WO2009104369A1 - Method of detecting component contained in plasma and reagent and detection device to be used therein - Google Patents

Method of detecting component contained in plasma and reagent and detection device to be used therein Download PDF

Info

Publication number
WO2009104369A1
WO2009104369A1 PCT/JP2009/000537 JP2009000537W WO2009104369A1 WO 2009104369 A1 WO2009104369 A1 WO 2009104369A1 JP 2009000537 W JP2009000537 W JP 2009000537W WO 2009104369 A1 WO2009104369 A1 WO 2009104369A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
reagent
carrier particles
ethyl ester
aggregation
Prior art date
Application number
PCT/JP2009/000537
Other languages
French (fr)
Japanese (ja)
Inventor
純子 山田
修平 田中
純子 若井
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2009104369A1 publication Critical patent/WO2009104369A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54393Improving reaction conditions or stability, e.g. by coating or irradiation of surface, by reduction of non-specific binding, by promotion of specific binding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form

Definitions

  • the present invention relates to a method for detecting components contained in plasma by pulse immunoassay method, and reagents and detection devices used therefor.
  • a "latex aggregation method" using latex particles on which an antibody or the like is immobilized is well known.
  • This method utilizes the fact that latex particles are aggregated due to an antigen-antibody reaction or the like between the component to be detected and an antibody on the surface of the latex particle, and the component to be detected can be detected simply from the degree of aggregation of latex particles. it can.
  • This agglutination reaction proceeds depending on the Brownian movement, and therefore takes some time.
  • a plurality of carrier particles are linearly arranged by applying an alternating voltage to carrier particles (such as latex particles having a diameter of 0.5 to 10 ⁇ m) to generate dielectric polarization (pearl "Chained” "pulse immunoassay” is known (see, for example, Patent Document 1).
  • the pulse immunoassay method can accelerate the agglutination reaction by positively contacting a plurality of carrier particles, so that the target component can be detected more rapidly and with higher sensitivity than the latex agglutination method that relies on Brownian motion. Can.
  • Detection by the latex agglutination method including pulse immunoassay method utilizes an agglutination reaction by specific binding such as antigen-antibody reaction, so nonspecific agglutination of carrier particles (agglutination by non-specific binding not through target component) When it occurs, the detection sensitivity decreases. Such nonspecific agglutination is not seen so much in standard solutions and buffers for biochemical measurement without plasma, and does not pose a major problem. On the other hand, in a solution containing plasma, nonspecific aggregation of carrier particles is remarkably observed, and there is a problem that detection sensitivity is significantly reduced.
  • Patent Document 2 10 mM to 2 M amino acid esters (arginine methyl ester, nitroarginine methyl ester, and the like) for suppressing nonspecific aggregation of carrier particles (latex particles having a diameter of 0.109 ⁇ m) on which an antibody etc. are immobilized.
  • Arginine ethyl ester, glycine ethyl ester, aspartic acid dimethyl ester, lysine methyl ester, lysine ethyl ester, glycine benzyl ester or glycine t-butyl ester) or 10 mM to 2 M polyamine (spermine or spermidine) is disclosed to be effective ing.
  • the conventional latex agglutination method detects the aggregation state of the carrier particles by the “turbidimetric method” that detects transmitted light (absorptivity) or the “specific method” that detects scattered light. It is common to more accurately detect the aggregation state of carrier particles using a microscope (see Patent Document 1).
  • Turbidimetric method that detects transmitted light (absorptivity)
  • specific method that detects scattered light. It is common to more accurately detect the aggregation state of carrier particles using a microscope (see Patent Document 1).
  • it is preferable to use small particles, as dispersion of the particles is dependent on Brownian motion whereas in pulse immunoassay methods, large carrier particles that can be distinguished by light microscopy are used There is a need to.
  • Patent Document 2 attempted to apply the technology described in Patent Document 2 to a pulse immunoassay method using carrier particles of about 2 ⁇ m in diameter that can be identified by an optical microscope.
  • the above-mentioned amino acid ester and polyamine promote the non-specific aggregation rather than suppressing it, and it was found that it can not be applied to the pulse immunoassay method (Comparative Example 1 described later) , 2).
  • the difference between the experimental results described in Patent Document 2 and the experimental results by the present inventor is considered to be 1) the difference in diameter of the carrier particles used, and 2) the difference in the method of measuring the degree of aggregation of the carrier particles. (Refer to the reference example mentioned later).
  • An object of the present invention is to provide a method for detecting a component to be detected by a pulse immunoassay method, and a reagent and a detection device used therefor, while preventing a decrease in detection sensitivity due to nonspecific aggregation of carrier particles.
  • the present inventors repeatedly studied and, surprisingly, in addition to the specific concentration of “arginine ethyl ester”, it further adds “plasma” which is generally considered to promote nonspecific aggregation. It was found that nonspecific aggregation of the carrier particles is suppressed only in the solution containing it.
  • the present inventor further examines, by using a liquid containing “plasma” that is generally considered to promote nonspecific aggregation as a sample, “arginine ethyl ester” of a specific concentration.
  • a liquid containing “plasma” that is generally considered to promote nonspecific aggregation as a sample
  • “arginine ethyl ester” of a specific concentration By adding it, it discovered that the component for a detection object could be detected by a pulse immunoassay method, preventing the fall of the detection sensitivity by non-specific aggregation of a carrier particle, and completed the present invention.
  • the first of the present invention relates to the following reagents.
  • a carrier particle having a diameter of 0.5 to 100 ⁇ m which is a reagent for detecting a component contained in plasma by a pulse immunoassay method, and a protein that specifically binds to the component is immobilized on the surface thereof And a reagent containing arginine ethyl ester.
  • the carrier particles are latex particles, ceramic particles, silica particles, magnetic particles, metal particles, metal coated particles, bentonite, kaolin, gold colloid, red blood cells, white blood cells, platelets, gelatin, liposomes, pollen or microorganisms.
  • the second of the present invention relates to the following detection method.
  • a method for detecting a component contained in plasma which comprises: 0.5 to 100 ⁇ m diameter carrier particles having immobilized on its surface a protein that specifically binds to the component; and arginine ethyl ester Preparing a reagent containing the sample, adding a sample containing plasma to the reagent to prepare a mixed solution, and applying an AC voltage to the mixed solution to pearlize the carrier particles.
  • Detection method [6] The detection method according to [5], further including the step of observing the aggregation state of the carrier particles using image recognition or a particle size distribution meter after stopping the application of the AC voltage.
  • the carrier particles are latex particles, ceramic particles, silica particles, magnetic particles, metal particles, metal coated particles, bentonite, kaolin, gold colloid, red blood cells, white blood cells, platelets, gelatin, liposomes, pollen or microorganisms.
  • the third of the present invention relates to the following detection device.
  • a detection device for pulse immunoassay comprising a substrate, a pair of electrodes disposed on the substrate, and a flow path provided between the pair of electrodes, which is specific to a component to be detected
  • a detection device comprising a solid of a reagent containing carrier particles of 0.5 to 100 ⁇ m in diameter and arginine ethyl ester, immobilized on the surface of a protein to be bound thereto, in the flow path.
  • the solid substance of the reagent is a lyophilizate of the reagent.
  • the solid substance of the reagent is an air-dried product of the reagent.
  • components contained in plasma can be detected with high sensitivity by pulse immunoassay. This makes it possible to conduct a test by pulse immunoassay using blood or plasma as a sample.
  • FIG. 1A is sectional drawing
  • FIG. 1B is a top view
  • FIG. 3A is a schematic view showing the state of carrier particles in the flow channel
  • FIG. 3A is a view before voltage application
  • FIG. 3B is a view during voltage application
  • FIG. 3C is a view after voltage application is stopped.
  • the detection method of the present invention is a method of detecting a component contained in plasma by a pulse immunoassay method, and 1) a diameter of 0.5 where a protein which specifically binds to the component to be detected is immobilized on the surface
  • Step 3) Third step of applying an AC voltage to the mixed solution to pearl chain the carrier particles, 4) Stop the application of AC voltage, and then recognize the aggregation state of the carrier particles by image recognition or particle size
  • a fourth step of observing using a distribution meter or the like includes not only the meaning of examining the presence or absence of a specific substance, but also the meaning of measuring the concentration or amount of a specific substance.
  • a carrier particle in which a protein that specifically binds to a component to be detected is immobilized on the surface, and arginine ethyl ester that functions as a nonspecific aggregation inhibitor in a liquid containing plasma
  • the reagent of the present invention is prepared.
  • Carrier particles are not particularly limited as long as they can immobilize proteins on the surface, and latex particles, ceramic particles, silica particles, magnetic particles, metal particles, metal coated particles, bentonite, kaolin, gold colloid, red blood cells, White blood cells, platelets, gelatin, liposomes, pollen, microorganisms and the like can be used, among which latex particles are preferred.
  • latex particles include polystyrene latex particles, polyvinyl toluene latex particles, polymethacrylate latex particles, metal coated latex particles and the like.
  • the diameter (average particle diameter) of the carrier particles is preferably 0.5 ⁇ m or more which can be identified by an optical microscope or the like, and is preferably 100 ⁇ m or less where dispersion by Brownian motion can easily occur, particularly 0.5 to 10 ⁇ m. Is preferred. As described later, by using an optical microscope, Coulter counter or the like, it is possible to check the aggregation state of the carrier particles more accurately than the measurement using a spectrophotometer (see the reference example). When the diameter of the carrier particles exceeds 100 ⁇ m, the dispersion due to the Brownian movement is less likely to occur, so that it is difficult to observe the aggregation state in the fourth step.
  • the diameter (average particle diameter) of the carrier particles is measured, for example, by observing using an optical microscope, measuring the electrical resistance using a Coulter counter, or measuring the amount of change in scattered light using a light scattering method. can do.
  • the amount (concentration) of carrier particles is preferably in the range of 1 ⁇ 10 6 to 1 ⁇ 10 11 particles / mL in the mixed solution prepared in the second step.
  • concentration of carrier particles in the mixed solution depends on the diameter of the carrier particles used.
  • the protein to be immobilized on the carrier particle is not particularly limited as long as it is a protein that specifically binds to the component to be detected, and antibodies, enzymes, coenzymes (eg, biotin), lectins, glycoproteins, nucleic acids, etc. are used. be able to.
  • proteins instead of proteins, organic compounds such as heme and porphyrins can also be immobilized on carrier particles.
  • the method for immobilizing these proteins on carrier particles is not particularly limited, and may be appropriately selected from methods known to those skilled in the art.
  • the concentration of arginine ethyl ester is preferably in the range of 100 to 500 mM, particularly preferably in the range of 200 to 300 mM, in the mixed solution prepared in the second step.
  • concentration in the mixed solution is less than 100 mM, nonspecific aggregation of carrier particles can not be sufficiently suppressed.
  • concentration in the mixed solution exceeds 500 mM, the conductivity of the mixed solution itself becomes high, and the dielectrophoretic force acting on the carrier particles becomes small when an AC voltage is applied in the third step. The efficiency of chaining is reduced.
  • the reagent of the present invention may contain any substance other than carrier particles and arginine ethyl ester depending on the purpose.
  • the optional substance include, for example, glycine, a protein such as bovine serum albumin (BSA), an inorganic salt such as sodium chloride, a saccharide such as trehalose, an organic compound, a lipid and the like, but it is not particularly limited.
  • the reagent of the present invention may be a liquid (suspension) containing a dispersion medium.
  • the dispersion medium is not particularly limited, but preferably is, for example, GOOD'S buffer such as phosphate buffer, glycine buffer, HEPES buffer, CHES buffer or TRIS buffer.
  • the reagent particles (suspension) of the present invention can be prepared by suspending carrier particles having a predetermined protein immobilized on their surface in these buffers and further dissolving arginine ethyl ester. (See Examples 1 and 2).
  • the pH of the reagent of the present invention is not particularly limited, it is preferably within the range of 6.0 to 11.0 in the mixed solution prepared in the second step, and will be within the range of 6.0 to 9.0. It is particularly preferred to The method of adjusting the pH is not particularly limited, and may be appropriately adjusted using hydrochloric acid or sodium hydroxide.
  • the reagent of the present invention may be a solid (solid substance) containing no dispersion medium, and may be, for example, one obtained by lyophilizing or air-drying the suspension prepared as described above. It is preferable that such a solid (a lyophilizate or an air-dried product of a suspension, etc.) maintains the performance as a reagent of the present invention and that it can be easily dissolved in a solution.
  • a medium that does not contain a dispersion medium it is possible to make the concentration of plasma in the mixed solution 100% in the second step, and the concentration of the test object is kept high without diluting the plasma. be able to. (See Example 3).
  • the reagent of the present invention may be an embodiment (so-called “kit") in which carrier particles and arginine ethyl ester are separated and mixed at the time of use.
  • a sample containing plasma is added to the reagent of the present invention prepared in the first step to prepare a mixed solution.
  • the sample containing plasma is not particularly limited, and examples thereof include whole blood, blood such as plasma and serum, and dilutions thereof.
  • the mixing method of the reagent of the present invention and the sample is not particularly limited, and may be appropriately selected according to the type (liquid or solid) of the reagent of the present invention.
  • the reagent of the present invention prepared in the first step is a suspension
  • an appropriate amount of plasma or the like may be added to the suspension and stirred, and the pH may be adjusted as necessary.
  • the reagent of the present invention is a solid (a lyophilizate of suspension, an air-dried product, etc.)
  • an appropriate amount of plasma etc. is added to the solid and stirred to suspend carrier particles and arginine ethyl ester Etc., and the pH may be adjusted as necessary.
  • the pH of the mixed solution is not particularly limited, but is preferably in the range of 6.0 to 11.0, and particularly preferably 6.0 to 9.0. This is because an antigen-antibody reaction is likely to occur.
  • the method of adjusting the pH is not particularly limited, and may be appropriately adjusted using hydrochloric acid or sodium hydroxide. Further, the temperature of the mixed solution is not particularly limited, but about 25 ° C. is preferable.
  • alternating voltage is applied to the mixed solution prepared in the second step to pearl chain the carrier particles.
  • the carrier particles When an external electric field is applied to the mixed solution, a dipole is induced in the carrier particles, and the interaction of the dipoles causes the carrier particles to migrate (dielectrophoresis), and the carrier particles align in parallel with the electric field direction (pearl chain ).
  • the carrier particles bind to other carrier particles via this component, and a plurality of carrier particles aggregate (principle of pulse immunoassay method).
  • non-specific aggregation is suppressed by adding arginine ethyl ester, so if the component to be detected does not exist in the mixed solution, the aggregation ratio of the carrier particles is suppressed to 40% or less It is possible.
  • the aggregation rate in a solution without an antigen was about 20 to 30%, so it was determined that the aggregation rate of less than 40% was not aggregated ( See Examples 1 and 2).
  • the aggregation rate was 40% or more, and the aggregation inhibitory effect of arginine ethyl ester was the highest among the tested substances.
  • the apparatus and device for applying an alternating voltage to the mixed solution and the method are not particularly limited, and may be the same as the apparatus and method used in the conventional pulse immunoassay method. For example, 1) preparing a detection device having a substrate made of glass or the like, a pair of electrodes disposed to face the substrate, and a flow path provided between the pair of electrodes; 2) Each electrode may be connected to an AC power supply; 3) An AC voltage may be applied between the electrodes after providing the mixed solution prepared in the second step into the flow path from the injection port (see Example).
  • a solid of the reagent of the present invention (such as a lyophilizate or an air-dried product of a suspension) may be disposed in the flow channel of the above-described detection device.
  • the second step can be completed only by providing a sample containing plasma from the inlet to the flow channel, and the detection of the present invention The method can be performed more simply.
  • the waveform of the AC voltage applied to the mixed solution may be a sine wave, a square wave, a square wave, a triangular wave or the like, and may be a continuous wave or a pulse wave.
  • the frequency is not particularly limited, but is preferably in the range of 10 kHz to 10 MHz.
  • the electric field strength of the AC voltage applied to the mixed solution is preferably in the range of 5 to 100 V (peak value) / mm. If the electric field strength is less than 5 V / mm, pearl chain formation hardly occurs and the agglutination reaction can not be sufficiently promoted. On the other hand, if the electric field strength is higher than 100 V / mm, electrolysis of the mixed solution is likely to occur and the detection sensitivity is lowered.
  • the aggregation state of the carrier particles is observed using image recognition, a particle size distribution analyzer, or the like.
  • the non-aggregated carrier particles disperse in the mixed solution by Brownian movement, but the carrier particles aggregated by specific binding are kept in the aggregated state. Therefore, detection of the component to be detected and measurement of the concentration can be performed by determining the ratio (aggregation degree) of aggregated carrier particles to all the carrier particles in the mixed solution.
  • the aggregation state of the carrier particles can be more accurately (one carrier particle (single body), and the like) by observing it using image recognition or a particle size distribution analyzer instead of measuring the absorbance using a spectrophotometer. It can be observed to the extent that it is possible to distinguish between aggregates of two carrier particles (see Reference Example).
  • the method of observing the aggregation state of the carrier particles may be observed using image recognition, a particle size distribution analyzer, or the like.
  • Observation of the aggregation state of the carrier particles by image recognition includes observation by an optical microscope.
  • observation of the aggregation state of the carrier particles using a particle size distribution analyzer includes observation using a Coulter counter or a light scattering method.
  • the type of the optical microscope and the Coulter counter is not particularly limited as long as the aggregation state of the carrier particles can be observed accurately enough to distinguish one carrier particle (single body) and an aggregate of the two carrier particles.
  • the method of calculating the degree of aggregation is not particularly limited and may be appropriately selected according to the observation method (apparatus).
  • the aggregation state of the carrier particles in the mixed solution is detected by a camera (CCD camera etc.) connected to an optical microscope.
  • the degree of aggregation may be calculated from the obtained image by using an image processing program (see Example 1).
  • the detection method of the present invention 1) uses a sample containing plasma, 2) adds arginine ethyl ester that suppresses nonspecific aggregation in a liquid containing plasma, 2) diameter (average particle size 3) using carrier particles in the range of 0.5 to 100 ⁇ m, and 3) observing the aggregation state of the carrier particles using an optical microscope, Coulter counter, etc.
  • the component to be detected can be detected while preventing the decrease.
  • Example 1 [Effect to suppress nonspecific aggregation of arginine ethyl ester in solution containing plasma]
  • aggregation of the amino acid ester arginine ethyl ester, glycine ethyl ester, lysine ethyl ester, arginine amide, asparagine amide, methionine amide, valine amide
  • polyamine spermidine
  • the suspension was centrifuged at 6200 rpm for 15 minutes using a centrifuge (Chibitan-R; Nippon Millipore Corporation), and then the supernatant was replaced with an aqueous solution for washing (20 mM glycine buffer, 0.1% BSA (Sigma)). did. This operation was repeated three times to prepare antibody particles on which carrier particles were immobilized.
  • Plasma Solution and Mixed Solution Trehalose (Wako Pure Chemical Industries, Ltd.), amino acid ester or polyamine, and carrier particles (prepared in the above 1) are added to glycine buffer and suspension for measurement
  • a liquid (reagent of the present invention) was prepared.
  • the amino acid ester any one of arginine ethyl ester, glycine ethyl ester, lysine ethyl ester, arginine amide, asparagine amide, methionine amide and valine amide (all by Sigma, so far) was used.
  • As a polyamine spermidine (Nacalai Tesque, Inc.) was used.
  • a plasma solution was prepared by adding 0.75 ⁇ l of 20 mM glycine buffer to 5 ⁇ l of plasma (without antigen).
  • the plasma solution is added to the suspension for measurement (the reagent of the present invention), and 10 ⁇ L of the mixed solution (final concentration: glycine buffer 100 mM, trehalose 5%, amino acid ester or polyamine 0 to 500 mM, carrier particles 6) ⁇ 10 8 cells / mL) were prepared.
  • the final concentrations of amino acid ester and polyamine were 0 mM, 100 mM, 200 mM, 300 mM, 400 mM and 500 mM for arginine ethyl ester, and 0 mM, 100 mM, 200 mM, 300 mM and 400 mM for other substances.
  • the pH of the mixed solution was adjusted to pH 8.6 using sodium hydroxide and hydrochloric acid (both Wako Pure Chemical Industries, Ltd.).
  • a gold thin film with a film thickness of 100 nm to be an electrode was formed by sputtering through a stencil mask (made of stainless steel) having an electrode pattern on a quartz glass substrate with a thickness of 1 mm. The distance between a pair of rectangular electrodes arranged so that the long sides face each other was 0.5 mm. Then, a 10 ⁇ m thick double-sided adhesive PET film having a flow path pattern is pasted on a glass substrate (and an electrode) so that the flow path portion is located between the electrodes, and 0.3 mm thick on this PET film A cover glass was attached to make a device.
  • FIG. 1 is a schematic view of the fabricated device
  • FIG. 1A is a cross-sectional view
  • FIG. 1B is a plan view (cover glass and PET film not shown).
  • the device 100 used in the present embodiment has a glass substrate 110, a pair of electrodes 120, a PET film 130, a cover glass 140, and a flow path 150 is formed between the pair of electrodes 120. It is done.
  • the flow path 150 has an inlet 160 and an outlet 170, and the pair of electrodes 120 is connected to an AC power supply 180.
  • FIG. 2 is a block diagram showing the configuration of the measuring apparatus in the present embodiment.
  • a function generator 33120A; Agilent Technologies, Inc.
  • a high-speed bipolar power supply 4055; NF circuit design block, Inc.
  • IX70 Olympus Co., Ltd.
  • a camera C-5060; Olympus Co., Ltd.
  • a monitor TH-15TA2; Matsushita Electric Industrial Co., Ltd.
  • the plasma solution was added to the suspension for measurement (the reagent of the present invention), and 1 ⁇ L of the mixed solution prepared was provided to the inlet of the channel of the device.
  • an AC voltage 100 kHz, 20 Vpp, square wave
  • an AC voltage is applied for 60 seconds between a pair of electrodes of the device to carry the carrier particles. Pearl chained. Thirty seconds after the application of the voltage was stopped, the aggregation of the carrier particles in the channel was observed.
  • FIG. 3 is a schematic view showing the state of antibody-modified carrier particles in the flow channel before and after voltage application;
  • FIG. 3A is before voltage application,
  • FIG. 3B is during voltage application (during pearl chain formation), and
  • FIG. 3C is voltage application It shows the situation after stopping.
  • the carrier particles 300 are completely dispersed by Brownian motion (see FIG. 3A), but by applying the AC voltage, the carrier particles 300 become pearl chained. , Contact with other carrier particles 300 (see FIG. 3B). At this time, if an antigen is present in the mixed solution, the carrier particles are bound to other carrier particles via the antigen, so that a plurality of carrier particles aggregate. On the other hand, if no antigen is present, the carrier particles should not bind to other carrier particles, but if nonspecific adsorption occurs, aggregation of the carrier particles will occur even in the absence of the antigen.
  • the non-aggregated antibody-modified carrier particles 300 are redispersed by Brownian motion, but the non-specifically adsorbed antibody-modified carrier particles 300 remain aggregated (see FIG. 3C). ). Therefore, in the present embodiment, the occurrence frequency of nonspecific adsorption was examined by calculating the degree of aggregation after stopping the application of the alternating voltage. The degree of aggregation was calculated by the following equation.
  • the image showing the aggregation state of the carrier particles was analyzed using image processing software ImageJ (US National Institutes of Health (NIH)) to calculate the degree of aggregation.
  • image processing software ImageJ US National Institutes of Health (NIH)
  • carrier particles that exist alone are referred to as “dispersed particles”
  • aggregated particles particles in which two or more carrier particles are bound
  • FIG. 4 is a graph showing the aggregation suppressing effect of each substance.
  • the vertical axis shows the type of substance added, and the horizontal axis shows the concentration of each substance.
  • the hatched segments indicate that the degree of aggregation is 40% or more, and the blackened segments indicate that the degree of aggregation is less than 40%.
  • the degree of aggregation is the degree of aggregation after applying an alternating voltage and once forming a pearl chain, and then stopping application of the alternating voltage and redispersing.
  • Comparative Example 1 [Effect of suppressing nonspecific aggregation of arginine ethyl ester in a solution not containing plasma] In this comparative example, it was confirmed whether arginine ethyl ester can function as an aggregation inhibitor against nonspecific aggregation even in a solution not containing plasma.
  • Example 3 Production of Device A device similar to Example 1 was produced according to the same procedure as Example 1 (see FIG. 1).
  • FIG. 5 is a graph showing the relationship between the concentration of arginine ethyl ester and the degree of aggregation.
  • the horizontal axis shows the concentration of arginine ethyl ester, and the vertical axis shows the degree of aggregation.
  • the higher the concentration of arginine ethyl ester the higher the degree of aggregation before and after voltage application, and if the final concentration is 50 mM or more, the degree of aggregation is 40% or more even before voltage application became.
  • arginine ethyl ester promotes nonspecific aggregation in a solution containing no plasma can be considered to be due to the following mechanism, although it is not limited thereto.
  • the carrier particles When arginine ethyl ester is not present in a solution that does not contain plasma, the carrier particles are likely to be dispersed energetically because the water molecules are hydrated to the antibody immobilized on the carrier particles. .
  • the carrier particles become energetically difficult to disperse as arginine ethyl ester dehydrates the antibody (ie, salting out with arginine ethyl ester).
  • arginine ethyl ester when arginine ethyl ester is not added, dispersion is most likely to occur, and as arginine ethyl ester is added, nonspecific aggregation is considered to occur (see FIG. 5).
  • arginine ethyl ester can suppress non-specific aggregation in a solution containing plasma, which is not limited thereto, but can be considered to be due to the following mechanism.
  • carrier particles are nonspecifically aggregated by plasma components (which are mainly considered to be proteins).
  • plasma components which are mainly considered to be proteins.
  • the arginine ethyl ester interacts with the antibody and plasma components on the surface of the carrier particle, and an electrostatic repulsion effect is formed and an optimal hydration structure is formed, so the carrier particle is energetically It becomes easy to disperse.
  • Example 2 [Effect to suppress nonspecific aggregation of arginine ethyl ester in solution containing plasma]
  • an antibody anti-myoglobin antibody
  • the suspension was centrifuged at 6200 rpm for 15 minutes using a centrifuge, and then the supernatant was replaced with a washing aqueous solution (glycine buffer 20 mM, BSA 0.1%). This operation was repeated three times to prepare antibody particles on which carrier particles were immobilized.
  • Plasma Solution and Mixed Solution Trehalose, arginine ethyl ester and carrier particles (as prepared in 1 above) were added to glycine buffer to prepare a suspension for measurement (reagent of the present invention) .
  • a plasma solution was prepared by adding 0.75 ⁇ l of 20 mM glycine buffer to 5 ⁇ l of plasma (without antigen).
  • plasma solution is added to the suspension for measurement (the reagent of the present invention), and 10 ⁇ L of mixed solution (final concentration: glycine buffer 100 mM, trehalose 5%, arginine ethyl ester 0-200 mM, carrier particles 6 ⁇ 10 8 cells / mL) were prepared.
  • the final concentration of arginine ethyl ester was either 0 mM, 100 mM or 200 mM.
  • the pH of the mixed solution was adjusted to pH 8.6 using sodium hydroxide and hydrochloric acid.
  • Example 3 Production of Device A device similar to Example 1 was produced according to the same procedure as Example 1 (see FIG. 1).
  • the plasma solution was added to the suspension for measurement (the reagent of the present invention), and 1 ⁇ L of the mixed solution prepared was provided to the inlet of the channel of the device.
  • an AC voltage 100 kHz, 20 Vpp, square wave
  • FIG. 6 is a graph showing the relationship between the concentration of arginine ethyl ester and the degree of aggregation.
  • the horizontal axis shows the concentration of arginine ethyl ester
  • the vertical axis shows the degree of aggregation.
  • the concentration of arginine ethyl ester is 200 mM
  • the degree of aggregation before and after the application of voltage becomes less than 20%.
  • Comparative Example 2 [Effect of suppressing nonspecific aggregation of arginine ethyl ester in a solution not containing plasma]
  • the same antibody (anti-myoglobin antibody) as in Example 2 was used to confirm whether arginine ethyl ester can function as an aggregation inhibitor against nonspecific aggregation in a solution containing no plasma.
  • Trehalose, arginine ethyl ester and carrier particles are added to glycine buffer to prepare a suspension for measurement, and 4.75 ⁇ l of 20 mM glycine buffer is added just before measurement. Then, 10 ⁇ L of mixed solution (final concentration: glycine buffer 100 mM, trehalose 40%, arginine ethyl ester 0-200 mM, carrier particles 6 ⁇ 10 8 / mL) was prepared. The final concentration of arginine ethyl ester was either 0 mM, 100 mM or 200 mM. The pH of the mixed solution was adjusted to pH 8.6 using sodium hydroxide.
  • Example 3 Production of Device A device similar to Example 1 was produced according to the same procedure as Example 1 (see FIG. 1).
  • FIG. 7 is a graph showing the relationship between the concentration of arginine ethyl ester and the degree of aggregation.
  • the horizontal axis shows the concentration of arginine ethyl ester, and the vertical axis shows the degree of aggregation.
  • concentration of arginine ethyl ester is higher, the degree of aggregation before and after the voltage application is higher.
  • Example 3 [Measurement by pulse immunoassay method using arginine ethyl ester]
  • arginine ethyl ester as an aggregation inhibitor against nonspecific aggregation to a sample (plasma)
  • polystyrene particles on which an anti-HbA1c antibody was immobilized was used as a carrier particle.
  • antigen home-made pseudo antigen
  • CGG conjugate in which 31 molecules of HbA1c epitope are bound to 1 molecule of chicken ⁇ -globulin (CGG) as a pseudo antigen as plasma antigen is added to plasma.
  • the solution was prepared.
  • the concentration of the mock antigen in the plasma solution was either 1.0 ⁇ 10 ⁇ 15 M, 6.7 ⁇ 10 ⁇ 12 M, 6.7 ⁇ 10 ⁇ 10 M, or 6.7 ⁇ 10 ⁇ 9 M.
  • a plasma solution containing a pseudoantigen is added to a lyophilized suspension (the reagent of the present invention) (10 ⁇ L of the suspension for measurement) to obtain a mixed solution (final concentration: glycine buffer) 100 mM, trehalose 5%, arginine ethyl ester 100-500 mM, carrier particles 6 ⁇ 10 8 / mL, pseudo antigen 1.0 ⁇ 10 ⁇ 15 to 6.7 ⁇ 10 ⁇ 9 M) were prepared.
  • the pH of the mixed solution was adjusted to pH 8.6 using sodium hydroxide and hydrochloric acid.
  • Example 3 Production of Device A device similar to Example 1 was produced according to the same procedure as Example 1 (see FIG. 1).
  • FIG. 8 is a graph showing the results of measurement of pseudoantigens by pulse immunoassay.
  • the horizontal axis shows the concentration of the mock antigen, and the vertical axis shows the degree of aggregation.
  • Circles ( ⁇ ) indicate the results when the concentration of arginine ethyl ester is 100 mM
  • diamonds indicate the results when the concentration of arginine ethyl ester is 200 mM
  • squares ( ⁇ ) indicate the concentration of arginine ethyl ester
  • the results at 300 mM are shown
  • the triangle ( ⁇ ) shows the results at a concentration of arginine ethyl ester of 400 mM
  • the inverse triangles ( ⁇ ) shows the results at a concentration of arginine ethyl ester of 500 mM.
  • arginine ethyl ester has an inhibitory effect on non-specific aggregation even in a mixed solution containing a high proportion (100%) of plasma, and measurement by a pulse immunoassay method is also performed in a system to which arginine ethyl ester is added. It turned out that it was possible.
  • FIG. 9 is a graph showing the absorbance of each suspension in the visible light region.
  • the horizontal axis indicates the wavelength, and the vertical axis indicates the absorbance.
  • FIG. 10 is a photograph showing an optical microscope image of the suspension (VII), and (B) is a photograph taken several seconds after the photograph of (A) was taken. In each of the photographs, particles of 1 ⁇ m in diameter (indicated by arrowheads of a and b) are scattered, and particles of 0.5 ⁇ m in diameter are present around the particles at a density sufficient to fill the gap.
  • particles with a diameter of 1 ⁇ m were moving in the direction of the arrow (see FIGS. 10A and 10B for comparison).
  • particles with a diameter of 0.5 ⁇ m and particles with a diameter of 1 ⁇ m can be easily distinguished, and a small number of particles in the suspension (I) containing particles with a diameter of 0.5 ⁇ m This aggregation can be detected even if it aggregates (even if aggregates occur at a concentration of 2.7 ⁇ 10 6 cells / mL).
  • each carrier particle is aggregated in the measurement of absorbance by a spectrophotometer, but using the optical microscope, each carrier particle is aggregated It can be seen that it can be detected up to
  • the detection method and detection reagent of the present invention are useful as a method of performing a test by pulse immunoassay using blood or plasma as a sample and a reagent used therefor.

