2工程-2では目的のアルコール(5)と共に、エステル(6)が副生する。該エステル(6)は、ガスクロマトグラフィーで分析した場合、概ね、アルコール(5):エステル(6)=10:90~70:30(面積比)の割合で副生する。 In the second step-2, the ester (6) is by-produced together with the target alcohol (5). When the ester (6) is analyzed by gas chromatography, it is generally produced as a by-product in a ratio of alcohol (5): ester (6) = 10: 90 to 70:30 (area ratio).
(第2工程-3)
 第2工程-3は、第2工程-2の反応終了後に、適宜、副生するエステル(6)を加水分解して目的のアルコール(5)の収率を向上させる工程である。第2工程-3は、第2工程-2で得られた反応液に水またはアルカリ水を添加し、攪拌することによって行なう。
(Second step-3)
The second step-3 is a step of improving the yield of the target alcohol (5) by appropriately hydrolyzing the by-produced ester (6) after completion of the reaction of the second step-2. The second step-3 is performed by adding water or alkaline water to the reaction solution obtained in the second step-2 and stirring.
 第2工程-1で使用する塩基のモル数が第2工程-2で使用するハロゲン化物のモル数を超えることが多いために、第2工程-3で水を使用する場合、水が添加された液のpHは概ね10~14(アルカリ性)の範囲であり、より多くは11~13の範囲を示す。使用する水の量は、副生するエステル(6)を加水分解するのに必要な理論量だけでなく、後処理工程を考慮して、第2工程-2の全液の質量に対して0.1~5質量倍の範囲であるのが好ましく、0.1~1質量倍の範囲であるのがより好ましい。 Since the number of moles of the base used in the second step-1 often exceeds the number of moles of the halide used in the second step-2, when water is used in the second step-3, water is added. The pH of the solution is generally in the range of 10-14 (alkaline), more often in the range of 11-13. The amount of water used is 0 with respect to the total liquid mass in the second step-2, considering not only the theoretical amount necessary to hydrolyze the by-produced ester (6) but also the post-treatment step. The range is preferably 1 to 5 times by mass, more preferably 0.1 to 1 times by mass.
 また、アルカリ水を使用する場合、該アルカリ水中の塩基性物質としては無機塩が好ましく、無機塩としては、例えば水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物;炭酸ナトリウム、炭酸カリウムなどのアルカリ金属炭酸塩;炭酸水素ナトリウム、炭酸水素カリウムなどのアルカリ金属炭酸水素塩などが挙げられる。
 塩基性物質の使用量は、経済性および後処理の容易さの観点から、エステル(6)1モルに対して0.1~5モルの範囲であるのが好ましく、0.5~3モルの範囲であるのがより好ましい。また、アルカリ水の濃度に特に制限はなく、通常、0.01~20質量%の範囲のものが使用できる。
 なお、第2工程-3で水を添加した後、必要に応じて、アルカリ水をまたは単に塩基性物質を追加する方法を採ることも可能である。
When alkaline water is used, the basic substance in the alkaline water is preferably an inorganic salt. Examples of the inorganic salt include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; sodium carbonate and potassium carbonate. Alkali metal carbonates such as sodium hydrogen carbonate and potassium hydrogen carbonate.
The amount of the basic substance used is preferably in the range of 0.1 to 5 moles, preferably 0.5 to 3 moles per mole of ester (6), from the viewpoints of economy and ease of post-treatment. A range is more preferable. Further, the concentration of the alkaline water is not particularly limited, and usually a range of 0.01 to 20% by mass can be used.
In addition, after adding water in the second step-3, it is possible to adopt a method of adding alkaline water or simply adding a basic substance as necessary.
 第2工程-3で水またはアルカリ水を添加するときの温度は、0~100℃の範囲であるのが好ましく、10~80℃の範囲であるのがより好ましく、20~50℃の範囲であるのがさらに好ましい。また、水またはアルカリ水を添加した後の混合最中における温度は、特に制限はないが、20~100℃の範囲が好ましく、反応時間を短縮できる観点から50~100℃がより好ましい。
 第2工程-3の圧力は、第2工程-1で使用したジチオール(2)、塩基、溶媒および第1工程で得たハロゲン化物(4)の種類などによって異なるが、任意の圧力下で実施可能であり、常圧下で実施するのが好ましい。
 第2工程-3の反応時間に特に制限はないが、アルコール(5)とエステル(6)の経時変化をガスクロマトグラフィーなどで追跡し、アルコール(5)の収率が上がらなくなった時点で混合をやめることが望ましい。この時点を越えて混合を継続してもよいが、アルコール(5)の収率が徐々に低下する傾向にある。このアルコール(5)の収率が最高点となるとき、ガスクロマトグラフィーで分析すると、アルコール(5)とエステル(6)との比は、概ね、アルコール(5):エステル(6)=70:30~99:1(面積比)の範囲である。
The temperature when water or alkaline water is added in the second step-3 is preferably in the range of 0 to 100 ° C., more preferably in the range of 10 to 80 ° C., and in the range of 20 to 50 ° C. More preferably. The temperature during mixing after adding water or alkaline water is not particularly limited, but is preferably in the range of 20 to 100 ° C., and more preferably 50 to 100 ° C. from the viewpoint of shortening the reaction time.
The pressure in the second step-3 varies depending on the dithiol (2) used in the second step-1, the base, the solvent and the type of the halide (4) obtained in the first step. It is possible to carry out under normal pressure.
Although there is no particular limitation on the reaction time of the second step-3, the change with time of the alcohol (5) and the ester (6) is traced by gas chromatography or the like, and mixing is performed when the yield of the alcohol (5) is not increased. It is desirable to quit. Mixing may be continued beyond this point, but the yield of alcohol (5) tends to decrease gradually. When the yield of the alcohol (5) reaches the highest point, the ratio of the alcohol (5) to the ester (6) is approximately alcohol (5): ester (6) = 70: It is in the range of 30 to 99: 1 (area ratio).
 第2工程-3の加水分解反応は、過剰な塩基を中和することによって停止することができる。中和剤としては、硫酸、塩酸、リン酸などの鉱酸が挙げられる。これらの酸は、水により適度な濃度に希釈したものを使用してもよい。また、中和するときの目標とするpHは7~8の範囲が好ましい。 The hydrolysis reaction in Step 2-3 can be stopped by neutralizing excess base. Examples of the neutralizing agent include mineral acids such as sulfuric acid, hydrochloric acid, and phosphoric acid. These acids may be diluted to an appropriate concentration with water. The target pH for neutralization is preferably in the range of 7-8.
 第2工程-3の加水分解反応終了した液中の目的とするアルコール(5)は、溶媒抽出、蒸留、カラムクロマトグラフィー、再結晶などの通常の有機化合物の分離精製操作により純度を高めることが可能である。 The target alcohol (5) in the liquid after completion of the hydrolysis reaction in the second step-3 can be increased in purity by ordinary organic compound separation and purification operations such as solvent extraction, distillation, column chromatography, and recrystallization. Is possible.
(第3工程)
 第3工程は、第2工程で得られたアルコール(5)へ重合性基を導入する工程である。
 アルコール(5)へ重合性基を導入する製造方法に特に制限はないが、アルコール(5)と一般式CH2=CR1COX1、一般式(CH2=CR1CO)2O、一般式CH2=CR1COOC(=O)R14、または一般式CH2=CR1COOSO215で示される化合物(以下、これらの化合物を重合性基導入剤と称する。)を塩基性物質の存在下に反応させることにより行なう。
 上記重合性基導入剤において、いずれのR1も、前記したアクリル酸エステル誘導体(1)中のR1と同一であり、好ましい基も同じである。X1は塩素原子、臭素原子またはヨウ素原子を表す。R14はt-ブチル基または2,4,6-トリクロロフェニル基を表す。R15はメチル基またはp-トリル基を表す。
(Third step)
The third step is a step of introducing a polymerizable group into the alcohol (5) obtained in the second step.
Is not particularly limited to the manufacturing method of introducing a polymerizable group into the alcohol (5), the alcohol (5) and the general formula CH 2 = CR 1 COX 1, the general formula (CH 2 = CR 1 CO) 2 O, formula CH 2 = CR 1 COOC (= O) R 14 or the general formula CH 2 = CR 1 COOSO compound represented by 2 R 15, (hereinafter, referred to these compounds and the polymerizable group-introducing agent.) the basic substance The reaction is carried out in the presence.
In the polymerizable group-introducing agent, any of R 1 also the same as R 1 in the acrylic acid ester derivative (1), it is also preferred group same. X 1 represents a chlorine atom, a bromine atom or an iodine atom. R 14 represents a t-butyl group or a 2,4,6-trichlorophenyl group. R 15 represents a methyl group or a p-tolyl group.
 第3工程で使用する、一般式CH2=CR1COX1で示される重合性基導入剤の具体例としては、例えばアクリル酸クロリド、メタクリル酸クロリド、2-トリフルオロメチルアクリル酸クロリドなどが挙げられる。
 一般式(CH2=CR2CO)2Oで示される重合性基導入剤の具体例としては、例えば無水アクリル酸、無水メタクリル酸、無水2-トリフルオロメチルアクリル酸などが挙げられる。
 一般式CH2=CR2COOC(=O)R14で示される重合性基導入剤の具体例としては、例えばアクリル酸ピバリン酸無水物、アクリル酸2,4,6-トリクロロ安息香酸無水物、メタクリル酸ピバリン酸無水物、メタクリル酸2,4,6-トリクロロ安息香酸無水物、2-トリフルオロメチルアクリル酸ピバリン酸無水物、2-トリフルオロメチルアクリル酸2,4,6-トリクロロ安息香酸無水物などが挙げられる。
 一般式CH2=CR2COOSO215で示される重合性基導入剤の具体例としては、例えばアクリル酸メタンスルホン酸無水物、アクリル酸p-トルエンスルホン酸無水物、メタクリル酸メタンスルホン酸無水物、メタクリル酸p-トルエンスルホン酸無水物、2-トリフルオロメチルアクリル酸メタンスルホン酸無水物、2-トリフルオロメチルアクリル酸p-トルエンスルホン酸無水物などが挙げられる。
 こられの中でも、一般式CH2=CR1COX1で示される重合性基導入剤が好ましく、アクリル酸クロリド、メタクリル酸クロリドがより好ましい。
 重合性基導入剤の使用量は、経済性および後処理の容易さの観点から、アルコール(5)1モルに対して0.8~5モルの範囲であるのが好ましく、0.8~3モルの範囲であるのがより好ましい。
Specific examples of the polymerizable group-introducing agent represented by the general formula CH 2 ═CR 1 COX 1 used in the third step include acrylic acid chloride, methacrylic acid chloride, 2-trifluoromethylacrylic acid chloride and the like. It is done.
Specific examples of the polymerizable group-introducing agent represented by the general formula (CH 2 ═CR 2 CO) 2 O include acrylic acid anhydride, methacrylic acid anhydride, and anhydrous 2-trifluoromethyl acrylic acid.
Specific examples of the polymerizable group-introducing agent represented by the general formula CH 2 ═CR 2 COOC (═O) R 14 include, for example, acrylic acid pivalic acid anhydride, acrylic acid 2,4,6-trichlorobenzoic acid anhydride, Methacrylic acid pivalic anhydride, methacrylic acid 2,4,6-trichlorobenzoic anhydride, 2-trifluoromethylacrylic acid pivalic anhydride, 2-trifluoromethylacrylic acid 2,4,6-trichlorobenzoic anhydride Such as things.
Specific examples of the polymerizable group-introducing agent represented by the general formula CH 2 = CR 2 COOSO 2 R 15 include acrylic acid methanesulfonic acid anhydride, acrylic acid p-toluenesulfonic acid anhydride, and methacrylic acid methanesulfonic acid anhydride. Methacrylic acid p-toluenesulfonic acid anhydride, 2-trifluoromethylacrylic acid methanesulfonic acid anhydride, 2-trifluoromethylacrylic acid p-toluenesulfonic acid anhydride, and the like.
Among these, the polymerizable group introducing agent represented by the general formula CH 2 = CR 1 COX 1 is preferable, and acrylic acid chloride and methacrylic acid chloride are more preferable.
The amount of the polymerizable group-introducing agent used is preferably in the range of 0.8 to 5 moles relative to 1 mole of the alcohol (5), from the viewpoint of economy and ease of post-treatment, and 0.8 to 3 More preferred is the molar range.
 第3工程で使用する塩基性物質としては、無機塩基、有機塩基のいずれも使用できる。無機塩基としては、例えば水素化ナトリウム、水素化カリウムなどのアルカリ金属水素化物;水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物;炭酸ナトリウム、炭酸カリウムなどのアルカリ金属炭酸塩などが挙げられる。有機塩基としては、例えばトリエチルアミン、トリブチルアミン、N,N-ジメチルアニリン、ジアザビシクロ[2.2.2]オクタンなどの第三級アミン;ピリジン、4-(N,N-ジメチルアミノ)ピリジンなどの含窒素複素環式芳香族化合物などが挙げられる。これらは1種を単独でまたは2種以上を混合して使用してもよい。これらの中でも第三級アミンが好ましい。
 塩基性物質の使用量は、経済性および後処理の観点から、アルコール(5)1モルに対して0.8~5モルの範囲であるのが好ましく、0.8~3モルの範囲であるのがより好ましい。
As the basic substance used in the third step, either an inorganic base or an organic base can be used. Examples of the inorganic base include alkali metal hydrides such as sodium hydride and potassium hydride; alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; alkali metal carbonates such as sodium carbonate and potassium carbonate. . Examples of the organic base include tertiary amines such as triethylamine, tributylamine, N, N-dimethylaniline and diazabicyclo [2.2.2] octane; pyridine, 4- (N, N-dimethylamino) pyridine and the like. Examples thereof include nitrogen heteroaromatic compounds. You may use these individually by 1 type or in mixture of 2 or more types. Of these, tertiary amines are preferred.
The amount of the basic substance used is preferably in the range of 0.8 to 5 mol, more preferably in the range of 0.8 to 3 mol with respect to 1 mol of the alcohol (5), from the viewpoints of economy and post-treatment. Is more preferable.
 第3工程は、溶媒の存在下または非存在下で実施することができる。溶媒としては、反応に悪影響を与えない限り特に制限はなく、例えばジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフランなどのエーテル;ヘキサン、ヘプタン、オクタンなどの脂肪族炭化水素;塩化メチレン、1,2-ジクロロエタンなどのハロゲン化炭化水素;トルエン、キシレン、シメンなどの芳香族炭化水素;N,N-ジメチルホルムアミド;ジメチルスルホキシドなどが挙げられる。これらは1種を単独でまたは2種以上を混合して使用してもよい。
 溶媒を使用する場合、その使用量に特に制限はないが、アルコール(5)1質量部に対して、通常、0.1~20質量部の範囲であるのが好ましく、0.1~10質量部の範囲であるのがより好ましい。
The third step can be performed in the presence or absence of a solvent. The solvent is not particularly limited as long as it does not adversely influence the reaction. For example, ethers such as diethyl ether, diisopropyl ether and tetrahydrofuran; aliphatic hydrocarbons such as hexane, heptane and octane; methylene chloride, 1,2-dichloroethane and the like Halogenated hydrocarbons; aromatic hydrocarbons such as toluene, xylene, and cymene; N, N-dimethylformamide; dimethyl sulfoxide and the like. You may use these individually by 1 type or in mixture of 2 or more types.
When a solvent is used, the amount used is not particularly limited, but it is usually preferably in the range of 0.1 to 20 parts by weight, preferably 0.1 to 10 parts by weight with respect to 1 part by weight of the alcohol (5). More preferred is the range of parts.
 第3工程は、-80~100℃の範囲で実施するのが好ましく、-50~80℃の範囲で実施するのがより好ましく、-20~40℃で実施するのがさらに好ましい。また、反応時間は、アルコール(5)や重合性基導入剤の種類および使用量、塩基性物質の種類および使用量、溶媒の種類および使用量、反応温度などによって異なるが、通常、10分~10時間の範囲である。 The third step is preferably performed in the range of −80 to 100 ° C., more preferably in the range of −50 to 80 ° C., and further preferably performed at −20 to 40 ° C. The reaction time varies depending on the type and amount of the alcohol (5) and the polymerizable group introducing agent, the type and amount of the basic substance, the type and amount of the solvent, the reaction temperature, etc. The range is 10 hours.
 第3工程では、水および/またはアルコールを添加することにより、反応を停止することができる。かかるアルコールとしては、例えばメタノール、エタノール、n-プロパノール、i-プロパノールなどが挙げられる。
 水および/またはアルコールの使用量は、未反応の重合性基導入剤を完全に分解し、副生成物を抑制する観点から、重合性基導入剤のアルコール(5)に対する過剰量1モルに対して1モル以上用いるのが好ましい。
In the third step, the reaction can be stopped by adding water and / or alcohol. Examples of such alcohol include methanol, ethanol, n-propanol, i-propanol and the like.
From the viewpoint of completely decomposing the unreacted polymerizable group-introducing agent and suppressing by-products, the amount of water and / or alcohol used is 1 mol of excess of the polymerizable group-introducing agent relative to the alcohol (5). It is preferable to use 1 mol or more.
 このような第3工程を経て得られたアクリル酸エステル誘導体(1)は、必要に応じて常法により分離精製するのが好ましい。例えば、反応混合物を水洗した後、濃縮し、蒸留、カラムクロマトグラフィーまたは再結晶などの通常の有機化合物の分離精製に用いられる方法により純度を高めることができる。
 また、必要に応じて、ニトリロ三酢酸、エチレンジアミン四酢酸などでのキレート剤処理、またはゼータプラス(商品名:キュノ株式会社製)やプロテゴ(製品名:日本マイクロリス株式会社製)などでの金属除去フィルター処理により、得られたアクリル酸エステル誘導体(1)中の金属含有量を減少させることも可能である。
The acrylic ester derivative (1) obtained through the third step is preferably separated and purified by a conventional method as necessary. For example, the reaction mixture can be washed with water, concentrated, and the purity can be increased by a method used for separation and purification of ordinary organic compounds such as distillation, column chromatography, or recrystallization.
In addition, if necessary, metal in nitrilotriacetic acid, ethylenediaminetetraacetic acid treatment with chelating agent, zeta plus (trade name: manufactured by Cuno Co., Ltd.) or protego (product name: manufactured by Nihon Microlith Co., Ltd.) It is also possible to reduce the metal content in the obtained acrylic ester derivative (1) by the removal filter treatment.
[高分子化合物(8)]
 少なくともアクリル酸エステル誘導体(1)を含有する原料を重合して高分子化合物(8)とすることにより、フォトレジスト組成物の成分として使用することができる。
 高分子化合物(8)は、アクリル酸エステル誘導体(1)を単独で重合してなる重合体またはアクリル酸エステル誘導体(1)と他の重合性化合物とを共重合してなる共重合体であり、アクリル酸エステル誘導体(1)に基づく構成単位を有していればよい。通常、高分子化合物(8)中におけるアクリル酸エステル誘導体(1)に基づく構成単位の含有割合に特に制限は無いが、後述するフォトレジスト組成物の現像液に対する溶解性、熱安定性およびLWRの低減の観点から、10~90モル%の範囲であるのが好ましく、20~80モル%の範囲であるのがより好ましい。アクリル酸エステル誘導体(1)に基づく構成単位の具体例としては、下記式(1’-a)~(1’-x)で示されるものが挙げられるが、これらに限定されるものではない。
[Polymer Compound (8)]
By polymerizing a raw material containing at least the acrylic ester derivative (1) to obtain a polymer compound (8), it can be used as a component of a photoresist composition.
The polymer compound (8) is a polymer obtained by polymerizing the acrylic ester derivative (1) alone or a copolymer obtained by copolymerizing the acrylic ester derivative (1) and another polymerizable compound. And a structural unit based on the acrylate derivative (1). Usually, the content ratio of the structural unit based on the acrylate derivative (1) in the polymer compound (8) is not particularly limited. From the viewpoint of reduction, it is preferably in the range of 10 to 90 mol%, more preferably in the range of 20 to 80 mol%. Specific examples of the structural unit based on the acrylate derivative (1) include those represented by the following formulas (1′-a) to (1′-x), but are not limited thereto.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 アクリル酸エステル誘導体(1)と共重合させることができる他の原料、つまり他の重合性化合物[以下、共重合単量体(7)と称する。]の具体例としては、例えば下記の化学式で示される化合物(I)~(IX) Other raw materials that can be copolymerized with the acrylate derivative (1), that is, other polymerizable compounds [hereinafter referred to as copolymerizable monomer (7). Specific examples of the compound (I) to (IX) represented by the following chemical formulas
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
(式中、R16は水素原子または炭素数1~3のアルキル基を表し、R17は重合性基を表す。R18は水素原子または-COOR19を表し、R19は炭素数1~3のアルキル基を表す。また、R20はアルキル基を表すか、または環を形成する炭素原子が酸素原子で置換されていてもよいシクロアルキル基を表す。)
などが挙げられるが、特にこれらに限定されるものではない。
 共重合単量体(7)において、R16およびR19がそれぞれ独立して表す炭素数1~3のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基が挙げられる。R20が表すアルキル基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基などの炭素数1~8のアルキル基などが挙げられる。R20が表す環を形成する炭素原子が酸素原子で置換されていてもよいシクロアルキル基としては、シクロペンチル基、シクロヘキシル基、1-メチルシクロヘキシル基、シクロオクチル基、テトラヒドロピラン-2-イル基、4-メチルテトラヒドロピラン-4-イル基などが挙げられる。また、R17が表す重合性基としては、例えばアクリロイル基、メタアクリロイル基、2-トリフルオロメチルアクリロイル基、ビニル基、クロトノイル基などが挙げられる。
 なお、R16としては、水素原子、メチル基、エチル基、イソプロピル基が好ましい。R17としてはアクリロイル基、メタアクリロイル基が好ましい。R18としては、水素原子が好ましい。R20としては、炭素数1~8のアルキル基が好ましい。
 アクリル酸エステル誘導体(1)と共重合させることができる他の重合性化合物としては、上記化合物(I)、(II)、(IV)、(V)、(VI)、(IX)が好ましく、(II)、(IV)、(VI)がより好ましい。
(Wherein R 16 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, R 17 represents a polymerizable group, R 18 represents a hydrogen atom or —COOR 19 , and R 19 represents 1 to 3 carbon atoms) And R 20 represents an alkyl group or a cycloalkyl group in which the carbon atoms forming the ring may be substituted with oxygen atoms.)
However, it is not particularly limited to these.
In the comonomer (7), examples of the alkyl group having 1 to 3 carbon atoms independently represented by R 16 and R 19 include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group. Examples of the alkyl group represented by R 20 include alkyl having 1 to 8 carbon atoms such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, and t-butyl. Group and the like. Examples of the cycloalkyl group in which the carbon atom forming the ring represented by R 20 may be substituted with an oxygen atom include a cyclopentyl group, a cyclohexyl group, a 1-methylcyclohexyl group, a cyclooctyl group, a tetrahydropyran-2-yl group, And 4-methyltetrahydropyran-4-yl group. Examples of the polymerizable group represented by R 17 include an acryloyl group, a methacryloyl group, a 2-trifluoromethylacryloyl group, a vinyl group, and a crotonoyl group.
R 16 is preferably a hydrogen atom, a methyl group, an ethyl group, or an isopropyl group. R 17 is preferably an acryloyl group or a methacryloyl group. R 18 is preferably a hydrogen atom. R 20 is preferably an alkyl group having 1 to 8 carbon atoms.
As the other polymerizable compound that can be copolymerized with the acrylate derivative (1), the above compounds (I), (II), (IV), (V), (VI), (IX) are preferable, (II), (IV), and (VI) are more preferable.
(高分子化合物(8)の製造方法)
 高分子化合物(8)は、常法に従って、ラジカル重合により製造することができる。特に、分子量分布が小さい高分子化合物を合成する方法としては、リビングラジカル重合などを挙げることができる。一般的なラジカル重合方法は、必要に応じて1種類以上のアクリル酸エステル誘導体(1)および必要に応じて1種類以上の上記共重合単量体(7)を、ラジカル重合開始剤および溶媒、並びに必要に応じて連鎖移動剤の存在下に重合させる。
 以下、かかるラジカル重合方法について説明する。
(Method for producing polymer compound (8))
The polymer compound (8) can be produced by radical polymerization according to a conventional method. In particular, a method for synthesizing a polymer compound having a small molecular weight distribution includes living radical polymerization. A general radical polymerization method includes, as necessary, one or more kinds of acrylic acid ester derivatives (1) and, if necessary, one or more kinds of the above copolymerizable monomers (7), a radical polymerization initiator and a solvent, In addition, the polymerization is carried out in the presence of a chain transfer agent as required.
Hereinafter, this radical polymerization method will be described.
 ラジカル重合の実施方法には特に制限はなく、溶液重合法、乳化重合法、懸濁重合法、塊状重合法など、例えばアクリル系の高分子化合物を製造する際に用いる慣用の方法を使用できる。
 ラジカル重合開始剤としては、例えばt-ブチルヒドロペルオキシド、クメンヒドロペルオキシドなどのヒドロペルオキシド化合物;ジ-t-ブチルペルオキシド、t-ブチル-α-クミルペルオキシド、ジ-α-クミルペルオキシドなどのジアルキルペルオキシド化合物;ベンゾイルペルオキシド、ジイソブチリルペルオキシドなどのジアシルペルオキシド化合物;2,2’-アゾビスイソブチロニトリル、ジメチル-2,2’-アゾビスイソブチレートなどのアゾ化合物などが挙げられる。
