WO2009104444A1 - Massage machine and air distribution unit - Google Patents

Massage machine and air distribution unit Download PDF

Info

Publication number
WO2009104444A1
WO2009104444A1 PCT/JP2009/050833 JP2009050833W WO2009104444A1 WO 2009104444 A1 WO2009104444 A1 WO 2009104444A1 JP 2009050833 W JP2009050833 W JP 2009050833W WO 2009104444 A1 WO2009104444 A1 WO 2009104444A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
unit
valve
distribution
port
Prior art date
Application number
PCT/JP2009/050833
Other languages
French (fr)
Japanese (ja)
Inventor
昭治 金岡
Original Assignee
ファミリー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファミリー株式会社 filed Critical ファミリー株式会社
Priority to JP2009554256A priority Critical patent/JPWO2009104444A1/en
Publication of WO2009104444A1 publication Critical patent/WO2009104444A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H9/00Pneumatic or hydraulic massage
    • A61H9/005Pneumatic massage
    • A61H9/0078Pneumatic massage with intermittent or alternately inflated bladders or cuffs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/01Constructive details
    • A61H2201/0119Support for the device
    • A61H2201/0138Support for the device incorporated in furniture
    • A61H2201/0149Seat or chair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5002Means for controlling a set of similar massage devices acting in sequence at different locations on a patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5007Control means thereof computer controlled
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5056Control means thereof pneumatically controlled