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Peptides Or Proteins (AREA)

Abstract

A method of detecting a component contained in plasma by the pulse immunoassay method while preventing a lowering in detection sensitivity caused by the nonspecific aggregation of carrier particles and a reagent which is to be used therein. A reagent containing carrier particles having a diameter of 0.5 to 100 μm, wherein a protein binding specifically to the component to be detected is immobilized on the surface thereof, and arginine ethyl ester serving as a nonspecific aggregation inhibitor in liquids including plasma is used in the pulse immunoassay method. More specifically, the above method comprises preparing a reagent, adding a specimen containing plasma to the reagent to give a mixture solution, applying an alternating voltage to the mixture solution to form pearl chains of the carrier particles, and, after stopping the application of the alternating voltage, observing the aggregation state of the carrier particles using an optical microscope or the like.

Description

血漿に含まれる成分の検出方法ならびにそれに用いられる試薬および検出デバイスMethod of detecting component contained in plasma, reagent used therefor and detection device
 本発明は、血漿に含まれる成分をパルスイムノアッセイ法で検出する方法ならびにそれに用いられる試薬および検出デバイスに関する。 The present invention relates to a method for detecting components contained in plasma by pulse immunoassay method, and reagents and detection devices used therefor.
 検体に含まれる成分を検出する方法として、抗体などを固定化したラテックス粒子を用いる「ラテックス凝集法」がよく知られている。この方法は、検出対象の成分とラテックス粒子表面の抗体との抗原抗体反応などによりラテックス粒子が凝集することを利用しており、ラテックス粒子の凝集度から検出対象の成分を簡便に検出することができる。この凝集反応は、ブラウン運動に依存して進行するため、ある程度の時間を要する。 As a method of detecting a component contained in a sample, a "latex aggregation method" using latex particles on which an antibody or the like is immobilized is well known. This method utilizes the fact that latex particles are aggregated due to an antigen-antibody reaction or the like between the component to be detected and an antibody on the surface of the latex particle, and the component to be detected can be detected simply from the degree of aggregation of latex particles. it can. This agglutination reaction proceeds depending on the Brownian movement, and therefore takes some time.
 上記凝集反応を促進させる方法として、担体粒子(直径0.5~10μmのラテックス粒子など)に交流電圧を印加して誘電分極を生じさせることで、複数の担体粒子を直鎖状に並べる(パールチェーン化させる)「パルスイムノアッセイ法」が知られている(例えば、特許文献1参照)。パルスイムノアッセイ法は、複数の担体粒子を積極的に接触させることで凝集反応を促進させることができるため、ブラウン運動に依存したラテックス凝集法に比べてより迅速かつ高感度に対象成分を検出することができる。 As a method of promoting the above aggregation reaction, a plurality of carrier particles are linearly arranged by applying an alternating voltage to carrier particles (such as latex particles having a diameter of 0.5 to 10 μm) to generate dielectric polarization (pearl "Chained" "pulse immunoassay" is known (see, for example, Patent Document 1). The pulse immunoassay method can accelerate the agglutination reaction by positively contacting a plurality of carrier particles, so that the target component can be detected more rapidly and with higher sensitivity than the latex agglutination method that relies on Brownian motion. Can.
 パルスイムノアッセイ法を含むラテックス凝集法による検出は、抗原抗体反応などの特異的結合による凝集反応を利用しているため、担体粒子の非特異的凝集(対象成分を介さない非特異的結合による凝集)が生じると検出感度が低下する。このような非特異的凝集は、血漿を含まない生化学測定用の標準溶液や緩衝液中ではそれほど見られず、大きな問題とはならない。一方、血漿を含む溶液中では、担体粒子の非特異的凝集が顕著に見られ、検出感度が大幅に低下するという問題がある。 Detection by the latex agglutination method including pulse immunoassay method utilizes an agglutination reaction by specific binding such as antigen-antibody reaction, so nonspecific agglutination of carrier particles (agglutination by non-specific binding not through target component) When it occurs, the detection sensitivity decreases. Such nonspecific agglutination is not seen so much in standard solutions and buffers for biochemical measurement without plasma, and does not pose a major problem. On the other hand, in a solution containing plasma, nonspecific aggregation of carrier particles is remarkably observed, and there is a problem that detection sensitivity is significantly reduced.
 一方、特許文献2には、抗体などを固定化した担体粒子(直径0.109μmのラテックス粒子)の非特異的凝集の抑制に、10mM~2Mのアミノ酸エステル(アルギニンメチルエステル、ニトロアルギニンメチルエステル、アルギニンエチルエステル、グリシンエチルエステル、アスパラギン酸ジメチルエステル、リジンメチルエステル、リジンエチルエステル、グリシンベンジルエステルまたはグリシンt-ブチルエステル)または10mM~2Mのポリアミン(スペルミンまたはスペルミジン)が有効であることが開示されている。
特開平7-83928号公報 特開2004-108850号公報
On the other hand, in Patent Document 2, 10 mM to 2 M amino acid esters (arginine methyl ester, nitroarginine methyl ester, and the like) for suppressing nonspecific aggregation of carrier particles (latex particles having a diameter of 0.109 μm) on which an antibody etc. are immobilized. Arginine ethyl ester, glycine ethyl ester, aspartic acid dimethyl ester, lysine methyl ester, lysine ethyl ester, glycine benzyl ester or glycine t-butyl ester) or 10 mM to 2 M polyamine (spermine or spermidine) is disclosed to be effective ing.
Japanese Patent Application Laid-Open No. 7-83928 JP 2004-108850 A
 通常のラテックス凝集法では、透過光(吸光度)を検出する「比濁法」または散乱光を検出する「比朧法」により担体粒子の凝集状態を検出するのに対し、パルスイムノアッセイ法では、光学顕微鏡を用いて担体粒子の凝集状態をより正確に検出するのが一般的である(特許文献1参照)。したがって、通常のラテックス凝集法では、粒子の分散がブラウン運動に依存しているため、小さな粒子を使用することが好ましいのに対し、パルスイムノアッセイ法では、光学顕微鏡で識別可能な大きな担体粒子を使用する必要がある。 The conventional latex agglutination method detects the aggregation state of the carrier particles by the “turbidimetric method” that detects transmitted light (absorptivity) or the “specific method” that detects scattered light. It is common to more accurately detect the aggregation state of carrier particles using a microscope (see Patent Document 1). Thus, in conventional latex agglutination methods, it is preferable to use small particles, as dispersion of the particles is dependent on Brownian motion, whereas in pulse immunoassay methods, large carrier particles that can be distinguished by light microscopy are used There is a need to.
 このことを踏まえて、本発明者は、光学顕微鏡で識別可能な直径約2μmの担体粒子を用いて、特許文献2に記載の技術をパルスイムノアッセイ法に適用することを試みた。ところが、交流電圧の印加の有無に関係なく、上記アミノ酸エステルおよびポリアミンは、非特異的凝集を抑制するどころか逆に促進させてしまい、パルスイムノアッセイ法に適用できないことがわかった(後述する比較例1,2参照)。この特許文献2に記載の実験結果と本発明者による実験結果との違いは、1)使用する担体粒子の直径の違い、2)担体粒子の凝集度の測定方法の違い、によるものと考えられる(後述する参考例参照)。 Based on this, the inventor attempted to apply the technology described in Patent Document 2 to a pulse immunoassay method using carrier particles of about 2 μm in diameter that can be identified by an optical microscope. However, regardless of the presence or absence of application of alternating current voltage, the above-mentioned amino acid ester and polyamine promote the non-specific aggregation rather than suppressing it, and it was found that it can not be applied to the pulse immunoassay method (Comparative Example 1 described later) , 2). The difference between the experimental results described in Patent Document 2 and the experimental results by the present inventor is considered to be 1) the difference in diameter of the carrier particles used, and 2) the difference in the method of measuring the degree of aggregation of the carrier particles. (Refer to the reference example mentioned later).
 本発明の目的は、担体粒子の非特異的凝集による検出感度の低下を防ぎつつ、検出対象の成分をパルスイムノアッセイ法で検出する方法ならびにそれに用いられる試薬および検出デバイスを提供することである。 An object of the present invention is to provide a method for detecting a component to be detected by a pulse immunoassay method, and a reagent and a detection device used therefor, while preventing a decrease in detection sensitivity due to nonspecific aggregation of carrier particles.
 本発明者は、検討を重ねたところ、驚くべきことに、特定の濃度の「アルギニンエチルエステル」に加えて、一般的には非特異的凝集を促進させると考えられている「血漿」をさらに含む溶液中でのみ、担体粒子の非特異的凝集が抑制されることを見出した。 The present inventors repeatedly studied and, surprisingly, in addition to the specific concentration of “arginine ethyl ester”, it further adds “plasma” which is generally considered to promote nonspecific aggregation. It was found that nonspecific aggregation of the carrier particles is suppressed only in the solution containing it.
 そして、本発明者は、さらに検討を重ねることで、一般的には非特異的凝集を促進すると考えられている「血漿」を含む液体を検体としても、特定の濃度の「アルギニンエチルエステル」を加えることで、担体粒子の非特異的凝集による検出感度の低下を防ぎつつ、検出対象の成分をパルスイムノアッセイ法で検出しうることを見出し、本発明を完成させた。 Then, the present inventor further examines, by using a liquid containing “plasma” that is generally considered to promote nonspecific aggregation as a sample, “arginine ethyl ester” of a specific concentration. By adding it, it discovered that the component for a detection object could be detected by a pulse immunoassay method, preventing the fall of the detection sensitivity by non-specific aggregation of a carrier particle, and completed the present invention.
 すなわち、本発明の第一は、以下の試薬に関する。 That is, the first of the present invention relates to the following reagents.
 [1]血漿に含まれる成分をパルスイムノアッセイ法で検出するための試薬であって、前記成分に特異的に結合するタンパク質をその表面に固定化されている、直径0.5~100μmの担体粒子と、アルギニンエチルエステルと、を含む試薬。
 [2]前記担体粒子の直径は0.5~10μmである、[1]に記載の試薬。
 [3]前記担体粒子は、ラテックス粒子、セラミックス粒子、シリカ粒子、磁性粒子、金属粒子、金属コート粒子、ベントナイト、カオリン、金コロイド、赤血球細胞、白血球細胞、血小板、ゼラチン、リポソーム、花粉または微生物である、[1]または[2]に記載の試薬。
 [4]前記タンパク質は抗体である、[1]~[3]のいずれかに記載の試薬。
[1] A carrier particle having a diameter of 0.5 to 100 μm, which is a reagent for detecting a component contained in plasma by a pulse immunoassay method, and a protein that specifically binds to the component is immobilized on the surface thereof And a reagent containing arginine ethyl ester.
[2] The reagent according to [1], wherein the diameter of the carrier particle is 0.5 to 10 μm.
[3] The carrier particles are latex particles, ceramic particles, silica particles, magnetic particles, metal particles, metal coated particles, bentonite, kaolin, gold colloid, red blood cells, white blood cells, platelets, gelatin, liposomes, pollen or microorganisms. The reagent according to [1] or [2].
[4] The reagent according to any one of [1] to [3], wherein the protein is an antibody.
 また、本発明の第二は、以下の検出方法に関する。 The second of the present invention relates to the following detection method.
 [5]血漿に含まれる成分を検出する方法であって、前記成分に特異的に結合するタンパク質をその表面に固定化されている直径0.5~100μmの担体粒子と、アルギニンエチルエステルとを含む試薬を準備するステップと、血漿を含む検体を前記試薬に加えて、混合溶液を調製するステップと、前記混合溶液に交流電圧を印加して、前記担体粒子をパールチェーン化させるステップと、を含む検出方法。
 [6]前記交流電圧の印加を停止した後に、前記担体粒子の凝集状態を画像認識または粒度分布計を用いて観察するステップをさらに含む、[5]に記載の検出方法。
 [7]前記混合溶液における前記アルギニンエチルエステルの濃度は、100~500mMである、[5]または[6]に記載の検出方法。
 [8]前記担体粒子の直径は0.5~10μmである、[5]~[7]のいずれかに記載の検出方法。
 [9]前記担体粒子は、ラテックス粒子、セラミックス粒子、シリカ粒子、磁性粒子、金属粒子、金属コート粒子、ベントナイト、カオリン、金コロイド、赤血球細胞、白血球細胞、血小板、ゼラチン、リポソーム、花粉または微生物である、[5]~[8]のいずれかに記載の検出方法。
 [10]前記タンパク質は抗体である、[5]~[9]のいずれかに記載の検出方法。
[5] A method for detecting a component contained in plasma, which comprises: 0.5 to 100 μm diameter carrier particles having immobilized on its surface a protein that specifically binds to the component; and arginine ethyl ester Preparing a reagent containing the sample, adding a sample containing plasma to the reagent to prepare a mixed solution, and applying an AC voltage to the mixed solution to pearlize the carrier particles. Detection method.
[6] The detection method according to [5], further including the step of observing the aggregation state of the carrier particles using image recognition or a particle size distribution meter after stopping the application of the AC voltage.
[7] The detection method according to [5] or [6], wherein a concentration of the arginine ethyl ester in the mixed solution is 100 to 500 mM.
[8] The detection method according to any one of [5] to [7], wherein the diameter of the carrier particle is 0.5 to 10 μm.
[9] The carrier particles are latex particles, ceramic particles, silica particles, magnetic particles, metal particles, metal coated particles, bentonite, kaolin, gold colloid, red blood cells, white blood cells, platelets, gelatin, liposomes, pollen or microorganisms. The detection method according to any one of [5] to [8].
[10] The detection method according to any one of [5] to [9], wherein the protein is an antibody.
 また、本発明の第三は、以下の検出デバイスに関する。 The third of the present invention relates to the following detection device.
 [11]基板と、前記基板上に配置された一対の電極と、前記一対の電極の間に設けられた流路とを有するパルスイムノアッセイ法用の検出デバイスであって、検出対象の成分に特異的に結合するタンパク質をその表面に固定化されている、直径0.5~100μmの担体粒子と、アルギニンエチルエステルとを含む試薬の固形物を前記流路内に有する、検出デバイス。
 [12]前記試薬の固形物は、前記試薬の凍結乾燥物である、[11]に記載の検出デバイス。
 [13]前記試薬の固形物は、前記試薬の風乾乾燥物である、[11]に記載の検出デバイス。
[11] A detection device for pulse immunoassay comprising a substrate, a pair of electrodes disposed on the substrate, and a flow path provided between the pair of electrodes, which is specific to a component to be detected A detection device comprising a solid of a reagent containing carrier particles of 0.5 to 100 μm in diameter and arginine ethyl ester, immobilized on the surface of a protein to be bound thereto, in the flow path.
[12] The detection device according to [11], wherein the solid substance of the reagent is a lyophilizate of the reagent.
[13] The detection device according to [11], wherein the solid substance of the reagent is an air-dried product of the reagent.
 本発明により、血漿に含まれる成分をパルスイムノアッセイ法で高感度に検出することができる。これにより、血液や血漿を検体としてパルスイムノアッセイ法による検査を行うことが可能となる。 According to the present invention, components contained in plasma can be detected with high sensitivity by pulse immunoassay. This makes it possible to conduct a test by pulse immunoassay using blood or plasma as a sample.
実施例で用いたデバイスの模式図であり、図1Aは断面図、図1Bは平面図である。It is a schematic diagram of the device used in the Example, FIG. 1A is sectional drawing, FIG. 1B is a top view. 実施例で用いた測定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the measuring apparatus used in the Example. 流路内の担体粒子の様子を示す模式図であり、図3Aは電圧印加前、図3Bは電圧印加中、図3Cは電圧印加停止後の様子を示す図である。FIG. 3A is a schematic view showing the state of carrier particles in the flow channel, FIG. 3A is a view before voltage application, FIG. 3B is a view during voltage application, and FIG. 3C is a view after voltage application is stopped. 血漿を含む溶液中における各物質の凝集抑制効果の有無を示すグラフである。It is a graph which shows the presence or absence of the aggregation suppression effect of each substance in the solution containing plasma. 血漿を含まない溶液中におけるアルギニンエチルエステルの濃度と凝集度との関係を示すグラフである。It is a graph which shows the relationship between the density | concentration of arginine ethyl ester and the degree of aggregation in the solution which does not contain plasma. 血漿を含む溶液中におけるアルギニンエチルエステルの濃度と凝集度との関係を示すグラフである。It is a graph which shows the relationship between the density | concentration of arginine ethyl ester and the degree of aggregation in the solution containing plasma. 血漿を含まない溶液中におけるアルギニンエチルエステルの濃度と凝集度との関係を示すグラフである。It is a graph which shows the relationship between the density | concentration of arginine ethyl ester and the degree of aggregation in the solution which does not contain plasma. パルスイムノアッセイ法による擬似抗原の測定結果を示すグラフである。It is a graph which shows the measurement result of the simulated antigen by a pulse immunoassay method. 担体粒子懸濁液の可視光領域における吸光度を示すグラフである。It is a graph which shows the light absorbency in the visible light area | region of carrier particle suspension. 懸濁液(VII)の光学顕微鏡像を示す写真である。It is a photograph which shows the optical microscope image of suspension (VII).