 ラジカル重合開始剤の使用量は、重合反応に用いるアクリル酸エステル誘導体(1)、共重合単量体(7)、連鎖移動剤、溶媒の種類および使用量;重合温度などの重合条件に応じて適宜選択できるが、全重合性化合物[アクリル酸エステル誘導体(1)と共重合単量体(7)の合計量を指し、以下同様である。]1モルに対して、通常、0.005~0.2モルの範囲であるのが好ましく、0.01~0.15モルの範囲であるのがより好ましい。
The method for carrying out radical polymerization is not particularly limited, and conventional methods such as those used in the production of acrylic polymer compounds such as solution polymerization, emulsion polymerization, suspension polymerization and bulk polymerization can be used.
Examples of radical polymerization initiators include hydroperoxide compounds such as t-butyl hydroperoxide and cumene hydroperoxide; dialkyl such as di-t-butyl peroxide, t-butyl-α-cumyl peroxide, and di-α-cumyl peroxide. Peroxide compounds; diacyl peroxide compounds such as benzoyl peroxide and diisobutyryl peroxide; and azo compounds such as 2,2′-azobisisobutyronitrile and dimethyl-2,2′-azobisisobutyrate.
The amount of the radical polymerization initiator used depends on the polymerization conditions such as the acrylic ester derivative (1), the comonomer (7), the chain transfer agent and the solvent used in the polymerization reaction; the polymerization temperature and the like. Although it can select suitably, it points out the total amount of all the polymerizable compounds [Acrylic ester derivative (1) and a comonomer (7), and so on. In general, it is preferably in the range of 0.005 to 0.2 mol, more preferably in the range of 0.01 to 0.15 mol with respect to 1 mol.
 連鎖移動剤としては、例えばドデカンチオール、メルカプトエタノール、メルカプトプロパノール、メルカプト酢酸、メルカプトプロピオン酸などのチオール化合物が挙げられる。これらは1種を単独でまたは2種以上を混合して使用してもよい。
 連鎖移動剤を使用する場合、その使用量は、全重合性化合物1モルに対して、通常、0.005~0.2モルの範囲であり、0.01~0.15モルの範囲であるのが好ましい。
Examples of the chain transfer agent include thiol compounds such as dodecanethiol, mercaptoethanol, mercaptopropanol, mercaptoacetic acid, and mercaptopropionic acid. You may use these individually by 1 type or in mixture of 2 or more types.
When a chain transfer agent is used, the amount used is usually in the range of 0.005 to 0.2 mol and in the range of 0.01 to 0.15 mol with respect to 1 mol of all polymerizable compounds. Is preferred.
 ラジカル重合は、通常、溶媒の存在下に実施する。溶媒としては、重合反応を阻害しなければ特に制限はなく、例えばプロピレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノメチルエーテルプロピオネート、エチレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールジメチルエーテルなどのグリコールエーテル;乳酸エチル、3-メトキシプロピオン酸メチル、酢酸メチル、酢酸エチル、酢酸プロピルなどのエステル;アセトン、メチルエチルケトン、メチルイソプロピルケトン、メチルイソブチルケトン、メチルアミルケトン、シクロペンタノン、シクロヘキサノンなどのケトン;ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、1,4-ジオキサンなどのエーテルなどが挙げられる。これらは1種を単独でまたは2種以上を混合して使用してもよい。
 溶媒の使用量は、全重合性化合物1質量部に対して、通常、0.5~20質量部の範囲であり、経済性の観点からは、1~10質量部の範囲であるのが好ましい。
The radical polymerization is usually carried out in the presence of a solvent. The solvent is not particularly limited as long as the polymerization reaction is not inhibited. For example, propylene glycol monoethyl ether, propylene glycol monomethyl ether acetate, ethylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monomethyl ether propionate, ethylene glycol Glycol ethers such as monobutyl ether, ethylene glycol monobutyl ether acetate, diethylene glycol dimethyl ether; esters such as ethyl lactate, methyl 3-methoxypropionate, methyl acetate, ethyl acetate, propyl acetate; acetone, methyl ethyl ketone, methyl isopropyl ketone, methyl isobutyl ketone, Methyl amyl ketone, cyclopentanone, cyclohexanone What ketone diethyl ether, diisopropyl ether, dibutyl ether, tetrahydrofuran, ethers such as 1,4-dioxane. You may use these individually by 1 type or in mixture of 2 or more types.
The amount of the solvent used is usually in the range of 0.5 to 20 parts by mass with respect to 1 part by mass of the total polymerizable compound, and is preferably in the range of 1 to 10 parts by mass from the viewpoint of economy. .
 ラジカル重合の反応温度は、通常、40~150℃であるのが好ましく、生成する高分子化合物(8)の安定性の観点から、60~120℃の範囲であるのがより好ましい。
 ラジカル重合の反応時間は、アクリル酸エステル誘導体(1)、共重合単量体(7)、重合開始剤、溶媒の種類および使用量や、反応温度などの重合条件により異なるが、通常、30分~48時間の範囲であるのが好ましく、1時間~24時間の範囲であるのがより好ましい。
The reaction temperature for radical polymerization is usually preferably from 40 to 150 ° C., and more preferably from 60 to 120 ° C. from the viewpoint of the stability of the resulting polymer compound (8).
The reaction time for radical polymerization varies depending on the acrylic ester derivative (1), the comonomer (7), the polymerization initiator, the type and amount of the solvent used, and the polymerization conditions such as the reaction temperature. It is preferably in the range of ˜48 hours, and more preferably in the range of 1 hour to 24 hours.
 こうして得られる高分子化合物(8)は、再沈殿などの通常の操作により単離可能である。
 上記再沈殿の操作で用いる溶媒としては、例えばペンタン、ヘキサンなどの脂肪族炭化水素;シクロヘキサンなどの脂環式炭化水素;ベンゼン、キシレンなどの芳香族炭化水素;塩化メチレン、クロロホルム、クロロベンゼン、ジクロロベンゼンなどのハロゲン化炭化水素;ニトロメタンなどのニトロ化炭化水素;アセトニトリル、ベンゾニトリルなどのニトリル;ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、1,4-ジオキサンなどのエーテル;アセトン、メチルエチルケトンなどのケトン;酢酸などのカルボン酸;酢酸エチル、酢酸ブチルなどのエステル;ジメチルカーボネート、ジエチルカーボネート、エチレンカーボネートなどのカーボネート;メタノール、エタノール、プロパノール、イソプロピルアルコール、ブタノールなどのアルコール;水が挙げられる。これらは1種を単独でまたは2種以上を混合して使用してもよい。
 溶媒の使用量は、高分子化合物(8)の種類、溶媒の種類により異なるが、通常、高分子化合物(8)1質量部に対して0.5~100質量部の範囲であるのが好ましく、経済性の観点からは、1~50質量部の範囲であるのがより好ましい。
 こうして単離した高分子化合物は、真空乾燥などにより乾燥させることもできる。
The polymer compound (8) thus obtained can be isolated by ordinary operations such as reprecipitation.
Examples of the solvent used in the reprecipitation operation include aliphatic hydrocarbons such as pentane and hexane; alicyclic hydrocarbons such as cyclohexane; aromatic hydrocarbons such as benzene and xylene; methylene chloride, chloroform, chlorobenzene, and dichlorobenzene. Nitrogenated hydrocarbons such as nitromethane; Nitriles such as acetonitrile and benzonitrile; Ethers such as diethyl ether, diisopropyl ether, tetrahydrofuran and 1,4-dioxane; Ketones such as acetone and methyl ethyl ketone; Acetic acid and the like Carboxylic acid; Esters such as ethyl acetate and butyl acetate; Carbonates such as dimethyl carbonate, diethyl carbonate, and ethylene carbonate; Methanol, ethanol, propanol, isopropyl alcohol Include water; le, alcohols such as butanol. You may use these individually by 1 type or in mixture of 2 or more types.
The amount of the solvent used varies depending on the kind of the polymer compound (8) and the kind of the solvent, but usually it is preferably in the range of 0.5 to 100 parts by mass with respect to 1 part by mass of the polymer compound (8). From the viewpoint of economy, it is more preferably in the range of 1 to 50 parts by mass.
The polymer compound isolated in this way can also be dried by vacuum drying or the like.
 上記方法などにより得られる高分子化合物(8)の具体例としては、例えば下記化学構造式(8-1)から(8-96)で示される高分子化合物(式中、R21からR35は、それぞれ独立して水素原子、メチル基またはトリフルオロメチル基を示す。また、a、b、c、dおよびeは、それぞれの繰り返し単位のモル比を表し、a+b=1、およびc+d+e=1である。)などが挙げられるが、特にこれらに限定されるものではない。 Specific examples of the polymer compound (8) obtained by the above method include polymer compounds represented by the following chemical structural formulas (8-1) to (8-96) (wherein R 21 to R 35 are Each independently represents a hydrogen atom, a methyl group or a trifluoromethyl group, and a, b, c, d and e represent the molar ratios of the respective repeating units, and a + b = 1 and c + d + e = 1. Are not limited to these.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 高分子化合物(8)の重量平均分子量(Mw)は特に制限は無いが、好ましくは500~50000の範囲、より好ましくは1000~30000の範囲であると、後述するフォトレジスト組成物の成分としての有用性が高い。かかる重量平均分子量(Mw)の測定は実施例に記載の通りである。 The weight average molecular weight (Mw) of the polymer compound (8) is not particularly limited, but is preferably in the range of 500 to 50000, more preferably in the range of 1000 to 30000. Highly useful. The measurement of the weight average molecular weight (Mw) is as described in Examples.
[フォトレジスト組成物(9)]
 高分子化合物(8)と、後述の溶剤および光酸発生剤、並びに必要に応じて塩基性化合物、界面活性剤およびその他の添加物を配合することにより、フォトレジスト組成物を調製することができる。
 以下、高分子化合物(8)を配合したフォトレジスト組成物[以下、フォトレジスト組成物(9)と称する。]について説明する。
[Photoresist composition (9)]
A photoresist composition can be prepared by blending the polymer compound (8), a solvent and a photoacid generator described later, and a basic compound, a surfactant and other additives as required. .
Hereinafter, a photoresist composition containing the polymer compound (8) [hereinafter referred to as a photoresist composition (9)]. ] Will be described.
(溶剤)
 フォトレジスト組成物(9)に配合する溶剤としては、例えばプロピレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノメチルエーテルプロピオネート、エチレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールジメチルエーテルなどのグリコールエーテル;乳酸エチル、3-メトキシプロピオン酸メチル、酢酸メチル、酢酸エチル、酢酸プロピルなどのエステル;アセトン、メチルエチルケトン、メチルイソプロピルケトン、メチルイソブチルケトン、メチルアミルケトン、シクロペンタノン、シクロヘキサノンなどのケトン;ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、1,4-ジオキサンなどのエーテルなどが挙げられる。これらは1種を単独でまたは2種以上を混合して使用してもよい。
 溶剤の配合量は、高分子化合物(8)1質量部に対して、通常、1~50質量部の範囲であり、2~25質量部の範囲であるのが好ましい。
(solvent)
Examples of the solvent to be blended in the photoresist composition (9) include propylene glycol monoethyl ether, propylene glycol monomethyl ether acetate, ethylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monomethyl ether propionate, and ethylene glycol monobutyl ether. Glycol ethers such as ethylene glycol monobutyl ether acetate and diethylene glycol dimethyl ether; esters such as ethyl lactate, methyl 3-methoxypropionate, methyl acetate, ethyl acetate, propyl acetate; acetone, methyl ethyl ketone, methyl isopropyl ketone, methyl isobutyl ketone, methyl amyl Ketone, cyclopentanone, cyclohexanone, etc. Ketones; diethyl ether, diisopropyl ether, dibutyl ether, tetrahydrofuran, ethers such as 1,4-dioxane. You may use these individually by 1 type or in mixture of 2 or more types.
The compounding amount of the solvent is usually in the range of 1 to 50 parts by mass, preferably in the range of 2 to 25 parts by mass with respect to 1 part by mass of the polymer compound (8).
(光酸発生剤)
 光酸発生剤としては特に制限は無く、従来、化学増幅型レジストに通常用いられる光酸発生剤を用いることができる。該光酸発生剤としては、例えばp-トルエンスルホン酸2-ニトロベンジル、p-トルエンスルホン酸2,6-ジニトロベンジル、p-トルエンスルホン酸2,4-ジニトロベンジルなどのニトロベンジル誘導体;1,2,3-トリス(メタンスルホニルオキシ)ベンゼン、1,2,3-トリス(トリフルオロメタンスルホニルオキシ)ベンゼン、1,2,3-トリス(p-トルエンスルホニルオキシ)ベンゼンなどのスルホン酸エステル;ビス(ベンゼンスルホニル)ジアゾメタン、ビス(p-トルエンスルホニル)ジアゾメタン、ビス(2,4-ジメチルフェニルスルホニル)ジアゾメタン、ビス(1,1-ジメチルエチルスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(n-ブチルスルホニル)ジアゾメタンなどのジアゾメタン誘導体;トリフルオロメタンスルホン酸トリフェニルスルホニウム、ノナフルオロ-n-ブタンスルホン酸トリフェニルスルホニウム、トリフルオロメタンスルホン酸(p-tert-ブトキシフェニル)ジフェニルスルホニウム、トリフルオロメタンスルホン酸トリス(p-tert-ブトキシフェニル)スルホニウム、p-トルエンスルホン酸トリフェニルスルホニウム、p-トルエンスルホン酸(p-tert-ブトキシフェニル)ジフェニルスルホニウム、p-トルエンスルホン酸トリス(p-tert-ブトキシフェニル)スルホニウム、トリフルオロメタンスルホン酸トリナフチルスルホニウム、トリフルオロメタンスルホン酸シクロヘキシルメチル(2-オキソシクロヘキシル)スルホニウム、トリフルオロメタンスルホン酸(2-ノルボルニル)メチル(2-オキソシクロヘキシル)スルホニウム、1,2’-ナフチルカルボニルメチルテトラヒドロチオフェニウムトリフレートなどのオニウム塩;ビス-O-(p-トルエンスルホニル)-α-ジメチルグリオキシム、ビス-O-(n-ブタンスルホニル)-α-ジメチルグリオキシムなどのグリオキシム誘導体;N-ヒドロキシスクシンイミドメタンスルホン酸エステル、N-ヒドロキシスクシンイミドトリフルオロメタンスルホン酸エステル、N-ヒドロキシスクシンイミド1-プロパンスルホン酸エステル、N-ヒドロキシイミドp-トルエンスルホン酸エステル、N-ヒドロキシナフタルイミドメタンスルホン酸エステル、N-ヒドロキシナフタルイミドベンゼンスルホン酸エステルなどのN-ヒドロキシイミド化合物のスルホン酸エステル誘導体;2-(4-メトキシフェニル)-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-(4-メトキシナフチル)-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-[2-(2-フリル)エテニル]-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-[2-(5-メチル-2-フリル)エテニル]-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-[2-(3,5-ジメトキシフェニル)エテニル]-4,6-ビス(トリクロロメチル)-1,3,5-トリアジンなどのハロゲン含有トリアジン化合物などが挙げられる。これらは1種を単独でまたは2種以上を混合して使用してもよい。
 光酸発生剤の配合量は、フォトレジスト組成物(9)の感度および現像性を確保する観点から、前記高分子化合物(8)100質量部に対して、通常、0.1~30質量部の範囲であるのが好ましく、0.5~10質量部の範囲であるのがより好ましい。
(Photoacid generator)
There is no restriction | limiting in particular as a photo-acid generator, The photo-acid generator conventionally used for the chemically amplified resist can be used conventionally. Examples of the photoacid generator include nitrobenzyl derivatives such as 2-nitrobenzyl p-toluenesulfonate, 2,6-dinitrobenzyl p-toluenesulfonate, and 2,4-dinitrobenzyl p-toluenesulfonate; Sulfonic acid esters such as 2,3-tris (methanesulfonyloxy) benzene, 1,2,3-tris (trifluoromethanesulfonyloxy) benzene, 1,2,3-tris (p-toluenesulfonyloxy) benzene; bis ( Benzenesulfonyl) diazomethane, bis (p-toluenesulfonyl) diazomethane, bis (2,4-dimethylphenylsulfonyl) diazomethane, bis (1,1-dimethylethylsulfonyl) diazomethane, bis (cyclohexylsulfonyl) diazomethane, bis (n-butyl) Sulfonyl) di Diazomethane derivatives such as zomethane; triphenylsulfonium trifluoromethanesulfonate, triphenylsulfonium nonafluoro-n-butanesulfonate, trifluoromethanesulfonic acid (p-tert-butoxyphenyl) diphenylsulfonium, tris (trifluoromethanesulfonate) Butoxyphenyl) sulfonium, p-toluenesulfonic acid triphenylsulfonium, p-toluenesulfonic acid (p-tert-butoxyphenyl) diphenylsulfonium, p-toluenesulfonic acid tris (p-tert-butoxyphenyl) sulfonium, trifluoromethanesulfonic acid Trinaphthylsulfonium, cyclohexylmethyl trifluoromethanesulfonate (2-oxocyclohexyl) sulfonium, Onium salts such as (2-norbornyl) methyl (2-oxocyclohexyl) sulfonium trifluoromethanesulfonate, 1,2'-naphthylcarbonylmethyltetrahydrothiophenium triflate; bis-O- (p-toluenesulfonyl) -α -Glyoxime derivatives such as dimethylglyoxime and bis-O- (n-butanesulfonyl) -α-dimethylglyoxime; N-hydroxysuccinimide methanesulfonate, N-hydroxysuccinimide trifluoromethanesulfonate, N-hydroxysuccinimide 1 -Propanesulfonic acid ester, N-hydroxyimide p-toluenesulfonic acid ester, N-hydroxynaphthalimide methanesulfonic acid ester, N-hydroxynaphthalimide benzenesulfonic acid ester Sulfonic acid ester derivatives of N-hydroxyimide compounds such as ter; 2- (4-methoxyphenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-methoxynaphthyl)- 4,6-bis (trichloromethyl) -1,3,5-triazine, 2- [2- (2-furyl) ethenyl] -4,6-bis (trichloromethyl) -1,3,5-triazine, 2 -[2- (5-methyl-2-furyl) ethenyl] -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- [2- (3,5-dimethoxyphenyl) ethenyl]- And halogen-containing triazine compounds such as 4,6-bis (trichloromethyl) -1,3,5-triazine. You may use these individually by 1 type or in mixture of 2 or more types.
The compounding amount of the photoacid generator is usually 0.1 to 30 parts by mass with respect to 100 parts by mass of the polymer compound (8) from the viewpoint of ensuring the sensitivity and developability of the photoresist composition (9). The range is preferably in the range of 0.5 to 10 parts by mass.
(塩基性化合物)
 フォトレジスト組成物(9)には、フォトレジスト膜中における酸の拡散速度を抑制して解像度を向上するために、必要に応じて塩基性化合物をフォトレジスト組成物(9)の特性が阻害されない範囲の量で配合することができる。かかる塩基性化合物としては、例えばホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-(1-アダマンチル)アセトアミド、ベンズアミド、N-アセチルエタノールアミン、1-アセチル-3-メチルピペリジン、ピロリドン、N-メチルピロリドン、ε-カプロラクタム、δ-バレロラクタム、2-ピロリジノン、アクリルアミド、メタクリルアミド、t-ブチルアクリルアミド、メチレンビスアクリルアミド、メチレンビスメタクリルアミド、N-メチロールアクリルアミド、N-メトキシアクリルアミド、ジアセトンアクリルアミドなどのアミド;ピリジン、2-メチルピリジン、4-メチルピリジン、ニコチン、キノリン、アクリジン、イミダゾール、4-メチルイミダゾール、ベンズイミダゾール、ピラジン、ピラゾール、ピロリジン、N-t-ブトキシカルボニルピロリジン、ピペリジン、テトラゾール、モルホリン、4-メチルモルホリン、ピペラジン、1,4-ジアザビシクロ[2.2.2]オクタン、トリブチルアミン、トリペンチルアミン、トリヘキシルアミン、トリヘプチルアミン、トリオクチルアミン、トリエタノールアミンなどのアミンを挙げることができる。これらは1種を単独でまたは2種以上を混合して使用することができる。
 塩基性化合物を配合する場合、その配合量は使用する塩基性化合物の種類により異なるが、光酸発生剤1モルに対して、通常、0.01~10モルの範囲であるのが好ましく、0.05~1モルの範囲であるのがより好ましい。
(Basic compound)
In the photoresist composition (9), in order to improve the resolution by suppressing the acid diffusion rate in the photoresist film, the characteristics of the photoresist composition (9) are not hindered if necessary. It can be blended in a range of amounts. Examples of such basic compounds include formamide, N-methylformamide, N, N-dimethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, N- (1-adamantyl) acetamide, benzamide, N-acetyl. Ethanolamine, 1-acetyl-3-methylpiperidine, pyrrolidone, N-methylpyrrolidone, ε-caprolactam, δ-valerolactam, 2-pyrrolidinone, acrylamide, methacrylamide, t-butylacrylamide, methylenebisacrylamide, methylenebismethacrylamide Amides such as N-methylolacrylamide, N-methoxyacrylamide and diacetoneacrylamide; pyridine, 2-methylpyridine, 4-methylpyridine, nicotine, quinoline, Lysine, imidazole, 4-methylimidazole, benzimidazole, pyrazine, pyrazole, pyrrolidine, Nt-butoxycarbonylpyrrolidine, piperidine, tetrazole, morpholine, 4-methylmorpholine, piperazine, 1,4-diazabicyclo [2.2.2 ] Amines such as octane, tributylamine, tripentylamine, trihexylamine, triheptylamine, trioctylamine and triethanolamine can be mentioned. These can be used individually by 1 type or in mixture of 2 or more types.
When a basic compound is blended, the blending amount varies depending on the type of basic compound to be used, but it is usually preferably in the range of 0.01 to 10 moles per mole of the photoacid generator. More preferably, it is in the range of 0.05 to 1 mole.
(界面活性剤)
 フォトレジスト組成物(9)には、塗布性を向上させるため、所望により、さらに界面活性剤をフォトレジスト組成物(9)の特性が阻害されない範囲の量で配合することができる。
 かかる界面活性剤としては、例えばポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンn-オクチルフェニルエーテルなどが挙げられる。これらは1種を単独でまたは2種以上を混合して使用してもよい。
 界面活性剤を配合する場合、その配合量は、高分子化合物(8)100質量部に対して、通常、2質量部以下である。
(Surfactant)
In order to improve applicability, the photoresist composition (9) may further contain a surfactant in an amount that does not impair the characteristics of the photoresist composition (9), if desired.
Examples of such surfactants include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene n-octylphenyl ether, and the like. You may use these individually by 1 type or in mixture of 2 or more types.
When the surfactant is blended, the blending amount is usually 2 parts by mass or less with respect to 100 parts by mass of the polymer compound (8).
(その他の添加剤)
 さらに、フォトレジスト組成物(9)には、その他の添加剤として、増感剤、ハレーション防止剤、形状改良剤、保存安定剤、消泡剤などを、フォトレジスト組成物(9)の特性が阻害されない範囲の量で配合することができる。
(Other additives)
Further, the photoresist composition (9) includes other additives such as a sensitizer, an antihalation agent, a shape improver, a storage stabilizer, an antifoaming agent, and the like. It can be blended in an amount that is not inhibited.
(フォトレジストパターンの形成)
 フォトレジスト組成物(9)は、基板に塗布し、通常、70~160℃で1~10分間プリベークし、所定のマスクを介して放射線を照射(露光)後、70~160℃で1~5分間ポストエクスポージャーベークして潜像パターンを形成し、次いで現像液を用いて現像することにより、所定のレジストパターンを形成することができる。
(Formation of photoresist pattern)
The photoresist composition (9) is applied to a substrate, usually pre-baked at 70 to 160 ° C. for 1 to 10 minutes, irradiated with radiation through a predetermined mask (exposure), and then 1 to 5 at 70 to 160 ° C. A predetermined resist pattern can be formed by post-exposure baking for a minute to form a latent image pattern and then developing with a developer.
 露光には、種々の波長の放射線、例えば、紫外線、X線などが利用でき、半導体レジスト用では、通常、g線、i線、XeCl、KrF、KrCl、ArF、ArClなどのエキシマレーザーが使用されるが、これらの中でも、微細加工の観点から、ArFエキシマレーザーを使用するのが好ましい。
 露光量は、0.1~1000mJ/cm2の範囲であるのが好ましく、1~500mJ/cm2の範囲であるのがより好ましい。
For exposure, various wavelengths of radiation, such as ultraviolet rays and X-rays, can be used. For semiconductor resists, excimer lasers such as g-line, i-line, XeCl, KrF, KrCl, ArF, and ArCl are usually used. However, among these, it is preferable to use an ArF excimer laser from the viewpoint of fine processing.
Exposure is preferably in the range of 0.1 ~ 1000mJ / cm 2, and more preferably in the range of 1 ~ 500mJ / cm 2.
 現像液としては、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、アンモニア水などの無機塩基;エチルアミン、ジエチルアミン、トリエチルアミンなどのアルキルアミン;ジメチルエタノールアミン、トリエタノールアミンなどのアルコールアミン;テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシドなどの第四級アンモニウム塩などを溶解したアルカリ性水溶液などが挙げられる。これらの中でも、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシドなどの第四級アンモニウム塩を溶解したアルカリ性水溶液を使用するのが好ましい。
 現像液の濃度は、通常、0.1~20質量%の範囲であるのが好ましく、0.1~10質量%の範囲であるのがより好ましい。
Examples of the developer include inorganic bases such as sodium hydroxide, potassium hydroxide, sodium carbonate and aqueous ammonia; alkylamines such as ethylamine, diethylamine and triethylamine; alcohol amines such as dimethylethanolamine and triethanolamine; tetramethylammonium hydroxy And an alkaline aqueous solution in which a quaternary ammonium salt such as tetraethylammonium hydroxide is dissolved. Among these, it is preferable to use an alkaline aqueous solution in which a quaternary ammonium salt such as tetramethylammonium hydroxide or tetraethylammonium hydroxide is dissolved.
The concentration of the developer is usually preferably in the range of 0.1 to 20% by mass, and more preferably in the range of 0.1 to 10% by mass.
(液浸露光法)