Definitions

  • the present invention relates to a massage machine including a plurality of air actuators that operate by supplying and discharging air, and an air distribution unit applied to the massage machine.
  • a chair-type massage machine in which a plurality of bag-shaped air cells (air actuators) that can be expanded and contracted are provided on a backrest or a seat. When air (air) is supplied to these air cells, the air cells expand, whereby the user's body is pressed and massage is performed.
  • a chair-type massage machine including a plurality of air cells includes a pump that discharges air and an air distribution unit that supplies air supplied from the pump to each air cell (for example, a special feature). No. 2005-87765 (see FIG. 3)).
  • the conventional air distribution unit has a plurality of solenoid valves, and at least one solenoid valve is connected to one air cell (or a pair of air cells for massaging one place). Thereby, the air sent from the pump to the air distribution unit is supplied to the air cell through the open electromagnetic valve, and the air cell expands. On the other hand, the air cell contracts by closing the solenoid valve.
  • an object of the present invention is to provide a massage machine that can be simplified in configuration even if there are many air actuators (air cells) that are operated by air, and an air distribution unit that is applied to the massage machine.
  • a massage machine of the present invention includes a pump that discharges air, a plurality of air actuators that operate by supplying and discharging air, and air that is supplied from the pump and that air is supplied to the plurality of air.
  • An air distribution unit having a flow path formed therein so that the air can be sent to the actuator, and a control unit for controlling the operation of the air actuator.
  • the air distribution unit is supplied with air from the pump.
  • Each of the branch portions of the flow path is formed so that the flow path is applied from the input port to the plurality of output ports.
  • a unit main body configured to increase for each distribution unit; and a switching unit that is provided for each distribution unit and switches the flow direction of the air in the branching unit in units of the distribution unit.
  • the control unit switches the flow path by controlling the switching unit in order to select an output port through which air can flow between the plurality of output ports and the input port.
  • the present invention is an air distribution unit having a flow path formed therein so that air supplied from a pump that discharges air can be sent to a plurality of air actuators that operate by supplying and discharging air. And an input port to which air is supplied from the pump, a plurality of output ports respectively connected to the plurality of air actuators, and a plurality of distribution sections arranged in a direction from the input port to the plurality of output ports.
  • each of the distribution sections is formed with a branch portion of the flow path, so that the flow paths increase from the input port to the plurality of output ports for each distribution section.
  • a plurality of distribution sections are arranged in the direction from the input port to the plurality of output ports.
  • the flow path branch section is formed in each of the distribution sections, so that the flow paths increase from the input port to the plurality of output ports.
  • the control unit controls the switching unit provided for each distribution unit, whereby the flow direction of the air in the branching unit is switched in units of the distribution unit and connected to the input port from among the plurality of output ports. The output port to be in the state is selected. Therefore, the air flowing from the input port to the output port can be supplied to the air actuator connected to the output port.
  • the air distribution unit can connect many air actuators, but the switching unit may be provided for each of the plurality of distribution units, and the switching unit provided for each of the distribution units.
  • the direction in which the air flows in the branching section is switched collectively for each distribution section. For this reason, it is not necessary to provide a switching part for every branch part, the number of switching parts is small, and the structure of an air distribution unit can be simplified.
  • the switching unit includes a valve body whose position changes in order to switch the direction in which air flows in the branching unit, and the valve body collectively for each distribution unit. It is preferable to have a switching actuator that changes the position of the actuator. With this configuration, the switching actuator can collectively change the position of the valve body in units of distribution units, and the direction in which air flows can be switched in units of distribution units. Moreover, it is preferable that the switching actuator is of an air type that operates by air supplied from the pump. In this case, the air source of the air actuator and the air source of the switching actuator for switching the flow path of the air distribution unit can be the same pump.
  • the unit main body includes a plurality of case main bodies in which a single branch portion is formed, and the switching portion is a valve that changes its position in order to switch the direction in which air flows in the branch portion.
  • the switching portion is a valve that changes its position in order to switch the direction in which air flows in the branch portion.
  • the bearing hole part of one case body part and the bearing hole part of the other case body part are individually machined. In this case, since the hole processing in one case main body and the hole processing in another case main body are separately performed, the processing is facilitated, and the dimensional accuracy is easily ensured.
  • the structure of the unit main body obtained by individually drilling the bearing hole of one case main body and the bearing hole of the other case main body is the one case.
  • the plurality of case main body portions are provided so that the hole direction of the bearing hole portion of the main body portion is parallel to the hole direction of the bearing hole portion of the other case main body portion.
  • the valve body and the valve shaft at the branch part of one case body part and the valve body and the valve shaft at the branch part of another case body part are arranged in parallel.
  • the case body has a divided structure having a plurality of case divisions so that the valve body is accommodated in the branch portion, and the case divisions are separated by an interference fit. It is preferably assembled as impossible. In this case, for example, welding, screw processing for screw fastening, or the like is not necessary for assembling the case divided bodies, and the case body can be easily manufactured.
  • the air distribution unit can be configured to be long in one direction.
  • the massage machine is configured such that the output port other than the output port connected to the input port by the control unit controlling the switching unit is blocked in which the passage of air is restricted. It is preferable to be in a state.
  • the output port other than the output port that is connected to the input port that is, other than the output port that allows air to flow between the input port and the output port
  • the air actuator connected thereto air cannot flow. Therefore, when air is supplied to a certain air actuator and the output port connected to the air actuator is controlled to be in the closed state, the air actuator is held in an operated state.
  • control unit is connected to the input port by switching a switching signal given to the switching unit to control the operation of the switching unit and a direction in which the switching unit flows air according to the switching signal. It is preferable to have a storage unit that stores relationship information having a relationship with the port. According to this configuration, when an output port to be connected to the input port is determined, the control unit can obtain a switching signal based on the relationship information, and provides the switching signal to the switching unit. The switching unit can be controlled to select the output port.
  • the control unit is configured to connect the switching unit so that an output port through which air flows between the control port and the input port is the one output port. It can be set as the structure controlled. According to this configuration, the control unit controls the switching unit to select the output port through which air flows between the input port as the one output port, so that the air is reversed from the one output port. It can supply to the air actuator connected with the said at least 2 other output port via a stop valve, respectively. That is, it is possible to supply air to the at least two air actuators simultaneously.
  • the massage machine is switched from an air supply state in which the pump supplies air to the input port to an exhaust state in which air flowing from the output port to the input port can be exhausted to the outside. It is preferable to further include an exhaust switching valve.
  • an air supply state is set by the supply / discharge switching valve and the pump supplies air to the input port
  • the air is discharged from the input port through the predetermined output port and connected to the output port. Air can be supplied to the actuator.
  • the exhaust state is set by the supply / discharge switching valve, the air in the air actuator connected to the output port through which air can flow between the input port and the input port flows from the output port to the input port. It can be exhausted to the outside.
  • the air actuator is connected to the one output port.
  • the control unit controls the supply / exhaust switching valve so as to be in an exhaust state, and the air flows between the input port and the input port.
  • the switching unit may be controlled so that the port becomes the one output port.
  • the air is connected to the at least two other output ports by setting the exhaust state by the supply / discharge switching valve and the control unit controlling the switching unit to select the one output port. Air in the actuator can flow to the one output port via the check valve. Then, the air can flow from the one output port to the input port and be exhausted to the outside. That is, the at least two air actuators can be exhausted simultaneously.
  • FIG. 1 is a perspective view showing a massage machine of the present invention.
  • This massage machine includes a seat 1 on which a user sits, a backrest 2 that supports the user's upper body, a footrest 3 on which the user's legs are placed, and left and right armrests on which the user's left and right arms are placed. 4 and 4 are provided.
  • the backrest 2 is provided with a massage unit (not shown) that can be raised and lowered.
  • the massage unit includes a treatment element 42 and a drive unit (not shown) that operates the treatment element 42.
  • the massager 42 can be massaged and massaged by operating the treatment element 42.
  • the backrest 2 can be reclined.
  • the footrest 3 is rotatable about the front portion of the seat portion 1 and is in a protruding state protruding forward from the downward state in FIG.
  • the reclining of the backrest 2 and the rotation of the footrest 3 are performed by a driving device (not shown).
  • This massage machine includes a pump 6 that discharges air and a plurality of air cells (air actuators) that expand and contract for massage by supplying and discharging air.
  • Each air cell is operated by the air supplied from the pump 6.
  • the seat portion 1 includes air cells 41a and 41b that are arranged in front and rear and expand upward, and an air cell 41c that presses the user's buttocks or thighs from the left and right.
  • the footrest 3 has an air cell 43a that presses the calves of the left and right legs from the left and right, an air cell 43b that presses the toe portion from the left and right, and an air cell 43c that presses the sole.
  • Each of the left and right armrests 4 and 4 is, in order from the upper side of the arm, an air cell 44a that presses the shoulder, an air cell 44b that presses (pinches) the upper arm, an air cell 44c that presses (pinches) the forearm, and a hand. It has an air cell 44d that is sandwiched between the upper and lower sides. Each air cell has a bag shape and is appropriately formed in a predetermined shape and size.
  • the massage machine is further provided with an air distribution unit 7 capable of supplying air from the pump 6 and sending the supplied air to the air cell.
  • the air distribution unit 7 has an input port to which air is supplied from the pump 6 and a plurality of output ports respectively connected to a plurality of air cells.
  • a branching flow path is formed inside the air distribution unit 7.
  • between the pump 6 and the air distribution unit 7, and between the air distribution unit 7 and each air cell are each connected by air piping (not shown).
  • a specific configuration of the air distribution unit 7 will be described later.
  • a plurality of air distribution units 7 may be provided, for example, for the air cell of the armrest portion 4 and the air cell of the seat portion 1.
  • FIG. 2 is a block diagram showing an essential part of the air control circuit and air piping of the massage machine.
  • This massage machine includes a control device (control unit) 10, a main electromagnetic valve (supply / discharge switching valve) 8, and a pressure accumulating device 9 in addition to the air distribution unit 7, the electric pump 6, and the plurality of air cells A to H. .
  • the plurality of air cells are A, B, C, D, E, F, G, and H
  • the input port of the air distribution unit 7 is P1
  • the output ports are D1, D2, D3, and D4. , D5, D6, D7, and D8.
  • the control device 10 is composed of a programmable microcomputer having a CPU and a memory, and a program for executing predetermined functions is stored in the memory. By executing this program, operations of the pump 6, the air distribution unit 7, the main electromagnetic valve 8, and the like are controlled.
  • the control device 10 receives a signal from the operation device 45 (see FIG. 1) operated by the user and performs control to execute various operations.
  • the main solenoid valve 8 is interposed between the pump 6 and the air distribution unit 7.
  • the main electromagnetic valve 8 is switched between an excited state and a demagnetized state based on a control signal from the control device 10, and can switch between an air supply state and an exhaust state for the air cells A to H.
  • the supply state is a state in which the pump 6 supplies air to the input port P1
  • the exhaust state is a state in which the air flowing from the output ports D1 to D8 to the input port P1 can be discharged to the outside. .
  • the air discharged from the pump 6 is supplied to the input port P1 through the main electromagnetic valve 8, but the pressure accumulator 9 and control electromagnetic valves S1, S2, S2 (described later) on the downstream side thereof via the branch portion 9c. Also supplied to S3.
  • the pressure accumulator 9 has an accumulator 9a and a check valve 9b.
  • FIG. 3 is a cross-sectional view showing an outline of the air distribution unit 7.
  • the air distribution unit 7 has a unit main body 14 interposed between the input port P1 and the output ports D1 to D8.
  • the unit body 14 includes first, second and third distribution blocks (distribution units) 11, 12, which are arranged in three stages (multiple stages) in a direction from the input port P1 to the plurality of output ports D1 to D8. 13.
  • These distribution blocks 11, 12 and 13 constitute a unit main body 14.
  • the distribution blocks 11, 12, and 13 are formed of the same member and constitute one unit main body portion 14. However, the divided structure in which the distribution blocks 11, 12, and 13 are divided, respectively. It may be.
  • the first distribution block 11 includes a first main flow path 11a connected to the input port P1, and first branch flow paths 11b and 11c branched from the first main flow path 11a via a branching portion 11d. Yes.
  • a first valve element 21 is provided at the branching part 11d so as to be movable.
  • the second distribution block 12 includes a second main channel 12a connected to one of the first branch channels 11b, and a second branch channel 12c branched from the second main channel 12a via a branch part 12g. 12d is formed.
  • a second main channel 12b connected to the other first branch channel 11c and second branch channels 12e and 12f branched from the second main channel 12b via a branch part 12h are formed.
  • 2nd valve bodies 22a and 22b are provided in the said branch parts 12g and 12h so that a movement is possible.
  • the third distribution block 13 includes a third main channel 13a connected to one second branch channel 12c, and third branch channels 13e branched from the third main channel 13a via a branch part 13m. 13f, and the third main flow paths 13b, 13c, 13d, branching so as to correspond to the other second branch flow paths 12d, 12e, 12f formed in the second distribution block 12.
  • Portions 13n, 13o, 13p and third branch channels 13g, 13h, 13i, 13j, 13k, 13l are formed.
  • a total of eight third branch flow paths 13e to 13l are formed in the third distribution block 13 at the most downstream stage.
  • the branch parts 13m to 13p are provided with movable third valve bodies 23a to 23d, respectively.
  • Each of the third branch flow paths 13e to 13l formed in the third distribution block 13 is connected to the output ports D1 to D8. These output ports D1 to D8 are connected to the plurality of air cells A to H, respectively.
  • the first, second, and third distribution blocks 11, 12, and 13 in which the branch portions of the flow paths are formed allow the unit body 14 to flow from the input port P1 to the plurality of output ports D1 to D8.
  • the path is configured to increase for each of the distribution blocks 11, 12, and 13.
  • the air distribution unit 7 includes first, second, and third switching devices (switching units) 31, 32, and 33 provided in the first, second, and third distribution blocks 11, 12, and 13, respectively. is doing.
  • Each of the switching devices 31, 32, and 33 is configured to be able to collectively switch the flow direction of air in the branch portion in units of distribution blocks (switch the flow path of air in units of distribution blocks).
  • each of the switching devices 31, 32, and 33 has the valve body (the first valve body 21, the second valve body) that changes its position in order to switch the air flow direction in the branch portions (11d, 12g, 12h, 13m to 13p).
  • the third switching device 33 includes third valve bodies 23a, 23b, 23c, and 23d provided at the branch portions 13m, 13n, 13o, and 13p, a third switching actuator 33a that collectively changes the position thereof, and the control. It has an electromagnetic valve S3 (see FIG. 2).
  • the four third valve bodies 23a, 23b, 23c, 23d are mounted on the same shaft 33b, and the four third valve bodies 23a, 23b, 23c, 23d are movable as a unit.
  • a compression spring 33d is provided on one end side (left side in FIG. 4) of the shaft 33b, and the shaft 33b is urged toward the other end side (right side in FIG. 4) by the compression spring 33d.
  • the third switching actuator 33a is an air cell (third operation air cell 33a) that expands and contracts by supplying and discharging air, and the control solenoid valve S3 can supply air to the third operation air cell 33a. And a stop state (exhaust state) in which the air supply is stopped can be switched.
  • the third operation air cell 33a and the control solenoid valve S3 are connected by an air pipe (not shown) via the third control port A3.
  • the control solenoid valve S3 is supplied with air from the pump 6.
  • FIG. 4 shows that the third operation air cell 33a is in a contracted state, and the four third valve bodies 23a, 23b, 23c, and 23d are attached to the other end side (the right side in FIG. 4) by the compression spring 33d. It is energized. In this state, each of the third main flow paths 13a to 13d can flow air between the third branch flow paths 13e, 13g, 13i, and 13k on one side (on the left side in FIG. 4).
  • the control solenoid valve S3 is operated by the control signal of the control device 10 to enter the supply state, and as shown in FIG. 5, the air is supplied through the third control port A3 to the third operation air cell 33a. And inflate.
  • the expanding third air cell 33a pushes the shaft 33b against the compression spring 33d and moves the third valve bodies 23a, 23b, 23c, 23d together at one end (to the left). In this state, air can flow between each of the third main flow paths 13a to 13d and the other third branch flow paths 13f, 13h, 13j, and 13l (on the right side).
  • the third switching actuator (third operation air cell 33a) collectively changes the position of the third valve bodies 23a, 23b, 23c, and 23d, and switches the flow paths in units of the third distribution block 13. be able to.
  • the third switching actuator (third operation air cell 33 a) is an air type that is operated by the air supplied from the pump 6.
  • the first distribution block 11 and the second distribution block 12 are configured in the same manner as the third distribution block 13.
  • the second switching actuator 32a collectively changes the position of the second valve bodies 22a and 22b in units of the second distribution block 12 and switches the flow paths in units of the second distribution block 12. Can do.
  • the 1st switching actuator 31a can change the position of the 1st valve body 21, and can switch a flow path. And such switching of a flow path is performed when the control apparatus 10 controls control solenoid valve S1, S2, S3, respectively.
  • the control device 10 includes a switching signal to be given to the switching devices 31, 32, 33 to control the operation of the switching devices 31, 32, 33, and the switching devices 31, 32, 33 emit air according to the switching signals. It has the memory
  • the control device 10 can obtain a switching signal based on the relation information, and provides this switching signal to the switching devices 31, 32, 33. These switching devices 31, 32, 33 are controlled so that the output port is selected.
  • the unit main body 14 of the air distribution unit 7 configured as described above has three stages of distribution blocks 11, 12, 13 in the direction from the input port P1 to the eight output ports D1 to D8. Are arranged, and branch portions of the flow paths are formed in each of the distribution blocks 11, 12, and 13. For this reason, the flow paths are configured to increase from the input port P1 to the eight flow paths 13e to 13l at each stage.
  • the output ports D1 to D8 are connected to the flow paths 13e to 13l, respectively.
  • the control device 10 controls the switching devices 31, 32, and 33 provided in the distribution blocks 11, 12, and 13, so that the air at the branching portion flows at each stage of the distribution blocks 11, 12, and 13.
  • the directions (flow paths) are switched together, and air can flow between the input port P1 and the eight output ports D1 to D8. Then, the air flowing from the input port P1 to the output port can be supplied to the air cell connected to the output port. And according to this structure, the output port which can flow air between the input ports P1 is selected alternatively.
  • FIG. 3 shows that the control device 10 controls the first, second, and third switching devices 31, 32, and 33, that is, the control solenoid valves S1, S2, and S3.
  • the air supply to all the third operation air cells 31a, 32a, 33a is stopped. In this state, air can flow only between the input port P1 and the output port D1.
  • the air cell A connected to the output port D1 expands.
  • the output ports D2 to D8 other than the output port D1 through which the control device 10 controls the control solenoid valves S1, S2, S3 to allow air to flow to and from the input port P1 It becomes the obstruction
  • D1 for example, D2
  • the air distribution unit 7 includes one input port P1, three control ports A1, A2, and A3, and eight output ports D1 to D8. Selection of which output port the input port P1 is connected to is made by a combination of air supply (high air pressure) or stop (low air pressure) of the three control ports A1, A2 and A3.
  • the first control port A1 is a port for connecting the first operation air cell 31a and the first control electromagnetic valve S1
  • the second control port A2 is the second operation air cell 32a and the second control electromagnetic valve.
  • the third control port A3 is a port for connecting the third operation air cell 33a and the third control electromagnetic valve S3.
  • Each of these first, second, and third control solenoid valves S1, S2, and S3 can be in two states of air supply or stop, whereby each of the control ports A1, A2, and A3 is supplied with air. Or it can be in two states of stop (exhaust).
  • a description will be given in which the switching signal for setting the air supply state is “1” and the switching signal for the stop state is corresponding to “0”.
  • the input port P1 is connected to the output port D1 (state shown in FIG. 3).
  • control solenoid valve [S1, S2, S3] control port [A1, A2, A3]
  • the input port P1 is connected to the output port D2.
  • the control device 10 applies the switching signal to the control electromagnetic valves S1, S2, S3 based on the relation information stored in the storage unit 10a, and causes the control electromagnetic valves to be excited (to be in the supply state). Controls the combination of valves S1, S2, S3. By this control, the combination of the states of the three control ports [A1, A2, A3] can be changed. Then, an air cell to be supplied or exhausted is selected.
  • the air distribution unit 7 functions as a 3-bit control valve that controls the operation of the eight air cells A to G.
  • control device 10 controls the main electromagnetic valve 8 (FIG. 2)
  • supply or exhaust to the input port P1 is selected as shown in FIG. 6B.
  • the air cell A corresponding to this output port D1
  • the air is supplied and the expansion operation is performed.
  • the other air cells B and C to H are in the holding state.
  • the input port P1 remains in the air supply state
  • the output port D2 is selected (D2 in FIG. 6A is ON)
  • the air cell B corresponding to the output port D2 is supplied.
  • the air is inflated.
  • the air cell A is held in an expanded state, and the other C to H are also held.
  • the output port D2 remains selected and the input port P1 is in the exhaust state.
  • the air cell B corresponding to the output port D2 is exhausted and contracted, but the air cell A is maintained in an expanded state.
  • the output port D1 is selected, and the expanded air cell A can be contracted by the input port P1 being in the exhaust state. Since the output ports D3 to D8 are selected in this way, the air cells C to H can be in an expanded state or a contracted state, and neither of the output ports D1 and D2 is selected (time t5). ) Both are closed, and the air cells A and B are in the holding state.
  • control device 10 controls the main electromagnetic valve 8 to be in the supply state, and further, the first, second, and third switching devices 31, 32, and 33 (control electromagnetic valves S1, S2, and S3). And the output ports through which air can flow between the input ports P1 can be changed one by one. Thereby, the operating air cell can be changed one by one by switching the output port through which air flows between the input port P1. Further, the main electromagnetic valve 8 is set in an exhaust state, and the control device unit 10 controls the first, second, and third switching devices 31, 32, and 33 (control electromagnetic valves S1, S2, and S3) to set the output port.
  • the output port through which air flows is switched between the input port P1 and the air can be exhausted and contracted from the air cell connected to the switched output port.
  • one output port is selected by the combination of the control solenoid valves S1, S2, and S3 to be excited, and air supply or exhaust is enabled, and the other output ports that are not selected are held.
  • FIG. 7 is a block diagram showing a part of another embodiment of the massage machine. This embodiment is different from the embodiment of FIG. 2 in that one of the eight output ports D1 to D8 is closed (sealed). Specifically, a plug member is attached to the output port D8 and closed. Others are the same as in FIG. In other words, the output port D8 is described as the closed port D8.
  • FIG. 9 is a block diagram showing a part of another embodiment of the massage machine. This embodiment differs from the embodiment of FIG. 2 in the following points.
  • an air cell E connected to one output port D8 out of eight output ports D1 to D8 and at least two other output ports (three output ports D5, D6, D7), respectively.
  • F, and G are connected via check valves 15a, 15b, and 15c that allow air flow from the air cells E, F, and G to the one output port D8.
  • Others are the same as in FIG.
  • a flow path 15d is provided from the output port D8, and branch flow paths 15e, 15f, and 15g are provided by branching from the flow path 15d.
  • the branch channel 15e and the air cell E are connected, the branch channel 15f and the air cell F are connected, and the branch channel 15g and the air cell G are connected.
  • the check valve 15a is provided in the branch flow path 15e, the check valve 15b is provided in the branch flow path 15f, and the check valve 15c is provided in the branch flow path 15g.
  • the control device 10 controls the main electromagnetic valve 8 (see FIG. 2) so as to be in the exhaust state, and the first, second, and third switching devices 31, 32, and 33 (control electromagnetic valves S1, S2). , S3), and an output port through which air flows to and from the input port P1 is defined as the one output port D8.
  • the air in the air cells E, F, and G which are in an expanded state connected to the three output ports D5, D6, and D7, is transferred to the one output port D8 via the check valves 15a, 15b, and 15c. Can be flowed to. Then, this air can flow from the output port D8 to the input port P1, and can be exhausted to the outside by the main electromagnetic valve 8.
  • the control device 10 causes the main electromagnetic valve 8 to supply the input port P1 and the output port D5 is selected (time t1). Inflate. Since the output port D8 is not selected, the output port D8 is in a closed state, and the air in the air cell E cannot flow through the output port D8 via the check valve 15a.
  • the output port is switched to D6 while the input port P1 is in the supply state (time t2), the air cell F expands and the expanded air cell E is held in the expanded state.
  • the output port is switched to D7 while the input port P1 is in the supply state (time t3), the air cell G is expanded next, and the air cells E and F of the output ports D5 and D6 are held in the expanded state.
  • the air cells E, F, and G held in the expanded state are held.
  • the air in the air cells E, F, and G held in the expanded state can flow to the output port D8 via the check valves 15a, 15b, and 15c, respectively. . Further, these air are exhausted from the main solenoid valve 8 to the outside through the output port P1. Thereby, the air cells E, F, and G contract simultaneously.
  • a plurality of air cells can be individually supplied (with a time difference) and exhausted simultaneously.
  • FIG. 11 is a block diagram showing a part of another embodiment of the massage machine. This embodiment differs from the embodiment of FIG. 2 in the following points.
  • an air cell D connected to one output port (D8) of the eight output ports D1 to D8 and at least two other output ports (D4, D5, D6, D7), respectively.
  • E, F, and G are connected via check valves 16a, 16b, 16c, and 16d that allow air flow from one output port D8 to the air cells D, E, F, and G, respectively. Yes. Others are the same.
  • a channel 16e is provided from the output port D8, and branch channels 16f, 16g, 16h, and 16i are provided by branching from the channel 16e.
  • the branch channel 16f and the air cell D are connected.
  • the branch channel 16g and the air cell E are connected.
  • the branch channel 16h and the air cell F are connected.
  • the branch flow path 16i and the air cell G are connected.
  • the check valve 16a is provided in the branch channel 16f.
  • the check valve 16b is provided in the branch channel 16g.
  • the check valve 16c is provided in the branch channel 16h.
  • the check valve 16d is provided in the branch channel 16i.
  • control part 10 controls the main solenoid valve 8 (refer FIG. 2) so that it may be in an air supply state, and the output port into which air flows between input ports P1 becomes said one output port D8.
  • the first, second, and third switching devices 31, 32, and 33 control electromagnetic valves S1, S2, and S3 are controlled.
  • air cells D, E which are connected to the output ports D4, D5, D6, D7 from the one output port D8 via the check valves 16a, 16b, 16c, 16d, respectively.
  • F and G can be supplied.
  • the air in the air cell E connected to the output port D5 is exhausted from the main solenoid valve 8 to the outside through the output port D5.
  • the air cell E contracts.
  • the output port D6 is selected (time t5) and then the output port D7 is selected (time t6)
  • the air cell F and the air cell G contract in order. That is, in this embodiment, it is possible to supply air to a plurality of air cells at the same time, and to exhaust individually (with a time difference).
  • the number of the output ports which can discharge air in the air distribution unit 7 can be increased, and many air cells can be connected.
  • the illustrated air distribution unit 7 (for example, FIG. 2) is configured to connect many air cells, but the switching device (31, 32, 33) is divided into three stages of distribution blocks 11, 12, 13. And the switching device provided for each distribution block collectively switches the flow direction of the air in the branching unit in units of the distribution block. Therefore, it is necessary to provide the switching device for each branching unit. Therefore, the number of switching devices is small, and the configuration of the air distribution unit 7 can be simplified.
  • the illustrated air distribution unit 7 (for example, FIG. 2) only needs to have one main electromagnetic valve 8 and three control electromagnetic valves S1, S2, and S3.
  • the number of solenoid valves is less than the number of air cells A to H, and the number of solenoid valves is half, and the configuration of the air distribution unit 7 can be simplified.
  • the number of distribution blocks has been described as three (three stages) in the above embodiment, but may be four (four stages) or more. That is, a fourth distribution block may be further added to the unit main body 14 of FIG. In this case, the number of output ports can be 16. Even in this case, it is only necessary to add one control solenoid valve to the fourth distribution block. As a result, a total of five units including one main solenoid valve 8 and four control solenoid valves may be sufficient. Less than half the number of air cells (16). As described above, according to the present invention, the number of electromagnetic valves may be small, while the configuration can connect many air cells, and the configuration of the air distribution unit 7 and the entire massage machine can be simplified.
  • the switching devices 31, 32, 33 use air cells as switching actuators.
  • the air cell is inflated by switching the air supply / discharge of the control solenoid valves S1, S2, S3. For this reason, the motive power for switching a flow path is obtained by the pressurized air, and the motive power becomes large.
  • the control electromagnetic valves S1, S2 and S3 need only be given small electric power, and energy efficiency is good.
  • FIG. 13 is an explanatory diagram of the left armrest 4.
  • the air cell 44a that presses the shoulder
  • the air cell 44b that presses (pinches) the upper arm
  • the air cell 44c1 that presses (pinches) the shoulder side of the forearm
  • the hand side of the forearm An air cell 44c2 that performs (pinches) and an air cell 44d that presses the hand (pins up and down) is provided.
  • the air cell 44a and the air cell 44b are the air cell group A
  • the air cell 44c1 is the air cell group B
  • the air cell 44c2 is the air cell group C
  • the air cell 44d is the air cell group D.
  • These air cell groups A to D correspond to the air cells A to D in FIG.
  • air cell groups E to H are provided, which correspond to the air cells E to H in FIG. Therefore, in this embodiment, one air distribution unit 7 is provided for the air cells of the left and right armrest portions 4 and 4.
  • FIG. 14 is a time chart for the operation of the air cell groups A, B, C, and D for the left arm. Note that the right arm also operates in the same manner as left-right symmetry.
  • This time chart shows a case where air cells A, B, C, and D are individually supplied and individually exhausted.
  • the main electromagnetic valve 8 is in an air supply state, and the output ports to be aired from the input port P ⁇ b> 1 are sequentially selected as D ⁇ b> 1, D ⁇ b> 2, D ⁇ b> 3, D ⁇ b> 4, thereby Air is supplied in the order of A, B, C, and D and individually expanded.
  • the air cell group is set to D, C, B, Air is supplied in the order of A and inflated individually. Then, after expanding the air cell group A, the main electromagnetic valve 8 is switched to the exhaust state, and the output ports are again selected as D4, D3, D2, and D1 in the same order. Thereby, an air cell group can be shrunk separately in order of D, C, B, and A.
  • the air distribution unit 7 of another form is applied to the chair type massage machine of FIG. 1 is demonstrated.
  • the air cell 44a and the air cell 44b are an air cell group A
  • the air cell 44c1 is an air cell group B
  • the air cell 44c2 and the air cell 44d are an air cell group C.
  • the check valve 16b is provided between the output port D4 and each of the air cells A, B, and C. , 16c, 16d are provided.
  • the air cell groups A to C in FIG. 16 correspond to A to C in FIG. Although not shown, the same applies to the right armrest portion 4, and air cell groups E to G are provided, corresponding to the air cells E to G in FIG. Therefore, in this embodiment, one air distribution unit 7 is provided for the left and right armrest portions 4, 4.
  • FIG. 18 is a time chart for the operation of the air cell groups A, B, and C for the left arm. Note that the right arm also operates in the same manner as left-right symmetry. This time chart shows a case where air is supplied to the air cell groups A, B, and C at the same time and exhausted individually (with a time difference).
  • the main solenoid valve (see FIG. 2) is in an air supply state and the output port D4 is selected, so that air is supplied to the air cell group A via the check valves 16b, 16c and 16d. , B and C are simultaneously supplied to inflate them.
  • the main electromagnetic valve 8 is switched to the exhaust state, and the output ports are selected in the order of D3, D2, and D1. Thereby, an air cell group can be shrunk separately in order of C, B, and A. Control by the control device 10 in this way enables massage (centrifugation) that sequentially contracts the air cell group from a position far from the user's heart (the center of the body).
  • the main solenoid valve (see FIG. 2) is brought into the air supply state, and the output port D4 is selected, so that the air is passed through the check valves 16b, 16c and 16d. Then, air is supplied to the air cell groups A, B, and C at the same time to expand them. Then, after a predetermined time has elapsed, the main electromagnetic valve 8 is switched to the exhaust state, and the output ports are selected in the order of D1, D2, and D3. Thereby, the air cell group can be individually contracted in the order of A, B, and C. Control by the control device 10 in this way enables massage (centripetal method) in which the air cell group is contracted sequentially from a position close to the user's heart (the center of the body).
  • the air cell groups A to C in FIG. 16 correspond to A to C in FIG.
  • FIG. 21 is a time chart regarding the operation of the air cell groups A, B, and C for the left arm. Note that the right arm also operates in the same manner as left-right symmetry.
  • This time chart shows a case where air cells A, B, and C are individually supplied (with a time difference) and exhausted simultaneously.
  • the main solenoid valve 8 (see FIG. 2) is in an air supply state, and the output ports are selected in order of D1, D2, and D3, so that the air cell groups are in the order of A, B, and C. Inflate and individually inflate.
  • the output port D4 is selected after the air cell group C is expanded, the air cell groups A, B, and C are held in an expanded state.
  • the air in the air cell groups A, B, and C that are in the expanded state can flow to the output port D4 via the check valves 15a, 15b, and 15c.
  • the air cell groups A, B, and C can be contracted simultaneously. Control by the control device 10 in this way enables massage by a centrifugal method in which the air cell group is sequentially expanded in a direction farther from the user's heart (the center of the body).
  • the main solenoid valve 8 is in the supply state, and the output ports are selected as D3, D2, and D1 in this order, so that the air cell group is in the order of C, B, and A. Supply air and inflate individually. Then, after the air cell group A is expanded, when the output port D4 is selected and the main electromagnetic valve 8 is switched to the exhaust state, the air in the air cell groups A, B, and C in the expanded state becomes the check valve 15a. , 15b, 15c to the output port D4, and the air cell groups A, B, C can be contracted simultaneously. Control by the control device 10 in this way enables massage by a centripetal method in which the air cell groups are sequentially expanded from the end of the user's body toward the heart (the center of the body).
  • FIG. 23 is a cross-sectional view showing another form of the air distribution unit 7.
  • the air distribution unit 7 of FIG. 23 has the same function as the air distribution unit 7 of FIG.
  • the air distribution unit 7 in FIG. 23 includes first, second, and third distribution blocks (distribution units) 11, 12, arranged in three stages in a direction from the input port P1 to the plurality of output ports D1 to D8. 13 and first and second connecting blocks 17 and 18 connecting them.
  • the first connection block 17 connects the first distribution block 11 and the second distribution block 12, and the first branch flow paths 11 b and 11 c of the first distribution block 11 and the second main flow path of the second distribution block 12. It has a flow path connecting 12a and 12b.
  • the second connection block 18 connects the second distribution block 12 and the third distribution block 13, and the second branch flow paths 12 c to 12 f of the second distribution block 12 and the third main flow path of the third distribution block 13. It has a flow path connecting 13a to 13d.
  • These distribution blocks 11, 12, 13 and connection blocks 17, 18 constitute a unit main body 14.
  • the unit main body portion 14 of FIG. 23 has a configuration in which a branch portion is formed in each of the distribution blocks 11, 12, and 13, and the input port P1 to the plurality of output ports D1 to D8.
  • the flow path is configured to increase.
  • FIG. 3 for example, in the third distribution block 13, four valve bodies 23a to 23d are mounted on the shaft 33b, whereas in FIG. The spool 26 is used.
  • the air distribution unit 7 includes first, second, and third switching devices (switching units) provided in the first, second, and third distribution blocks 11, 12, and 13, respectively.
  • Part) 31, 32, 33 The switching devices 31, 32, and 33 can collectively switch the direction in which the air flows in the branching portions (flow paths through which the air flows) in each of the distribution blocks 11, 12, and 13.
  • Each of the switching devices 31, 32, and 33 changes the position of the spools 24, 25, and 26 that change their positions in order to switch the flow paths, and changes the positions of the spools 24, 25, and 26.
  • the configuration of the switching actuator (operational air cells 31a, 32a, 33a) and the control electromagnetic valves S1, S2, S3 is the same as that shown in FIG. 3.
  • the control electromagnetic valve S3 is connected to the third operation air cell 33a.
  • control device 10 controls the switching devices 31, 32 and 33 to switch the flow path, and allows air to flow between the input port P1 and the eight output ports D1 to D8.
  • this air distribution unit 7 can also be applied as shown in FIGS.
  • each of the distribution blocks 11, 12, and 13 is formed with a straight hole, and the spools 24, 25, and 26 are provided in the holes so as to be movable. It has been.
  • the spool 24 can be manufactured from a straight shaft, and the distribution blocks 11, 12, and 13 are provided with the straight hole, the hole that forms the main flow path, and the hole that forms the branch flow path. Manufactured easily compared to the embodiment of FIG.
  • FIG. 24 is an explanatory view showing still another form of the air distribution unit 7.
  • FIG. 25A is a view as seen from an arrow A in FIG. 24, and
  • FIG. 25B is a view as seen from an arrow B in FIG. 24 also has the same function as the air distribution unit 7 of FIG.
  • the air distribution unit 7 in FIG. 24 has first, second, and third distribution blocks (distribution units) 11, 12, and 13 that are arranged in three stages from the input port P1.
  • the first distribution block 11 is composed of one valve unit b1
  • the second distribution block 12 is composed of two valve units b2 and b3
  • the third distribution block 13 is composed of three units. It consists of valve units b4, b5, b6 and b7.
  • the air distribution unit 7 has first and second connecting blocks 17 and 18 (similar to FIG. 23).
  • the first connection block 17 is interposed between the first distribution block 11 (valve unit b1) and the second distribution block 12 (valve units b2, b3), and the second connection block 18 is a second distribution block. 12 and the third distribution block 13 (valve units b4, b5, b6, b7).
  • Each of the valve units b1 to b7 has the same configuration
  • FIG. 26 is a cross-sectional view thereof (cross-section taken along arrow C in FIG. 24). In FIG. 26, the first valve unit b1 of the first distribution block 11 is shown as a representative.
  • the first valve unit b1 includes a first port 27a, a second port 27b, a third port 27c, a fourth port 27d, and a case main body 30.
  • the case main body 30 is provided with a spring (elastic member) 28b, a valve body 29, and a moving body 28a.
  • the moving body 28a has a shaft portion (valve shaft) 28a1 having a valve body 29 attached to one end thereof, and a membrane member 28a2 made of an elastic body attached to the other end of the shaft portion 28a1.
  • valve body 29 moves in conjunction with the moving body 28a. And in this valve unit b1, it branches from the 1st main flow path 11a connected with the 1st port 27a via the branch part 11d, and the 1st branch flow paths 11b and 11c are formed.
  • the first branch channel 11b is connected to the second port 27b, and the first branch channel 11c is connected to the third port 27c.
  • the branch port 11d is formed between the first port 27a (first main channel 11a), the second port 27b (first branch channel 11b), and the third port 27c (first branch channel 11c).
  • a valve element 29 is provided at the branch portion 11d. In FIG.
  • the first port 27a and the second port 27b are connected by the valve body 29, and air can flow between these ports.
  • the air discharged from the pump 6 (see FIG. 2) and passing through the control solenoid valve S1 is supplied to the fourth port 27d, the valve of the air against the spring 28b from the state of FIG. The body 29 moves. Thereby, it will be in the state where the 1st port 27a and the 3rd port 27c were connected, and air can flow between these ports.
  • the second port 27b of the first valve unit b1 includes a flow path 17a formed in the first connection block 17 and a second valve on one side of the second distribution block 12, as shown in FIG. It connects with the 2nd main channel 12a in the 2nd valve unit b2 via the 1st port 27a of unit b2 (refer to Drawing 24).
  • the third port 27c of the first valve unit b1 is on the other side of the flow path 17b formed in the first connection block 17 and the second distribution block 12, as shown in FIG. It connects with the 2nd main flow path 12b in the said 3rd valve unit b3 via the 1st port 27a of the 3rd valve unit b3 (refer FIG. 24).
  • the 2nd port 27b of the 2nd valve unit b2 is the 4th valve unit b4 of the flow path 18a formed in the 2nd connection block 18, and the 3rd distribution block 12, as shown in FIG.25 (b).
  • the first main port 27a is connected to the third main channel 13a in the fourth valve unit b4 (see FIG. 24).
  • a third branch channel 13e and a third branch channel 13f are formed by branching from the first port 27a and the third main channel 13a, and the third branch channel 13e and the third branch channel 13f are formed.
  • the three branch flow paths 13f are connected to the second port 27b and the third port 27c, respectively.
  • the second port 27b and the third port 27c are connected to the output port D1 and the output port D2, respectively (see FIG. 24).
  • the second connection block 18 is further formed with flow paths 18b, 18c, 18d, and the third valve unit b3 of the second distribution block 12 is further provided with another valve of the third distribution block 13.
  • the units b5 to b7 are configured similarly.
  • the unit body portion of the air distribution unit 7 constituted by the valve units b1 to b7 and the connecting blocks 17 and 18 is connected from the input port P1 to the plurality of output ports D1 to D8, as in FIGS. It has distribution blocks 11, 12, and 13 arranged in a plurality of stages in the direction toward it, and branch portions are formed in the distribution blocks 11, 12, and 13, respectively, and a plurality of output ports D1 to D8 from the input port P1.
  • the flow path is configured to increase.
  • the air distribution unit 7 of FIG. 24 has first, second, and third switching units provided in the first, second, and third distribution blocks 11, 12, and 13, respectively.
  • Devices (switching units) 31, 32, and 33 are included. The switching devices 31, 32, and 33 can collectively switch the direction in which the air flows in the branch portion (flow path for flowing air) for each of the distribution blocks 11, 12, and 13.
  • the switching devices 31, 32, and 33 will be described as a representative of the switching device 33 of the third distribution block 13.
  • the third distribution block 13 is composed of four valve units b4 to b7, and each of these fourth ports 27d is connected to an air flow path 34 indicated by a two-dot chain line.
  • the air flow path 34 is connected to the pump 6 (see FIG. 2) via a control electromagnetic valve S3. Therefore, when the air discharged from the pump 6 flows through the air flow path 34 via the control solenoid valve S3, the air is supplied to the fourth ports 27d of the valve units b4 to b7. As a result, the position of all the valve bodies 29 (see FIG.
  • the third distribution block 13 includes four valve bodies 29 whose positions change in order to switch the flow paths, and a switching actuator that changes the positions of these valve bodies 29 collectively and switches the flow paths collectively. It becomes the composition which has.
  • the switching actuator has the moving body 28a arranged in the valve units b4 to b7 connected to the air flow path 34, respectively.
  • the control device 10 controls the switching devices 31, 32, 33 (that is, controls the control electromagnetic valves S1, S2, S3) to switch the flow path, and the input port P1 and the eight output ports D1. Air can flow between D8.
  • this air distribution unit 7 is also applicable to the massage machine of FIG.7, FIG.9, FIG.11, FIG.17 and FIG. According to this embodiment, the configuration of the air distribution unit 7 can be easily changed by further adding the valve unit of FIG. 26 and the connection block similar to that of FIG. That is, the number of output ports can be easily increased by adding a valve unit and a connection block.
  • FIG. 27 is an explanatory view showing still another form of the air distribution unit 7.
  • 28 is a view as seen from an arrow A in FIG. 27, and
  • FIG. 29 is a view as seen from an arrow B in FIG.
  • the air distribution unit 7 of FIG. 27 also has the same function as the air distribution unit of each of the above embodiments.
  • 27 has first, second, and third distribution blocks (distribution units) 11, 12, and 13 that are arranged in three stages from the input port P1.
  • the first distribution block 11 is composed of one valve unit b1
  • the second distribution block 12 is composed of two valve units b2 and b3
  • the third distribution block 13 is composed of three units. It consists of valve units b4, b5, b6 and b7.
  • the air distribution unit 7 has first and second connecting blocks 17 and 18.
  • the first connection block 17 has a flow path for connecting the first distribution block 11 and the second distribution block 12, and the second connection block 18 includes the second distribution block 12 and the third distribution block 13.
  • a flow path for connecting the two is formed.
  • Each of the valve units b1 to b7 has the same configuration, and a sectional view thereof is FIG. 30 (a sectional view taken along arrow C in FIG. 27).
  • the first valve unit b1 will be described as a representative.
  • the first valve unit b1 includes a first port 27a, a second port 27b, a third port 27c, and a case main body 30.
  • the case main body 30 is provided with a spring (elastic member) 28b, a valve body 29, and a shaft portion (valve shaft) 28a to which the valve body 29 is attached at one end.
  • An operation air cell (switching actuator) 31a is provided on the other end side of the shaft portion 28a.
  • the spring 28b biases the valve body 29 toward the operation air cell 31a.
  • the operation air cell 31a expands when air is supplied, and the shaft portion 28a and the valve body 29 move against the spring 28b.
  • the case body 30 is branched from the first main flow channel 11a connected to the first port 27a via the branch portion 11d to form first branch flow channels 11b and 11c.
  • the first branch channel 11b is connected to the second port 27b
  • the first branch channel 11c is connected to the third port 27c.
  • the branch port 11d is formed between the first port 27a (first main channel 11a), the second port 27b (first branch channel 11b), and the third port 27c (first branch channel 11c).
  • a valve element 29 is provided at the branch portion 11d.
  • the state shown in FIG. 30 is a state in which the first port 27a and the third port 27c are connected by the valve body 29, and air can flow between these ports.
  • the second port 27b of the first valve unit b1 includes a flow path 17a formed in the first connection block 17 and a second valve unit on one side of the second distribution block 12. It connects with the 2nd main flow path 12a in the said 2nd valve unit b2 via the 1st port 27a of b2 (refer FIG. 27).
  • the third port 27c of the first valve unit b1 includes a flow path 17b formed in the first connection block 17 and a third valve unit on the other side of the second distribution block 12. It connects with the 2nd main flow path 12b in the said 3rd valve unit b3 via the 1st port 27a of b3 (refer FIG. 27).
  • the second port 27b of the second valve unit b2 is connected to the flow path 18a formed in the second connection block 18 and the fourth valve unit b4 of the third distribution block 12. It connects with the 3rd main flow path 13a in the said 4th valve unit b4 via the 1st port 27a (refer FIG. 27).
  • a third branch channel 13e and a third branch channel 13f are formed by branching from the first port 27a and the third main channel 13a.
  • the third branch channel 13f is connected to the second port 27b and the third port 27c of the fourth valve unit b4, respectively.
  • the second port 27b and the third port 27c are connected to the output port D1 and the output port D2, respectively (see FIGS. 27 and 29).
  • the second connection block 18 is further formed with flow paths 18b, 18c, 18d
  • the third valve unit b3 of the second distribution block 12 is further provided with another valve of the third distribution block 13.
  • the units b5 to b7 are configured similarly.
  • the unit main body 14 of the air distribution unit 7 constituted by the valve units b1 to b7 and the connecting blocks 17 and 18 is directed from the input port P1 to the plurality of output ports D1 to D8, as in the above embodiments.
  • the distribution blocks 11, 12, and 13 are arranged in a plurality of stages in the direction.
  • a branch portion is formed in each of the distribution blocks 11, 12, and 13, and the input port P 1 is connected to the output ports D 1 to D 8.
  • the flow path is configured to increase.
  • the air distribution unit 7 is provided in each of the first, second, and third distribution blocks 11, 12, and 13, respectively.
  • Second and third switching devices (switching units) 31, 32, 33 can collectively switch the direction in which the air flows in the branch portion (flow path for flowing air) for each of the distribution blocks 11, 12, and 13.
  • the switching devices 31, 32, and 33 will be described on behalf of the switching device 33 of the third distribution block 13.
  • 31 is a cross-sectional view of the third distribution block 13 (a cross-sectional view taken along arrow D in FIG. 27).
  • the third distribution block 13 is composed of four valve units b4 to b7, and the end of the valve shaft 28a which each of these valve units b4 to b7 has corresponds to a single operating air cell 33a. It touches.
  • the operating air cell 33a is long in the arrangement direction of the valve units b4 to b7, and all (four) valve shafts 28a are arranged in parallel to the operating air cell 33a.
  • the third distribution block 13 has a stop member 20 having a wall 20a facing the end surface 19 of the valve units b4 to b7, and an operating air cell 33a is provided in the space between the wall 20a and the end surface 19. It has been.
  • the operating air cell 33a is connected to the pump 6 (see FIG. 2) via a control electromagnetic valve S3.
  • the air cell 33a for operation expands when air is supplied from the pump 6 side, and all (four) valve shafts 28a can be pushed at the same time to move the valve body 29 to the same displacement amount. .
  • the position of all the valve bodies 29 of the valve units b4 to b7 can be changed collectively.
  • the third distribution block 13 includes four valve bodies 29 whose positions change in order to switch the flow paths, and a switching actuator that changes the positions of these valve bodies 29 collectively and switches the flow paths collectively. (Operation air cell 33a).
  • control device 10 controls the switching devices 31, 32, 33 (that is, controls the control electromagnetic valves S1, S2, S3) to switch the flow path, and the input port P1 and the eight output ports D1. Air can flow between D8.
  • this air distribution unit 7 is also applicable to the massage machine of FIG.7, FIG.9, FIG.11, FIG.17 and FIG.
  • the unit main body portion 14 provided in the air distribution unit 7 has the valve units b1 to b7.
  • a plurality of case main bodies 30 mainly constituting each of them are provided, and a single branch portion is formed inside each case main body 30.
  • the valve body 29 that changes its position in order to switch the flow direction of air in the branch portion, and this valve body 29 has a valve shaft 28a to which the position is changed together with the valve body 29, and an operating air cell 33a.
  • each case main body 30 has a bearing hole 30b through which the valve shaft 28a is inserted and supported so that the position of the valve body 29 and the valve shaft 28a can be changed in a linear direction.
  • the case main body 30 of each of the valve units b4 to b7 is manufactured separately and independently.
  • the bearing hole 30b of one case main body 30 and the bearing hole 30b of the other case main body 30 are different from each other. It has a configuration in which holes are individually drilled.
  • the plurality of case main body portions 30 are arranged such that the hole direction of the bearing hole portion 30b of one case main body portion 30 is parallel to the hole direction of the bearing hole portion 30b of the other case main body portion 30. ing.
  • the valve body 29 and the valve shaft 28a in the branch portion of one case main body 30 and the valve body 29 and the valve shaft 28a in the branch portion of the other case main body 30 are arranged in parallel.
  • the operation air cell 33a for operating all the valve bodies 29 together is, for example, a resin-made flat bag shape, and each part has flexibility. is doing. Thereby, one valve shaft 28a is independently pushed by the operation air cell 33a without being influenced by the other valve shaft 28a. Therefore, in each case main body 30, the valve body 29 fixed to the valve shaft 28 a can independently ensure airtightness at the branch portion.
  • the third distribution block 13 in the embodiment of FIGS. 3 and 4 has a configuration in which all the valve bodies 23a to 23d are fixed to one shaft 33b. In order to ensure airtightness, high assembly accuracy and high manufacturing accuracy are required. However, according to the form of FIG. 31, in order to ensure airtightness in all the valve bodies 29, it is not necessary to require a very high assembly accuracy and high manufacturing accuracy.
  • the force (including the sliding resistance) necessary to move one valve element is F.
  • the operating air cell 33a in order to move the four valve bodies by the operating air cell 33a, four times as much force (4 ⁇ F force) is required.
  • the operating air cell 33a in order for the operating air cell 33a to have this force (4 ⁇ F force), in the case of the embodiment shown in FIGS. 3 and 4, the operating air cell 33a is configured to be small, so that a large pressure is required.
  • the operation air cell 33a is configured to be large so that all the valve shafts 28a arranged in parallel can be pushed together. Therefore, the pressure required for the operation air cell 33a to have the force (4 ⁇ F force) can be small.
  • all of the plurality of distribution blocks 11, 12, 13 arranged in the direction from the input port P1 to the plurality of output ports D1 to D8 are linear in one direction. They are arranged side by side. In this way, even if the multi-stage distribution blocks 11, 12, and 13 are provided, by configuring the air distribution unit 7 to be long in one direction, the dimension in the direction orthogonal to the one direction can be reduced.
  • the air distribution unit 7 can be made compact.
  • the first distribution block 11 and the second distribution block 12 are arranged linearly in one direction, and the first distribution block 11 and the second distribution block 12 are arranged in two rows (in parallel).
  • the third distribution block 13 may be provided.
  • the case main body 30 has a divided structure having a plurality of (two) case divided bodies 30c and 30d in order to make the valve body 29 accommodated in the branching portion 11d. . And these several case division bodies 30c and 30d are assembled so that separation is impossible by interference fit. More specifically, the case body 30 includes an outer case divided body 30c in which a recess 30e is formed, and an inner case divided body 30d that fits into the recess 30e. A diameter D1 of the inner case divided body 30d is configured to be larger than an inner diameter D2 of the recess 30e. Thereby, when assembling case division bodies 30c and 30d, for example, welding, screw processing for screw fastening, etc. are unnecessary, and manufacture of case body part 30 becomes easy. In the form of FIG. 31, in the third distribution block 13, the four case main body portions 30 are separately manufactured and connected to each other. However, the four case main body portions 30 are configured as a single unit. May be.
  • FIG. 33 shows a modification of the valve unit b1 of FIG. 30, where (a) is a plan view and (b) is a cross-sectional view.
  • the valve unit b1 in FIG. 33 and the valve unit b1 in FIG. 30 have the same basic configuration for flowing air.
  • a different configuration is the case body 30.
  • the case main body 30 of FIG. 33 has a divided structure having two case divided bodies 30f and 30g. These case division bodies 30f and 30g are connected by fixing members 30h such as bolts. By using the fixing member 30h as a bolt, the case body 30 can be easily disassembled when maintenance of the valve body 29 or the like is required. Further, between the case divided bodies 30f and 30g, the airtightness is maintained by the packing 30i.
  • the air distribution unit 7 includes a leak valve and a quick exhaust valve.
  • the leak valve and the quick exhaust valve are provided as necessary between the output ports D1 to D8 and the air cells A to H connected correspondingly.
  • a leak valve 35c and a quick exhaust valve 36c provided between the output port D3 and the air cell C are representatively shown.
  • the leak valve 35c has a valve portion 37a biased by a spring 38, and a main body portion 37b that accommodates the valve portion 37a, and an outer peripheral side surface of the valve portion 37a and an inner peripheral side surface of the main body portion 37b.
  • a gap is formed between the two.
  • the leak valve 35c is closed by the tip of the valve portion 37a coming into contact with the seal portion 39 of the main body portion 37b, and the supplied air can flow to the air cell C side.
  • the leak valve 35c is particularly effective in the case of a form in which air leakage is relatively likely to occur (for example, a form in which the spool of FIG. 23 is employed).
  • the quick exhaust valve 36c is provided on the downstream side (air cell C side) of the leak valve 35, and is for urging the air cell C to contract.
  • the unit main body 14 of the air distribution unit 7 is configured such that the flow path increases from the input port P1 to the plurality of output ports D1 to D8. It has a configuration having many output ports D1 to D8, and many air actuators can be connected.
  • the air distribution unit 7 can be connected to many air actuators, but it is sufficient that a switching device is provided for each distribution block. Therefore, the number of switching devices may be small, and the configuration can be simplified.
  • the massage machine of the present invention is not limited to the illustrated form, and may be of other forms within the scope of the present invention.
  • the air distribution unit 7 is applied to the armrest portion 4
  • the present invention can be applied to the seat portion 1 and the footrest 3 in addition to this.
  • the air actuator connected to the output port and the switching actuator have been described as the air cell, other than this (not shown), an air cylinder having a piston may be used.