 本発明の検出方法は、血漿に含まれる成分をパルスイムノアッセイ法で検出する方法であって、1)検出対象の成分に特異的に結合するタンパク質をその表面に固定化されている直径0.5~100μmの担体粒子と、アルギニンエチルエステルとを含む本発明の試薬を準備する第1のステップと、2)血漿を含む検体を前記本発明の試薬に加えて、混合溶液を調製する第2のステップと、3)前記混合溶液に交流電圧を印加して、担体粒子をパールチェーン化させる第3のステップと、4)交流電圧の印加を停止した後に、担体粒子の凝集状態を画像認識や粒度分布計などを用いて観察する第4のステップと、を含む。なお、本明細書において「検出」とは、特定の物質の有無を調べる意味だけでなく、特定の物質の濃度や量を測定する意味も含む。 The detection method of the present invention is a method of detecting a component contained in plasma by a pulse immunoassay method, and 1) a diameter of 0.5 where a protein which specifically binds to the component to be detected is immobilized on the surface A first step of preparing a reagent of the present invention containing carrier particles of ̃100 μm and arginine ethyl ester, and 2) adding a sample containing plasma to the reagent of the present invention to prepare a mixed solution Step 3) Third step of applying an AC voltage to the mixed solution to pearl chain the carrier particles, 4) Stop the application of AC voltage, and then recognize the aggregation state of the carrier particles by image recognition or particle size And a fourth step of observing using a distribution meter or the like. In the present specification, "detection" includes not only the meaning of examining the presence or absence of a specific substance, but also the meaning of measuring the concentration or amount of a specific substance.
 第1のステップでは、検出対象の成分に特異的に結合するタンパク質をその表面に固定化されている担体粒子と、血漿を含む液体中において非特異的凝集の抑制剤として機能するアルギニンエチルエステルとを含む本発明の試薬を準備する。 In the first step, a carrier particle in which a protein that specifically binds to a component to be detected is immobilized on the surface, and arginine ethyl ester that functions as a nonspecific aggregation inhibitor in a liquid containing plasma The reagent of the present invention is prepared.
 担体粒子は、タンパク質をその表面に固定化しうるものであれば特に限定されず、ラテックス粒子、セラミックス粒子、シリカ粒子、磁性粒子、金属粒子、金属コート粒子やベントナイト、カオリン、金コロイド、赤血球細胞、白血球細胞、血小板、ゼラチン、リポソーム、花粉、微生物などを用いることができるが、この中ではラテックス粒子が好ましい。ラテックス粒子の例には、ポリスチレン系ラテックス粒子、ポリビニルトルエン系ラテックス粒子、ポリメタクリレート系ラテックス粒子、金属コートラテックス粒子などが含まれる。 Carrier particles are not particularly limited as long as they can immobilize proteins on the surface, and latex particles, ceramic particles, silica particles, magnetic particles, metal particles, metal coated particles, bentonite, kaolin, gold colloid, red blood cells, White blood cells, platelets, gelatin, liposomes, pollen, microorganisms and the like can be used, among which latex particles are preferred. Examples of latex particles include polystyrene latex particles, polyvinyl toluene latex particles, polymethacrylate latex particles, metal coated latex particles and the like.
 担体粒子の直径(平均粒径)は、光学顕微鏡などで識別可能な0.5μm以上、かつブラウン運動による分散が容易に生じうる100μm以下であることが好ましく、特に0.5~10μmの範囲内であることが好ましい。後述するように、光学顕微鏡やコールターカウンターなどを用いることで、分光光度計を用いた測定に比べてより正確に担体粒子の凝集状態を調べることができる(参考例参照)。担体粒子の直径が100μmを超えると、ブラウン運動による分散が生じにくくなるため、第4のステップにおいて凝集状態を観察しにくくなる。担体粒子の直径(平均粒径)は、例えば、光学顕微鏡を用いて観察したり、コールターカウンターを用いて電気抵抗を測定したり、光散乱法で散乱光変化量を測定したりすることで測定することができる。 The diameter (average particle diameter) of the carrier particles is preferably 0.5 μm or more which can be identified by an optical microscope or the like, and is preferably 100 μm or less where dispersion by Brownian motion can easily occur, particularly 0.5 to 10 μm. Is preferred. As described later, by using an optical microscope, Coulter counter or the like, it is possible to check the aggregation state of the carrier particles more accurately than the measurement using a spectrophotometer (see the reference example). When the diameter of the carrier particles exceeds 100 μm, the dispersion due to the Brownian movement is less likely to occur, so that it is difficult to observe the aggregation state in the fourth step. The diameter (average particle diameter) of the carrier particles is measured, for example, by observing using an optical microscope, measuring the electrical resistance using a Coulter counter, or measuring the amount of change in scattered light using a light scattering method. can do.
 担体粒子の量(濃度)は、第2のステップにおいて調製される混合溶液において1×10~1×1011個/mLの範囲内となることが好ましい。混合溶液における最適な担体粒子の濃度は、使用する担体粒子の直径によって異なる。 The amount (concentration) of carrier particles is preferably in the range of 1 × 10 6 to 1 × 10 11 particles / mL in the mixed solution prepared in the second step. The optimum concentration of carrier particles in the mixed solution depends on the diameter of the carrier particles used.
 担体粒子に固定化されるタンパク質は、検出対象の成分に特異的に結合するタンパク質であれば特に限定されず、抗体や酵素、補酵素(例えば、ビオチン)、レクチン、糖タンパク質、核酸などを用いることができる。また、タンパク質の代わりに、ヘムやポルフィリンなどの有機合成物も担体粒子に固定化することができる。これらのタンパク質を担体粒子に固定化する方法は特に限定されず、当業者に公知の方法から適宜選択すればよい。 The protein to be immobilized on the carrier particle is not particularly limited as long as it is a protein that specifically binds to the component to be detected, and antibodies, enzymes, coenzymes (eg, biotin), lectins, glycoproteins, nucleic acids, etc. are used. be able to. In addition, instead of proteins, organic compounds such as heme and porphyrins can also be immobilized on carrier particles. The method for immobilizing these proteins on carrier particles is not particularly limited, and may be appropriately selected from methods known to those skilled in the art.
 アルギニンエチルエステルの濃度は、第2のステップにおいて調製される混合溶液において100~500mMの範囲内となることが好ましく、200~300mMの範囲内となることが特に好ましい。混合溶液における濃度が100mM未満になると、担体粒子の非特異的凝集を十分に抑制することができなくなる。一方、混合溶液における濃度が500mMを超えると、混合溶液自体の導電率が高くなり、第3のステップにおいて交流電圧を印加したときに担体粒子に作用する誘電泳動力が小さくなってしまうため、パールチェーン化の効率が低下してしまう。 The concentration of arginine ethyl ester is preferably in the range of 100 to 500 mM, particularly preferably in the range of 200 to 300 mM, in the mixed solution prepared in the second step. When the concentration in the mixed solution is less than 100 mM, nonspecific aggregation of carrier particles can not be sufficiently suppressed. On the other hand, if the concentration in the mixed solution exceeds 500 mM, the conductivity of the mixed solution itself becomes high, and the dielectrophoretic force acting on the carrier particles becomes small when an AC voltage is applied in the third step. The efficiency of chaining is reduced.
 本発明の試薬は、目的に応じて担体粒子およびアルギニンエチルエステル以外の任意の物質を含んでいてもよい。任意の物質としては、例えばグリシン、牛血清アルブミン(BSA)などのタンパク質、塩化ナトリウムなどの無機塩類、トレハロースなどの糖類、有機化合物、脂質などが挙げられるが、特に限定されたものではない。 The reagent of the present invention may contain any substance other than carrier particles and arginine ethyl ester depending on the purpose. Examples of the optional substance include, for example, glycine, a protein such as bovine serum albumin (BSA), an inorganic salt such as sodium chloride, a saccharide such as trehalose, an organic compound, a lipid and the like, but it is not particularly limited.
 本発明の試薬は、分散媒を含む液体(懸濁液)であってもよい。この場合、分散媒は特に限定されないが、例えば、リン酸緩衝液、グリシン緩衝液、HEPES緩衝液、CHES緩衝液などのGOOD'S緩衝液や、TRIS緩衝液などであることが好ましい。例えば、所定のタンパク質をその表面に固定化されている担体粒子をこれらの緩衝液に懸濁させ、さらにアルギニンエチルエステルを溶解させることで本発明の試薬(懸濁液)を調製することができる(実施例1,2参照)。本発明の試薬のpHは特に限定されないが、第2のステップにおいて調製される混合溶液において6.0~11.0の範囲内となりうることが好ましく、6.0~9.0の範囲内となりうることが特に好ましい。pHの調整方法は特に限定されず、塩酸や水酸化ナトリウムを用いて適宜調整すればよい。 The reagent of the present invention may be a liquid (suspension) containing a dispersion medium. In this case, the dispersion medium is not particularly limited, but preferably is, for example, GOOD'S buffer such as phosphate buffer, glycine buffer, HEPES buffer, CHES buffer or TRIS buffer. For example, the reagent particles (suspension) of the present invention can be prepared by suspending carrier particles having a predetermined protein immobilized on their surface in these buffers and further dissolving arginine ethyl ester. (See Examples 1 and 2). Although the pH of the reagent of the present invention is not particularly limited, it is preferably within the range of 6.0 to 11.0 in the mixed solution prepared in the second step, and will be within the range of 6.0 to 9.0. It is particularly preferred to The method of adjusting the pH is not particularly limited, and may be appropriately adjusted using hydrochloric acid or sodium hydroxide.
 また、本発明の試薬は、分散媒を含まない固体(固形物)であってもよく、例えば上記のようにして調製された懸濁液を凍結乾燥または風乾乾燥したものであってもよい。このような固形物(懸濁液の凍結乾燥物や風乾乾燥物など)は、本発明の試薬としての性能を維持しており、かつ溶液に容易に溶解しうるものであることが好ましい。このように分散媒を含まないものを使用することで、第2のステップにおいて、混合溶液中の血漿の濃度を100%にすることが可能となり、血漿を希釈せず検査対象物濃度を高く保つことができる。(実施例3参照)。 In addition, the reagent of the present invention may be a solid (solid substance) containing no dispersion medium, and may be, for example, one obtained by lyophilizing or air-drying the suspension prepared as described above. It is preferable that such a solid (a lyophilizate or an air-dried product of a suspension, etc.) maintains the performance as a reagent of the present invention and that it can be easily dissolved in a solution. As described above, by using a medium that does not contain a dispersion medium, it is possible to make the concentration of plasma in the mixed solution 100% in the second step, and the concentration of the test object is kept high without diluting the plasma. be able to. (See Example 3).
 さらに、本発明の試薬は、担体粒子とアルギニンエチルエステルとが別個にされており、使用する際に混合する態様のもの(いわゆる「キット」)であってもよい。 Furthermore, the reagent of the present invention may be an embodiment (so-called "kit") in which carrier particles and arginine ethyl ester are separated and mixed at the time of use.
 第2のステップでは、第1のステップで調製した本発明の試薬に血漿を含む検体を加えて、混合溶液を調製する。 In the second step, a sample containing plasma is added to the reagent of the present invention prepared in the first step to prepare a mixed solution.
 血漿を含む検体は、特に限定されず、例えば、全血、血漿、血清などの血液やこれらの希釈液などである。 The sample containing plasma is not particularly limited, and examples thereof include whole blood, blood such as plasma and serum, and dilutions thereof.
 本発明の試薬と検体との混合方法は、特に限定されず、本発明の試薬の種類(液体か固体か)に応じて適宜選択すればよい。例えば、第1のステップで調製した本発明の試薬が懸濁液の場合は、その懸濁液に血漿などを適量加えて攪拌し、さらに必要に応じてpHを調整すればよい。また、本発明の試薬が固形物(懸濁液の凍結乾燥物や風乾乾燥物など)の場合は、その固形物に血漿などを適量加えて攪拌し、担体粒子を懸濁させるとともにアルギニンエチルエステルなどを溶解させ、さらに必要に応じてpHを調整すればよい。 The mixing method of the reagent of the present invention and the sample is not particularly limited, and may be appropriately selected according to the type (liquid or solid) of the reagent of the present invention. For example, when the reagent of the present invention prepared in the first step is a suspension, an appropriate amount of plasma or the like may be added to the suspension and stirred, and the pH may be adjusted as necessary. In addition, when the reagent of the present invention is a solid (a lyophilizate of suspension, an air-dried product, etc.), an appropriate amount of plasma etc. is added to the solid and stirred to suspend carrier particles and arginine ethyl ester Etc., and the pH may be adjusted as necessary.
 混合溶液のpHは特に限定されないが、6.0~11.0の範囲内であることが好ましく、6.0~9.0であることが特に好ましい。抗原抗体反応が生じやすくなるからである。pHの調整方法は特に限定されず、塩酸や水酸化ナトリウムを用いて適宜調整すればよい。また、混合溶液の温度は特に限定されないが、25℃程度が好ましい。 The pH of the mixed solution is not particularly limited, but is preferably in the range of 6.0 to 11.0, and particularly preferably 6.0 to 9.0. This is because an antigen-antibody reaction is likely to occur. The method of adjusting the pH is not particularly limited, and may be appropriately adjusted using hydrochloric acid or sodium hydroxide. Further, the temperature of the mixed solution is not particularly limited, but about 25 ° C. is preferable.
 第3のステップでは、第2のステップで調製した混合溶液に交流電圧を印加して、担体粒子をパールチェーン化させる。 In the third step, alternating voltage is applied to the mixed solution prepared in the second step to pearl chain the carrier particles.
 混合溶液に外部電場を与えると、担体粒子内で双極子が誘起され、この双極子の相互作用により担体粒子が泳動し(誘電泳動)、担体粒子が電界方向と並行に一列に並ぶ(パールチェーン化)。このとき、混合溶液内に検出対象の成分が存在すれば、担体粒子はこの成分を介して他の担体粒子に結合するため、複数の担体粒子が凝集する(パルスイムノアッセイ法の原理)。本発明の検出方法では、アルギニンエチルエステルを加えることにより非特異的凝集を抑制しているため、混合溶液内に検出対象の成分が存在しなければ、担体粒子の凝集率を40%以下に抑えることが可能である。後述する実施例では、アルギニンエチルエステルを添加した場合、抗原が存在しない溶液での凝集率は20~30%前後であったため、40%未満の凝集率のものを凝集していないと判定した(実施例1,2参照)。アルギニンエチルエステル以外の物質を添加した場合、凝集率は40%以上となり、試した物質の中でアルギニンエチルエステルの凝集抑制効果が最も高かった。 When an external electric field is applied to the mixed solution, a dipole is induced in the carrier particles, and the interaction of the dipoles causes the carrier particles to migrate (dielectrophoresis), and the carrier particles align in parallel with the electric field direction (pearl chain ). At this time, if a component to be detected is present in the mixed solution, the carrier particles bind to other carrier particles via this component, and a plurality of carrier particles aggregate (principle of pulse immunoassay method). In the detection method of the present invention, non-specific aggregation is suppressed by adding arginine ethyl ester, so if the component to be detected does not exist in the mixed solution, the aggregation ratio of the carrier particles is suppressed to 40% or less It is possible. In the examples described later, when arginine ethyl ester was added, the aggregation rate in a solution without an antigen was about 20 to 30%, so it was determined that the aggregation rate of less than 40% was not aggregated ( See Examples 1 and 2). When a substance other than arginine ethyl ester was added, the aggregation rate was 40% or more, and the aggregation inhibitory effect of arginine ethyl ester was the highest among the tested substances.
 混合溶液に交流電圧を印加する装置およびデバイスならびに方法は、特に限定されず、従来のパルスイムノアッセイ法で用いられてきた装置および方法と同じものであってもよい。例えば、1)ガラスなどからなる基板と、前記基板上に対向するように配置された一対の電極と、前記一対の電極の間に設けられた流路とを有する検出デバイスを準備し;2)各電極を交流電源に接続し;3)第2のステップで調製した混合溶液を注入口から流路内に提供した後に電極間に交流電圧を印加すればよい(実施例参照)。 The apparatus and device for applying an alternating voltage to the mixed solution and the method are not particularly limited, and may be the same as the apparatus and method used in the conventional pulse immunoassay method. For example, 1) preparing a detection device having a substrate made of glass or the like, a pair of electrodes disposed to face the substrate, and a flow path provided between the pair of electrodes; 2) Each electrode may be connected to an AC power supply; 3) An AC voltage may be applied between the electrodes after providing the mixed solution prepared in the second step into the flow path from the injection port (see Example).
 また、前述の検出デバイスの流路内に本発明の試薬の固形物(懸濁液の凍結乾燥物や風乾乾燥物など)を配置してもよい。このように予め流路内に本発明の試薬を配置しておくことで、血漿を含む検体を注入口から流路内に提供するのみで第2のステップを終えることができ、本発明の検出方法をより簡便に行うことができる。 In addition, a solid of the reagent of the present invention (such as a lyophilizate or an air-dried product of a suspension) may be disposed in the flow channel of the above-described detection device. Thus, by disposing the reagent of the present invention in advance in the flow channel, the second step can be completed only by providing a sample containing plasma from the inlet to the flow channel, and the detection of the present invention The method can be performed more simply.
 混合溶液に印加する交流電圧の波形は、正弦波、矩形波、方形波、三角波などであればよく、連続波でもパルス波でもよい。また、周波数は、特に限定されないが、10kHz~10MHzの範囲内であることが好ましい。 The waveform of the AC voltage applied to the mixed solution may be a sine wave, a square wave, a square wave, a triangular wave or the like, and may be a continuous wave or a pulse wave. The frequency is not particularly limited, but is preferably in the range of 10 kHz to 10 MHz.
 混合溶液に印加する交流電圧の電界強度は、5~100V(波高値)/mmの範囲内であることが好ましい。電界強度が5V/mmよりも小さいと、パールチェーン化が生じにくくなり、凝集反応を十分に促進することができない。一方、電界強度が100V/mmより大きいと、混合溶液の電気分解が生じやすくなり、検出感度が低下してしまう。 The electric field strength of the AC voltage applied to the mixed solution is preferably in the range of 5 to 100 V (peak value) / mm. If the electric field strength is less than 5 V / mm, pearl chain formation hardly occurs and the agglutination reaction can not be sufficiently promoted. On the other hand, if the electric field strength is higher than 100 V / mm, electrolysis of the mixed solution is likely to occur and the detection sensitivity is lowered.
 第4のステップでは、交流電圧の印加を停止した後に、担体粒子の凝集状態を画像認識や粒度分布計などを用いて観察する。 In the fourth step, after the application of the alternating voltage is stopped, the aggregation state of the carrier particles is observed using image recognition, a particle size distribution analyzer, or the like.