 また、フォトレジスト組成物(9)は、液浸露光法への適用が可能である。フォトレジスト組成物(9)を液浸露光法に適用する場合、液浸露光用液体として、純水または波長193nmにおける屈折率が水の屈折率以上である液浸露光用液体を使用することができる。
 液浸露光工程に用いる波長193nmの屈折率が水の屈折率以上である液浸露光用液体は、波長193nmにおける屈折率が、水の屈折率(1.44)以上の屈折率を有するものである限り特に制限はなく、種々の液体を用いることができる。
 また、フォトレジスト組成物(9)によりフォトレジスト膜を形成した場合、波長193nmにおける屈折率が1.72以上となるフォトレジスト膜を得ることができる。このようなフォトレジスト組成物により、液浸露光工程において、波長193nmにおける屈折率が1.70以上の液浸液(屈折率が高い液浸液)を使用する場合であっても、フォトレジスト膜と液浸液との界面で露光光が全反射してしまうなどの問題が生じ難く、露光光の全反射などに起因する基本性能の劣化(例えば、感度の低下)を防止することができる。
 なお、上記フォトレジスト膜の屈折率は、分光エリプソメーター(例えば、「VUV-VASE」、J.A.Woollam社製)を用い、膜厚30~300nmのフォトレジスト膜に波長193nmの光を照射して測定した値である。
(Immersion exposure method)
The photoresist composition (9) can be applied to an immersion exposure method. When the photoresist composition (9) is applied to an immersion exposure method, pure water or an immersion exposure liquid having a refractive index greater than or equal to the refractive index of water at a wavelength of 193 nm may be used as the immersion exposure liquid. it can.
The immersion exposure liquid having a refractive index at a wavelength of 193 nm which is used in the immersion exposure step is equal to or higher than the refractive index of water, and has a refractive index at a wavelength of 193 nm which is higher than the refractive index of water (1.44). As long as there is no particular limitation, various liquids can be used.
Moreover, when a photoresist film is formed with the photoresist composition (9), a photoresist film having a refractive index of 1.72 or more at a wavelength of 193 nm can be obtained. With such a photoresist composition, even when an immersion liquid having a refractive index of 1.70 or more (an immersion liquid having a high refractive index) is used in the immersion exposure process, the photoresist film Problems such as exposure light being totally reflected at the interface between the liquid and the immersion liquid are unlikely to occur, and deterioration of basic performance (for example, reduction in sensitivity) due to total reflection of exposure light can be prevented.
The refractive index of the photoresist film is determined by using a spectroscopic ellipsometer (for example, “VUV-VASE”, manufactured by JA Woollam), and irradiating light having a wavelength of 193 nm on the photoresist film having a film thickness of 30 to 300 nm. It is the value measured.
 以下、実施例により本発明をさらに詳しく説明するが、本発明はかかる実施例により何ら限定されない。なお、各例におけるMwおよびMnの測定方法並びに分散度の算出方法は以下の通りである。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the examples. The methods for measuring Mw and Mn and calculating the degree of dispersion in each example are as follows.
(MwおよびMnの測定並びに分散度の算出)
 重量平均分子量(Mw)および数平均分子量(Mn)は、検出器として示差屈折率計を用い、溶離液としてテトラヒドロフラン(THF)を用いたゲル浸透クロマトグラフィー(GPC)測定を下記条件にて行ない、標準ポリスチレンで作成した検量線による換算値として求めた。また、重量平均分子量(Mw)を数平均分子量(Mn)で除することにより分散度(Mw/Mn)を求めた。
 GPC測定:カラムとして、TSK-gel SUPER HZM-H(商品名:東ソー株式会社製、4.6mm×150mm)2本およびTSK-gel SUPER HZ2000(商品名:東ソー株式会社製、4.6mm×150mm)1本を直列につないだものを使用し、カラム温度40℃、示差屈折率計温度40℃、溶離液の流速0.35mL/分の条件で測定した。
(Measurement of Mw and Mn and calculation of dispersity)
The weight average molecular weight (Mw) and number average molecular weight (Mn) were measured by gel permeation chromatography (GPC) using a differential refractometer as a detector and tetrahydrofuran (THF) as an eluent under the following conditions. It calculated | required as a conversion value by the calibration curve created with the standard polystyrene. Further, the dispersity (Mw / Mn) was determined by dividing the weight average molecular weight (Mw) by the number average molecular weight (Mn).
GPC measurement: TSK-gel SUPER HZM-H (trade name: 4.6 mm × 150 mm) and TSK-gel SUPER HZ2000 (trade name: Tosoh Corp., 4.6 mm × 150 mm) as columns ) Using one connected in series, measurement was performed under the conditions of a column temperature of 40 ° C., a differential refractometer temperature of 40 ° C., and an eluent flow rate of 0.35 mL / min.
<合成例1-1>2-クロロ-1-メトキシエチル=アセタートの合成(第1工程)
Figure JPOXMLDOC01-appb-C000019
<Synthesis Example 1-1> Synthesis of 2-chloro-1-methoxyethyl acetate (first step)
Figure JPOXMLDOC01-appb-C000019
 温度計、滴下漏斗および攪拌装置を備えた内容積500mLの四口フラスコに、クロロアセトアルデヒド=ジメチル=アセタール169.3g(1.36mol)、無水酢酸139.3g(1.37mmol)を入れた。フラスコを水浴で冷却し、攪拌下に濃硫酸0.27gをゆっくり滴下した。内温が20~30℃の範囲で50時間攪拌し、その後、50℃まで加温したまま3時間攪拌した。反応液の内温を室温まで下げた後、1Lの分液漏斗に移し、ジイソプロピルエーテル147.8gを入れ、7%炭酸水素ナトリウム水溶液59.0gで2回洗浄し、減圧下溶媒を留去し、蒸留原液221.8gを得た。蒸留には、分子蒸留装置「MS-300」(SHIBATA社製)を用いた。圧力1330Pa、温度30℃にて該蒸留原液を流し、高沸点留分188.5gを得た。該高沸点留分を圧力1330Pa、温度40~50℃にて流し、低沸点留分に2-クロロ-1-メトキシエチル=アセタート163.5g(1.01mol)を無色透明の液体として得た(純度94.0%、収率74%)。 Chloroacetaldehyde = dimethyl = acetal 169.3 g (1.36 mol) and acetic anhydride 139.3 g (1.37 mmol) were placed in a 500 mL four-necked flask equipped with a thermometer, a dropping funnel and a stirrer. The flask was cooled in a water bath, and 0.27 g of concentrated sulfuric acid was slowly added dropwise with stirring. The mixture was stirred for 50 hours at an internal temperature of 20 to 30 ° C., and then stirred for 3 hours while being heated to 50 ° C. After lowering the internal temperature of the reaction solution to room temperature, transfer to a 1 L separatory funnel, add 147.8 g of diisopropyl ether, wash twice with 59.0 g of 7% aqueous sodium hydrogen carbonate solution, and distill off the solvent under reduced pressure. As a result, 221.8 g of a distilled stock solution was obtained. For the distillation, a molecular distillation apparatus “MS-300” (manufactured by SHIBATA) was used. The distillation stock solution was allowed to flow at a pressure of 1330 Pa and a temperature of 30 ° C. to obtain 188.5 g of a high-boiling fraction. The high boiling fraction was allowed to flow at a pressure of 1330 Pa and a temperature of 40 to 50 ° C., and 163.5 g (1.01 mol) of 2-chloro-1-methoxyethyl acetate was obtained as a colorless and transparent liquid in the low boiling fraction ( (Purity 94.0%, yield 74%).
<合成例1-2>1,4-ジチアン-2-オールの合成(第2工程)
Figure JPOXMLDOC01-appb-C000020
<Synthesis Example 1-2> Synthesis of 1,4-dithian-2-ol (second step)
Figure JPOXMLDOC01-appb-C000020
 温度計、滴下漏斗および攪拌装置を備えた内容積3Lの四口フラスコに、1,2-ジメトキシエタンを1390g入れ、フラスコ内を窒素置換した。水浴でフラスコを冷却下、水素化ナトリウム(60%)79.0g(1.96mol)を入れて、30分攪拌した。還流冷却管を付した後、滴下漏斗から1,2-エタンジチオール181.2g(1.92mol)を温度が25~30℃の範囲になるようにゆっくり滴下した。この際、気体発生が見られた。滴下終了から約30分攪拌後、滴下漏斗から合成例1-1で得た2-クロロ-1-メトキシエチル=アセタート154.3g(0.96mol)を温度が25~30℃の範囲になるようにゆっくり滴下した。滴下終了後、25~35℃で3時間攪拌を続けた。このときガスクロマトグラフィーで分析すると、2-クロロ-1-メトキシエチル=アセタートの転化率は99.2%であった。
(1,4-ジチアン-2-イル=アセタートの加水分解)
 滴下漏斗から水906.5gを温度が25~60℃の範囲でゆっくり滴下し、滴下後に水浴を加熱して温度を60℃にしたまま12時間を続けた。このときガスクロマトグラフィーで分析すると、1,4-ジチアン-2-オールと1,4-ジチアン-2-イル=アセタートの比は、1,4-ジチアン-2-オール:1,4-ジチアン-2-イル=アセタート=85:15(面積比)であった。
 滴下漏斗から10%塩酸水溶液を温度が10~15℃の範囲で滴下し、pHを8.1とした(滴下量112.6g)。得られた液を内容量5Lの分液漏斗に移し、ジイソプロピルエーテル1670gで2回抽出した。得られた抽出液2回分を内容量5Lの分液漏斗に入れ、水801g、飽和食塩水504gで順次洗浄し、減圧下に溶媒を留去して濃縮物285.9gを得た。得られた濃縮物にジイソプロピルエーテル47.5g、n-ヘキサン85.2g、結晶種少量を入れ、0℃までゆっくりと冷却した。析出物をろ別し、300mLのナスフラスコに移し、n-ヘキサン320gを加えて25℃で1時間攪拌した。再度、該析出物をろ別し、減圧下、室温で乾燥し、以下の物性を示す1,4-ジチアン-2-オール73.8g(0.52mol)を白色の固体として得た(純度94.1%、収率53%)。
1390 g of 1,2-dimethoxyethane was placed in a 3 L four-necked flask equipped with a thermometer, a dropping funnel and a stirrer, and the atmosphere in the flask was replaced with nitrogen. While cooling the flask in a water bath, 79.0 g (1.96 mol) of sodium hydride (60%) was added and stirred for 30 minutes. After attaching a reflux condenser, 181.2 g (1.92 mol) of 1,2-ethanedithiol was slowly added dropwise from the dropping funnel so that the temperature was in the range of 25-30 ° C. At this time, gas generation was observed. After stirring for about 30 minutes from the end of dropping, 154.3 g (0.96 mol) of 2-chloro-1-methoxyethyl acetate obtained in Synthesis Example 1-1 from the dropping funnel so that the temperature is in the range of 25 to 30 ° C. The solution was slowly dripped into. After completion of the dropwise addition, stirring was continued at 25 to 35 ° C. for 3 hours. At this time, analysis by gas chromatography revealed that the conversion of 2-chloro-1-methoxyethyl acetate was 99.2%.
(Hydrolysis of 1,4-dithian-2-yl acetate)
From the dropping funnel, 906.5 g of water was slowly dropped in a temperature range of 25 to 60 ° C., and after the dropping, the water bath was heated and the temperature was kept at 60 ° C. for 12 hours. At this time, when analyzed by gas chromatography, the ratio of 1,4-dithian-2-ol to 1,4-dithian-2-yl acetate was 1,4-dithian-2-ol: 1,4-dithiane- 2-yl = acetate = 85: 15 (area ratio).
From the dropping funnel, a 10% aqueous hydrochloric acid solution was added dropwise at a temperature in the range of 10 to 15 ° C. to adjust the pH to 8.1 (drop amount 112.6 g). The obtained liquid was transferred to a separatory funnel having an internal volume of 5 L, and extracted twice with 1670 g of diisopropyl ether. Two portions of the obtained extract were put into a separatory funnel having an internal volume of 5 L, washed sequentially with 801 g of water and 504 g of saturated brine, and the solvent was distilled off under reduced pressure to obtain 285.9 g of concentrate. The obtained concentrate was charged with 47.5 g of diisopropyl ether, 85.2 g of n-hexane and a small amount of crystal seeds, and slowly cooled to 0 ° C. The precipitate was collected by filtration, transferred to a 300 mL eggplant flask, added with 320 g of n-hexane, and stirred at 25 ° C. for 1 hour. The precipitate was filtered again and dried at room temperature under reduced pressure to obtain 73.8 g (0.52 mol) of 1,4-dithian-2-ol having the following physical properties as a white solid (purity 94) 0.1%, yield 53%).
 1H-NMR(300MHz,CDCl3,TMS,ppm)δ:2.52-2.62(3H,m)、2.85(1H,dd,J=2.1,13.4Hz)、3.52-3.64(1H,br)、3.86(1H,ddd,J=5.0,5.2,12.1Hz)、4.28(1H,ddd,J=4.8,4.9,12.1Hz)、5.03(1H,ddd,J=1.9,5.8,7.7Hz) 1 H-NMR (300 MHz, CDCl 3 , TMS, ppm) δ: 2.52-2.62 (3H, m), 2.85 (1H, dd, J = 2.1, 13.4 Hz); 52-3.64 (1H, br), 3.86 (1H, ddd, J = 5.0, 5.2, 12.1 Hz), 4.28 (1H, ddd, J = 4.8, 4. 9, 12.1 Hz), 5.03 (1H, ddd, J = 1.9, 5.8, 7.7 Hz)
<合成例1-3>1,4-ジチアン-2-イル=メタクリラートの合成(第3工程)
Figure JPOXMLDOC01-appb-C000021
<Synthesis Example 1-3> Synthesis of 1,4-dithian-2-yl methacrylate (third step)
Figure JPOXMLDOC01-appb-C000021
 温度計、滴下漏斗および攪拌装置を備えた内容積1Lの四口フラスコに、合成例1-2で得た1,4-ジチアン-2-オール34.5g(238mmol)、THF349.3g、フェノチアジン0.47gを入れ、フラスコ内を窒素置換した。フラスコを氷浴で冷却した状態で、滴下漏斗からトリエチルアミン48.2g(476mmol)を温度が5~8℃の範囲になるように滴下した。
 次に、メタクリル酸クロリド30.4g(287.9mmol)を温度が5~10℃の範囲になるように滴下した。滴下終了後、3~6℃で2.5時間攪拌を続けた。このときガスクロマトグラフィーで分析すると、1,4-ジチアン-2-オールの転化率は99.6%であった。
 滴下漏斗から、水233gを温度が20℃未満になるようにゆっくり滴下し、滴下後に氷浴を外して内温を24℃とした。4-ジメチルアミノピリジン1.46gを入れ、24~26℃で2時間攪拌した。このときガスクロマトグラフィーで分析すると、メタクリル酸無水物と1,4-ジチアン-2-イル=メタクリラートの比は、メタクリル酸無水物:1,4-ジチアン-2-イル=メタクリラート=0.1:99.9(面積比)であった。
 得られた液を内容量2Lの分液漏斗に移し、酢酸エチル240gで3回抽出した。得られた抽出液3回分を内容量2Lの分液漏斗に入れ、1%塩酸水溶液230gで3回、水116g、飽和炭酸水素ナトリウム水溶液118g、水118gで2回、飽和食塩水100gで順次洗浄した。p-メトキシフェノール0.010g、フェノチアジン0.020gを入れて、減圧下、溶媒を留去し、蒸留原液55.0gを得た。蒸留には、分子蒸留装置「MS-300」(SHIBATA社製)を用いた。圧力13.3~20.0Pa、温度40~45℃にて該蒸留原液を流し、高沸点留分47.4gを得た。該高沸点留分を圧力10.7~13.3Pa、温度55~60℃にて流し、低沸点留分に以下の物性を示す1,4-ジチアン-2-イル=メタクリラート37.8g(182mmol)を無色透明の液体として得た(純度98.4%、収率76%)。
 なお、オクタノール/水分配係数のlog値であるlogPと溶解度パラメーターであるSPは、計算ソフト「CAChe」(商品名;富士通株式会社)のハミルトニアンPM5を用いて計算した。
Into a 1 L four-neck flask equipped with a thermometer, a dropping funnel and a stirrer, 34.5 g (238 mmol) of 1,4-dithian-2-ol obtained in Synthesis Example 1-2, 349.3 g of THF, phenothiazine 0 .47 g was added and the atmosphere in the flask was replaced with nitrogen. With the flask cooled in an ice bath, 48.2 g (476 mmol) of triethylamine was added dropwise from the dropping funnel so that the temperature was in the range of 5 to 8 ° C.
Next, 30.4 g (287.9 mmol) of methacrylic acid chloride was added dropwise so that the temperature was in the range of 5 to 10 ° C. After completion of the dropwise addition, stirring was continued at 3-6 ° C. for 2.5 hours. At this time, when analyzed by gas chromatography, the conversion of 1,4-dithian-2-ol was 99.6%.
From the dropping funnel, 233 g of water was slowly added dropwise so that the temperature was less than 20 ° C., and after the addition, the ice bath was removed and the internal temperature was adjusted to 24 ° C. 1.46 g of 4-dimethylaminopyridine was added and stirred at 24-26 ° C. for 2 hours. At this time, when analyzed by gas chromatography, the ratio of methacrylic anhydride to 1,4-dithian-2-yl methacrylate was methacrylic anhydride: 1,4-dithian-2-yl methacrylate = 0. 1: 99.9 (area ratio).
The obtained liquid was transferred to a separatory funnel having an internal volume of 2 L and extracted three times with 240 g of ethyl acetate. Three times of the obtained extract was put into a separatory funnel having a content volume of 2 L, washed with 230 g of 1% aqueous hydrochloric acid solution three times, 116 g of water, 118 g of saturated aqueous sodium hydrogen carbonate solution, twice with 118 g of water, and washed successively with 100 g of saturated brine did. 0.010 g of p-methoxyphenol and 0.020 g of phenothiazine were added, and the solvent was distilled off under reduced pressure to obtain 55.0 g of a distilled stock solution. For the distillation, a molecular distillation apparatus “MS-300” (manufactured by SHIBATA) was used. The distillation stock solution was allowed to flow at a pressure of 13.3 to 20.0 Pa and a temperature of 40 to 45 ° C. to obtain 47.4 g of a high-boiling fraction. The high-boiling fraction was flowed at a pressure of 10.7 to 13.3 Pa and a temperature of 55 to 60 ° C., and 37.8 g of 1,4-dithian-2-yl methacrylate having the following physical properties was exhibited in the low-boiling fraction. 182 mmol) was obtained as a colorless and transparent liquid (purity 98.4%, yield 76%).
In addition, logP which is a log value of an octanol / water partition coefficient and SP which is a solubility parameter were calculated using Hamiltonian PM5 of calculation software “CAChe” (trade name; Fujitsu Limited).
 1H-NMR(300MHz,CDCl3,TMS,ppm)δ:2.00(3H,s)、2.68-2.82(2H,m)、2.94(1H,dd,J=5.2,14.1Hz)、3.10(1H,ddd,J=2.2,13.2Hz)、3.30-3.41(2H,m)、5.67(1H,s)、5.87-5.92(1H,m)、6.28(1H,s)
 logP:1.77
 SP:17.6(J/mol)0.5
1 H-NMR (300 MHz, CDCl 3 , TMS, ppm) δ: 2.00 (3H, s), 2.68-2.82 (2H, m), 2.94 (1H, dd, J = 5. 2,14.1 Hz), 3.10 (1 H, ddd, J = 2.2, 13.2 Hz), 3.30-3.41 (2 H, m), 5.67 (1 H, s), 5. 87-5.92 (1H, m), 6.28 (1H, s)
log P: 1.77
SP: 17.6 (J / mol) 0.5
<合成例1-4>1,4-ジチエパン-2-オールの合成(第2工程)
Figure JPOXMLDOC01-appb-C000022
<Synthesis Example 1-4> Synthesis of 1,4-dithiepan-2-ol (second step)
Figure JPOXMLDOC01-appb-C000022
 温度計、滴下漏斗および攪拌装置を備えた3Lの四口フラスコに、1,2-ジメトキシエタンを1390g入れ、フラスコ内を窒素置換した。水浴でフラスコを冷却下、水素化ナトリウム(60%)79.0g(1.96mol)を入れて、30分攪拌した。還流冷却管を付した後、滴下漏斗から1,3-プロパンジチオール209.9g(1.92mol)を温度が25~30℃の範囲になるようにゆっくり滴下した。この際、気体発生が見られた。滴下終了から約30分攪拌後、滴下漏斗から合成例1-1で得た2-クロロ-1-メトキシエチル=アセタート154.3g(0.96mol)を温度が25~30℃の範囲になるようにゆっくりと滴下した。滴下終了後、25~30℃で5時間攪拌を続けた。このときガスクロマトグラフィーで分析すると、2-クロロ-1-メトキシエチル=アセタートの転化率は98.9%であった。
(1,4-ジチエパン-2-イル=アセタートの加水分解)
 滴下漏斗から水906.0gを温度が25~60℃の範囲でゆっくり滴下し、滴下後に水浴を加熱して温度を60℃にしたまま12時間攪拌を続けた。このときガスクロマトグラフィーで分析すると、1,4-ジチエパン-2-オールと1,4-ジチエパン-2-イル=アセタートの比は、1,4-ジチエパン-2-オール:1,4-ジチエパン-2-イル=アセタート=82:18(面積比)であった。
 滴下漏斗から10%塩酸水溶液を温度が10~15℃の範囲で滴下し、pHを8.2とした。得られた液を内容量5Lの分液漏斗に移し、ジイソプロピルエーテル1650gで2回抽出した。得られた抽出液2回分を内容量5Lの分液漏斗に入れ、水800g、飽和食塩水500gで順次洗浄し、減圧下に溶媒を留去し、濃縮物をシリカゲルカラムクロマトグラフィーで精製することにより、1,4-ジチエパン-2-オール40.8g(0.26mol)を得た(純度97.1%、収率27.5%)。
1390 g of 1,2-dimethoxyethane was placed in a 3 L four-necked flask equipped with a thermometer, a dropping funnel and a stirrer, and the atmosphere in the flask was replaced with nitrogen. While cooling the flask in a water bath, 79.0 g (1.96 mol) of sodium hydride (60%) was added and stirred for 30 minutes. After the reflux condenser was attached, 209.9 g (1.92 mol) of 1,3-propanedithiol was slowly added dropwise from the dropping funnel so that the temperature was in the range of 25 to 30 ° C. At this time, gas generation was observed. After stirring for about 30 minutes from the end of dropping, 154.3 g (0.96 mol) of 2-chloro-1-methoxyethyl acetate obtained in Synthesis Example 1-1 from the dropping funnel so that the temperature falls within the range of 25 to 30 ° C. The solution was slowly added dropwise. After completion of the dropping, stirring was continued at 25-30 ° C. for 5 hours. At this time, analysis by gas chromatography revealed that the conversion of 2-chloro-1-methoxyethyl acetate was 98.9%.
(Hydrolysis of 1,4-dithiepan-2-yl acetate)
From the dropping funnel, 906.0 g of water was slowly dropped in a temperature range of 25-60 ° C., and after the dropping, the water bath was heated and stirring was continued for 12 hours while maintaining the temperature at 60 ° C. At this time, when analyzed by gas chromatography, the ratio of 1,4-dithiepan-2-ol to 1,4-dithiepan-2-yl acetate is 1,4-dithiepan-2-ol: 1,4-dithiepan- 2-yl = acetate = 82: 18 (area ratio).
A 10% aqueous hydrochloric acid solution was added dropwise from the dropping funnel at a temperature in the range of 10 to 15 ° C. to adjust the pH to 8.2. The resulting liquid was transferred to a separatory funnel having an internal volume of 5 L and extracted twice with 1650 g of diisopropyl ether. Put the resulting extract twice into a 5 L separatory funnel, wash sequentially with 800 g of water and 500 g of saturated brine, evaporate the solvent under reduced pressure, and purify the concentrate by silica gel column chromatography. Gave 40.8 g (0.26 mol) of 1,4-dithiepan-2-ol (purity 97.1%, yield 27.5%).
<合成例1-5>1,4-ジチエパン-2-イル=メタクリラートの合成(第3工程)
Figure JPOXMLDOC01-appb-C000023
<Synthesis Example 1-5> Synthesis of 1,4-dithiepan-2-yl methacrylate (third step)
Figure JPOXMLDOC01-appb-C000023
 温度計、滴下漏斗および攪拌装置を備えた内容積100mLの四口フラスコに、合成例1-4で得た1,4-ジチエパン-2-オール3.68g(23.8mol)、THF34.9g、フェノチアジン47mgを入れ、フラスコ内を窒素置換した。フラスコを氷浴で冷却した状態で、滴下漏斗からトリエチルアミン4.82g(47.6mmol)を温度が5~8℃の範囲になるように滴下した。
 次に、メタクリル酸クロリド3.04g(28.8mmol)を温度が5~10℃の範囲になるように滴下した。滴下終了後、3~7℃で3時間攪拌を続けた。このときガスクロマトグラフィーで分析すると、1,4-ジチエパン-2-オールの転化率は99.2%であった。
 滴下漏斗から、水23.3gを温度が20℃未満になるようにゆっくり滴下し、滴下後に氷浴を外して内温を24℃とした。4-ジメチルアミノピリジン0.15gを入れ、23~26℃で2時間攪拌した。このときガスクロマトグラフィーで分析すると、メタクリル酸無水物と1,4-ジチエパン-2-イル=メタクリラートの比は、メタクリル酸無水物:1,4-ジチエパン-2-イル=メタクリラート=0.1:99.9(面積比)であった。得られた液を内容量200mLの分液漏斗に移し、酢酸エチル25gで3回抽出した。得られた抽出液3回分を内容量200mLの分液漏斗に入れ、1%塩酸水溶液23gで3回、水15g、飽和炭酸水素ナトリウム水溶液15g、水15gで2回、飽和食塩水10gで順次洗浄した。p-メトキシフェノール2.0mg、フェノチアジン2.0mgを入れて、減圧下、溶媒を留去し、濃縮物をシリカゲルカラムクロマトグラフィーで精製することにより、1,4-ジチエパン-2-イル=メタクリラート4.36g(19.5mmol)を得た(純度97.7%、収率81.9%)。
To a four-necked flask with an internal volume of 100 mL equipped with a thermometer, a dropping funnel and a stirrer, 3.68 g (23.8 mol) of 1,4-dithiepan-2-ol obtained in Synthesis Example 1-4, 34.9 g of THF, 47 mg of phenothiazine was added, and the atmosphere in the flask was replaced with nitrogen. With the flask cooled in an ice bath, 4.82 g (47.6 mmol) of triethylamine was added dropwise from the dropping funnel so that the temperature was in the range of 5 to 8 ° C.
Next, 3.04 g (28.8 mmol) of methacrylic acid chloride was added dropwise so that the temperature was in the range of 5 to 10 ° C. After completion of the dropwise addition, stirring was continued at 3 to 7 ° C. for 3 hours. At this time, when analyzed by gas chromatography, the conversion of 1,4-dithiepan-2-ol was 99.2%.
From the dropping funnel, 23.3 g of water was slowly added dropwise so that the temperature was less than 20 ° C. After the dropping, the ice bath was removed and the internal temperature was adjusted to 24 ° C. 4-dimethylaminopyridine (0.15 g) was added, and the mixture was stirred at 23 to 26 ° C. for 2 hours. At this time, when analyzed by gas chromatography, the ratio of methacrylic anhydride to 1,4-dithiepan-2-yl methacrylate was methacrylic anhydride: 1,4-dithiepan-2-yl methacrylate = 0. 1: 99.9 (area ratio). The obtained liquid was transferred to a separatory funnel having an internal volume of 200 mL and extracted three times with 25 g of ethyl acetate. Three times of the extract thus obtained was placed in a separatory funnel having an internal volume of 200 mL, washed with 23 g of 1% hydrochloric acid aqueous solution three times, water 15 g, saturated sodium hydrogen carbonate aqueous solution 15 g, water 15 g twice, and saturated brine 10 g successively. did. By adding 2.0 mg of p-methoxyphenol and 2.0 mg of phenothiazine, the solvent was distilled off under reduced pressure, and the concentrate was purified by silica gel column chromatography to obtain 1,4-dithiepan-2-yl methacrylate. 4.36 g (19.5 mmol) was obtained (purity 97.7%, yield 81.9%).