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Pain & Pain Management (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Rehabilitation Therapy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Massaging Devices (AREA)

Abstract

An air distribution unit (7) for delivering air, supplied from a pump (6), to air cells (A-H) has an input port (P1), output ports (D1-D8), and a unit body (14) having distribution blocks (11, 12, 13). Each distribution block (11, 12, 13) has a branch section for flow paths, and this incrementally increases, starting with the input port (P1), the number of flow paths untill the output ports (D1-D8). The air distribution unit further has a switching device and a control device. The switching device collectively switches, for each distribution block (11, 12, 13), the direction of flow of air at each branch section. The control section controls the switching device so that air can flow between the input port (P1) and the output ports (D1-D8).

Description

マッサージ機及びエア分配ユニットMassage machine and air distribution unit
 本発明は、エアの給排によって動作する複数のエアアクチュエータを備えたマッサージ機、及び、このマッサージ機に適用されるエア分配ユニットに関する。 The present invention relates to a massage machine including a plurality of air actuators that operate by supplying and discharging air, and an air distribution unit applied to the massage machine.
 背凭れ部や座部に、膨縮自在な袋状のエアセル(エアアクチュエータ)が複数設けられた椅子型のマッサージ機が知られている。これらエアセルにエア(空気)が供給されることで当該エアセルは膨張し、これにより使用者の身体が押圧されマッサージが行なわれる。このような複数のエアセルを備えた椅子型マッサージ機は、エアを吐出するポンプと、このポンプから供給されたエアを各エアセルへと供給するためのエア分配ユニットとを備えている(例えば、特開2005-87765号公報(図3参照))。
 従来のエア分配ユニットは複数の電磁弁を有しており、一つのエアセル(又は一箇所をマッサージするために対となっているエアセル)に対して、少なくとも一つの電磁弁が繋がっている。これにより、ポンプからエア分配ユニットへ送られたエアは、開状態となっている電磁弁を通じてエアセルに供給され、当該エアセルは膨張する。一方、電磁弁を閉状態とすることで、エアセルは収縮する。
2. Description of the Related Art A chair-type massage machine is known in which a plurality of bag-shaped air cells (air actuators) that can be expanded and contracted are provided on a backrest or a seat. When air (air) is supplied to these air cells, the air cells expand, whereby the user's body is pressed and massage is performed. Such a chair-type massage machine including a plurality of air cells includes a pump that discharges air and an air distribution unit that supplies air supplied from the pump to each air cell (for example, a special feature). No. 2005-87765 (see FIG. 3)).
The conventional air distribution unit has a plurality of solenoid valves, and at least one solenoid valve is connected to one air cell (or a pair of air cells for massaging one place). Thereby, the air sent from the pump to the air distribution unit is supplied to the air cell through the open electromagnetic valve, and the air cell expands. On the other hand, the air cell contracts by closing the solenoid valve.
 近年、前記のようなエアセルを有するマッサージ機において、エアセルの数を増加させ、使用者の身体のうちマッサージを行なう部位を増やすことができるマッサージ機がある。そこで、従来のように一つのエアセルに対して一つ又は複数の電磁弁が必要である場合、エアセルの数を増加させると、電磁弁及びこのための配線・配管等を含む周辺機器も増加する。この結果、マッサージ機の構成が複雑化したり、消費電力が増加したりする。 In recent years, there is a massage machine that can increase the number of air cells in the massage machine having the air cells as described above and increase the number of massage parts in the user's body. Therefore, when one or a plurality of solenoid valves are required for one air cell as in the prior art, increasing the number of air cells increases the number of peripheral devices including solenoid valves and wiring and piping for this purpose. . As a result, the configuration of the massage machine becomes complicated and the power consumption increases.
 そこで、本発明では、エアによって動作するエアアクチュエータ(エアセル)が多くなっても構成の簡素化が図れるマッサージ機、及び、このマッサージ機に適用されるエア分配ユニットを提供することを目的とする。 Therefore, an object of the present invention is to provide a massage machine that can be simplified in configuration even if there are many air actuators (air cells) that are operated by air, and an air distribution unit that is applied to the massage machine.
 前記目的を達成するため、本発明のマッサージ機は、エアを吐出するポンプと、エアの給排によって動作する複数のエアアクチュエータと、前記ポンプからエアが供給されると共に当該エアを前記複数のエアアクチュエータへ送ることができるように内部に流路が形成されたエア分配ユニットと、前記エアアクチュエータの動作を制御するための制御部とを備え、前記エア分配ユニットは、前記ポンプからエアが供給される入力ポートと、前記複数のエアアクチュエータとそれぞれ繋がっている複数の出力ポートと、前記入力ポートから前記複数の出力ポートへと向かう方向に複数配設された分配部を有し、当該分配部のそれぞれに前記流路の分岐部が形成されていることによって、前記入力ポートから前記複数の出力ポートへと流路が当該分配部毎に増加していくように構成されたユニット本体部と、前記分配部毎に設けられ、前記分岐部におけるエアを流す方向を当該分配部単位でまとめて切り替える切替部とを有し、前記制御部は、前記複数の出力ポートの内から前記入力ポートとの間でエアを流すことのできる出力ポートを選択するために、前記切替部を制御して前記流路を切り替えることを特徴とする。 In order to achieve the above object, a massage machine of the present invention includes a pump that discharges air, a plurality of air actuators that operate by supplying and discharging air, and air that is supplied from the pump and that air is supplied to the plurality of air. An air distribution unit having a flow path formed therein so that the air can be sent to the actuator, and a control unit for controlling the operation of the air actuator. The air distribution unit is supplied with air from the pump. Input ports, a plurality of output ports respectively connected to the plurality of air actuators, and a plurality of distribution sections arranged in a direction from the input ports to the plurality of output ports. Each of the branch portions of the flow path is formed so that the flow path is applied from the input port to the plurality of output ports. A unit main body configured to increase for each distribution unit; and a switching unit that is provided for each distribution unit and switches the flow direction of the air in the branching unit in units of the distribution unit. The control unit switches the flow path by controlling the switching unit in order to select an output port through which air can flow between the plurality of output ports and the input port. To do.
 また、本発明は、エアを吐出するポンプから供給されたエアを、エアの給排によって動作する複数のエアアクチュエータへ送ることができるように内部に流路が形成されたエア分配ユニットであって、前記ポンプからエアが供給される入力ポートと、前記複数のエアアクチュエータとそれぞれ繋がる複数の出力ポートと、前記入力ポートから前記複数の出力ポートへと向かう方向に複数配設された分配部を有し、当該分配部のそれぞれに前記流路の分岐部が形成されていることによって、前記入力ポートから前記複数の出力ポートへと流路が当該分配部毎に増加していくように構成されたユニット本体部と、前記分配部毎に設けられ、前記分岐部におけるエアを流す方向を当該分配部単位でまとめて切り替える切替部と、を備え、前記複数の出力ポートの内から前記入力ポートとの間でエアを流すことのできる出力ポートを選択するために、前記切替部が制御されて前記流路が切り替えられるものである。 Further, the present invention is an air distribution unit having a flow path formed therein so that air supplied from a pump that discharges air can be sent to a plurality of air actuators that operate by supplying and discharging air. And an input port to which air is supplied from the pump, a plurality of output ports respectively connected to the plurality of air actuators, and a plurality of distribution sections arranged in a direction from the input port to the plurality of output ports. In addition, each of the distribution sections is formed with a branch portion of the flow path, so that the flow paths increase from the input port to the plurality of output ports for each distribution section. A plurality of unit main bodies, and a switching unit that is provided for each distribution unit and collectively switches the flow direction of air in the branching unit in units of the distribution unit. To select the output port that can be from among the output ports of flowing the air between said input port, said switching unit is one that the flow path is controlled is switched.
 このマッサージ機、及び、エア分配ユニットによれば、エア分配ユニットが有しているユニット本体部において、入力ポートから複数の出力ポートへと向かう方向に、分配部が複数段配設されている。そして、分配部のそれぞれに流路の分岐部が形成されていることによって、入力ポートから複数の出力ポートへと流路が増加していくように構成されている。さらに、分配部毎に設けられた切替部を制御部が制御することにより、前記分岐部におけるエアを流す方向が分配部単位でまとめて切り替えられ、複数の出力ポートの内から入力ポートと繋がった状態となる出力ポートが選択される。したがって、入力ポートからこの出力ポートに流れてきたエアを、当該出力ポートと繋がっているエアアクチュエータへ供給することができる。このように、エアを吐出することができる出力ポートの数を多くすることができ、多くのエアアクチュエータを繋ぐことができる。
 また、エア分配ユニットは、多くのエアアクチュエータを繋ぐことができる構成でありながら、前記切替部を、複数段ある分配部毎に設ければよく、かつ、この分配部毎に設けられた切替部が、分岐部におけるエアを流す方向を当該分配部単位でまとめて切り替える。このため、切替部を分岐部毎に設ける必要がなく、切替部の数が少なくて済み、エア分配ユニットの構成の簡素化が図れる。
According to this massage machine and the air distribution unit, in the unit main body portion of the air distribution unit, a plurality of distribution sections are arranged in the direction from the input port to the plurality of output ports. In addition, the flow path branch section is formed in each of the distribution sections, so that the flow paths increase from the input port to the plurality of output ports. Further, the control unit controls the switching unit provided for each distribution unit, whereby the flow direction of the air in the branching unit is switched in units of the distribution unit and connected to the input port from among the plurality of output ports. The output port to be in the state is selected. Therefore, the air flowing from the input port to the output port can be supplied to the air actuator connected to the output port. In this way, the number of output ports that can discharge air can be increased, and many air actuators can be connected.
In addition, the air distribution unit can connect many air actuators, but the switching unit may be provided for each of the plurality of distribution units, and the switching unit provided for each of the distribution units. However, the direction in which the air flows in the branching section is switched collectively for each distribution section. For this reason, it is not necessary to provide a switching part for every branch part, the number of switching parts is small, and the structure of an air distribution unit can be simplified.
 また、分配部毎に切替部を設ける構成とするために、前記切替部は、前記分岐部におけるエアを流す方向を切り替えるために位置変化する弁体と、前記分配部単位でまとめて当該弁体を位置変化させる切替アクチュエータとを有しているのが好ましい。
 この構成により、切替アクチュエータが分配部単位でまとめて弁体を位置変化させ、エアを流す方向を分配部単位でまとめて切り替えることができる。
 また、前記切替アクチュエータは、前記ポンプから供給されたエアによって動作するエア式であるのが好ましい。
 この場合、前記エアアクチュエータのエア源と、前記エア分配ユニットの流路を切り替えるための切替アクチュエータのエア源とを、同じポンプとすることができる。
In addition, in order to adopt a configuration in which a switching unit is provided for each distribution unit, the switching unit includes a valve body whose position changes in order to switch the direction in which air flows in the branching unit, and the valve body collectively for each distribution unit. It is preferable to have a switching actuator that changes the position of the actuator.
With this configuration, the switching actuator can collectively change the position of the valve body in units of distribution units, and the direction in which air flows can be switched in units of distribution units.
Moreover, it is preferable that the switching actuator is of an air type that operates by air supplied from the pump.
In this case, the air source of the air actuator and the air source of the switching actuator for switching the flow path of the air distribution unit can be the same pump.
 また、前記ユニット本体部は、単一の前記分岐部が内部に形成されているケース本体部を複数有し、前記切替部は、前記分岐部におけるエアを流す方向を切り替えるために位置変化する弁体と、前記弁体が取り付けられ当該弁体と共に位置変化する弁軸とを有し、前記ケース本体部は、前記弁体及び前記弁軸が直線方向に位置変化可能となるように当該弁軸を支持している軸受孔部を有し、一つのケース本体部の前記軸受孔部と、他のケース本体部の前記軸受孔部とは、個別に孔加工されているのが好ましい。
 この場合、一つのケース本体部における孔加工と他のケース本体部における孔加工とを個別に行なうことから、その加工が容易となり、寸法精度の確保が容易となる。
The unit main body includes a plurality of case main bodies in which a single branch portion is formed, and the switching portion is a valve that changes its position in order to switch the direction in which air flows in the branch portion. Body and a valve shaft to which the valve body is attached and whose position changes together with the valve body, and the case main body includes the valve shaft so that the position of the valve body and the valve shaft can be changed in a linear direction. It is preferable that the bearing hole part of one case body part and the bearing hole part of the other case body part are individually machined.
In this case, since the hole processing in one case main body and the hole processing in another case main body are separately performed, the processing is facilitated, and the dimensional accuracy is easily ensured.
 そして、前記のような、一つのケース本体部の軸受孔部と、他のケース本体部の軸受孔部とが、個別に孔加工されて得られるユニット本体部の構成としては、前記一つのケース本体部の前記軸受孔部の孔方向は、前記他のケース本体部の軸受孔部の孔方向と平行となるように、前記複数のケース本体部が設けられている構成がある。
 この場合、一つのケース本体部の分岐部における弁体及び弁軸と、他のケース本体部の分岐部における弁体及び弁軸とが、平行に配置される。
And, as described above, the structure of the unit main body obtained by individually drilling the bearing hole of one case main body and the bearing hole of the other case main body is the one case. There is a configuration in which the plurality of case main body portions are provided so that the hole direction of the bearing hole portion of the main body portion is parallel to the hole direction of the bearing hole portion of the other case main body portion.
In this case, the valve body and the valve shaft at the branch part of one case body part and the valve body and the valve shaft at the branch part of another case body part are arranged in parallel.
 また、前記ケース本体部は、前記弁体を前記分岐部に収容した状態とするために、複数のケース分割体を有している分割構造であり、前記ケース分割体同士は、しまり嵌めにより分離不能として組み立てられているのが好ましい。
 この場合、ケース分割体同士の組み立てに、例えば溶接や、ネジ締結のためのネジ加工等が不要であり、ケース本体部の作製が簡単となる。
In addition, the case body has a divided structure having a plurality of case divisions so that the valve body is accommodated in the branch portion, and the case divisions are separated by an interference fit. It is preferably assembled as impossible.
In this case, for example, welding, screw processing for screw fastening, or the like is not necessary for assembling the case divided bodies, and the case body can be easily manufactured.
 また、前記入力ポートから前記複数の出力ポートへと向かう方向に配設された複数の前記分配部の内の、少なくとも二つの分配部は、一方向に並んで配設されているのが好ましい。
 この場合、エア分配ユニットを一方向に長く構成することができる。
In addition, it is preferable that at least two of the plurality of distribution units arranged in a direction from the input port toward the plurality of output ports are arranged in one direction.
In this case, the air distribution unit can be configured to be long in one direction.
 また、前記マッサージ機は、前記制御部が前記切替部を制御することで前記入力ポートとの間で繋がった状態となった出力ポート以外の他の出力ポートは、エアの通過が規制された閉塞状態となるのが好ましい。
 この構成によれば、入力ポートとの間で繋がった状態となった出力ポート以外の他の出力ポートと(すなわち、入力ポートとの間でエアが流れることができるようになった出力ポート以外の他の出力ポートと)、これと繋がっているエアアクチュエータとの間では、エアが流れることができない状態となる。したがって、あるエアアクチュエータにエアが供給され動作した後に、当該エアアクチュエータと繋がる出力ポートが前記閉塞状態となるように制御されると、当該エアアクチュエータは動作した状態で保持される。
In addition, the massage machine is configured such that the output port other than the output port connected to the input port by the control unit controlling the switching unit is blocked in which the passage of air is restricted. It is preferable to be in a state.
According to this configuration, the output port other than the output port that is connected to the input port (that is, other than the output port that allows air to flow between the input port and the output port) Between the other output port) and the air actuator connected thereto, air cannot flow. Therefore, when air is supplied to a certain air actuator and the output port connected to the air actuator is controlled to be in the closed state, the air actuator is held in an operated state.
 また、前記制御部は、前記切替部の動作を制御すべく当該切替部へ与える切替信号と、当該切替信号に応じて前記切替部がエアを流す方向を切り替えることで前記入力ポートと繋がる前記出力ポートと、の関係を有する関係情報を記憶している記憶部を有しているのが好ましい。
 この構成によれば、入力ポートと繋がった状態とすべき出力ポートが定められると、制御部は、前記関係情報に基づいて切替信号を得ることができ、この切替信号を前記切替部に与え、切替部によって前記出力ポートが選択されるように制御することができる。
In addition, the control unit is connected to the input port by switching a switching signal given to the switching unit to control the operation of the switching unit and a direction in which the switching unit flows air according to the switching signal. It is preferable to have a storage unit that stores relationship information having a relationship with the port.
According to this configuration, when an output port to be connected to the input port is determined, the control unit can obtain a switching signal based on the relationship information, and provides the switching signal to the switching unit. The switching unit can be controlled to select the output port.
 また、前記マッサージ機において、前記複数の出力ポートのうちの一つの出力ポートと、少なくとも二つの他の出力ポートにそれぞれ繋がっている前記エアアクチュエータとの間が、当該一つの出力ポートから当該エアアクチュエータへのエアの流れを許容する逆止弁を介して繋がっており、前記制御部は、前記入力ポートとの間でエアが流れる出力ポートが、前記一つの出力ポートとなるように前記切替部を制御する構成とすることができる。
 この構成によれば、制御部が切替部を制御して、入力ポートとの間でエアが流れる出力ポートを、前記一つの出力ポートとして選択することにより、当該一つの出力ポートからエアを前記逆止弁を介して前記少なくとも二つの他の出力ポートにそれぞれ繋がっているエアアクチュエータへ供給することができる。つまり、前記少なくとも二つのエアアクチュエータについて同時に給気が可能となる。
Further, in the massage machine, between the one output port of the plurality of output ports and the air actuator connected to at least two other output ports, the one output port to the air actuator. The control unit is configured to connect the switching unit so that an output port through which air flows between the control port and the input port is the one output port. It can be set as the structure controlled.
According to this configuration, the control unit controls the switching unit to select the output port through which air flows between the input port as the one output port, so that the air is reversed from the one output port. It can supply to the air actuator connected with the said at least 2 other output port via a stop valve, respectively. That is, it is possible to supply air to the at least two air actuators simultaneously.
 また、前記マッサージ機は、前記ポンプがエアを前記入力ポートへ供給する給気状態から、前記出力ポートより前記入力ポートへと流れてきたエアを外部へ排気することができる排気状態へと切り替える給排切替弁を更に備えているのが好ましい。
 このマッサージ機によれば、給排切替弁によって給気状態とし、ポンプがエアを入力ポートへ供給すると、そのエアは、入力ポートから所定の出力ポートより吐出され、当該出力ポートと繋がっているエアアクチュエータにエアを供給することができる。また、給排切替弁によって排気状態とすると、入力ポートとの間でエアが流れることができる出力ポートに繋がっているエアアクチュエータ内のエアは、当該出力ポートから入力ポートへと流れ、当該エアを外部へ排気することができる。
Further, the massage machine is switched from an air supply state in which the pump supplies air to the input port to an exhaust state in which air flowing from the output port to the input port can be exhausted to the outside. It is preferable to further include an exhaust switching valve.
According to this massage machine, when an air supply state is set by the supply / discharge switching valve and the pump supplies air to the input port, the air is discharged from the input port through the predetermined output port and connected to the output port. Air can be supplied to the actuator. Further, when the exhaust state is set by the supply / discharge switching valve, the air in the air actuator connected to the output port through which air can flow between the input port and the input port flows from the output port to the input port. It can be exhausted to the outside.
 また、このマッサージ機において、前記複数の出力ポートのうちの一つの出力ポートと、少なくとも二つの他の出力ポートにそれぞれ繋がっている前記エアアクチュエータとの間が、当該エアアクチュエータから当該一つの出力ポートへのエアの流れを許容する逆止弁を介して繋がっており、前記制御部は、排気状態とするように前記給排切替弁を制御すると共に、前記入力ポートとの間でエアが流れる出力ポートが、前記一つの出力ポートとなるように前記切替部を制御する構成とすることができる。
 この構成によれば、給排切替弁によって排気状態とし、制御部が切替部を制御して、前記一つの出力ポートを選択することにより、前記少なくとも二つの他の出力ポートにそれぞれ繋がっているエアアクチュエータ内のエアを、前記逆止弁を介して前記一つの出力ポートへ流すことができる。そして、当該エアを、当該一つの出力ポートから前記入力ポートへと流し、外部へ排気することができる。つまり、前記少なくとも二つのエアアクチュエータについて同時に排気することが可能となる。
Further, in this massage machine, between the one output port of the plurality of output ports and the air actuator connected to at least two other output ports, the air actuator is connected to the one output port. The control unit controls the supply / exhaust switching valve so as to be in an exhaust state, and the air flows between the input port and the input port. The switching unit may be controlled so that the port becomes the one output port.
According to this configuration, the air is connected to the at least two other output ports by setting the exhaust state by the supply / discharge switching valve and the control unit controlling the switching unit to select the one output port. Air in the actuator can flow to the one output port via the check valve. Then, the air can flow from the one output port to the input port and be exhausted to the outside. That is, the at least two air actuators can be exhausted simultaneously.
本発明のマッサージ機を示す斜視図である。It is a perspective view which shows the massage machine of this invention. 本発明のマッサージ機の要部を示しているブロック図である。It is a block diagram which shows the principal part of the massage machine of this invention. エア分配ユニットの概略を示している断面図である。It is sectional drawing which shows the outline of an air distribution unit. 第三分配ブロックを示している図である。It is a figure which shows the 3rd distribution block. 第三分配ブロックを示している図である。It is a figure which shows the 3rd distribution block. 制御装置の機能を説明する説明図である。It is explanatory drawing explaining the function of a control apparatus. マッサージ機の他の実施形態の一部を示すブロック図である。It is a block diagram which shows a part of other embodiment of a massage machine. 制御装置の機能を説明する説明図である。It is explanatory drawing explaining the function of a control apparatus. マッサージ機の他の実施形態の一部を示すブロック図である。It is a block diagram which shows a part of other embodiment of a massage machine. 図9のマッサージ機によるエアセルの動作を説明する説明図である。It is explanatory drawing explaining operation | movement of the air cell by the massage machine of FIG. マッサージ機の他の実施形態の一部を示すブロック図である。It is a block diagram which shows a part of other embodiment of a massage machine. 図11のマッサージ機によるエアセルの動作を説明する説明図である。It is explanatory drawing explaining operation | movement of the air cell by the massage machine of FIG. 左側の肘掛け部の説明図である。It is explanatory drawing of the armrest part on the left side. 左腕用のエアセル群の動作を説明する説明図である。It is explanatory drawing explaining operation | movement of the air cell group for left arms. 左腕用のエアセル群の動作を説明する説明図である。It is explanatory drawing explaining operation | movement of the air cell group for left arms. 他のエア分配ユニットを適用した場合の左側の肘掛け部の説明図である。It is explanatory drawing of the armrest part of the left side at the time of applying another air distribution unit. マッサージ機の他の実施形態の一部を示すブロック図である。It is a block diagram which shows a part of other embodiment of a massage machine. 左腕用のエアセル群の動作を説明する説明図である。It is explanatory drawing explaining operation | movement of the air cell group for left arms. 左腕用のエアセル群の動作を説明する説明図である。It is explanatory drawing explaining operation | movement of the air cell group for left arms. マッサージ機の他の実施形態の一部を示すブロック図である。It is a block diagram which shows a part of other embodiment of a massage machine. 左腕用のエアセル群の動作を説明する説明図である。It is explanatory drawing explaining operation | movement of the air cell group for left arms. 左腕用のエアセル群の動作を説明する説明図である。It is explanatory drawing explaining operation | movement of the air cell group for left arms. エア分配ユニットの他の形態を示している断面図である。It is sectional drawing which shows the other form of an air distribution unit. エア分配ユニットのさらに他の形態を示している説明図である。It is explanatory drawing which shows the other form of the air distribution unit. (a)は図24のA矢視図であり、(b)は図24のB矢視図である。(A) is an arrow A view of FIG. 24, (b) is an arrow B view of FIG. バルブユニットの断面図である。It is sectional drawing of a valve unit. エア分配ユニットのさらに他の形態を示している説明図である。It is explanatory drawing which shows the other form of the air distribution unit. 図27のA矢視図である。It is A arrow line view of FIG. 図27のB矢視図である。It is a B arrow view of FIG. バルブユニットの断面図である。It is sectional drawing of a valve unit. 第三分配ブロックの断面図である。It is sectional drawing of a 3rd distribution block. リークバルブ及び急速排気弁の説明図である。It is explanatory drawing of a leak valve and a quick exhaust valve. バルブユニットの変形例を示し、(a)は平面図であり、(b)は断面図である。The modification of a valve unit is shown, (a) is a top view, (b) is sectional drawing.
 以下、本発明の実施の形態を図面に基づいて説明する。
 図1は本発明のマッサージ機を示す斜視図である。このマッサージ機は、使用者が着座する座部1と、使用者の上半身を支持する背凭れ部2と、使用者の脚を載せるフットレスト3と、使用者の左右の腕を載せる左右の肘掛け部4,4とを備えている。背凭れ部2には、昇降可能であるマッサージユニット(図示せず)が設けられている。このマッサージユニットは、施療子42とこの施療子42を動作させる駆動部(図示せず)とを有している。施療子42が動作することで、揉みや叩きのマッサージが可能となる。
 背凭れ部2はリクライニング動作が可能である。フットレスト3は座部1の前部を中心として回動可能であり、図1の下向き状態から、前方へ突出した突出状態となる。背凭れ部2のリクライニング及びフットレスト3の回動は、図示していない駆動装置によって行なわれる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a perspective view showing a massage machine of the present invention. This massage machine includes a seat 1 on which a user sits, a backrest 2 that supports the user's upper body, a footrest 3 on which the user's legs are placed, and left and right armrests on which the user's left and right arms are placed. 4 and 4 are provided. The backrest 2 is provided with a massage unit (not shown) that can be raised and lowered. The massage unit includes a treatment element 42 and a drive unit (not shown) that operates the treatment element 42. The massager 42 can be massaged and massaged by operating the treatment element 42.
The backrest 2 can be reclined. The footrest 3 is rotatable about the front portion of the seat portion 1 and is in a protruding state protruding forward from the downward state in FIG. The reclining of the backrest 2 and the rotation of the footrest 3 are performed by a driving device (not shown).
 このマッサージ機は、エアを吐出するポンプ6と、エアの給排によってマッサージのために膨縮動作する複数のエアセル(エアアクチュエータ)とを備えている。このポンプ6から供給されたエアによって各エアセルは動作する。
 前記エアセルとして、座部1は、前後に配置され上方へ膨張するエアセル41a,41b、使用者の臀部乃至大腿部を左右から押圧するエアセル41cを有している。フットレスト3は、左右各脚の脹脛を左右から押圧するエアセル43a、足先部を左右から押圧するエアセル43b、足裏を押圧するエアセル43cを有している。左右の肘掛け部4,4のそれぞれは、腕の上側から順に、肩部を押圧するエアセル44a、上腕部を押圧する(挟む)エアセル44b、前腕部を押圧する(挟む)エアセル44c、手を押圧する(上下で挟む)エアセル44dを有している。各エアセルは袋状であり、適宜所定の形状、大きさに形成されている。
This massage machine includes a pump 6 that discharges air and a plurality of air cells (air actuators) that expand and contract for massage by supplying and discharging air. Each air cell is operated by the air supplied from the pump 6.
As the air cell, the seat portion 1 includes air cells 41a and 41b that are arranged in front and rear and expand upward, and an air cell 41c that presses the user's buttocks or thighs from the left and right. The footrest 3 has an air cell 43a that presses the calves of the left and right legs from the left and right, an air cell 43b that presses the toe portion from the left and right, and an air cell 43c that presses the sole. Each of the left and right armrests 4 and 4 is, in order from the upper side of the arm, an air cell 44a that presses the shoulder, an air cell 44b that presses (pinches) the upper arm, an air cell 44c that presses (pinches) the forearm, and a hand. It has an air cell 44d that is sandwiched between the upper and lower sides. Each air cell has a bag shape and is appropriately formed in a predetermined shape and size.
 マッサージ機は、前記ポンプ6からエアが供給されると共に、供給されたエアをエアセルへ送ることができるエア分配ユニット7をさらに備えている。エア分配ユニット7は、ポンプ6からエアが供給される入力ポートと、複数のエアセルとそれぞれ繋がっている複数の出力ポートとを有している。エア分配ユニット7の内部には、枝分かれしている流路が形成されている。なお、ポンプ6とエア分配ユニット7との間、及び、エア分配ユニット7と各エアセルとの間は、それぞれエア配管(図示せず)によって接続されている。エア分配ユニット7の具体的な構成は、後に説明する。また、エア分配ユニット7は、例えば、肘掛け部4のエアセル用、座部1のエアセル用等として複数台設けられていてもよい。 The massage machine is further provided with an air distribution unit 7 capable of supplying air from the pump 6 and sending the supplied air to the air cell. The air distribution unit 7 has an input port to which air is supplied from the pump 6 and a plurality of output ports respectively connected to a plurality of air cells. A branching flow path is formed inside the air distribution unit 7. In addition, between the pump 6 and the air distribution unit 7, and between the air distribution unit 7 and each air cell are each connected by air piping (not shown). A specific configuration of the air distribution unit 7 will be described later. Further, a plurality of air distribution units 7 may be provided, for example, for the air cell of the armrest portion 4 and the air cell of the seat portion 1.
[第一の実施形態]
 図2はマッサージ機のエア制御回路及びエア配管の要部を示しているブロック図である。このマッサージ機は、エア分配ユニット7、電動ポンプ6及び複数のエアセルA~Hの他に、制御装置(制御部)10、主電磁弁(給排切替弁)8及び蓄圧装置9を備えている。また、図2では、複数のエアセルをそれぞれA,B,C,D,E,F,G,Hとしており、エア分配ユニット7の入力ポートをP1とし、出力ポートをD1,D2,D3,D4,D5,D6,D7,D8としている。
[First embodiment]
FIG. 2 is a block diagram showing an essential part of the air control circuit and air piping of the massage machine. This massage machine includes a control device (control unit) 10, a main electromagnetic valve (supply / discharge switching valve) 8, and a pressure accumulating device 9 in addition to the air distribution unit 7, the electric pump 6, and the plurality of air cells A to H. . In FIG. 2, the plurality of air cells are A, B, C, D, E, F, G, and H, the input port of the air distribution unit 7 is P1, and the output ports are D1, D2, D3, and D4. , D5, D6, D7, and D8.
 前記制御装置10は、CPU及びメモリを有するプログラマブルなマイコンからなり、このメモリに所定の各機能を実行するプログラムが格納されている。このプログラムが実行されることで、ポンプ6、エア分配ユニット7、主電磁弁8等の動作が制御される。制御装置10は、使用者が操作する操作器45(図1参照)から信号を受け、各種の動作を実行する制御を行なう。 The control device 10 is composed of a programmable microcomputer having a CPU and a memory, and a program for executing predetermined functions is stored in the memory. By executing this program, operations of the pump 6, the air distribution unit 7, the main electromagnetic valve 8, and the like are controlled. The control device 10 receives a signal from the operation device 45 (see FIG. 1) operated by the user and performs control to execute various operations.
 主電磁弁8はポンプ6とエア分配ユニット7との間に介在している。この主電磁弁8は、制御装置10からの制御信号に基づいて励磁状態と消磁状態とに切り替えられ、エアセルA~Hに対して、給気状態と排気状態との間を切り替えることができる。給気状態は、ポンプ6がエアを入力ポートP1へ供給する状態であり、排気状態は、出力ポートD1~D8から入力ポートP1へと流れてきたエアを外部へ排気することができる状態である。 The main solenoid valve 8 is interposed between the pump 6 and the air distribution unit 7. The main electromagnetic valve 8 is switched between an excited state and a demagnetized state based on a control signal from the control device 10, and can switch between an air supply state and an exhaust state for the air cells A to H. The supply state is a state in which the pump 6 supplies air to the input port P1, and the exhaust state is a state in which the air flowing from the output ports D1 to D8 to the input port P1 can be discharged to the outside. .
 ポンプ6から吐出されたエアは、主電磁弁8を介して入力ポートP1へ供給されるが、分岐部9cを介して蓄圧装置9及びその下流側の(後述の)制御電磁弁S1,S2,S3へも供給される。蓄圧装置9は、アキュムレータ9aと逆止弁9bとを有している。ポンプ6からのエアが前記エアセルA~Hに多量に供給されると、前記制御電磁弁S1,S2,S3へ供給すべきエア圧が低下し、当該制御電磁弁S1,S2,S3による動作(後述する切替アクチュエータの動作)が不安定となるおそれがある。しかし、この蓄圧装置9によれば、必要なエアの圧力を確保することができる。 The air discharged from the pump 6 is supplied to the input port P1 through the main electromagnetic valve 8, but the pressure accumulator 9 and control electromagnetic valves S1, S2, S2 (described later) on the downstream side thereof via the branch portion 9c. Also supplied to S3. The pressure accumulator 9 has an accumulator 9a and a check valve 9b. When a large amount of air from the pump 6 is supplied to the air cells A to H, the air pressure to be supplied to the control solenoid valves S1, S2, S3 decreases, and the operation by the control solenoid valves S1, S2, S3 ( The operation of the switching actuator (to be described later) may become unstable. However, according to this pressure accumulator 9, the necessary air pressure can be ensured.
