WO2009104350A1 - Optical fiber and mode scrambler provided therewith - Google Patents

Optical fiber and mode scrambler provided therewith Download PDF

Info

Publication number
WO2009104350A1
WO2009104350A1 PCT/JP2009/000046 JP2009000046W WO2009104350A1 WO 2009104350 A1 WO2009104350 A1 WO 2009104350A1 JP 2009000046 W JP2009000046 W JP 2009000046W WO 2009104350 A1 WO2009104350 A1 WO 2009104350A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
fiber
optical fiber
fiber portion
section
Prior art date
Application number
PCT/JP2009/000046
Other languages
French (fr)
Japanese (ja)
Inventor
中井忠彦
木下貴陽
佐竹武史
阿久津剛二
山崎元彦
Original Assignee
三菱電線工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電線工業株式会社 filed Critical 三菱電線工業株式会社
Publication of WO2009104350A1 publication Critical patent/WO2009104350A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/14Mode converters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2551Splicing of light guides, e.g. by fusion or bonding using thermal methods, e.g. fusion welding by arc discharge, laser beam, plasma torch

Definitions

  • the present invention relates to an optical fiber and a mode scrambler including the optical fiber, and more particularly to an optical fiber for laser guide for transmitting laser light.
  • Laser guides are widely used in various processing devices as optical fiber parts for transmitting laser light with high energy density.
  • the irradiation intensity at the irradiation spot irradiated with the laser light is uniform.
  • the distribution of the irradiation intensity at the laser light irradiation spot is a Gaussian distribution. Therefore, it is necessary to perform a mode scramble process in order to obtain a uniform irradiation intensity at the irradiation spot.
  • the mode scramble process is a process for inducing the mutual exchange of the optical power between the modes in the light guide path by, for example, winding the optical fiber within the range of the allowable bending radius.
  • the optical fiber is broken to wind the optical fiber or the apparatus (mode scrambler) becomes large, and even if the optical fiber is wound several hundred meters, it is sufficiently uniform. Since a sufficient irradiation intensity cannot be obtained, the processing efficiency is lowered.
  • Patent Document 1 discloses a light guide fiber in which a cross section of a core member having a light propagation function is formed in a rectangular shape. Patent Document 1 describes that the light guide fiber is configured to have a light intensity distribution uniformizing function. That is, it is widely known that an optical fiber including a core having a rectangular cross section can achieve uniform irradiation intensity at a laser beam irradiation spot. Japanese Patent Publication No. 3-49591
  • the shape of the cross section of the core Since the laser beam having a uniform irradiation intensity is imaged by the imaging lens and irradiated on the irradiated surface in a rectangular shape, the spot shape of the laser beam on the irradiated surface is necessarily rectangular. Therefore, for example, when irradiating the rectangular laser beam while scanning a relatively large circular surface to be irradiated, the laser beam is surely irradiated to the peripheral portion of the surface to be irradiated. In addition, since it is necessary to irradiate the laser beam to the outside of the irradiated surface, the processing efficiency may be reduced.
  • the present invention has been made in view of such a point, and an object of the present invention is to irradiate the irradiated surface with laser light having a uniform irradiation intensity in a non-rectangular shape.
  • the present invention provides a first fiber portion having a first core made of quartz having a rectangular cross section and a first made of quartz having a non-rectangular cross section.
  • a second fiber portion having two cores is fusion-connected.
  • an optical fiber according to the present invention includes a first quartz core formed in a rectangular shape having a rectangular or square cross section, and a first cladding formed so as to cover the first core.
  • the second fiber portion is fused and connected to the first fiber portion so that the laser light propagated through the first core is incident on the second core.
  • the first fiber portion since the cross section of the first core is formed in a rectangular shape, the first fiber portion enters the second fiber portion from the fiber end on the first fiber portion side.
  • the irradiation intensity of the laser beam transmitted to is uniform.
  • the cross section of the second core is formed in a non-rectangular shape, so that the laser light with uniform irradiation intensity from the first fiber portion is rectangular. Convert from shape to non-rectangular shape.
  • the laser light emitted from the fiber end on the second fiber portion side is irradiated in a non-rectangular shape on the irradiated surface, so that the laser light having a uniform irradiation intensity is non-rectangular in the irradiated surface. Can be irradiated.
  • the first core may be included in the second core.
  • the first fiber in the first fiber portion on the laser beam incident side is included in the second core in the second fiber portion on the laser beam emission side at the connection interface. Leakage of the laser beam at the connecting portion between the first fiber portion and the second fiber portion is suppressed.
  • the transverse cross section of the second core may be formed in a circular shape, and the length of the second fiber portion may be 25 to 100 mm of the diameter of the second core.
  • the length of the second fiber portion is 25 to 100 mm of the diameter of the second core, the laser light with uniform irradiation intensity from the first fiber portion is changed from a rectangular shape to a non-rectangular shape. Specifically converted, the second fiber part and a part of the first fiber part fused and connected thereto are accommodated in a connector designed to have a general size.
  • the first cladding may be made of resin, and the first cladding may be removed on the connection interface side of the first fiber portion.
  • the second fiber portion is specifically fusion-bonded to the first fiber portion with the end of the first clad of the first fiber portion removed. Is done.
  • At least the portion from which the first cladding is removed may be accommodated in a cylindrical connector.
  • optical fiber of the present invention is particularly effective in a mode scrambler for inducing mutual exchange of optical power between modes in the light guide.
  • the first fiber portion having the first core made of quartz having a rectangular cross section is provided with the second core made of quartz having the non-rectangular cross section. Since the two fiber portions are fusion spliced, it is possible to irradiate the irradiated surface with laser light having a uniform irradiation intensity in a non-rectangular shape.
  • FIG. 1 is a perspective view of an optical fiber 20a according to the first embodiment.
  • FIG. 2 is a perspective view showing a method for manufacturing the optical fiber 20a.
  • FIG. 3 is a schematic diagram showing the first core 1 and the second core 11 at the connection interface C of the optical fiber 20a.
  • FIG. 4 is a perspective view of an optical fiber 20b according to the second embodiment.
  • FIG. 5 is a perspective view showing a method of manufacturing the optical fiber 20b.
  • FIG. 6 is a longitudinal sectional view showing the optical fiber 20 b accommodated in the connector 21.
  • FIG. 7 is a perspective view of an optical fiber 20c according to the third embodiment.
  • FIG. 8 is a schematic diagram illustrating an optical system 50 including a mode scrambler 35 according to the fourth embodiment.
  • Embodiment 1 of the Invention 1 to 3 show Embodiment 1 of an optical fiber according to the present invention.
  • FIG. 1 is a perspective view of the optical fiber 20a of the present embodiment
  • FIG. 2 is a perspective view showing a method of manufacturing the optical fiber 20a.
  • FIG. 3 is a schematic diagram showing each core at the connection interface C of the optical fiber 20a.
  • the optical fiber 20a includes a first fiber portion F1 and a second fiber portion F2 that is fusion spliced to the first fiber portion F1.
  • the first fiber portion F ⁇ b> 1 includes a first core 1 having a rectangular cross section or a rectangular shape, and a first quartz made so as to cover the first core 1. And a clad 2a.
  • the second fiber portion F ⁇ b> 2 is made of a quartz second core 11 having a circular non-rectangular cross section, and a quartz made to cover the second core 11.
  • the fiber length L is set to 25 times to 100 mm of the diameter of the second core 11.
  • the first core 1 and the second core 11 are made of quartz and have a refractive index (for example, 1.457) of quartz alone.
  • the first cladding 2a and the second cladding 12 are made of, for example, quartz doped with fluorine, boron, or the like, and have a refractive index (for example, 1.443) lower than that of quartz alone.
  • the first core 1 is configured to be included in the second core 11 at the connection interface C with the second fiber F2, as shown in FIGS.
  • the laser light incident on the first core 1 at the fiber end on the first fiber portion F1 side is converted into the first core 1 and the second core 11, the first cladding 2a, and the second cladding 12. Then, the light is emitted from the second core 11 at the fiber end on the second fiber portion F2 side after being repeatedly transmitted at the interface.
