WO2009102134A2 - 풍력발전 시스템 - Google Patents

풍력발전 시스템 Download PDF

Info

Publication number
WO2009102134A2
WO2009102134A2 PCT/KR2009/000608 KR2009000608W WO2009102134A2 WO 2009102134 A2 WO2009102134 A2 WO 2009102134A2 KR 2009000608 W KR2009000608 W KR 2009000608W WO 2009102134 A2 WO2009102134 A2 WO 2009102134A2
Authority
WO
WIPO (PCT)
Prior art keywords
power
hydraulic
hydraulic pump
wind
motion
Prior art date
Application number
PCT/KR2009/000608
Other languages
English (en)
French (fr)
Other versions
WO2009102134A3 (ko
Inventor
Jong-Won Park
Original Assignee
Jong-Won Park
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jong-Won Park filed Critical Jong-Won Park
Publication of WO2009102134A2 publication Critical patent/WO2009102134A2/ko
Publication of WO2009102134A3 publication Critical patent/WO2009102134A3/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/28Wind motors characterised by the driven apparatus the apparatus being a pump or a compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • F03D15/10Transmission of mechanical power using gearing not limited to rotary motion, e.g. with oscillating or reciprocating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/10Combinations of wind motors with apparatus storing energy
    • F03D9/17Combinations of wind motors with apparatus storing energy storing energy in pressurised fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H39/00Rotary fluid gearing using pumps and motors of the volumetric type, i.e. passing a predetermined volume of fluid per revolution
    • F16H39/02Rotary fluid gearing using pumps and motors of the volumetric type, i.e. passing a predetermined volume of fluid per revolution with liquid motors at a distance from liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/706Application in combination with an electrical generator
    • F05B2220/7066Application in combination with an electrical generator via a direct connection, i.e. a gearless transmission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/221Rotors for wind turbines with horizontal axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/40Transmission of power
    • F05B2260/406Transmission of power through hydraulic systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Definitions