 図3はエア分配ユニット7の概略を示している断面図である。このエア分配ユニット7は、前記入力ポートP1と前記出力ポートD1~D8との間に介在しているユニット本体部14を有している。ユニット本体部14は、入力ポートP1から複数の出力ポートD1~D8へと向かう方向に三段(複数段)配設された第一、第二、第三分配ブロック(分配部)11,12,13を有している。これら分配ブロック11,12,13によりユニット本体部14が構成される。なお、この実施形態では、分配ブロック11,12,13が同一部材から形成されており、一つのユニット本体部14を構成しているが、分配ブロック11,12,13がそれぞれ分割された分割構造であってもよい。 FIG. 3 is a cross-sectional view showing an outline of the air distribution unit 7. The air distribution unit 7 has a unit main body 14 interposed between the input port P1 and the output ports D1 to D8. The unit body 14 includes first, second and third distribution blocks (distribution units) 11, 12, which are arranged in three stages (multiple stages) in a direction from the input port P1 to the plurality of output ports D1 to D8. 13. These distribution blocks 11, 12 and 13 constitute a unit main body 14. In this embodiment, the distribution blocks 11, 12, and 13 are formed of the same member and constitute one unit main body portion 14. However, the divided structure in which the distribution blocks 11, 12, and 13 are divided, respectively. It may be.
 第一分配ブロック11には、入力ポートP1と繋がっている第一主流路11aと、この第一主流路11aから分岐部11dを介して分岐した第一枝流路11b,11cとが形成されている。分岐部11dには第一弁体21が移動可能として設けられている。
 第二分配ブロック12には、一方の前記第一枝流路11bと繋がっている第二主流路12aと、この第二主流路12aから分岐部12gを介して分岐した第二枝流路12c,12dとが形成されている。また、他方の前記第一枝流路11cと繋がっている第二主流路12bと、この第二主流路12bから分岐部12hを介して分岐した第二枝流路12e,12fとが形成されている。前記分岐部12g,12hには第二弁体22a,22bが移動可能として設けられている。
The first distribution block 11 includes a first main flow path 11a connected to the input port P1, and first branch flow paths 11b and 11c branched from the first main flow path 11a via a branching portion 11d. Yes. A first valve element 21 is provided at the branching part 11d so as to be movable.
The second distribution block 12 includes a second main channel 12a connected to one of the first branch channels 11b, and a second branch channel 12c branched from the second main channel 12a via a branch part 12g. 12d is formed. In addition, a second main channel 12b connected to the other first branch channel 11c and second branch channels 12e and 12f branched from the second main channel 12b via a branch part 12h are formed. Yes. 2nd valve bodies 22a and 22b are provided in the said branch parts 12g and 12h so that a movement is possible.
 図4及び図5は、前記ユニット本体部14のうちの第三分配ブロック13を示している図である。第三分配ブロック13には、一つの前記第二枝流路12cと繋がっている第三主流路13aと、この第三主流路13aから分岐部13mを介して分岐した第三枝流路13e,13fとが形成されており、さらに、第二分配ブロック12に形成されている他の前記第二枝流路12d,12e,12fに対応するように、第三主流路13b,13c,13d、分岐部13n,13o,13p及び第三枝流路13g,13h,13i,13j,13k,13lが形成されている。これにより、最も下流の段にある第三分配ブロック13には、合計八本の第三枝流路13e~13lが形成される。そして、分岐部13m~13pにはそれぞれ第三弁体23a~23dが移動可能として設けられている。 4 and 5 are views showing the third distribution block 13 in the unit main body 14. The third distribution block 13 includes a third main channel 13a connected to one second branch channel 12c, and third branch channels 13e branched from the third main channel 13a via a branch part 13m. 13f, and the third main flow paths 13b, 13c, 13d, branching so as to correspond to the other second branch flow paths 12d, 12e, 12f formed in the second distribution block 12. Portions 13n, 13o, 13p and third branch channels 13g, 13h, 13i, 13j, 13k, 13l are formed. As a result, a total of eight third branch flow paths 13e to 13l are formed in the third distribution block 13 at the most downstream stage. The branch parts 13m to 13p are provided with movable third valve bodies 23a to 23d, respectively.
 第三分配ブロック13に複数形成されている第三枝流路13e~13lのそれぞれと、前記出力ポートD1~D8とが繋がっている。また、これら出力ポートD1~D8と前記複数のエアセルA~Hとがそれぞれ繋がっている。
 このように、流路の分岐部が形成された第一、第二、第三分配ブロック11,12,13により、ユニット本体部14は、入力ポートP1から複数の出力ポートD1~D8へと流路が、分配ブロック11,12,13毎に、増加していくように構成されたものとなる。
Each of the third branch flow paths 13e to 13l formed in the third distribution block 13 is connected to the output ports D1 to D8. These output ports D1 to D8 are connected to the plurality of air cells A to H, respectively.
As described above, the first, second, and third distribution blocks 11, 12, and 13 in which the branch portions of the flow paths are formed allow the unit body 14 to flow from the input port P1 to the plurality of output ports D1 to D8. The path is configured to increase for each of the distribution blocks 11, 12, and 13.
 また、エア分配ユニット7は、第一、第二、第三分配ブロック11,12,13のそれぞれに設けられた第一、第二、第三切替装置(切替部)31,32,33を有している。切替装置31,32,33のそれぞれは、分岐部におけるエアを流す方向を分配ブロック単位でまとめて切り替える(エアを流す流路を分配ブロック単位でまとめて切り替える)ことができるように構成されている。つまり、切替装置31,32,33のそれぞれは、分岐部(11d、12g、12h、13m~13p)におけるエアを流す方向を切り替えるために位置変化する前記弁体(第一弁体21、第二弁体22a,22b、第三弁体23a~23d)と、この弁体を位置変化させて流路を分配ブロック単位でまとめて切り替える切替アクチュエータ(31a,32a,33a)と、前記制御電磁弁(S1,S2,S3)とを有している。 The air distribution unit 7 includes first, second, and third switching devices (switching units) 31, 32, and 33 provided in the first, second, and third distribution blocks 11, 12, and 13, respectively. is doing. Each of the switching devices 31, 32, and 33 is configured to be able to collectively switch the flow direction of air in the branch portion in units of distribution blocks (switch the flow path of air in units of distribution blocks). . That is, each of the switching devices 31, 32, and 33 has the valve body (the first valve body 21, the second valve body) that changes its position in order to switch the air flow direction in the branch portions (11d, 12g, 12h, 13m to 13p). The valve bodies 22a and 22b, the third valve bodies 23a to 23d), the switching actuators (31a, 32a, 33a) for changing the position of the valve bodies and switching the flow paths in units of distribution blocks, and the control solenoid valve ( S1, S2, S3).
 図4と図5とにより、第三分配ブロック13について具体的に説明する。第三切替装置33は、分岐部13m,13n,13o,13pにそれぞれ設けられた第三弁体23a,23b,23c,23dと、これらをまとめて位置変化させる第三切替アクチュエータ33aと、前記制御電磁弁S3(図2参照)と有している。四つの第三弁体23a,23b,23c,23dは同一の軸33b上に取り付けられており、四つの第三弁体23a,23b,23c,23dは一体として移動可能となっている。この軸33bの一端部側(図4の左側)には圧縮バネ33dが設けられており、この圧縮バネ33dによって軸33bは他端部側(図4の右側)へ付勢されている。前記第三切替アクチュエータ33aは、エアの給排によって膨縮するエアセル(第三動作用エアセル33a)であり、前記制御電磁弁S3は、この第三動作用エアセル33aに対してエアを給気可能な状態とその給気が停止される停止状態(排気状態)とを切り替えることができる。そして、第三動作用エアセル33aと制御電磁弁S3とは第三制御ポートA3を介してエア配管(図示せず)により繋がっている。なお、制御電磁弁S3は前記ポンプ6からエアが供給される。 The third distribution block 13 will be specifically described with reference to FIGS. The third switching device 33 includes third valve bodies 23a, 23b, 23c, and 23d provided at the branch portions 13m, 13n, 13o, and 13p, a third switching actuator 33a that collectively changes the position thereof, and the control. It has an electromagnetic valve S3 (see FIG. 2). The four third valve bodies 23a, 23b, 23c, 23d are mounted on the same shaft 33b, and the four third valve bodies 23a, 23b, 23c, 23d are movable as a unit. A compression spring 33d is provided on one end side (left side in FIG. 4) of the shaft 33b, and the shaft 33b is urged toward the other end side (right side in FIG. 4) by the compression spring 33d. The third switching actuator 33a is an air cell (third operation air cell 33a) that expands and contracts by supplying and discharging air, and the control solenoid valve S3 can supply air to the third operation air cell 33a. And a stop state (exhaust state) in which the air supply is stopped can be switched. The third operation air cell 33a and the control solenoid valve S3 are connected by an air pipe (not shown) via the third control port A3. The control solenoid valve S3 is supplied with air from the pump 6.
 そして、図4は、第三動作用エアセル33aが収縮状態にあり、四つの第三弁体23a,23b,23c,23dは、前記圧縮バネ33dによって他端部側(図4の右側)に付勢されている。この状態では、第三主流路13a~13dのそれぞれは、一方側の(図4の左側にある)第三枝流路13e,13g,13i,13kとの間でエアを流すことができる。
 前記制御装置10の制御信号によって前記制御電磁弁S3は動作し、給気状態となることで、図5に示しているように、第三制御ポートA3を介してエアを第三動作用エアセル33aに供給し、膨張させる。膨張する第三動作用エアセル33aは、前記圧縮バネ33dに抗して前記軸33bを押し、第三弁体23a,23b,23c,23dをまとめて一端部側(左側へ)移動させる。この状態では、第三主流路13a~13dのそれぞれと、他方側の(右側にある)第三枝流路13f,13h,13j,13lとの間でエアは流れることができる。このように、第三切替アクチュエータ(第三動作用エアセル33a)は、第三弁体23a,23b,23c,23dをまとめて位置変化させて、第三分配ブロック13単位で流路をまとめて切り替えることができる。そして、第三切替アクチュエータ(第三動作用エアセル33a)は、ポンプ6から供給されたエアによって動作するエア式である。
4 shows that the third operation air cell 33a is in a contracted state, and the four third valve bodies 23a, 23b, 23c, and 23d are attached to the other end side (the right side in FIG. 4) by the compression spring 33d. It is energized. In this state, each of the third main flow paths 13a to 13d can flow air between the third branch flow paths 13e, 13g, 13i, and 13k on one side (on the left side in FIG. 4).
The control solenoid valve S3 is operated by the control signal of the control device 10 to enter the supply state, and as shown in FIG. 5, the air is supplied through the third control port A3 to the third operation air cell 33a. And inflate. The expanding third air cell 33a pushes the shaft 33b against the compression spring 33d and moves the third valve bodies 23a, 23b, 23c, 23d together at one end (to the left). In this state, air can flow between each of the third main flow paths 13a to 13d and the other third branch flow paths 13f, 13h, 13j, and 13l (on the right side). Thus, the third switching actuator (third operation air cell 33a) collectively changes the position of the third valve bodies 23a, 23b, 23c, and 23d, and switches the flow paths in units of the third distribution block 13. be able to. The third switching actuator (third operation air cell 33 a) is an air type that is operated by the air supplied from the pump 6.
 なお、第一分配ブロック11及び第二分配ブロック12についても、第三分配ブロック13と同様に構成されている。第二分配ブロック12において、第二切替アクチュエータ32aは、第二弁体22a,22bを第二分配ブロック12単位でまとめて位置変化させて、流路を第二分配ブロック12単位でまとめて切り替えることができる。さらに、第一分配ブロック11において、第一切替アクチュエータ31aは、第一弁体21を位置変化させて、流路を切り替えることができる。そして、このような流路の切り替えは、制御装置10が制御電磁弁S1,S2,S3をそれぞれ制御することで実行される。 The first distribution block 11 and the second distribution block 12 are configured in the same manner as the third distribution block 13. In the second distribution block 12, the second switching actuator 32a collectively changes the position of the second valve bodies 22a and 22b in units of the second distribution block 12 and switches the flow paths in units of the second distribution block 12. Can do. Furthermore, in the 1st distribution block 11, the 1st switching actuator 31a can change the position of the 1st valve body 21, and can switch a flow path. And such switching of a flow path is performed when the control apparatus 10 controls control solenoid valve S1, S2, S3, respectively.
 制御装置10は、前記切替装置31,32,33の動作を制御すべく当該切替装置31,32,33へ与える切替信号と、当該切替信号に応じて前記切替装置31,32,33がエアを流す方向を切り替えることで入力ポートP1と繋がる出力ポートと、の関係を有する関係情報を記憶している記憶部10aを有している。入力ポートP1と繋がった状態とすべき出力ポートが定められると、制御装置10は、前記関係情報に基づいて切替信号を得ることができ、この切替信号を切替装置31,32,33に与え、これら切替装置31,32,33によって出力ポートが選択されるように制御することとなる。 The control device 10 includes a switching signal to be given to the switching devices 31, 32, 33 to control the operation of the switching devices 31, 32, 33, and the switching devices 31, 32, 33 emit air according to the switching signals. It has the memory | storage part 10a which has memorize | stored the relationship information which has a relationship with the output port connected with the input port P1 by switching the flow direction. When the output port to be connected to the input port P1 is determined, the control device 10 can obtain a switching signal based on the relation information, and provides this switching signal to the switching devices 31, 32, 33. These switching devices 31, 32, 33 are controlled so that the output port is selected.
 以上のように構成されたエア分配ユニット7が有しているユニット本体部14は、入力ポートP1から八箇所の出力ポートD1~D8へと向かう方向に、三段の分配ブロック11,12,13が配設されており、これら分配ブロック11,12,13のそれぞれに流路の分岐部が形成されている。このため、入力ポートP1から八本の流路13e~13lへと流路が各段で増加していくように構成される。そして、これら流路13e~13lのそれぞれに、出力ポートD1~D8が繋がっている。
 また、分配ブロック11,12,13に設けられた切替装置31,32,33を、制御装置10が制御することにより、分配ブロック11,12,13の各段で、前記分岐部におけるエアを流す方向が(流路が)まとめて切り替えられ、入力ポートP1と八箇所の出力ポートD1~D8との間でエアを流すことができる。そして、入力ポートP1から出力ポートに流れてきたエアを、当該出力ポートと繋がっているエアセルへ供給することができる。そして、この構成によれば、入力ポートP1との間でエアを流すことのできる出力ポートは択一的に選択される。
The unit main body 14 of the air distribution unit 7 configured as described above has three stages of distribution blocks 11, 12, 13 in the direction from the input port P1 to the eight output ports D1 to D8. Are arranged, and branch portions of the flow paths are formed in each of the distribution blocks 11, 12, and 13. For this reason, the flow paths are configured to increase from the input port P1 to the eight flow paths 13e to 13l at each stage. The output ports D1 to D8 are connected to the flow paths 13e to 13l, respectively.
Further, the control device 10 controls the switching devices 31, 32, and 33 provided in the distribution blocks 11, 12, and 13, so that the air at the branching portion flows at each stage of the distribution blocks 11, 12, and 13. The directions (flow paths) are switched together, and air can flow between the input port P1 and the eight output ports D1 to D8. Then, the air flowing from the input port P1 to the output port can be supplied to the air cell connected to the output port. And according to this structure, the output port which can flow air between the input ports P1 is selected alternatively.
 図3は、制御装置10が第一、第二、第三切替装置31,32,33を制御することで、すなわち制御電磁弁S1,S2,S3を制御することで、第一、第二、第三動作用エアセル31a,32a,33aの全てに対してエアの給気が停止された停止状態となっている。この状態では、入力ポートP1と出力ポートD1との間でのみ、エアが流れることができる。そして、ポンプ6から入力ポートP1にエアが供給されると、出力ポートD1と繋がっているエアセルAが膨張動作する。 FIG. 3 shows that the control device 10 controls the first, second, and third switching devices 31, 32, and 33, that is, the control solenoid valves S1, S2, and S3. The air supply to all the third operation air cells 31a, 32a, 33a is stopped. In this state, air can flow only between the input port P1 and the output port D1. When air is supplied from the pump 6 to the input port P1, the air cell A connected to the output port D1 expands.
 また、制御装置10が制御電磁弁S1,S2,S3を制御することによって入力ポートP1との間でエアが流れることができるようになった出力ポートD1以外の他の出力ポートD2~D8は、エアの通過が規制された閉塞状態となる。この状態では、他の出力ポートD2~D8ではエアが流れず、当該他の出力ポートD2~D8と繋がるエアセルB~Hに対してエアの給排が停止された状態となる。したがって、例えば、出力ポートD1が選択されエアセルAにエアが供給され膨張動作した後に、出力ポートをD1以外の他のもの(例えばD2)を選択して流路を切り替えると、エアセルAと繋がる出力ポートP1が閉塞状態となり、このエアセルAは膨張した状態で保持される。つまり、このエア分配ユニット7によれば、エアセルを膨張、収縮以外に、膨張状態で保持することもできる。 In addition, the output ports D2 to D8 other than the output port D1 through which the control device 10 controls the control solenoid valves S1, S2, S3 to allow air to flow to and from the input port P1, It becomes the obstruction | occlusion state in which passage of air was controlled. In this state, air does not flow in the other output ports D2 to D8, and the supply and discharge of air to the air cells B to H connected to the other output ports D2 to D8 are stopped. Therefore, for example, when the output port D1 is selected and air is supplied to the air cell A and the expansion operation is performed, when the output port is selected other than D1 (for example, D2) and the flow path is switched, the output connected to the air cell A is output. The port P1 is closed, and the air cell A is held in an expanded state. That is, according to this air distribution unit 7, the air cell can be held in an expanded state in addition to the expansion and contraction.
 以上の構成によれば、前記エア分配ユニット7は、一つの入力ポートP1、三個の制御ポートA1,A2,A3、及び、八個の出力ポートD1~D8を備えている。入力ポートP1をどの出力ポートに接続するかの選択は、三個の制御ポートA1,A2,A3のエアの給気(空気圧が高い)又は停止(空気圧が低い)の組み合わせにより行なわれる。なお、第一制御ポートA1は、第一動作用エアセル31aと第一制御電磁弁S1とを繋ぐためのポートであり、第二制御ポートA2は、第二動作用エアセル32aと第二制御電磁弁S2とを繋ぐためのポートであり、第三制御ポートA3は、第三動作用エアセル33aと第三制御電磁弁S3とを繋ぐためのポートである。 According to the above configuration, the air distribution unit 7 includes one input port P1, three control ports A1, A2, and A3, and eight output ports D1 to D8. Selection of which output port the input port P1 is connected to is made by a combination of air supply (high air pressure) or stop (low air pressure) of the three control ports A1, A2 and A3. The first control port A1 is a port for connecting the first operation air cell 31a and the first control electromagnetic valve S1, and the second control port A2 is the second operation air cell 32a and the second control electromagnetic valve. The third control port A3 is a port for connecting the third operation air cell 33a and the third control electromagnetic valve S3.
 これら第一、第二、第三制御電磁弁S1,S2,S3それぞれは、給気又は停止の二つの状態となることができ、これにより、制御ポートA1,A2,A3のそれぞれが、給気又は停止(排気)の二つの状態となることができる。給気状態とする切替信号を「1」とし、停止状態とする切替信号を「0」に対応させて説明する。例えば、これら制御電磁弁[S1,S2,S3](制御ポート[A1,A2,A3])が[000]のとき、入力ポートP1は出力ポートD1に繋がる(図3の状態)。制御電磁弁[S1,S2,S3](制御ポート[A1,A2,A3])が[001]のとき、入力ポートP1は出力ポートD2に繋がる。このように、制御装置10が、その記憶部10aに記憶させてある前記関係情報に基づいて、切替信号を制御電磁弁S1,S2,S3に与え、励磁させる(給気状態とする)制御電磁弁S1,S2,S3の組み合わせを制御する。この制御により、三つの制御ポート[A1,A2,A3]の状態の組み合わせを変化させることができる。そして、給気又は排気させるエアセルの選択が行なわれる。つまり、三つの制御電磁弁[S1,S2,S3](制御ポート[A1,A2,A3])の状態の組み合わせによって、8(=2の3乗)個(複数)の出力ポートD1~D8(エアセルA~H)の内の一つが選択され、その一つが給気又は排気の対象となる。そして、選択された一つ以外の出力ポート(エアセル)は、給気及び排気の対象外となり、保持の状態となる。以上より、エア分配ユニット7は、八箇所のエアセルA~Gの動作を制御する3ビットの制御弁として機能する。 Each of these first, second, and third control solenoid valves S1, S2, and S3 can be in two states of air supply or stop, whereby each of the control ports A1, A2, and A3 is supplied with air. Or it can be in two states of stop (exhaust). A description will be given in which the switching signal for setting the air supply state is “1” and the switching signal for the stop state is corresponding to “0”. For example, when these control solenoid valves [S1, S2, S3] (control ports [A1, A2, A3]) are [000], the input port P1 is connected to the output port D1 (state shown in FIG. 3). When the control solenoid valve [S1, S2, S3] (control port [A1, A2, A3]) is [001], the input port P1 is connected to the output port D2. As described above, the control device 10 applies the switching signal to the control electromagnetic valves S1, S2, S3 based on the relation information stored in the storage unit 10a, and causes the control electromagnetic valves to be excited (to be in the supply state). Controls the combination of valves S1, S2, S3. By this control, the combination of the states of the three control ports [A1, A2, A3] can be changed. Then, an air cell to be supplied or exhausted is selected. That is, depending on the combination of the states of the three control solenoid valves [S1, S2, S3] (control ports [A1, A2, A3]), 8 (= 2 to the 3rd power) output ports D1 to D8 (plural). One of the air cells A to H) is selected, and one of them is subject to supply or exhaust. Then, the output ports (air cells) other than the selected one are excluded from supply and exhaust and are held. As described above, the air distribution unit 7 functions as a 3-bit control valve that controls the operation of the eight air cells A to G.
 制御装置10の機能について図2、図3及び図6により説明する。制御装置10が主電磁弁8(図2)を制御することで、図6(b)のように、入力ポートP1への給気又は排気が選択される。図6の時刻t1では、入力ポートP1が給気状態にあり、出力ポートD1が選択されていることから(図6(a)のD1がON)、この出力ポートD1に対応しているエアセルAに給気が行なわれ膨張動作する。この際、他のエアセルB及びC~Hは保持状態にある。
 そして、後の時刻t2では、入力ポートP1が給気状態のままで、出力ポートD2が選択され(図6(a)のD2がON)、この出力ポートD2に対応しているエアセルBに給気が行なわれ膨張動作する。この際、エアセルAは膨張状態のまま保持され、また、他のC~Hも保持状態にある。
The function of the control device 10 will be described with reference to FIGS. As the control device 10 controls the main electromagnetic valve 8 (FIG. 2), supply or exhaust to the input port P1 is selected as shown in FIG. 6B. At time t1 in FIG. 6, since the input port P1 is in the supply state and the output port D1 is selected (D1 in FIG. 6A is ON), the air cell A corresponding to this output port D1 The air is supplied and the expansion operation is performed. At this time, the other air cells B and C to H are in the holding state.
At a later time t2, the input port P1 remains in the air supply state, the output port D2 is selected (D2 in FIG. 6A is ON), and the air cell B corresponding to the output port D2 is supplied. The air is inflated. At this time, the air cell A is held in an expanded state, and the other C to H are also held.
 時刻t3では、出力ポートD2が選択されたままで、入力ポートP1が排気状態となる。これにより、出力ポートD2に対応するエアセルBでは排気され収縮するが、エアセルAは膨張状態のまま保持されている。
 時刻t4では、出力ポートD1が選択されており、入力ポートP1が排気状態となることで、膨張していたエアセルAは収縮することができる。
 このようにして出力ポートがD3~D8へと選択されることで、エアセルC~Hは膨張状態又は収縮状態となることができ、出力ポートD1,D2がともに選択されていないことから(時刻t5)両者は閉塞状態となり、エアセルA,Bは保持状態にある。
At time t3, the output port D2 remains selected and the input port P1 is in the exhaust state. As a result, the air cell B corresponding to the output port D2 is exhausted and contracted, but the air cell A is maintained in an expanded state.
At time t4, the output port D1 is selected, and the expanded air cell A can be contracted by the input port P1 being in the exhaust state.
Since the output ports D3 to D8 are selected in this way, the air cells C to H can be in an expanded state or a contracted state, and neither of the output ports D1 and D2 is selected (time t5). ) Both are closed, and the air cells A and B are in the holding state.
 このように、制御装置10が、主電磁弁8を制御して給気状態とし、さらに、前記第一、第二、第三切替装置31,32,33(制御電磁弁S1,S2,S3)を制御して、入力ポートP1との間でエアを流すことができる出力ポートを一つずつ変更することができる。これにより、入力ポートP1との間でエアが流れる出力ポートが切り替わることで、動作するエアセルを一つずつ変更することができる。
 また、主電磁弁8を排気状態とし、制御装置部10が前記第一、第二、第三切替装置31,32,33(制御電磁弁S1,S2,S3)を制御して、出力ポートを一つずつ変更することで、入力ポートP1との間でエアが流れる出力ポートが切り替わり、切り替わった出力ポートと繋がっているエアセルからエアを排気し収縮させることができる。このように励磁させる制御電磁弁S1,S2,S3の組み合わせにより、一つの出力ポートが選択され、給気又は排気が可能となり、選択されていない他の出力ポートは保持状態となる。
In this way, the control device 10 controls the main electromagnetic valve 8 to be in the supply state, and further, the first, second, and third switching devices 31, 32, and 33 (control electromagnetic valves S1, S2, and S3). And the output ports through which air can flow between the input ports P1 can be changed one by one. Thereby, the operating air cell can be changed one by one by switching the output port through which air flows between the input port P1.
Further, the main electromagnetic valve 8 is set in an exhaust state, and the control device unit 10 controls the first, second, and third switching devices 31, 32, and 33 (control electromagnetic valves S1, S2, and S3) to set the output port. By changing one by one, the output port through which air flows is switched between the input port P1 and the air can be exhausted and contracted from the air cell connected to the switched output port. Thus, one output port is selected by the combination of the control solenoid valves S1, S2, and S3 to be excited, and air supply or exhaust is enabled, and the other output ports that are not selected are held.
[第二の実施形態]
 図7は、マッサージ機の他の実施形態の一部を示すブロック図である。この実施形態は、図2の実施形態と比べて、八箇所の出力ポートD1~D8のうちの一つを閉止(封止)している点で異なる。具体的には、出力ポートD8に栓部材を取り付けて閉止している。なお、その他については図2と同じである。この出力ポートD8を閉止ポートD8と言い換えて説明すると、図7の実施形態では、図8に示しているように、制御装置10の制御により閉止ポートD8が選択されている時間帯では、他の出力ポートD1~D7に繋がっているすべてのエアセルA~Gを同時に保持状態とすることができる。
[Second Embodiment]
FIG. 7 is a block diagram showing a part of another embodiment of the massage machine. This embodiment is different from the embodiment of FIG. 2 in that one of the eight output ports D1 to D8 is closed (sealed). Specifically, a plug member is attached to the output port D8 and closed. Others are the same as in FIG. In other words, the output port D8 is described as the closed port D8. In the embodiment of FIG. 7, as shown in FIG. 8, in the time zone in which the closed port D8 is selected by the control of the control device 10, All the air cells A to G connected to the output ports D1 to D7 can be simultaneously held.
[第三の実施形態]
 図9は、マッサージ機の他の実施形態の一部を示すブロック図である。この実施形態は、図2の実施形態と比べて、次の点で異なっている。図9の実施形態では、八箇所の出力ポートD1~D8のうちの一つの出力ポートD8と、少なくとも二つの他の出力ポート(三つの出力ポートD5,D6,D7)にそれぞれ繋がっているエアセルE,F,Gとの各間が、当該エアセルE,F,Gから当該一つの出力ポートD8へのエアの流れを許容する逆止弁15a,15b,15cを介して繋がっている。なお、その他については図2と同じである。
[Third embodiment]
FIG. 9 is a block diagram showing a part of another embodiment of the massage machine. This embodiment differs from the embodiment of FIG. 2 in the following points. In the embodiment of FIG. 9, an air cell E connected to one output port D8 out of eight output ports D1 to D8 and at least two other output ports (three output ports D5, D6, D7), respectively. , F, and G are connected via check valves 15a, 15b, and 15c that allow air flow from the air cells E, F, and G to the one output port D8. Others are the same as in FIG.
 さらに説明すると、出力ポートD8から流路15dが設けられており、この流路15dから分岐して枝流路15e,15f,15gが設けられている。そして、枝流路15eとエアセルEとが繋がっており、枝流路15fとエアセルFとが繋がっており、枝流路15gとエアセルGとが繋がっている。逆止弁15aは枝流路15eに設けられており、逆止弁15bは枝流路15fに設けられており、逆止弁15cは枝流路15gに設けられている。 More specifically, a flow path 15d is provided from the output port D8, and branch flow paths 15e, 15f, and 15g are provided by branching from the flow path 15d. The branch channel 15e and the air cell E are connected, the branch channel 15f and the air cell F are connected, and the branch channel 15g and the air cell G are connected. The check valve 15a is provided in the branch flow path 15e, the check valve 15b is provided in the branch flow path 15f, and the check valve 15c is provided in the branch flow path 15g.
 そして、制御装置10は、排気状態とするように主電磁弁8(図2参照)を制御すると共に、前記第一、第二、第三切替装置31,32,33(制御電磁弁S1,S2,S3)を制御して、入力ポートP1との間でエアが流れる出力ポートを、前記一つの出力ポートD8とする。これにより、三つの出力ポートD5,D6,D7にそれぞれ繋がっている膨張状態にあったエアセルE,F,G内のエアを、逆止弁15a,15b,15cを介して前記一つの出力ポートD8へ流すことができる。そして、このエアを、出力ポートD8から入力ポートP1へと流し、主電磁弁8により外部へ排気することができる。 The control device 10 controls the main electromagnetic valve 8 (see FIG. 2) so as to be in the exhaust state, and the first, second, and third switching devices 31, 32, and 33 (control electromagnetic valves S1, S2). , S3), and an output port through which air flows to and from the input port P1 is defined as the one output port D8. As a result, the air in the air cells E, F, and G, which are in an expanded state connected to the three output ports D5, D6, and D7, is transferred to the one output port D8 via the check valves 15a, 15b, and 15c. Can be flowed to. Then, this air can flow from the output port D8 to the input port P1, and can be exhausted to the outside by the main electromagnetic valve 8.
 具体例を説明すると、図10のタイミングチャートにおいて、制御装置10が、主電磁弁8によって入力ポートP1を給気状態とし、さらに出力ポートD5が選択されていることにより(時刻t1)エアセルEが膨張する。なお、出力ポートD8は選択されていないことから閉塞状態にあり、エアセルE内のエアは、逆止弁15aを介して出力ポートD8を流れることができない。次に、入力ポートP1を給気状態のまま、出力ポートがD6に切り替えられると(時刻t2)エアセルFが膨張するとともに、膨張していた前記エアセルEは膨張状態で保持される。そして、入力ポートP1を給気状態のまま、出力ポートがD7に切り替えられると(時刻t3)エアセルGが次に膨張し、出力ポートD5,D6のエアセルE,Fは膨張状態で保持される。 A specific example will be described. In the timing chart of FIG. 10, the control device 10 causes the main electromagnetic valve 8 to supply the input port P1 and the output port D5 is selected (time t1). Inflate. Since the output port D8 is not selected, the output port D8 is in a closed state, and the air in the air cell E cannot flow through the output port D8 via the check valve 15a. Next, when the output port is switched to D6 while the input port P1 is in the supply state (time t2), the air cell F expands and the expanded air cell E is held in the expanded state. When the output port is switched to D7 while the input port P1 is in the supply state (time t3), the air cell G is expanded next, and the air cells E and F of the output ports D5 and D6 are held in the expanded state.
 そして、入力ポートP1を給気状態のまま、出力ポートがD8に切り替えられると(時刻t4)膨張状態に保持されていたエアセルE,F,Gは保持状態となる。入力ポートP1が排気状態となると(時刻t5)膨張状態に保持されていたエアセルE,F,G内のエアは、逆止弁15a,15b,15cを介してそれぞれ出力ポートD8へ流れることができる。さらに、これらのエアは、出力ポートP1を経て、主電磁弁8から外部へ排気される。これにより、エアセルE,F,Gは同時に収縮する。つまり、この実施形態では、複数のエアセルについて個別に(時間差を付けて)給気を行い、同時に排気することが可能となる。 Then, when the output port is switched to D8 while the input port P1 is in the air supply state (time t4), the air cells E, F, and G held in the expanded state are held. When the input port P1 is in the exhaust state (time t5), the air in the air cells E, F, and G held in the expanded state can flow to the output port D8 via the check valves 15a, 15b, and 15c, respectively. . Further, these air are exhausted from the main solenoid valve 8 to the outside through the output port P1. Thereby, the air cells E, F, and G contract simultaneously. In other words, in this embodiment, a plurality of air cells can be individually supplied (with a time difference) and exhausted simultaneously.
[第四の実施形態]
 図11は、マッサージ機の他の実施形態の一部を示すブロック図である。この実施形態は、図2の実施形態と比べて、次の点で異なっている。図11の実施形態では、八箇所の出力ポートD1~D8のうちの一つの出力ポート(D8)と、少なくとも二つの他の出力ポート(D4,D5,D6,D7)にそれぞれ繋がっているエアセルD,E,F,Gとの各間が、一つの出力ポートD8から当該エアセルD,E,F,Gへのエアの流れを許容する逆止弁16a,16b,16c,16dを介して繋がっている。なお、その他については同じである。
[Fourth embodiment]
FIG. 11 is a block diagram showing a part of another embodiment of the massage machine. This embodiment differs from the embodiment of FIG. 2 in the following points. In the embodiment of FIG. 11, an air cell D connected to one output port (D8) of the eight output ports D1 to D8 and at least two other output ports (D4, D5, D6, D7), respectively. , E, F, and G are connected via check valves 16a, 16b, 16c, and 16d that allow air flow from one output port D8 to the air cells D, E, F, and G, respectively. Yes. Others are the same.
 さらに説明すると、出力ポートD8から流路16eが設けられており、この流路16eから分岐して枝流路16f,16g,16h,16iが設けられている。枝流路16fとエアセルDとが繋がっている。枝流路16gとエアセルEとが繋がっている。枝流路16hとエアセルFとが繋がっている。そして、枝流路16iとエアセルGとが繋がっている。逆止弁16aは枝流路16fに設けられている。逆止弁16bは枝流路16gに設けられている。逆止弁16cは枝流路16hに設けられている。そして、逆止弁16dは枝流路16iに設けられている。 More specifically, a channel 16e is provided from the output port D8, and branch channels 16f, 16g, 16h, and 16i are provided by branching from the channel 16e. The branch channel 16f and the air cell D are connected. The branch channel 16g and the air cell E are connected. The branch channel 16h and the air cell F are connected. And the branch flow path 16i and the air cell G are connected. The check valve 16a is provided in the branch channel 16f. The check valve 16b is provided in the branch channel 16g. The check valve 16c is provided in the branch channel 16h. The check valve 16d is provided in the branch channel 16i.
 そして、制御部10が、給気状態とするように主電磁弁8(図2参照)を制御すると共に、入力ポートP1との間でエアが流れる出力ポートが、前記一つの出力ポートD8となるように、前記第一、第二、第三切替装置31,32,33(制御電磁弁S1,S2,S3)を制御する。これによれば、前記一つの出力ポートD8から、エアを、前記逆止弁16a,16b,16c,16dを介して、出力ポートD4,D5,D6,D7にそれぞれ繋がっているエアセルD,E,F,Gへ供給することができる。 And the control part 10 controls the main solenoid valve 8 (refer FIG. 2) so that it may be in an air supply state, and the output port into which air flows between input ports P1 becomes said one output port D8. Thus, the first, second, and third switching devices 31, 32, and 33 (control electromagnetic valves S1, S2, and S3) are controlled. According to this, air cells D, E, which are connected to the output ports D4, D5, D6, D7 from the one output port D8 via the check valves 16a, 16b, 16c, 16d, respectively. F and G can be supplied.