<合成例1-6>5,6-ジメチル-1,4-ジチアン-2-オールの合成(第2工程)
Figure JPOXMLDOC01-appb-C000024
<Synthesis Example 1-6> Synthesis of 5,6-dimethyl-1,4-dithian-2-ol (second step)
Figure JPOXMLDOC01-appb-C000024
 温度計、滴下漏斗および攪拌装置を備えた300mLの四口フラスコに、1,2-ジメトキシエタンを139g入れ、フラスコ内を窒素置換した。水浴でフラスコを冷却下、水素化ナトリウム(60%)7.90g(197mol)を入れて、30分攪拌した。還流冷却管を付した後、滴下漏斗から2,3-ブタンジチオール24.2g(192mmol)を温度が25~30℃の範囲になるようにゆっくり滴下した。この際、気体発生が見られた。滴下終了から約30分攪拌後、滴下漏斗から合成例1-1で得た2-クロロ-1-メトキシエチル=アセタート15.4g(94.9mmol)を温度が25~30℃の範囲になるようにゆっくりと滴下した。滴下終了後、25~30℃で5時間攪拌を続けた。このときガスクロマトグラフィーで分析すると、2-クロロ-1-メトキシエチル=アセタートの転化率は98.8%であった。
(5,6-ジメチル-1,4-ジチアン-2-イル=アセタートの加水分解)
 滴下漏斗から水90.0gを温度が25~60℃の範囲でゆっくり滴下し、滴下後に水浴を加熱して温度を60℃にしたまま12時間攪拌を続けた。このときガスクロマトグラフィーで分析すると、5,6-ジメチル-1,4-ジチアン-2-オールと5,6-ジメチル-1,4-ジチアン-2-イル=アセタートの比は、5,6-ジメチル-1,4-ジチアン-2-オール:5,6-ジメチル-1,4-ジチアン-2-イル=アセタート=88:12(面積比)であった。
 滴下漏斗から10%塩酸水溶液を温度が10~15℃の範囲で滴下し、pHを8.2とした。得られた液を内容量500mLの分液漏斗に移し、ジイソプロピルエーテル160gで2回抽出した。得られた抽出液2回分を内容量500mLの分液漏斗に入れ、水10g、飽和食塩水20gで順次洗浄し、減圧下に溶媒を留去し、濃縮物をシリカゲルカラムクロマトグラフィーで精製することにより、5,6-ジメチル-1,4-ジチアン-2-オール9.09g(54.1mmol)を得た(純度97.8%、収率57.0%)。
In a 300 mL four-necked flask equipped with a thermometer, a dropping funnel and a stirrer, 139 g of 1,2-dimethoxyethane was placed, and the atmosphere in the flask was replaced with nitrogen. While cooling the flask in a water bath, 7.90 g (197 mol) of sodium hydride (60%) was added and stirred for 30 minutes. After attaching a reflux condenser, 2,4.2 g (192 mmol) of 2,3-butanedithiol was slowly added dropwise from the dropping funnel so that the temperature was in the range of 25 to 30 ° C. At this time, gas generation was observed. After stirring for about 30 minutes from the end of dropping, 15.4 g (94.9 mmol) of 2-chloro-1-methoxyethyl acetate obtained in Synthesis Example 1-1 from the dropping funnel was adjusted to a temperature in the range of 25 to 30 ° C. The solution was slowly added dropwise. After completion of the dropping, stirring was continued at 25-30 ° C. for 5 hours. At this time, when analyzed by gas chromatography, the conversion of 2-chloro-1-methoxyethyl acetate was 98.8%.
(Hydrolysis of 5,6-dimethyl-1,4-dithian-2-yl acetate)
From the dropping funnel, 90.0 g of water was slowly dropped in a temperature range of 25 to 60 ° C., and after the dropping, the water bath was heated and stirring was continued for 12 hours while maintaining the temperature at 60 ° C. When analyzed by gas chromatography at this time, the ratio of 5,6-dimethyl-1,4-dithian-2-ol to 5,6-dimethyl-1,4-dithian-2-yl acetate is 5,6- Dimethyl-1,4-dithian-2-ol: 5,6-dimethyl-1,4-dithian-2-yl acetate = 88: 12 (area ratio).
A 10% aqueous hydrochloric acid solution was added dropwise from the dropping funnel at a temperature in the range of 10 to 15 ° C. to adjust the pH to 8.2. The obtained liquid was transferred to a separatory funnel having an internal volume of 500 mL and extracted twice with 160 g of diisopropyl ether. Put the obtained extract twice into a separatory funnel with an internal volume of 500 mL, wash sequentially with 10 g of water and 20 g of saturated brine, evaporate the solvent under reduced pressure, and purify the concentrate by silica gel column chromatography. Gave 9.09 g (54.1 mmol) of 5,6-dimethyl-1,4-dithian-2-ol (purity 97.8%, yield 57.0%).
<合成例1-7>5,6-ジメチル-1,4-ジチアン-2-イル=メタクリラートの合成(第3工程)
Figure JPOXMLDOC01-appb-C000025
<Synthesis Example 1-7> Synthesis of 5,6-dimethyl-1,4-dithian-2-yl methacrylate (third step)
Figure JPOXMLDOC01-appb-C000025
 温度計、滴下漏斗および攪拌装置を備えた内容積100mLの四口フラスコに、合成例1-6で得た5,6-ジメチル-1,4-ジチアン-2-オール4.00g(23.8mol)、THF34.9g、フェノチアジン47mgを入れ、フラスコ内を窒素置換した。フラスコを氷浴で冷却した状態で、滴下漏斗からトリエチルアミン4.82g(47.6mmol)を温度が5~8℃の範囲になるように滴下した。
 次に、メタクリル酸クロリド3.04g(28.8mmol)を温度が5~10℃の範囲になるように滴下した。滴下終了後、3~7℃で3時間攪拌を続けた。このときガスクロマトグラフィーで分析すると、5,6-ジメチル-1,4-ジチアン-2-オールの転化率は99.0%であった。
 滴下漏斗から、水23.3gを温度が20℃未満になるようにゆっくり滴下し、滴下後に氷浴を外して内温を24℃とした。4-ジメチルアミノピリジン0.15gを入れ、23~26℃で2時間攪拌した。このときガスクロマトグラフィーで分析すると、メタクリル酸無水物と5,6-ジメチル-1,4-ジチアン-2-イル=メタクリラートの比は、メタクリル酸無水物:5,6-ジメチル-1,4-ジチアン-2-イル=メタクリラート=0.1:99.9(面積比)であった。
 得られた液を内容量200mLの分液漏斗に移し、酢酸エチル25gで3回抽出した。得られた抽出液3回分を内容量200mLの分液漏斗に入れ、1%塩酸水溶液23gで3回、水15g、飽和炭酸水素ナトリウム水溶液15g、水15gで2回、飽和食塩水10gで順次洗浄した。p-メトキシフェノール2.0mg、フェノチアジン2.0mgを入れて、減圧下、溶媒を留去し、濃縮物をシリカゲルカラムクロマトグラフィーで精製することにより、5,6-ジメチル-1,4-ジチアン-2-イル=メタクリラート4.85g(20.3mmol)を得た(純度97.2%、収率85.3%)。
In a 100 mL four-necked flask equipped with a thermometer, a dropping funnel and a stirrer, 4.00 g (23.8 mol) of 5,6-dimethyl-1,4-dithian-2-ol obtained in Synthesis Example 1-6 was obtained. ), 34.9 g of THF and 47 mg of phenothiazine were added, and the atmosphere in the flask was replaced with nitrogen. With the flask cooled in an ice bath, 4.82 g (47.6 mmol) of triethylamine was added dropwise from the dropping funnel so that the temperature was in the range of 5 to 8 ° C.
Next, 3.04 g (28.8 mmol) of methacrylic acid chloride was added dropwise so that the temperature was in the range of 5 to 10 ° C. After completion of the dropwise addition, stirring was continued at 3 to 7 ° C. for 3 hours. At this time, when analyzed by gas chromatography, the conversion of 5,6-dimethyl-1,4-dithian-2-ol was 99.0%.
From the dropping funnel, 23.3 g of water was slowly added dropwise so that the temperature was less than 20 ° C. After the dropping, the ice bath was removed and the internal temperature was adjusted to 24 ° C. 4-dimethylaminopyridine (0.15 g) was added, and the mixture was stirred at 23 to 26 ° C. for 2 hours. At this time, when analyzed by gas chromatography, the ratio of methacrylic anhydride to 5,6-dimethyl-1,4-dithian-2-yl methacrylate was methacrylic anhydride: 5,6-dimethyl-1,4. -Dithian-2-yl methacrylate = 0.1: 99.9 (area ratio).
The obtained liquid was transferred to a separatory funnel having an internal volume of 200 mL and extracted three times with 25 g of ethyl acetate. Three times of the extract thus obtained was placed in a separatory funnel having an internal volume of 200 mL, washed with 23 g of 1% hydrochloric acid aqueous solution three times, water 15 g, saturated sodium hydrogen carbonate aqueous solution 15 g, water 15 g twice, and saturated brine 10 g successively. did. By adding 2.0 mg of p-methoxyphenol and 2.0 mg of phenothiazine, the solvent was distilled off under reduced pressure, and the concentrate was purified by silica gel column chromatography to obtain 5,6-dimethyl-1,4-dithiane- 2.85 g (20.3 mmol) of 2-yl methacrylate was obtained (purity 97.2%, yield 85.3%).
<参考例1>アクリル酸エステル誘導体(1)の酸に対する反応性の評価
 NMRチューブに、合成例1-3で得られた1,4-ジチアン-2-イル=メタクリラート2.73×10-4mol、1,1,2,2-テトラクロロエタン-d20.69mL、メタンスルホン酸1.47×10-6molを入れ、キャップをして良く振り混ぜた。
 該NMRチューブを120℃のオイルバスに数秒~数分間漬けた後、NMRチューブを取り出して氷浴につけ反応液を冷却後、直ちに1H-NMRを「NMR Gemini-300」(商品名;バリアン社製)で測定した。反応させたメタクリ酸エステルのNMRチャートには、未反応のメタクリ酸エステルと反応で生成したアクリル酸が観測され、それぞれのビニルプロトンから解離反応の変換率を求めた。この後、同NMRチューブを120℃のオイルバスに数秒~数分間漬け、氷浴にて冷却し、1H-NMRを測定する操作を数回繰り返し、反応時間に対する変換率を数点求めた。ここで求めた時間に対する変換率を下記の一次反応速度式(式1)
<Reference Example 1> Evaluation of reactivity of acrylic ester derivative (1) to acid Into an NMR tube, 1,4-dithian-2-yl methacrylate obtained in Synthesis Example 1-3 was 2.73 × 10 −. 4 mol, 1,1,2,2-tetrachloroethane-d 2 0.69 mL, and methanesulfonic acid 1.47 × 10 −6 mol were added, and the cap was capped and shaken well.
After the NMR tube is immersed in an oil bath at 120 ° C. for several seconds to several minutes, the NMR tube is taken out, placed in an ice bath, the reaction solution is cooled, and 1 H-NMR is immediately analyzed by “NMR Gemini-300” (trade name: Varian). Manufactured). In the NMR chart of the reacted methacrylic acid ester, unreacted methacrylic acid ester and acrylic acid produced by the reaction were observed, and the conversion rate of the dissociation reaction was determined from each vinyl proton. Thereafter, the same NMR tube was immersed in an oil bath at 120 ° C. for several seconds to several minutes, cooled in an ice bath, and 1 H-NMR measurement was repeated several times to obtain several conversion rates with respect to the reaction time. The conversion rate with respect to the time obtained here is expressed by the following first-order reaction rate equation (Equation 1).
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000026
(式中、kは速度定数(s-1)、t(s)は時間、Xは変換率を表す。)
に従い、X軸に時間(s)、Y軸にln(1-X)をプロットし、直線の傾きからメタクリル酸エステルの120℃における脱保護反応の速度定数を求めた。
 比較対象として、一般的に使用される2-メタクリロイルオキシ-2-メチルアダマンタンを選択し、1,4-ジチアン-2-イル=メタクリラートと同じ方法にて120℃における速度定数を求めた。1,4-ジチアン-2-イル=メタクリラートの脱保護反応の速度定数を2-メタクリロイルオキシ-2-メチルアダマンタンの脱保護反応の速度定数で除することにより、1,4-ジチアン-2-イル=メタクリラートの2-メタクリロイルオキシ-2-メチルアダマンタンに対する相対活性を求め、酸に対する反応性(脱保護反応の活性)の指標とした。
 以上の操作および解析を140℃でも行なった。結果を表1に示す。
(In the formula, k represents a rate constant (s −1 ), t (s) represents time, and X represents a conversion rate.)
The time constant (s) was plotted on the X axis and ln (1-X) was plotted on the Y axis, and the rate constant of the deprotection reaction of the methacrylate ester at 120 ° C. was determined from the slope of the straight line.
For comparison, 2-methacryloyloxy-2-methyladamantane, which is generally used, was selected, and the rate constant at 120 ° C. was determined in the same manner as 1,4-dithian-2-yl methacrylate. By dividing the rate constant of 1,4-dithian-2-yl methacrylate deprotection by the rate constant of 2-methacryloyloxy-2-methyladamantane deprotection, 1,4-dithian-2- The relative activity of yl methacrylate to 2-methacryloyloxy-2-methyladamantane was determined and used as an index of reactivity with acid (deprotection activity).
The above operation and analysis were performed even at 140 ° C. The results are shown in Table 1.
<参考例2>アクリル酸エステル誘導体(1)の酸に対する反応性の評価
 参考例1において、1,4-ジチアン-2-イル=メタクリラートの代わりに、合成例1-5で得られた1,4-ジチエパン-2-イル=メタクリラートとしたこと以外は、参考例1と同様にして実験を行ない、同様の方法で酸に対する反応性(脱保護反応の活性)の評価を行なった。結果を表1に示す。
<Reference Example 2> Evaluation of reactivity of acrylic ester derivative (1) to acid In Reference Example 1, instead of 1,4-dithian-2-yl methacrylate, 1 obtained in Synthesis Example 1-5 Except that, 4-dithiepan-2-yl methacrylate was used, the experiment was conducted in the same manner as in Reference Example 1, and the reactivity to acid (deprotection activity) was evaluated in the same manner. The results are shown in Table 1.
<参考例3>アクリル酸エステル誘導体(1)の酸に対する反応性の評価
 参考例1において、1,4-ジチアン-2-イル=メタクリラートの代わりに、合成例1-7で得られた5,6-ジメチル-1,4-ジチアン-2-イル=メタクリラートとしたこと以外は、参考例1と同様にして実験を行ない、同様の方法で酸に対する反応性(脱保護反応の活性)の評価を行なった。結果を表1に示す。
<Reference Example 3> Evaluation of reactivity of acrylic ester derivative (1) to acid In Reference Example 1, instead of 1,4-dithian-2-yl methacrylate, 5 obtained in Synthesis Example 1-7 , 6-dimethyl-1,4-dithian-2-yl methacrylate was used in the same manner as in Reference Example 1, and the reactivity to acid (deprotection activity) was determined in the same manner. Evaluation was performed. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
<参考例4~6>アクリル酸エステル誘導体(1)の脱保護反応の活性化エネルギー
 参考例1~3の解析で求めた120℃および140℃における脱保護反応の速度定数を下記式(式2)に代入し、各アクリル酸エステル誘導体(1)の脱保護反応の活性化エネルギー(E)を求めた。結果を表2に示す。
<Reference Examples 4 to 6> Activation energy of deprotection reaction of acrylic ester derivative (1) The rate constants of the deprotection reaction at 120 ° C. and 140 ° C. determined by the analysis of Reference Examples 1 to 3 are expressed by the following formulas (Formula 2) And the activation energy (E) of the deprotection reaction of each acrylate derivative (1) was determined. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-M000028
Figure JPOXMLDOC01-appb-M000028
(式中、k1は120℃における脱保護反応の速度定数(s-1)、k2は140℃における脱保護反応の速度定数(s-1)、Eは脱保護反応の活性化エネルギー(kcal/mol)、Rは気体定数(1.987cal・K-1・mol-1、T1は120℃の絶対温度(K)、T2は140℃の絶対温度(K)を表す。) (Where k 1 is the rate constant (s −1 ) of the deprotection reaction at 120 ° C., k 2 is the rate constant (s −1 ) of the deprotection reaction at 140 ° C., and E is the activation energy of the deprotection reaction ( kcal / mol), R is a gas constant (1.987 cal · K −1 · mol −1 , T 1 represents an absolute temperature (K) of 120 ° C., and T 2 represents an absolute temperature (K) of 140 ° C.)
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
 表1および表2より、アクリル酸エステル誘導体(1)は、公知のメタクリル酸エステルと比較した場合、酸に対して高い反応性を有していること(参考例1~3参照)、および活性化エネルギーが低いこと(参考例4~6参照)から、化学増幅型レジストの原料として有用であるといえる。 From Table 1 and Table 2, the acrylic acid ester derivative (1) has a high reactivity with respect to acid when compared with known methacrylic acid esters (see Reference Examples 1 to 3) and activity. It can be said that it is useful as a raw material for a chemically amplified resist because of its low chemical energy (see Reference Examples 4 to 6).
<実施例1>高分子化合物aの製造
 電磁攪拌装置、還流冷却器および温度計を備えた内容積50mlの丸底フラスコに、窒素雰囲気下、合成例1-3で得た1,4-ジチアン-2-イル=メタクリラート1.00g(4.89mmol)、1,4-ジオキサン4.00gおよび2,2’-アゾビス(2,4-ジメチルバレロニトリル)99.7mg(0.401mmol)を仕込み、60℃にて3時間重合反応を行なった。
 得られた反応混合液を、室温下、反応混合液に対して約20倍質量のメタノール中に撹拌しながら滴下し、生成した沈殿物をろ取し、上記と同質量のメタノールで洗浄することにより白色沈殿物を得た。該沈殿物を、減圧(26.7Pa)下、50℃で10時間乾燥して、以下の繰り返し単位からなる高分子化合物a0.56gを得た。得られた高分子化合物aのMwは23800、分散度は2.90であった。
<Example 1> Production of polymer compound a 1,4-dithiane obtained in Synthesis Example 1-3 was placed in a round bottom flask having an internal volume of 50 ml equipped with an electromagnetic stirrer, a reflux condenser and a thermometer under a nitrogen atmosphere. 1.00 g (4.89 mmol) of -2-yl methacrylate, 4.00 g of 1,4-dioxane and 99.7 mg (0.401 mmol) of 2,2′-azobis (2,4-dimethylvaleronitrile) are charged. The polymerization reaction was performed at 60 ° C. for 3 hours.
The obtained reaction mixture is dropped into methanol at about 20 times the mass of the reaction mixture at room temperature while stirring, and the resulting precipitate is collected by filtration and washed with the same amount of methanol as above. Gave a white precipitate. The precipitate was dried at 50 ° C. under reduced pressure (26.7 Pa) for 10 hours to obtain 0.56 g of a polymer compound a consisting of the following repeating units. Mw of the obtained polymer compound a was 23800, and the degree of dispersion was 2.90.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
<実施例2>高分子化合物bの製造
 電磁攪拌装置、還流冷却器および温度計を備えた内容積200mlの丸底フラスコに、窒素雰囲気下、合成例1-3で得た1,4-ジチアン-2-イル=メタクリラート8.16g(39.1mmol)、3-ヒドロキシ-1-アダマンチル=メタクリラート9.25g(39.1mmol)、1,4-ジオキサン168.0gおよび2,2’-アゾビス(2,4-ジメチルバレロニトリル)1.95g(7.86mmol)を仕込み、60~65℃にて4時間重合反応を行なった。
 得られた反応混合液を、室温下、反応混合液に対して約20倍質量のメタノール中に撹拌しながら滴下し、生成した沈殿物をろ取した。該沈殿物をTHF150.0gに溶解した液を上記と同質量のメタノール中に攪拌しながら滴下し、生成した沈殿物をろ取後、上記と同質量のメタノールで洗浄することにより白色沈殿物を得た。該沈殿物を、減圧(26.7Pa)下、50℃で10時間乾燥して、以下の繰り返し単位からなる高分子化合物b10.3gを得た。得られた高分子化合物bのMwは13600、分散度は1.50であった。
<Example 2> Production of polymer compound b 1,4-dithiane obtained in Synthesis Example 1-3 was placed in a 200-ml round bottom flask equipped with an electromagnetic stirrer, a reflux condenser and a thermometer in a nitrogen atmosphere. -2-yl methacrylate 8.16 g (39.1 mmol), 3-hydroxy-1-adamantyl methacrylate 9.25 g (39.1 mmol), 1,4-dioxane 168.0 g and 2,2′-azobis 1.95 g (7.86 mmol) of (2,4-dimethylvaleronitrile) was charged, and a polymerization reaction was performed at 60 to 65 ° C. for 4 hours.
The obtained reaction mixture was added dropwise with stirring to about 20 times the mass of methanol at room temperature with stirring, and the resulting precipitate was collected by filtration. A solution obtained by dissolving the precipitate in 150.0 g of THF was dropped into methanol of the same mass as above while stirring, and the resulting precipitate was collected by filtration and washed with methanol of the same mass as above to obtain a white precipitate. Obtained. The precipitate was dried at 50 ° C. under reduced pressure (26.7 Pa) for 10 hours to obtain 10.3 g of a polymer compound b consisting of the following repeating units. Mw of the obtained polymer compound b was 13600, and the degree of dispersion was 1.50.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
<実施例3>高分子化合物cの製造
 電磁攪拌装置、還流冷却器および温度計を備えた内容積200mlの丸底フラスコに、窒素雰囲気下、合成例1-3で得た1,4-ジチアン-2-イル=メタクリラート8.00g(38.4mmol)、5-メタクリロイルオキシ-2,6-ノルボルナンカルボラクトン8.53g(38.4mmol)、1,4-ジオキサン130.0gおよび2,2’-アゾビス(2,4-ジメチルバレロニトリル)3.89g(15.7mmol)を仕込み、60~65℃にて3時間重合反応を行なった。
 得られた反応混合液を、室温下、反応混合液に対して約20倍質量のメタノール中に撹拌しながら滴下し、生成した沈殿物をろ取した。該沈殿物を1,4-ジオキサン80.0gに溶解した液を上記と同質量のメタノール中に攪拌しながら滴下し、生成した沈殿物をろ取後、上記と同質量のメタノールで洗浄することにより白色沈殿物を得た。該沈殿物を、減圧(26.7Pa)下、50℃で10時間乾燥して、以下の繰り返し単位からなる高分子化合物c12.1gを得た。得られた高分子化合物cのMwは10600、分散度は1.83であった。
<Example 3> Production of polymer compound c 1,4-dithiane obtained in Synthesis Example 1-3 in a 200 ml round bottom flask equipped with an electromagnetic stirrer, a reflux condenser and a thermometer under a nitrogen atmosphere -2-yl methacrylate 8.00 g (38.4 mmol), 5-methacryloyloxy-2,6-norbornanecarbolactone 8.53 g (38.4 mmol), 1,4-dioxane 130.0 g and 2,2 ′ -Azobis (2,4-dimethylvaleronitrile) 3.89 g (15.7 mmol) was charged, and a polymerization reaction was performed at 60 to 65 ° C for 3 hours.
The obtained reaction mixture was added dropwise with stirring to about 20 times the mass of methanol at room temperature with stirring, and the resulting precipitate was collected by filtration. A solution obtained by dissolving the precipitate in 80.0 g of 1,4-dioxane is added dropwise to methanol with the same mass as above while stirring, and the resulting precipitate is collected by filtration and washed with the same mass of methanol as above. Gave a white precipitate. The precipitate was dried at 50 ° C. under reduced pressure (26.7 Pa) for 10 hours to obtain 12.1 g of a polymer compound c consisting of the following repeating units. Mw of the obtained polymer compound c was 10600, and the degree of dispersion was 1.83.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
<実施例4>高分子化合物dの製造
 実施例3において5-メタクリロイルオキシ-2,6-ノルボルナンカルボラクトン8.53g(38.4mmol)の代わりにα-メタクリロイルオキシ-γ-ブチロラクトン6.53g(38.4mmol)を用い、2,2’-アゾビス(2,4-ジメチルバレロニトリル)の使用量を3.89g(15.7mmol)から1.95g(7.83mmol)に代えた以外は実施例3と同様の仕込み量および条件で重合反応を行った。
 得られた反応混合液を、室温下、反応混合液に対して約20倍質量のメタノール中に撹拌しながら滴下し、生成した沈殿物をろ取した。該沈殿物を1,4-ジオキサン80.0gに溶解した液を上記と同質量のメタノール中に攪拌しながら滴下し、生成した沈殿物をろ取後、上記と同質量のメタノールで洗浄することにより白色沈殿物を得た。該沈殿物を、減圧(26.7Pa)下、50℃で10時間乾燥して、以下の繰り返し単位からなる高分子化合物d9.4gを得た。得られた高分子化合物dのMwは8600、分散度は1.67であった。
<Example 4> Production of polymer compound d In Example 3, instead of 8.53 g (38.4 mmol) of 5-methacryloyloxy-2,6-norbornanecarbolactone, 6.53 g of α-methacryloyloxy-γ-butyrolactone ( 38.4 mmol), and the amount of 2,2′-azobis (2,4-dimethylvaleronitrile) used was changed from 3.89 g (15.7 mmol) to 1.95 g (7.83 mmol). The polymerization reaction was carried out under the same charge and conditions as in 3.
The obtained reaction mixture was added dropwise with stirring to about 20 times the mass of methanol at room temperature with stirring, and the resulting precipitate was collected by filtration. A solution obtained by dissolving the precipitate in 80.0 g of 1,4-dioxane is added dropwise to methanol with the same mass as above while stirring, and the resulting precipitate is collected by filtration and washed with the same mass of methanol as above. Gave a white precipitate. The precipitate was dried at 50 ° C. under reduced pressure (26.7 Pa) for 10 hours to obtain 9.4 g of a polymer compound d having the following repeating units. The obtained polymer compound d had an Mw of 8600 and a dispersity of 1.67.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
<実施例5>高分子化合物eの製造
 実施例4においてα-メタクリロイルオキシ-γ-ブチロラクトンの使用量を6.53g(38.4mmol)から4.36g(25.6mmol)に、2,2’-アゾビス(2,4-ジメチルバレロニトリル)の使用量を1.95g(7.83mmol)から1.64(6.62mmol)に代えた以外は実施例4と同様の仕込み量および条件で重合反応を行った。
 得られた反応混合液を、室温下、反応混合液に対して約20倍質量のメタノール中に撹拌しながら滴下し、生成した沈殿物をろ取した。該沈殿物を1,4-ジオキサン80.0gに溶解した液を上記と同質量のメタノール中に攪拌しながら滴下し、生成した沈殿物をろ取後、上記と同質量のメタノールで洗浄することにより白色沈殿物を得た。該沈殿物を、減圧(26.7Pa)下、50℃で10時間乾燥して、以下の繰り返し単位からなる高分子化合物e10.2gを得た。得られた高分子化合物eのMwは9900、分散度は1.75であった。