 交流電圧の印加を停止すると、凝集していない担体粒子はブラウン運動により混合溶液中に分散するが、特異的結合により凝集した担体粒子は凝集した状態が維持される。したがって、混合溶液中の全担体粒子に占める凝集した担体粒子の割合(凝集度)を求めることにより、検出対象の成分の検出や濃度の測定を行うことができる。このとき、分光光度計を用いて吸光度を測定するのではなく画像認識や粒度分布計などを用いて観察することで、担体粒子の凝集状態をより正確に(1つの担体粒子(単体)と、2つの担体粒子の凝集体とを区別できる程度に)観察することができる(参考例参照)。 When the application of the alternating voltage is stopped, the non-aggregated carrier particles disperse in the mixed solution by Brownian movement, but the carrier particles aggregated by specific binding are kept in the aggregated state. Therefore, detection of the component to be detected and measurement of the concentration can be performed by determining the ratio (aggregation degree) of aggregated carrier particles to all the carrier particles in the mixed solution. At this time, the aggregation state of the carrier particles can be more accurately (one carrier particle (single body), and the like) by observing it using image recognition or a particle size distribution analyzer instead of measuring the absorbance using a spectrophotometer. It can be observed to the extent that it is possible to distinguish between aggregates of two carrier particles (see Reference Example).
 担体粒子の凝集状態を観察する方法は、画像認識や粒度分布計などを用いて観察すればよい。画像認識による担体粒子の凝集状態の観察には、光学顕微鏡による観察が含まれる。また、粒度分布計を用いた担体粒子の凝集状態の観察には、コールターカウンターや光散乱法を用いた観察を含む。光学顕微鏡およびコールターカウンターは、1つの担体粒子(単体)と、2つの担体粒子の凝集体とを区別できる程度正確に担体粒子の凝集状態を観察できるものであれば、その種類は特に限定されない。 The method of observing the aggregation state of the carrier particles may be observed using image recognition, a particle size distribution analyzer, or the like. Observation of the aggregation state of the carrier particles by image recognition includes observation by an optical microscope. In addition, observation of the aggregation state of the carrier particles using a particle size distribution analyzer includes observation using a Coulter counter or a light scattering method. The type of the optical microscope and the Coulter counter is not particularly limited as long as the aggregation state of the carrier particles can be observed accurately enough to distinguish one carrier particle (single body) and an aggregate of the two carrier particles.
 凝集度の算出方法は、特に限定されず観察方法(装置)に応じて適宜選択すればよいが、例えば、光学顕微鏡に接続したカメラ(CCDカメラなど)で混合溶液中の担体粒子の凝集状態を撮影し、得られた画像から画像処理プログラムを用いて、凝集度を算出すればよい(実施例1参照)。 The method of calculating the degree of aggregation is not particularly limited and may be appropriately selected according to the observation method (apparatus). For example, the aggregation state of the carrier particles in the mixed solution is detected by a camera (CCD camera etc.) connected to an optical microscope. The degree of aggregation may be calculated from the obtained image by using an image processing program (see Example 1).
 以上のように、本発明の検出方法は、1)血漿を含む検体を用い、2)血漿を含む液体中において非特異的な凝集を抑制するアルギニンエチルエステルを加え、2)直径(平均粒径)が0.5~100μmの範囲内の担体粒子を使用し、3)担体粒子の凝集状態を光学顕微鏡やコールターカウンターなどを用いて観察することで、担体粒子の非特異的凝集による検出感度の低下を防ぎつつ、検出対象の成分を検出することができる。 As described above, the detection method of the present invention 1) uses a sample containing plasma, 2) adds arginine ethyl ester that suppresses nonspecific aggregation in a liquid containing plasma, 2) diameter (average particle size 3) using carrier particles in the range of 0.5 to 100 μm, and 3) observing the aggregation state of the carrier particles using an optical microscope, Coulter counter, etc. The component to be detected can be detected while preventing the decrease.
 以下、本発明を実施例を参照してさらに詳細に説明するが、本発明はこれらの実施例により限定されない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited by these examples.
 [実施例1]
 [血漿を含む溶液中におけるアルギニンエチルエステルの非特異的凝集を抑制する効果]
 本実施例では、アミノ酸エステル(アルギニンエチルエステル、グリシンエチルエステル、リジンエチルエステル、アルギニンアミド、アスパラギンアミド、メチオニンアミド、バリンアミド)およびポリアミン(スペルミジン)について、血漿を含む溶液中で非特異的凝集に対する凝集抑制剤として機能しうるかどうかを確認した。本実施例では、抗HbA1c抗体を固定化したポリスチレン粒子を担体粒子として用いた。また、血漿を含む溶液(検体)には抗原を添加しなかった。
Example 1
[Effect to suppress nonspecific aggregation of arginine ethyl ester in solution containing plasma]
In this example, aggregation of the amino acid ester (arginine ethyl ester, glycine ethyl ester, lysine ethyl ester, arginine amide, asparagine amide, methionine amide, valine amide) and polyamine (spermidine) against nonspecific aggregation in a solution containing plasma It was confirmed whether it could function as an inhibitor. In this example, polystyrene particles on which an anti-HbA1c antibody was immobilized was used as a carrier particle. Moreover, the antigen was not added to the solution (sample) containing plasma.
 1.担体粒子の修飾
 直径2.06μmのポリスチレン粒子(Bangs Laboratories社)の懸濁液(1.5×1010個/mL)を試験管ミキサー(TRIO HM-1;アズワン株式会社)を用いて1分間以上攪拌した。また、抗HbA1c抗体(F3A7:特開2003-344397号公報参照)を最終濃度が0.21mg/mLとなるように20mMグリシン緩衝液(pH8.6(以下同様);和光純薬工業株式会社)に溶解させて、抗体溶液を調製した。次いで、攪拌後のポリスチレン粒子の懸濁液を抗体溶液に加え、室温で2時間攪拌し、抗体修飾粒子懸濁液(6.0×10個/mL)を作製した。4℃で一晩静置して、ポリスチレン粒子表面に抗体を固定化した。
1. Modification of carrier particles A suspension (1.5 × 10 10 particles / mL) of polystyrene particles (Bangs Laboratories) with a diameter of 2.06 μm was treated with a test tube mixer (TRIO HM-1; As One Corporation) for 1 minute. It stirred above. Moreover, 20 mM glycine buffer (pH 8.6 (same below); Wako Pure Chemical Industries Ltd.) so that final concentration may be set to 0.21 mg / mL of anti-HbA1c antibody (F3A7: refer to Unexamined-Japanese-Patent No. 2003-344397). Solution to prepare an antibody solution. Then, the suspension of polystyrene particles after stirring was added to the antibody solution, and stirred at room temperature for 2 hours to prepare an antibody-modified particle suspension (6.0 × 10 9 / mL). The antibody was immobilized on the surface of polystyrene particles by standing overnight at 4 ° C.
 懸濁液を遠心機(Chibitan-R;日本ミリポア株式会社)を用いて6200rpmで15分間遠心した後、上澄みを洗浄用水溶液(20mMグリシン緩衝液,0.1%BSA(シグマ社))に置換した。この操作を3回繰り返し、抗体を固定化した担体粒子を調製した。 The suspension was centrifuged at 6200 rpm for 15 minutes using a centrifuge (Chibitan-R; Nippon Millipore Corporation), and then the supernatant was replaced with an aqueous solution for washing (20 mM glycine buffer, 0.1% BSA (Sigma)). did. This operation was repeated three times to prepare antibody particles on which carrier particles were immobilized.
 2.本発明の試薬、血漿溶液および混合溶液の調製
 グリシン緩衝液に、トレハロース(和光純薬工業株式会社)、アミノ酸エステルまたはポリアミン、および担体粒子(上記1で調製したもの)を加えて測定用懸濁液(本発明の試薬)を調製した。アミノ酸エステルは、アルギニンエチルエステル、グリシンエチルエステル、リジンエチルエステル、アルギニンアミド、アスパラギンアミド、メチオニンアミド、バリンアミド(ここまですべてシグマ社)のいずれかを用いた。ポリアミンは、スペルミジン(ナカライテスク株式会社)を用いた。
2. Preparation of Reagent of the Present Invention, Plasma Solution and Mixed Solution Trehalose (Wako Pure Chemical Industries, Ltd.), amino acid ester or polyamine, and carrier particles (prepared in the above 1) are added to glycine buffer and suspension for measurement A liquid (reagent of the present invention) was prepared. As the amino acid ester, any one of arginine ethyl ester, glycine ethyl ester, lysine ethyl ester, arginine amide, asparagine amide, methionine amide and valine amide (all by Sigma, so far) was used. As a polyamine, spermidine (Nacalai Tesque, Inc.) was used.
 また、血漿(抗原を含まない)5μLに20mMグリシン緩衝液0.75μLを加えて、血漿溶液を調製した。 A plasma solution was prepared by adding 0.75 μl of 20 mM glycine buffer to 5 μl of plasma (without antigen).
 測定直前に、血漿溶液を測定用懸濁液(本発明の試薬)に加えて、10μLの混合溶液(最終濃度:グリシン緩衝液100mM,トレハロース5%,アミノ酸エステルまたはポリアミン0~500mM,担体粒子6×10個/mL)を調製した。アミノ酸エステルおよびポリアミンの最終濃度は、アルギニンエチルエステルは0mM,100mM,200mM,300mM,400mM,500mMのいずれか、その他の物質については0mM,100mM,200mM,300mM,400mMのいずれかとした。混合溶液のpHは、水酸化ナトリウムおよび塩酸(共に和光純薬工業株式会社)を用いてpH8.6に調整した。 Just before the measurement, the plasma solution is added to the suspension for measurement (the reagent of the present invention), and 10 μL of the mixed solution (final concentration: glycine buffer 100 mM, trehalose 5%, amino acid ester or polyamine 0 to 500 mM, carrier particles 6) × 10 8 cells / mL) were prepared. The final concentrations of amino acid ester and polyamine were 0 mM, 100 mM, 200 mM, 300 mM, 400 mM and 500 mM for arginine ethyl ester, and 0 mM, 100 mM, 200 mM, 300 mM and 400 mM for other substances. The pH of the mixed solution was adjusted to pH 8.6 using sodium hydroxide and hydrochloric acid (both Wako Pure Chemical Industries, Ltd.).
 3.デバイスの作製
 厚さ1mmの石英ガラス基板上に電極パターンを有するステンシルマスク(ステンレス製)を通してスパッタして、電極となる膜厚100nmの金薄膜を形成した。長辺が対向するように配置された1対の矩形電極間の間隔は0.5mmとした。次いで、流路パターンを有する厚さ10μmの両面接着PETフィルムを流路部分が電極間に位置するようにガラス基板(および電極)上に貼りあわせ、さらにこのPETフィルム上に厚さ0.3mmのカバーガラスを貼りあわせてデバイスを作製した。
3. Device fabrication A gold thin film with a film thickness of 100 nm to be an electrode was formed by sputtering through a stencil mask (made of stainless steel) having an electrode pattern on a quartz glass substrate with a thickness of 1 mm. The distance between a pair of rectangular electrodes arranged so that the long sides face each other was 0.5 mm. Then, a 10 μm thick double-sided adhesive PET film having a flow path pattern is pasted on a glass substrate (and an electrode) so that the flow path portion is located between the electrodes, and 0.3 mm thick on this PET film A cover glass was attached to make a device.
 図1は作製したデバイスの模式図であり、図1Aは断面図、図1Bは平面図(カバーガラスおよびPETフィルムは不図示)である。図1Aに示すように、本実施例で使用したデバイス100は、ガラス基板110、1対の電極120、PETフィルム130、カバーガラス140を有し、1対の電極120間に流路150が形成されている。図1Bに示すように、流路150は注入口160および排出口170を有し、一対の電極120は交流電源180に接続される。 FIG. 1 is a schematic view of the fabricated device, FIG. 1A is a cross-sectional view, and FIG. 1B is a plan view (cover glass and PET film not shown). As shown in FIG. 1A, the device 100 used in the present embodiment has a glass substrate 110, a pair of electrodes 120, a PET film 130, a cover glass 140, and a flow path 150 is formed between the pair of electrodes 120. It is done. As shown in FIG. 1B, the flow path 150 has an inlet 160 and an outlet 170, and the pair of electrodes 120 is connected to an AC power supply 180.
 4.測定
 図2は、本実施例における測定装置の構成を示すブロック図である。図2に示すように、デバイス100に印加する電圧およびその周波数と波形を制御するべく、ファンクションジェネレータ(33120A;アジレント・テクノロジー株式会社)200および高速バイポーラ電源(4055;株式会社エヌエフ回路設計ブロック)210をデバイス100に接続した。また、デバイス100の流路150内を観察するべく、倒立型システム顕微鏡(IX70;オリンパス株式会社)220、カメラ(C-5060;オリンパス株式会社)230およびモニタ(TH-15TA2;松下電器産業株式会社)240を設置した。
4. Measurement FIG. 2 is a block diagram showing the configuration of the measuring apparatus in the present embodiment. As shown in FIG. 2, a function generator (33120A; Agilent Technologies, Inc.) 200 and a high-speed bipolar power supply (4055; NF circuit design block, Inc.) 210 to control the voltage applied to the device 100 and its frequency and waveform. Are connected to the device 100. In addition, to observe the inside of the flow path 150 of the device 100, an inverted system microscope (IX70; Olympus Co., Ltd.) 220, a camera (C-5060; Olympus Co., Ltd.) 230 and a monitor (TH-15TA2; Matsushita Electric Industrial Co., Ltd.) ) Installed.
 血漿溶液を測定用懸濁液(本発明の試薬)に加えて調製した混合溶液1μLをデバイスの流路の注入口に提供した。血漿溶液を測定用懸濁液(本発明の試薬)に加えてから90秒後に、デバイスの1対の電極間に交流電圧(100kHz,20Vpp,矩形波)を60秒間印加して、担体粒子をパールチェーン化させた。電圧の印加を停止してから30秒後に、流路内の担体粒子の凝集状態を観察した。 The plasma solution was added to the suspension for measurement (the reagent of the present invention), and 1 μL of the mixed solution prepared was provided to the inlet of the channel of the device. 90 seconds after adding the plasma solution to the suspension for measurement (the reagent of the present invention), an AC voltage (100 kHz, 20 Vpp, square wave) is applied for 60 seconds between a pair of electrodes of the device to carry the carrier particles. Pearl chained. Thirty seconds after the application of the voltage was stopped, the aggregation of the carrier particles in the channel was observed.
 図3は、電圧印加前後の流路内の抗体修飾担体粒子の様子を示す模式図であり、図3Aは電圧印加前、図3Bは電圧印加中(パールチェーン化中)、図3Cは電圧印加停止後の様子を示している。 FIG. 3 is a schematic view showing the state of antibody-modified carrier particles in the flow channel before and after voltage application; FIG. 3A is before voltage application, FIG. 3B is during voltage application (during pearl chain formation), and FIG. 3C is voltage application It shows the situation after stopping.
 図3に示すように、交流電圧を印加する前は、担体粒子300はブラウン運動により完全に分散しているが(図3A参照)、交流電圧を印加することにより、担体粒子300はパールチェーン化し、他の担体粒子300と接触する(図3B参照)。このとき、混合溶液内に抗原が存在すれば、担体粒子は抗原を介して他の担体粒子に結合するため、複数の担体粒子が凝集する。一方、抗原が存在しなければ、担体粒子は他の担体粒子に結合しないはずであるが、非特異的吸着が生じた場合は抗原が存在しなくても担体粒子の凝集が生じる。本実施例では、混合溶液内に抗原は存在しないため、担体粒子の凝集が生じれば、それはすべて非特異的吸着によるものと考えられる。交流電圧の印加を停止すると、凝集していない抗体修飾担体粒子300はブラウン運動により再度分散するが、非特異的吸着により凝集した抗体修飾担体粒子300は凝集した状態が維持される(図3C参照)。そこで、本実施例では、交流電圧の印加を停止した後の凝集度を算出することで、非特異的吸着の発生頻度を調べた。凝集度は、以下の式で算出した。
Figure JPOXMLDOC01-appb-M000001
As shown in FIG. 3, before applying the AC voltage, the carrier particles 300 are completely dispersed by Brownian motion (see FIG. 3A), but by applying the AC voltage, the carrier particles 300 become pearl chained. , Contact with other carrier particles 300 (see FIG. 3B). At this time, if an antigen is present in the mixed solution, the carrier particles are bound to other carrier particles via the antigen, so that a plurality of carrier particles aggregate. On the other hand, if no antigen is present, the carrier particles should not bind to other carrier particles, but if nonspecific adsorption occurs, aggregation of the carrier particles will occur even in the absence of the antigen. In the present example, no antigen is present in the mixed solution, and therefore, if aggregation of carrier particles occurs, it is considered that all are due to nonspecific adsorption. When the application of the AC voltage is stopped, the non-aggregated antibody-modified carrier particles 300 are redispersed by Brownian motion, but the non-specifically adsorbed antibody-modified carrier particles 300 remain aggregated (see FIG. 3C). ). Therefore, in the present embodiment, the occurrence frequency of nonspecific adsorption was examined by calculating the degree of aggregation after stopping the application of the alternating voltage. The degree of aggregation was calculated by the following equation.
Figure JPOXMLDOC01-appb-M000001
 担体粒子の凝集状態を示す画像を画像処理ソフトウェアImageJ(米国国立衛生研究所(NIH))を用いて解析し、凝集度を算出した。本実施例では、単体で存在する担体粒子を「分散している粒子」とし、2つ以上の担体粒子が結合したものを「凝集している粒子」とした。 The image showing the aggregation state of the carrier particles was analyzed using image processing software ImageJ (US National Institutes of Health (NIH)) to calculate the degree of aggregation. In this example, carrier particles that exist alone are referred to as "dispersed particles", and particles in which two or more carrier particles are bound are referred to as "aggregated particles".
 5.結果
 図4は、各物質についての凝集抑制効果を示すグラフである。縦軸は加えた物質の種類を示し、横軸は各物質の濃度を示している。ハッチングされているセグメントは凝集度が40%以上であったことを示し、黒色に塗りつぶされているセグメントは凝集度が40%未満であったことを示している。凝集度は、交流電圧を印加して一度パールチェーン化させた後、交流電圧の印加を停止して再分散させた後の凝集度である。アルギニンエチルエステルを加えた場合は、アルギニンエチルエステルの濃度が高いほど凝集度が低下し、最終濃度を200~500mMにすると凝集度は40%未満となった。一方、他の物質(グリシンエチルエステル、リジンエチルエステル、アルギニンアミド、アスパラギンアミド、メチオニンアミド、バリンアミド、スペルミジン)を加えた場合は、凝集度がそれほど低下せず、凝集度が40%未満となることはなかった。
5. Results FIG. 4 is a graph showing the aggregation suppressing effect of each substance. The vertical axis shows the type of substance added, and the horizontal axis shows the concentration of each substance. The hatched segments indicate that the degree of aggregation is 40% or more, and the blackened segments indicate that the degree of aggregation is less than 40%. The degree of aggregation is the degree of aggregation after applying an alternating voltage and once forming a pearl chain, and then stopping application of the alternating voltage and redispersing. When arginine ethyl ester was added, the higher the concentration of arginine ethyl ester, the lower the degree of aggregation, and when the final concentration was 200 to 500 mM, the degree of aggregation became less than 40%. On the other hand, when another substance (glycine ethyl ester, lysine ethyl ester, arginine amide, asparagine amide, methionine amide, valine amide, spermidine) is added, the degree of aggregation does not decrease so much and the degree of aggregation is less than 40%. There was no.