  • a quartz cladding layer doped with fluorine and boron having a circular outer shape and a rectangular inner shape is formed around a quartz core material having a rectangular cross section.
  • a preform is produced, and the preform is heated and stretched to prepare a first fiber portion forming fiber 5a as shown in FIG.
  • the first fiber portion forming fiber 5a is an optical fiber including, for example, a first core 1 having a square cross section of 350 ⁇ m ⁇ 350 ⁇ m and a first cladding 2a having an outer diameter of 780 ⁇ m. is there.
  • a quartz cladding layer doped with fluorine and boron having a circular outer cross section and an inner cross section is formed around a quartz core material having a circular cross section.
  • the second fiber part forming fiber 15 as shown in FIG. 2A is prepared by preparing a preform by heating and stretching the preform.
  • the second fiber portion forming fiber 15 is, for example, an optical fiber including a second core 11 having a diameter of 550 ⁇ m and a second cladding 12 having an outer diameter of 780 ⁇ m.
  • ⁇ Cutting process> As shown in FIG. 2B, the portion of the second fiber portion forming fiber 15 of the optical fiber fusion body fused in the fusion process is cut perpendicularly to the fiber axis to obtain a predetermined fiber length L. A second fiber portion F2 having the following is formed.
  • the optical fiber 20a of this embodiment can be manufactured.
  • the optical fiber 20a of the present embodiment in the first fiber portion F1, since the cross section of the first core 1 is formed in a rectangular shape, the fiber end on the first fiber portion F1 side is formed.
  • the irradiation intensity of the laser light incident from the first fiber portion F1 and transmitted from the first fiber portion F1 to the second fiber portion F2 becomes uniform.
  • the 2nd fiber part F2 fusion-connected with the 1st fiber part F1 since the cross section of the 2nd core 11 is formed in circular shape, the laser of the uniform irradiation intensity from the 1st fiber part F1 Light is converted from a rectangular shape to a non-rectangular shape.
  • the laser light emitted from the fiber end on the second fiber portion F2 side is irradiated in a non-rectangular shape with respect to the irradiated surface, so that the laser light with a uniform irradiation intensity is non-rectangular with respect to the irradiated surface.
  • the shape can be irradiated.
  • the first core 1 in the first fiber portion F1 on the laser beam incident side becomes the second core 11 in the second fiber portion F2 on the laser beam emission side. Since it is included, it is possible to suppress leakage of the laser light at the connection portion between the first fiber portion F1 and the second fiber portion F2.
  • the length L of the second fiber portion F2 is 25 times the diameter of the second core 11, so that the laser light with uniform irradiation intensity from the first fiber portion F1 is rectangular. Since the shape is specifically converted to a non-rectangular shape and the length L of the second fiber portion F2 is less than 100 mm, the second fiber portion F2 and a part of the first fiber portion F1 fused and connected thereto Can be accommodated in a connector designed to have a general size (for example, a length of about 100 mm or more).
  • FIG. 4 is a perspective view of the optical fiber 20b of the present embodiment
  • FIG. 5 is a perspective view showing a method for manufacturing the optical fiber 20b.
  • the same parts as those in FIGS. 1 to 3 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the clad 2a of the first fiber portion F1 is made of quartz, but in the optical fiber 20b of the present embodiment, the clad 2b of the first fiber portion F1 is made of resin.
  • the first fiber portion F1 of the optical fiber 20b is formed so as to cover the first core 1 and the first core 1 having a rectangular or square cross section.
  • the first clad 2b made of resin is partially removed, and the first clad 2b is partially removed on the connection interface C side, and the first core 1 in the portion is exposed from the first clad 2b.
  • the first cladding 2b is made of, for example, a thermosetting silicone resin and has a refractive index (for example, 1.408) lower than that of quartz alone.
  • the first fiber portion forming fiber 5b is an optical fiber including, for example, a first core 1 having a square cross section of 350 ⁇ m ⁇ 350 ⁇ m and a first cladding 2b having an outer diameter of 780 ⁇ m. is there.
  • a second fiber portion forming fiber 15 as shown in FIG. 5A is prepared.
  • the optical fiber 20b of this embodiment can be manufactured.
  • FIG. 6 is a longitudinal sectional view showing the optical fiber 20b accommodated in the connector 21. As shown in FIG. 6, a part of the optical fiber 20 b configured as described above is accommodated in the connector 21. 6 is a longitudinal sectional view showing the optical fiber 20b accommodated in the connector 21. As shown in FIG.
  • the first fiber portion F1 constituting the optical fiber 20b includes a protective layer 3 formed in a cylindrical shape with, for example, a polyamide resin so as to cover the first cladding 2b,
  • a protective tube 4 formed in a cylindrical shape with a flexible tube made of stainless steel whose outer surface is covered with a polyamide resin so as to cover the protective layer 3 outside the connector 21, and the protective layer 3 within the connector 21.
  • a sleeve 24 formed in a cylindrical shape with brass, copper, stainless steel or the like is provided.
  • the connector 21 is formed in a cylindrical shape by, for example, brass, copper, aluminum, stainless steel or the like. Further, as shown in FIG. 6, the connector 21 is configured to hold the first fiber portion F ⁇ b> 1 via a sleeve 24 by a fixing screw 23 screwed to the right peripheral wall in the drawing. In the inside of the connector 21 on the left side in the drawing, as shown in FIG. 6, for example, a fiber holding portion 22 that is formed of sapphire and holds the tip portion of the second fiber portion F ⁇ b> 2 is provided.
  • the cross section of the first core 1 is formed in a rectangular shape.
  • the cross section of the second core 11 is formed in a circular shape, so that laser light having a uniform irradiation intensity is non-rectangular with respect to the irradiated surface.
  • the shape can be irradiated.
  • the removed portion of the first cladding 2b is accommodated in the connector 21, damage to the first core 1 exposed from the first cladding 2b can be suppressed.
  • FIG. 7 is a perspective view of the optical fiber 20c of this embodiment.
  • the first cladding 2b of the first fiber portion F1 is partially removed in order to fuse the first fiber portion F1 and the second fiber.
  • a resin-made third clad 16 is formed in the removed portion of the first clad 2b.
  • the third clad 16 is formed by applying and baking, for example, a thermosetting silicone resin on a part of the side surface of the optical fiber 20b described in the second embodiment.
  • the cross section of the first core 1 is formed in a rectangular shape, and the first fiber portion F1.
  • the cross section of the second core 11 is formed in a circular shape, so that the irradiated surface is irradiated with laser light having a uniform irradiation intensity in a non-rectangular shape. be able to.
  • the first core 1 since the first core 1 is covered with the first cladding 2b and the third cladding 16, the first core can be accommodated without being accommodated in a connector or the like as in the second embodiment. 1 damage can be suppressed.
  • FIG. 8 is a schematic diagram showing an optical system 50 including the mode scrambler 35 of the present embodiment.
  • the optical system 50 includes, for example, a He—Ne laser 31, a mode scrambler 35 for inducing mutual exchange of optical power between modes in the light guide, and a He—Ne laser 31.
  • a condensing lens 32 for condensing the continuously oscillated laser beam B to make it incident on the mode scrambler 35 and an image of the laser beam B emitted from the mode scrambler 35 are applied to the workpiece S.
  • an imaging lens 36 for the purpose.
  • the mode scrambler 35 accommodates therein an optical fiber 20 corresponding to the optical fibers 20a to 20c of the above embodiments.
  • the optical fiber 20 has an incident side connector 33 attached to an end portion on the first fiber portion F1 side, and an emission side connector 34 attached to an end portion on the second fiber portion F2 side.
  • the laser beam B from the He—Ne laser 31 has a uniform irradiation intensity by the mode scrambler 35 and is applied to the irradiation surface of the workpiece S via the imaging lens 36. Irradiated in a circular shape.
  • the optical fiber 20 corresponding to the optical fibers 20a to 20c of each of the above embodiments is provided, laser light having a uniform irradiation intensity is non-rectangular with respect to the irradiated surface.
  • the shape can be irradiated.
  • a circular cross section is exemplified as the non-rectangular cross section of the second core 11, but the present invention may include other cross sections such as a polygonal shape, a D-shape, and an elliptical shape. It can also be applied to the surface.
  • the present invention is useful for laser processing such as semiconductor surface peeling processing because laser light is emitted with uniform irradiation intensity.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Mechanical Coupling Of Light Guides (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