  • the present invention relates to a wind power generation system, which makes it easy to manufacture a facility, is not affected by the location, can prevent frequent breakdowns, provide the ease of maintenance, and the wind energy obtained irregularly rated It relates to a wind power generation system that can be produced by power.
  • Wind power generation technology is a technology that supplies the induction electricity generated by converting the wind power into rotational power to the power system or the consumer.
  • This wind power generation is composed of a motion converter, a power transmission device, a power converter, and a control device that absorbs and converts the energy of the wind power, and each component does not function independently and is related to each other. Function as a system.
  • a tower In conventional wind power generation, a tower is usually installed at a height of 40 to 50 meters or more to receive a lot of wind, and a motion converter including propellers, gears, and a generator is installed on the tower.
  • a motion converter including propellers, gears, and a generator is installed on the tower.
  • the devices included in the momentum converter are heavy materials, it is necessary to manufacture a rigid hub and a nucelle to withstand high loads, and a solid tower is installed to support the weight of the hub and the nucleus in the upper part. Frequent mechanical failures occur due to irregular wind shocks, and these mechanical failures must be performed at hubs and nussels, which makes it difficult to deal with failures quickly and also requires many accessories and equipment to convert irregular winds into stable power. There was a problem.
  • the present invention in consideration of the problems of the prior art, by using a hydraulic system to transport the power obtained from the flow energy of the wind to the required area to reproduce the momentum power conversion system can be produced lightly, economically and conveniently
  • the purpose is to provide.
  • Another object of the present invention is to provide a wind power generation system that can easily maintain and maintain the trouble, such as easy to prevent and maintain the fault.
  • Still another object of the present invention is to provide a wind power generation system that obtains irregular wind power with stable power.
  • Still another object of the present invention is to provide a wind power generation system that can be installed and implemented without being greatly influenced by the installation location or conditions.
  • the present invention provides a wind power generation system including a motion converter, a tower, a power transmission device, a power converter, and a controller for absorbing wind energy and converting motion to achieve the above object,
  • a hub, a rotor, a shaft, and a hydraulic pump wherein the power converter includes a hydraulic motor, and the hydraulic pump of the motion converter includes a rotor that rotates in response to wind energy.
  • the high pressure oil is operated by force, and the hydraulic motor of the power converter receives the high pressure oil produced by the hydraulic pump to generate the required power, and the motion converter is located on the tower and installed.
  • the remaining towers, power trains, power converters, and control units provide ground-based wind power systems.
  • the wind power generation system of the present invention uses a hydraulic transmission system for power transmission, and requires a power obtained from the flow energy of the wind because the tower is equipped with a lightweight motion converter including a hub, a rotor, a shaft, and a hydraulic pump.
  • the motion converter is light, economical and easy to manufacture and use. It is free from noise, easy to maintain and maintain such as trouble prevention and maintenance, convenient to cope with failure, and stabilizes irregular wind power. Can be obtained by power.
  • FIG. 1 is a conceptual diagram illustrating a wind turbine in which an hub, a rotor, a shaft, a hydraulic pump, and a nussel are installed on a tower, which is an embodiment of the present invention.
  • FIG. 2 is a conceptual view showing a conventional gear type wind power generator.
  • FIG. 3 is a conceptual view illustrating a conventional gearless wind power generator.
  • FIG. 4 is a diagram showing a hydraulic transmission system of an embodiment of the present invention.
  • FIG. 5 is a diagram showing a hydraulic transmission system of an embodiment of the present invention.
  • the inventors of the present invention found that large wind turbines are equipped with heavy loads such as propellers, gears, generators, etc., on the top of a high position tower, and the problems caused by high weight and the inconvenience of maintenance of mechanical devices located at high places, and irregular wind power This problem is reduced by installing a hydraulic pump instead of a gear and a generator in the energy obtaining unit, and building a power transmission system for regenerating energy for transmitting pressurized hydraulic fluid to the ground where it is easy to use.
  • the present invention has been accomplished by discovering that it can be solved fundamentally.
  • the present invention is a conventional wind power generator system that absorbs and converts wind energy, a tower, a power transmission device, a power converter, and a control device. Instead, the rotary motion of the rotor, which is driven by wind force, is transmitted to the hydraulic pump through the shaft, and the hydraulic pump is operated to produce high pressure oil by the rotary motion. At this time, the rotor and the hydraulic pump are located on the tower and installed, and the rest of the facilities are installed on the ground below the tower.
  • FIG. 1 An embodiment of the present invention, a hub, a rotor, a shaft, a hydraulic pump, and a nussel are shown in FIG.
  • FIGS. 2 and 3 A typical wind turbine is shown in FIGS. 2 and 3.
  • Figure 2 shows an overview of a gear-type wind turbine, in which a hub, a rotor, a shaft, a gearbox, a generator (usually an induction generator), and a nussel are located above the tower and installed.
  • a hub, a rotor, a shaft, a gearbox, a generator (usually an induction generator), and a nussel are located above the tower and installed.
  • heavy gearboxes and generators are required to be placed in the nussels and to have a strong hub and a nucleus capable of withstanding high loads, and a strong tower to support them.
  • FIG. 3 shows a gearless wind generator, in which a hub, a rotor, a generator (usually a synchronous generator), and a nussel are located above the tower and installed.
  • a hub, a rotor, a generator usually a synchronous generator
  • a nussel located above the tower and installed.
  • the generator used is very large, heavy and expensive to manufacture. It takes a lot of multi-pole ring generator, etc., and due to the characteristics of the synchronous generator, the air gap is exposed to the outside air, and may be affected by salt or floating matters, etc., and has a structural problem of supporting a heavy generator in a cantilevered form.
  • the hub of the present invention refers to the central portion where the blades that meet the wind are collectively referred to, and the nucelle means the driving chamber.
  • the hub 1, the rotor 2, the shaft 3, the hydraulic pump 100, and the nussel 6 are disposed on the tower 7.
  • the gearbox 4 and the generator 5 are not provided with weight, the tower 7 is lighter, the structure of the nussel 6 is very simple, the maintenance convenience is increased, the mechanical noise is reduced, etc. There is an advantage.
  • the motion converter of the wind power generation system of the present invention may include a hub 1, a rotor 2, and a nussel 6 incorporating a hydraulic pump 100, and the rotor 2 is a propeller type, Darius.
  • Various blades, such as dies or savonius, can be selected according to the terrain in which the wind turbine is installed.
  • the hub 1 of the motion converter may be further equipped with a pitch motor for adjusting the wing pitch of the rotor 2 in a conventional hub, and the rotor 2 between the motion converter and the tower 7.
  • Yaw-deck and yaw-drive may be further provided for directional control so that the wing of the blade is directed in the wind direction.
  • the power transmission system is hydraulic
  • the power transmission device, the power conversion device, and the control device are installed on the ground for easier maintenance, and the output control varies depending on the hydraulic control and transmission control described above as well as the applied generator. It has the benefit of making it work.
  • the oil pressure of the present invention refers to a mixture of ordinary hydraulic oil, pneumatic or oil pressure.
  • the hydraulic pump used in the present invention is easy to control because it uses a pressurized liquid (usually mineral oil), and has a feature of being compact compared to a force transmission capability. This is due to the high pressure of the liquid, and may be a conventional rotary gear pump, vane pump, screw pump, or the like.
  • the hydraulic transmission system shown in Figure 4 is a hydraulic pump driven by a rotational motion obtained from wind power; A pressure tank receiving the hydraulic pressure pressurized from the hydraulic pump; A pressure relief valve or a solenoid valve functionally connected to at least one of the pressure tanks; A hydraulic motor which is a power conversion device functionally connected to the pressure relief valve or the solenoid valve; A power production device such as an induction generator operated by the hydraulic motor; And a device such as a hydraulic oil storage tank functionally connected to the hydraulic motor to recover and store hydraulic oil, and supplying the hydraulic oil to the hydraulic pump, which are functionally connected through a hydraulic transmission medium such as a hydraulic hose. It works in conjunction with, and can be equipped with a check valve to prevent each reverse circulation.
  • Such a power transmission hydraulic system of the present invention is provided with a hydraulic pump and a hydraulic motor, to which a line for transporting high pressure hydraulic fluid is connected.
  • the line between the hydraulic pump and the hydraulic motor is equipped with a pressure tank, which is provided with a relief valve or a solenoid valve actuated according to the pressure.
  • the relief valve or solenoid valve opens and closes sequentially by the difference in pressure in the pressure tank, and delivers the hydraulic oil to the hydraulic motor. Therefore, the hydraulic motor is connected to each relief valve or solenoid valve, respectively, and when the pressurized hydraulic fluid flows into the hydraulic motor, the hydraulic motor makes a rotary motion, and when a rotary generator such as an induction generator is connected thereto, it can generate electricity.
  • the hydraulic oil via the hydraulic motor flows into a separate storage tank and is circulated again by the hydraulic pump.
  • a separate feed pump can be installed. It is operated to assist the suction force of the hydraulic pump in the high position and to prevent the hydraulic oil from flowing into the storage tank when the pump is paused to show the empty space inside the line.
  • a pass line is provided to ensure that the hydraulic fluid at the proper pressure is supplied to the hydraulic pump.
  • a bypass line can be installed directly into the storage tank without using a high pressure hydraulic oil generated from the hydraulic pump. Be prepared for an accident.
  • the hydraulic transmission system of the present invention is equipped with a power transmission device such as a rotary generator, and is equipped with an automatic transmission or a continuously variable transmission that can be connected directly to a hydraulic motor without going through a pressure tank as shown in FIG. You may. At this time, the hydraulic fluid is transferred from the hydraulic pump to the hydraulic motor, and then circulated to the storage tank, and the subsequent delivery system is the same as using the hydraulic motor.
  • a power transmission device such as a rotary generator
  • the high pressure hydraulic fluid generated by the motion converter installed on the tower is transferred to the ground tower, the power transmission device, the power conversion device, and the control device through a conventional hydraulic hose.
  • the motion converter unit rotates according to the direction of the wind, so that the hose or the hose pipe is not twisted.
  • a conventional rotating device such as a sleeve
  • the conventional rotating device such as an anti-twist roller, a aligner or a sleeve can be aligned at regular intervals so as not to twist when the hose or the hose pipe or the like is loosened or wound. It is to execute the action of winding and unwinding.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)