Example 5 Production of Polymer Compound e In Example 4, the amount of α-methacryloyloxy-γ-butyrolactone used was changed from 6.53 g (38.4 mmol) to 4.36 g (25.6 mmol) to 2,2 ′. -Polymerization reaction under the same charge and conditions as in Example 4 except that the amount of azobis (2,4-dimethylvaleronitrile) used was changed from 1.95 g (7.83 mmol) to 1.64 (6.62 mmol) Went.
The obtained reaction mixture was added dropwise with stirring to about 20 times the mass of methanol at room temperature with stirring, and the resulting precipitate was collected by filtration. A solution obtained by dissolving the precipitate in 80.0 g of 1,4-dioxane is added dropwise to methanol with the same mass as above while stirring, and the resulting precipitate is collected by filtration and washed with the same mass of methanol as above. Gave a white precipitate. The precipitate was dried at 50 ° C. under reduced pressure (26.7 Pa) for 10 hours to obtain 10.2 g of a polymer compound e having the following repeating units. The obtained polymer compound e had an Mw of 9900 and a dispersity of 1.75.
<実施例6>高分子化合物fの製造
 電磁攪拌装置、還流冷却器および温度計を備えた内容積100mlの丸底フラスコに、窒素雰囲気下、合成例1-3で得た1,4-ジチアン-2-イル=メタクリラート3.88g(18.7mmol)、3-ヒドロキシ-1-アダマンチル=メタクリラート2.95g(12.5mmol)、5-メタクリロイルオキシ-2,6-ノルボルナンカルボラクトン4.16g(18.7mmol)、1,4-ジオキサン100.0gおよび2,2’-アゾビス(2,4-ジメチルバレロニトリル)2.48g(10.0mmol)を仕込み、60~65℃にて4時間重合反応を行なった。
 得られた反応混合液を、室温下、反応混合液に対して約20倍質量のメタノール中に撹拌しながら滴下し、生成した沈殿物をろ取した。該沈殿物を1,4-ジオキサン80.0gに溶解した液を上記と同質量のメタノール中に攪拌しながら滴下し、生成した沈殿物をろ取後、上記と同質量のメタノールで洗浄することにより白色沈殿物を得た。該沈殿物を、減圧(26.7Pa)下、50℃で10時間乾燥して、以下の繰り返し単位からなる高分子化合物f6.5gを得た。得られた高分子化合物fのMwは12800、分散度は1.82であった。
<Example 6> Production of polymer compound f 1,4-dithiane obtained in Synthesis Example 1-3 in a 100 ml round bottom flask equipped with an electromagnetic stirrer, a reflux condenser and a thermometer under a nitrogen atmosphere -2-yl methacrylate 3.88 g (18.7 mmol), 3-hydroxy-1-adamantyl methacrylate 2.95 g (12.5 mmol), 5-methacryloyloxy-2,6-norbornanecarbolactone 4.16 g (18.7 mmol), 1,4-dioxane 100.0 g and 2,2′-azobis (2,4-dimethylvaleronitrile) 2.48 g (10.0 mmol) were charged and polymerized at 60 to 65 ° C. for 4 hours. Reaction was performed.
The obtained reaction mixture was added dropwise with stirring to about 20 times the mass of methanol at room temperature with stirring, and the resulting precipitate was collected by filtration. A solution obtained by dissolving the precipitate in 80.0 g of 1,4-dioxane is added dropwise to methanol with the same mass as above while stirring, and the resulting precipitate is collected by filtration and washed with the same mass of methanol as above. Gave a white precipitate. The precipitate was dried at 50 ° C. under reduced pressure (26.7 Pa) for 10 hours to obtain 6.5 g of a polymer compound f comprising the following repeating units. The obtained polymer compound f had an Mw of 12,800 and a dispersity of 1.82.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
<実施例7>高分子化合物gの製造
 実施例6において5-メタクリロイルオキシ-2,6-ノルボルナンカルボラクトン4.16g(18.7mmol)の代わりにα-メタクリロイルオキシ-γ-ブチロラクトン3.18g(18.7mmol)を用いた以外は実施例6と同様の仕込み量および条件で重合反応を行った。
 得られた反応混合液を、室温下、反応混合液に対して約20倍質量のメタノール中に撹拌しながら滴下し、生成した沈殿物をろ取した。該沈殿物を1,4-ジオキサン80.0gに溶解した液を上記と同質量のメタノール中に攪拌しながら滴下し、生成した沈殿物をろ取後、上記と同質量のメタノールで洗浄することにより白色沈殿物を得た。該沈殿物を、減圧(26.7Pa)下、50℃で10時間乾燥して、以下の繰り返し単位からなる高分子化合物g5.61gを得た。得られた高分子化合物gのMwは11900、分散度は1.65であった。
<Example 7> Production of polymer compound g In Example 6, instead of 4.16 g (18.7 mmol) of 5-methacryloyloxy-2,6-norbornanecarbolactone, 3.18 g of α-methacryloyloxy-γ-butyrolactone ( The polymerization reaction was carried out under the same charge and conditions as in Example 6 except that 18.7 mmol) was used.
The obtained reaction mixture was added dropwise with stirring to about 20 times the mass of methanol at room temperature with stirring, and the resulting precipitate was collected by filtration. A solution obtained by dissolving the precipitate in 80.0 g of 1,4-dioxane is added dropwise to methanol with the same mass as above while stirring, and the resulting precipitate is collected by filtration and washed with the same mass of methanol as above. Gave a white precipitate. The precipitate was dried at 50 ° C. under reduced pressure (26.7 Pa) for 10 hours to obtain 5.61 g of a polymer compound consisting of the following repeating units. The obtained polymer compound g had an Mw of 11900 and a dispersity of 1.65.
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
<実施例8>高分子化合物hの製造
 電磁攪拌装置、還流冷却器および温度計を備えた内容積100mlの丸底フラスコに、窒素雰囲気下、合成例1-5で得た1,4-ジチエパン-2-イル=メタクリラート2.18g(9.78mmol)、3-ヒドロキシ-1-アダマンチル=メタクリラート2.31g(9.78mmol)、1,4-ジオキサン42.0gおよび2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.49g(1.97mmol)を仕込み、60~65℃にて4時間重合反応を行なった。
 得られた反応混合液を、室温下、反応混合液に対して約20倍質量のメタノール中に撹拌しながら滴下し、生成した沈殿物をろ取した。該沈殿物をTHF37.5gに溶解した液を上記と同質量のメタノール中に攪拌しながら滴下し、生成した沈殿物をろ取後、上記と同質量のメタノールで洗浄することにより白色沈殿物を得た。該沈殿物を、減圧(26.7Pa)下、50℃で10時間乾燥して、以下の繰り返し単位からなる高分子化合物h2.68gを得た。得られた高分子化合物hのMwは14400、分散度は1.59であった。
<Example 8> Production of polymer compound h 1,4-dithiepan obtained in Synthesis Example 1-5 was placed in a 100-ml round bottom flask equipped with an electromagnetic stirrer, reflux condenser and thermometer in a nitrogen atmosphere. -2-yl methacrylate 2.18 g (9.78 mmol), 3-hydroxy-1-adamantyl methacrylate 2.31 g (9.78 mmol), 1,4-dioxane 42.0 g and 2,2′-azobis 0.49 g (1.97 mmol) of (2,4-dimethylvaleronitrile) was charged, and a polymerization reaction was performed at 60 to 65 ° C. for 4 hours.
The obtained reaction mixture was added dropwise with stirring to about 20 times the mass of methanol at room temperature with stirring, and the resulting precipitate was collected by filtration. A solution obtained by dissolving the precipitate in 37.5 g of THF was dropped into methanol of the same mass as above while stirring, and the resulting precipitate was collected by filtration and washed with methanol of the same mass as above to obtain a white precipitate. Obtained. The precipitate was dried at 50 ° C. under reduced pressure (26.7 Pa) for 10 hours to obtain 2.68 g of a polymer compound h composed of the following repeating units. The obtained polymer compound h had an Mw of 14400 and a dispersity of 1.59.
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
<実施例9>高分子化合物iの製造
 電磁攪拌装置、還流冷却器および温度計を備えた内容積100mlの丸底フラスコに、窒素雰囲気下、合成例1-5で得た1,4-ジチエパン-2-イル=メタクリラート2.09g(9.35mmol)、3-ヒドロキシ-1-アダマンチル=メタクリラート1.48g(6.25mmol)、5-メタクリロイルオキシ-2,6-ノルボルナンカルボラクトン2.08g(9.35mmol)、1,4-ジオキサン50.0gおよび2,2’-アゾビス(2,4-ジメチルバレロニトリル)1.24g(5.0mmol)を仕込み、60~65℃にて4時間重合反応を行なった。
 得られた反応混合液を、室温下、反応混合液に対して約20倍質量のメタノール中に撹拌しながら滴下し、生成した沈殿物をろ取した。該沈殿物を1,4-ジオキサン40.0gに溶解した液を上記と同質量のメタノール中に攪拌しながら滴下し、生成した沈殿物をろ取後、上記と同質量のメタノールで洗浄することにより白色沈殿物を得た。該沈殿物を、減圧(26.7Pa)下、50℃で10時間乾燥して、以下の繰り返し単位からなる高分子化合物i3.09gを得た。得られた高分子化合物iのMwは14000、分散度は1.77であった。
<Example 9> Production of polymer compound i 1,4-dithiepan obtained in Synthesis Example 1-5 was placed in a 100-ml round bottom flask equipped with an electromagnetic stirrer, a reflux condenser and a thermometer under a nitrogen atmosphere. -2-yl methacrylate 2.09 g (9.35 mmol), 3-hydroxy-1-adamantyl methacrylate 1.48 g (6.25 mmol), 5-methacryloyloxy-2,6-norbornanecarbolactone 2.08 g (9.35 mmol), 50.0 g of 1,4-dioxane and 1.24 g (5.0 mmol) of 2,2′-azobis (2,4-dimethylvaleronitrile) were charged and polymerized at 60 to 65 ° C. for 4 hours. Reaction was performed.
The obtained reaction mixture was added dropwise with stirring to about 20 times the mass of methanol at room temperature with stirring, and the resulting precipitate was collected by filtration. A solution obtained by dissolving the precipitate in 40.0 g of 1,4-dioxane is dropped into methanol of the same mass as above while stirring, and the resulting precipitate is collected by filtration and washed with the same mass of methanol as described above. Gave a white precipitate. The precipitate was dried at 50 ° C. under reduced pressure (26.7 Pa) for 10 hours to obtain 3.09 g of a polymer compound i comprising the following repeating units. The obtained polymer compound i had an Mw of 14,000 and a dispersity of 1.77.
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
<実施例10>高分子化合物jの製造
 実施例8において、1,4-ジチエパン-2-イル=メタクリラート2.18g(9.78mmol)の代わりに合成例1-7で得た5,6-ジメチル-1,4-ジチアン-2-イル=メタクリラート2.34(9.78mmol)を用いたこと以外は実施例8と同様の仕込み量および条件で重合反応を行った。
 得られた反応混合液を、室温下、反応混合液に対して約20倍質量のメタノール中に撹拌しながら滴下し、生成した沈殿物をろ取した。該沈殿物をTHF37.5gに溶解した液を上記と同質量のメタノール中に攪拌しながら滴下し、生成した沈殿物をろ取後、上記と同質量のメタノールで洗浄することにより白色沈殿物を得た。該沈殿物を、減圧(26.7Pa)下、50℃で10時間乾燥して、以下の繰り返し単位からなる高分子化合物j2.76gを得た。得られた高分子化合物jのMwは15800、分散度は1.49であった。
<Example 10> Production of polymer compound j In Example 8, 5,6 obtained in Synthesis Example 1-7 instead of 2.18 g (9.78 mmol) of 1,4-dithiepan-2-yl methacrylate The polymerization reaction was carried out under the same charge and conditions as in Example 8, except that -dimethyl-1,4-dithian-2-yl methacrylate 2.34 (9.78 mmol) was used.
The obtained reaction mixture was added dropwise with stirring to about 20 times the mass of methanol at room temperature with stirring, and the resulting precipitate was collected by filtration. A solution obtained by dissolving the precipitate in 37.5 g of THF was dropped into methanol of the same mass as above while stirring, and the resulting precipitate was collected by filtration and washed with methanol of the same mass as above to obtain a white precipitate. Obtained. The precipitate was dried at 50 ° C. under reduced pressure (26.7 Pa) for 10 hours to obtain 2.76 g of a polymer compound j consisting of the following repeating units. Mw of the obtained polymer compound j was 15800, and the degree of dispersion was 1.49.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
<実施例11>高分子化合物kの製造
 実施例9において、1,4-ジチエパン-2-イル=メタクリラート2.09g(9.35mmol)の代わりに合成例1-7で得た5,6-ジメチル-1,4-ジチアン-2-イル=メタクリラート2.23(9.35mmol)を用いた以外は実施例9と同様の仕込み量および条件で重合反応を行った。
 得られた反応混合液を、室温下、反応混合液に対して約20倍質量のメタノール中に撹拌しながら滴下し、生成した沈殿物をろ取した。該沈殿物を1,4-ジオキサン40.0gに溶解した液を上記と同質量のメタノール中に攪拌しながら滴下し、生成した沈殿物をろ取後、上記と同質量のメタノールで洗浄することにより白色沈殿物を得た。該沈殿物を、減圧(26.7Pa)下、50℃で10時間乾燥して、以下の繰り返し単位からなる高分子化合物k2.69gを得た。得られた高分子化合物kのMwは15900、分散度は1.68であった。
Example 11 Production of Polymer Compound k In Example 9, 5,6 obtained in Synthesis Example 1-7 instead of 2.09 g (9.35 mmol) of 1,4-dithiepan-2-yl methacrylate The polymerization reaction was carried out under the same charge and conditions as in Example 9, except that -dimethyl-1,4-dithian-2-yl methacrylate 2.23 (9.35 mmol) was used.
The obtained reaction mixture was added dropwise with stirring to about 20 times the mass of methanol at room temperature with stirring, and the resulting precipitate was collected by filtration. A solution obtained by dissolving the precipitate in 40.0 g of 1,4-dioxane is dropped into methanol of the same mass as above while stirring, and the resulting precipitate is collected by filtration and washed with the same mass of methanol as described above. Gave a white precipitate. The precipitate was dried at 50 ° C. under reduced pressure (26.7 Pa) for 10 hours to obtain 2.69 g of a polymer compound k having the following repeating units. The obtained polymer compound k had an Mw of 15900 and a dispersity of 1.68.
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
<比較合成例1>高分子化合物Aの合成
 電磁攪拌装置、還流冷却器および温度計を備えた内容積200mlの丸底フラスコに、窒素雰囲気下、2-メチル-2-アダマンチル=メタクリラート10.0g(42.3mmol)、3-ヒドロキシ-1-アダマンチル=メタクリラート10.0g(42.7mmol)、プロピレングリコールモノメチルエーテル80.0gおよび2,2’-アゾビスイソブチロニトリル1.40g(8.53mmol)を仕込み、81~87℃にて2時間重合反応を行なった。得られた反応混合液を、室温下、反応混合液に対して約20倍質量のメタノール中に撹拌しながら滴下し、生成した沈殿物をろ取した。該沈殿物をTHF100.0gに溶解した液を上記と同質量のメタノール中に攪拌しながら滴下し、生成した沈殿物をろ取後、上記と同質量のメタノールで洗浄することにより白色沈殿物を得た。該沈殿物を、減圧(26.7Pa)下、50℃で10時間乾燥して、以下の繰り返し単位からなる高分子化合物A13.2gを得た。得られた高分子化合物AのMwは16100、分散度は1.68であった。
<Comparative Synthesis Example 1> Synthesis of Polymer Compound A To a 200-ml round bottom flask equipped with an electromagnetic stirrer, a reflux condenser and a thermometer, 2-methyl-2-adamantyl methacrylate was added under a nitrogen atmosphere. 0 g (42.3 mmol), 3-hydroxy-1-adamantyl methacrylate 10.0 g (42.7 mmol), propylene glycol monomethyl ether 80.0 g and 2,2′-azobisisobutyronitrile 1.40 g (8 .53 mmol) and a polymerization reaction was carried out at 81-87 ° C. for 2 hours. The obtained reaction mixture was added dropwise with stirring to about 20 times the mass of methanol at room temperature with stirring, and the resulting precipitate was collected by filtration. A solution obtained by dissolving the precipitate in 100.0 g of THF was dropped into methanol of the same mass as above while stirring, and the resulting precipitate was collected by filtration and washed with methanol of the same mass as above to obtain a white precipitate. Obtained. The precipitate was dried at 50 ° C. under reduced pressure (26.7 Pa) for 10 hours to obtain 13.2 g of polymer compound A composed of the following repeating units. The obtained polymer compound A had an Mw of 16,100 and a dispersity of 1.68.
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
<比較合成例2>高分子化合物Bの合成
 比較合成例1において、2-メチル-2-アダマンチル=メタクリラート10.0g(42.3mmol)の代わりにテトラヒドロピラン-2-イル=メタクリラート7.39g(42.7mmol)を用いた以外は比較合成例1と同様の仕込み量および条件で重合反応を行った。
 得られた反応混合液を、室温下、反応混合液に対して約20倍質量のメタノール中に撹拌しながら滴下し、生成した沈殿物をろ取した。該沈殿物をTHF100.0gに溶解した液を上記と同質量のメタノール中に攪拌しながら滴下し、生成した沈殿物をろ取後、上記と同質量のメタノールで洗浄することにより白色沈殿物を得た。該沈殿物を、減圧(26.7Pa)下、50℃で10時間乾燥して、以下の繰り返し単位からなる高分子化合物B9.96gを得た。得られた高分子化合物BのMwは13200、分散度は1.71であった。
Comparative Synthesis Example 2 Synthesis of Polymer Compound B In Comparative Synthesis Example 1, tetrahydropyran-2-yl methacrylate was used instead of 10.0 g (42.3 mmol) of 2-methyl-2-adamantyl methacrylate. The polymerization reaction was carried out under the same charge and conditions as in Comparative Synthesis Example 1 except that 39 g (42.7 mmol) was used.
The obtained reaction mixture was added dropwise with stirring to about 20 times the mass of methanol at room temperature with stirring, and the resulting precipitate was collected by filtration. A solution obtained by dissolving the precipitate in 100.0 g of THF was dropped into methanol of the same mass as above while stirring, and the resulting precipitate was collected by filtration and washed with methanol of the same mass as above to obtain a white precipitate. Obtained. The precipitate was dried at 50 ° C. under reduced pressure (26.7 Pa) for 10 hours to obtain 9.96 g of a polymer compound B composed of the following repeating units. The obtained polymer compound B had Mw of 13,200 and a dispersity of 1.71.
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
<比較合成例3>高分子化合物Cの合成
 電磁攪拌装置、還流冷却器および温度計を備えた内容積200mlの丸底フラスコに、窒素雰囲気下、1-メチル-1-シクロヘキシル=メタクリラート9.14g(50.2mmol)、3-ヒドロキシ-1-アダマンチル=メタクリラート11.82g(50.0mmol)、1,4-ジオキサン101.4gおよび2,2’-アゾビスイソブチロニトリル1.24g(7.55mmol)を仕込み、80~82℃にて5時間重合反応を行なった。得られた反応混合液を、室温下、反応混合液に対して約20倍質量の水-メタノール混合溶液(質量比 水:メタノール=1:3)中に撹拌しながら滴下し、生成した沈殿物をろ取した。該沈殿物をTHF140.0gに溶解した液を上記と同質量の水-メタノール混合溶液(質量比 水:メタノール=1:3)中に攪拌しながら滴下し、生成した沈殿物をろ取後、上記と同質量の水-メタノール混合溶液(質量比 水:メタノール=1:3)で洗浄することにより白色沈殿物を得た。該沈殿物を、減圧(26.7Pa)下、50℃で10時間乾燥して、以下の繰り返し単位からなる高分子化合物C11.8gを得た。得られた高分子化合物CのMwは12600、分散度は1.83であった。
<Comparative Synthesis Example 3> Synthesis of Polymer Compound C 1-Methyl-1-cyclohexyl = methacrylate in a 200 ml round bottom flask equipped with an electromagnetic stirrer, reflux condenser and thermometer in a nitrogen atmosphere. 14 g (50.2 mmol), 3-hydroxy-1-adamantyl methacrylate 11.82 g (50.0 mmol), 1,4-dioxane 101.4 g and 2,2′-azobisisobutyronitrile 1.24 g ( 7.55 mmol), and a polymerization reaction was carried out at 80 to 82 ° C. for 5 hours. The obtained reaction mixture was dropped into a water-methanol mixed solution (mass ratio water: methanol = 1: 3) of about 20 times mass with respect to the reaction mixture at room temperature while stirring, and a precipitate formed. Filtered. A solution obtained by dissolving the precipitate in 140.0 g of THF was dropped into a water-methanol mixed solution (mass ratio water: methanol = 1: 3) having the same mass as above while stirring, and the resulting precipitate was collected by filtration. A white precipitate was obtained by washing with a water-methanol mixed solution (mass ratio water: methanol = 1: 3) having the same mass as above. The precipitate was dried at 50 ° C. under reduced pressure (26.7 Pa) for 10 hours to obtain 11.8 g of a polymer compound C consisting of the following repeating units. The obtained polymer compound C had Mw of 12,600 and a dispersity of 1.83.
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
<比較合成例4>高分子化合物Dの合成
 電磁攪拌装置、還流冷却器および温度計を備えた内容積100mlの丸底フラスコに、窒素雰囲気下、2-メタクリロイルオキシ-2-メチルアダマンタン4.39g(18.7mmol)、3-ヒドロキシ-1-アダマンチル=メタクリラート2.95g(12.5mmol)、α-メタクリロイルオキシ-γ-ブチロラクトン3.18g(18.7mmol)、メチルエチルケトン35.4gおよび2,2’-アゾビスイソブチロニトリル0.66g(4.0mmol)を仕込み、80℃にて4時間重合反応を行なった。得られた反応混合液を、室温下、約20倍質量のメタノール中に撹拌しながら滴下することにより、白色沈殿物を得た。該沈殿物をろ取し、減圧(26.7Pa)下、50℃で10時間乾燥して、以下の繰り返し単位からなる高分子化合物D6.06gを得た。得られた高分子化合物DのMwは10000、分散度は1.50であった。
Comparative Synthesis Example 4 Synthesis of Polymer Compound D 4.39 g of 2-methacryloyloxy-2-methyladamantane was placed in a 100 ml round bottom flask equipped with an electromagnetic stirrer, a reflux condenser and a thermometer under a nitrogen atmosphere. (18.7 mmol), 3-hydroxy-1-adamantyl methacrylate 2.95 g (12.5 mmol), α-methacryloyloxy-γ-butyrolactone 3.18 g (18.7 mmol), methyl ethyl ketone 35.4 g and 2,2 0.66 g (4.0 mmol) of '-azobisisobutyronitrile was charged, and a polymerization reaction was performed at 80 ° C. for 4 hours. The obtained reaction mixture was dropped into methanol of about 20 times mass at room temperature while stirring to obtain a white precipitate. The precipitate was collected by filtration and dried at 50 ° C. under reduced pressure (26.7 Pa) for 10 hours to obtain 6.06 g of a polymer compound D consisting of the following repeating units. The obtained polymer compound D had Mw of 10,000 and a dispersity of 1.50.
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
<比較合成例5>高分子化合物Eの合成
 比較合成例4において、2-メタクリロイルオキシ-2-メチルアダマンタン4.39g(18.7mmol)の代わりにテトラヒドロピラン-2-イル=メタクリラート3.18g(18.7mmol)を用いた以外は比較合成例4と同様の仕込み量および条件で重合反応を行なった。得られた反応混合液を、室温下、約20倍質量のメタノール中に撹拌しながら滴下することにより、白色沈殿物を得た。該沈殿物をろ取し、減圧(26.7Pa)下、50℃で10時間乾燥して、以下の繰り返し単位からなる高分子化合物E5.82gを得た。得られた高分子化合物EのMwは6500、分散度は1.60であった。
Comparative Synthesis Example 5 Synthesis of Polymer Compound E In Comparative Synthesis Example 4, tetrahydropyran-2-yl methacrylate 3.18 g instead of 4.39 g (18.7 mmol) of 2-methacryloyloxy-2-methyladamantane The polymerization reaction was carried out under the same charge and conditions as in Comparative Synthesis Example 4 except that (18.7 mmol) was used. The obtained reaction mixture was dropped into methanol of about 20 times mass at room temperature while stirring to obtain a white precipitate. The precipitate was collected by filtration and dried at 50 ° C. under reduced pressure (26.7 Pa) for 10 hours to obtain 5.82 g of a polymer compound E consisting of the following repeating units. The obtained polymer compound E had an Mw of 6500 and a dispersity of 1.60.
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
<比較合成例6>高分子化合物Fの合成
 比較合成例4において2-メタクリロイルオキシ-2-メチルアダマンタン4.39g(18.7mmol)の代わりに1-メチル-1-シクロヘキシル=メタクリラート3.41g(18.7mmol)を用いた以外は比較合成例4と同様の仕込み量および条件で重合反応を行なった。得られた反応混合液を、室温下、約20倍質量のメタノール中に撹拌しながら滴下することにより、白色沈殿物を得た。該沈殿物をろ取し、減圧(26.7Pa)下、50℃で10時間乾燥して、以下の繰り返し単位からなる高分子化合物F5.69gを得た。得られた高分子化合物FのMwは6900、分散度は1.58であった。
<Comparative Synthesis Example 6> Synthesis of Polymer Compound F In Comparative Synthesis Example 4, 3.41 g of 1-methyl-1-cyclohexyl methacrylate instead of 4.39 g (18.7 mmol) of 2-methacryloyloxy-2-methyladamantane The polymerization reaction was carried out under the same charge and conditions as in Comparative Synthesis Example 4 except that (18.7 mmol) was used. The obtained reaction mixture was dropped into methanol of about 20 times mass at room temperature while stirring to obtain a white precipitate. The precipitate was collected by filtration and dried at 50 ° C. under reduced pressure (26.7 Pa) for 10 hours to obtain 5.69 g of a polymer compound F consisting of the following repeating units. Mw of the obtained polymer compound F was 6900, and the degree of dispersion was 1.58.