 以上のことから、血漿を高い割合(50%)で含む溶液(検体)に、最終濃度が200~500mMになるようにアルギニンエチルエステルを加えたときのみ非特異的凝集を抑制できることがわかった。一方、血漿を含む溶液(検体)に、アルギニンエチルエステル以外のアミノ酸エステルまたはポリアミンを加えても非特異的凝集を抑制できないこともわかった。 From the above, it was found that non-specific aggregation can be suppressed only when arginine ethyl ester is added to a solution (specimen) containing a high proportion (50%) of plasma so that the final concentration is 200 to 500 mM. On the other hand, it was also found that adding an amino acid ester or polyamine other than arginine ethyl ester to a solution (sample) containing plasma can not suppress nonspecific aggregation.
 [比較例1]
 [血漿を含まない溶液中におけるアルギニンエチルエステルの非特異的凝集を抑制する効果]
 本比較例では、アルギニンエチルエステルが、血漿を含まない溶液中においても非特異的凝集に対する凝集抑制剤として機能しうるかどうかを確認した。
Comparative Example 1
[Effect of suppressing nonspecific aggregation of arginine ethyl ester in a solution not containing plasma]
In this comparative example, it was confirmed whether arginine ethyl ester can function as an aggregation inhibitor against nonspecific aggregation even in a solution not containing plasma.
 1.担体粒子の修飾
 実施例1と同様の手順により、実施例1と同様の担体粒子を調製した。
1. Modification of Carrier Particles In the same manner as in Example 1, carrier particles similar to Example 1 were prepared.
 2.混合溶液の調製
 グリシン緩衝液(pH8.6)に、トレハロース、アルギニンエチルエステルおよび担体粒子(上記1で作製したもの)を加えて測定用懸濁液を調製し、さらに測定直前に20mMグリシン緩衝液4.75μLを加えて、10μLの混合溶液(最終濃度:グリシン緩衝液100mM,トレハロース40%,アルギニンエチルエステル0~200mM,担体粒子6×10個/mL)を調製した。アルギニンエチルエステルの最終濃度は、0mM,5mM,10mM,50mM,100mM,150mM,200mMのいずれかとした。混合溶液のpHは、水酸化ナトリウムを用いてpH8.6に調整した。
2. Preparation of mixed solution Trehalose, arginine ethyl ester and carrier particles (made in 1 above) are added to glycine buffer (pH 8.6) to prepare a suspension for measurement, and 20 mM glycine buffer just before measurement 4.75 μL was added to prepare 10 μL of mixed solution (final concentration: glycine buffer 100 mM, trehalose 40%, arginine ethyl ester 0-200 mM, carrier particles 6 × 10 8 / mL). The final concentration of arginine ethyl ester was either 0 mM, 5 mM, 10 mM, 50 mM, 100 mM, 150 mM, or 200 mM. The pH of the mixed solution was adjusted to pH 8.6 using sodium hydroxide.
 3.デバイスの作製
 実施例1と同様の手順により、実施例1と同様のデバイスを作製した(図1参照)。
3. Production of Device A device similar to Example 1 was produced according to the same procedure as Example 1 (see FIG. 1).
 4.測定
 測定には、実施例1と同様の装置を使用した(図2参照)。
4. Measurement The same apparatus as in Example 1 was used for measurement (see FIG. 2).
 グリシン緩衝液を測定用懸濁液に加えて調製した混合溶液1μLをデバイスの流路の注入口に提供した。グリシン緩衝液を測定用懸濁液に加えてから90秒後に、デバイスの電極間に交流電圧(100kHz,20Vpp,矩形波)を60秒間印加して、担体粒子をパールチェーン化させた。電圧を印加する前、電圧を印加している間、電圧の印加を停止してから30秒後に、流路内の担体粒子の凝集状態を観察し、それぞれの時点における凝集度を算出した(n=3(0~50mM),n=1(100~200mM))。 Glycine buffer was added to the suspension for measurement, and 1 μL of the mixed solution prepared was provided to the inlet of the channel of the device. 90 seconds after adding the glycine buffer to the suspension for measurement, an AC voltage (100 kHz, 20 Vpp, square wave) was applied between the electrodes of the device for 60 seconds to pearlize the carrier particles. Before applying the voltage, while applying the voltage, 30 seconds after stopping the application of the voltage, the aggregation state of the carrier particles in the flow channel was observed, and the degree of aggregation at each time point was calculated (n = 3 (0-50 mM), n = 1 (100-200 mM)).
 5.結果
 図5は、アルギニンエチルエステルの濃度と凝集度との関係を示すグラフである。横軸はアルギニンエチルエステルの濃度を示し、縦軸は凝集度を示している。図5に示すように、アルギニンエチルエステルの濃度が高いほど、電圧印加前と印加後の凝集度が高くなり、最終濃度を50mM以上にすると電圧印加前であっても凝集度が40%以上となった。
5. Results FIG. 5 is a graph showing the relationship between the concentration of arginine ethyl ester and the degree of aggregation. The horizontal axis shows the concentration of arginine ethyl ester, and the vertical axis shows the degree of aggregation. As shown in FIG. 5, the higher the concentration of arginine ethyl ester, the higher the degree of aggregation before and after voltage application, and if the final concentration is 50 mM or more, the degree of aggregation is 40% or more even before voltage application became.
 以上のことから、血漿を含まない溶液(検体)中では、アルギニンエチルエステルは非特異的凝集に対して抑制効果を示さないどころか、逆に非特異的凝集を促進させることがわかった。 From the above, it was found that in a solution (specimen) free of plasma, arginine ethyl ester promotes nonspecific aggregation rather than showing an inhibitory effect on nonspecific aggregation.
 このようにアルギニンエチルエステルが血漿を含まない溶液において非特異的凝集を促進させてしまうのは、これに限定されるわけではないが、以下のメカニズムによるものと考えることができる。 The reason why arginine ethyl ester promotes nonspecific aggregation in a solution containing no plasma can be considered to be due to the following mechanism, although it is not limited thereto.
 血漿を含まない溶液においてアルギニンエチルエステルが存在していないときは、担体粒子に固定化された抗体に水分子が水和しているため、担体粒子はエネルギー的に分散しやすい状態となっている。しかし、アルギニンエチルエステルを加えると、アルギニンエチルエステルが抗体を脱水和するため、担体粒子がエネルギー的に分散しにくい状態となる(すなわち、アルギニンエチルエステルによる塩析)。結果として、アルギニンエチルエステルを加えていないときが一番分散しやすい状態となり、アルギニンエチルエステルを加えるほど、非特異的な凝集が生じるものと考えられる(図5参照)。 When arginine ethyl ester is not present in a solution that does not contain plasma, the carrier particles are likely to be dispersed energetically because the water molecules are hydrated to the antibody immobilized on the carrier particles. . However, when arginine ethyl ester is added, the carrier particles become energetically difficult to disperse as arginine ethyl ester dehydrates the antibody (ie, salting out with arginine ethyl ester). As a result, when arginine ethyl ester is not added, dispersion is most likely to occur, and as arginine ethyl ester is added, nonspecific aggregation is considered to occur (see FIG. 5).
 一方、アルギニンエチルエステルが血漿を含む溶液において非特異的凝集を抑制することができるのは、これに限定されるわけではないが、以下のメカニズムによるものと考えることができる。 On the other hand, arginine ethyl ester can suppress non-specific aggregation in a solution containing plasma, which is not limited thereto, but can be considered to be due to the following mechanism.
 血漿を含む溶液においてアルギニンエチルエステルが存在していないときは、担体粒子は血漿成分(主にタンパク質と考えられる)により非特異的に凝集してしまう。しかし、アルギニンエチルエステルを加えると、アルギニンエチルエステルが担体粒子表面の抗体および血漿成分と相互作用し、静電反発効果が生じるとともに最適な水和構造が形成されるため、担体粒子がエネルギー的に分散しやすい状態となる。結果として、アルギニンエチルエステルを加えていないときが一番分散しにくい状態となり、ある程度の濃度まではアルギニンエチルエステルを加えるほど、非特異的な凝集が抑制されるものと考えられる(図4および後述する図6参照)。ここで、アルギニンエチルエステルにより非特異的な凝集が抑制された溶液にさらにアルギニンエチルエステルを加えると、アルギニンエチルエステルが過剰に存在することになり、結果として血漿を含まない溶液のときと同じようにアルギニンエチルエステルの塩析効果により非特異的な凝集が生じるものと考えられる。 When arginine ethyl ester is not present in a solution containing plasma, carrier particles are nonspecifically aggregated by plasma components (which are mainly considered to be proteins). However, when arginine ethyl ester is added, the arginine ethyl ester interacts with the antibody and plasma components on the surface of the carrier particle, and an electrostatic repulsion effect is formed and an optimal hydration structure is formed, so the carrier particle is energetically It becomes easy to disperse. As a result, when arginine ethyl ester is not added, the state is most difficult to disperse, and it is considered that nonspecific aggregation is suppressed as arginine ethyl ester is added up to a certain level (FIG. 4 and described later) See Figure 6). Here, if arginine ethyl ester is further added to a solution in which nonspecific aggregation is suppressed by arginine ethyl ester, arginine ethyl ester will be present in excess, as a result, as in the case of a solution containing no plasma. It is considered that non-specific aggregation occurs due to the salting out effect of arginine ethyl ester.
 [実施例2]
 [血漿を含む溶液中におけるアルギニンエチルエステルの非特異的凝集を抑制する効果]
 本実施例では、実施例1と異なる抗体(抗ミオグロビン抗体)を使用しても、アルギニンエチルエステルが血漿を含む溶液中で非特異的凝集に対する凝集抑制剤として機能しうるかどうかを確認した。
Example 2
[Effect to suppress nonspecific aggregation of arginine ethyl ester in solution containing plasma]
In this example, even if an antibody (anti-myoglobin antibody) different from Example 1 was used, it was confirmed whether arginine ethyl ester can function as an aggregation inhibitor against nonspecific aggregation in a solution containing plasma.
 1.担体粒子の修飾
 直径2.06μmのポリスチレン粒子の懸濁液(1.5×1010個/mL)を試験管ミキサーを用いて1分間以上攪拌した。また、抗ミオグロビン抗体(自家製)を最終濃度が0.21mg/mLとなるように20mMグリシン緩衝液に溶解させて、抗体溶液を調製した。次いで、攪拌後のポリスチレン粒子の懸濁液を抗体溶液に加え、室温で2時間攪拌し、ポリスチレン粒子の懸濁液(6.0×10個/mL)を作製した。4℃で一晩静置して、ポリスチレン粒子表面に抗体を固定化した。
1. Modification of Carrier Particles A suspension of polystyrene particles with a diameter of 2.06 μm (1.5 × 10 10 / mL) was stirred using a test tube mixer for 1 minute or more. In addition, an anti-myoglobin antibody (home-made) was dissolved in 20 mM glycine buffer to a final concentration of 0.21 mg / mL to prepare an antibody solution. Then, the suspension of polystyrene particles after stirring was added to the antibody solution, and stirred at room temperature for 2 hours to prepare a suspension of polystyrene particles (6.0 × 10 9 particles / mL). The antibody was immobilized on the surface of polystyrene particles by standing overnight at 4 ° C.
 懸濁液を遠心機を用いて6200rpmで15分間遠心した後、上澄みを洗浄用水溶液(グリシン緩衝液20mM,BSA0.1%)に置換した。この操作を3回繰り返し、抗体を固定化した担体粒子を調製した。 The suspension was centrifuged at 6200 rpm for 15 minutes using a centrifuge, and then the supernatant was replaced with a washing aqueous solution (glycine buffer 20 mM, BSA 0.1%). This operation was repeated three times to prepare antibody particles on which carrier particles were immobilized.
 2.本発明の試薬、血漿溶液および混合溶液の調製
 グリシン緩衝液に、トレハロース、アルギニンエチルエステルおよび担体粒子(上記1で調製したもの)を加えて測定用懸濁液(本発明の試薬)を調製した。また、血漿(抗原を含まない)5μLに20mMグリシン緩衝液0.75μLを加えて、血漿溶液を調製した。
2. Preparation of Reagent of the Present Invention, Plasma Solution, and Mixed Solution Trehalose, arginine ethyl ester and carrier particles (as prepared in 1 above) were added to glycine buffer to prepare a suspension for measurement (reagent of the present invention) . A plasma solution was prepared by adding 0.75 μl of 20 mM glycine buffer to 5 μl of plasma (without antigen).
 測定直前に、血漿溶液を測定用懸濁液(本発明の試薬)に加えて、10μLの混合溶液(最終濃度:グリシン緩衝液100mM,トレハロース5%,アルギニンエチルエステル0~200mM,担体粒子6×10個/mL)を調製した。アルギニンエチルエステルの最終濃度は、0mM,100mM,200mMのいずれかとした。混合溶液のpHは、水酸化ナトリウムおよび塩酸を用いてpH8.6に調整した。 Just before measurement, plasma solution is added to the suspension for measurement (the reagent of the present invention), and 10 μL of mixed solution (final concentration: glycine buffer 100 mM, trehalose 5%, arginine ethyl ester 0-200 mM, carrier particles 6 × 10 8 cells / mL) were prepared. The final concentration of arginine ethyl ester was either 0 mM, 100 mM or 200 mM. The pH of the mixed solution was adjusted to pH 8.6 using sodium hydroxide and hydrochloric acid.
 3.デバイスの作製
 実施例1と同様の手順により、実施例1と同様のデバイスを作製した(図1参照)。
3. Production of Device A device similar to Example 1 was produced according to the same procedure as Example 1 (see FIG. 1).
 4.測定
 測定には、実施例1と同様の装置を使用した(図2参照)。
4. Measurement The same apparatus as in Example 1 was used for measurement (see FIG. 2).
 血漿溶液を測定用懸濁液(本発明の試薬)に加えて調製した混合溶液1μLをデバイスの流路の注入口に提供した。血漿溶液を測定用懸濁液(本発明の試薬)に加えてから90秒後に、デバイスの電極間に交流電圧(100kHz,20Vpp,矩形波)を60秒間印加して、担体粒子をパールチェーン化させた。電圧を印加する前、電圧を印加している間、電圧の印加を停止してから30秒後に、流路内の担体粒子の凝集状態を観察し、それぞれの時点における凝集度を算出した(n=1)。 The plasma solution was added to the suspension for measurement (the reagent of the present invention), and 1 μL of the mixed solution prepared was provided to the inlet of the channel of the device. 90 seconds after adding the plasma solution to the suspension for measurement (the reagent of the present invention), an AC voltage (100 kHz, 20 Vpp, square wave) is applied for 60 seconds between the electrodes of the device to pearlize the carrier particles I did. Before applying the voltage, while applying the voltage, 30 seconds after stopping the application of the voltage, the aggregation state of the carrier particles in the flow channel was observed, and the degree of aggregation at each time point was calculated (n = 1).
 5.結果
 図6は、アルギニンエチルエステルの濃度と凝集度との関係を示すグラフである。横軸はアルギニンエチルエステルの濃度を示し、縦軸は凝集度を示している。図6に示すように、アルギニンエチルエステルの濃度が高いほど、電圧印加前と印加後の凝集度が低下し、最終濃度を100mM以上にすると電圧印加前と印加後の凝集度が40%未満となった。特に、アルギニンエチルエステルの濃度を200mMにすると電圧印加前と印加後の凝集度が20%未満となった。
5. Results FIG. 6 is a graph showing the relationship between the concentration of arginine ethyl ester and the degree of aggregation. The horizontal axis shows the concentration of arginine ethyl ester, and the vertical axis shows the degree of aggregation. As shown in FIG. 6, the higher the concentration of arginine ethyl ester, the lower the degree of aggregation before and after voltage application, and when the final concentration is 100 mM or more, the degree of aggregation before and after voltage application is less than 40%. became. In particular, when the concentration of arginine ethyl ester is 200 mM, the degree of aggregation before and after the application of voltage becomes less than 20%.
 以上のことから、抗体の種類を変更しても実施例1の結果と同様に、アルギニンエチルエステルは血漿を高い割合(50%)で含む溶液(検体)中において非特異的凝集に対して高い抑制効果を示すことがわかった。 From the above, even if the type of antibody is changed, arginine ethyl ester is high against nonspecific aggregation in a solution (specimen) containing a high proportion (50%) of plasma as in the result of Example 1. It turned out to show the suppression effect.
 [比較例2]
 [血漿を含まない溶液中におけるアルギニンエチルエステルの非特異的凝集を抑制する効果]
 本比較例では、実施例2と同じ抗体(抗ミオグロビン抗体)を用いて、アルギニンエチルエステルが血漿を含まない溶液中において非特異的凝集に対する凝集抑制剤として機能しうるかどうかを確認した。
Comparative Example 2
[Effect of suppressing nonspecific aggregation of arginine ethyl ester in a solution not containing plasma]
In this comparative example, the same antibody (anti-myoglobin antibody) as in Example 2 was used to confirm whether arginine ethyl ester can function as an aggregation inhibitor against nonspecific aggregation in a solution containing no plasma.
 1.担体粒子の修飾
 実施例2と同様の手順により、実施例2と同様の担体粒子を調製した。
1. Modification of Carrier Particles In the same manner as in Example 2, carrier particles similar to Example 2 were prepared.
 2.混合溶液の調製
 グリシン緩衝液に、トレハロース、アルギニンエチルエステルおよび担体粒子(上記1で作製したもの)を加えて測定用懸濁液を調製し、さらに測定直前に20mMグリシン緩衝液4.75μLを加えて、10μLの混合溶液(最終濃度:グリシン緩衝液100mM,トレハロース40%,アルギニンエチルエステル0~200mM,担体粒子6×10個/mL)を調製した。アルギニンエチルエステルの最終濃度は、0mM,100mM,200mMのいずれかとした。混合溶液のpHは、水酸化ナトリウムを用いてpH8.6に調整した。
2. Preparation of mixed solution Trehalose, arginine ethyl ester and carrier particles (as prepared in 1 above) are added to glycine buffer to prepare a suspension for measurement, and 4.75 μl of 20 mM glycine buffer is added just before measurement. Then, 10 μL of mixed solution (final concentration: glycine buffer 100 mM, trehalose 40%, arginine ethyl ester 0-200 mM, carrier particles 6 × 10 8 / mL) was prepared. The final concentration of arginine ethyl ester was either 0 mM, 100 mM or 200 mM. The pH of the mixed solution was adjusted to pH 8.6 using sodium hydroxide.
 3.デバイスの作製
 実施例1と同様の手順により、実施例1と同様のデバイスを作製した(図1参照)。
3. Production of Device A device similar to Example 1 was produced according to the same procedure as Example 1 (see FIG. 1).
 4.測定
 測定には、実施例1と同様の装置を使用した(図2参照)。
4. Measurement The same apparatus as in Example 1 was used for measurement (see FIG. 2).