Abstract

본 발명은 설비를 간편하게 제작할 수 있고, 위치에 영향을 받지 않고 설비할 수 있으며, 잦은 고장을 예방할 수 있으며, 관리유지의 간편함을 제공하며, 불규칙하게 수득되는 풍력에너지를 정격의 동력으로 생산할 수 있는 풍력발전 시스템에 관한 것으로, 바람 에너지를 흡수하고 운동을 변환하는 운동 변환장치, 타워, 동력전달장치, 동력변환장치, 및 제어장치를 포함하는 풍력발전 시스템에 있어서, 상기 운동 변환장치는 허브(hub), 로터(rotor), 샤프트(shaft), 및 유압펌프를 포함하고, 상기 동력변환장치는 유압모터를 포함하며, 상기 운동 변환장치의 유압 펌프는 바람의 에너지를 받아 회전하는 로터의 힘으로 고압유를 생산하는 작동을 하고, 상기 동력변환장치의 유압모터는 유압펌프에서 생산된 고압유를 전달받아 필요한 동력을 생산하는 작동을 하며, 상기 운동 변환장치는 타워 위에 위치되어 설비되고, 나머지 타워, 동력전달장치, 동력변환장치, 및 제어장치는 지상에 설비되는 풍력발전 시스템을 제공한다.