An optical fiber comprises a first fiber part (F1) provided with a first silica core (1) the cross section of which is formed to be rectangular or square and a first clad (2a) formed so as to clad the first core (1); and a second fiber part (F2) provided with a second silica core (11) the cross section of which is formed to be neither rectangular nor square and a second clad (12) formed so as to clad the second core (11). In order that laser beams having propagated along the first core (1) enters the second core (11), the second fiber part (F2) is subjected to fusion splice to the first fiber part (F1).

Description

光ファイバ及びそれを備えたモードスクランブラOptical fiber and mode scrambler including the same
 本発明は、光ファイバ及びそれを備えたモードスクランブラに関し、特に、レーザ光を伝送するためのレーザガイド用の光ファイバに関するものである。 The present invention relates to an optical fiber and a mode scrambler including the optical fiber, and more particularly to an optical fiber for laser guide for transmitting laser light.
 レーザガイドは、エネルギー密度の高いレーザ光を伝送するための光ファイバ部品として、種々の加工装置などに広く用いられている。 Laser guides are widely used in various processing devices as optical fiber parts for transmitting laser light with high energy density.
 ところで、レーザガイドを介して出射されるレーザ光により半導体などの表面剥離を行う加工では、レーザ光が照射される照射スポットにおける照射強度が均一であることが求められている。 By the way, in the process of peeling the surface of a semiconductor or the like with laser light emitted through a laser guide, it is required that the irradiation intensity at the irradiation spot irradiated with the laser light is uniform.
 例えば、横断面が円形状に形成されたコアと、そのコアを被覆するように形成されたクラッドとを備えた従来の光ファイバでは、レーザ光の照射スポットにおける照射強度の分布がガウス分布になるので、照射スポットにおいて均一な照射強度を得るために、モードスクランブル処理を行う必要がある。ここで、モードスクランブル処理とは、例えば、光ファイバを曲げ許容半径の範囲内で巻回することにより、導光路内におけるモード間の光パワーの相互交換を誘起するための処理である。しかしながら、このモードスクランブル処理では、光ファイバを巻回するために光ファイバが破断したり、装置(モードスクランブラ)が大きくなったりすると共に、光ファイバを数100m巻回しただけでは、十分に均一な照射強度を得られないので、処理効率が低くなってしまう。 For example, in a conventional optical fiber including a core having a circular cross section and a clad formed so as to cover the core, the distribution of the irradiation intensity at the laser light irradiation spot is a Gaussian distribution. Therefore, it is necessary to perform a mode scramble process in order to obtain a uniform irradiation intensity at the irradiation spot. Here, the mode scramble process is a process for inducing the mutual exchange of the optical power between the modes in the light guide path by, for example, winding the optical fiber within the range of the allowable bending radius. However, in this mode scramble processing, the optical fiber is broken to wind the optical fiber or the apparatus (mode scrambler) becomes large, and even if the optical fiber is wound several hundred meters, it is sufficiently uniform. Since a sufficient irradiation intensity cannot be obtained, the processing efficiency is lowered.
 また、特許文献1には、光伝搬機能を有するコア部材の横断面が矩形状に形成された導光路ファイバが開示されている。そして、特許文献1には、その導光路ファイバが光強度分布均一化機能を持つように構成されている、と記載されている。すなわち、横断面が矩形状に形成されたコアを備えた光ファイバによれば、レーザ光の照射スポットにおける照射強度の均一化が図られることが広く知られている。
特公平3-49591号公報
Patent Document 1 discloses a light guide fiber in which a cross section of a core member having a light propagation function is formed in a rectangular shape. Patent Document 1 describes that the light guide fiber is configured to have a light intensity distribution uniformizing function. That is, it is widely known that an optical fiber including a core having a rectangular cross section can achieve uniform irradiation intensity at a laser beam irradiation spot.
Japanese Patent Publication No. 3-49591
 ところで、横断面が矩形状に形成されたコアと、そのコアを被覆するように形成されたクラッドとを備えた光ファイバが導光路として収容されたレーザガイドでは、そのコアの横断面の形状により、均一な照射強度のレーザ光が結像レンズにより結像されて被照射面に対して矩形状に照射されるので、被照射面におけるレーザ光のスポット形状が必然的に矩形になってしまう。そのため、その矩形状のレーザ光を、例えば、相対的に大きな円形状の被照射面に対して走査しながら照射する場合には、被照射面の周縁部にレーザ光が確実に照射されるように、被照射面の外側にもレーザ光を照射する必要があるので、加工効率が低下するおそれがある。 By the way, in a laser guide in which an optical fiber including a core whose cross section is formed in a rectangular shape and a clad formed so as to cover the core is accommodated as a light guide, the shape of the cross section of the core Since the laser beam having a uniform irradiation intensity is imaged by the imaging lens and irradiated on the irradiated surface in a rectangular shape, the spot shape of the laser beam on the irradiated surface is necessarily rectangular. Therefore, for example, when irradiating the rectangular laser beam while scanning a relatively large circular surface to be irradiated, the laser beam is surely irradiated to the peripheral portion of the surface to be irradiated. In addition, since it is necessary to irradiate the laser beam to the outside of the irradiated surface, the processing efficiency may be reduced.
 本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、均一な照射強度のレーザ光を被照射面に対して非矩形状に照射することにある。 The present invention has been made in view of such a point, and an object of the present invention is to irradiate the irradiated surface with laser light having a uniform irradiation intensity in a non-rectangular shape.
 上記目的を達成するために、本発明は、横断面が矩形状に形成された石英製の第1コアを備えた第1ファイバ部に、横断面が非矩形状に形成された石英製の第2コアを備えた第2ファイバ部が融着接続されるようにしたものである。 In order to achieve the above object, the present invention provides a first fiber portion having a first core made of quartz having a rectangular cross section and a first made of quartz having a non-rectangular cross section. A second fiber portion having two cores is fusion-connected.
 具体的に本発明に係る光ファイバは、横断面が長方形又は正方形の矩形状に形成された石英製の第1コアと、該第1コアを被覆するように形成された第1クラッドとを備えた第1ファイバ部と、横断面が非矩形状に形成された石英製の第2コアと、該第2コアを被覆するように形成された第2クラッドとを備えた第2ファイバ部とを有し、上記第1コアを伝搬したレーザ光が上記第2コアに入射するように、上記第1ファイバ部には、上記第2ファイバ部が融着接続されていることを特徴とする。 Specifically, an optical fiber according to the present invention includes a first quartz core formed in a rectangular shape having a rectangular or square cross section, and a first cladding formed so as to cover the first core. A first fiber portion, a second core made of quartz having a non-rectangular cross section, and a second fiber portion including a second cladding formed so as to cover the second core. And the second fiber portion is fused and connected to the first fiber portion so that the laser light propagated through the first core is incident on the second core.
 上記の構成によれば、第1ファイバ部では、第1コアの横断面が矩形状に形成されているので、第1ファイバ部側のファイバ端から入射して第1ファイバ部から第2ファイバ部に伝送されるレーザ光の照射強度が均一になる。そして、第1ファイバ部に融着接続された第2ファイバ部では、第2コアの横断面が非矩形状に形成されているので、第1ファイバ部からの均一な照射強度のレーザ光が矩形状から非矩形状に変換される。これにより、第2ファイバ部側のファイバ端から出射されるレーザ光が被照射面に対して非矩形状に照射されるので、均一な照射強度のレーザ光を被照射面に対して非矩形状に照射することが可能になる。 According to the above configuration, in the first fiber portion, since the cross section of the first core is formed in a rectangular shape, the first fiber portion enters the second fiber portion from the fiber end on the first fiber portion side. The irradiation intensity of the laser beam transmitted to is uniform. In the second fiber portion fused and connected to the first fiber portion, the cross section of the second core is formed in a non-rectangular shape, so that the laser light with uniform irradiation intensity from the first fiber portion is rectangular. Convert from shape to non-rectangular shape. As a result, the laser light emitted from the fiber end on the second fiber portion side is irradiated in a non-rectangular shape on the irradiated surface, so that the laser light having a uniform irradiation intensity is non-rectangular in the irradiated surface. Can be irradiated.
 接続界面において、上記第1コアは、上記第2コアに包含されていてもよい。 At the connection interface, the first core may be included in the second core.
 上記の構成によれば、接続界面において、レーザ光の入射側の第1ファイバ部における第1コアがレーザ光の出射側の第2ファイバ部における第2コアに包含されているので、第1ファイバ部及び第2ファイバ部の接続部分におけるレーザ光の漏れが抑制される。 According to the above configuration, the first fiber in the first fiber portion on the laser beam incident side is included in the second core in the second fiber portion on the laser beam emission side at the connection interface. Leakage of the laser beam at the connecting portion between the first fiber portion and the second fiber portion is suppressed.