 具体例を説明すると、図12のタイミングチャートにおいて、制御装置10が、主電磁弁8によって入力ポートP1を給気状態とする。さらに、出力ポートD8が選択されていることにより、出力ポートD8から逆止弁16a,16b,16c,16dを介してエアセルD,E,F,Gのそれぞれに対してエアが同時に供給される(時刻t1)。そして、入力ポートP1を排気状態とし(時刻t2)、出力ポートD4が選択されると(時刻t3)当該出力ポートD4に繋がっているエアセルD内のエアは、当該出力ポートD4を経て、主電磁弁8から外部へ排気される。これにより、エアセルDは収縮する。この間、膨張した他のエアセルE,F,Gは保持状態にある。 Describing a specific example, in the timing chart of FIG. Further, since the output port D8 is selected, air is simultaneously supplied from the output port D8 to the air cells D, E, F, and G via the check valves 16a, 16b, 16c, and 16d ( Time t1). When the input port P1 is in the exhausted state (time t2) and the output port D4 is selected (time t3), the air in the air cell D connected to the output port D4 passes through the output port D4, and the main electromagnetic The air is exhausted from the valve 8 to the outside. Thereby, the air cell D contracts. During this time, the other expanded air cells E, F, and G are in a holding state.
 次に、出力ポートD5が選択されると(時刻t4)当該出力ポートD5に繋がっているエアセルE内のエアは、当該出力ポートD5を経て、主電磁弁8から外部へ排気される。これにより、エアセルEは収縮する。以下、同様に、出力ポートD6が選択され(時刻t5)、その後、出力ポートD7が選択されると(時刻t6)、エアセルF、エアセルGが順に収縮する。つまり、この実施形態では、複数のエアセルについて同時に給気が可能となり、個別に(時間差を設けて)排気が可能となる。 Next, when the output port D5 is selected (time t4), the air in the air cell E connected to the output port D5 is exhausted from the main solenoid valve 8 to the outside through the output port D5. Thereby, the air cell E contracts. Similarly, when the output port D6 is selected (time t5) and then the output port D7 is selected (time t6), the air cell F and the air cell G contract in order. That is, in this embodiment, it is possible to supply air to a plurality of air cells at the same time, and to exhaust individually (with a time difference).
 以上の各実施形態のマッサージ機によれば、エア分配ユニット7においてエアを吐出することができる出力ポートの数を多くすることができ、多くのエアセルを繋ぐことができる。また、図示した(例えば図2)エア分配ユニット7は、多くのエアセルを繋ぐことができる構成でありながら、前記切替装置(31,32,33)を、三段ある分配ブロック11,12,13毎に設ければよく、かつ、この分配ブロック毎に設けられた切替装置が、分岐部におけるエアを流す方向を当該分配ブロック単位でまとめて切り替えることから、切替装置を分岐部毎に設ける必要がなく、切替装置の数が少なくて済みエア分配ユニット7の構成の簡素化が図れる。
 具体的には、図示した(例えば図2)エア分配ユニット7は、一台の主電磁弁8と、三台の制御電磁弁S1,S2,S3を有していればよい。電磁弁は、エアセルA~Hの数よりも少なく、半分の数で済み、エア分配ユニット7の構成の簡素化が図れる。
According to the massage machine of each above embodiment, the number of the output ports which can discharge air in the air distribution unit 7 can be increased, and many air cells can be connected. In addition, the illustrated air distribution unit 7 (for example, FIG. 2) is configured to connect many air cells, but the switching device (31, 32, 33) is divided into three stages of distribution blocks 11, 12, 13. And the switching device provided for each distribution block collectively switches the flow direction of the air in the branching unit in units of the distribution block. Therefore, it is necessary to provide the switching device for each branching unit. Therefore, the number of switching devices is small, and the configuration of the air distribution unit 7 can be simplified.
Specifically, the illustrated air distribution unit 7 (for example, FIG. 2) only needs to have one main electromagnetic valve 8 and three control electromagnetic valves S1, S2, and S3. The number of solenoid valves is less than the number of air cells A to H, and the number of solenoid valves is half, and the configuration of the air distribution unit 7 can be simplified.
 また、図示しないが、本発明のマッサージ機において、前記実施形態では、分配ブロックの数を三つ(三段)として説明したが、四つ(四段)以上であってもよい。すなわち、図3のユニット本体部14にさらに第四分配ブロックを追加してもよい。この場合、出力ポートの数を16個とすることができる。この場合であっても、この第四分配ブロックに制御電磁弁を一つのみ追加すればよく、この結果、一台の主電磁弁8と、四台の制御電磁弁との合計五台でよく、エアセルの数(16個)の半分以下で済む。このように本発明によれば、多くのエアセルを繋ぐことができる構成でありながら、電磁弁の数が少なくて良く、エア分配ユニット7さらにはマッサージ機全体の構成の簡素化が図れる。 Although not shown, in the massage machine of the present invention, the number of distribution blocks has been described as three (three stages) in the above embodiment, but may be four (four stages) or more. That is, a fourth distribution block may be further added to the unit main body 14 of FIG. In this case, the number of output ports can be 16. Even in this case, it is only necessary to add one control solenoid valve to the fourth distribution block. As a result, a total of five units including one main solenoid valve 8 and four control solenoid valves may be sufficient. Less than half the number of air cells (16). As described above, according to the present invention, the number of electromagnetic valves may be small, while the configuration can connect many air cells, and the configuration of the air distribution unit 7 and the entire massage machine can be simplified.
 また、分配ブロック11,12,13のそれぞれにおいて前記弁体21,22a,22b,23a~23dを移動させ流路を切り替えるために、前記切替装置31,32,33は切替アクチュエータとしてエアセルが用いられ、制御電磁弁S1,S2,S3のエアの給排の切り替えによってこのエアセルを膨張動作させる構成である。このため、流路を切り替えるための動力は、加圧されているエアによって得られ、その動力は大きなものとなる。そして、制御電磁弁S1,S2,S3に対しては小さな電気的な動力を与えれば済み、エネルギー効率が良い。 Further, in order to move the valve bodies 21, 22a, 22b, 23a to 23d and switch the flow paths in the distribution blocks 11, 12, 13 respectively, the switching devices 31, 32, 33 use air cells as switching actuators. The air cell is inflated by switching the air supply / discharge of the control solenoid valves S1, S2, S3. For this reason, the motive power for switching a flow path is obtained by the pressurized air, and the motive power becomes large. The control electromagnetic valves S1, S2 and S3 need only be given small electric power, and energy efficiency is good.
[適用の具体例(その1)]
 前記各エア分配ユニット7を、図1の椅子型マッサージ機に適用した場合の例を説明する。図13は左側の肘掛け部4の説明図である。腕の上側から順に、肩部を押圧するエアセル44a、上腕部を押圧する(挟む)エアセル44b、前腕部の内の肩側を押圧する(挟む)エアセル44c1、前腕部の内の手側を押圧する(挟む)エアセル44c2、手を押圧する(上下で挟む)エアセル44dが設けられている。
[Specific examples of application (part 1)]
An example in which each of the air distribution units 7 is applied to the chair type massage machine of FIG. 1 will be described. FIG. 13 is an explanatory diagram of the left armrest 4. In order from the upper side of the arm, the air cell 44a that presses the shoulder, the air cell 44b that presses (pinches) the upper arm, the air cell 44c1 that presses (pinches) the shoulder side of the forearm, and the hand side of the forearm An air cell 44c2 that performs (pinches) and an air cell 44d that presses the hand (pins up and down) is provided.
 そして、エアセル44a及びエアセル44bをエアセル群Aとし、エアセル44c1をエアセル群Bとし、エアセル44c2をエアセル群Cとし、エアセル44dをエアセル群Dとする。これらエアセル群A~Dは、図2のエアセルA~Dと対応している。そして、図示しないが右側の肘掛け部4についても同様であり、エアセル群E~Hが設けられており、これらは図2のエアセルE~Hと対応している。したがって、この形態では、左右の肘掛け部4,4のエアセルに対して一台のエア分配ユニット7が設けられている構成である。 The air cell 44a and the air cell 44b are the air cell group A, the air cell 44c1 is the air cell group B, the air cell 44c2 is the air cell group C, and the air cell 44d is the air cell group D. These air cell groups A to D correspond to the air cells A to D in FIG. Although not shown, the same applies to the right armrest portion 4, and air cell groups E to H are provided, which correspond to the air cells E to H in FIG. Therefore, in this embodiment, one air distribution unit 7 is provided for the air cells of the left and right armrest portions 4 and 4.
 図14は左腕用の前記エアセル群A,B,C,Dの動作についてのタイムチャートである。なお、右腕用も左右対称として同様に動作する。このタイムチャートは、エアセル群A,B,C,Dについて個別に給気し、個別に排気する場合を示している。
 図2、図13及び図14において、主電磁弁8を給気状態とし、入力ポートP1からエアを流す対象とする出力ポートを順にD1、D2、D3、D4と選択することで、エアセル群をA、B、C、Dの順で給気し個別に膨張させる。そして、エアセル群Dを膨張させた後、主電磁弁8を排気状態に切り替え、再び出力ポートを同じ順でD1、D2、D3、D4と選択する。これにより、エアセル群についてA、B、C、Dの順で個別に排気が行なわれ順に収縮させることができる。このように制御装置10が制御することにより、使用者の心臓(体の中心)から遠くなる方向に向かって、エアセル群を順に膨張させ順に収縮させるマッサージ(遠心法)が可能となる。
FIG. 14 is a time chart for the operation of the air cell groups A, B, C, and D for the left arm. Note that the right arm also operates in the same manner as left-right symmetry. This time chart shows a case where air cells A, B, C, and D are individually supplied and individually exhausted.
2, 13, and 14, the main electromagnetic valve 8 is in an air supply state, and the output ports to be aired from the input port P <b> 1 are sequentially selected as D <b> 1, D <b> 2, D <b> 3, D <b> 4, thereby Air is supplied in the order of A, B, C, and D and individually expanded. Then, after expanding the air cell group D, the main electromagnetic valve 8 is switched to the exhaust state, and the output ports are again selected as D1, D2, D3, and D4 in the same order. Thereby, about an air cell group, exhaust_gas | exhaustion is separately performed in order of A, B, C, D, and it can be made to shrink | contract in order. Control by the control device 10 in this way enables massage (centrifugation) in which the air cell group is sequentially expanded and contracted in the direction away from the user's heart (center of the body).
 これに対して、主電磁弁8を給気状態とし、図15に示しているように、出力ポートを順にD4、D3、D2、D1と選択することで、エアセル群をD、C、B、Aの順で給気し個別に膨張させる。そして、エアセル群Aを膨張させた後、主電磁弁8を排気状態に切り替え、再び出力ポートを同じ順でD4、D3、D2、D1と選択する。これにより、エアセル群をD、C、B、Aの順で個別に収縮させることができる。このように制御装置10が制御することにより、使用者の身体の末端から心臓(体の中心)へ近くなる方向に向かって、エアセル群を順に膨張させ順に収縮させるマッサージ(求心法)が可能となる。 On the other hand, by setting the main electromagnetic valve 8 to the air supply state and selecting the output ports as D4, D3, D2, and D1 in order as shown in FIG. 15, the air cell group is set to D, C, B, Air is supplied in the order of A and inflated individually. Then, after expanding the air cell group A, the main electromagnetic valve 8 is switched to the exhaust state, and the output ports are again selected as D4, D3, D2, and D1 in the same order. Thereby, an air cell group can be shrunk separately in order of D, C, B, and A. By controlling the control device 10 in this way, it is possible to perform a massage (centripetal method) in which the air cell group is sequentially expanded and contracted in the direction closer to the heart (the center of the body) from the end of the user's body. Become.
[適用の具体例(その2)]
 図1の椅子型マッサージ機に、他の形態のエア分配ユニット7を適用した場合を説明する。図16に示しているように、エアセル44a及びエアセル44bをエアセル群Aとし、エアセル44c1をエアセル群Bとし、エアセル44c2及びエアセル44dをエアセル群Cとしている。そして、この適用の具体例(その2)では、(図11の形態と同様に)図17に示しているように、出力ポートD4とエアセルA,B,Cとの各間に逆止弁16b,16c,16dが設けられている。
[Specific examples of application (part 2)]
The case where the air distribution unit 7 of another form is applied to the chair type massage machine of FIG. 1 is demonstrated. As shown in FIG. 16, the air cell 44a and the air cell 44b are an air cell group A, the air cell 44c1 is an air cell group B, and the air cell 44c2 and the air cell 44d are an air cell group C. And in the specific example (the 2) of this application, as shown in FIG. 17 (similar to the form of FIG. 11), the check valve 16b is provided between the output port D4 and each of the air cells A, B, and C. , 16c, 16d are provided.
 図16の前記エアセル群A~Cは、図17のA~Cと対応している。そして、図示しないが右側の肘掛け部4についても同様であり、エアセル群E~Gが設けられており、図17のエアセルE~Gと対応している。したがって、この形態では、左右の肘掛け部4,4に対して一台のエア分配ユニット7が設けられている構成である。 The air cell groups A to C in FIG. 16 correspond to A to C in FIG. Although not shown, the same applies to the right armrest portion 4, and air cell groups E to G are provided, corresponding to the air cells E to G in FIG. Therefore, in this embodiment, one air distribution unit 7 is provided for the left and right armrest portions 4, 4.
 そして、図18は左腕用のエアセル群A,B,Cの動作についてのタイムチャートである。なお、右腕用も左右対称として同様に動作する。このタイムチャートは、エアセル群A,B,Cに対して同時に給気し、個別に(時間差を設けて)排気する場合を示している。
 図16、図17及び図18において、主電磁弁(図2参照)を給気状態とし、出力ポートD4を選択することで、エアを、逆止弁16b,16c,16dを介してエアセル群A,B,Cに対して同時に給気し、これらを膨張させる。そして、所定時間経過後、主電磁弁8を排気状態に切り替え、出力ポートをD3、D2、D1の順で選択する。これにより、エアセル群をC、B、Aの順で個別に収縮させることができる。このように制御装置10が制御することにより、使用者の心臓(体の中心)に遠い位置から、エアセル群を順に収縮させるマッサージ(遠心法)が可能となる。
FIG. 18 is a time chart for the operation of the air cell groups A, B, and C for the left arm. Note that the right arm also operates in the same manner as left-right symmetry. This time chart shows a case where air is supplied to the air cell groups A, B, and C at the same time and exhausted individually (with a time difference).
In FIGS. 16, 17 and 18, the main solenoid valve (see FIG. 2) is in an air supply state and the output port D4 is selected, so that air is supplied to the air cell group A via the check valves 16b, 16c and 16d. , B and C are simultaneously supplied to inflate them. Then, after a predetermined time has elapsed, the main electromagnetic valve 8 is switched to the exhaust state, and the output ports are selected in the order of D3, D2, and D1. Thereby, an air cell group can be shrunk separately in order of C, B, and A. Control by the control device 10 in this way enables massage (centrifugation) that sequentially contracts the air cell group from a position far from the user's heart (the center of the body).
 これに対して、図19に示しているように、主電磁弁(図2参照)を給気状態とし、出力ポートD4を選択することで、エアを、逆止弁16b,16c,16dを介してエアセル群A,B,Cに対して同時に給気し、これらを膨張させる。そして、所定時間経過後、主電磁弁8を排気状態に切り替え、出力ポートをD1、D2、D3の順で選択する。これにより、エアセル群をA、B、Cの順で個別に収縮させることができる。このように制御装置10が制御することにより、使用者の心臓(体の中心)に近い位置から、エアセル群を順に収縮させるというマッサージ(求心法)が可能となる。 On the other hand, as shown in FIG. 19, the main solenoid valve (see FIG. 2) is brought into the air supply state, and the output port D4 is selected, so that the air is passed through the check valves 16b, 16c and 16d. Then, air is supplied to the air cell groups A, B, and C at the same time to expand them. Then, after a predetermined time has elapsed, the main electromagnetic valve 8 is switched to the exhaust state, and the output ports are selected in the order of D1, D2, and D3. Thereby, the air cell group can be individually contracted in the order of A, B, and C. Control by the control device 10 in this way enables massage (centripetal method) in which the air cell group is contracted sequentially from a position close to the user's heart (the center of the body).
[適用の具体例(その3)]
 図1及び図16の椅子型マッサージ機に、他の形態のエア分配ユニット7を適用した場合を説明する。この適用の具体例(その3)では、図20に示しているように、(図9の形態と同様に)出力ポートD4とエアセルA,B,Cとの各間に逆止弁15a,15b,15cが設けられている。
[Specific examples of application (part 3)]
The case where the air distribution unit 7 of another form is applied to the chair type massage machine of FIG.1 and FIG.16 is demonstrated. In a specific example (No. 3) of this application, as shown in FIG. 20, check valves 15a and 15b are provided between the output port D4 and the air cells A, B, and C (as in the embodiment of FIG. 9). , 15c are provided.
 図16の前記エアセル群A~Cは、図20のA~Cと対応している。そして、右側の肘掛け部4についても同様であり、エアセル群E~Gが設けられており、図20のエアセルE~Gと対応している。したがって、この形態では、左右の肘掛け部4,4に対して一台のエア分配ユニット7が設けられている構成である。 The air cell groups A to C in FIG. 16 correspond to A to C in FIG. The same applies to the armrest portion 4 on the right side, and air cell groups E to G are provided and correspond to the air cells E to G in FIG. Therefore, in this embodiment, one air distribution unit 7 is provided for the left and right armrest portions 4, 4.
 図21は左腕用のエアセル群A,B,Cの動作についてのタイムチャートである。なお、右腕用も左右対称として同様に動作する。このタイムチャートは、エアセル群A,B,Cについて個別に(時間差を設けて)給気し、同時に排気する場合を示している。
 図16、図20及び図21において、主電磁弁8(図2参照)を給気状態とし、出力ポートを順にD1、D2、D3と選択することで、エアセル群をA、B、Cの順で給気し個別に膨張させる。そして、エアセル群Cを膨張させた後、出力ポートD4を選択すると、エアセル群A、B、Cは膨張状態で保持される。
 そして、主電磁弁8を排気状態に切り替えると、膨張状態にあったエアセル群A、B、C内のエアは、逆止弁15a,15b,15cを介して出力ポートD4へと流れることができ、エアセル群A、B、Cを同時に収縮させることができる。このように制御装置10が制御することにより、使用者の心臓(体の中心)から遠くなる方向に向かって、エアセル群を順に膨張させる遠心法によるマッサージが可能となる。
FIG. 21 is a time chart regarding the operation of the air cell groups A, B, and C for the left arm. Note that the right arm also operates in the same manner as left-right symmetry. This time chart shows a case where air cells A, B, and C are individually supplied (with a time difference) and exhausted simultaneously.
16, 20, and 21, the main solenoid valve 8 (see FIG. 2) is in an air supply state, and the output ports are selected in order of D1, D2, and D3, so that the air cell groups are in the order of A, B, and C. Inflate and individually inflate. When the output port D4 is selected after the air cell group C is expanded, the air cell groups A, B, and C are held in an expanded state.
When the main solenoid valve 8 is switched to the exhaust state, the air in the air cell groups A, B, and C that are in the expanded state can flow to the output port D4 via the check valves 15a, 15b, and 15c. The air cell groups A, B, and C can be contracted simultaneously. Control by the control device 10 in this way enables massage by a centrifugal method in which the air cell group is sequentially expanded in a direction farther from the user's heart (the center of the body).
 これに対して、図22に示しているように、主電磁弁8を給気状態とし、出力ポートを順にD3、D2、D1と選択することで、エアセル群をC、B、Aの順で給気し個別に膨張させる。そして、エアセル群Aを膨張させた後、出力ポートD4を選択し、主電磁弁8を排気状態に切り替えると、膨張状態にあったエアセル群A、B、C内のエアは、逆止弁15a,15b,15cを介して出力ポートD4へと流れることができ、エアセル群A、B、Cを同時に収縮させることができる。このように制御装置10が制御することにより、使用者の身体の末端から心臓(体の中心)へ近くなる方向に向かって、エアセル群を順に膨張させる求心法によるマッサージが可能となる。 On the other hand, as shown in FIG. 22, the main solenoid valve 8 is in the supply state, and the output ports are selected as D3, D2, and D1 in this order, so that the air cell group is in the order of C, B, and A. Supply air and inflate individually. Then, after the air cell group A is expanded, when the output port D4 is selected and the main electromagnetic valve 8 is switched to the exhaust state, the air in the air cell groups A, B, and C in the expanded state becomes the check valve 15a. , 15b, 15c to the output port D4, and the air cell groups A, B, C can be contracted simultaneously. Control by the control device 10 in this way enables massage by a centripetal method in which the air cell groups are sequentially expanded from the end of the user's body toward the heart (the center of the body).
[エア分配ユニット7の他の形態(第二の形態)]
 図23は、エア分配ユニット7の他の形態を示している断面図である。この図23のエア分配ユニット7は、図3のエア分配ユニット7と同じ機能を有している。
 図23のエア分配ユニット7は、入力ポートP1から複数の出力ポートD1~D8へと向かう方向に、三段配設された第一、第二、第三分配ブロック(分配部)11,12,13、及び、これらを連結している第一、第二連結ブロック17,18を有している。第一連結ブロック17は、第一分配ブロック11と第二分配ブロック12とを連結しており、第一分配ブロック11の第一枝流路11b,11cと第二分配ブロック12の第二主流路12a,12bとを繋ぐ流路を有している。第二連結ブロック18は、第二分配ブロック12と第三分配ブロック13とを連結しており、第二分配ブロック12の第二枝流路12c~12fと第三分配ブロック13の第三主流路13a~13dとを繋ぐ流路を有している。これら分配ブロック11,12,13及び連結ブロック17,18によって、ユニット本体部14が構成される。
[Other forms of air distribution unit 7 (second form)]
FIG. 23 is a cross-sectional view showing another form of the air distribution unit 7. The air distribution unit 7 of FIG. 23 has the same function as the air distribution unit 7 of FIG.
The air distribution unit 7 in FIG. 23 includes first, second, and third distribution blocks (distribution units) 11, 12, arranged in three stages in a direction from the input port P1 to the plurality of output ports D1 to D8. 13 and first and second connecting blocks 17 and 18 connecting them. The first connection block 17 connects the first distribution block 11 and the second distribution block 12, and the first branch flow paths 11 b and 11 c of the first distribution block 11 and the second main flow path of the second distribution block 12. It has a flow path connecting 12a and 12b. The second connection block 18 connects the second distribution block 12 and the third distribution block 13, and the second branch flow paths 12 c to 12 f of the second distribution block 12 and the third main flow path of the third distribution block 13. It has a flow path connecting 13a to 13d. These distribution blocks 11, 12, 13 and connection blocks 17, 18 constitute a unit main body 14.
 第一分配ブロック11において、第一主流路11aと第一枝流路11b,11cとの間が分岐部となり、第二分配ブロック12と第三分配ブロック13とについても同様に分岐部が形成されている。
 これにより、図3の場合と同様に、図23のユニット本体部14は、分配ブロック11,12,13のそれぞれに分岐部が形成された構成となり、入力ポートP1から複数の出力ポートD1~D8へと流路が増加していくように構成されたものとなる。
 また、図3と異なる点は、図3(図4)では、例えば第三分配ブロック13において四つの弁体23a~23dが軸33b上に取り付けられた構成であるのに対し、図23では、スプール26による構成としている。
In the first distribution block 11, a branch portion is formed between the first main flow path 11 a and the first branch flow paths 11 b and 11 c, and a branch section is similarly formed in the second distribution block 12 and the third distribution block 13. ing.
As a result, similarly to the case of FIG. 3, the unit main body portion 14 of FIG. 23 has a configuration in which a branch portion is formed in each of the distribution blocks 11, 12, and 13, and the input port P1 to the plurality of output ports D1 to D8. The flow path is configured to increase.
Also, the difference from FIG. 3 is that in FIG. 3 (FIG. 4), for example, in the third distribution block 13, four valve bodies 23a to 23d are mounted on the shaft 33b, whereas in FIG. The spool 26 is used.
 また、このエア分配ユニット7は、図3の場合と同様に、第一、第二、第三分配ブロック11,12,13のそれぞれに設けられた第一、第二、第三切替装置(切替部)31,32,33を有している。切替装置31,32,33は、分配ブロック11,12,13のそれぞれで、分岐部におけるエアを流す方向を(エアを流す流路を)まとめて切り替えることができる。切替装置31,32,33のそれぞれは、流路を切り替えるために位置変化する前記スプール24,25,26と、このスプール24,25,26をそれぞれ位置変化させ、流路を各段でまとめて切り替える切替アクチュエータ(動作用エアセル31a,32a,33a)と、制御電磁弁S1,S2,S3とを有している。切替アクチュエータ(動作用エアセル31a,32a,33a)と、制御電磁弁S1,S2,S3との構成は、図3と同様であり、例えば、制御電磁弁S3は、第三動作用エアセル33aに対してエアを給気可能な状態とその給気が停止される停止状態(排気状態)とを切り替えることができる。 In addition, as in the case of FIG. 3, the air distribution unit 7 includes first, second, and third switching devices (switching units) provided in the first, second, and third distribution blocks 11, 12, and 13, respectively. Part) 31, 32, 33. The switching devices 31, 32, and 33 can collectively switch the direction in which the air flows in the branching portions (flow paths through which the air flows) in each of the distribution blocks 11, 12, and 13. Each of the switching devices 31, 32, and 33 changes the position of the spools 24, 25, and 26 that change their positions in order to switch the flow paths, and changes the positions of the spools 24, 25, and 26. There are switching actuators (operating air cells 31a, 32a, 33a) and control solenoid valves S1, S2, S3. The configuration of the switching actuator ( operational air cells 31a, 32a, 33a) and the control electromagnetic valves S1, S2, S3 is the same as that shown in FIG. 3. For example, the control electromagnetic valve S3 is connected to the third operation air cell 33a. Thus, it is possible to switch between a state where air can be supplied and a stop state (exhaust state) where the air supply is stopped.
 そして、前記制御装置10によって、前記切替装置31,32,33を制御して流路を切り替え、入力ポートP1と八箇所の出力ポートD1~D8との間でエアを流すことができる。なお、このエア分配ユニット7を、図7、図9、図11のように適用することもできる。 Then, the control device 10 controls the switching devices 31, 32 and 33 to switch the flow path, and allows air to flow between the input port P1 and the eight output ports D1 to D8. In addition, this air distribution unit 7 can also be applied as shown in FIGS.
 そして、図23のエア分配ユニット7の場合、分配ブロック11,12,13のそれぞれには、直線状の孔が形成されており、この孔に前記スプール24,25,26が移動可能としてそれぞれ設けられている。スプール24は、直線状の軸から製造することができ、また、分配ブロック11,12,13は、前記直線状の孔、主流路を形成する孔、枝流路を形成する孔を設けることで製造され、図3の形態と比べて製造が容易となる。 In the case of the air distribution unit 7 of FIG. 23, each of the distribution blocks 11, 12, and 13 is formed with a straight hole, and the spools 24, 25, and 26 are provided in the holes so as to be movable. It has been. The spool 24 can be manufactured from a straight shaft, and the distribution blocks 11, 12, and 13 are provided with the straight hole, the hole that forms the main flow path, and the hole that forms the branch flow path. Manufactured easily compared to the embodiment of FIG.
[エア分配ユニット7のさらに他の形態(第三の形態)]
 図24は、エア分配ユニット7のさらに他の形態を示している説明図である。図25(a)は図24のA矢視図であり、図25(b)は図24のB矢視図である。この図24のエア分配ユニット7についても、図3のエア分配ユニット7と同じ機能を有している。
 図24のエア分配ユニット7は、入力ポートP1から三段配設された第一、第二、第三分配ブロック(分配部)11,12,13を有している。第一分配ブロック11は、一台のバルブユニットb1から構成されており、第二分配ブロック12は、二台のバルブユニットb2,b3から構成されており、第三分配ブロック13は、三台のバルブユニットb4,b5,b6,b7から構成されている。
[Still Another Mode of Air Distribution Unit 7 (Third Mode)]
FIG. 24 is an explanatory view showing still another form of the air distribution unit 7. FIG. 25A is a view as seen from an arrow A in FIG. 24, and FIG. 25B is a view as seen from an arrow B in FIG. 24 also has the same function as the air distribution unit 7 of FIG.
The air distribution unit 7 in FIG. 24 has first, second, and third distribution blocks (distribution units) 11, 12, and 13 that are arranged in three stages from the input port P1. The first distribution block 11 is composed of one valve unit b1, the second distribution block 12 is composed of two valve units b2 and b3, and the third distribution block 13 is composed of three units. It consists of valve units b4, b5, b6 and b7.
 また、このエア分配ユニット7は(図23と同様に)第一、第二連結ブロック17,18を有している。第一連結ブロック17は、第一分配ブロック11(バルブユニットb1)と第二分配ブロック12(バルブユニットb2,b3)との間に介在しており、第二連結ブロック18は、第二分配ブロック12と第三分配ブロック13(バルブユニットb4,b5,b6,b7)との間に介在している。
 前記バルブユニットb1~b7それぞれは全て同じ構成であり、その断面図(図24におけるC矢視断面)が図26である。なお、図26では代表として第一分配ブロック11の第一バルブユニットb1を示している。
The air distribution unit 7 has first and second connecting blocks 17 and 18 (similar to FIG. 23). The first connection block 17 is interposed between the first distribution block 11 (valve unit b1) and the second distribution block 12 (valve units b2, b3), and the second connection block 18 is a second distribution block. 12 and the third distribution block 13 (valve units b4, b5, b6, b7).
Each of the valve units b1 to b7 has the same configuration, and FIG. 26 is a cross-sectional view thereof (cross-section taken along arrow C in FIG. 24). In FIG. 26, the first valve unit b1 of the first distribution block 11 is shown as a representative.
 この第一バルブユニットb1は、第一ポート27a、第二ポート27b、第三ポート27c、第四ポート27d、及びケース本体部30を有している。そして、ケース本体部30に、バネ(弾性部材)28b、弁体29、移動体28a、が設けられている。移動体28aは、一端部に弁体29が取り付けられた軸部(弁軸)28a1と、この軸部28a1の他端部に取り付けられた弾性体からなる膜部材28a2とを有している。この膜部材28a2とケース本体部30の上壁部30aとの間の空間にエアが供給されると、膜部材28a2は弾性変形し、軸部28a1及び弁体29は図26の下方へ移動する。つまり、弁体29は移動体28aに連動して移動する。
 そして、このバルブユニットb1において、第一ポート27aと繋がっている第一主流路11aから分岐部11dを介して分岐して第一枝流路11b,11cとが形成されている。そして、第一枝流路11bは第二ポート27bへと、第一枝流路11cは第三ポート27cへと繋がっている。これにより、第一ポート27a(第一主流路11a)と、第二ポート27b(第一枝流路11b)及び第三ポート27c(第一枝流路11c)との間が分岐部11dとなる。この分岐部11dに弁体29が設けられている。
 図26では、前記弁体29により第一ポート27aと第二ポート27bとが繋がっている状態であり、これらのポート間でエアが流れることができる。そして、ポンプ6(図2参照)から吐出され制御電磁弁S1を通過したエアが、第四ポート27dに供給されると、このエアの圧力によって、図26の状態からバネ28bに抗して弁体29が移動する。これにより、第一ポート27aと第三ポート27cとが繋がっている状態となり、これらのポート間でエアが流れることができる。
The first valve unit b1 includes a first port 27a, a second port 27b, a third port 27c, a fourth port 27d, and a case main body 30. The case main body 30 is provided with a spring (elastic member) 28b, a valve body 29, and a moving body 28a. The moving body 28a has a shaft portion (valve shaft) 28a1 having a valve body 29 attached to one end thereof, and a membrane member 28a2 made of an elastic body attached to the other end of the shaft portion 28a1. When air is supplied to the space between the membrane member 28a2 and the upper wall portion 30a of the case main body 30, the membrane member 28a2 is elastically deformed, and the shaft portion 28a1 and the valve element 29 move downward in FIG. . That is, the valve body 29 moves in conjunction with the moving body 28a.
And in this valve unit b1, it branches from the 1st main flow path 11a connected with the 1st port 27a via the branch part 11d, and the 1st branch flow paths 11b and 11c are formed. The first branch channel 11b is connected to the second port 27b, and the first branch channel 11c is connected to the third port 27c. Thereby, the branch port 11d is formed between the first port 27a (first main channel 11a), the second port 27b (first branch channel 11b), and the third port 27c (first branch channel 11c). . A valve element 29 is provided at the branch portion 11d.
In FIG. 26, the first port 27a and the second port 27b are connected by the valve body 29, and air can flow between these ports. When the air discharged from the pump 6 (see FIG. 2) and passing through the control solenoid valve S1 is supplied to the fourth port 27d, the valve of the air against the spring 28b from the state of FIG. The body 29 moves. Thereby, it will be in the state where the 1st port 27a and the 3rd port 27c were connected, and air can flow between these ports.
 第一バルブユニットb1の第二ポート27bは、図25(a)に示すように、第一連結ブロック17に形成された流路17a、及び、第二分配ブロック12の一方側にある第二バルブユニットb2の第一ポート27aを介して、当該第二バルブユニットb2内の第二主流路12aと繋がる(図24参照)。また、第一バルブユニットb1の前記第三ポート27cは、図25(a)に示すように、第一連結ブロック17に形成された流路17b、及び、第二分配ブロック12の他方側にある第三バルブユニットb3の第一ポート27aを介して、当該第三バルブユニットb3内の第二主流路12bと繋がる(図24参照)。 The second port 27b of the first valve unit b1 includes a flow path 17a formed in the first connection block 17 and a second valve on one side of the second distribution block 12, as shown in FIG. It connects with the 2nd main channel 12a in the 2nd valve unit b2 via the 1st port 27a of unit b2 (refer to Drawing 24). The third port 27c of the first valve unit b1 is on the other side of the flow path 17b formed in the first connection block 17 and the second distribution block 12, as shown in FIG. It connects with the 2nd main flow path 12b in the said 3rd valve unit b3 via the 1st port 27a of the 3rd valve unit b3 (refer FIG. 24).
 そして、第二バルブユニットb2の第二ポート27bは、図25(b)に示すように、第二連結ブロック18に形成された流路18a、及び、第三分配ブロック12の第四バルブユニットb4の第一ポート27aを介して、当該第四バルブユニットb4内の第三主流路13aと繋がる(図24参照)。第四バルブユニットb4には、第一ポート27a及び第三主流路13aから分岐して第三枝流路13e及び第三枝流路13fが形成されていて、これら第三枝流路13e及び第三枝流路13fはそれぞれ第二ポート27b及び第三ポート27cと繋がっている。これら第二ポート27b及び第三ポート27cはそれぞれ出力ポートD1及び出力ポートD2に繋がっている(図24参照)。なお、第二連結ブロック18には、さらに、流路18b,18c,18dが形成されており、第二分配ブロック12の第三バルブユニットb3についても、さらに、第三分配ブロック13の他のバルブユニットb5~b7についても同様に構成されている。 And the 2nd port 27b of the 2nd valve unit b2 is the 4th valve unit b4 of the flow path 18a formed in the 2nd connection block 18, and the 3rd distribution block 12, as shown in FIG.25 (b). The first main port 27a is connected to the third main channel 13a in the fourth valve unit b4 (see FIG. 24). In the fourth valve unit b4, a third branch channel 13e and a third branch channel 13f are formed by branching from the first port 27a and the third main channel 13a, and the third branch channel 13e and the third branch channel 13f are formed. The three branch flow paths 13f are connected to the second port 27b and the third port 27c, respectively. The second port 27b and the third port 27c are connected to the output port D1 and the output port D2, respectively (see FIG. 24). The second connection block 18 is further formed with flow paths 18b, 18c, 18d, and the third valve unit b3 of the second distribution block 12 is further provided with another valve of the third distribution block 13. The units b5 to b7 are configured similarly.
 このようなバルブユニットb1~b7及び連結ブロック17,18によって構成されたエア分配ユニット7のユニット本体部は、図3及び図23と同様に、入力ポートP1から複数の出力ポートD1~D8へと向かう方向に複数段配設された分配ブロック11,12,13を有しており、当該分配ブロック11,12,13のそれぞれに分岐部が形成され、入力ポートP1から複数の出力ポートD1~D8へと流路が増加していくように構成されたものとなる。