Description

[규칙 제26조에 의한 보정 12.05.2009] 풍력발전 시스템
본 발명은 풍력발전 시스템에 관한 것으로, 설비를 간편하게 제작할 수 있게 하고, 위치에 영향을 받지 않게 하며, 잦은 고장을 예방할 수 있으며, 관리유지의 간편함을 제공하며, 불규칙하게 수득되는 풍력에너지를 정격의 동력으로 생산할 수 있는 풍력발전 시스템에 관한 것이다.
풍력발전기술은 바람의 힘을 회전력으로 전환시켜 발생되는 유도전기를 전력계통이나 수요자에게 공급하는 기술이다.
이러한 풍력발전은 풍력이 가진 에너지를 흡수 및 변환하는 운동 변환장치, 동력전달장치, 동력변환장치, 제어장치 등으로 구성되어 있으며, 각각의 구성요소들은 독립적으로 그 기능을 발휘하지 못하며 상호 연관되어 전체적인 시스템으로서 기능을 수행한다.
종래의 풍력발전은 바람을 많이 받기 위하여 통상 40 내지 50 미터 이상의 높은 곳에 타워를 설치하고 타워 위에 프로펠라, 기어, 및 발전기 등을 포함하는 운동 변환장치를 설비한다. 그러나 상기 운동량 변환장치에 포함된 장치들은 중량물이기 때문에 높은 하중을 견디기 위하여 견고한 허브(hub) 및 너셀(nacelle)을 제작해야 하고, 또 상부의 허브와 너셀 부위의 무게를 지탱하기 위하여 견고한 타워를 설치해야 하며, 불규칙한 풍력의 충격으로 잦은 기계고장이 발생하며, 이러한 기계고장은 허브 및 너셀에서 수행해야 하므로 신속한 고장 대처가 어려웠으며, 또한 불규칙한 풍력을 안정된 동력으로 변환하기 위하여 많은 부속 장치 및 장비가 필요한 문제점이 있었다.
본 발명은 상기 종래기술의 문제점을 고려하여, 유압체계를 사용하여 바람의 유동에너지로부터 수득한 동력을 필요지역으로 운반하여 재생산을 함으로써 운동량 변환장치가 가볍고 경제적이며 간편하게 제작하여 사용할 수 있는 풍력발전 시스템을 제공하는 것을 목적으로 한다.
본 발명의 다른 목적은 편리하게 고장예방 및 정비 등의 관리유지를 손쉽게 할 수 있으며, 고장 대처가 편리한 풍력발전 시스템을 제공하는 것이다.
본 발명의 또 다른 목적은 불규칙한 풍력을 안정된 동력으로 얻는 풍력발전 시스템을 제공하는 것이다.
본 발명의 또 다른 목적은 설치 위치나 조건에 크게 영향을 받지 않고 설치 및 실시될 수 있는 풍력발전 시스템을 제공하는 것이다.
본 발명은 상기 목적을 달성하기 위하여, 바람 에너지를 흡수하고 운동을 변환하는 운동 변환장치, 타워, 동력전달장치, 동력변환장치, 및 제어장치를 포함하는 풍력발전 시스템에 있어서, 상기 운동 변환장치는 허브(hub), 로터(rotor), 샤프트(shaft), 및 유압펌프를 포함하고, 상기 동력변환장치는 유압모터를 포함하며, 상기 운동 변환장치의 유압 펌프는 바람의 에너지를 받아 회전하는 로터의 힘으로 고압유를 생산하는 작동을 하고, 상기 동력변환장치의 유압모터는 유압펌프에서 생산된 고압유를 전달받아 필요한 동력을 생산하는 작동을 하며, 상기 운동 변환장치는 타워 위에 위치되어 설비되고, 나머지 타워, 동력전달장치, 동력변환장치, 및 제어장치는 지상에 설비되는 풍력발전 시스템을 제공한다.
본 발명의 풍력발전 시스템은 동력전달에 유압 전달체계를 사용하며, 타워 위에는 허브, 로터, 샤프트, 및 유압펌프를 포함하는 경량의 운동 변환장치를 설비하기 때문에 바람의 유동에너지로부터 수득한 동력을 필요지역으로 운반하여 재생산을 함으로써 운동 변환장치가 가볍고 경제적이며 간편하게 제작하여 사용할 수 있으며, 소음이 없고, 고장예방 및 정비 등의 관리유지를 손쉽게 할 수 있으며, 고장 대처가 편리하며, 또한 불규칙한 풍력을 안정된 동력으로 얻을 수 있다.
도 1은 본 발명의 일실시예인 허브, 로터, 샤프트, 유압펌프, 및 너셀이 타워 위에 위치하여 설비된 풍력발전기를 나타낸 개념도이다.
도 2는 통상의 기어형 풍력발전기를 나타낸 개념도이다.
도 3은 통상의 기어리스형 풍력발전기를 나타낸 개념도이다.
도 4는 본 발명의 일실시예의 유압전달시스템을 나타낸 다이어그램이다.
도 5는 본 발명의 일실시예의 유압전달시스템을 나타낸 다이어그램이다.
*도면의 주요부분에 대한 부호설명*
1 : 허브 2 : 로터