 グリシン緩衝液を測定用懸濁液に加えて調製した混合溶液1μLをデバイスの流路の注入口に提供した。グリシン緩衝液を測定用懸濁液に加えてから90秒後に、デバイスの電極間に交流電圧(100kHz,20Vpp,矩形波)を60秒間印加して、担体粒子をパールチェーン化させた。電圧を印加する前、電圧を印加している間、電圧の印加を停止してから30秒後に、流路内の担体粒子の凝集状態を観察し、それぞれの時点における凝集度を算出した(n=1)。 Glycine buffer was added to the suspension for measurement, and 1 μL of the mixed solution prepared was provided to the inlet of the channel of the device. 90 seconds after adding the glycine buffer to the suspension for measurement, an AC voltage (100 kHz, 20 Vpp, square wave) was applied between the electrodes of the device for 60 seconds to pearlize the carrier particles. Before applying the voltage, while applying the voltage, 30 seconds after stopping the application of the voltage, the aggregation state of the carrier particles in the flow channel was observed, and the degree of aggregation at each time point was calculated (n = 1).
 5.結果
 図7は、アルギニンエチルエステルの濃度と凝集度との関係を示すグラフである。横軸はアルギニンエチルエステルの濃度を示し、縦軸は凝集度を示している。図7に示すように、アルギニンエチルエステルの濃度が高いほど、電圧印加前と印加後の凝集度が高くなった。
5. Results FIG. 7 is a graph showing the relationship between the concentration of arginine ethyl ester and the degree of aggregation. The horizontal axis shows the concentration of arginine ethyl ester, and the vertical axis shows the degree of aggregation. As shown in FIG. 7, as the concentration of arginine ethyl ester is higher, the degree of aggregation before and after the voltage application is higher.
 以上のことから、抗体の種類を変更しても比較例1の結果と同様に、血漿を含まない溶液(検体)中では、アルギニンエチルエステルは非特異的凝集に対する凝集抑制効果を示さないどころか、逆に非特異的凝集を促進させることがわかった。 From the above, even if the type of antibody is changed, as in the result of Comparative Example 1, in a solution (specimen) free of plasma, arginine ethyl ester does not show an aggregation inhibitory effect on nonspecific aggregation, Conversely, it was found to promote nonspecific aggregation.
 [実施例3]
 [アルギニンエチルエステルを用いたパルスイムノアッセイ法による測定]
 本実施例では、非特異的凝集に対する凝集抑制剤としてのアルギニンエチルエステルを検体(血漿)に加えた上で、パルスイムノアッセイ法による測定を適切に行うことが可能であるかどうかを確認した。本実施例では、抗HbA1c抗体を固定化したポリスチレン粒子を担体粒子として用いた。また、血漿(検体)に抗原(自家製の擬似抗原)を添加した。
[Example 3]
[Measurement by pulse immunoassay method using arginine ethyl ester]
In this example, after adding arginine ethyl ester as an aggregation inhibitor against nonspecific aggregation to a sample (plasma), it was confirmed whether or not measurement by the pulse immunoassay method can be appropriately performed. In this example, polystyrene particles on which an anti-HbA1c antibody was immobilized was used as a carrier particle. In addition, antigen (home-made pseudo antigen) was added to plasma (sample).
 1.担体粒子の修飾
 実施例1と同様の手順により、実施例1と同様の担体粒子を調製した。
1. Modification of Carrier Particles In the same manner as in Example 1, carrier particles similar to Example 1 were prepared.
 2.本発明の試薬、血漿溶液および混合溶液の調製
 グリシン緩衝液(pH8.6)に、トレハロース(試薬安定化剤、賦形剤)、アルギニンエチルエステルおよび担体粒子(上記1で調製したもの)を加えて測定用懸濁液(本発明の試薬)を10μL調製した。最終濃度は、グリシン緩衝液100mM,トレハロース5%,アルギニンエチルエステル100~500mM,担体粒子6×10個/mLとした。測定用懸濁液(本発明の試薬)のpHは、水酸化ナトリウムおよび塩酸を用いてpH8.6に調整した。次いで、真空凍結乾燥機(株式会社宝製作所)を用いて、得られた測定用懸濁液(本発明の試薬)を凍結乾燥した。
2. Preparation of Reagent of the Present Invention, Plasma Solution and Mixed Solution To glycine buffer (pH 8.6), add trehalose (reagent stabilizer, excipient), arginine ethyl ester and carrier particles (prepared in 1 above) 10 μL of the suspension for measurement (the reagent of the present invention) was prepared. The final concentration was 100 mM glycine buffer, 5% trehalose, 100 to 500 mM arginine ethyl ester, and 6 × 10 8 carrier particles / mL. The pH of the measurement suspension (reagent of the present invention) was adjusted to pH 8.6 using sodium hydroxide and hydrochloric acid. Subsequently, the obtained suspension for measurement (the reagent of the present invention) was lyophilized using a vacuum freeze drier (Takara Co., Ltd.).
 また、血漿に擬似抗原としてチキンγ-グロブリン(CGG)1分子に31分子のHbA1cエピトープを結合させたCGGコンジュゲート(特開2003-344397号公報参照;株式会社ペプチド研究所)を加えて、血漿溶液を調製した。血漿溶液中の擬似抗原の濃度は、1.0×10-15M,6.7×10-12M,6.7×10-10M,6.7×10-9Mのいずれかとした。 In addition, a CGG conjugate (see Japanese Patent Laid-Open No. 2003-344397; peptide research corporation) in which 31 molecules of HbA1c epitope are bound to 1 molecule of chicken γ-globulin (CGG) as a pseudo antigen as plasma antigen is added to plasma. The solution was prepared. The concentration of the mock antigen in the plasma solution was either 1.0 × 10 −15 M, 6.7 × 10 −12 M, 6.7 × 10 −10 M, or 6.7 × 10 −9 M.
 測定直前に、測定用懸濁液(本発明の試薬)を凍結乾燥したもの(測定用懸濁液10μL分)に擬似抗原を含む血漿溶液10μLを加えて、混合溶液(最終濃度:グリシン緩衝液100mM,トレハロース5%,アルギニンエチルエステル100~500mM,担体粒子6×10個/mL,擬似抗原1.0×10-15~6.7×10-9M)を調製した。混合溶液のpHは、水酸化ナトリウムおよび塩酸を用いてpH8.6に調整した。 Just before measurement, 10 μL of a plasma solution containing a pseudoantigen is added to a lyophilized suspension (the reagent of the present invention) (10 μL of the suspension for measurement) to obtain a mixed solution (final concentration: glycine buffer) 100 mM, trehalose 5%, arginine ethyl ester 100-500 mM, carrier particles 6 × 10 8 / mL, pseudo antigen 1.0 × 10 −15 to 6.7 × 10 −9 M) were prepared. The pH of the mixed solution was adjusted to pH 8.6 using sodium hydroxide and hydrochloric acid.
 3.デバイスの作製
 実施例1と同様の手順により、実施例1と同様のデバイスを作製した(図1参照)。
3. Production of Device A device similar to Example 1 was produced according to the same procedure as Example 1 (see FIG. 1).
 4.測定
 実施例1と同様の装置(図2参照)を使用して実施例1と同様の手順で測定し、擬似抗原の濃度およびアルギニンエチルエステルの濃度がそれぞれ異なる検体について電圧印加後の凝集度を算出した。
4. Measurement The measurement was carried out in the same manner as in Example 1 using the same apparatus as in Example 1 (see FIG. 2), and the degree of aggregation after voltage application was applied to samples in which the concentration of the pseudoantigen and the concentration of arginine ethyl ester were different. Calculated.
 5.結果
 図8は、パルスイムノアッセイ法による擬似抗原の測定結果を示すグラフである。横軸は擬似抗原の濃度を示し、縦軸は凝集度を示している。丸印(●)はアルギニンエチルエステルの濃度が100mMのときの結果を示し、ひし形(◆)はアルギニンエチルエステルの濃度が200mMのときの結果を示し、四角(■)はアルギニンエチルエステルの濃度が300mMのときの結果を示し、三角(▲)はアルギニンエチルエステルの濃度が400mMのときの結果を示し、逆三角(▼)はアルギニンエチルエステルの濃度が500mMのときの結果を示している。図8に示すように、アルギニンエチルエステルの濃度に関係なく、擬似抗原の濃度が低いときは凝集度が低く、擬似抗原の濃度が高いほど凝集度が高くなるのが観察された。このことは、アルギニンエチルエステルを加えた系でもパルスイムノアッセイ法により検出対象物の濃度を測定できることを意味する。また、アルギニンエチルエステルの濃度が高いほど担体粒子の非特異的凝集が抑制されているのも観察された。
5. Results FIG. 8 is a graph showing the results of measurement of pseudoantigens by pulse immunoassay. The horizontal axis shows the concentration of the mock antigen, and the vertical axis shows the degree of aggregation. Circles (●) indicate the results when the concentration of arginine ethyl ester is 100 mM, diamonds (◆) indicate the results when the concentration of arginine ethyl ester is 200 mM, and squares (■) indicate the concentration of arginine ethyl ester The results at 300 mM are shown, the triangle (▲) shows the results at a concentration of arginine ethyl ester of 400 mM, and the inverse triangles (▼) shows the results at a concentration of arginine ethyl ester of 500 mM. As shown in FIG. 8, regardless of the concentration of arginine ethyl ester, it was observed that the degree of aggregation is low when the concentration of the pseudo antigen is low, and the aggregation degree is higher as the concentration of the pseudo antigen is higher. This means that even in a system to which arginine ethyl ester is added, the concentration of an object to be detected can be measured by a pulse immunoassay method. It was also observed that the higher the concentration of arginine ethyl ester, the more non-specific aggregation of the carrier particles is suppressed.
 以上のことから、アルギニンエチルエステルは血漿を高い割合(100%)で含む混合溶液においても非特異的凝集に対する抑制効果を示し、かつ、アルギニンエチルエステルを加えた系でもパルスイムノアッセイ法による測定を行いうることがわかった。 From the above, arginine ethyl ester has an inhibitory effect on non-specific aggregation even in a mixed solution containing a high proportion (100%) of plasma, and measurement by a pulse immunoassay method is also performed in a system to which arginine ethyl ester is added. It turned out that it was possible.
 [参考実験]
 [担体粒子の測定精度についての分光光度計と光学顕微鏡との比較]
 本実験では、担体粒子の測定精度について、分光光度計(紫外可視光分光光度計システム)と光学顕微鏡(倒立型システム顕微鏡)とを比較した。
[Reference experiment]
[Comparison of spectrophotometer and light microscope for measurement accuracy of carrier particles]
In this experiment, a spectrophotometer (ultraviolet visible light spectrophotometer system) and an optical microscope (inverted system microscope) were compared for measurement accuracy of carrier particles.
 1.担体粒子の水懸濁液の調製
 ポリスチレン粒子(Bangs Laboratories社)の水懸濁液(10重量%)を試験管ミキサーを用いて1分間以上攪拌した。ポリスチレン粒子は、直径2.06μm,1.04μm,0.50μmのものを用いた。次いで、攪拌後のポリスチレン粒子の水懸濁液を超純水で希釈し、必要に応じて混合することで、以下の表に示すI~VIIの懸濁液を調製した。
Figure JPOXMLDOC01-appb-T000001
1. Preparation of water suspension of carrier particles A water suspension (10% by weight) of polystyrene particles (Bangs Laboratories) was stirred using a test tube mixer for 1 minute or more. The polystyrene particles used had diameters of 2.06 μm, 1.04 μm, and 0.50 μm. Next, the suspension of polystyrene particles in water after stirring was diluted with ultrapure water, and mixed as needed to prepare suspensions of I to VII shown in the following table.
Figure JPOXMLDOC01-appb-T000001
 2.測定
 上記I~VIIの懸濁液の吸光度を紫外可視光分光光度計システム(UV-1600PC;株式会社島津製作所)を用いて測定した。また、上記I~VIIの懸濁液の分散状態を倒立型システム顕微鏡を用いて観察した。
2. Measurement The absorbance of the suspension of the above I to VII was measured using a UV-visible spectrophotometer system (UV-1600 PC; Shimadzu Corporation). Further, the dispersion state of the above-mentioned suspensions I to VII was observed using an inverted system microscope.
 3.結果
 図9は、各懸濁液の可視光領域における吸光度を示すグラフである。横軸は波長を示し、縦軸は吸光度を示している。
3. Results FIG. 9 is a graph showing the absorbance of each suspension in the visible light region. The horizontal axis indicates the wavelength, and the vertical axis indicates the absorbance.
 図9に示すように、直径0.5μmの粒子を含む懸濁液(I:1.8×10個/mL)では、波長に対する依存性が観察されたが、直径1μmの粒子を含む懸濁液(II:2.7×10個/mL)および直径2μmの粒子を含む懸濁液(III:2.8×10個/mL)では、波長に対する依存性が観察されなかった。また、直径1μmの粒子と直径2μmの粒子を同重量含む懸濁液(IV)でも、波長に対する依存性が観察されなかった。この懸濁液(IV)を光学顕微鏡で観察したところ、直径1μmの粒子と直径2μmの粒子を容易に区別することができ、またこれらの粒子が凝集せずに分散していることを確認することができた。 As shown in FIG. 9, in the suspension containing particles of 0.5 μm in diameter (I: 1.8 × 10 9 / mL), the dependency on the wavelength was observed, but the suspension containing particles of 1 μm in diameter was used. In the suspension (II: 2.7 × 10 8 particles / mL) and the suspension containing particles 2 μm in diameter (III: 2.8 × 10 7 particles / mL), no dependence on the wavelength was observed. In addition, even in the case of a suspension (IV) containing particles of 1 μm in diameter and particles of 2 μm in diameter, no dependence on the wavelength was observed. When the suspension (IV) is observed with an optical microscope, particles of 1 μm in diameter and particles of 2 μm in diameter can be easily distinguished, and it is confirmed that these particles are dispersed without aggregation. I was able to.
 また、直径0.5μmの粒子と直径1μmの粒子を同重量含む懸濁液(V)だけでなく、直径0.5μmの粒子と直径1μmの粒子を9:1の割合で含む懸濁液(VI)においても、波長に対する依存性は観察されなかった。しかし、直径0.5μmの粒子と直径1μmの粒子を99:1の割合で含む懸濁液(VII)では、懸濁液(I)とほぼ同様の波長依存性が観察された。この懸濁液(VII)における直径0.5μmの粒子と直径1μmの粒子の濃度は、それぞれ1.8×10個/mLと2.7×10個/mLであった。 Also, not only a suspension (V) containing particles of 0.5 μm in diameter and particles of 1 μm in diameter but also the same weight, and a suspension containing particles of 0.5 μm in diameter and 1 μm in diameter at a ratio Also in VI), no dependence on the wavelength was observed. However, in the suspension (VII) containing particles of 0.5 μm in diameter and particles of 1 μm in diameter at a ratio of 99: 1, wavelength dependency almost similar to that of the suspension (I) was observed. The concentration of particles of 0.5 μm in diameter and particles of 1 μm in diameter in this suspension (VII) was 1.8 × 10 9 / mL and 2.7 × 10 6 / mL, respectively.
 懸濁液(I)と懸濁液(VII)の波長650nmにおける吸光度を測定したところ、以下の表に示すように0.0064の差があったが、有意な差ではなかった。このことから、直径0.5μmの粒子を含む懸濁液(I)において少数の粒子が凝集しても(2.7×10個/mLの濃度で凝集体が生じても)、分光光度計による測定ではこの凝集を検出できないことが推測される。
Figure JPOXMLDOC01-appb-T000002
When the absorbance at a wavelength of 650 nm of the suspensions (I) and (VII) was measured, there was a difference of 0.0064 as shown in the following table, but this was not a significant difference. From this, even if a small number of particles aggregate in the suspension (I) containing particles with a diameter of 0.5 μm (even if aggregates occur at a concentration of 2.7 × 10 6 / mL), the spectrophotometric It is speculated that this aggregation can not be detected by measurement with a meter.
Figure JPOXMLDOC01-appb-T000002
 一方、懸濁液(VII)を光学顕微鏡で観察したところ、直径0.5μmの粒子と直径1μmの粒子を容易に区別することができ、またこれらの粒子が凝集せずに分散していることを確認することができた。図10は懸濁液(VII)の光学顕微鏡像を示す写真であり、(B)は(A)の写真を撮影してから数秒後に撮影した写真である。いずれの写真においても、直径1μmの粒子(a,bの矢じりで示す)が散在しており、その周囲に直径0.5μmの粒子が隙間を埋め尽くすくらいの密度で存在している。また、直径1μmの粒子(a,bの矢じりで示す)は矢印の方向に移動していた(図10A,図10Bを比較参照)。このように、光学顕微鏡で観察することで、直径0.5μmの粒子と直径1μmの粒子を容易に区別することができ、直径0.5μmの粒子を含む懸濁液(I)において少数の粒子が凝集しても(2.7×10個/mLの濃度で凝集体が生じても)この凝集を検出することができる。 On the other hand, when the suspension (VII) is observed by an optical microscope, particles of 0.5 μm in diameter and particles of 1 μm in diameter can be easily distinguished, and these particles are dispersed without aggregation. I was able to confirm. FIG. 10 is a photograph showing an optical microscope image of the suspension (VII), and (B) is a photograph taken several seconds after the photograph of (A) was taken. In each of the photographs, particles of 1 μm in diameter (indicated by arrowheads of a and b) are scattered, and particles of 0.5 μm in diameter are present around the particles at a density sufficient to fill the gap. In addition, particles with a diameter of 1 μm (indicated by arrowheads of a and b) were moving in the direction of the arrow (see FIGS. 10A and 10B for comparison). Thus, by observing with an optical microscope, particles with a diameter of 0.5 μm and particles with a diameter of 1 μm can be easily distinguished, and a small number of particles in the suspension (I) containing particles with a diameter of 0.5 μm This aggregation can be detected even if it aggregates (even if aggregates occur at a concentration of 2.7 × 10 6 cells / mL).
 以上のことから、分光光度計による吸光度の測定では、担体粒子の1つ1つが凝集しているかどうかを検出することは困難であるが、光学顕微鏡を用いることで担体粒子の1つ1つが凝集しているかどうかまで検出しうることがわかる。 From the above, it is difficult to detect whether or not each carrier particle is aggregated in the measurement of absorbance by a spectrophotometer, but using the optical microscope, each carrier particle is aggregated It can be seen that it can be detected up to
 本出願は、2008年2月22日出願の特願2008-041885に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。 This application claims the priority based on Japanese Patent Application No. 2008-041885 filed on February 22, 2008. The contents described in the application specification and drawings are all incorporated herein by reference.
 本発明の検出方法および検出試薬は、血液や血漿を検体としてパルスイムノアッセイ法による検査を行う方法およびそれに用いる試薬として有用である。 The detection method and detection reagent of the present invention are useful as a method of performing a test by pulse immunoassay using blood or plasma as a sample and a reagent used therefor.
 [符号の説明]
 100 デバイス
 110 ガラス基板
 120 電極
 130 PETフィルム
 140 カバーガラス
 150 流路
 160 注入口
 170 排出口
 180 交流電源
 200 ファンクションジェネレータ
 210 バイポーラ電源
 220 光学顕微鏡
 230 カメラ
 240 モニタ
 300 担体粒子
[Explanation of the code]
100 Device 110 Glass Substrate 120 Electrode 130 PET Film 140 Cover Glass 150 Channel 160 Inlet 170 Outlet 180 AC Power Supply 200 Function Generator 210 Bipolar Power Supply 220 Optical Microscope 230 Camera 240 Monitor 300 Carrier Particles