 また、図3及び図23と同様に、図24のエア分配ユニット7は、第一、第二、第三分配ブロック11,12,13のそれぞれに設けられた第一、第二、第三切替装置(切替部)31,32,33を有している。切替装置31,32,33は、分配ブロック11,12,13毎で分岐部におけるエアを流す方向(エアを流す流路)をまとめて切り替えることができる。
The unit body portion of the air distribution unit 7 constituted by the valve units b1 to b7 and the connecting blocks 17 and 18 is connected from the input port P1 to the plurality of output ports D1 to D8, as in FIGS. It has distribution blocks 11, 12, and 13 arranged in a plurality of stages in the direction toward it, and branch portions are formed in the distribution blocks 11, 12, and 13, respectively, and a plurality of output ports D1 to D8 from the input port P1. The flow path is configured to increase.
Similarly to FIGS. 3 and 23, the air distribution unit 7 of FIG. 24 has first, second, and third switching units provided in the first, second, and third distribution blocks 11, 12, and 13, respectively. Devices (switching units) 31, 32, and 33 are included. The switching devices 31, 32, and 33 can collectively switch the direction in which the air flows in the branch portion (flow path for flowing air) for each of the distribution blocks 11, 12, and 13.
 切替装置31,32,33について、第三分配ブロック13の切替装置33を代表して説明する。第三分配ブロック13は四台のバルブユニットb4~b7から構成されており、これらの第四ポート27dのそれぞれは二点鎖線で示しているエア流路34と繋がっている。このエア流路34は、制御電磁弁S3を介して前記ポンプ6(図2参照)と繋がっている。
 したがって、ポンプ6から吐出されたエアが、制御電磁弁S3を介してこのエア流路34を流れると、当該エアはバルブユニットb4~b7のそれぞれの第四ポート27dに供給される。これにより、バルブユニットb4~b7の全ての弁体29(図26参照)がまとめて位置変化し、第三分配ブロック13で、まとめて流路が切り替わる。
 すなわち、この実施形態においても、第三分配ブロック13は、流路を切り替えるために位置変化する四つの弁体29と、これら弁体29をまとめて位置変化させ、流路をまとめて切り替える切替アクチュエータとを有している構成となる。なお、この切替アクチュエータは、エア流路34とそれぞれ繋がっているバルブユニットb4~b7内に配置された前記移動体28aを有する構成である。
The switching devices 31, 32, and 33 will be described as a representative of the switching device 33 of the third distribution block 13. The third distribution block 13 is composed of four valve units b4 to b7, and each of these fourth ports 27d is connected to an air flow path 34 indicated by a two-dot chain line. The air flow path 34 is connected to the pump 6 (see FIG. 2) via a control electromagnetic valve S3.
Therefore, when the air discharged from the pump 6 flows through the air flow path 34 via the control solenoid valve S3, the air is supplied to the fourth ports 27d of the valve units b4 to b7. As a result, the position of all the valve bodies 29 (see FIG. 26) of the valve units b4 to b7 collectively change, and the flow paths are switched collectively in the third distribution block 13.
That is, also in this embodiment, the third distribution block 13 includes four valve bodies 29 whose positions change in order to switch the flow paths, and a switching actuator that changes the positions of these valve bodies 29 collectively and switches the flow paths collectively. It becomes the composition which has. The switching actuator has the moving body 28a arranged in the valve units b4 to b7 connected to the air flow path 34, respectively.
 そして、前記制御装置10によって、切替装置31,32,33を制御して(つまり、制御電磁弁S1,S2,S3を制御して)流路を切り替え、入力ポートP1と八箇所の出力ポートD1~D8の間でエアを流すことができる。なお、このエア分配ユニット7を、図7、図9、図11、図17、図20のマッサージ機に適用することもできる。
 この実施形態によれば、図26のバルブユニット及び図25と同様の連結ブロックをさらに追加等することによって、エア分配ユニット7の構成を容易に変更することができる。つまり、バルブユニット及び連結ブロックを追加することで、出力ポートの数を容易に増やすことができる。
Then, the control device 10 controls the switching devices 31, 32, 33 (that is, controls the control electromagnetic valves S1, S2, S3) to switch the flow path, and the input port P1 and the eight output ports D1. Air can flow between D8. In addition, this air distribution unit 7 is also applicable to the massage machine of FIG.7, FIG.9, FIG.11, FIG.17 and FIG.
According to this embodiment, the configuration of the air distribution unit 7 can be easily changed by further adding the valve unit of FIG. 26 and the connection block similar to that of FIG. That is, the number of output ports can be easily increased by adding a valve unit and a connection block.
[エア分配ユニット7のさらに他の形態(第四の形態)]
 図27は、エア分配ユニット7のさらに他の形態を示している説明図である。図28は図27のA矢視図であり、図29は図27のB矢視図である。この図27のエア分配ユニット7も、前記各形態のエア分配ユニットと同じ機能を有している。
 図27のエア分配ユニット7は、入力ポートP1から三段配設された第一、第二、第三分配ブロック(分配部)11,12,13を有している。第一分配ブロック11は、一台のバルブユニットb1から構成されており、第二分配ブロック12は、二台のバルブユニットb2,b3から構成されており、第三分配ブロック13は、三台のバルブユニットb4,b5,b6,b7から構成されている。
[Still another form of air distribution unit 7 (fourth form)]
FIG. 27 is an explanatory view showing still another form of the air distribution unit 7. 28 is a view as seen from an arrow A in FIG. 27, and FIG. 29 is a view as seen from an arrow B in FIG. The air distribution unit 7 of FIG. 27 also has the same function as the air distribution unit of each of the above embodiments.
27 has first, second, and third distribution blocks (distribution units) 11, 12, and 13 that are arranged in three stages from the input port P1. The first distribution block 11 is composed of one valve unit b1, the second distribution block 12 is composed of two valve units b2 and b3, and the third distribution block 13 is composed of three units. It consists of valve units b4, b5, b6 and b7.
 さらに、エア分配ユニット7は第一、第二連結ブロック17,18を有している。第一連結ブロック17は、第一分配ブロック11と第二分配ブロック12とを連結するための流路が形成されており、第二連結ブロック18は、第二分配ブロック12と第三分配ブロック13とを連結するための流路が形成されている。
 バルブユニットb1~b7それぞれは全て同じ構成であり、その断面図が図30である(図27におけるC矢視断面図)。
Further, the air distribution unit 7 has first and second connecting blocks 17 and 18. The first connection block 17 has a flow path for connecting the first distribution block 11 and the second distribution block 12, and the second connection block 18 includes the second distribution block 12 and the third distribution block 13. A flow path for connecting the two is formed.
Each of the valve units b1 to b7 has the same configuration, and a sectional view thereof is FIG. 30 (a sectional view taken along arrow C in FIG. 27).
 代表として第一バルブユニットb1を説明する。第一バルブユニットb1は、第一ポート27a、第二ポート27b、第三ポート27c及びケース本体部30を有している。ケース本体部30に、バネ(弾性部材)28b、弁体29、一端部に弁体29が取り付けられた軸部(弁軸)28aが設けられている。また、軸部28aの他端部側に、動作用エアセル(切替アクチュエータ)31aが設けられている。バネ28bは、弁体29を動作用エアセル31a側へ付勢している。動作用エアセル31aはエアが供給されると膨張し、軸部28a及び弁体29は、バネ28bに抗して移動する。 The first valve unit b1 will be described as a representative. The first valve unit b1 includes a first port 27a, a second port 27b, a third port 27c, and a case main body 30. The case main body 30 is provided with a spring (elastic member) 28b, a valve body 29, and a shaft portion (valve shaft) 28a to which the valve body 29 is attached at one end. An operation air cell (switching actuator) 31a is provided on the other end side of the shaft portion 28a. The spring 28b biases the valve body 29 toward the operation air cell 31a. The operation air cell 31a expands when air is supplied, and the shaft portion 28a and the valve body 29 move against the spring 28b.
 ケース本体部30は、第一ポート27aと繋がっている第一主流路11aから分岐部11dを介して分岐して第一枝流路11b,11cとが形成されている。そして、第一枝流路11bは第二ポート27bへと、第一枝流路11cは第三ポート27cへと繋がっている。これにより、第一ポート27a(第一主流路11a)と、第二ポート27b(第一枝流路11b)及び第三ポート27c(第一枝流路11c)との間が分岐部11dとなる。この分岐部11dに弁体29が設けられている。
 図30に示している状態は、弁体29により第一ポート27aと第三ポート27cとが繋がっている状態であり、これらのポート間でエアが流れることができる。そして、ポンプ6(図2参照)から吐出され制御電磁弁S1を通過したエアが、動作用エアセル31aに供給されると、このエアの圧力によって、バネ28bに抗して弁体29が移動する。これにより、第一ポート27aと第二ポート27bとが繋がっている状態となり、これらのポート間でエアが流れることができる。
The case body 30 is branched from the first main flow channel 11a connected to the first port 27a via the branch portion 11d to form first branch flow channels 11b and 11c. The first branch channel 11b is connected to the second port 27b, and the first branch channel 11c is connected to the third port 27c. Thereby, the branch port 11d is formed between the first port 27a (first main channel 11a), the second port 27b (first branch channel 11b), and the third port 27c (first branch channel 11c). . A valve element 29 is provided at the branch portion 11d.
The state shown in FIG. 30 is a state in which the first port 27a and the third port 27c are connected by the valve body 29, and air can flow between these ports. When the air discharged from the pump 6 (see FIG. 2) and passing through the control electromagnetic valve S1 is supplied to the operation air cell 31a, the valve element 29 moves against the spring 28b by the pressure of the air. . Thereby, it will be in the state where the 1st port 27a and the 2nd port 27b are connected, and air can flow between these ports.
 第一バルブユニットb1の第二ポート27bは、図29に示しているように、第一連結ブロック17に形成された流路17a、及び、第二分配ブロック12の一方側にある第二バルブユニットb2の第一ポート27aを介して、当該第二バルブユニットb2内の第二主流路12aと繋がる(図27参照)。また、第一バルブユニットb1の第三ポート27cは、図29に示すように、第一連結ブロック17に形成された流路17b、及び、第二分配ブロック12の他方側にある第三バルブユニットb3の第一ポート27aを介して、当該第三バルブユニットb3内の第二主流路12bと繋がる(図27参照)。 As shown in FIG. 29, the second port 27b of the first valve unit b1 includes a flow path 17a formed in the first connection block 17 and a second valve unit on one side of the second distribution block 12. It connects with the 2nd main flow path 12a in the said 2nd valve unit b2 via the 1st port 27a of b2 (refer FIG. 27). Further, as shown in FIG. 29, the third port 27c of the first valve unit b1 includes a flow path 17b formed in the first connection block 17 and a third valve unit on the other side of the second distribution block 12. It connects with the 2nd main flow path 12b in the said 3rd valve unit b3 via the 1st port 27a of b3 (refer FIG. 27).
 そして、図28に示しているように、第二バルブユニットb2の第二ポート27bは、第二連結ブロック18に形成された流路18a、及び、第三分配ブロック12の第四バルブユニットb4の第一ポート27aを介して、当該第四バルブユニットb4内の第三主流路13aと繋がる(図27参照)。この第四バルブユニットb4では、第一ポート27a及び第三主流路13aから分岐して第三枝流路13e及び第三枝流路13fとが形成されていて、これら第三枝流路13e及び第三枝流路13fはそれぞれ第四バルブユニットb4の第二ポート27b及び第三ポート27cへと繋がっている。これら第二ポート27b及び第三ポート27cはそれぞれ出力ポートD1及び出力ポートD2に繋がっている(図27と図29参照)。なお、第二連結ブロック18には、さらに、流路18b,18c,18dが形成されており、第二分配ブロック12の第三バルブユニットb3についても、さらに、第三分配ブロック13の他のバルブユニットb5~b7についても同様に構成されている。 As shown in FIG. 28, the second port 27b of the second valve unit b2 is connected to the flow path 18a formed in the second connection block 18 and the fourth valve unit b4 of the third distribution block 12. It connects with the 3rd main flow path 13a in the said 4th valve unit b4 via the 1st port 27a (refer FIG. 27). In the fourth valve unit b4, a third branch channel 13e and a third branch channel 13f are formed by branching from the first port 27a and the third main channel 13a. The third branch channel 13f is connected to the second port 27b and the third port 27c of the fourth valve unit b4, respectively. The second port 27b and the third port 27c are connected to the output port D1 and the output port D2, respectively (see FIGS. 27 and 29). The second connection block 18 is further formed with flow paths 18b, 18c, 18d, and the third valve unit b3 of the second distribution block 12 is further provided with another valve of the third distribution block 13. The units b5 to b7 are configured similarly.
 このようなバルブユニットb1~b7及び連結ブロック17,18によって構成されたエア分配ユニット7のユニット本体部14は、前記各形態と同様に、入力ポートP1から複数の出力ポートD1~D8へと向かう方向に複数段配設された分配ブロック11,12,13を有しており、当該分配ブロック11,12,13のそれぞれに分岐部が形成され、入力ポートP1から複数の出力ポートD1~D8へと流路が増加していくように構成されたものとなる。
 また、前記各形態と同様に、図28及び図29に示しているように、エア分配ユニット7は、第一、第二、第三分配ブロック11,12,13のそれぞれに設けられた第一、第二、第三切替装置(切替部)31,32,33を有している。切替装置31,32,33は、分配ブロック11,12,13毎で分岐部におけるエアを流す方向(エアを流す流路)をまとめて切り替えることができる。
The unit main body 14 of the air distribution unit 7 constituted by the valve units b1 to b7 and the connecting blocks 17 and 18 is directed from the input port P1 to the plurality of output ports D1 to D8, as in the above embodiments. The distribution blocks 11, 12, and 13 are arranged in a plurality of stages in the direction. A branch portion is formed in each of the distribution blocks 11, 12, and 13, and the input port P 1 is connected to the output ports D 1 to D 8. And the flow path is configured to increase.
As in the above embodiments, as shown in FIGS. 28 and 29, the air distribution unit 7 is provided in each of the first, second, and third distribution blocks 11, 12, and 13, respectively. , Second and third switching devices (switching units) 31, 32, 33. The switching devices 31, 32, and 33 can collectively switch the direction in which the air flows in the branch portion (flow path for flowing air) for each of the distribution blocks 11, 12, and 13.
 切替装置31,32,33について、第三分配ブロック13の切替装置33を代表して説明する。図31は第三分配ブロック13の断面図(図27のD矢視断面図)である。この第三分配ブロック13は四台のバルブユニットb4~b7から構成されており、これらバルブユニットb4~b7それぞれが有している弁軸28aの端部は、単一の動作用エアセル33aに当接している。動作用エアセル33aは、バルブユニットb4~b7の配列方向に長い形状であり、この動作用エアセル33aに対して全ての(四本の)弁軸28aが並列状態で配設されている。また、第三分配ブロック13は、バルブユニットb4~b7の端面19と対向する壁20aを有する止め部材20を有していて、壁20aと端面19との間の空間に動作用エアセル33aが設けられている。 The switching devices 31, 32, and 33 will be described on behalf of the switching device 33 of the third distribution block 13. 31 is a cross-sectional view of the third distribution block 13 (a cross-sectional view taken along arrow D in FIG. 27). The third distribution block 13 is composed of four valve units b4 to b7, and the end of the valve shaft 28a which each of these valve units b4 to b7 has corresponds to a single operating air cell 33a. It touches. The operating air cell 33a is long in the arrangement direction of the valve units b4 to b7, and all (four) valve shafts 28a are arranged in parallel to the operating air cell 33a. The third distribution block 13 has a stop member 20 having a wall 20a facing the end surface 19 of the valve units b4 to b7, and an operating air cell 33a is provided in the space between the wall 20a and the end surface 19. It has been.
 動作用エアセル33aは、制御電磁弁S3を介して前記ポンプ6(図2参照)と繋がっている。動作用エアセル33aは、ポンプ6側からエアが供給されることで膨張し、全ての(四本の)弁軸28aを同時に押して、弁体29を同じ変位量となるように移動させることができる。これにより、バルブユニットb4~b7の全ての弁体29をまとめて位置変化させることができる。これにより、第三分配ブロック13において、まとめて流路が切り替わる。
 すなわち、この実施形態においても、第三分配ブロック13は、流路を切り替えるために位置変化する四つの弁体29と、これら弁体29をまとめて位置変化させ、流路をまとめて切り替える切替アクチュエータ(動作用エアセル33a)とを有している構成となる。
The operating air cell 33a is connected to the pump 6 (see FIG. 2) via a control electromagnetic valve S3. The air cell 33a for operation expands when air is supplied from the pump 6 side, and all (four) valve shafts 28a can be pushed at the same time to move the valve body 29 to the same displacement amount. . As a result, the position of all the valve bodies 29 of the valve units b4 to b7 can be changed collectively. Thereby, in the 3rd distribution block 13, a flow path is switched collectively.
That is, also in this embodiment, the third distribution block 13 includes four valve bodies 29 whose positions change in order to switch the flow paths, and a switching actuator that changes the positions of these valve bodies 29 collectively and switches the flow paths collectively. (Operation air cell 33a).
 そして、前記制御装置10によって、切替装置31,32,33を制御して(つまり、制御電磁弁S1,S2,S3を制御して)流路を切り替え、入力ポートP1と八箇所の出力ポートD1~D8の間でエアを流すことができる。なお、このエア分配ユニット7を、図7、図9、図11、図17、図20のマッサージ機に適用することもできる。 Then, the control device 10 controls the switching devices 31, 32, 33 (that is, controls the control electromagnetic valves S1, S2, S3) to switch the flow path, and the input port P1 and the eight output ports D1. Air can flow between D8. In addition, this air distribution unit 7 is also applicable to the massage machine of FIG.7, FIG.9, FIG.11, FIG.17 and FIG.
 以上のように、エア分配ユニット7の第三の形態(図24)及び第四の形態(図27)によれば、エア分配ユニット7が備えているユニット本体部14は、バルブユニットb1~b7それぞれを主に構成しているケース本体部30を複数有していて、各ケース本体部30の内部に、単一の分岐部が形成されている。そして、図31により説明すると、これら分岐部におけるエアを流す方向を分配ブロック単位でまとめて切り替える切替装置として、分岐部におけるエアを流す方向を切り替えるために位置変化する弁体29と、この弁体29が取り付けられ当該弁体29と共に位置変化する弁軸28aと、動作用エアセル33aとを有している。 As described above, according to the third embodiment (FIG. 24) and the fourth embodiment (FIG. 27) of the air distribution unit 7, the unit main body portion 14 provided in the air distribution unit 7 has the valve units b1 to b7. A plurality of case main bodies 30 mainly constituting each of them are provided, and a single branch portion is formed inside each case main body 30. Then, with reference to FIG. 31, as a switching device that switches the flow direction of air in these branch portions collectively in units of distribution blocks, the valve body 29 that changes its position in order to switch the flow direction of air in the branch portion, and this valve body 29 has a valve shaft 28a to which the position is changed together with the valve body 29, and an operating air cell 33a.
 さらに、各ケース本体部30は、弁体29及び弁軸28aが直線方向に位置変化可能となるように当該弁軸28aを挿通させて支持している軸受孔部30bを有している。そして、バルブユニットb4~b7それぞれのケース本体部30は、別個独立して製造されていて、一つのケース本体部30の軸受孔部30bと、他のケース本体部30の軸受孔部30bとは、個別に孔加工された構成となっている。 Furthermore, each case main body 30 has a bearing hole 30b through which the valve shaft 28a is inserted and supported so that the position of the valve body 29 and the valve shaft 28a can be changed in a linear direction. The case main body 30 of each of the valve units b4 to b7 is manufactured separately and independently. The bearing hole 30b of one case main body 30 and the bearing hole 30b of the other case main body 30 are different from each other. It has a configuration in which holes are individually drilled.
 すなわち、一つのケース本体部30の軸受孔部30bの孔方向は、他のケース本体部30の軸受孔部30bの孔方向と平行となるようにして、複数のケース本体部30が配設されている。そして、一つのケース本体部30の分岐部における弁体29及び弁軸28aと、他のケース本体部30の分岐部における弁体29及び弁軸28aとが、平行に配置される。 That is, the plurality of case main body portions 30 are arranged such that the hole direction of the bearing hole portion 30b of one case main body portion 30 is parallel to the hole direction of the bearing hole portion 30b of the other case main body portion 30. ing. The valve body 29 and the valve shaft 28a in the branch portion of one case main body 30 and the valve body 29 and the valve shaft 28a in the branch portion of the other case main body 30 are arranged in parallel.
 このような構成を有する第三の形態(図24)及び第四の形態(図27)によれば、一つのケース本体部30における孔加工と他のケース本体部30における孔加工とを個別に行なうことから、その加工が容易となり、寸法精度の確保が容易となる。すなわち、例えば、図23の形態では、長いスプール26を挿入するための孔が必要であり、このために、ドリルによって長いストロークの孔加工が必要となる。この場合、孔の寸法精度の確保が困難となる。しかし、図24及び図27の構成によれば、孔加工の長さ(例えばドリルの一回のストローク)を短くでき、寸法精度の確保が容易となる。 According to the 3rd form (Drawing 24) and the 4th form (Drawing 27) which have such composition, hole processing in one case body part 30 and hole processing in other case body parts 30 are carried out separately. As a result, the processing becomes easy, and the dimensional accuracy is easily ensured. That is, for example, in the form of FIG. 23, a hole for inserting the long spool 26 is necessary, and for this reason, a long stroke hole processing is required by a drill. In this case, it is difficult to ensure the dimensional accuracy of the holes. However, according to the configuration of FIG. 24 and FIG. 27, the length of drilling (for example, one stroke of the drill) can be shortened, and dimensional accuracy can be easily ensured.
 また、図31に示している第三分配ブロック13において、全ての弁体29をまとめて動作させる動作用エアセル33aは、例えば樹脂製で平板状の袋形状であり、各部で可撓性を有している。これにより、一つの弁軸28aは他の弁軸28aに影響されないで独自に動作用エアセル33aによって押される。したがって、ケース本体部30それぞれにおいて、弁軸28aに固定されている弁体29は、独自に分岐部において気密性を確保することができる。
 これに対して、図3及び図4の実施形態における第三分配ブロック13は、一つの軸33bに全ての弁体23a~23dが固定されている構成であるため、すべての弁体23a~23dにおいて気密性を確保するためには、高い組み立て精度、高い製作精度が要求される。しかし、図31の形態によれば、すべての弁体29において気密性を確保するためには、さほど高い組み立て精度、高い製作精度が要求されないで済む。
Further, in the third distribution block 13 shown in FIG. 31, the operation air cell 33a for operating all the valve bodies 29 together is, for example, a resin-made flat bag shape, and each part has flexibility. is doing. Thereby, one valve shaft 28a is independently pushed by the operation air cell 33a without being influenced by the other valve shaft 28a. Therefore, in each case main body 30, the valve body 29 fixed to the valve shaft 28 a can independently ensure airtightness at the branch portion.
On the other hand, the third distribution block 13 in the embodiment of FIGS. 3 and 4 has a configuration in which all the valve bodies 23a to 23d are fixed to one shaft 33b. In order to ensure airtightness, high assembly accuracy and high manufacturing accuracy are required. However, according to the form of FIG. 31, in order to ensure airtightness in all the valve bodies 29, it is not necessary to require a very high assembly accuracy and high manufacturing accuracy.
 また、図31の第三分配ブロック13、及び、図3と図4の第三分配ブロック13において、一つの弁体を移動させるのに必要な(摺動抵抗等を含めた)力をFとすると、動作用エアセル33aによって四つの弁体を移動させるためには、この4倍の力(4×Fの力)が必要となる。動作用エアセル33aがこの力(4×Fの力)を有するためには、図3と図4の形態の場合、動作用エアセル33aは小さく構成されているため、大きな圧力が必要となる。これに対して、図31の第三分配ブロック13では、並列させた全ての弁軸28aをまとめて押すことができるように、動作用エアセル33aが大きく構成されている。このため、動作用エアセル33aが前記力(4×Fの力)を有するために必要な圧力は、小さくて済む。 Further, in the third distribution block 13 of FIG. 31 and the third distribution block 13 of FIGS. 3 and 4, the force (including the sliding resistance) necessary to move one valve element is F. Then, in order to move the four valve bodies by the operating air cell 33a, four times as much force (4 × F force) is required. In order for the operating air cell 33a to have this force (4 × F force), in the case of the embodiment shown in FIGS. 3 and 4, the operating air cell 33a is configured to be small, so that a large pressure is required. On the other hand, in the third distribution block 13 of FIG. 31, the operation air cell 33a is configured to be large so that all the valve shafts 28a arranged in parallel can be pushed together. Therefore, the pressure required for the operation air cell 33a to have the force (4 × F force) can be small.
 また、図3の形態の場合、分配ブロック毎で弁体の数が異なるため、分配ブロック毎で動作用エアセルが必要な力は異なる。このため、動作用エアセルに供給するエアの圧力は、すべての分配ブロックで異なる。このため、エアの圧力を調整する機構が必要となる。
 これに対して、図27及び図31の形態の場合、各分配ブロックで、弁体の数に応じた大きさに動作用エアセルが構成されているため、動作用エアセルに供給するエアの圧力を、すべての分配ブロックで同じとすることができる。
In the case of the configuration of FIG. 3, the number of valve bodies is different for each distribution block, and thus the force required for the operation air cell is different for each distribution block. For this reason, the pressure of the air supplied to the operating air cell is different in all distribution blocks. For this reason, a mechanism for adjusting the air pressure is required.
On the other hand, in the case of the form of FIG.27 and FIG.31, since the air cell for operation | movement is comprised by the magnitude | size according to the number of valve bodies in each distribution block, the pressure of the air supplied to the air cell for operation | movement is set. , Can be the same for all distribution blocks.
 また、図27に示しているように、入力ポートP1から複数の出力ポートD1~D8へと向かう方向に配設された複数の分配ブロック11,12,13の全てが、一方向に直線的に並んで配設されている。このように、複数段の分配ブロック11,12,13を備えていても、エア分配ユニット7を一方向に長く構成することで、この一方向に直交する方向の寸法を小さくすることができ、エア分配ユニット7のコンパクト化が図れる。なお、図示しないが、第一分配ブロック11と第二分配ブロック12とが一方向に直線的に並んで配設され、これら第一分配ブロック11及び第二分配ブロック12と、二列(並列)となるようにして、第三分配ブロック13が設けられていてもよい。 Further, as shown in FIG. 27, all of the plurality of distribution blocks 11, 12, 13 arranged in the direction from the input port P1 to the plurality of output ports D1 to D8 are linear in one direction. They are arranged side by side. In this way, even if the multi-stage distribution blocks 11, 12, and 13 are provided, by configuring the air distribution unit 7 to be long in one direction, the dimension in the direction orthogonal to the one direction can be reduced. The air distribution unit 7 can be made compact. Although not shown, the first distribution block 11 and the second distribution block 12 are arranged linearly in one direction, and the first distribution block 11 and the second distribution block 12 are arranged in two rows (in parallel). Thus, the third distribution block 13 may be provided.
 また、図30の形態では、弁体29を分岐部11dに収容した状態とするためにケース本体部30は、複数の(二つの)ケース分割体30c,30dを有した分割構造となっている。そして、これら複数のケース分割体30c,30d同士は、しまり嵌めにより分離不能として組み立てられている。具体的に説明すると、ケース本体部30は、凹部30eが形成された外側のケース分割体30cと、この凹部30eに嵌合する内側のケース分割体30dとを有している。内側のケース分割体30dの直径D1は、凹部30eの内径D2よりも大きく構成されている。これにより、ケース分割体30c,30d同士を組み立てる際に、例えば溶接や、ネジ締結のためのネジ加工等が不要であり、ケース本体部30の作製が簡単となる。
 なお、図31の形態では、第三分配ブロック13において、四つのケース本体部30が別々に製造され、相互を連結させた構成としたが、四つのケース本体部30は、一体ものとして構成してもよい。
In the form of FIG. 30, the case main body 30 has a divided structure having a plurality of (two) case divided bodies 30c and 30d in order to make the valve body 29 accommodated in the branching portion 11d. . And these several case division bodies 30c and 30d are assembled so that separation is impossible by interference fit. More specifically, the case body 30 includes an outer case divided body 30c in which a recess 30e is formed, and an inner case divided body 30d that fits into the recess 30e. A diameter D1 of the inner case divided body 30d is configured to be larger than an inner diameter D2 of the recess 30e. Thereby, when assembling case division bodies 30c and 30d, for example, welding, screw processing for screw fastening, etc. are unnecessary, and manufacture of case body part 30 becomes easy.
In the form of FIG. 31, in the third distribution block 13, the four case main body portions 30 are separately manufactured and connected to each other. However, the four case main body portions 30 are configured as a single unit. May be.
 また、図33は、図30のバルブユニットb1の変形例を示し、(a)は平面図、(b)は断面図である。図33のバルブユニットb1と、図30のバルブユニットb1とは、エアを流すための基本構成について、同じである。異なる構成は、ケース本体部30である。図33のケース本体部30は、二つのケース分割体30f,30gを有した分割構造となっている。これらケース分割体30f,30g同士は、ボルト等の固定部材30hによって連結されている。固定部材30hをボルトとすることで、弁体29等のメンテナンスが必要な際、ケース本体部30を分解するのが容易となる。また、ケース分割体30f,30gの間は、パッキン30iによって気密性が保たれている。 FIG. 33 shows a modification of the valve unit b1 of FIG. 30, where (a) is a plan view and (b) is a cross-sectional view. The valve unit b1 in FIG. 33 and the valve unit b1 in FIG. 30 have the same basic configuration for flowing air. A different configuration is the case body 30. The case main body 30 of FIG. 33 has a divided structure having two case divided bodies 30f and 30g. These case division bodies 30f and 30g are connected by fixing members 30h such as bolts. By using the fixing member 30h as a bolt, the case body 30 can be easily disassembled when maintenance of the valve body 29 or the like is required. Further, between the case divided bodies 30f and 30g, the airtightness is maintained by the packing 30i.
[リークバルブ及び急速排気弁について]
 また、前記各実施の形態において、エア分配ユニット7は、リークバルブ及び急速排気弁を備えている。リークバルブ及び急速排気弁は、出力ポートD1~D8と、これに対応して繋がっているエアセルA~Hとの間に必要に応じてそれぞれ設けられている。なお、図32では、代表して、出力ポートD3とエアセルCとの間に設けられているリークバルブ35c及び急速排気弁36cが記載されている。
[Leak valve and quick exhaust valve]
In each of the above embodiments, the air distribution unit 7 includes a leak valve and a quick exhaust valve. The leak valve and the quick exhaust valve are provided as necessary between the output ports D1 to D8 and the air cells A to H connected correspondingly. In FIG. 32, a leak valve 35c and a quick exhaust valve 36c provided between the output port D3 and the air cell C are representatively shown.
 リークバルブ35cは、バネ38によって付勢された弁部37aと、この弁部37aを収容している本体部37bとを有しており、弁部37aの外周側面と本体部37bの内周側面との間に隙間が形成されている。出力ポートD3から流れてくるエアがリークバルブ35cへ到達し、当該エアの圧力の小さい場合、弁部37aはバネ38の付勢力によって位置変化することができず(図32(a)の状態)、前記隙間を通じて当該エアを大気(外部)へ排気させることができる。これにより、エア分配ユニット7のユニット本体部14から下流側へとエアが僅かに漏れたとしても、そのエアは圧力が小さいため、当該エアをリークバルブ35cから排気することができ、漏れたエアがエアセルCへ流れ、膨張してしまうことを防止することができる。 The leak valve 35c has a valve portion 37a biased by a spring 38, and a main body portion 37b that accommodates the valve portion 37a, and an outer peripheral side surface of the valve portion 37a and an inner peripheral side surface of the main body portion 37b. A gap is formed between the two. When the air flowing from the output port D3 reaches the leak valve 35c and the pressure of the air is small, the position of the valve portion 37a cannot be changed by the urging force of the spring 38 (state shown in FIG. 32A). The air can be exhausted to the atmosphere (outside) through the gap. As a result, even if air leaks slightly from the unit main body portion 14 of the air distribution unit 7 to the downstream side, since the pressure of the air is small, the air can be exhausted from the leak valve 35c, and the leaked air Can be prevented from flowing into the air cell C and expanding.
 これに対して、出力ポートD3が前記制御装置10によって選択されてエアセルCにエアを流し膨張させる場合、そのエアの圧力は大きいため、当該エアによってバネ38に抗して弁部37aは位置変化する(図32(b)の状態)。これにより、弁部37aの先部が、本体部37bのシール部39に当接することで、リークバルブ35cは閉状態となり、供給されたエアをエアセルC側へ流すことができる。なお、このリークバルブ35cは、エアの漏れが比較的生じやすい形態(例えば図23のスプールが採用された形態)の場合に特に効果的である。
 また、前記急速排気弁36cは、リークバルブ35よりも下流側(エアセルC側)に設けられており、エアセルCの収縮を促すためのものである。
On the other hand, when the output port D3 is selected by the control device 10 to cause the air cell C to flow and expand, the pressure of the air is large, so that the valve portion 37a changes its position against the spring 38 by the air. (State shown in FIG. 32B). Thus, the leak valve 35c is closed by the tip of the valve portion 37a coming into contact with the seal portion 39 of the main body portion 37b, and the supplied air can flow to the air cell C side. The leak valve 35c is particularly effective in the case of a form in which air leakage is relatively likely to occur (for example, a form in which the spool of FIG. 23 is employed).
The quick exhaust valve 36c is provided on the downstream side (air cell C side) of the leak valve 35, and is for urging the air cell C to contract.
 本発明によれば、エア分配ユニット7のユニット本体部14は、入力ポートP1から複数の出力ポートD1~D8へと流路が増加していくように構成されているので、エア分配ユニット7は多くの出力ポートD1~D8を有する構成となり、多くのエアアクチュエータを繋ぐことができる。また、エア分配ユニット7は、多くのエアアクチュエータを繋ぐことができる構成でありながら、切替装置を分配ブロック毎に設ければよく、かつ、各切替装置が分配ブロック単位でまとめて分岐部におけるエアを流す方向を切り替えることから、切替装置の数が少なくて良く、構成の簡素化が図れる。 According to the present invention, the unit main body 14 of the air distribution unit 7 is configured such that the flow path increases from the input port P1 to the plurality of output ports D1 to D8. It has a configuration having many output ports D1 to D8, and many air actuators can be connected. In addition, the air distribution unit 7 can be connected to many air actuators, but it is sufficient that a switching device is provided for each distribution block. Therefore, the number of switching devices may be small, and the configuration can be simplified.
 本発明のマッサージ機は、図示する形態に限らずこの発明の範囲内において他の形態のものであっても良い。前記実施形態では肘掛け部4にエア分配ユニット7を適用した場合を説明したが、これ以外に、座部1、フットレスト3に適用することができる。
 また、出力ポートと繋がっているエアアクチュエータ、及び、前記切替アクチュエータをエアセルとして説明したが、これ以外に(図示しないが)ピストンを有するエアシリンダによる構成としてもよい。
The massage machine of the present invention is not limited to the illustrated form, and may be of other forms within the scope of the present invention. Although the case where the air distribution unit 7 is applied to the armrest portion 4 has been described in the above embodiment, the present invention can be applied to the seat portion 1 and the footrest 3 in addition to this.
Further, although the air actuator connected to the output port and the switching actuator have been described as the air cell, other than this (not shown), an air cylinder having a piston may be used.