3 : 샤프트 4 : 기어박스
5 : 발전기 6 : 너셀
7 : 타워 100 : 유압펌프
본 발명자는 대형의 풍력발전기는 높은 위치의 타워상부에 프로펠러, 기어, 발전기 등의 중량물이 장착되어 높은 중량으로 인한 문제점과 고소에 위치한 기계장치들이 갖는 유지관리의 불편한 문제, 및 불규칙하게 수득되는 풍력의 문제점을 에너지 수득부에 기어, 발전기 대신에 유압펌프를 설치하여 경량화하고, 가압된 작동유가 사용이 용이한 위치인 지상까지 전달되도록 하는 에너지를 재생산하는 동력전달을 유압체계로 구축하면 상기 문제점들을 근본적으로 해결할 수 있음을 발견하고 본 발명을 완성하였다.
본 발명은 종래의 바람 에너지를 흡수하여 변환하는 운동 변환장치, 타워, 동력전달장치, 동력변환장치, 및 제어장치를 포함하는 풍력발전 시스템에서, 운동 변환장치에 장치되던 발전기 등의 변환장치를 지상에 설비하도록 하며, 대신에 바람의 힘으로 작동되는 로터의 회전 운동을 샤프트를 통하여 유압펌프로 전달하고, 유압펌프는 회전운동에 의해 고압유를 생산하는 작동을 하도록 한다. 이때의 로터 및 유압펌프는 타워 위에 위치되어 설비되며, 나머지 설비들은 타워의 하부인 지상에 설비되도록 한다.
이하에서는 도면을 참고하여 본 발명을 상세하게 설명한다.
본 발명의 일실시예인 허브, 로터, 샤프트, 유압펌프, 및 너셀이 타워 위에 위치하여 설비된 풍력발전기를 도 1에 나타내었다. 통상의 풍력발전기는 도 2, 및 도 3에 나타내었다.
도 2는 기어형 풍력발전기의 개요를 나타낸 것으로, 허브, 로터, 샤프트, 기어박스, 발전기(통상 유도발전기), 및 너셀이 타워 위에 위치하여 설비된다. 특히 중량의 기어박스, 발전기가 너셀 내에 위치하여 높은 하중을 견딜 수 있는 견고한 허브와 너셀이 필요로 하고, 이를 지탱하여 주는 견고한 타워가 필요하다.
도 3은 기어리스형 풍력발전기를 나타낸 것으로, 허브, 로터, 발전기(통상 동기 발전기), 및 너셀이 타워 위에 위치하여 설비된다. 종속 기어장치 등의 많은 기계부품을 제거할 수 있고, 너셀 구조가 매우 간단해져 유지 보수상의 간편성이 증대되고, 기계적 소음이 저감되는 등의 잇점이 있으나, 사용되는 발전기는 매우 크고 무거우며 제작비용이 많이 소요되는 다극형 링발전기 등이 필요하며, 동기 발전기 특성상 공극이 외기에 노출되어 염해나 먼저 등의 부유물에 영향을 받을 수 있으며, 중량이 큰 발전기를 외팔보 형태로 지지해야 하는 구조적 문제를 갖는다.
본 발명의 허브(hub)는 바람을 맞는 블레이드가 모인 중심부분을 총칭하며, 너셀(nucelle)은 구동실을 의미한다.
이에 비하여 본 발명의 풍력발전시스템은 도 1과 같이 허브(1), 로터(2), 샤프트(3), 유압펌프(100), 및 너셀(6)이 타워(7) 위에 위치하여 설비된다. 특히 중량의 기어박스(4), 발전기(5)를 설비하지 않기 때문에 타워(7) 위가 경량화되며, 너셀(6) 구조가 매우 간단해져 유지 보수상의 간편성이 증대되고, 기계적 소음이 저감되는 등의 잇점이 있다.
따라서 본 발명의 풍력발전 시스템의 운동 변환장치는 허브(1), 로터(2), 및 유압펌프(100)를 내재한 너셀(6)을 포함할 수 있으며, 로터(2)는 프로펠라형, 다리우스형, 또는 사보니우스형 등의 각종 블레이드를 풍력발전기가 설치되는 지형에 맞추어 선택할 수 있다. 또한 운동 변환장치의 허브(1)는 통상적인 허브 내에 로터(2)의 날개 경사각(pitch)을 조절하기 위한 피치모터가 더욱 설비될 수 있으며, 운동 변환장치와 타워(7) 사이에는 로터(2)의 날개가 바람방향을 향하도록 방향조절을 하기 위한 요-데크(yaw-deck) 및 요-구동장치(yaw-drive)가 더욱 설비될 수 있다.
또한 동력전달시스템이 유압이므로 동력전달장치, 동력변환장치, 및 제어장치는 지상에 설비되어 보다 유지관리가 용이하고, 출력의 제어를 상기에서 설명한 유압제어, 변속기 제어 뿐만 아니라 적용되는 발전기에 따라서 다양하게 할 수 있는 잇점을 갖는다.
이하에서는 본 발명에 사용되는 유압전달시스템을 설명한다.