 上記第2コアの横断面は、円形状に形成され、上記第2ファイバ部の長さは、上記第2コアの直径の25倍~100mmであってもよい。 The transverse cross section of the second core may be formed in a circular shape, and the length of the second fiber portion may be 25 to 100 mm of the diameter of the second core.
 上記の構成によれば、第2ファイバ部の長さが第2コアの直径の25倍~100mmであるので、第1ファイバ部からの均一な照射強度のレーザ光が矩形状から非矩形状に具体的に変換されると共に、第2ファイバ部及びそれに融着接続される第1ファイバ部の一部が一般的な寸法に設計されたコネクタ内に収容される。 According to the above configuration, since the length of the second fiber portion is 25 to 100 mm of the diameter of the second core, the laser light with uniform irradiation intensity from the first fiber portion is changed from a rectangular shape to a non-rectangular shape. Specifically converted, the second fiber part and a part of the first fiber part fused and connected thereto are accommodated in a connector designed to have a general size.
 上記第1クラッドは、樹脂製であり、上記第1ファイバ部の接続界面側では、上記第1クラッドが除去されていてもよい。 The first cladding may be made of resin, and the first cladding may be removed on the connection interface side of the first fiber portion.
 上記の構成によれば、第1クラッドが樹脂製であるので、第1ファイバ部の第1クラッドの端部が除去された状態で第1ファイバ部に第2ファイバ部が具体的に融着接続される。 According to the above configuration, since the first clad is made of resin, the second fiber portion is specifically fusion-bonded to the first fiber portion with the end of the first clad of the first fiber portion removed. Is done.
 少なくとも上記第1クラッドが除去された部分は、筒状のコネクタの内部に収容されていてもよい。 At least the portion from which the first cladding is removed may be accommodated in a cylindrical connector.
 上記の構成によれば、少なくとも第1クラッドの除去部分がコネクタ内に収容されているので、第1クラッドから露出する第1コアの損傷が抑制される。 According to the above configuration, since at least the removed portion of the first cladding is accommodated in the connector, damage to the first core exposed from the first cladding is suppressed.
 また、本発明の光ファイバは、導光路内におけるモード間の光パワーの相互交換を誘起するためのモードスクランブラにおいて、特に有効である。 Also, the optical fiber of the present invention is particularly effective in a mode scrambler for inducing mutual exchange of optical power between modes in the light guide.
 本発明によれば、横断面が矩形状に形成された石英製の第1コアを備えた第1ファイバ部に、横断面が非矩形状に形成された石英製の第2コアを備えた第2ファイバ部が融着接続されているので、均一な照射強度のレーザ光を被照射面に対して非矩形状に照射することができる。 According to the present invention, the first fiber portion having the first core made of quartz having a rectangular cross section is provided with the second core made of quartz having the non-rectangular cross section. Since the two fiber portions are fusion spliced, it is possible to irradiate the irradiated surface with laser light having a uniform irradiation intensity in a non-rectangular shape.
図1は、実施形態1に係る光ファイバ20aの斜視図である。FIG. 1 is a perspective view of an optical fiber 20a according to the first embodiment. 図2は、光ファイバ20aを製造する方法を示す斜視図である。FIG. 2 is a perspective view showing a method for manufacturing the optical fiber 20a. 図3は、光ファイバ20aの接続界面Cにおける第1コア1及び第2コア11を示す模式図である。FIG. 3 is a schematic diagram showing the first core 1 and the second core 11 at the connection interface C of the optical fiber 20a. 図4は、実施形態2に係る光ファイバ20bの斜視図である。FIG. 4 is a perspective view of an optical fiber 20b according to the second embodiment. 図5は、光ファイバ20bを製造する方法を示す斜視図である。FIG. 5 is a perspective view showing a method of manufacturing the optical fiber 20b. 図6は、コネクタ21内に収容された光ファイバ20bを示す縦断面図である。FIG. 6 is a longitudinal sectional view showing the optical fiber 20 b accommodated in the connector 21. 図7は、実施形態3に係る光ファイバ20cの斜視図である。FIG. 7 is a perspective view of an optical fiber 20c according to the third embodiment. 図8は、実施形態4に係るモードスクランブラ35を備えた光学系50を示す模式図である。FIG. 8 is a schematic diagram illustrating an optical system 50 including a mode scrambler 35 according to the fourth embodiment.
符号の説明Explanation of symbols
C   接続界面
F1  第1ファイバ部
F2  第2ファイバ部
1   第1コア
2   第1クラッド
11  第2コア
12  第2クラッド
20,20a~20c  光ファイバ
21  コネクタ
35  モードスクランブラ
C connection interface F1 first fiber part F2 second fiber part 1 first core 2 first clad 11 second core 12 second clad 20, 20a to 20c optical fiber 21 connector 35 mode scrambler
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、本発明は、以下の各実施形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The present invention is not limited to the following embodiments.
 《発明の実施形態1》
 図1~図3は、本発明に係る光ファイバの実施形態1を示している。具体的に、図1は、本実施形態の光ファイバ20aの斜視図であり、図2は、光ファイバ20aを製造する方法を示す斜視図である。また、図3は、光ファイバ20aの接続界面Cにおける各コアを示す模式図である。
Embodiment 1 of the Invention
1 to 3 show Embodiment 1 of an optical fiber according to the present invention. Specifically, FIG. 1 is a perspective view of the optical fiber 20a of the present embodiment, and FIG. 2 is a perspective view showing a method of manufacturing the optical fiber 20a. FIG. 3 is a schematic diagram showing each core at the connection interface C of the optical fiber 20a.
 光ファイバ20aは、図1に示すように、第1ファイバ部F1と、第1ファイバ部F1に融着接続された第2ファイバ部F2とを備えている。 As shown in FIG. 1, the optical fiber 20a includes a first fiber portion F1 and a second fiber portion F2 that is fusion spliced to the first fiber portion F1.
 第1ファイバ部F1は、図1に示すように、横断面が長方形又は正方形の矩形状に形成された第1コア1と、第1コア1を被覆するように形成された石英製の第1クラッド2aとを備えている。 As shown in FIG. 1, the first fiber portion F <b> 1 includes a first core 1 having a rectangular cross section or a rectangular shape, and a first quartz made so as to cover the first core 1. And a clad 2a.
 第2ファイバ部F2は、図1に示すように、横断面が円形状の非矩形状に形成された石英製の第2コア11と、第2コア11を被覆するように形成された石英製の第1クラッド12とを備え、そのファイバ長Lが第2コア11の直径の25倍~100mmに設定されている。 As shown in FIG. 1, the second fiber portion F <b> 2 is made of a quartz second core 11 having a circular non-rectangular cross section, and a quartz made to cover the second core 11. The fiber length L is set to 25 times to 100 mm of the diameter of the second core 11.
 第1コア1及び第2コア11は、石英により構成され、ほぼ石英単体の屈折率(例えば、1.457)を有している。 The first core 1 and the second core 11 are made of quartz and have a refractive index (for example, 1.457) of quartz alone.
 第1クラッド2a及び第2クラッド12は、例えば、フッ素やホウ素などがドープされた石英により構成され、石英単体の屈折率よりも低い屈折率(例えば、1.443)を有している。 The first cladding 2a and the second cladding 12 are made of, for example, quartz doped with fluorine, boron, or the like, and have a refractive index (for example, 1.443) lower than that of quartz alone.
 第1コア1は、図1及び図3に示すように、第2ファイバF2との接続界面Cにおいて、第2コア11に包含されるように構成されている。 The first core 1 is configured to be included in the second core 11 at the connection interface C with the second fiber F2, as shown in FIGS.
 上記構成の光ファイバ20aは、第1ファイバ部F1側のファイバ端の第1コア1に入射したレーザ光が、第1コア1及び第2コア11と、第1クラッド2a及び第2クラッド12との界面で反射を繰り返しながら伝送した後に、第2ファイバ部F2側のファイバ端の第2コア11から出射されるようになっている。 In the optical fiber 20a configured as described above, the laser light incident on the first core 1 at the fiber end on the first fiber portion F1 side is converted into the first core 1 and the second core 11, the first cladding 2a, and the second cladding 12. Then, the light is emitted from the second core 11 at the fiber end on the second fiber portion F2 side after being repeatedly transmitted at the interface.
 次に、図2を用いて、本実施形態の光ファイバ20aを製造する方法について説明する。 Next, a method for manufacturing the optical fiber 20a of the present embodiment will be described with reference to FIG.
 <準備工程>
 例えば、横断面が矩形状に形成された石英製のコア材の周囲に、横断面の外郭が円形状で内郭が矩形状であるフッ素及びホウ素がドープされた石英製のクラッド層を形成することによりプリフォームを作製し、そのプリフォームを加熱及び延伸することにより、図2(a)に示すような第1ファイバ部形成ファイバ5aを準備する。ここで、第1ファイバ部形成ファイバ5aは、例えば、350μm×350μmの正方形状の横断面を有する第1コア1と、外径が780μmmに形成された第1クラッド2aとを備えた光ファイバである。
<Preparation process>