Claims (13)

  1.  エアを吐出するポンプと、エアの給排によって動作する複数のエアアクチュエータと、前記ポンプからエアが供給されると共に当該エアを前記複数のエアアクチュエータへ送ることができるように内部に流路が形成されたエア分配ユニットと、前記エアアクチュエータの動作を制御するための制御部と、を備え、
     前記エア分配ユニットは、
      前記ポンプからエアが供給される入力ポートと、
      前記複数のエアアクチュエータとそれぞれ繋がっている複数の出力ポートと、
      前記入力ポートから前記複数の出力ポートへと向かう方向に複数配設された分配部を有し、当該分配部のそれぞれに前記流路の分岐部が形成されていることによって、前記入力ポートから前記複数の出力ポートへと流路が当該分配部毎に増加していくように構成されたユニット本体部と、
      前記分配部毎に設けられ、前記分岐部におけるエアを流す方向を当該分配部単位でまとめて切り替える切替部と、
     を有し、
     前記制御部は、前記複数の出力ポートの内から前記入力ポートとの間でエアを流すことのできる出力ポートを選択するために、前記切替部を制御して前記流路を切り替えることを特徴とするマッサージ機。
    A pump that discharges air, a plurality of air actuators that operate by supplying and discharging air, and a flow path formed therein so that air can be supplied from the pump and sent to the plurality of air actuators An air distribution unit, and a control unit for controlling the operation of the air actuator,
    The air distribution unit is
    An input port to which air is supplied from the pump;
    A plurality of output ports respectively connected to the plurality of air actuators;
    A plurality of distribution portions arranged in a direction from the input port toward the plurality of output ports, and a branching portion of the flow path is formed in each of the distribution portions; A unit main body configured to increase the flow path to the plurality of output ports for each distribution unit;
    A switching unit that is provided for each distribution unit and collectively switches the direction in which air flows in the branching unit in units of the distribution unit;
    Have
    The control unit switches the flow path by controlling the switching unit in order to select an output port through which air can flow between the plurality of output ports and the input port. Massage machine.
  2.  前記切替部は、前記分岐部におけるエアを流す方向を切り替えるために位置変化する弁体と、前記分配部単位でまとめて当該弁体を位置変化させる切替アクチュエータとを有している請求項1に記載のマッサージ機。 The switching unit includes a valve body that changes position in order to switch a direction in which air flows in the branching unit, and a switching actuator that changes the position of the valve body collectively in units of the distributing unit. The listed massage machine.
  3.  前記切替アクチュエータは、前記ポンプから供給されたエアによって動作するエア式である請求項2に記載のマッサージ機。 The massage machine according to claim 2, wherein the switching actuator is an air type operated by air supplied from the pump.
  4.  前記ユニット本体部は、前記分岐部が一つずつ内部に形成されているケース本体部を複数有し、
     前記切替部は、前記分岐部におけるエアを流す方向を切り替えるために位置変化する弁体と、前記弁体が取り付けられ当該弁体と共に位置変化する弁軸とを有し、
     前記ケース本体部は、前記弁体及び前記弁軸が直線方向に位置変化可能となるように当該弁軸を支持している軸受孔部を有し、
     一つのケース本体部の前記軸受孔部と、当該一つのケース本体部と隣りの他のケース本体部の前記軸受孔部とは、個別に孔加工されている請求項1に記載のマッサージ機。
    The unit main body has a plurality of case main bodies in which the branch portions are formed one by one,
    The switching unit includes a valve body that changes position in order to switch a direction in which air flows in the branch part, and a valve shaft that is attached to the valve body and changes position together with the valve body,
    The case main body has a bearing hole that supports the valve shaft so that the valve body and the valve shaft can change positions in a linear direction,
    The massage machine according to claim 1, wherein the bearing hole portion of one case main body portion and the bearing hole portion of another case main body portion adjacent to the one case main body portion are individually machined.
  5.  前記一つのケース本体部の前記軸受孔部の孔方向は、前記他のケース本体部の軸受孔部の孔方向と平行となるように、前記複数のケース本体部が設けられている請求項4に記載のマッサージ機。 5. The plurality of case body portions are provided so that a hole direction of the bearing hole portion of the one case body portion is parallel to a hole direction of the bearing hole portion of the other case body portion. The massage machine described in.
  6.  前記ケース本体部は、前記弁体を前記分岐部に収容した状態とするために、複数のケース分割体を有している分割構造であり、
     前記ケース分割体同士は、しまり嵌めにより分離不能として組み立てられている請求項4又は5に記載のマッサージ機。
    The case main body is a divided structure having a plurality of case divided bodies in order to make the valve body housed in the branch portion,
    The massage machine according to claim 4 or 5, wherein the case divided bodies are assembled so as not to be separated by an interference fit.
  7.  前記入力ポートから前記複数の出力ポートへと向かう方向に配設された複数の前記分配部の内の、少なくとも二つの分配部は、一方向に並んで配設されている請求項4又は5に記載のマッサージ機。 The at least two distribution units among the plurality of distribution units arranged in a direction from the input port to the plurality of output ports are arranged side by side in one direction. The listed massage machine.
  8.  前記制御部が前記切替部を制御することで前記入力ポートとの間で繋がった状態となった出力ポート以外の他の出力ポートは、エアの通過が規制された閉塞状態となる請求項1~5のいずれか一項に記載のマッサージ機。 The output port other than the output port that is connected to the input port by the control unit controlling the switching unit is in a closed state in which the passage of air is restricted. The massage machine according to any one of 5.
  9.  前記制御部は、前記切替部の動作を制御すべく当該切替部へ与える切替信号と、当該切替信号に応じて前記切替部がエアを流す方向を切り替えることで前記入力ポートと繋がる前記出力ポートと、の関係を有する関係情報を記憶している記憶部を有している請求項1~5のいずれか一項に記載のマッサージ機。 The control unit includes a switching signal to be supplied to the switching unit to control the operation of the switching unit, and the output port connected to the input port by switching a direction in which the switching unit flows air according to the switching signal. The massage machine according to any one of claims 1 to 5, further comprising a storage unit that stores relationship information having a relationship of.
  10.  前記複数の出力ポートのうちの一つの出力ポートと、少なくとも二つの他の出力ポートにそれぞれ繋がっている前記エアアクチュエータとの間が、当該一つの出力ポートから当該エアアクチュエータへのエアの流れを許容する逆止弁を介して繋がっており、
     前記制御部は、前記入力ポートとの間でエアが流れる出力ポートが、前記一つの出力ポートとなるように前記切替部を制御する請求項1~5のいずれか一項に記載のマッサージ機。
    Allow air flow from one output port to the air actuator between one output port of the plurality of output ports and the air actuator connected to at least two other output ports. Connected through a check valve
    The massage machine according to any one of claims 1 to 5, wherein the control unit controls the switching unit so that an output port through which air flows between the input port and the input port becomes the one output port.
  11.  前記ポンプがエアを前記入力ポートへ供給する給気状態から、前記出力ポートより前記入力ポートへと流れてきたエアを外部へ排気することができる排気状態へと切り替える給排切替弁を更に備えている請求項1~5のいずれか一項に記載のマッサージ機。 A supply / discharge switching valve for switching from an air supply state in which the pump supplies air to the input port to an exhaust state in which air flowing from the output port to the input port can be discharged to the outside; The massage machine according to any one of claims 1 to 5.
  12.  前記複数の出力ポートのうちの一つの出力ポートと、少なくとも二つの他の出力ポートにそれぞれ繋がっている前記エアアクチュエータとの間が、当該エアアクチュエータから当該一つの出力ポートへのエアの流れを許容する逆止弁を介して繋がっており、
     前記制御部は、排気状態とするように前記給排切替弁を制御すると共に、前記入力ポートとの間でエアが流れる出力ポートが、前記一つの出力ポートとなるように前記切替部を制御する請求項11に記載のマッサージ機。
    Allowing an air flow from the air actuator to the one output port between one output port of the plurality of output ports and the air actuator connected to at least two other output ports. Connected through a check valve
    The control unit controls the supply / exhaust switching valve so as to be in an exhaust state, and controls the switching unit so that an output port through which air flows to and from the input port becomes the one output port. The massage machine according to claim 11.
  13.  エアを吐出するポンプから供給されたエアを、エアの給排によって動作する複数のエアアクチュエータへ送ることができるように内部に流路が形成されたエア分配ユニットであって、
      前記ポンプからエアが供給される入力ポートと、
      前記複数のエアアクチュエータとそれぞれ繋がる複数の出力ポートと、
      前記入力ポートから前記複数の出力ポートへと向かう方向に複数配設された分配部を有し、当該分配部のそれぞれに前記流路の分岐部が形成されていることによって、前記入力ポートから前記複数の出力ポートへと流路が当該分配部毎に増加していくように構成されたユニット本体部と、
      前記分配部毎に設けられ、前記分岐部におけるエアを流す方向を当該分配部単位でまとめて切り替える切替部と、を備え、
      前記複数の出力ポートの内から前記入力ポートとの間でエアを流すことのできる出力ポートを選択するために、前記切替部が制御されて前記流路が切り替えられることを特徴とするエア分配ユニット。
    An air distribution unit having a flow path formed therein so that air supplied from a pump that discharges air can be sent to a plurality of air actuators that operate by supplying and discharging air,
    An input port to which air is supplied from the pump;
    A plurality of output ports respectively connected to the plurality of air actuators;
    A plurality of distribution portions arranged in a direction from the input port toward the plurality of output ports, and a branching portion of the flow path is formed in each of the distribution portions; A unit main body configured to increase the flow path to the plurality of output ports for each distribution unit;
    A switching unit that is provided for each of the distribution units, and that switches the direction in which the air flows in the branching unit in units of the distribution units,
    An air distribution unit, wherein the flow path is switched by controlling the switching unit in order to select an output port through which air can flow between the plurality of output ports and the input port. .
PCT/JP2009/050833 2008-02-18 2009-01-21 Massage machine and air distribution unit WO2009104444A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009554256A JPWO2009104444A1 (en) 2008-02-18 2009-01-21 Massage machine and air distribution unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008036471 2008-02-18
JP2008-036471 2008-02-18