Claims (13)

  1.  血漿に含まれる成分をパルスイムノアッセイ法で検出するための試薬であって、
     前記成分に特異的に結合するタンパク質をその表面に固定化されている、直径0.5~100μmの担体粒子と、
     アルギニンエチルエステルと、
     を含む試薬。
    A reagent for detecting components contained in plasma by pulse immunoassay,
    A carrier particle having a diameter of 0.5 to 100 μm, on the surface of which a protein that specifically binds to the component is immobilized;
    Arginine ethyl ester,
    Containing reagents.
  2.  前記担体粒子の直径は0.5~10μmである、請求項1に記載の試薬。 The reagent according to claim 1, wherein the diameter of the carrier particle is 0.5 to 10 μm.
  3.  前記担体粒子は、ラテックス粒子、セラミックス粒子、シリカ粒子、磁性粒子、金属粒子、金属コート粒子、ベントナイト、カオリン、金コロイド、赤血球細胞、白血球細胞、血小板、ゼラチン、リポソーム、花粉または微生物である、請求項1に記載の試薬。 The carrier particles are latex particles, ceramic particles, silica particles, magnetic particles, metal particles, metal coated particles, bentonite, kaolin, gold colloid, red blood cells, white blood cells, platelets, gelatin, liposomes, pollen or microorganisms. Item 2. The reagent according to item 1.
  4.  前記タンパク質は抗体である、請求項1に記載の試薬。 The reagent according to claim 1, wherein the protein is an antibody.
  5.  血漿に含まれる成分を検出する方法であって、
     前記成分に特異的に結合するタンパク質をその表面に固定化されている直径0.5~100μmの担体粒子と、アルギニンエチルエステルとを含む試薬を準備するステップと、
     血漿を含む検体を前記試薬に加えて、混合溶液を調製するステップと、
     前記混合溶液に交流電圧を印加して、前記担体粒子をパールチェーン化させるステップと、
     を含む検出方法。
    A method of detecting a component contained in plasma, comprising:
    Providing a reagent comprising carrier particles of 0.5 to 100 μm in diameter immobilized on the surface of a protein that specifically binds to the component, and arginine ethyl ester;
    Adding a sample containing plasma to the reagent to prepare a mixed solution;
    Applying an alternating voltage to the mixed solution to pearlize the carrier particles;
    Detection methods including:
  6.  前記交流電圧の印加を停止した後に、前記担体粒子の凝集状態を画像認識または粒度分布計を用いて観察するステップをさらに含む、請求項5に記載の検出方法。 The detection method according to claim 5, further comprising the step of observing the aggregation state of the carrier particles by using an image recognition or a particle size distribution meter after stopping the application of the AC voltage.
  7.  前記混合溶液における前記アルギニンエチルエステルの濃度は、100~500mMである、請求項5に記載の検出方法。 The detection method according to claim 5, wherein the concentration of arginine ethyl ester in the mixed solution is 100 to 500 mM.
  8.  前記担体粒子の直径は0.5~10μmである、請求項5に記載の検出方法。 The detection method according to claim 5, wherein the diameter of the carrier particles is 0.5 to 10 μm.
  9.  前記担体粒子は、ラテックス粒子、セラミックス粒子、シリカ粒子、磁性粒子、金属粒子、金属コート粒子、ベントナイト、カオリン、金コロイド、赤血球細胞、白血球細胞、血小板、ゼラチン、リポソーム、花粉または微生物である、請求項5に記載の検出方法。 The carrier particles are latex particles, ceramic particles, silica particles, magnetic particles, metal particles, metal coated particles, bentonite, kaolin, gold colloid, red blood cells, white blood cells, platelets, gelatin, liposomes, pollen or microorganisms. A detection method according to item 5.
  10.  前記タンパク質は抗体である、請求項5に記載の検出方法。 The detection method according to claim 5, wherein the protein is an antibody.
  11.  基板と、前記基板上に配置された一対の電極と、前記一対の電極の間に設けられた流路とを有するパルスイムノアッセイ法用の検出デバイスであって、
     検出対象の成分に特異的に結合するタンパク質をその表面に固定化されている、直径0.5~100μmの担体粒子と、アルギニンエチルエステルとを含む試薬の固形物を前記流路内に有する、検出デバイス。
    A detection device for a pulse immunoassay method, comprising: a substrate, a pair of electrodes disposed on the substrate, and a flow channel provided between the pair of electrodes,
    A solid of a reagent containing 0.5 to 100 μm in diameter of carrier particles immobilized on the surface of a protein that specifically binds to a component to be detected, and arginine ethyl ester is contained in the channel Detection device.
  12.  前記試薬の固形物は、前記試薬の凍結乾燥物である、請求項11に記載の検出デバイス。 The detection device according to claim 11, wherein the solid substance of the reagent is a lyophilizate of the reagent.
  13.  前記試薬の固形物は、前記試薬の風乾乾燥物である、請求項11に記載の検出デバイス。 The detection device according to claim 11, wherein the solid substance of the reagent is an air-dried product of the reagent.
PCT/JP2009/000537 2008-02-22 2009-02-10 Method of detecting component contained in plasma and reagent and detection device to be used therein WO2009104369A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008041885 2008-02-22
JP2008-041885 2008-02-22