For example, a quartz cladding layer doped with fluorine and boron having a circular outer shape and a rectangular inner shape is formed around a quartz core material having a rectangular cross section. Thus, a preform is produced, and the preform is heated and stretched to prepare a first fiber portion forming fiber 5a as shown in FIG. Here, the first fiber portion forming fiber 5a is an optical fiber including, for example, a first core 1 having a square cross section of 350 μm × 350 μm and a first cladding 2a having an outer diameter of 780 μm. is there.
 また、例えば、横断面が円形状に形成された石英製のコア材の周囲に、横断面の外郭及び内郭が円形状であるフッ素及びホウ素がドープされた石英製のクラッド層を形成することによりプリフォームを作製し、そのプリフォームを加熱及び延伸することにより、図2(a)に示すような第2ファイバ部形成ファイバ15を準備する。ここで、第2ファイバ部形成ファイバ15は、例えば、直径が550μmに形成された第2コア11と、外径が780μmに形成された第2クラッド12とを備えた光ファイバである。 Further, for example, a quartz cladding layer doped with fluorine and boron having a circular outer cross section and an inner cross section is formed around a quartz core material having a circular cross section. The second fiber part forming fiber 15 as shown in FIG. 2A is prepared by preparing a preform by heating and stretching the preform. Here, the second fiber portion forming fiber 15 is, for example, an optical fiber including a second core 11 having a diameter of 550 μm and a second cladding 12 having an outer diameter of 780 μm.
 <融着工程>
 図2(b)に示すように、第1ファイバ部形成ファイバ5aの端面と、第2ファイバ部形成ファイバ15の端面とを突き合わせ、その突き合わせ部分を光ファイバ融着器などで融着する。
<Fusion process>
As shown in FIG. 2 (b), the end face of the first fiber portion forming fiber 5a and the end face of the second fiber portion forming fiber 15 are butted together, and the butted portion is fused with an optical fiber fuser or the like.
 <切断工程>
 図2(b)に示すように、融着工程で融着された光ファイバ融着体の第2ファイバ部形成ファイバ15の部分をファイバ軸に対して垂直に切断して、所定のファイバ長Lを有する第2ファイバ部F2を形成する。
<Cutting process>
As shown in FIG. 2B, the portion of the second fiber portion forming fiber 15 of the optical fiber fusion body fused in the fusion process is cut perpendicularly to the fiber axis to obtain a predetermined fiber length L. A second fiber portion F2 having the following is formed.
 以上のようにして、本実施形態の光ファイバ20aを製造することができる。 As described above, the optical fiber 20a of this embodiment can be manufactured.
 以上説明したように、本実施形態の光ファイバ20aによれば、第1ファイバ部F1では、第1コア1の横断面が矩形状に形成されているので、第1ファイバ部F1側のファイバ端から入射して第1ファイバ部F1から第2ファイバ部F2に伝送されるレーザ光の照射強度が均一になる。そして、第1ファイバ部F1に融着接続された第2ファイバ部F2では、第2コア11の横断面が円形状に形成されているので、第1ファイバ部F1からの均一な照射強度のレーザ光が矩形状から非矩形状に変換される。これにより、第2ファイバ部F2側のファイバ端から出射されるレーザ光が被照射面に対して非矩形状に照射されるので、均一な照射強度のレーザ光を被照射面に対して非矩形状に照射することができる。 As described above, according to the optical fiber 20a of the present embodiment, in the first fiber portion F1, since the cross section of the first core 1 is formed in a rectangular shape, the fiber end on the first fiber portion F1 side is formed. The irradiation intensity of the laser light incident from the first fiber portion F1 and transmitted from the first fiber portion F1 to the second fiber portion F2 becomes uniform. And in the 2nd fiber part F2 fusion-connected with the 1st fiber part F1, since the cross section of the 2nd core 11 is formed in circular shape, the laser of the uniform irradiation intensity from the 1st fiber part F1 Light is converted from a rectangular shape to a non-rectangular shape. As a result, the laser light emitted from the fiber end on the second fiber portion F2 side is irradiated in a non-rectangular shape with respect to the irradiated surface, so that the laser light with a uniform irradiation intensity is non-rectangular with respect to the irradiated surface. The shape can be irradiated.
 また、本実施形態の光ファイバ20aでは、接続界面Cにおいて、レーザ光の入射側の第1ファイバ部F1における第1コア1がレーザ光の出射側の第2ファイバ部F2における第2コア11に包含されているので、第1ファイバ部F1及び第2ファイバ部F2の接続部分におけるレーザ光の漏れを抑制することができる。 Further, in the optical fiber 20a of the present embodiment, at the connection interface C, the first core 1 in the first fiber portion F1 on the laser beam incident side becomes the second core 11 in the second fiber portion F2 on the laser beam emission side. Since it is included, it is possible to suppress leakage of the laser light at the connection portion between the first fiber portion F1 and the second fiber portion F2.
 また、本実施形態の光ファイバ20aでは、第2ファイバ部F2の長さLが第2コア11の直径の25倍であるので、第1ファイバ部F1からの均一な照射強度のレーザ光が矩形状から非矩形状に具体的に変換されると共に、第2ファイバ部F2の長さLが100mm未満であるので、第2ファイバ部F2及びそれに融着接続される第1ファイバ部F1の一部が一般的な寸法(例えば、長さ100mm強程度)に設計されたコネクタ内に収容することができる。 Further, in the optical fiber 20a of this embodiment, the length L of the second fiber portion F2 is 25 times the diameter of the second core 11, so that the laser light with uniform irradiation intensity from the first fiber portion F1 is rectangular. Since the shape is specifically converted to a non-rectangular shape and the length L of the second fiber portion F2 is less than 100 mm, the second fiber portion F2 and a part of the first fiber portion F1 fused and connected thereto Can be accommodated in a connector designed to have a general size (for example, a length of about 100 mm or more).
 《発明の実施形態2》
 図4は、本実施形態の光ファイバ20bの斜視図であり、図5は、光ファイバ20bを製造する方法を示す斜視図である。なお、以下の各実施形態において、図1~図3と同じ部分については同じ符号を付して、その詳細な説明を省略する。
<< Embodiment 2 of the Invention >>
FIG. 4 is a perspective view of the optical fiber 20b of the present embodiment, and FIG. 5 is a perspective view showing a method for manufacturing the optical fiber 20b. In the following embodiments, the same parts as those in FIGS. 1 to 3 are denoted by the same reference numerals, and detailed description thereof is omitted.
 上記実施形態1の光ファイバ20aでは、第1ファイバ部F1のクラッド2aが石英製であったが、本実施形態の光ファイバ20bでは、第1ファイバ部F1のクラッド2bが樹脂製である。 In the optical fiber 20a of the first embodiment, the clad 2a of the first fiber portion F1 is made of quartz, but in the optical fiber 20b of the present embodiment, the clad 2b of the first fiber portion F1 is made of resin.
 具体的に光ファイバ20bの第1ファイバ部F1は、図4に示すように、横断面が長方形又は正方形の矩形状に形成された第1コア1と、第1コア1を被覆するように形成された樹脂製の第1クラッド2bとを備え、第1クラッド2bが接続界面C側において部分的に除去されて、その部分の第1コア1が第1クラッド2bから露出している。 Specifically, as shown in FIG. 4, the first fiber portion F1 of the optical fiber 20b is formed so as to cover the first core 1 and the first core 1 having a rectangular or square cross section. The first clad 2b made of resin is partially removed, and the first clad 2b is partially removed on the connection interface C side, and the first core 1 in the portion is exposed from the first clad 2b.
 第1クラッド2bは、例えば、熱硬化性を有するシリコーン系樹脂などにより構成され、石英単体の屈折率よりも低い屈折率(例えば、1.408)を有している。 The first cladding 2b is made of, for example, a thermosetting silicone resin and has a refractive index (for example, 1.408) lower than that of quartz alone.
 次に、図5を用いて、本実施形態の光ファイバ20bを製造する方法について説明する。 Next, a method for manufacturing the optical fiber 20b of the present embodiment will be described with reference to FIG.
 <準備工程>
 例えば、横断面が矩形状に形成された石英製のコア材を加熱及び延伸し、その側面に熱硬化性のシリコーン系樹脂を塗布及び焼成した後に、その端部のシリコーン系樹脂を除去することにより、図5(a)に示すような第1ファイバ部形成ファイバ5bを準備する。ここで、第1ファイバ部形成ファイバ5bは、例えば、350μm×350μmの正方形状の横断面を有する第1コア1と、外径が780μmmに形成された第1クラッド2bとを備えた光ファイバである。
<Preparation process>
For example, after heating and stretching a quartz core material having a rectangular cross section, applying and baking a thermosetting silicone resin on the side surface, removing the silicone resin at the end Thus, the first fiber portion forming fiber 5b as shown in FIG. 5A is prepared. Here, the first fiber portion forming fiber 5b is an optical fiber including, for example, a first core 1 having a square cross section of 350 μm × 350 μm and a first cladding 2b having an outer diameter of 780 μm. is there.
 また、上記実施形態1と同様に、図5(a)に示すような第2ファイバ部形成ファイバ15を準備する。 Also, as in the first embodiment, a second fiber portion forming fiber 15 as shown in FIG. 5A is prepared.
 その後に続く融着工程及び切断工程は、図5(b)に示すように、上記実施形態1と実質的に同じであるので、その詳細な説明を省略する。 Since the subsequent fusion process and cutting process are substantially the same as those in the first embodiment as shown in FIG. 5B, detailed description thereof is omitted.
 以上のようにして、本実施形態の光ファイバ20bを製造することができる。 As described above, the optical fiber 20b of this embodiment can be manufactured.