본 발명의 유압이라 함은 통상의 유압유, 공압, 또는 유공압이 혼합된 것을 총칭한다. 본 발명에 사용되는 유압펌프는 가압된 액체(통상적으로 광유)를 이용하므로 제어하기가 쉽고, 힘의 전달능력에 비해 소형이라는 특징을 갖는다. 이는 액체의 압력이 높다는 것에 기인하며, 통상적인 회전식의 기어펌프, 베인펌프, 또는 스크류 펌프 등이 될 수 있다.
본 발명에 사용되는 유압전달시스템을 도 4 및 도 5에 나타내었다.
도 4에 나타낸 유압전달시스템은 풍력으로부터 수득한 회전운동으로 구동되는 유압펌프; 상기 유압펌프로부터 가압된 유압을 받는 압력탱크(pressure tank); 상기 압력탱크에 적어도 1 개 이상 기능적으로 연결되어 설비되는 압력 릴리이프 밸브(pressure relief valve) 또는 솔레노이드 밸브; 상기 압력 릴리이프 밸브 또는 솔레노이드 밸브에 기능적으로 연결되어 설비되는 동력변환 장치인 유압모터; 상기 유압모터에 의해 작동되는 유도 발전기 등의 동력생산장치; 및 상기 유압모터에 기능적으로 연결되어 작동유를 회수 및 저장하고, 상기 유압펌프에 작동유를 공급하는 작동유 저장 탱크(storage tank)등의 장치들을 포함하며, 이들은 유압호스 등의 유압전달매체를 통하여 기능적으로 연결되어 작동하며, 각각의 역순환을 방지하기 위하여 체크밸브가 장착될 수 있다.
이와 같은 본 발명의 동력전달 유압시스템은 유압펌프와 유압모터가 구비되고 여기에는 고압의 작동유가 이송되는 라인이 연결된다. 유압펌프에서 유압모터 사이의 라인에는 압력탱크가 설비되고 이 압력탱크에는 압력에 따라 작동되는 릴리이프밸브 또는 솔레노이드 밸브가 구비된다. 이 릴리이프밸브 또는 솔레노이드 밸브는 압력탱크의 압력의 차이로 순차적으로 개폐작동을 하며 작동유를 유압모터로 전달하게 된다. 그러므로 각 릴리이프밸브 또는 솔레노이드 밸브 마다 각각 유압모터가 연결되며 가압된 작동유가 유압모터에 유입되면 유압모터는 회전운동을 하게 되며, 여기에 유도발전기 등의 회전발전기를 연결하면 발전을 할 수 있다.
또한 유압모터를 경유한 작동유는 별도의 저장탱크로 유입되고 다시 유압펌프로 순환하여 이동하게 된다. 만약 유압펌프가 매우 높은 위치에 있을 때에는 별도의 피드 펌프가 설치될 수 있다. 이는 높은 위치의 유압펌프의 흡인력을 보조하고, 펌프가 일시 정지 하였을 때 작동유가 저장탱크로 흘러내려 라인내부가 빈 공간 상태를 나타내는 것을 방지할 목적으로 가동되며, 이때 피드 펌프와 가압펌프사이에는 바이패스 라인을 설비하여 적정 압력의 작동유가 유압펌프에 공급되도록 한다.
또한 필요시 유압시스템을 오프시켜야할 때, 또는 태풍과 같이 큰 입력이 있을 때 출력을 조절하기 위하여 유압펌프로부터 발생된 고압의 작동유를 압력탱크를 경유하지 않고 바로 저장탱크로 바이패스 라인을 설비하여 사고에 대비하게 한다.
본 발명의 유압전달시스템을 사용하면 정격으로 전력을 생산할 수 있으며, 동기 발전기를 사용하더라도 인버터 등의 장치도 소형화할 수 있게 된다.
본 발명의 유압전달시스템은 도 5와 같이 압력탱크를 거치지 않고 바로 유압모터로 연결하고 이를 적정의 회전수로 조작가능한 자동변속기, 또는 무단 변속기를 장착하고 여기에 회전발전기 등의 동력변환장치를 설비할 수도 있다. 이때 작동유는 유압펌프로부터 유압모터로 전달된 후, 저장탱크로 순환 전달되며, 이 후의 전달체계는 상기 유압모터를 사용하는 것과 동일하다.
본 발명의 유압전달시스템은 타워 상부에 설치된 운동 변환장치에서 발생된 고압의 작동유가 통상의 유압호스 등을 통하여 지상의 타워, 동력전달장치, 동력변환장치 및 제어장치까지 전달하게 된다.
그리고, 풍력발전 특성상 바람의 방향에 따라 운동 변환장치부가 회전하게 되므로 호스 또는 호스관 등이 꼬이지 않도록 유압펌프와 유압호스 사이 또는 요-장치(yaw-device)에 별도의 꼬임방지롤러, 정렬기 또는 슬리브와 같은 통상의 회전 장치를 설비하는 것이 바람직하고, 상기 꼬임방지롤러, 정렬기 또는 슬리브와 같은 통상의 회전 장치는 호스 또는 호스관 등이 풀어지거나 감겨질 때 꼬이지 않도록 일정한 간격으로 정렬시킬 수 있는 감김과 풀림의 동작을 실행시키기 위한 것이다.