Publications (1)

Publication Number Publication Date
WO2009104444A1 true WO2009104444A1 (en) 2009-08-27

Family

ID=40985331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050833 WO2009104444A1 (en) 2008-02-18 2009-01-21 Massage machine and air distribution unit

Country Status (2)

Country Link
JP (1) JPWO2009104444A1 (en)
WO (1) WO2009104444A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017131773A (en) * 2017-05-12 2017-08-03 ファミリーイナダ株式会社 Massage machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63119907U (en) * 1987-01-30 1988-08-03
JPH1119138A (en) * 1998-05-25 1999-01-26 Hill Rom Co Inc Patient supporting device
JP2000274554A (en) * 1999-03-26 2000-10-03 Anest Iwata Corp Air selector valve
JP2000279466A (en) * 1999-03-31 2000-10-10 Toshiba Tec Corp Air supply and discharge device and air massage machine using the same
JP2003230614A (en) * 2002-02-08 2003-08-19 Kooken Medical Kk Automatic cardiopulmonary resuscitator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63119907U (en) * 1987-01-30 1988-08-03
JPH1119138A (en) * 1998-05-25 1999-01-26 Hill Rom Co Inc Patient supporting device
JP2000274554A (en) * 1999-03-26 2000-10-03 Anest Iwata Corp Air selector valve
JP2000279466A (en) * 1999-03-31 2000-10-10 Toshiba Tec Corp Air supply and discharge device and air massage machine using the same
JP2003230614A (en) * 2002-02-08 2003-08-19 Kooken Medical Kk Automatic cardiopulmonary resuscitator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017131773A (en) * 2017-05-12 2017-08-03 ファミリーイナダ株式会社 Massage machine

Also Published As

Publication number Publication date
JPWO2009104444A1 (en) 2011-06-23

Similar Documents

Publication Publication Date Title
KR101508434B1 (en) Compression device pumping
WO2012114795A1 (en) Massage machine
JP2005103261A (en) Device for controlling fluid volume in deformable element provided at seat
WO2018066455A1 (en) Vehicle seat device and air pressure control method for vehicle seat
WO2020036046A1 (en) Pressure booster
WO2009104444A1 (en) Massage machine and air distribution unit
JP2017203535A (en) Actuator, actuator system, and flow passage constitution part
EP3677793B1 (en) Pressure booster
JP2002317802A (en) Bleeder structure for pilot operation control valve
JP6584365B2 (en) Actuator and flow path component
US7226428B2 (en) Air controlled massage system
CN213322780U (en) Massage system for vehicle seat and vehicle seat
JP4126113B2 (en) Air massage machine
JP2009247481A (en) Air distribution unit for massage machine and massage machine
JP4138608B2 (en) Elastic expansion and contraction structure
JP3709415B2 (en) Massage machine
JP2022142040A (en) factory air system
KR20180100784A (en) Gas concentration device
JP2014211207A (en) Hydraulic control valve and hydraulic controller
JP6503566B2 (en) Actuator and rotary drive
JP2003161303A (en) Air actuator equipment and motion equipment using thereof
JP2008022947A (en) Change valve and air massage machine
CN116077322A (en) Massage assembly, massage chair and massage method
SE0100480L (en) Hydraulic steering arrangement
JP2004084941A (en) Pilot type solenoid valve

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09712917

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009554256

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09712917

Country of ref document: EP

Kind code of ref document: A1