 また、上記構成の光ファイバ20bは、図6に示すように、その一部がコネクタ21内に収容される。なお、図6は、コネクタ21内に収容された光ファイバ20bを示す縦断面図である。 Further, as shown in FIG. 6, a part of the optical fiber 20 b configured as described above is accommodated in the connector 21. 6 is a longitudinal sectional view showing the optical fiber 20b accommodated in the connector 21. As shown in FIG.
 ここで、光ファイバ20bを構成する第1ファイバ部F1は、図6に示すように、第1クラッド2bを被覆するように、例えば、ポリアミド樹脂などにより円筒状に形成された保護層3と、コネクタ21外で保護層3を被覆するように、例えば、外表面がポリアミド樹脂で覆われたステンレス製の可撓管などにより円筒状に形成された保護管4と、コネクタ21内で保護層3を被覆するように、例えば、真鍮、銅、ステンレスなどにより円筒状に形成されたスリーブ24とを備えている。 Here, as shown in FIG. 6, the first fiber portion F1 constituting the optical fiber 20b includes a protective layer 3 formed in a cylindrical shape with, for example, a polyamide resin so as to cover the first cladding 2b, For example, a protective tube 4 formed in a cylindrical shape with a flexible tube made of stainless steel whose outer surface is covered with a polyamide resin so as to cover the protective layer 3 outside the connector 21, and the protective layer 3 within the connector 21. For example, a sleeve 24 formed in a cylindrical shape with brass, copper, stainless steel or the like is provided.
 また、コネクタ21は、図6に示すように、例えば、真鍮、銅、アルミニウム、ステンレスなどにより円筒状に形成されている。さらに、コネクタ21は、図6に示すように、、図中右側の周壁に螺着された固定ねじ23により第1ファイバ部F1をスリーブ24を介して保持するように構成されている。そして、コネクタ21の図中左側の内部には、図6に示すように、例えば、サファイアにより形成され、第2ファイバ部F2の先端部を保持するためのファイバ保持部22が設けられている。 Further, as shown in FIG. 6, the connector 21 is formed in a cylindrical shape by, for example, brass, copper, aluminum, stainless steel or the like. Further, as shown in FIG. 6, the connector 21 is configured to hold the first fiber portion F <b> 1 via a sleeve 24 by a fixing screw 23 screwed to the right peripheral wall in the drawing. In the inside of the connector 21 on the left side in the drawing, as shown in FIG. 6, for example, a fiber holding portion 22 that is formed of sapphire and holds the tip portion of the second fiber portion F <b> 2 is provided.
 以上説明したように、本実施形態の光ファイバ20bによれば、上記実施形態1と同様に、第1ファイバ部F1では、第1コア1の横断面が矩形状に形成されていると共に、第1ファイバ部F1に融着接続された第2ファイバ部F2では、第2コア11の横断面が円形状に形成されているので、均一な照射強度のレーザ光を被照射面に対して非矩形状に照射することができる。 As described above, according to the optical fiber 20b of the present embodiment, as in the first embodiment, in the first fiber portion F1, the cross section of the first core 1 is formed in a rectangular shape. In the second fiber portion F2 fusion-bonded to the first fiber portion F1, the cross section of the second core 11 is formed in a circular shape, so that laser light having a uniform irradiation intensity is non-rectangular with respect to the irradiated surface. The shape can be irradiated.
 また、本実施形態の光ファイバ20bでは、第1クラッド2bの除去部分がコネクタ21内に収容されているので、第1クラッド2bから露出する第1コア1の損傷を抑制することができる。 Further, in the optical fiber 20b of the present embodiment, since the removed portion of the first cladding 2b is accommodated in the connector 21, damage to the first core 1 exposed from the first cladding 2b can be suppressed.
 《発明の実施形態3》
 図7は、本実施形態の光ファイバ20cの斜視図である。
<< Embodiment 3 of the Invention >>
FIG. 7 is a perspective view of the optical fiber 20c of this embodiment.
 上記実施形態2の光ファイバ20bでは、第1ファイバ部F1及び第2ファイバを融着するために第1ファイバ部F1の第1クラッド2bが部分的に除去されていたが、本実施形態の光ファイバ20cでは、図7に示すように、その第1クラッド2bの除去部分に樹脂製の第3クラッド16が形成されている。ここで、第3クラッド16は、上記実施形態2で説明した光ファイバ20bの側面の一部に、例えば、熱硬化性を有するシリコーン系樹脂などを塗布及び焼成することにより形成される。 In the optical fiber 20b of the second embodiment, the first cladding 2b of the first fiber portion F1 is partially removed in order to fuse the first fiber portion F1 and the second fiber. In the fiber 20c, as shown in FIG. 7, a resin-made third clad 16 is formed in the removed portion of the first clad 2b. Here, the third clad 16 is formed by applying and baking, for example, a thermosetting silicone resin on a part of the side surface of the optical fiber 20b described in the second embodiment.
 本実施形態の光ファイバ20cによれば、上記実施形態1及び2と同様に、第1ファイバ部F1では、第1コア1の横断面が矩形状に形成されていると共に、第1ファイバ部F1に融着接続された第2ファイバ部F2では、第2コア11の横断面が円形状に形成されているので、均一な照射強度のレーザ光を被照射面に対して非矩形状に照射することができる。 According to the optical fiber 20c of the present embodiment, as in the first and second embodiments, in the first fiber portion F1, the cross section of the first core 1 is formed in a rectangular shape, and the first fiber portion F1. In the second fiber portion F2 that is fusion spliced to the laser beam, the cross section of the second core 11 is formed in a circular shape, so that the irradiated surface is irradiated with laser light having a uniform irradiation intensity in a non-rectangular shape. be able to.
 また、本実施形態の光ファイバ20cでは、第1コア1が第1クラッド2b及び第3クラッド16に被覆されているので、上記実施形態2のようにコネクタなどに収容しなくても第1コア1の損傷を抑制することができる。 Further, in the optical fiber 20c of the present embodiment, since the first core 1 is covered with the first cladding 2b and the third cladding 16, the first core can be accommodated without being accommodated in a connector or the like as in the second embodiment. 1 damage can be suppressed.
 《発明の実施形態4》
 図8は、本実施形態のモードスクランブラ35を備えた光学系50を示す模式図である。
<< Embodiment 4 of the Invention >>
FIG. 8 is a schematic diagram showing an optical system 50 including the mode scrambler 35 of the present embodiment.
 光学系50は、図8に示すように、例えば、He-Neレーザ31と、導光路内におけるモード間の光パワーの相互交換を誘起するためのモードスクランブラ35と、He-Neレーザ31から連続発振されたレーザ光Bを集光してモードスクランブラ35に入射させるための集光レンズ32と、モードスクランブラ35から出射されたレーザ光Bを結像して被加工物Sに照射するための結像レンズ36とを備えている。 As shown in FIG. 8, the optical system 50 includes, for example, a He—Ne laser 31, a mode scrambler 35 for inducing mutual exchange of optical power between modes in the light guide, and a He—Ne laser 31. A condensing lens 32 for condensing the continuously oscillated laser beam B to make it incident on the mode scrambler 35 and an image of the laser beam B emitted from the mode scrambler 35 are applied to the workpiece S. And an imaging lens 36 for the purpose.
 モードスクランブラ35は、その内部に、上記各実施形態の光ファイバ20a~20cに対応する光ファイバ20が収容されている。ここで、光ファイバ20は、第1ファイバ部F1側の端部に入射側コネクタ33が取り付けられ、第2ファイバ部F2側の端部に出射側コネクタ34が取り付けられている。 The mode scrambler 35 accommodates therein an optical fiber 20 corresponding to the optical fibers 20a to 20c of the above embodiments. Here, the optical fiber 20 has an incident side connector 33 attached to an end portion on the first fiber portion F1 side, and an emission side connector 34 attached to an end portion on the second fiber portion F2 side.
 上記構成の光学系50では、He-Neレーザ31からのレーザ光Bがモードスクランブラ35により均一な照射強度になると共に、結像レンズ36を介して被加工物Sの被照射面に対して円形状に照射されるようになっている。 In the optical system 50 configured as described above, the laser beam B from the He—Ne laser 31 has a uniform irradiation intensity by the mode scrambler 35 and is applied to the irradiation surface of the workpiece S via the imaging lens 36. Irradiated in a circular shape.
 本実施形態のモードスクランブラ35によれば、上記各実施形態の光ファイバ20a~20cに対応する光ファイバ20を備えているので、均一な照射強度のレーザ光を被照射面に対して非矩形状に照射することができる。 According to the mode scrambler 35 of this embodiment, since the optical fiber 20 corresponding to the optical fibers 20a to 20c of each of the above embodiments is provided, laser light having a uniform irradiation intensity is non-rectangular with respect to the irradiated surface. The shape can be irradiated.
 上記各実施形態では、第2コア11の非矩形状の横断面として、円形状の横断面を例示したが、本発明は、例えば、多角形状、D字型状、楕円状などの他の横断面についても適応することができる。 In each of the above embodiments, a circular cross section is exemplified as the non-rectangular cross section of the second core 11, but the present invention may include other cross sections such as a polygonal shape, a D-shape, and an elliptical shape. It can also be applied to the surface.
 以上説明したように、本発明は、均一な照射強度でレーザ光が出射されるので、半導体の表面剥離加工などのレーザ加工について有用である。 As described above, the present invention is useful for laser processing such as semiconductor surface peeling processing because laser light is emitted with uniform irradiation intensity.