Claims (8)

  1. 바람 에너지를 흡수하여 운동을 변환하는 운동 변환장치, 타워, 동력전달장치, 동력변환장치, 및 제어장치를 포함하는 풍력발전 시스템에 있어서,
    상기 운동 변환장치는 허브(hub), 로터(rotor), 샤프트(shaft), 및 유압펌프를 포함하고, 상기 동력변환장치는 유압모터를 포함하며,
    상기 운동 변환장치의 유압 펌프는 바람의 에너지를 받아 회전하는 로터의 힘으로 고압유를 생산하는 작동을 하고, 상기 동력변환장치의 유압모터는 유압펌프에서 생산된 고압유를 전달받아 필요한 동력을 생산하는 작동을 하며,
    상기 운동 변환장치는 타워 위에 위치되어 설비되고, 나머지 타워, 동력전달장치, 동력변환장치, 및 제어장치는 지상에 설비되는 풍력발전 시스템.
  2. 제 1 항에 있어서,
    상기 운동 변환장치는 허브, 로터, 및 유압펌프를 내재한 너셀을 포함하는 풍력발전 시스템.
  3. 제 1 항에 있어서,
    상기 운동 변환장치의 로터가 프로펠라형, 다리우스형, 또는 사보니우스형인 풍력발전 시스템.
  4. 제 1 항에 있어서,
    상기 운동 변환장치의 허브가 허브 내에 로터의 날개 경사각(pitch)을 조절하기 위한 피치모터가 더욱 설비된 풍력발전 시스템.
  5. 제 1 항에 있어서,
    상기 운동 변환장치와 타워 사이에는 로터의 날개가 바람방향을 향하도록 방향조절을 하기 위한 요-데크(yaw-deck) 및 요-구동장치(yaw-drive)가 더욱 설비된 풍력발전 시스템.
  6. 제 1 항에 있어서,
    상기 풍력발전 시스템의 동력전달장치는 유압전달시스템을 포함하는 풍력발전 시스템.
  7. 제 6 항에 있어서,
    상기 유압전달시스템은
    풍력으로부터 수득한 회전운동으로 구동되는 유압펌프;
    상기 유압펌프로부터 가압된 유압을 받는 압력탱크(pressure tank);
    상기 압력탱크에 적어도 1 개 이상 기능적으로 연결되어 설비되는 압력 릴리이프 밸브(pressure relief valve) 또는 솔레노이드 밸브;
    상기 압력 릴리이프 밸브 또는 솔레노이드 밸브에 기능적으로 연결되어 설비되는 동력변환 장치인 유압모터;
    상기 유압모터에 의해 작동되는 동력생산장치; 및
    상기 유압모터에 기능적으로 연결되어 작동유를 회수 및 저장하고, 상기 유압펌프에 작동유를 공급하는 작동유 저장 탱크(storage tank)를 포함하는 풍력발전 시스템.
  8. 제 6 항에 있어서,
    상기 유압전달시스템은
    풍력으로부터 수득한 회전운동으로 구동되는 유압펌프;
    상기 유압펌프에 기능적으로 연결되어 설비되는 동력변환 장치인 유압모터;
    상기 유압모터에 의해 작동되는 자동변속기, 또는 무단변속기;
    상기 자동변속기 또는 무단변속기에 기능적으로 연결되어 작동되는 동력생산장치; 및
    상기 유압모터에 기능적으로 연결되어 작동유를 회수 및 저장하고, 상기 유압펌프에 작동유를 공급하는 작동유 저장 탱크(storage tank)를 포함하는 풍력발전 시스템.
PCT/KR2009/000608 2008-02-11 2009-02-10 풍력발전 시스템 WO2009102134A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020080012360A KR20090086859A (ko) 2008-02-11 2008-02-11 풍력발전 시스템
KR10-2008-0012360 2008-02-11