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
<比較合成例7>高分子化合物Gの合成
 比較合成例1において、2-メチル-2-アダマンチル=メタクリラート10.0g(42.3mmol)の代わりに1,3-ジチアン-5-イル=メタクリラート8.98g(42.7mmol)を用いた以外は比較合成例1と同様の仕込み量および条件で重合反応を行った。
 得られた反応混合液を、室温下、反応混合液に対して約20倍質量のメタノール中に撹拌しながら滴下し、生成した沈殿物をろ取した。該沈殿物をTHF100.0gに溶解した液を上記と同質量のメタノール中に攪拌しながら滴下し、生成した沈殿物をろ取後、上記と同質量のメタノールで洗浄することにより白色沈殿物を得た。該沈殿物を、減圧(26.7Pa)下、50℃で10時間乾燥して、以下の繰り返し単位からなる高分子化合物G10.22gを得た。得られた高分子化合物GのMwは15200、分散度は1.69であった。
Comparative Synthesis Example 7 Synthesis of Polymer Compound G In Comparative Synthesis Example 1, 1,3-dithian-5-yl methacrylate was used instead of 10.0 g (42.3 mmol) of 2-methyl-2-adamantyl methacrylate. The polymerization reaction was carried out under the same charging amount and conditions as in Comparative Synthesis Example 1 except that 8.98 g (42.7 mmol) of lato was used.
The obtained reaction mixture was added dropwise with stirring to about 20 times the mass of methanol at room temperature with stirring, and the resulting precipitate was collected by filtration. A solution obtained by dissolving the precipitate in 100.0 g of THF was dropped into methanol of the same mass as above while stirring, and the resulting precipitate was collected by filtration and washed with methanol of the same mass as above to obtain a white precipitate. Obtained. The precipitate was dried at 50 ° C. under reduced pressure (26.7 Pa) for 10 hours to obtain 10.22 g of a polymer compound G composed of the following repeating units. Mw of the obtained polymer compound G was 15200, and the degree of dispersion was 1.69.
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
<比較合成例8>高分子化合物Hの合成
 比較合成例4において、2-メタクリロイルオキシ-2-メチルアダマンタン4.39g(18.7mmol)の代わりに1,3-ジチアン-5-イル=メタクリラート3.93g(18.7mmol)を用いた以外は比較合成例4と同様の仕込み量および条件で重合反応を行なった。
 得られた反応混合液を、室温下、約20倍質量のメタノール中に撹拌しながら滴下することにより、白色沈殿物を得た。該沈殿物をろ取し、減圧(26.7Pa)下、50℃で10時間乾燥して、以下の繰り返し単位からなる高分子化合物H5.99gを得た。得られた高分子化合物HのMwは12800、分散度は1.65であった。
Comparative Synthesis Example 8 Synthesis of Polymer Compound H In Comparative Synthesis Example 4, 1,3-dithian-5-yl methacrylate was used instead of 4.39 g (18.7 mmol) of 2-methacryloyloxy-2-methyladamantane. The polymerization reaction was carried out under the same charge and conditions as in Comparative Synthesis Example 4 except that 3.93 g (18.7 mmol) was used.
The obtained reaction mixture was dropped into methanol of about 20 times mass at room temperature while stirring to obtain a white precipitate. The precipitate was collected by filtration and dried at 50 ° C. under reduced pressure (26.7 Pa) for 10 hours to obtain 5.99 g of a polymer compound H composed of the following repeating units. Mw of the obtained polymer compound H was 12800, and the degree of dispersion was 1.65.
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
<実施例12~21および比較例1~8>QCM法による現像液中の溶解特性評価
 実施例2~11または比較合成例1~8で得られた高分子化合物を100質量部と、光酸発生剤としてTPS-109(製品名、成分;ノナフルオロ-n-ブタンスルホン酸トリフェニルスルホニウム、みどり化学株式会社製)を3質量部と、溶媒として、高分子化合物b、c、d、e、h、j、A、B、CおよびGを用いる場合は乳酸エチル、それら以外の高分子化合物を用いる場合はプロピレングリコールモノメチルエーテルアセテート/乳酸エチル=1/1(体積比)の混合溶媒を用いて、各成分を混合し、高分子化合物の濃度が12質量%のフォトレジスト組成物を調製した。
 得られた各フォトレジスト組成物を、フィルター[四フッ化エチレン樹脂(PTFE)製、孔径0.2μm]を用いてろ過した後、表面に金電極を真空蒸着した1インチサイズの石英基板上にそれぞれスピンコーティング法により塗布し、厚み約300nmの感光層を形成させた。感光層を形成させた石英基板をホットプレート上にて、110℃で90秒間プリベークした後、ArFエキシマレーザー(波長193nm)を用いて露光量100mJ/cm2で露光し、続いて110℃で90秒間ポストエクスポージャーベークした。
 水晶振動子マイクロバランス装置「RQCM」(商品名;Maxtek社製)に上記石英基板をセットし、2.38質量%のテトラメチルアンモニウムヒドロキシド水溶液にて120秒間現像処理した。現像処理中の石英基板の振動数変化を経時的にモニターした後、得られた振動数変化を膜厚の変化に換算し、膜厚の増加変化から最大膨潤量、膜厚の減少変化から溶解速度を算出した。結果を表3に示す。
<Examples 12 to 21 and Comparative Examples 1 to 8> Evaluation of Dissolution Properties in Developer by QCM Method 100 parts by mass of the polymer compound obtained in Examples 2 to 11 or Comparative Synthesis Examples 1 to 8 and photoacid 3 parts by mass of TPS-109 (product name, component; nonafluoro-n-butanesulfonate triphenylsulfonium, manufactured by Midori Chemical Co., Ltd.) as a generator, and polymer compounds b, c, d, e, h as solvents , J, A, B, C and G when using a mixed solvent of ethyl lactate, and when using a polymer compound other than those, propylene glycol monomethyl ether acetate / ethyl lactate = 1/1 (volume ratio), Each component was mixed to prepare a photoresist composition having a polymer compound concentration of 12% by mass.
Each of the obtained photoresist compositions was filtered using a filter [made of tetrafluoroethylene resin (PTFE), pore size 0.2 μm], and then a 1-inch size quartz substrate having a gold electrode vacuum-deposited on the surface thereof. Each was coated by a spin coating method to form a photosensitive layer having a thickness of about 300 nm. The quartz substrate on which the photosensitive layer has been formed is pre-baked on a hot plate at 110 ° C. for 90 seconds, then exposed using an ArF excimer laser (wavelength 193 nm) at an exposure amount of 100 mJ / cm 2 , and subsequently at 110 ° C. for 90 seconds. Post-exposure bake for seconds.
The quartz substrate was set in a quartz vibrator microbalance device “RQCM” (trade name; manufactured by Maxtek), and developed with a 2.38 mass% tetramethylammonium hydroxide aqueous solution for 120 seconds. The change in frequency of the quartz substrate during development is monitored over time, and the obtained change in frequency is converted into a change in film thickness. From the increase in film thickness, the maximum swelling amount and from the change in film thickness are dissolved. The speed was calculated. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000049
<実施例22~31および比較例9~16>二光束干渉法露光評価
 実施例2~11または比較合成例1~8で得られた高分子化合物を100質量部と、光酸発生剤としてTPS-109(製品名、成分;ノナフルオロ-n-ブタンスルホン酸トリフェニルスルホニウム、みどり化学株式会社製)を3質量部と、溶媒として、高分子化合物b、c、d、e、h、j、A、B、CおよびGを用いる場合は乳酸エチル、それら以外の高分子化合物を用いる場合はプロピレングリコールモノメチルエーテルアセテート/乳酸エチル=1/1(体積比)の混合溶媒を用いて、それぞれを混合し、高分子化合物の濃度が12質量%のフォトレジスト組成物を調製した。
 得られた各フォトレジスト組成物を、フィルター[四フッ化エチレン樹脂(PTFE)製、孔径0.2μm]を用いてろ過した。クレゾールノボラック樹脂(群栄化学製PS-6937)6質量%濃度のプロピレングリコールモノメチルエーテルアセテート溶液をスピンコーティング法により塗布して、ホットプレート上で200℃で90秒間焼成することにより、膜厚約100nmの反射防止膜(下地膜)を形成させた直径10cmのシリコンウエハー上に、該ろ液をそれぞれスピンコーティング法により塗布し、ホットプレート上で130℃、90秒間プリベークして膜厚約300nmのレジスト膜を形成させた。
 このレジスト膜に、波長193nmのArFエキシマレーザーを用いて二光束干渉法露光した。引き続き、130℃で90秒間ポストエクスポージャーベークした後、2.38質量%-テトラメチルアンモニウムヒドロキシド水溶液にて60秒間現像処理することにより、1:1のラインアンドスペースパターンを形成させた。現像済みウエハーを割断したものを走査型電子顕微鏡(SEM)で観察し、線幅100nmのラインアンドスペースを1:1で解像した露光量におけるパターンの形状観察と線幅の変動(以下、LWRと称する。)測定を行った。LWRは、測定モニタ内において、線幅を複数の位置で検出し、その検出位置のバラツキの分散(3σ)を指標とした。結果を表4に示す。
<Examples 22 to 31 and Comparative Examples 9 to 16> Two-beam Interferometry Exposure Evaluation 100 parts by mass of the polymer compound obtained in Examples 2 to 11 or Comparative Synthesis Examples 1 to 8 and TPS as a photoacid generator -109 (product name, component; nonafluoro-n-butanesulfonic acid triphenylsulfonium, manufactured by Midori Chemical Co., Ltd.) 3 parts by mass, and using as a solvent, polymer compounds b, c, d, e, h, j, A , B, C, and G are mixed using ethyl lactate, and when other polymer compounds are used, they are mixed using a mixed solvent of propylene glycol monomethyl ether acetate / ethyl lactate = 1/1 (volume ratio). A photoresist composition having a polymer compound concentration of 12% by mass was prepared.
Each of the obtained photoresist compositions was filtered using a filter [made of tetrafluoroethylene resin (PTFE), pore size: 0.2 μm]. A cresol novolak resin (PS-6937, manufactured by Gunei Chemical Co., Ltd.) is coated with a 6% by weight propylene glycol monomethyl ether acetate solution by spin coating, and baked on a hot plate at 200 ° C. for 90 seconds to obtain a film thickness of about 100 nm. Each of the filtrates is applied by spin coating on a silicon wafer having a diameter of 10 cm on which an antireflection film (underlying film) is formed, and pre-baked on a hot plate at 130 ° C. for 90 seconds to form a resist having a thickness of about 300 nm. A film was formed.
This resist film was exposed by a two-beam interference method using an ArF excimer laser having a wavelength of 193 nm. Subsequently, the film was post-exposure baked at 130 ° C. for 90 seconds, and then developed with a 2.38% by mass-tetramethylammonium hydroxide aqueous solution for 60 seconds to form a 1: 1 line and space pattern. The developed wafer was cleaved and observed with a scanning electron microscope (SEM), and the pattern shape observation and line width variation (hereinafter referred to as LWR) at an exposure amount obtained by resolving a line and space with a line width of 100 nm at 1: 1. Measured). In the LWR, the line width is detected at a plurality of positions in the measurement monitor, and the dispersion (3σ) of variations in the detected positions is used as an index. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000050
<実施例32~39および比較例17~21>熱安定性評価
 実施例2~5、8~11または比較合成例1~3、7、8で得られた各高分子化合物の熱に対する安定性をミクロ熱重量測定装置「TGA-50」(商品名;株式会社島津製作所製)により確認した。
 サンプル量は高分子化合物約5.0mgとし、窒素ガス50mL/min、昇温10℃/minの設定下、20~600℃の範囲で測定した。得られたグラフから、重量減少の開始温度と元の重量に対して5%分が減少したときの温度を読み取った。なお、ここでの重量減少は、熱によって高分子化合物が分解していることを示すものであり、一般的に、重量減少を示した時の温度が高いものほど熱に対して安定であると解釈できる。結果を表5に示す。
<Examples 32-39 and Comparative Examples 17-21> Thermal Stability Evaluation Stability of each polymer compound obtained in Examples 2-5, 8-11 or Comparative Synthesis Examples 1-3, 7, 8 to heat Was confirmed with a micro thermogravimetric measuring device “TGA-50” (trade name; manufactured by Shimadzu Corporation).
The amount of the sample was about 5.0 mg of the polymer compound, and the measurement was performed in the range of 20 to 600 ° C. under the setting of nitrogen gas 50 mL / min and temperature increase 10 ° C./min. From the obtained graph, the starting temperature of weight reduction and the temperature when 5% of the original weight decreased were read. In addition, the weight reduction | restoration here shows that the high molecular compound has decomposed | disassembled with the heat | fever, Generally, it is stable with respect to a heat | fever, so that the temperature when a weight reduction | decrease was shown is high. Can be interpreted. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000051
 表3~表5より、アクリル酸エステル誘導体(1)を構成単位に含む本発明の高分子化合物(8)の場合、アクリル酸エステル誘導体(1)を構成単位に含まない高分子化合物の場合に比べ、フォトレジストにパターンを形成する際の現像工程にて使用するアルカリ現像液への溶解速度が非常に高くて、現像時の最大膨潤量が非常に小さく(実施例12~21および比較例1~8参照)、LWRが改善されていることがわかる(実施例22~31および比較例9~16参照)。また、熱安定性も優れている(実施例32~39および比較例17~21参照)ことから、半導体デバイス製造用の化学増幅型レジストとして有用であることがわかる。 From Table 3 to Table 5, in the case of the polymer compound (8) of the present invention containing the acrylate derivative (1) as a structural unit, the polymer compound not containing the acrylate derivative (1) as a structural unit. In comparison, the dissolution rate in the alkaline developer used in the development process when forming a pattern on the photoresist is very high, and the maximum swelling during development is very small (Examples 12 to 21 and Comparative Example 1). It can be seen that the LWR is improved (see Examples 22 to 31 and Comparative Examples 9 to 16). In addition, the thermal stability is excellent (see Examples 32 to 39 and Comparative Examples 17 to 21), which indicates that it is useful as a chemically amplified resist for manufacturing semiconductor devices.
<参考例7>フォトレジスト組成物bの調製
 実施例2で得た高分子化合物b100質量部、光酸発生剤としてノナフルオロ-n-ブタンスルホン酸トリフェニルスルホニウム3.0質量部、塩基性化合物としてN-t-ブトキシカルボニルピロリジン0.27質量部、溶剤としてシクロヘキサノン1962質量部を混合して各成分が均一な溶液を得た。その後、得られた上記溶液を孔径0.2μmのメンブランフィルターを用いてろ過して、フォトレジスト組成物bを調製した(総固形分濃度約5質量%)。
[屈折率測定]
 調製した上記フォトレジスト組成物bを、東京エレクトロン株式会社製の「CLEAN TRACK ACT8」を用いてシリコン基板上にスピンコートし、100℃で60秒間プリベークを行ない、膜厚120nmのレジスト被膜を形成した。
 このレジスト被膜の、波長193nmにおける屈折率を、分光エリプソメーター(「VUV-VASE」、J.A.Woollam社製)を用いて測定した。その結果を表6に示す。
Reference Example 7 Preparation of Photoresist Composition b 100 parts by mass of the polymer compound b obtained in Example 2, 3.0 parts by mass of triphenylsulfonium nonafluoro-n-butanesulfonate as a photoacid generator, and as a basic compound By mixing 0.27 parts by mass of Nt-butoxycarbonylpyrrolidine and 1962 parts by mass of cyclohexanone as a solvent, a solution in which each component was uniform was obtained. Thereafter, the obtained solution was filtered using a membrane filter having a pore size of 0.2 μm to prepare a photoresist composition b (total solid content concentration of about 5% by mass).
[Refractive index measurement]
The prepared photoresist composition b was spin-coated on a silicon substrate using “CLEAN TRACK ACT8” manufactured by Tokyo Electron Limited, and pre-baked at 100 ° C. for 60 seconds to form a resist film having a thickness of 120 nm. .
The refractive index of the resist film at a wavelength of 193 nm was measured using a spectroscopic ellipsometer (“VUV-VASE”, manufactured by JA Woollam). The results are shown in Table 6.
<参考例8~14>フォトレジスト組成物d、f~kの調製
 参考例7において、高分子化合物bの代わりに、実施例4、6~11で得た高分子化合物d、f~kを用いたこと以外は、参考例7と同様にして実験を行ない、それぞれフォトレジスト組成物d、f~k(総固形分濃度約5質量%)を調製し、波長193nmにおける屈折率を測定した。その結果を表6に示す。
Reference Examples 8 to 14 Preparation of Photoresist Compositions d and f to k In Reference Example 7, instead of the polymer compound b, the polymer compounds d and f to k obtained in Examples 4 and 6 to 11 were used. Except that it was used, an experiment was conducted in the same manner as in Reference Example 7 to prepare photoresist compositions d and f to k (total solid content concentration of about 5 mass%), respectively, and the refractive index at a wavelength of 193 nm was measured. The results are shown in Table 6.
<参考例15~22>フォトレジスト組成物A~Hの調製
 参考例7において、高分子化合物bの代わりに、比較合成例1~8で得た高分子化合物A~Hを用いたこと以外は、参考例7と同様にして実験を行ない、それぞれフォトレジスト組成物A~H(総固形分濃度約5質量%)を調製し、波長193nmにおける屈折率を測定した。その結果を表6に示す。
Reference Examples 15 to 22 Preparation of Photoresist Compositions A to H In Reference Example 7, polymer compounds A to H obtained in Comparative Synthesis Examples 1 to 8 were used in place of polymer compound b. Experiments were conducted in the same manner as in Reference Example 7 to prepare photoresist compositions A to H (total solid content concentration of about 5% by mass) and measure the refractive index at a wavelength of 193 nm. The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000052
 なお、現在、一般的に使用されているレジスト膜は、その屈折率が1.69~1.71程度であるものが多く、このようなレジスト膜であれば、液浸液として水(波長193nmにおける屈折率が1.44)を使用する場合には露光光がレジスト被膜に入射し難くなるなどの問題はない。しかし、今後、水の屈折率以上の屈折率を有する次世代の液浸液(屈折率が1.71以上の液浸液)を使用する場合、上記一般的に使用されているレジスト膜では、露光光が十分にレジスト被膜に入射し難く、所望のレジストパターンが得られなくなる。しかし、アクリル酸エステル誘導体(1)を構成単位に含む本発明の高分子化合物(8)を含有するフォトレジスト組成物(9)によれば、水に代わる次世代の前記液浸液を用いた液浸露光工程においても、露光光が液浸液とフォトレジスト膜の界面で反射することはなく、十分にフォトレジスト膜に入射することが可能である。 Currently, many resist films that are generally used have a refractive index of about 1.69 to 1.71, and in such a resist film, water (wavelength 193 nm) is used as the immersion liquid. In the case of using a refractive index of 1.44), there is no problem that exposure light becomes difficult to enter the resist film. However, in the future, when a next-generation immersion liquid having a refractive index higher than that of water (an immersion liquid having a refractive index of 1.71 or more) is used, The exposure light is not sufficiently incident on the resist film, and a desired resist pattern cannot be obtained. However, according to the photoresist composition (9) containing the polymer compound (8) of the present invention containing the acrylate derivative (1) as a constituent unit, the next-generation immersion liquid instead of water was used. Also in the immersion exposure process, the exposure light is not reflected at the interface between the immersion liquid and the photoresist film, and can sufficiently enter the photoresist film.
<参考例23>特性曲線測定
 8インチシリコンウエハを基板として、この基板上に「CLEAN TRACK ACT8」(東京エレクトロン株式会社製)を用いて膜厚77nmの下層反射防止膜(「ARC29A」、ブルワー・サイエンス社製)を形成した。形成した下層反射防止膜上に、参考例7により得られたフォトレジスト組成物bを「CLEAN TRACK ACT8」(東京エレクトロン株式会社製)にてスピンコートし、100℃で60秒間プリベークを行い、膜厚120nmのレジスト被膜を形成した。
 このレジスト被膜をArFエキシマレーザー露光装置(「NSR S306C」、Nikon社製、照明条件;NA0.78シグマ0.90/0.52)により露光した。この露光は、パターンのついていないクオーツを通して行った。
 その後、130℃で60秒間ポストエクスポージャーベークを行い、2.38質量%のテトラメチルアンモニウムヒドロキシド水溶液により、23℃で60秒間現像した。現像後、水洗し、乾燥して得られたものを特性曲線測定用のウエハとした。
 次いで、各露光量でのレジスト被膜の膜厚を自動膜厚測定装置(「VM-2010」、大日本スクリーン製造株式会社製)にて測定し、露光量(mJ/cm2)と膜厚(オングストローム(Å))の相関関係を確認した。その結果を図1に示す。
Reference Example 23 Characteristic Curve Measurement Using an 8-inch silicon wafer as a substrate, “CLEAN TRACK ACT8” (manufactured by Tokyo Electron Limited) is used on this substrate, and a 77 nm-thick underlayer antireflection film (“ARC29A”, Formed by Science). On the formed lower antireflection film, the photoresist composition b obtained in Reference Example 7 was spin-coated with “CLEAN TRACK ACT8” (manufactured by Tokyo Electron Ltd.), pre-baked at 100 ° C. for 60 seconds, and the film A resist film having a thickness of 120 nm was formed.
This resist film was exposed with an ArF excimer laser exposure apparatus (“NSR S306C”, manufactured by Nikon Corporation, illumination conditions: NA 0.78 sigma 0.90 / 0.52). This exposure was performed through quartz with no pattern.
Thereafter, post-exposure baking was performed at 130 ° C. for 60 seconds, and development was performed at 23 ° C. for 60 seconds with a 2.38 mass% tetramethylammonium hydroxide aqueous solution. After development, the wafer was washed with water and dried to obtain a characteristic curve measurement wafer.
Then, the film thickness of the resist film at each exposure amount was measured by an automatic film thickness measuring apparatus ( "VM-2010", manufactured by Dainippon Screen Mfg. Co., Ltd.), the exposure amount (mJ / cm 2) and thickness ( Angstrom (Å)) correlation was confirmed. The result is shown in FIG.
<参考例24>特性曲線測定
 参考例23において、フォトレジスト組成物bの代わりに、参考例8により得られたフォトレジスト組成物dを用いたこと以外は同様にして測定を行なった。その結果を図1に示す。
<Reference Example 24> Characteristic Curve Measurement In Reference Example 23, measurement was performed in the same manner except that the photoresist composition d obtained in Reference Example 8 was used instead of the photoresist composition b. The result is shown in FIG.
 図1より、アクリル酸エステル誘導体(1)を構成単位に含む高分子化合物(8)を含有するフォトレジスト組成物(9)により形成したフォトレジスト膜は、露光量を増加させることにより残膜量が減少し、所定の露光量で全てのフォトレジスト膜が現像液に可溶となることが確認でき、露光余裕(露光量の変化に対する線幅の変動)が良好であることがわかった(参考例23および24参照)。従って、アクリル酸エステル誘導体(1)を構成単位に含む高分子化合物(8)を含有するフォトレジスト組成物(9)により形成した被膜は、フォトレジスト膜としてのパターンニングが十分に可能であり、コントラストも十分に得られることが期待される。
 以上のように、アクリル酸エステル誘導体(1)を構成単位に含む本発明の高分子化合物(8)を含有するフォトレジスト組成物(9)は、高い感度を有するフォトレジスト膜を形成することが可能であり、アクリル酸エステル誘導体(1)を用いて得られる本発明の高分子化合物(8)は、半導体デバイス製造用の化学増幅型レジストとして有用である。
As shown in FIG. 1, the photoresist film formed from the photoresist composition (9) containing the polymer compound (8) containing the acrylate derivative (1) as a constituent unit has a residual film amount by increasing the exposure amount. It was confirmed that all the photoresist films became soluble in the developer at a given exposure, and that the exposure margin (variation of the line width with respect to the change in exposure) was good (reference) See Examples 23 and 24). Therefore, the film formed by the photoresist composition (9) containing the polymer compound (8) containing the acrylic ester derivative (1) as a structural unit can be sufficiently patterned as a photoresist film. It is expected that sufficient contrast can be obtained.
As described above, the photoresist composition (9) containing the polymer compound (8) of the present invention containing the acrylate derivative (1) as a constituent unit can form a photoresist film having high sensitivity. The polymer compound (8) of the present invention obtained by using the acrylate derivative (1) is useful as a chemically amplified resist for manufacturing semiconductor devices.
 本発明の高分子化合物(8)は、フォトレジスト組成物の原料などとして、特に屈折率1.70以上の液浸液を利用する液浸露光法用のフォトレジスト組成物の原料として有用である。 The polymer compound (8) of the present invention is useful as a raw material for a photoresist composition for an immersion exposure method using an immersion liquid having a refractive index of 1.70 or more, particularly as a raw material for a photoresist composition. .

Claims (4)

  1.  下記一般式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1は、水素原子、メチル基またはトリフルオロメチル基を表す。R2、R3およびR4の組み合わせは、
    1)R2、R3およびR4は、それぞれ独立して、水素原子、炭素数1~6の直鎖状アルキル基、炭素数3~6の分岐状アルキル基または炭素数3~6の環状アルキル基を表す。;
    2)R2とR3は連結して炭素数3~6のアルキレン基を表し、R4は、水素原子、炭素数1~6の直鎖状アルキル基、炭素数3~6の分岐状アルキル基または炭素数3~6の環状アルキル基を表す。;または
    3)R2は、水素原子、炭素数1~6の直鎖状アルキル基、炭素数3~6の分岐状アルキル基または炭素数3~6の環状アルキル基を表し、R3とR4は連結して炭素数3~6のアルキレン基を表す。;のいずれかである。
     n、R5、R6、R7、R8、R9およびR10の組み合わせは、
    1)n=0のとき、R5およびR8は、それぞれ独立して、水素原子、炭素数1~6の直鎖状アルキル基、炭素数3~6の分岐状アルキル基または炭素数3~6の環状アルキル基を表す。R6およびR7は、それぞれ独立して、水素原子、炭素数1~6の直鎖状アルキル基、炭素数3~6の分岐状アルキル基または炭素数3~6の環状アルキル基を表すか、またはR6とR7は連結して炭素数3~6のアルキレン基を表す。;または
    2)n=1または2のとき、R5、R6、R7、R8、R9およびR10は、それぞれ独立して、水素原子、炭素数1~6の直鎖状アルキル基、炭素数3~6の分岐状アルキル基または炭素数3~6の環状アルキル基を表す。;のいずれかである。)
    で示されるアクリル酸エステル誘導体を含有する原料を重合することにより得られる高分子化合物。
    The following general formula (1)
    Figure JPOXMLDOC01-appb-C000001
    (Wherein R 1 represents a hydrogen atom, a methyl group or a trifluoromethyl group. The combination of R 2 , R 3 and R 4 is
    1) R 2 , R 3 and R 4 are each independently a hydrogen atom, a linear alkyl group having 1 to 6 carbon atoms, a branched alkyl group having 3 to 6 carbon atoms or a cyclic group having 3 to 6 carbon atoms. Represents an alkyl group. ;
    2) R 2 and R 3 are connected to represent an alkylene group having 3 to 6 carbon atoms, and R 4 is a hydrogen atom, a linear alkyl group having 1 to 6 carbon atoms, or a branched alkyl group having 3 to 6 carbon atoms. Or a cyclic alkyl group having 3 to 6 carbon atoms. Or 3) R 2 represents a hydrogen atom, a linear alkyl group having 1 to 6 carbon atoms, a branched alkyl group having 3 to 6 carbon atoms or a cyclic alkyl group having 3 to 6 carbon atoms, and R 3 and R 4 represents an alkylene group having 3 to 6 carbon atoms linked to each other. One of them.
    The combination of n, R 5 , R 6 , R 7 , R 8 , R 9 and R 10 is
    1) When n = 0, R 5 and R 8 are each independently a hydrogen atom, a linear alkyl group having 1 to 6 carbon atoms, a branched alkyl group having 3 to 6 carbon atoms, or 3 to 3 carbon atoms 6 cyclic alkyl groups are represented. Each of R 6 and R 7 independently represents a hydrogen atom, a linear alkyl group having 1 to 6 carbon atoms, a branched alkyl group having 3 to 6 carbon atoms or a cyclic alkyl group having 3 to 6 carbon atoms; Or R 6 and R 7 are linked to each other to represent an alkylene group having 3 to 6 carbon atoms. Or 2) When n = 1 or 2, R 5 , R 6 , R 7 , R 8 , R 9 and R 10 are each independently a hydrogen atom or a linear alkyl group having 1 to 6 carbon atoms. Represents a branched alkyl group having 3 to 6 carbon atoms or a cyclic alkyl group having 3 to 6 carbon atoms. One of them. )
    The high molecular compound obtained by superposing | polymerizing the raw material containing the acrylic acid ester derivative shown by.
  2.  nが0または1であり、R3が水素原子である請求項1に記載の高分子化合物。 The polymer compound according to claim 1, wherein n is 0 or 1, and R 3 is a hydrogen atom.
  3.  nが0または1であり、R2、R3、R4、R5、R6、R7、R8、R9およびR10が水素原子である請求項1に記載の高分子化合物。 2. The polymer compound according to claim 1, wherein n is 0 or 1, and R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 are hydrogen atoms.
  4.  前記アクリル酸エステル誘導体に基づく構成単位の含有割合が10~90モル%の範囲である、請求項1~3のいずれかに記載の高分子化合物。 The polymer compound according to any one of claims 1 to 3, wherein the content of the structural unit based on the acrylate derivative is in the range of 10 to 90 mol%.
PCT/JP2009/052971 2008-02-22 2009-02-20 Polymer compound WO2009104717A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009554385A JP5466511B2 (en) 2008-02-22 2009-02-20 High molecular compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-041468 2008-02-22
JP2008041468 2008-02-22

Publications (1)

Publication Number Publication Date
WO2009104717A1 true WO2009104717A1 (en) 2009-08-27

Family

ID=40985594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052971 WO2009104717A1 (en) 2008-02-22 2009-02-20 Polymer compound

Country Status (2)

Country Link
JP (1) JP5466511B2 (en)
WO (1) WO2009104717A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009198867A (en) * 2008-02-22 2009-09-03 Jsr Corp Radiation-sensitive composition and resist pattern forming method using the same
EP2385069A2 (en) 2003-11-12 2011-11-09 Biogen Idec MA Inc. Neonatal Fc rReceptor (FcRn)- binding polypeptide variants, dimeric Fc binding proteins and methods related thereto

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0259570A (en) * 1988-08-25 1990-02-28 Tokuyama Soda Co Ltd Dithiane compound and production thereof
JPH0588367A (en) * 1991-09-30 1993-04-09 Fujitsu Ltd Resist composition and formation of resist pattern
JPH07295221A (en) * 1994-04-27 1995-11-10 Mitsubishi Electric Corp Photosensitive resin composition
JP2003246825A (en) * 2001-12-21 2003-09-05 Mitsubishi Rayon Co Ltd Copolymer for resist, its preparation process and resist composition
WO2007094474A1 (en) * 2006-02-17 2007-08-23 Kuraray Co., Ltd. Tertiary alcohol derivative, polymer compound and photoresist composition
JP2007308586A (en) * 2006-05-18 2007-11-29 Maruzen Petrochem Co Ltd Copolymer for positive lithography, polymerization initiator for producing the copolymer and composition for semiconductor lithography
JP2008138073A (en) * 2006-12-01 2008-06-19 Jsr Corp Polymer for radiosensitive resin composition, radiosensitive resin composition and method for forming resist pattern

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0259570A (en) * 1988-08-25 1990-02-28 Tokuyama Soda Co Ltd Dithiane compound and production thereof
JPH0588367A (en) * 1991-09-30 1993-04-09 Fujitsu Ltd Resist composition and formation of resist pattern
JPH07295221A (en) * 1994-04-27 1995-11-10 Mitsubishi Electric Corp Photosensitive resin composition
JP2003246825A (en) * 2001-12-21 2003-09-05 Mitsubishi Rayon Co Ltd Copolymer for resist, its preparation process and resist composition
WO2007094474A1 (en) * 2006-02-17 2007-08-23 Kuraray Co., Ltd. Tertiary alcohol derivative, polymer compound and photoresist composition
JP2007308586A (en) * 2006-05-18 2007-11-29 Maruzen Petrochem Co Ltd Copolymer for positive lithography, polymerization initiator for producing the copolymer and composition for semiconductor lithography
JP2008138073A (en) * 2006-12-01 2008-06-19 Jsr Corp Polymer for radiosensitive resin composition, radiosensitive resin composition and method for forming resist pattern

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2385069A2 (en) 2003-11-12 2011-11-09 Biogen Idec MA Inc. Neonatal Fc rReceptor (FcRn)- binding polypeptide variants, dimeric Fc binding proteins and methods related thereto
JP2009198867A (en) * 2008-02-22 2009-09-03 Jsr Corp Radiation-sensitive composition and resist pattern forming method using the same

Also Published As

Publication number Publication date
JPWO2009104717A1 (en) 2011-06-23
JP5466511B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
JP5270188B2 (en) Novel acrylic ester derivatives and polymer compounds
JP5118622B2 (en) Tertiary alcohol derivative, polymer compound and photoresist composition
JP5139259B2 (en) Tertiary alcohol derivative, polymer compound and photoresist composition
US20130034813A1 (en) CHEMICALLY AMPLIFIED POSITIVE RESIST COMPOSITION FOR ArF IMMERSION LITHOGRAPHY AND PATTERN FORMING PROCESS
KR101595583B1 (en) (meth)acrylate derivative, intermediate thereof, and polymer compound
JP5993858B2 (en) (Meth) acrylic acid ester derivative, polymer compound and photoresist composition
JP5496715B2 (en) Acrylic ester derivatives, polymer compounds and photoresist compositions
US8546587B2 (en) Method for producing acrylate derivative, acrylate derivative, and intermediate thereof
WO2013146379A1 (en) Acrylic acid ester derivative
JP5248138B2 (en) Novel acrylic ester derivative and method for producing the same
US10191373B2 (en) Method for producing polymer
JP5466511B2 (en) High molecular compound
JP2015160836A (en) New alcohol derivative, acrylate derivative, haloester derivative, polymeric compound, and photoresist composition
KR20060088478A (en) Photoresist polymers and compositions having acrylic- or methacrylic-based polymeric resin prepared by a living free radical process
JPWO2013146356A1 (en) Method for producing acrylate derivative, intermediate and method for producing the same
JP5191759B2 (en) Novel acrylic ester derivative and process for producing the same
US20100316954A1 (en) Monomer having lactone skeleton, polymer compound and photoresist composition
JP2010191221A (en) Chemically amplified photoresist composition for exposure to extreme-ultraviolet ray
JP2015168735A (en) Novel alcohol derivative, acrylate derivative, haloester derivative, polymeric compound, and photoresist composition
JP2013144652A (en) Acrylic acid ester derivative and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09712879

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009554385

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09712879

Country of ref document: EP

Kind code of ref document: A1