Claims (6)

  1.  断面が長方形又は正方形の矩形状に形成された石英製の第1コアと、該第1コアを被覆するように形成された第1クラッドとを備えた第1ファイバ部と、
     横断面が非矩形状に形成された石英製の第2コアと、該第2コアを被覆するように形成された第2クラッドとを備えた第2ファイバ部とを有し、
     上記第1コアを伝搬したレーザ光が上記第2コアに入射するように、上記第1ファイバ部には、上記第2ファイバ部が融着接続されていることを特徴とする光ファイバ。
    A first fiber portion comprising a quartz first core having a rectangular or square cross-section and a first cladding formed to cover the first core;
    A second fiber portion including a second core made of quartz having a non-rectangular cross section and a second cladding formed to cover the second core;
    The optical fiber, wherein the second fiber portion is fusion-connected to the first fiber portion so that the laser light propagated through the first core is incident on the second core.
  2.  請求項1に記載された光ファイバにおいて、
     接続界面において、上記第1コアは、上記第2コアに包含されていることを特徴とする光ファイバ。
    The optical fiber according to claim 1, wherein
    The optical fiber, wherein the first core is included in the second core at the connection interface.
  3.  請求項1に記載された光ファイバにおいて、
     上記第2コアの横断面は、円形状に形成され、
     上記第2ファイバ部の長さは、上記第2コアの直径の25倍~100mmであることを特徴とする光ファイバ。
    The optical fiber according to claim 1, wherein
    The cross section of the second core is formed in a circular shape,
    The length of the second fiber portion is 25 times to 100 mm of the diameter of the second core.
  4.  請求項1に記載された光ファイバにおいて、
     上記第1クラッドは、樹脂製であり、
     上記第1ファイバ部の接続界面側では、上記第1クラッドが除去されていることを特徴とする光ファイバ。
    The optical fiber according to claim 1, wherein
    The first cladding is made of resin,
    The optical fiber, wherein the first cladding is removed on the connection interface side of the first fiber portion.
  5.  請求項4に記載された光ファイバにおいて、
     少なくとも上記第1クラッドが除去された部分は、筒状のコネクタの内部に収容されていることを特徴とする光ファイバ。
    The optical fiber according to claim 4, wherein
    An optical fiber characterized in that at least a portion from which the first cladding is removed is accommodated in a cylindrical connector.
  6.  請求項1に記載された光ファイバを備えていることを特徴とするモードスクランブラ。 A mode scrambler comprising the optical fiber according to claim 1.
PCT/JP2009/000046 2008-02-20 2009-01-08 Optical fiber and mode scrambler provided therewith WO2009104350A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008038736A JP2009198680A (en) 2008-02-20 2008-02-20 Optical fiber and mode scrambler equipped with the same
JP2008-038736 2008-02-20

Publications (1)

Publication Number Publication Date
WO2009104350A1 true WO2009104350A1 (en) 2009-08-27

Family

ID=40985239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000046 WO2009104350A1 (en) 2008-02-20 2009-01-08 Optical fiber and mode scrambler provided therewith

Country Status (2)

Country Link
JP (1) JP2009198680A (en)
WO (1) WO2009104350A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105319425A (en) * 2014-07-09 2016-02-10 北京自动化控制设备研究所 All-fiber quarter wave plate packaging method
US9709676B2 (en) 2014-07-31 2017-07-18 Kabushiki Kaisha Topcon Laser light emitting device having a mode scrambler for unifying light intensity distribution
CN115032744A (en) * 2022-05-24 2022-09-09 哈尔滨工程大学 Combined type multimode optical fiber mode scrambler and mode scrambling device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7127268B2 (en) * 2017-10-18 2022-08-30 株式会社島津製作所 optical coupler

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS559825A (en) * 1978-07-07 1980-01-24 Oki Electric Ind Co Ltd End structure of plasticcclad fiber
JPS61219010A (en) * 1985-03-25 1986-09-29 Furukawa Electric Co Ltd:The Connecting method for plastic clad optical fiber
JPS63193106A (en) * 1987-02-06 1988-08-10 Furukawa Electric Co Ltd:The Connecting method for plastic clad optical fiber
JP2005049693A (en) * 2003-07-30 2005-02-24 Sumitomo Electric Ind Ltd Optical transmission body and optical transmission module
US20060098934A1 (en) * 2004-11-08 2006-05-11 Eastman Kodak Company Beam shaper and imaging head having beam shapers
WO2007007388A1 (en) * 2005-07-11 2007-01-18 Mitsubishi Denki Kabushiki Kaisha Lighting apparatus
WO2007007389A1 (en) * 2005-07-11 2007-01-18 Mitsubishi Denki Kabushiki Kaisha Speckle removing light source and illuminator
JP2007033859A (en) * 2005-07-27 2007-02-08 Rohm Co Ltd Optical transmission line
JP2007094213A (en) * 2005-09-29 2007-04-12 Rohm Co Ltd Optical transmitting system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS559825A (en) * 1978-07-07 1980-01-24 Oki Electric Ind Co Ltd End structure of plasticcclad fiber
JPS61219010A (en) * 1985-03-25 1986-09-29 Furukawa Electric Co Ltd:The Connecting method for plastic clad optical fiber
JPS63193106A (en) * 1987-02-06 1988-08-10 Furukawa Electric Co Ltd:The Connecting method for plastic clad optical fiber
JP2005049693A (en) * 2003-07-30 2005-02-24 Sumitomo Electric Ind Ltd Optical transmission body and optical transmission module
US20060098934A1 (en) * 2004-11-08 2006-05-11 Eastman Kodak Company Beam shaper and imaging head having beam shapers
WO2007007388A1 (en) * 2005-07-11 2007-01-18 Mitsubishi Denki Kabushiki Kaisha Lighting apparatus
WO2007007389A1 (en) * 2005-07-11 2007-01-18 Mitsubishi Denki Kabushiki Kaisha Speckle removing light source and illuminator
JP2007033859A (en) * 2005-07-27 2007-02-08 Rohm Co Ltd Optical transmission line
JP2007094213A (en) * 2005-09-29 2007-04-12 Rohm Co Ltd Optical transmitting system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105319425A (en) * 2014-07-09 2016-02-10 北京自动化控制设备研究所 All-fiber quarter wave plate packaging method
CN105319425B (en) * 2014-07-09 2018-06-26 北京自动化控制设备研究所 A kind of packaging method of full-fiber quarter wave plate
US9709676B2 (en) 2014-07-31 2017-07-18 Kabushiki Kaisha Topcon Laser light emitting device having a mode scrambler for unifying light intensity distribution
CN115032744A (en) * 2022-05-24 2022-09-09 哈尔滨工程大学 Combined type multimode optical fiber mode scrambler and mode scrambling device

Also Published As

Publication number Publication date
JP2009198680A (en) 2009-09-03

Similar Documents

Publication Publication Date Title
US8064742B2 (en) Light input/output terminal module of the optical components and beam converting apparatus
US11119271B2 (en) Triple clad fiber
US20170017036A1 (en) Apparatus for combining optical radiation
JP5227038B2 (en) Optical fiber
US9151905B2 (en) Preterminated fiber optic connector sub-assemblies, and related fiber optic connectors, cable assemblies, and methods
JP6417710B2 (en) Bending optical fiber manufacturing method
US8023785B2 (en) Laser guide optical fiber and laser guide including the same
JPWO2008123609A1 (en) Laser processing apparatus and laser processing method
JP2009168914A (en) Optical fiber and method for manufacturing the same
EP3477348A1 (en) Optical device and laser device
TW201617659A (en) Optical assembly and method for producing and using the same
JP2014010427A (en) Optical fiber and optical cable
WO2014002715A1 (en) Optical fiber and optical cable
WO2009104350A1 (en) Optical fiber and mode scrambler provided therewith
JP2007293298A (en) Light input/output port of optical component
JP2009175271A (en) Optical fiber end part shape, and optical fiber end part treating method
US20190237929A1 (en) Optical fiber and fiber laser
WO2007015577A1 (en) Combined light source
JP2014010258A (en) Optical fiber and optical cable
JP2015141371A (en) optical fiber
JP6765210B2 (en) Optical fiber / quartz block bonding structure and its manufacturing method
JP2006010961A (en) Photonic crystal fiber and laser processing machine
JP7168606B2 (en) Cladding mode stripper structure and manufacturing method thereof
JP3794894B2 (en) Fiber optic support
JPS5857722B2 (en) fiber optic connector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09712501

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09712501

Country of ref document: EP

Kind code of ref document: A1