Publications (2)

Publication Number Publication Date
WO2009102134A2 true WO2009102134A2 (ko) 2009-08-20
WO2009102134A3 WO2009102134A3 (ko) 2009-11-05

Family

ID=40957367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/000608 WO2009102134A2 (ko) 2008-02-11 2009-02-10 풍력발전 시스템

Country Status (2)

Country Link
KR (1) KR20090086859A (ko)
WO (1) WO2009102134A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110142632A1 (en) * 2009-12-16 2011-06-16 Eaton Corporation Piecewise Variable Displacement power transmission
CN110594107A (zh) * 2019-10-24 2019-12-20 内蒙古青电云电力服务有限公司 一种基于快速梯度提升机的风电机组故障检测方法及装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011079246A2 (en) * 2009-12-23 2011-06-30 Indiana University Research & Technology Corporation Central wind turbine power generation
KR20160033402A (ko) 2014-09-18 2016-03-28 현대중공업 주식회사 공압식 풍력 발전 시스템

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004218436A (ja) * 2003-01-09 2004-08-05 National Maritime Research Institute 風力発電装置
JP2005504228A (ja) * 2001-09-25 2005-02-10 ニコラウス,トーマス 風力原動機
JP2005248738A (ja) * 2004-03-02 2005-09-15 Fuchu Giken:Kk 風力発電装置の運転制御方法
US7183664B2 (en) * 2005-07-27 2007-02-27 Mcclintic Frank Methods and apparatus for advanced wind turbine design

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005504228A (ja) * 2001-09-25 2005-02-10 ニコラウス,トーマス 風力原動機
JP2004218436A (ja) * 2003-01-09 2004-08-05 National Maritime Research Institute 風力発電装置
JP2005248738A (ja) * 2004-03-02 2005-09-15 Fuchu Giken:Kk 風力発電装置の運転制御方法
US7183664B2 (en) * 2005-07-27 2007-02-27 Mcclintic Frank Methods and apparatus for advanced wind turbine design

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110142632A1 (en) * 2009-12-16 2011-06-16 Eaton Corporation Piecewise Variable Displacement power transmission
WO2011073774A3 (en) * 2009-12-16 2012-02-23 Eaton Corporation Piecewise hydraulic power transmission system
US8511079B2 (en) 2009-12-16 2013-08-20 Eaton Corporation Piecewise variable displacement power transmission
CN110594107A (zh) * 2019-10-24 2019-12-20 内蒙古青电云电力服务有限公司 一种基于快速梯度提升机的风电机组故障检测方法及装置

Also Published As

Publication number Publication date
WO2009102134A3 (ko) 2009-11-05
KR20090086859A (ko) 2009-08-14

Similar Documents

Publication Publication Date Title
US8030790B2 (en) Hybrid water pressure energy accumulating wind turbine and method
US8405238B2 (en) Wind turbine with hydraulic swivel
US8492918B1 (en) Hybrid water pressure energy accumulating tower(s) connected to a wind turbine or power plants
AU2003211860B2 (en) Wind energy turbine
US7875990B2 (en) Wind-energy power machine and storage energy power generating system and wind-driven power generating system
US9546642B2 (en) Energy-storing and power-generating system and method for a vertical-axis wind generator
CN104395600A (zh) 风能系统以及使用该风能系统的方法
JP2017071389A (ja) 多メガワット海流エネルギー抽出装置
CN101981306A (zh) 用于深水中的离岸风能转换系统
CN104350276A (zh) 风能系统以及使用该风能系统的方法
CN101855448A (zh) 具有旋转液压静力传动系统的风轮机
WO2009061209A1 (en) Wind turbine with electrical swivel
WO2012169991A1 (en) Hybrid water pressure energy accumulating wind turbine and method
WO2009102134A2 (ko) 풍력발전 시스템
US20090322085A1 (en) Method and apparatus for enhanced wind turbine design
CN108825436A (zh) 具有蓄存重力势能功能的风机发电系统及其控制方法
US8629570B1 (en) Wind turbine blades with reinforcing, supporting and stabilizing components and enlarged swept area
CN102359434A (zh) 一种海上风电机组的偏航系统及其运行方法
WO2010134103A2 (en) Wind electric generator
WO2011104506A2 (en) Improved wind turbine with adaptable rotor
CN201198817Y (zh) 一种离并网两用直驱变桨式风力发电机
CN102251928A (zh) 风力洋流双效发电装置
WO2010134113A2 (en) Wind electric generator
WO2010134116A2 (en) Wind electric generator
CN202531504U (zh) 用于涡轮涡扇发电系统的启动装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09709485

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09709485

Country of ref document: EP

Kind code of ref document: A2