Publications (1)

Publication Number Publication Date
WO2009104369A1 true WO2009104369A1 (en) 2009-08-27

Family

ID=40985258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000537 WO2009104369A1 (en) 2008-02-22 2009-02-10 Method of detecting component contained in plasma and reagent and detection device to be used therein

Country Status (1)

Country Link
WO (1) WO2009104369A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2287609A1 (en) * 2008-05-09 2011-02-23 ARKRAY, Inc. Method for production of insoluble carrier particle, insoluble carrier particle, measurement reagent, sample analysis tool, and immunology turbidimetric method
CN105203747A (en) * 2015-09-22 2015-12-30 宁波瑞源生物科技有限公司 Method for closing labeled antibody fluorescent particles through arginine
JP2017222654A (en) * 2011-07-19 2017-12-21 中外製薬株式会社 Stable protein-containing formulation containing arginine amide or analogue thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004108850A (en) * 2002-09-17 2004-04-08 Eiken Chem Co Ltd Method for stabilizing protein
WO2004036194A1 (en) * 2002-08-02 2004-04-29 Nec Corporation Analytical chip and analytical apparatus
WO2004111649A1 (en) * 2003-06-16 2004-12-23 Pulse-Immunotech Corporation Method for measuring substance having affinity
WO2007037410A1 (en) * 2005-09-30 2007-04-05 Pulse-Immunotech Corporation Method of assaying substance with affinity in sample including step of destroying blood-cell ingredient

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004036194A1 (en) * 2002-08-02 2004-04-29 Nec Corporation Analytical chip and analytical apparatus
JP2004108850A (en) * 2002-09-17 2004-04-08 Eiken Chem Co Ltd Method for stabilizing protein
WO2004111649A1 (en) * 2003-06-16 2004-12-23 Pulse-Immunotech Corporation Method for measuring substance having affinity
WO2007037410A1 (en) * 2005-09-30 2007-04-05 Pulse-Immunotech Corporation Method of assaying substance with affinity in sample including step of destroying blood-cell ingredient

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2287609A1 (en) * 2008-05-09 2011-02-23 ARKRAY, Inc. Method for production of insoluble carrier particle, insoluble carrier particle, measurement reagent, sample analysis tool, and immunology turbidimetric method
EP2287609A4 (en) * 2008-05-09 2011-05-04 Arkray Inc Method for production of insoluble carrier particle, insoluble carrier particle, measurement reagent, sample analysis tool, and immunology turbidimetric method
US9182391B2 (en) 2008-05-09 2015-11-10 Arkray, Inc. Method of producing insoluble carrier particles, insoluble carrier particles, measurement reagent, specimen analyzing tool, and immunoturbidimetric assay
JP2017222654A (en) * 2011-07-19 2017-12-21 中外製薬株式会社 Stable protein-containing formulation containing arginine amide or analogue thereof
US10898572B2 (en) 2011-07-19 2021-01-26 Chugai Seiyaku Kabushiki Kaisha Stable protein-containing preparation containing argininamide or analogous compound thereof
CN105203747A (en) * 2015-09-22 2015-12-30 宁波瑞源生物科技有限公司 Method for closing labeled antibody fluorescent particles through arginine

Similar Documents

Publication Publication Date Title
EP1088592A2 (en) Method for separating substances using dielectrophoretic forces
CN108982834B (en) Method for detecting biological molecules by using nano enzyme immune sandwich novel technology
EP2287609B1 (en) Method for production of insoluble carrier particle, insoluble carrier particle, measurement reagent, sample analysis tool, and immunology turbidimetric method
EP1930726A1 (en) Method of assaying substance with affinity in sample including step of destroying blood-cell ingredient
HU225636B1 (en) Method for detecting analyte(s) in fluid
EP3054283A1 (en) Method for detecting target substance
WO2009104369A1 (en) Method of detecting component contained in plasma and reagent and detection device to be used therein
Peula-García et al. Interaction of bacterial endotoxine (lipopolysaccharide) with latex particles: application to latex agglutination immunoassays
JP2010164307A (en) Method and device for detecting component contained in solution
JP2005077301A (en) Immunological detection carrier and measuring method
JP2007521494A (en) Detection of molecular interaction
EP1930725A1 (en) Method of assaying substance with affinity in sample containing blood-cell ingredient
CA2529362A1 (en) Method for measuring substance having affinity
WO2005090998A1 (en) Agitating method, cell, measuring equipment using the cell, and measuring method
WO2011129220A1 (en) Test instrument for measuring analyte in sample, and method for measuring analyte using same
EP1724583A1 (en) Method of measuring affinity substance
JP2000046828A (en) Immunoassay reagent and production thereof
JP2003344410A (en) Immuno-measurement reagent and immuno-measurement method
WO2009128209A1 (en) Detection method and detection system
JP7036979B1 (en) Inspection method
TWI497065B (en) Apparatus and method for measuring mixture using dielectrophoresis force
JP4092374B2 (en) Affinity substance measurement method
WO2022210307A1 (en) Test method
JP4496349B2 (en) Affinity substance measuring device
JP2009069070A (en) Detecting method of target material, and kit for detection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09712235

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09712235

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP