WO2009102078A1 - Process for production of polycarbonate resin - Google Patents

Process for production of polycarbonate resin Download PDF

Info

Publication number
WO2009102078A1
WO2009102078A1 PCT/JP2009/052827 JP2009052827W WO2009102078A1 WO 2009102078 A1 WO2009102078 A1 WO 2009102078A1 JP 2009052827 W JP2009052827 W JP 2009052827W WO 2009102078 A1 WO2009102078 A1 WO 2009102078A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
general formula
carbon dioxide
Prior art date
Application number
PCT/JP2009/052827
Other languages
French (fr)
Japanese (ja)
Inventor
Tohru Yamada
Satoshi Kikuchi
Yuudai Sugawara
Koji Nakano
Kyoko Nozaki
Kiyoshi Nishioka
Original Assignee
Keio University
The University Of Tokyo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University, The University Of Tokyo filed Critical Keio University
Publication of WO2009102078A1 publication Critical patent/WO2009102078A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/32General preparatory processes using carbon dioxide
    • C08G64/34General preparatory processes using carbon dioxide and cyclic ethers

Definitions

  • the present invention relates to a method for producing a polycarbonate resin, and more particularly to a method for producing a polycarbonate resin in which carbon dioxide and epoxide are alternately copolymerized in the presence of an optically active cobalt complex catalyst, optionally using a nucleophile. Background technology.
  • polystrengthen Ponate resin has excellent properties such as impact resistance, light weight, transparency, and heat resistance. Among them, aliphatic polycarbonate resin is biodegradable, so it has an environmental impact.
  • a method for producing a polycarbonate resin by a copolymerization reaction of carbon dioxide and an epoxide has been known.
  • the catalysts used for the copolymerization reaction of carbon dioxide and epoxide are mainly zinc complexes (G.-W. Coates et al., J. Am. Chem. Soc.
  • W Zinc complex has the problem that it is difficult to handle due to spontaneous ignition of the raw material, jetyl zinc, and is also expensive, and aluminum complex requires high temperature and high pressure as reaction conditions. There is a problem that the manufacturing cost is high.
  • porphyrin complexes have problems that they are relatively difficult to synthesize, and that when used as a catalyst, the complex is colored, so that the color remains in the product.
  • An object of the present invention is to provide a method for producing a polystrength Ponate resin that solves the above-mentioned problems in a conventional method for producing a polycarbonate resin.
  • Another object of the present invention is to provide a polycarbonate as a completely alternating copolymer that exhibits various unprecedented physical properties and contributes to the development of new applications.
  • R 1 and R 2 may be the same or different and are a hydrogen atom, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted aromatic group, or R 1 and R 2 are They may combine with each other to form a substituted or unsubstituted ring)
  • R 3 and R 4 may be the same or different and independently of each other, a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aromatic group, or a substituted or An unsubstituted aromatic heterocyclic group, or two R 3 's or two R “ 1's may be bonded to each other to form a substituted or unsubstituted ring, and R 5 , R 6 and R 7 may be the same or different, and are a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted aromatic group, a substituted or unsubstituted group, An aromatic heterocyclic group, an acyl group, a substituted or unsubstituted alkoxycarbonyl group, a substituted or unsubstituted aromatic oxycarbonyl group, or a substituted or un unsub
  • the epoxide represented by the general formula (1) is the following:
  • R 3 and R 4 are hydrogen atoms or substituted or unsubstituted aromatic groups, or two R 3 or two R 4 May be bonded to each other to form a substituted or unsubstituted ring
  • R 5 , R 6 and R 7 are a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxycarbonyl group, Or a production method according to any one of 1 to 3 above, which is a substituted or unsubstituted aralkyloxycarbonyl group,
  • X is OB z F 5 —, 0 B z ⁇ , N ⁇ 3 —, ⁇ COCF 3 —, F or I — Described manufacturing method
  • Optically active cobalt complexes represented by general formula (2) and general formula (3) are as follows:
  • R 1 and R 2 may be the same or different and are a hydrogen atom, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted aromatic group, or R 1 and R 2 are They may combine with each other to form a substituted or unsubstituted ring)
  • Polyethylene carbonate obtained by alternately bonding ethylene oxide and carbon dioxide, which does not contain an ether bond component detectable by 1 H-NMR analysis.
  • a polycarbonate resin can be produced in high yield by using carbon dioxide as a carbon source and using an inexpensive and easy-to-synthesize cobalt catalyst.
  • the activity and selectivity of the catalyst are high and the reaction conditions do not require high temperature and pressure, the production cost can be reduced.
  • the polycarbonate film according to the present invention is a completely alternating copolymer, and thus exhibits high unprecedented physical properties and contributes to the development of new applications.
  • Figure 1 is a polyethylene Gar Bonnet over preparative synthesized in Example 6 3 1 It is a graph which shows a H-NMR analysis result.
  • FIG. 2 is a graph showing the results of D SC analysis of the polyethylene carbonate synthesized in Example 63.
  • FIG. 3 is a graph showing the results of TGA analysis of the polyethylene carbonate synthesized in Example 63.
  • FIG. 4 is a graph showing the results of 1 H-NMR analysis of commercially available polyethylene carbonate.
  • Fig. 5 is a graph showing the results of DSC analysis of commercially available polyethylene carbonate.
  • Fig. 6 is a graph showing the results of TGA analysis of commercially available polyethylene carbonate. BEST MODE FOR CARRYING OUT THE INVENTION
  • R 1 and R 2 which may be the same or different, are a hydrogen atom, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted aromatic group, or R 'And R 2 may be bonded to each other to form a substituted or unsubstituted ring.
  • alkyl group for R 1 and R 2 a linear or branched substituted or unsubstituted alkyl group having 1 to 10 carbon atoms is preferable, and examples thereof include a methyl group, an ethyl group, and an ⁇ -propyl group.
  • the alkyl group is substituted with one or more substituents selected from, for example, a hydroxyl group, an amino group, a carboxyl group, a sulfanyl group, a cyano group, a sulfo group, a formyl group, a halogen atom, and an aromatic group. It may be.
  • the substituted or unsubstituted aromatic group for R 1 and R 2 is preferably a substituted or unsubstituted aromatic group having 6 to 10 carbon atoms, such as a phenyl group, an indenyl group, a naphthyl group, Examples thereof include substituted or unsubstituted aromatic hydrocarbon groups such as a lahydronaphthyl group, and more preferably a phenyl group.
  • aromatic group examples include aromatic groups such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, and a tert-butyl group, a phenyl group, and a naphthyl group. It may be substituted with one or more substituents selected from a group and the like.
  • R 1 and R 2 may combine with each other to form a substituted or unsubstituted ring, and preferably form a substituted or unsubstituted aliphatic ring having 4 to 10 carbon atoms.
  • R when R) and are bonded to each other via — (CH 2 ) 4 —, a cyclohexane ring is formed.
  • the ring thus formed is, for example, a methyl group, an ethyl group, an n-propyl group, an isopyl pill group, an n-butyl group, a sec-butyl group, an alkyl group such as a tert-butyl group, a phenyl group, Select from aromatic groups such as naphthyl group May be substituted with one or more substituents.
  • Particular preferable epoxides represented by the general formula (1) include those represented by the following formulas (1 1 1) to (1 1 4).
  • optically active cobalt complex used as a catalyst has the general formula (2)
  • R 3 and R 4 which may be the same or different, are independently of each other a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aromatic group, or a substituted or unsubstituted group. Good It may be an aromatic heterocyclic group.
  • a linear or branched substituted or unsubstituted alkyl group of 1 to 10 is preferable, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert — And butyl group.
  • the alkyl group is, for example, one or two or more substituents selected from a hydroxy group, an amino group, a strong lpoxyl group, a sulfanyl group, a cyano group, a sulfo group, a formyl group, a halogen atom, an aromatic group and the like. May be substituted.
  • the substituted or unsubstituted aromatic group for R 3 and R 4 is preferably a substituted or unsubstituted aromatic group having 6 to 10 carbon atoms, for example, a substituted or unsubstituted group such as a phenyl group or a naphthyl group.
  • aromatic hydrocarbon groups examples include aromatic groups such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, and a tert-butyl group, a phenyl group, and a naphthyl group. It may be substituted with 1 or 2 or more substituents selected from a group or the like.
  • a substituted or unsubstituted aromatic heterocyclic group having 5 to 10 carbon atoms is preferable, for example, a furyl group, a chenyl group, a pyridyl group. , Pyrrolyl group, oxazolyl group, isoxazolyl group, thiazolyl group, isothiazolyl group, imidazolyl group, pyrazolyl group, pyrimidyl group, pyridazinyl group, bilaridinyl group, quinolyl group, isoquinolyl group, etc.
  • a cyclic group is mentioned.
  • the aromatic heterocyclic group includes, for example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-propyl group, a sec-butyl group, an alkyl group such as a tert-butyl group, a phenyl group, and a naphthyl group. 1 or 2 or more selected from aromatic groups such as It may be substituted with the above substituents.
  • two R 3 s or two R 4 s may be bonded to each other to form a substituted or unsubstituted ring, and preferably a substituted or unsubstituted fatty acid having 4 to 10 carbon atoms.
  • a family ring may be formed. For example, when R 3 and R 4 are bonded to each other via — (CH 2 ) 4 —, a cyclohexane ring is formed.
  • the ring formed in this way is, for example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec butyl group, an alkyl group such as a tert-butyl group, a phenyl group, a naphthyl group, etc. It may be substituted with 1 or 2 or more substituents selected from the following aromatic groups.
  • R 5 , R 6 and R 7 may be the same or different, and are a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted aromatic group, substituted or An unsubstituted aromatic heterocyclic group, an acyl group, a substituted or unsubstituted alkoxycarbonyl group, a substituted or unsubstituted aromatic oxycarbonyl group, or a substituted or unsubstituted aralkyloxycarbonyl group.
  • the substituted or unsubstituted alkyl group for R 5 , R 6 and R 7 is preferably a linear or branched substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, more preferably 1 carbon atom.
  • linear or branched substituted or unsubstituted alkyl groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, etc. Is mentioned.
  • the alkyl group is, for example, one or two or more substituents selected from a hydroxy group, an amino group, a strong lpoxyl group, a sulfanyl group, a cyano group, a sulfo group, a formyl group, a halogen atom, and an aromatic group. May be substituted.
  • alkenyl groups for R 5 , R 6 and R 7
  • a linear or branched alkenyl group having 2 to 10 carbon atoms is preferable, and a linear or branched alkenyl group having 2 to 6 carbon atoms, for example, a vinyl group or a 2-propenyl group.
  • the alkenyl group is, for example, one or two or more substituents selected from a hydroxy group, an amino group, a strong lpoxyl group, a sulfanyl group, a cyano group, a sulfo group, a formyl group, a halogen atom, and an aromatic group. It may be replaced.
  • a substituted or unsubstituted aromatic group having 6 to 10 carbon atoms is preferable, for example, a substituted or unsubstituted aromatic group such as a phenyl group or a naphthyl group.
  • a hydrocarbon group is mentioned.
  • the aromatic group includes, for example, a methyl group, an ethyl group, an n-propyl group, an isopyl pill group, an n-butyl group, a sec-butyl group, a tert-butyl group, an alkyl group, a phenyl group, a naphthyl group, etc. It may be substituted with 1 or 2 or more substituents selected from the following aromatic groups.
  • a substituted or unsubstituted aromatic heterocyclic group having 5 to 10 carbon atoms is preferable.
  • An unsubstituted aromatic heterocyclic group is mentioned.
  • the aromatic heterocyclic group is, for example, one or more selected from an alkyl group such as a methyl group or an ethyl group, an alkoxy group such as a methoxy group or an ethoxy group, a halogen atom group, a nitro group, or a cyan group. It may be substituted with a substituent.
  • an acyl group having 1 to 20 carbon atoms is preferable.
  • the substituted or unsubstituted alkoxycarbonyl group for R 5 , R 6 and R 7 is preferably a substituted or unsubstituted alkoxycarbonyl group having 2 to 20 carbon atoms, such as a methoxycarbonyl group or an ethoxycarbonyl group.
  • the alkoxy group is, for example, one or more substituents selected from a hydroxy group, an amino group, a carboxyl group, a sulfanyl group, a cyano group, a sulfo group, a formyl group, a halogen atom, an aromatic group and the like. May be substituted.
  • the substituted or unsubstituted aromatic oxyphenyl group of R 5 , R 6 and R 7 is preferably a substituted or unsubstituted aromatic oxycarbonyl group having 7 to 20 carbon atoms, such as phenoxy.
  • a carbonyl group is mentioned.
  • the aromatic oxycarbonyl group is selected from, for example, an alkyl group such as a methyl group or an ethyl group, an alkoxy group such as a methoxy group or an ethoxy group, a halogen atom group, a nitro group, or a cyan group. It may be substituted with 1 or 2 or more substituents.
  • an aralkyloxycarbonyl group having 7 to 20 carbon atoms is preferable, for example, a benzyloxycarbonyl group, Phenethyl Examples thereof include an oxy group and a sulfonyl group.
  • the aralkyloxycarbonyl group includes, for example, a hydroxy group, an amino group, a strong lpoxyl group, a sulfanyl group, a cyano group, a sulfo group, a formyl group, a halogen atom, an aromatic group, an alkoxyalkyleneoxy group. It may be substituted with a substituent on 1 or 2 selected from a group such as a methoxyethyleneoxy group.
  • R 6 and R 7 may be bonded to each other to form a ring, and may preferably form a substituted or unsubstituted aliphatic ring having 4 to 10 carbon atoms.
  • a cyclohexane ring is formed.
  • the ring thus formed can be, for example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, an tert-butyl group or other alkyl group, a phenyl group, or a naphthyl group. It may be substituted with 1 or 2 or more substituents selected from aromatic groups and the like.
  • optically active cobalt complexes represented by the general formula (2) include those represented by the following formulas (2-1) to (2-11-1).
  • R 3 , R 4 , R 5 , and R 1 R 7 are defined with respect to the general formula (2).
  • X— represents an anion pair that can form a salt.
  • Polycarbonate soot resin produced by the method of the present invention is generally (4): Where R 1 and R 2 are as described above.
  • the molecular weight of the polycarbonate resin represented by the general formula (4) is preferably about 1, 00 to: L 0 0, 0 00, more preferably about 2, 0 0 0 to 50 0, 0 0 0, particularly preferably in the range of about 2, 5 0 0 to 40, 0 0 0.
  • Particular preferred polycarbonate resins represented by the general formula (4) include those represented by the following formulas (4-1) to (4-14).
  • Nucleophiles can be used in the method of the present invention.
  • nucleophilic agent When no nucleophilic agent is used, it is considered that a trace amount of water acts as a polymerization initiator.
  • the nucleophiles include bis (triphenylphosphoranilidene) ammonium chloride (PPNC 1), piperidine, bis (triphenylphosphoranilidene) ammonium fluoride (PPNF), bi scan (Bok Li phenylpropyl phosphine Ola two isopropylidene) Anmoniumupen evening Furuo port Benzoe one preparative (PPN_ ⁇ B z F 5), n B u_
  • PPNC 1 bis (triphenylphosphoranilidene) ammonium chloride
  • PPNF bis (triphenylphosphoranilidene)
  • the amount of carbon dioxide used in the present invention is not particularly limited, but the reaction is usually carried out in a carbon dioxide atmosphere or under carbon dioxide pressure conditions.
  • a preferable carbon dioxide pressure is in the range of 0.1 IMpa to LOMpa, more preferably 0.1 MPa to 2 MPa.
  • the reaction can be performed in a mixed gas of an inert gas and carbon dioxide that does not significantly affect the reaction such as nitrogen or argon.
  • the reaction temperature is usually preferably from 40 to 50 ° C, more preferably from 0 to 30 ° C.
  • the reaction time varies depending on the reaction conditions, but is usually 1 to 100 hours.
  • a solvent can be used as necessary.
  • the solvent used is not particularly limited as long as it does not react with the used epoxide, carbon dioxide, optically active cobalt complex, or nucleophile.
  • hydrocarbons, ethers, esters, canes And octalogated hydrocarbons for example, hydrocarbons, ethers, esters, canes And octalogated hydrocarbons.
  • the amount of the solvent used it can be added in a mass ratio of 0.5 to 100, preferably 1 to 50 with respect to epoxide as a raw material.
  • the polycarbonate obtained by the process of the present invention is completely alternating It is thought that the unification of the various physical properties will contribute to the development of new applications.
  • the polycarbonate according to the present invention is thermally decomposed at a relatively low temperature and has almost no decomposition residue, as shown in an example described later (FIG. 3).
  • the polystrength Ponate according to the present invention which is excellent in heat decomposability, is useful as a binder resin for producing various molded bodies made of ceramic glass produced through, for example, degreasing and firing processes.
  • the polycarbonate according to the present invention is higher in quality than conventional polycarbonate in terms of various properties such as impact resistance, lightness, transparency, heat resistance, biodegradability, etc. It can be advantageously applied in various applications where polycarbonate is used.
  • ketoiminato cobalt pen fluorinated benzoate complex (3— 1) 0 0 1 4 3 mm o 1 and bis (triphenylphosphoranilidene) ammonium fluoride (P PNF ) 0. 0 1 4 3 mm o 1 and propylene oxide 2 8. 6 mm o 1 added, then carbon dioxide is injected under pressure so that the total pressure is 2.0 MPa. It was adjusted. After reacting at room temperature for 48 hours, carbon dioxide was removed, and this reaction mixture was analyzed by '-NMR. '--NMR analysis was carried out at a temperature of 22 ° C using deuterated form as a solvent and tetramethylsilane as an internal standard. Ma J 1 EL—EX 2 70 and GX—400 manufactured by JEOL Ltd. were used as the 1 H-NMR measuring apparatus.
  • the reaction was carried out in the same manner as in Example 1 except that P P N F was changed to bis (triphenylphosphoranylidene) ammonium chloride (P P N C 1).
  • the reaction mixture obtained at this time contained about 38% cyclic carbon dioxide. Yield was 54%, head-to-tail bond selectivity was 92%, Mn was 15570, MwZMrl.2 (standard polystyrene standard, THF).
  • the reaction was carried out in the same manner as in Example 1 except that PPNF was changed to bis (triphenylphosphoranylidene) ammonium pentafluobenzoate (PP NO B z F 5 ).
  • the reaction mixture obtained at this time was polycarbonate with a selectivity of 99% or more. Yield is 64%, head-to-tail bond selectivity is 9 2%, Mn is 2540, and MwZMn is 1.7 (standard polystyrene standard, THF). I got it.
  • the reaction was carried out in the same manner as in Example 1 except that PPNF was changed to tetra-n-butylammonium chloride.
  • the reaction mixture obtained at this time contained about 4% of cyclic carbonate.
  • the yield was 43%, the head-to-head binding selectivity was 91%, the Mn was 1790, and the Mw Mn was 1, 0 (standard polystyrene standard, THF).
  • the reaction was conducted in the same manner as in Example 1 except that P P N F was changed to triphenylphosphine.
  • the reaction mixture obtained at this time was polycarbonate with a selectivity of 99% or more. Yield was 10%, head-to-head binding selectivity was 85%, M r i 4 400, Mw / M n was 1.1 (standard polystyrene standard, THF).
  • Example 1 the reaction was carried out in the same manner unless otherwise specified except that the nucleophile was changed.
  • the results are shown in the table below (standard polystyrene standard, Kuguchiguchi Holm).
  • the reaction was carried out in the same manner as in Example 1 except that the ketoiminato cobalt pen fluorate benzoate complex was changed to the ketoiminato cobalt benzoate complex (3 — 2).
  • the reaction mixture obtained at this time was polyponeate with a selectivity of 99% or more.
  • the yield was 85%, the head-to-tail selectivity was 91%, Mn was 2 6400, and MwMn was 1.7 (standard polystyrene standard, THF).
  • the reaction was conducted in the same manner as in Example 1 except that the ketoiminato cobalt pen fluorobenzoate complex was changed to the ketoiminato cobalt nitrate complex (3-3).
  • the reaction mixture obtained at this time was a poly force mononate with a selectivity of 99% or more. Yield 8 1%, head-to-head binding selectivity 9 1%, Mn 1 6 90 0, Mw / M n was 1.2 (standard polystyrene standard, THF).
  • the reaction was carried out in the same manner as in Example 1 except that the ketoiminato cobalt pen fluorate benzoate complex was changed to the cheminatocobalt trifluoroacetate complex (3-4).
  • the reaction mixture obtained at this time was a polystrength with a selectivity of 99% or more. Yield was 82%, head-to-head binding selectivity was 91%, Mn was 265500, MwZMn was 1.7 (standard polystyrene standard, THF).
  • the reaction was conducted in the same manner as in Example 1 except that the ketoiminatocobalt pentafluorene benzoate complex was changed to the ketoiminatocobaltate complex (3-5).
  • the reaction mixture obtained at this time contained about 36% cyclic carbonate. Yield was 50%, head-to-head binding selectivity was 77%, M i 4 2 0 0, w / M n was 1.0 (standard polystyrene standard, T H F).
  • the reaction was conducted in the same manner as in Example 1 except that the ketoiminato cobalt pentafluoride complex was changed to the ketoiminato cobalt iodide complex (3-6).
  • the reaction mixture obtained at this time contained about 43% cyclic carbonate. Yield was 41%, head-to-head binding selectivity was 76%, Mn was 8200, and Mw / n was 1.4 (standard polystyrene standard, black mouth form).
  • the reaction was conducted in the same manner as in Example 1 except that the ketoiminato cobalt pen fluorobenzoate complex was changed to the ketoiminatocobalt (II) complex (2-1).
  • the reaction mixture obtained at this time The compound contained about 3% cyclic carbonate. Yield was 57%, head-to-tail selectivity was 92%, Mn was 2070, and Mw / Mn was 1.4 (standard polystyrene standard, THF).
  • Example 1 the reaction was carried out in the same manner unless otherwise specified except that the complex was changed and P P N F was changed to P P N C 1.
  • the results are shown in the table below (standard polystyrene standards, black mouth form).
  • Example 1 except that the anion pair of the ketoiminato cobalt pen fluorobenzoate complex (3-1) was changed and PPNF was changed to PPNC 1, the same applies. A response was made. The results are shown in the table below (standard polystyrene standards, chloroform). Table 3
  • the reaction was carried out in the same manner as in Example 1 except that the solvent-free place was changed to 2 mL of the tetrahydrofuran solvent.
  • the reaction mixture obtained at this time contained about 7% cyclic carbonate. Yield was 52%, head-to-head binding selectivity was 88%, Mn was 1370, and MwZMn was 1.2 (standard polystyrene standard, THF).
  • Example 44 The reaction was conducted in the same manner as in Example 1 except that the solvent-free place was changed to 2 mL of methylene chloride solvent.
  • the reaction mixture obtained at this time contained about 4% of a ring carbon nanotube. Yield was 28%, head-to-head binding selectivity was 89%, Mr9200, MwZMn was 1.5 (standard polystyrene standard, THF).
  • Example 4 5 The reaction was carried out in the same manner as in Example 1 except that the solvent-free place was changed to 2 mL of chloroform-form solvent.
  • the reaction mixture obtained at this time contained about 6% cyclic carbonate.
  • the yield was 86%
  • the head-to-head binding selectivity was 82%
  • the Mn was 1230
  • the wZMn was 1.3 (standard polystyrene standard, THF).
  • the reaction was conducted in the same manner as in Example 1 except that the reaction time was changed to 5 hours.
  • the reaction mixture obtained at this time contained about 10% cyclic carbonate.
  • the yield was 6%
  • head-to-head binding selectivity was 91%
  • Mn was 44 61
  • MwZMn was 1.2 (standard polystyrene standard, THF).
  • the reaction was conducted in the same manner as in Example 1 except that the reaction time was changed to 10 hours.
  • the reaction mixture obtained at this time was polyponicate with a selectivity of more than 99%.
  • the yield was 29%, head-to-head binding selectivity was 91%, Mn was 1560,00 and w / Mn was 1.1 (standard polystyrene standard, THF). .
  • the reaction was conducted in the same manner as in Example 1 except that the reaction time was changed to 15 hours.
  • the reaction mixture obtained at this time was polycarbonate with a selectivity of 99% or more. Yield was 34%, head-to-head binding selectivity was 91%, Mn was 1730, and MwZMn was 1.0 (standard polystyrene standard, THF).
  • the reaction was conducted in the same manner as in Example 1 except that the reaction time was changed to 24 hours.
  • the reaction mixture obtained at this time was 99% or more.
  • the reaction was performed in the same manner as in Example 1 except that the reaction time was changed to 72 hours.
  • the reaction mixture obtained at this time was polyponicate with a selectivity of more than 99%. Yield was 69%, head-to-head binding selectivity was 92%, Mn was 335,000 and MwZMn was 1.7 (standard polystyrene standard, THF).
  • Example 1 the reaction was carried out in the same manner except that the pressure vessel was previously dried under reduced pressure.
  • the reaction mixture obtained at this time was polycarbonate with a selectivity of 99% or more. Yield was 83%, head-to-head binding selectivity was 93%, Mn was 3100, and Mw / Mn was 1.6 (standard polystyrene standard, THF).
  • Example 10 the reaction was carried out in the same manner except that the pressure vessel was previously dried under reduced pressure.
  • the reaction mixture obtained at this time contained about 2% cyclic carbonate.
  • the yield was 69%, head-to-head binding selectivity was 92%, Mn was 1720, and MwZMn was 1.0 (standard polystyrene standard, THF).
  • Example 1 the reaction was carried out in the same manner except that the ketoiminato cobalt pen fluor benzene complex was not used, but the reaction did not proceed at all.
  • Example 5 2 In a stainless steel pressure vessel, ketoiminato cobalt pen fluorinated benzoate complex (3 — 1) 0.0 1 4 3 mm o 1 and bis (triphenylphosphoranilidene) ammonium fluoride (PPNF) After adding 0.01 4 3 mmol and adding cyclohexenoxide 14.8 mmol, carbon dioxide was injected under pressure to adjust the total pressure to 2.0 MPa. After reacting at 30 ° C. for 48 hours, carbon dioxide was removed, and the reaction mixture was analyzed by —NMR.
  • the resulting reaction mixture contains 99% or more of poly force monoponate in which carbon dioxide and cyclohexenoxide react alternately, and cyclic force in which carbon dioxide and cyclohexene oxide react one molecule at a time. Almost no ponate was produced. Furthermore, according to 'H-NMR, the proportion of carbonate bonds contained in the polycarbonate chain was 99% or more, that is, the product was a complete alternating copolymer. The yield of the obtained polycarbonate was 58%. In addition, when the obtained polyforce was analyzed by GPC, the number average molecular weight ⁇ ⁇ was 6 00 0 and the molecular weight distribution ⁇ / ⁇ 11 was 1.4 (standard polystyrene standard, THF). .
  • Example 52 except that PPNF was changed to bis (triphenylphosphranylidene) ammonium chloride (PPNC 1) and the reaction time was changed from 48 hours to 65 hours, the reaction was conducted in the same manner. went.
  • the yield was 57%, MrW3 ⁇ 45 100, and the molecular weight distribution Mw / Mn was 1.1 (standard polystyrene standard, THF).
  • Example 52 the reaction was performed in the same manner except that 0.5 mL of toluene was added as a solvent. Yield is 69%, ⁇ [11 is 6 0 0 0 The molecular weight distribution MwZM n was 1.1 (standard polystyrene standard, TH F).
  • the reaction was carried out in the same manner as in Example 52 except that the ketoiminatocobalt pentafluorobenzoate complex (3-1) was changed to the ketoiminatocobalt iodide complex (3-5).
  • the yield was 29%, M n was 45 500, and the molecular weight distribution MwZM n was 1.1 (standard polystyrene standard, THF).
  • Example 52 except that the ketoiminato cobalt pen fluorobenzoate complex (3—1) was changed to the ketoiminatocobalt complex complex (3—5) and PPNF was changed to PPNC 1 Reaction was performed.
  • the yield was 5%
  • M n was 190,000
  • the molecular weight distribution Mw / M n was 1.1 (standard polystyrene standard, THF).
  • Example 52 the ketoiminato cobalt pen fluorobenzoate complex (3 — 1) was changed to the ketiminatocobalt iodide complex (3 — 5), PPNF was changed to PPNC 1, and toluene was used as the solvent.
  • the reaction was performed in the same manner except that 0.5 mL was added.
  • the yield was 70%, Mn was 4300, and the molecular weight distribution MwZMn was 1.1 (standard polystyrene standard, THF).
  • Example 52 except that the ketoiminato cobalt pen fluorobenzoate complex (3-1) was changed to the ketoiminato cobalt iodide complex (3-5), and 0.5 mL of toluene was added as a solvent. The reaction was carried out. Yield 39%, Mn 1 5 0 0, The molecular weight distribution MwZM n was 1.2 (standard polystyrene standard, THF).
  • Ketominato cobalt iodide complex (3 — 5) 5.8 mg (1 0 ⁇ ⁇ 1), PPNF 5.4 mg (l O mol), methylene chloride 1.
  • O mL Ethylene oxide (1.56 g, 35 mm o 1) was charged, charged with carbon dioxide (2.0 Pa), and reacted at 25 ° C. for 48 hours. Thereafter, the pressure was released, and dilute hydrochloric acid and methanol were added to stop the reaction. The contents were washed with dilute hydrochloric acid and poured into methanol to obtain a white precipitate. This was filtered and dried under reduced pressure to obtain 1.94 g of polyethylene carbonate.
  • Ketominato cobalt iodide complex (3-5) 5.8 mg (1 0 mo 1), PPNC 1 5. 7 mg (l O mol), methylene chloride in a 5 O mL autoclave mL, 1.50 g (3 4 mm o 1) of ethylene oxide were charged, charged with carbon dioxide (2.0 MPa), and reacted at 25 for 48 hours. Thereafter, the pressure was released and dilute hydrochloric acid and methanol were added to stop the reaction. The contents were washed with dilute hydrochloric acid and poured into methanol to obtain a white precipitate. This was filtered and dried under reduced pressure to obtain 0.86 g of polyethylene carbonate.
  • Ketominatocobalt tetrafluoroporate complex (3-1 3) 5.4 mg (1 0 / imol), PPNC 1 5.
  • 7 mg (1 0 ⁇ mol), methylene chloride in a 5 O mL autoclave O mL and 1.16 g (26 mm o 1) of ethylene oxide were charged, charged with carbon dioxide (2.0 MPa), and reacted at 25 ° C. for 48 hours. Thereafter, the pressure was released, and dilute hydrochloric acid and methanol were added to stop the reaction. The contents were washed with dilute hydrochloric acid and poured into methanol to obtain a white precipitate. This was filtered and dried under reduced pressure to obtain 0.08 g of polyethylene carbonate.
  • Ketominatocobalt fluoride complex (3 — 1 4) 4.7 mg (l O ⁇ mol) PPNC 1 5.7 mg (1 0 mol), methylene chloride 1.
  • O mL in an autoclave with an internal volume of 5 O mL
  • ethylene oxide (1.02 g, 23 mmol) was charged, charged with carbon dioxide (2.0 MPa), and reacted at 25 ° C for 48 hours. Thereafter, the pressure was released, and dilute hydrochloric acid and methanol were added to stop the reaction. The contents were washed with dilute hydrochloric acid and poured into methanol to obtain a white precipitate. This was filtered and dried under reduced pressure to obtain 1.04 g of polyethylene carbonate.
  • Ketominato cobalt iodide complex (3 — 5) 5.8 mg (1 0 mo 1), PPNF 5.4 mg (l O mol), methylene chloride 1, O mL, ethylene Oxide 10 0.37 g (2500 mmol) was charged, charged with carbon dioxide (2.0 MPa), and reacted at 25 for 48 hours. Then, the pressure was released and dilute hydrochloric acid and methanol were added to stop the reaction. The contents were washed with dilute hydrochloric acid and poured into methanol to obtain a white precipitate. This is filtered After drying under reduced pressure, 2.45 g of polyethylene carbonate was obtained.
  • Ketominato cobalt iodide complex (3 — 5) 5.8 mg (l O ⁇ mol) PPNF 5.4 mg (l O mol), methylene chloride 1.
  • O mL Ethylene oxide (9.97 g, 230 mm o 1) was charged, charged with carbon dioxide (2.0 Pa), and reacted at 40 ° C. for 48 hours. Thereafter, the pressure was released and dilute hydrochloric acid and methanol were added to stop the reaction. The contents were washed with dilute hydrochloric acid and poured into methanol to obtain a white precipitate. This was filtered and dried under reduced pressure to obtain 3.45 g of polyethylene strength.
  • the polyethylene strength monoponate obtained in Example 63 is substantially free of peaks derived from ether linkages (around 3.6 ppm) in the NMR analysis (Fig. 1).
  • the peak (less than 1%) that appears only around 3.7 ppm is a peak derived from the proton of the terminal methylene group of polyethylene saponate. Therefore, it can be said that this polyethylene carbonate is a completely alternating copolymer in which ethylene oxide and carbon dioxide are alternately polymerized one by one (even if an ether bond is present, the detection limit of 1 H-NMR analysis is exceeded). Is the amount below).
  • the commercially available polyethylene strength “QPAC 2 5” has the following characteristics: — In the NMR analysis, in addition to the peak derived from the terminal proton (around 3.7 ppm), the peak derived from the ether bond (3.6) about 3 to 5%) (Fig. 4). In other words, the polyethylene carbonate includes a portion where ethylene oxides are bonded to each other.
  • the polyethylene carbonate obtained in Example 63 had a glass transition temperature Tg of 17.5 ° C. in DSC analysis (FIG. 2).
  • the commercially available polyethylene carbonate “QP AC 25” had a glass transition temperature Tg of 15.7 ° C. in DSC analysis (FIG. 5).
  • the polyethylene carbonate obtained in Example 63 was shown to be substantially entirely decomposed at around 2500 ° C. by TGA analysis (FIG. 3).
  • TGA analysis showed that about 3% was not decomposed even if it exceeded 300, and complete decomposition requires more than 3500 ( Figure 6).
  • the polyethylene carbonate according to the present invention is a completely alternating copolymer, it can be seen that it has remarkably different thermal characteristics from the existing polyethylene carbonate. Industrial applicability
  • the method according to the present invention is useful for the industrialization of the production of polystrengthen resin using carbon dioxide as a carbon source. Further, the polycarbonate according to the present invention is a completely alternating copolymer, and thus exhibits various unprecedented physical properties and contributes to the development of new applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

Disclosed is a process for producing a polycarbonate resin, which utilizes carbon dioxide as a carbon source and therefore gives consideration to the utilization of resources and the protection of the environment. The process for producing a polycarbonate resin is characterized by carrying out the alternating copolymerization of carbon dioxide and an epoxide in the presence of an optically active cobalt complex catalyst optionally using a nucleophilic agent. The polycarbonate resin produced by the process is a completely alternating copolymer.

Description

明 細 書 ポリカーボネー卜樹脂の製造方法 技術分野  Description Polycarbonate resin manufacturing method Technical field
本発明は、 ポリカーボネート樹脂の製造方法に関し、 より詳しく は、 光学活性コバルト錯体触媒の存在下、 場合により求核剤を用い て、 二酸化炭素とエポキシドを交互共重合させるポリカーボネート 樹脂の製造方法に関する。 背景技術 .  The present invention relates to a method for producing a polycarbonate resin, and more particularly to a method for producing a polycarbonate resin in which carbon dioxide and epoxide are alternately copolymerized in the presence of an optically active cobalt complex catalyst, optionally using a nucleophile. Background technology.
ポリ力一ポネート樹脂を含む合成樹脂の製造分野において、 二酸 化炭素を炭素源として利用することは、 資源活用および環境保護の 観点から重要な課題である。 また、 ポリ力一ポネート樹脂は、 耐衝 撃性、 軽量性、 透明性、 耐熱性等の優れた特性を有し、 なかでも、 脂肪族ポリカーボネート樹脂は生分解性であることから、 環境負荷 が低く、 またその特性から医療用材料としても重要な樹脂といえる 従来より、 二酸化炭素とエポキシドの共重合反応によりポリカー ポネート樹脂を製造する方法は知られている。 そして、 この二酸化 炭素とエポキシドの共重合反応に用いられる触媒としては、 主に、 亜鉛錯体 (G. - W. Coates他、 J. Am. Chem. Soc. 2002, 124, 1428 4-14285) 、 アルミニウム錯体 (W. Kuran, T. Listos, M. Abramczyk, and A. Dawidek, J. Macromol. Sci. , Pure Appl. Chem. , A35, 427-4 37 (1998)) 、 ポルフィ リン錯体 (特開 2 0 0 6 — 2 4 1 2 4 7号 公報) 、 サレン錯体 (G.-l Coates他、 Angew. Chem. Int. Ed. 20 03, 42, 5484-5487) がある。 W 亜鉛錯体には、 その原料であるジェチル亜鉛が自然発火しゃすい ため取り扱いが難しく、 さらに高価であるという問題があり、 また 、 アルミニウム錯体には、 反応条件として高温高圧を必要とするこ とから、 製造コス トがかかるという問題がある。 そして、 ポルフィ リ ン錯体には、 合成が比較的困難であること、 および、 触媒として 用いた場合、 錯体が着色していることから、 その色が生成物にも残 つてしまうという問題がある。 The use of carbon dioxide as a carbon source is an important issue from the viewpoint of resource utilization and environmental protection in the field of manufacturing synthetic resins including poly-strength resin. Polystrengthen Ponate resin has excellent properties such as impact resistance, light weight, transparency, and heat resistance. Among them, aliphatic polycarbonate resin is biodegradable, so it has an environmental impact. Conventionally, a method for producing a polycarbonate resin by a copolymerization reaction of carbon dioxide and an epoxide has been known. The catalysts used for the copolymerization reaction of carbon dioxide and epoxide are mainly zinc complexes (G.-W. Coates et al., J. Am. Chem. Soc. 2002, 124, 1428 4-14285), Aluminum complexes (W. Kuran, T. Listos, M. Abramczyk, and A. Dawidek, J. Macromol. Sci., Pure Appl. Chem., A35, 427-4 37 (1998)), porphyrin complexes (JP 2 0 0 6 — 2 4 1 2 4 7), and salen complexes (G.-l Coates et al., Angew. Chem. Int. Ed. 20 03, 42, 5484-5487). W Zinc complex has the problem that it is difficult to handle due to spontaneous ignition of the raw material, jetyl zinc, and is also expensive, and aluminum complex requires high temperature and high pressure as reaction conditions. There is a problem that the manufacturing cost is high. In addition, porphyrin complexes have problems that they are relatively difficult to synthesize, and that when used as a catalyst, the complex is colored, so that the color remains in the product.
資源活用および環境保護の観点から、 二酸化炭素とエポキシドの 共重合反応によるポリ力一ポネー卜樹脂の工業化の実現は急務であ る。 そのため、 上記問題点を解決する優れた触媒を用いたポリカー ポネート樹脂の製造方法の確立が強く望まれている。 発明の開示  From the viewpoint of resource utilization and environmental protection, it is an urgent task to realize the industrialization of poly-one-pone resin by copolymerization of carbon dioxide and epoxide. Therefore, establishment of a method for producing a polycarbonate resin using an excellent catalyst for solving the above problems is strongly desired. Disclosure of the invention
本発明の目的は、 従来のポリカーボネート樹脂の製造方法におけ る上記課題を解決したポリ力一ポネート樹脂の製造方法を提供する ことである。 本発明の別の目的は、 従来にない高い諸物性を発揮し 、 新規用途の開発に寄与する完全交互共重合体としてのポリカーボ ネートを提供することである。  An object of the present invention is to provide a method for producing a polystrength Ponate resin that solves the above-mentioned problems in a conventional method for producing a polycarbonate resin. Another object of the present invention is to provide a polycarbonate as a completely alternating copolymer that exhibits various unprecedented physical properties and contributes to the development of new applications.
本発明者らは上記目的を達成するため鋭意検討した結果、 一般式 As a result of intensive studies to achieve the above object, the present inventors have obtained a general formula
( 1 ) で表されるエポキシドを、 二酸化炭素と、 一般式 ( 2 ) また は一般式 ( 3 ) で表される光学活性コバルト錯体との存在下で反応 させることにより、 穏やかな条件下、 高収率でポリ力一ボネート樹 脂が得られることを見出し、 本発明を完成するに至った。 By reacting the epoxide represented by (1) in the presence of carbon dioxide and the optically active cobalt complex represented by general formula (2) or general formula (3), The inventors have found that a polystrength resin can be obtained in a yield, and the present invention has been completed.
すなわち本発明は、  That is, the present invention
1 . 一般式 ( 1 ) : 090528271. General formula (1): 09052827
Figure imgf000004_0001
Figure imgf000004_0001
(式中、 R 1および R2は、 同一でも異なっていてもよく、 水素原子 、 置換もしくは非置換のアルキル基、 または置換もしくは非置換の 芳香族基であるか、 または R 1と R2が互いに結合して置換もしくは 非置換の環を形成してもよい) (Wherein R 1 and R 2 may be the same or different and are a hydrogen atom, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted aromatic group, or R 1 and R 2 are They may combine with each other to form a substituted or unsubstituted ring)
で表されるエポキシドを、 二酸化炭素と、 一般式 ( 2 ) または一般 式 ( 3 ) : The epoxide represented by carbon dioxide and general formula (2) or general formula (3):
Figure imgf000004_0002
Figure imgf000004_0002
(式中、 R3および R4は、 同一でも異なっていてもよく、 互いに独 立して、 水素原子、 置換もしくは非置換のアルキル基、 置換もしく は非置換の芳香族基、 または置換もしくは非置換の芳香族複素環基- であるか、 または 2個の R3同士もしくは 2個の R"1同士が、 互いに 結合して置換もしくは非置換の環を形成してもよく、 そして R5、 R6および R7は、 同一でも異なっていてもよく、 水素原子、 置換も しくは非置換のアルキル基、 置換もしくは非置換のアルケニル基、 置換もしくは非置換の芳香族基、 置換もしくは非置換の芳香族複素 環基、 ァシル基、 置換もしくは非置換のアルコキシカルボニル基、 置換もしくは非置換の芳香族ォキシカルボニル基、 または置換もし くは非置換のァラルキルォキシカルポニル基であり、 R 6および R 7 は、 互いに結合して置換または非置換の脂肪族環を形成してもよく 、 そして、 一般式 ( 3 ) 中の X—は、 塩を形成し得る陰イオン対を 表す) (Wherein R 3 and R 4 may be the same or different and independently of each other, a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aromatic group, or a substituted or An unsubstituted aromatic heterocyclic group, or two R 3 's or two R "1's may be bonded to each other to form a substituted or unsubstituted ring, and R 5 , R 6 and R 7 may be the same or different, and are a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted aromatic group, a substituted or unsubstituted group, An aromatic heterocyclic group, an acyl group, a substituted or unsubstituted alkoxycarbonyl group, a substituted or unsubstituted aromatic oxycarbonyl group, or a substituted or unsubstituted aralkyloxycarbonyl group, R 6 And R 7 may combine with each other to form a substituted or unsubstituted aliphatic ring, and X— in the general formula (3) represents an anion pair capable of forming a salt)
で表される光学活性コバルト錯体との存在下で反応させることを含 む、 一般式 ( 4 ) : Including the reaction in the presence of an optically active cobalt complex represented by the general formula (4):
Figure imgf000005_0001
Figure imgf000005_0001
(式中、 R 1および R2は上記のとおりである) (Wherein R 1 and R 2 are as described above)
で表されるポリ力一ポネート樹脂の製造方法、 A method for producing a polystrength Ponate resin represented by:
2. —般式 ( 1 ) において、 R 1および R2のうちの一方が水素原子 で、 もう一方が置換または非置換のアルキル基である、 上記 1. に 記載の製造方法、 2. —Production method according to 1. above, wherein in general formula (1), one of R 1 and R 2 is a hydrogen atom and the other is a substituted or unsubstituted alkyl group,
3. 一般式 ( 1 ) で表されるエポキシドが、 以下 : 3. The epoxide represented by the general formula (1) is the following:
Figure imgf000006_0001
Figure imgf000006_0001
Figure imgf000006_0002
Figure imgf000006_0002
Figure imgf000006_0003
および
Figure imgf000006_0004
からなる群より選択される、 上記 1. に記載の製造方法、
Figure imgf000006_0003
and
Figure imgf000006_0004
The production method according to 1. above, selected from the group consisting of:
4. 一般式 ( 2 ) および一般式 ( 3 ) において、 R3と R4が水素原 子または置換もしくは非置換の芳香族基であるか、 または 2個の R 3同士もしくは 2個の R4同士が互いに結合して置換もしくは非置換 の環を形成してもよく、 そして R5、 R6および R7が水素原子、 置 換もしくは非置換のアルキル基、 置換もしくは非置換のアルコキシ カルボニル基、 または置換もしくは非置換のァラルキルォキシカル ボニル基である、 上記 1. 〜 3. のいずれかに記載の製造方法、4. In general formula (2) and general formula (3), R 3 and R 4 are hydrogen atoms or substituted or unsubstituted aromatic groups, or two R 3 or two R 4 May be bonded to each other to form a substituted or unsubstituted ring, and R 5 , R 6 and R 7 are a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxycarbonyl group, Or a production method according to any one of 1 to 3 above, which is a substituted or unsubstituted aralkyloxycarbonyl group,
5. —般式 ( 3 ) において、 X が O B z F5—、 0 B z - , N〇3—、 〇 C O C F 3—、 F または I -である、 上記 1. 〜 4. のいずれかに 記載の製造方法、 5. —In the general formula (3), X is OB z F 5 —, 0 B z −, N ○ 3 —, ○ COCF 3 —, F or I — Described manufacturing method,
6. 一般式 ( 2 ) および一般式 ( 3 ) で表される光学活性コバルト 錯体が以下 :
Figure imgf000007_0001
6. Optically active cobalt complexes represented by general formula (2) and general formula (3) are as follows:
Figure imgf000007_0001
Figure imgf000007_0002
Figure imgf000007_0002
およびand
Figure imgf000008_0001
Figure imgf000008_0001
Figure imgf000008_0002
Figure imgf000008_0002
のいずれかに記載の製 7 . 求核剤を使用する、 上記 1 . 〜 6 . のいずれかに記載の製造方 法、 Made in any one of 7. The method according to any one of 1 to 6 above, wherein a nucleophile is used,
8 . 一般式 ( 1 ) :
Figure imgf000009_0001
8. General formula (1):
Figure imgf000009_0001
(式中、 R 1および R 2は、 同一でも異なっていてもよく、 水素原子 、 置換もしくは非置換のアルキル基、 または置換もしくは非置換の 芳香族基であるか、 または R 1と R 2が互いに結合して置換もしくは 非置換の環を形成してもよい) (Wherein R 1 and R 2 may be the same or different and are a hydrogen atom, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted aromatic group, or R 1 and R 2 are They may combine with each other to form a substituted or unsubstituted ring)
で表されるエポキシドと二酸化炭素とが交互に結合して得られたポ リカーポネ一卜であって、 1 H— N M R分析により検出可能なエー テル結合成分を含まないポリカーボネート、 ならびに A polycarbonate obtained by alternately bonding epoxides and carbon dioxide represented by the formula (1), a polycarbonate containing no ether-binding component detectable by 1 H-NMR analysis, and
9 . エチレンォキシドと二酸化炭素とが交互に結合して得られたポ リエチレンカーボネートであって、 1 H— N M R分析により検出可 能なェ一テル結合成分を含まないポリエチレンカーボネート に関する。 9. Polyethylene carbonate obtained by alternately bonding ethylene oxide and carbon dioxide, which does not contain an ether bond component detectable by 1 H-NMR analysis.
本発明の方法によれば、 二酸化炭素を炭素源として利用し、 安価 かつ合成が容易なコバルト触媒を使用して、 ポリカーボネート樹脂 を高収率で製造することができる。 また、 触媒の活性および選択性 が高く、 反応条件として高温高圧を必要としないことから、 製造コ ス トを抑えることかできる。 さらに、 本発明によるポリカーボネー 卜は、 完全交互共重合体であることにより従来にない高い諸物性を 発揮し、 新規用途の開発に寄 する。 図面の簡単な説明  According to the method of the present invention, a polycarbonate resin can be produced in high yield by using carbon dioxide as a carbon source and using an inexpensive and easy-to-synthesize cobalt catalyst. In addition, since the activity and selectivity of the catalyst are high and the reaction conditions do not require high temperature and pressure, the production cost can be reduced. In addition, the polycarbonate film according to the present invention is a completely alternating copolymer, and thus exhibits high unprecedented physical properties and contributes to the development of new applications. Brief Description of Drawings
図 1 は、 実施例 6 3で合成されたポリエチレンガーボネー トの 1 H— NMR分析結果を示すグラフである。 Figure 1 is a polyethylene Gar Bonnet over preparative synthesized in Example 6 3 1 It is a graph which shows a H-NMR analysis result.
図 2は、 実施例 6 3で合成されたポリエチレンカーボネートの D S C分析結果を示すグラフである。  FIG. 2 is a graph showing the results of D SC analysis of the polyethylene carbonate synthesized in Example 63.
図 3は、 実施例 6 3で合成されたポリエチレンカーボネートの T G A分析結果を示すグラフである。  FIG. 3 is a graph showing the results of TGA analysis of the polyethylene carbonate synthesized in Example 63.
図 4は、 市販のポリエチレンカーボネートの 1 H— NMR分析結 果を示すグラフである。 FIG. 4 is a graph showing the results of 1 H-NMR analysis of commercially available polyethylene carbonate.
図 5は、 市販のポリエチレンカーボネートの D S C分析結果を示 すグラフである。  Fig. 5 is a graph showing the results of DSC analysis of commercially available polyethylene carbonate.
図 6は、 市販のポリエチレンカーボネートの T GA分析結果を示 すグラフである。 発明を実施するための最良の形態  Fig. 6 is a graph showing the results of TGA analysis of commercially available polyethylene carbonate. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明について詳細に説明する。  Hereinafter, the present invention will be described in detail.
原料として用いられる一般式 ( 1 ) :
Figure imgf000010_0001
General formula (1) used as raw material:
Figure imgf000010_0001
で表されるエポキシドにおいて、 R1および R2は、 同一でも異なつ ていてもよく、 水素原子、 置換もしくは非置換のアルキル基、 また は置換もしくは非置換の芳香族基であるか、 または R 'と R2が互い に結合して置換もしくは非置換の環を形成してもよい。 In the epoxide represented by R 1 and R 2 , which may be the same or different, are a hydrogen atom, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted aromatic group, or R 'And R 2 may be bonded to each other to form a substituted or unsubstituted ring.
R1および R2のアルキル基としては、 炭素数 1〜 1 0の直鎖状ま たは分岐鎖状の置換または非置換のアルキル基が好ましく、 例えば 、 メチル基、 ェチル基、 η—プロピル基、 イソプロピル 、 η—ブ チル基、 s e c —ブチル基、 t e r t —ブチル基、 n—ペンチル基 、 2 —ペンチル基、 3 —ペンチル¾、 i s o—ペンチル基、 ネオべ ンチル基、 t e r t —ペンチル基、 n—へキシル基、 2—へキシル 基、 3—へキシル基、 1 —メチル— 1 ーェチルー n—ペンチル基、 1 , 1 , 2— トリメチルー n—プロピル基、 1, 2 , 2— トリメチ ルー n—プロピル基、 3 , 3—ジメチルー n—ブチル基、 n—ヘプ チル基、 2 —へプチル基、 1 —ェチルー 1, 2—ジメチル— n—プ 口ピル基、 1 ーェチルー 2 , 2—ジメチルー n—プロピル基、 n— ォクチル基、 n—ノニル基、 n—デシル基等が挙げられ、 より好ま しくはメチル基である。 該アルキル基は、 例えば、 ヒ ドロキシ基、 アミノ基、 カルボキシル基、 スルファニル基、 シァノ基、 スルホ基 、 ホルミル基、 ハロゲン原子、 芳香族基等から選択される 1 または 2以上の置換基で置換されていてもよい。 As the alkyl group for R 1 and R 2, a linear or branched substituted or unsubstituted alkyl group having 1 to 10 carbon atoms is preferable, and examples thereof include a methyl group, an ethyl group, and an η-propyl group. , Isopropyl, η-Butyl, sec-Butyl, tert-Butyl, n-Pentyl, 2-Pentyl, 3-Pentyl¾, Iso-Pentyl, Neo Nyl group, tert-pentyl group, n-hexyl group, 2-hexyl group, 3-hexyl group, 1-methyl-1-ethyl-n-pentyl group, 1, 1, 2-trimethyl-n-propyl group, 1 , 2, 2-trimethyl n-propyl, 3,3-dimethyl-n-butyl, n-heptyl, 2-heptyl, 1-ethyl-1,2-dimethyl-n-propyl, Examples include 1-ethyl-2-, 2-dimethyl-n-propyl group, n-octyl group, n-nonyl group, n-decyl group, and the like, and methyl group is more preferable. The alkyl group is substituted with one or more substituents selected from, for example, a hydroxyl group, an amino group, a carboxyl group, a sulfanyl group, a cyano group, a sulfo group, a formyl group, a halogen atom, and an aromatic group. It may be.
R1および R2の置換または非置換の芳香族基としては、 炭素数 6 〜 1 0の置換または非置換の芳香族基が好ましく、 例えば、 フエ二 ル基、 インデニル基、 ナフチル基、 テ卜ラヒ ドロナフチル基等の置 換または非置換の芳香族炭化水素基が挙げられ、 より好ましくはフ ェニル基である。 該芳香族基は、 例えば、 メチル基、 ェチル基、 n —プロピル基、 イソプロピル基、 n—ブチル基、 s e c —ブチル基 、 t e r t —ブチル基等のアルキル基、 フエニル基、 ナフチル基等 の芳香族基等から選択される 1 または 2以上の置換基で置換されて いてもよい。 The substituted or unsubstituted aromatic group for R 1 and R 2 is preferably a substituted or unsubstituted aromatic group having 6 to 10 carbon atoms, such as a phenyl group, an indenyl group, a naphthyl group, Examples thereof include substituted or unsubstituted aromatic hydrocarbon groups such as a lahydronaphthyl group, and more preferably a phenyl group. Examples of the aromatic group include aromatic groups such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, and a tert-butyl group, a phenyl group, and a naphthyl group. It may be substituted with one or more substituents selected from a group and the like.
R1と R2は、 互いに結合して置換または非置換の環を形成しても よく、 好ましくは炭素数 4〜 1 0の置換または非置換の脂肪族環を 形成してもよい。 例えば、 R)と が— (C H2) 4—を介して互い に結合した場合、 シクロへキサン環を形成する。 このように形成さ れた環は、 例えば、 メチル基、 ェチル基、 n—プロピル基、 イソプ 口ピル基、 n—ブチル基、 s e c—ブチル基、 t e r t —ブチル基 等のアルキル基、 フエニル基、 ナフチル基等の芳香族基等から選択 される 1 または 2以上の置換基で置換されていてもよい。 R 1 and R 2 may combine with each other to form a substituted or unsubstituted ring, and preferably form a substituted or unsubstituted aliphatic ring having 4 to 10 carbon atoms. For example, when R) and are bonded to each other via — (CH 2 ) 4 —, a cyclohexane ring is formed. The ring thus formed is, for example, a methyl group, an ethyl group, an n-propyl group, an isopyl pill group, an n-butyl group, a sec-butyl group, an alkyl group such as a tert-butyl group, a phenyl group, Select from aromatic groups such as naphthyl group May be substituted with one or more substituents.
上記一般式 ( 1 ) で表されるエポキシドの中で特に好ましいもの の具体例としては、 下記式 ( 1 一 1 ) 〜 ( 1 一 4 ) のものが挙げら れる。  Specific examples of particularly preferable epoxides represented by the general formula (1) include those represented by the following formulas (1 1 1) to (1 1 4).
Figure imgf000012_0001
触媒として用いられる光学活性コバルト錯体は、 一般式 ( 2 )
Figure imgf000012_0001
The optically active cobalt complex used as a catalyst has the general formula (2)
Figure imgf000012_0002
で表される。 ここで、 R 3および R 4は、 同一でも異なっていてもよ く、 互いに独立して、 水素原子、 置換もしくは非置換のアルキル基 、 置換もしくは非置換の芳香族基、 または置換もしくは非置換の芳 香族複素環基であってよい。
Figure imgf000012_0002
It is represented by Here, R 3 and R 4, which may be the same or different, are independently of each other a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aromatic group, or a substituted or unsubstituted group. Good It may be an aromatic heterocyclic group.
R3および R4の置換または非置換のアルキル基としては、 炭素数As the substituted or unsubstituted alkyl group for R 3 and R 4 , carbon number
1〜 1 0の直鎖または分岐鎖状の置換または非置換のアルキル基が 好ましく、 例えばメチル基、 ェチル基、 n—プロピル基、 イソプロ ピル基、 n—ブチル基、 s e c—ブチル基、 t e r t —ブチル基等 が挙げられる。 該アルキル基は、 例えば、 ヒ ドロキシ基、 アミノ基 、 力ルポキシル基、 スルファニル基、 シァノ基、 スルホ基、 ホルミ ル基、 ハロゲン原子、 芳香族基等から選択される 1 または 2以上の 置換基で置換されていてもよい。 A linear or branched substituted or unsubstituted alkyl group of 1 to 10 is preferable, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert — And butyl group. The alkyl group is, for example, one or two or more substituents selected from a hydroxy group, an amino group, a strong lpoxyl group, a sulfanyl group, a cyano group, a sulfo group, a formyl group, a halogen atom, an aromatic group and the like. May be substituted.
R3および R4の置換または非置換の芳香族基としては、 炭素数 6 〜 1 0の置換または非置換の芳香族基が好ましく、 例えば、 フエ二 ル基、 ナフチル基等の置換または非置換の芳香族炭化水素基が挙げ られる。 該芳香族基は、 例えば、 メチル基、 ェチル基、 n—プロピ ル基、 イソプロピル基、 n—ブチル基、 s e c —ブチル基、 t e r t 一ブチル基等のアルキル基、 フエニル基、 ナフチル基等の芳香族 基等から選択される 1 または 2以上の置換基で置換されていてもよ い。 The substituted or unsubstituted aromatic group for R 3 and R 4 is preferably a substituted or unsubstituted aromatic group having 6 to 10 carbon atoms, for example, a substituted or unsubstituted group such as a phenyl group or a naphthyl group. And aromatic hydrocarbon groups. Examples of the aromatic group include aromatic groups such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, and a tert-butyl group, a phenyl group, and a naphthyl group. It may be substituted with 1 or 2 or more substituents selected from a group or the like.
R3および R4の置換または非置換の芳香族複素環基としては、 炭 素数 5〜 1 0の置換または非置換の芳香族複素環基が好ましく、 例 えば、 フリル基、 チェニル基、 ピリジル基、 ピロリル基、 ォキサゾ リル基、 イソォキサゾリル基、 チアゾリル基、 イソチアゾリル基、 イミダゾリル基、 ピラゾリル基、 ピリミジル基、 ピリダジニル基、 ビラリジニル基、 キノ リル基、 イソキノ リル基等の置換または非置 換の芳香族複素環基が挙げられる。 該芳香族複素環基は、 例えば、 メチル基、 ェチル基、 n—プロピル基、 イソプロピル基、 n—プチ ル基、 s e c 一ブチル基、 t e r t —ブチル基等のアルキル基、 フ ェニル基、 ナフチル基等の芳香族基等から選択される 1 または 2以 上の置換基で置換されていてもよい。 As the substituted or unsubstituted aromatic heterocyclic group for R 3 and R 4, a substituted or unsubstituted aromatic heterocyclic group having 5 to 10 carbon atoms is preferable, for example, a furyl group, a chenyl group, a pyridyl group. , Pyrrolyl group, oxazolyl group, isoxazolyl group, thiazolyl group, isothiazolyl group, imidazolyl group, pyrazolyl group, pyrimidyl group, pyridazinyl group, bilaridinyl group, quinolyl group, isoquinolyl group, etc. A cyclic group is mentioned. The aromatic heterocyclic group includes, for example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-propyl group, a sec-butyl group, an alkyl group such as a tert-butyl group, a phenyl group, and a naphthyl group. 1 or 2 or more selected from aromatic groups such as It may be substituted with the above substituents.
また、 2個の R3同士または 2個の R4同士は、 互いに結合して置 換または非置換の環を形成してもよく、 好ましくは炭素数 4〜 1 0 の置換または非置換の脂肪族環を形成してもよい。 例えば、 R3と R4がー (C H2) 4—を介して互いに結合した場合、 シクロへキサ ン環を形成する。 このように形成された環は、 例えば、 メチル基、 ェチル基、 n—プロピル基、 イソプロピル基、 n—ブチル基、 s e c 一プチル基、 t e r t —ブチル基等のアルキル基、 フエニル基、 ナフチル基等の芳香族基等から選択される 1 または 2以上の置換基 で置換されていてもよい。 Further, two R 3 s or two R 4 s may be bonded to each other to form a substituted or unsubstituted ring, and preferably a substituted or unsubstituted fatty acid having 4 to 10 carbon atoms. A family ring may be formed. For example, when R 3 and R 4 are bonded to each other via — (CH 2 ) 4 —, a cyclohexane ring is formed. The ring formed in this way is, for example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec butyl group, an alkyl group such as a tert-butyl group, a phenyl group, a naphthyl group, etc. It may be substituted with 1 or 2 or more substituents selected from the following aromatic groups.
さらに、 R5、 R6および R7は、 同一でも異なっていてもよく、 水素原子、 置換もしくは非置換のアルキル基、 置換もしくは非置換 のアルケニル基、 置換もしくは非置換の芳香族基、 置換もしくは非 置換の芳香族複素環基、 ァシル基、 置換もしくは非置換のアルコキ シカルポニル基、 置換もしくは非置換の芳香族ォキシカルボニル基 、 または置換もしくは非置換のァラルキルォキシカルボニル基であ る。 Further, R 5 , R 6 and R 7 may be the same or different, and are a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted aromatic group, substituted or An unsubstituted aromatic heterocyclic group, an acyl group, a substituted or unsubstituted alkoxycarbonyl group, a substituted or unsubstituted aromatic oxycarbonyl group, or a substituted or unsubstituted aralkyloxycarbonyl group.
R5、 R6および R 7の置換または非置換のアルキル基としては、 炭素数 1〜 1 0の直鎖または分岐鎖状の置換または非置換のアルキ ル基が好ましく、 より好ましくは炭素数 1〜 6の直鎖または分岐鎖 状の置換または非置換のアルキル基、 例えば、 メチル基、 ェチル基 、 n—プロピル基、 イソプロピル基、 n—ブチル基、 s e c —ブチ ル基、 t e r t —ブチル基等が挙げられる。 該アルキル基は、 例え ば、 ヒ ドロキシ基、 アミノ基、 力ルポキシル基、 スルファニル基、 シァノ基、 スルホ基、 ホルミル基、 ハロゲン原子、 芳香族基等から 選択される 1 または 2以上の置換基で置換されていてもよい。 The substituted or unsubstituted alkyl group for R 5 , R 6 and R 7 is preferably a linear or branched substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, more preferably 1 carbon atom. To 6 linear or branched substituted or unsubstituted alkyl groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, etc. Is mentioned. The alkyl group is, for example, one or two or more substituents selected from a hydroxy group, an amino group, a strong lpoxyl group, a sulfanyl group, a cyano group, a sulfo group, a formyl group, a halogen atom, and an aromatic group. May be substituted.
R5、 R6および R7の置換または非置換のアルケニル基としては 、 炭素数 2 〜 1 0の直鎖または分岐鎖状のアルケニル基が好ましく 、 より好ましくは炭素数 2 〜 6の直鎖または分岐鎖状のアルケニル 基、 例えば、 ビニル基、 2—プロぺニル基等が挙げられる。 該アル ケニル基は、 例えば、 ヒ ドロキシ基、 アミノ基、 力ルポキシル基、 スルファニル基、 シァノ基、 スルホ基、 ホルミル基、 ハロゲン原子 、 芳香族基等から選択される 1 または 2以上の置換基で置換されて いてもよい。 Examples of substituted or unsubstituted alkenyl groups for R 5 , R 6 and R 7 A linear or branched alkenyl group having 2 to 10 carbon atoms is preferable, and a linear or branched alkenyl group having 2 to 6 carbon atoms, for example, a vinyl group or a 2-propenyl group. Etc. The alkenyl group is, for example, one or two or more substituents selected from a hydroxy group, an amino group, a strong lpoxyl group, a sulfanyl group, a cyano group, a sulfo group, a formyl group, a halogen atom, and an aromatic group. It may be replaced.
R 5、 R 6および R 7の芳香族基としては、 炭素数 6 〜 1 0の置換 または非置換の芳香族基が好ましく、 例えば、 フエニル基、 ナフチ ル基等の置換または非置換の芳香族炭化水素基が挙げられる。 該芳 香族基は、 例えば、 メチル基、 ェチル基、 n —プロピル基、 イソプ 口ピル基、 n -ブチル基、 s e c —ブチル基、 t e r t —ブチル基 等のアルキル基、 フエニル基、 ナフチル基等の芳香族基等から選択 される 1 または 2以上の置換基で置換されていてもよい。 As the aromatic group of R 5 , R 6 and R 7 , a substituted or unsubstituted aromatic group having 6 to 10 carbon atoms is preferable, for example, a substituted or unsubstituted aromatic group such as a phenyl group or a naphthyl group. A hydrocarbon group is mentioned. The aromatic group includes, for example, a methyl group, an ethyl group, an n-propyl group, an isopyl pill group, an n-butyl group, a sec-butyl group, a tert-butyl group, an alkyl group, a phenyl group, a naphthyl group, etc. It may be substituted with 1 or 2 or more substituents selected from the following aromatic groups.
R 5、 R 6および R 7の置換または非置換の芳香族複素環基として は、 炭素数 5 〜 1 0の置換または非置換の芳香族複素環基が好まし く、 例えば、 フリル基、 チェニル基、 ピリジル基、 ピロリル基、 ォ キサゾリル基、 イソォキサゾリル基、 チアゾリル基、 イソチアゾリ ル基、 イミダゾリル基、 ピラゾリル基、 ピリミジル基、 ピリダジニ ル基、 ビラリジニル基、 キノ リル基、 イソキノ リル基等の置換また は非置換の芳香族複素環基が挙げられる。 該芳香族複素環基は、 例 えば、 メチル基、 ェチル基等のアルキル基、 メ トキシ基、 エトキシ 基等のアルコキシ基、 ハロゲン原子基、 ニトロ基、 シァノ基等から 選択される 1 または 2以上の置換基で置換されていてもよい。 As the substituted or unsubstituted aromatic heterocyclic group for R 5 , R 6 and R 7, a substituted or unsubstituted aromatic heterocyclic group having 5 to 10 carbon atoms is preferable. Group, pyridyl group, pyrrolyl group, oxazolyl group, isoxazolyl group, thiazolyl group, isothiazolyl group, imidazolyl group, pyrazolyl group, pyrimidyl group, pyridazinyl group, bilaridinyl group, quinolyl group, isoquinolyl group, etc. An unsubstituted aromatic heterocyclic group is mentioned. The aromatic heterocyclic group is, for example, one or more selected from an alkyl group such as a methyl group or an ethyl group, an alkoxy group such as a methoxy group or an ethoxy group, a halogen atom group, a nitro group, or a cyan group. It may be substituted with a substituent.
R 5、 R 6および R 7のァシル基としては、 炭素数 1 〜 2 0のァシ ル基が好ましく、 例えば、 ホルミル基、 ァセチル基、 トリフルォロ ァセチル基、 プロピオニル基、 プチリル基、 イソプチリル基、 ビバ ロイル基等の脂肪族ァシル基、 ベンゾィル基、 3, 5—ジメチルべ ンゾィル基、 2, 4 , 6 — トリメチルベンゾィル基、 2, 6 —ジメ トキシベンゾィル基、 2, 4 , 6 — トリメ トキシベンゾィル基、 2 , 6 —ジイソプロポキシベンゾィル基、 1 一ナフチルカルポニル基 、 2 —ナフチルカルポニル基、 9 —アントリル力ルポニル基等の芳 香族ァシル基等が挙げられる。 As the acyl group of R 5 , R 6 and R 7, an acyl group having 1 to 20 carbon atoms is preferable. For example, a formyl group, a acetyl group, a trifluoroacetyl group, a propionyl group, a propylyl group, an isoptylyl group, a viva group Aliphatic acyl group such as Loyl group, Benzyl group, 3,5-Dimethylbenzoyl group, 2, 4, 6 — Trimethylbenzoyl group, 2, 6 — Dimethoxybenzoyl group, 2, 4, 6 — Trimethoxybenzoyl group 2, 6-diisopropoxybenzoyl group, 1-naphthylcarbonyl group, 2-naphthylcarbonyl group, 9-anthryl group sulfonyl group and the like.
R 5、 R 6および R 7の置換または非置換のアルコキシカルボニル 基としては、 炭素数 2〜 2 0の置換または非置換のアルコキシカル ポニル基が好ましく、 例えば、 メ トキシカルボ二ル基、 エトキシカ ルポニル基、 n —ブトキシカルポニル基、 n —才クチルォキシカル ポニル基、 シクロペンチルォキシカルポニル基、 シクロへキシルォ キシカルボ二ル基、 シクロォクチルォキシカルポニル基、 ァダマン チルォキシカルボニル基、 t e r t —ブトキシカルボニル基が挙げ られる。 該アルコキシ力ルポニル基は、 例えば、 ヒ ドロキシ基、 ァ ミノ基、 カルボキシル基、 スルファニル基、 シァノ基、 スルホ基、 ホルミル基、 ハロゲン原子、 芳香族基等から選択される 1 または 2 以上の置換基で置換されていてもよい。 The substituted or unsubstituted alkoxycarbonyl group for R 5 , R 6 and R 7 is preferably a substituted or unsubstituted alkoxycarbonyl group having 2 to 20 carbon atoms, such as a methoxycarbonyl group or an ethoxycarbonyl group. N-butoxycarbonyl group, n-year-old oxycarbonyl group, cyclopentyloxycarbonyl group, cyclohexyloxycarbonyl group, cyclooctylcarbonyl group, adamantyloxycarbonyl group, tert-butoxycarbonyl group It is done. The alkoxy group is, for example, one or more substituents selected from a hydroxy group, an amino group, a carboxyl group, a sulfanyl group, a cyano group, a sulfo group, a formyl group, a halogen atom, an aromatic group and the like. May be substituted.
R 5、 R 6および R 7の置換または非置換の芳香族ォキシ力ルポ二 ル基としては、 炭素数 7〜 2 0の置換または非置換の芳香族ォキシ カルポニル基が好ましく、 例えば、 フエノキシカルポニル基が挙げ られる。 該芳香族ォキシカルボニル基は、 例えば、 メチル基、 ェチ ル基等のアルキル基、 メ 卜キシ基、 ェ卜キシ基等のアルコキシ基、 ハロゲン原子基、 ニトロ基、 シァノ基等から選択される 1 または 2 以上の置換基で置換されていてもよい。 The substituted or unsubstituted aromatic oxyphenyl group of R 5 , R 6 and R 7 is preferably a substituted or unsubstituted aromatic oxycarbonyl group having 7 to 20 carbon atoms, such as phenoxy. A carbonyl group is mentioned. The aromatic oxycarbonyl group is selected from, for example, an alkyl group such as a methyl group or an ethyl group, an alkoxy group such as a methoxy group or an ethoxy group, a halogen atom group, a nitro group, or a cyan group. It may be substituted with 1 or 2 or more substituents.
R 5、 R 6および R 7の置換または非置換のァラルキルォキシカル ポニル基としては、 炭素数 7〜 2 0のァラルキルォキシカルボニル 基が好ましく、 例えば、 ベンジルォキシカルボニル基、 フエネチル ォキシ力ルポニル基等が挙げられる。 該ァラルキルォキシカルボ二 ル基は、 例えば、 ヒ ドロキシ基、 アミノ基、 力ルポキシル基、 スル ファニル基、 シァノ基、 スルホ基、 ホルミル基、 ハロゲン原子、 芳 香族基、 アルコキシアルキレンォキシ基、 例えばメ トキシエチレン ォキシ基等から選択される 1 または 2 上の置換基で置換されてい てもよい。 As the substituted or unsubstituted aralkyloxycarbonyl group of R 5 , R 6 and R 7, an aralkyloxycarbonyl group having 7 to 20 carbon atoms is preferable, for example, a benzyloxycarbonyl group, Phenethyl Examples thereof include an oxy group and a sulfonyl group. The aralkyloxycarbonyl group includes, for example, a hydroxy group, an amino group, a strong lpoxyl group, a sulfanyl group, a cyano group, a sulfo group, a formyl group, a halogen atom, an aromatic group, an alkoxyalkyleneoxy group. It may be substituted with a substituent on 1 or 2 selected from a group such as a methoxyethyleneoxy group.
さらに、 R6および R7は、 互いに結合して環を形成してもよく、 好ましくは炭素数 4〜 1 0の置換または非置換の脂肪族環を形成し てもよい。 例えば、 R6と R7がー (C H2) 4 —を介して互いに結合 した場合、 シクロへキサン環を形成する。 このように形成された環 は、 例えば、 メチル基、 ェチル基、 n—プロピル基、 イソプロピル 基、 n—ブチル基、 s e c —ブチル基、 t e r t —ブチル基等のァ ルキル基、 フエニル基、 ナフチル基等の芳香族基等から選択される 1 または 2以上の置換基で置換されていてもよい。 Furthermore, R 6 and R 7 may be bonded to each other to form a ring, and may preferably form a substituted or unsubstituted aliphatic ring having 4 to 10 carbon atoms. For example, when R 6 and R 7 are bonded to each other via — (CH 2 ) 4 —, a cyclohexane ring is formed. The ring thus formed can be, for example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, an tert-butyl group or other alkyl group, a phenyl group, or a naphthyl group. It may be substituted with 1 or 2 or more substituents selected from aromatic groups and the like.
前記一般式 ( 2 ) で表される光学活性コバルト錯体の中で特に好 ましいものの具体例としては、 下記式 ( 2— 1 ) 〜 ( 2 — 1 1 ) の ものが挙げられる。 Specific examples of particularly preferable optically active cobalt complexes represented by the general formula (2) include those represented by the following formulas (2-1) to (2-11-1).
Figure imgf000018_0001
Figure imgf000018_0001
Figure imgf000019_0001
Figure imgf000020_0001
また、 本発明において、 前記一般式 ( 2 ) で表される光学活性コ バルト錯体から誘導して得られる、 一般式 ( 3 ) :
Figure imgf000019_0001
Figure imgf000020_0001
In the present invention, the general formula (3) obtained by deriving from the optically active cobalt complex represented by the general formula (2):
Figure imgf000020_0002
で表される光学活性コバルト錯体も、 本発明の方法で用いる光学活 性コバルト錯体として有効であり、 ここで R3、 R4、 R5、 R1 R 7は前記一般式 ( 2 ) について定義した通りであり、 X—は、 塩を形 成し得る陰ィオン対を表す。
Figure imgf000020_0002
Is also effective as an optically active cobalt complex used in the method of the present invention, wherein R 3 , R 4 , R 5 , and R 1 R 7 are defined with respect to the general formula (2). X— represents an anion pair that can form a salt.
上記一般式 ( 3 ) における X -としては、 I -、 S b F 、 C F 3 S〇3—、 p - C H3 C β Η4 S 03" B F4—、 〇 C O C F 3—、 N 02" 、 N〇3—、 C H3 C O,—、 O B z―、 O B z F 5" , O B z ( 3 5 C F3) —、 O B z ( 3. 5 C 1 ) —、 〇 B z ( 4 M e 2 N) ―、 〇 B z ( 4 t B u ) ―、 F -、 C I -、 B r―、 OH -、 P F6、 B P h4 -、 S b F 6—、 C 1 O 4―、 O T f -、 または〇 T s―等が挙げられ、 好まし く O B z F5-、 O B z -、 NO 、 O C〇 C F3 、 または I である 前記一般式 ( 3 ) で表される光学活性コバルト錯体の中で特に好 ましいものの具体例としては、 下記式 ( 3 — 1 ) 〜 ( 3 — 1 4 ) の ものが挙げられる。 The, I - - X in the general formula (3), S b F, CF 3 S_〇 3 -, p - CH 3 C β Η 4 S 0 3 "BF 4 -, 〇 COCF 3 -, N 0 2 ", N0 3 —, CH 3 CO, —, OB z—, OB z F 5 ", OB z (3 5 C F 3 ) —, OB z (3.5 C 1) —, ○ B z (4 Me 2 N) ―, ○ B z (4 t B u) ―, F-, CI-, Br-, OH -, PF 6, BP h 4 -, S b F 6 -, C 1 O 4 -, OT f -, or 〇 T s-and the like, preferably rather OB z F 5 -, OB z -, NO Specific examples of particularly preferable optically active cobalt complexes represented by the general formula (3), which are OC 0 CF 3 , or I, include the following formulas (3 — 1) to (3 — 1 4 ).
Figure imgf000022_0001
Figure imgf000022_0001
Figure imgf000022_0002
Figure imgf000023_0001
Figure imgf000024_0001
本発明の方法において製造されるポリカーボネ— 卜樹脂は、 一般 ( 4 ) :
Figure imgf000025_0001
で表され、 ここで R 1および R 2は上記のとおりである。
Figure imgf000022_0002
Figure imgf000023_0001
Figure imgf000024_0001
Polycarbonate soot resin produced by the method of the present invention is generally (4):
Figure imgf000025_0001
Where R 1 and R 2 are as described above.
一般式 ( 4 ) で表されるポリカーボネー ト樹脂の分子量は、 好ま しくは約 1 , 0 0 0〜: L 0 0 , 0 0 0、 より好ましくは約 2 , 0 0 0〜 5 0 , 0 0 0、 特に好ましくは約 2, 5 0 0〜 4 0, 0 0 0で の範囲である。  The molecular weight of the polycarbonate resin represented by the general formula (4) is preferably about 1, 00 to: L 0 0, 0 00, more preferably about 2, 0 0 0 to 50 0, 0 0 0, particularly preferably in the range of about 2, 5 0 0 to 40, 0 0 0.
前記一般式 ( 4 ) で表されるポリカーポネ一ト樹脂の中で特に好 ましいものの具体例としては、 下記式 ( 4— 1 ) 〜 ( 4一 4 ) のも のが挙げられる。 Specific examples of particularly preferred polycarbonate resins represented by the general formula (4) include those represented by the following formulas (4-1) to (4-14).
Figure imgf000026_0001
Figure imgf000026_0002
Figure imgf000026_0001
Figure imgf000026_0002
Figure imgf000026_0003
本発明の方法においては、 求核剤を使用することができる。
Figure imgf000026_0003
Nucleophiles can be used in the method of the present invention.
求核剤は重合開始剤と して働く力 求核剤を使用しない場合は痕 跡量の水が重合開始剤として働いているものと考えられる。  The ability of a nucleophilic agent to act as a polymerization initiator When no nucleophilic agent is used, it is considered that a trace amount of water acts as a polymerization initiator.
求核剤と しては、 ビス (トリ フエニルホスフオラニリデン) アン モニゥムクロ リ ド ( P P N C 1 ) 、 ピぺリ ジン、 ビス (ト リ フエ二 ルホスフオラニリデン) アンモニゥムフルオリ ド ( P P N F ) 、 ビ ス ( 卜 リ フエニルホスフオラニリデン) アンモニゥムペン夕フルォ 口ベンゾェ一 ト ( P P N〇 B z F5) 、 n B u_| N C l 、 n B u ^ N B r、 n B u N B r , n B u 4 N I 、 n B u , N O A c、 P h 3 P 等が挙げられ、 好ましくは P P N C 1 、 P P N F、 P P NO B z F 5または n B u4N C 1 であり、 より好ましくは P P N Fである。 The nucleophiles include bis (triphenylphosphoranilidene) ammonium chloride (PPNC 1), piperidine, bis (triphenylphosphoranilidene) ammonium fluoride ( PPNF), bi scan (Bok Li phenylpropyl phosphine Ola two isopropylidene) Anmoniumupen evening Furuo port Benzoe one preparative (PPN_〇 B z F 5), n B u_ | NC l, n B u ^ NB r, n B u NB r , n B u 4 NI, n B u, NOA c, P h 3 P Etc., and preferably PPNC 1, PPNF, PP NO B z F 5 or n B u 4 NC 1, more preferably PPNF.
本発明において用いる二酸化炭素の使用量に特に制限はないが、 通常二酸化炭素雰囲気下、 または二酸化炭素加圧条件下で反応を行 う。 このうち、 好ましい二酸化炭素圧は 0. I M P a〜 : L O MP a 、 更に好ましくは 0. l M P a〜 2 M P aの範囲である。 また、 窒 素やアルゴン等の反応に顕著な影響を与えない不活性ガスと二酸化 炭素との混合ガス下で反応を行うこともできる。  The amount of carbon dioxide used in the present invention is not particularly limited, but the reaction is usually carried out in a carbon dioxide atmosphere or under carbon dioxide pressure conditions. Among these, a preferable carbon dioxide pressure is in the range of 0.1 IMpa to LOMpa, more preferably 0.1 MPa to 2 MPa. In addition, the reaction can be performed in a mixed gas of an inert gas and carbon dioxide that does not significantly affect the reaction such as nitrogen or argon.
反応温度は、 通常一 4 0 °C〜 5 0 °Cが好ましく、 更には 0 °C〜 3 0 が好ましい。  The reaction temperature is usually preferably from 40 to 50 ° C, more preferably from 0 to 30 ° C.
反応時間は、 反応条件により異なるが、 通常 1〜 1 0 0時間であ る。  The reaction time varies depending on the reaction conditions, but is usually 1 to 100 hours.
また、 本発明においては、 必要に応じて溶媒を使用することがで きる。 用いられる溶媒としては、 使用されるエポキシド、 二酸化炭 素、 光学活性コバルト錯体、 求核剤と反応しないものであれば特に 制限はなく、 例えば炭化水素類、 エーテル類、 エステル類、 ケ卜ン 類、 八ロゲン化炭化水素類等が挙げられる。 具体的には、 へキサン 、 ベンゼン、 トルエン、 キシレン、 シクロへキサン、 ジブチルェ一 テル、 テトラヒ ドロフラン、 1, 4—ジォキサン、 酢酸メチル、 酢 酸ェチル、 酢酸プロピル、 メチルェチルケトン、 メチルイソプチル ケトン、 ジェチルケトン、 塩化メチレン、 クロ口ホルム、 ジクロロ ェタン、 トリクロロェタン、 クロ口ベンゼン等が挙げられ、 好まし くはクロ口ホルムである。 これらは単独で用いても、 2種以上混合 して用いてもかまわない。 溶媒の使用量としては、 原料であるェポ キシドに対して質量比で 0. 5〜 1 0 0、 好ましくは 1〜 5 0の範 囲で添加することができる。  In the present invention, a solvent can be used as necessary. The solvent used is not particularly limited as long as it does not react with the used epoxide, carbon dioxide, optically active cobalt complex, or nucleophile. For example, hydrocarbons, ethers, esters, canes And octalogated hydrocarbons. Specifically, hexane, benzene, toluene, xylene, cyclohexane, dibutyl ether, tetrahydrofuran, 1,4-dioxane, methyl acetate, ethyl acetate, propyl acetate, methyl ethyl ketone, methyl isobutyl ketone , Jetyl ketone, methylene chloride, black mouth form, dichloroethane, trichloroethane, black mouth benzene, and the like, with black mouth form being preferred. These may be used alone or in combination of two or more. With respect to the amount of the solvent used, it can be added in a mass ratio of 0.5 to 100, preferably 1 to 50 with respect to epoxide as a raw material.
本発明の方法により得られるポリカーボネートは、 完全交互共重 合体であることにより従来にない高い諸物性を発揮し、 新規用途の 開発に寄与するものと考えられる。 特に、 本発明によるポリカーボ ネートは、 後述の実施例 (図 3) が示すように、 比較的低温で熱分 解し、 かつ、 その分解残渣がほとんど無い。 このように加熱分解性 に優れた本発明によるポリ力一ポネートは、 例えば、 脱脂、 焼成ェ 程を経て製造されるセラミックゃガラスからなる各種成形体を製造 するためのバインダー樹脂として有用である。 さらに、 本発明によ るポリカーボネートは、 元来優れている耐衝撃性、 軽量性、 透明性 、 耐熱性、 生分解性等の諸物性において従来のポリカーポネ一卜よ り高品質であるため、 従来よりポリカーボネートが用いられている 各種用途において有利に適用することができる。 The polycarbonate obtained by the process of the present invention is completely alternating It is thought that the unification of the various physical properties will contribute to the development of new applications. In particular, the polycarbonate according to the present invention is thermally decomposed at a relatively low temperature and has almost no decomposition residue, as shown in an example described later (FIG. 3). Thus, the polystrength Ponate according to the present invention, which is excellent in heat decomposability, is useful as a binder resin for producing various molded bodies made of ceramic glass produced through, for example, degreasing and firing processes. Furthermore, the polycarbonate according to the present invention is higher in quality than conventional polycarbonate in terms of various properties such as impact resistance, lightness, transparency, heat resistance, biodegradability, etc. It can be advantageously applied in various applications where polycarbonate is used.
以下に実施例を示すが、 本発明はこれらに限定されるものではな い (ここで、 ケトイミナトコバルト錯体については上記具体例の番 号により示すものとする) 。 実施例  Examples are shown below, but the present invention is not limited to these (herein, the ketoiminato cobalt complex is indicated by the number of the above specific example). Example
(プロピレンォキシドと C O 2 の交互共重合) (Alternate copolymerization of propylene oxide and CO 2 )
実施例 1 Example 1
ステンレス耐圧容器に、 ケトイミナトコバルトペン夕フルォ口べ ンゾェ一ト錯体 (3— 1 ) 0. 0 1 4 3 mm o 1およびビス (トリ フエニルホスフオラニリデン) アンモニゥムフルオリ ド (P PNF ) 0. 0 1 4 3 mm o 1 を入れ、 プロピレンォキシド 2 8. 6 mm o 1 を加えた後、 二酸化炭素を圧力をかけて注入し、 全圧が 2. 0 M P aとなるように調整した。 室温で 4 8時間反応させた後、 二酸 化炭素を抜き、 この反応混合物について、 'Η— NMRにより分析 を行った。 'Η— NMR分析は、 溶媒として重クロ口ホルムを、 内 部標準にはテトラメチルシランを用い、 温度 2 2°Cで実施した。 ま た、 1 H— NMR測定装置には日本電子株式会社製の J 〇 E L— E X 2 7 0および GX— 4 0 0 を用いた。 In a stainless steel pressure-resistant container, ketoiminato cobalt pen fluorinated benzoate complex (3— 1) 0 0 1 4 3 mm o 1 and bis (triphenylphosphoranilidene) ammonium fluoride (P PNF ) 0. 0 1 4 3 mm o 1 and propylene oxide 2 8. 6 mm o 1 added, then carbon dioxide is injected under pressure so that the total pressure is 2.0 MPa. It was adjusted. After reacting at room temperature for 48 hours, carbon dioxide was removed, and this reaction mixture was analyzed by '-NMR. '--NMR analysis was carried out at a temperature of 22 ° C using deuterated form as a solvent and tetramethylsilane as an internal standard. Ma J 1 EL—EX 2 70 and GX—400 manufactured by JEOL Ltd. were used as the 1 H-NMR measuring apparatus.
得られた反応混合物には、 二酸化炭素とプロピレンォキシドとが 交互に反応したポリカーボネートが 9 9 %以上存在しており、 二酸 化炭素とプロピレンォキシドとが 1分子ずつ反応した環状カーポネ ートはほぼ生成していなかった。 さらに、 ' Η— NMRにより、 ポ リカーポネート鎖に含まれるカーボネート結合の割合は 9 9 %以上 であり、 すなわち、 生成物は完全な交互共重合体であった。 得られ たポリカーボネートの収率は 7 2 %であり、 また13 C— NMRによ り頭一尾 (H e a d— t o— T a i 1 ) 結合選択性は 9 2 %であつ た。 得られたポリカーボネ一トを G P Cで分析したところ、 数平均 分子量 M nは 1 6 8 0 0、 分子量分布 MwZM nは 1. 2 (標準ポ リスチレン基準、 TH F) であった。 In the resulting reaction mixture, 99% or more of polycarbonate in which carbon dioxide and propylene oxide were alternately reacted was present, and cyclic carbonate in which carbon dioxide and propylene oxide were reacted one molecule at a time. Almost did not produce. Furthermore, according to Η-NMR, the proportion of carbonate bonds contained in the polycarbonate chain was 99% or more, that is, the product was a complete alternating copolymer. The yield of the obtained polycarbonate was 72%, and the head-to-tail 1 bond selectivity was 92% by 13 C-NMR. When the obtained polycarbonate was analyzed by GPC, the number average molecular weight M n was 1 6800 and the molecular weight distribution MwZM n was 1.2 (standard polystyrene standard, THF).
実施例 2 Example 2
上記実施例 1 において、 P P N Fをビス (トリフエニルホスフォ ラニリデン) アンモニゥムクロリ ド ( P P N C 1 ) に変更した以外 は同様にして反応を行った。 このとき得られた反応混合物には、 3 8 %程度の環状カーボネ一卜が含まれていた。 収率は 5 4 %、 頭— 尾結合選択性は 9 2 %、 M nは 1 5 7 0 0、 MwZM r l . 2 ( 標準ポリスチレン基準、 TH F) であった。  The reaction was carried out in the same manner as in Example 1 except that P P N F was changed to bis (triphenylphosphoranylidene) ammonium chloride (P P N C 1). The reaction mixture obtained at this time contained about 38% cyclic carbon dioxide. Yield was 54%, head-to-tail bond selectivity was 92%, Mn was 15570, MwZMrl.2 (standard polystyrene standard, THF).
実施例 3 Example 3
上記実施例 1 において、 P P N Fをビス (トリフエニルホスフォ ラニリデン) アンモニゥムペンタフルォ口べンゾエート ( P P NO B z F5) に変更した以外は同様にして反応を行った。 このとき得 られた反応混合物には、 9 9 %以上の選択性でポリカーボネートで あった。 収率は 6 4 %、 頭—尾結合選択性は 9 2 %、 M nは 2 5 4 0 0、 MwZM nは 1. 7 (標準ポリスチレン基準、 TH F) であ つた。 The reaction was carried out in the same manner as in Example 1 except that PPNF was changed to bis (triphenylphosphoranylidene) ammonium pentafluobenzoate (PP NO B z F 5 ). The reaction mixture obtained at this time was polycarbonate with a selectivity of 99% or more. Yield is 64%, head-to-tail bond selectivity is 9 2%, Mn is 2540, and MwZMn is 1.7 (standard polystyrene standard, THF). I got it.
実施例 4 Example 4
上記実施例 1 において、 P P N Fをテトラー n—ブチルァンモニ ゥムクロリ ドに変更した以外は同様にして反応を行った。 このとき 得られた反応混合物には、 4 %程度の環状カーポネ一トが含まれて いた。 収率は 4 3 %、 頭一尾結合選択性は 9 1 %、 M nは 1 7 9 0 0、 Mwノ M nは 1, 0 (標準ポリスチレン基準、 TH F) であつ た。  The reaction was carried out in the same manner as in Example 1 except that PPNF was changed to tetra-n-butylammonium chloride. The reaction mixture obtained at this time contained about 4% of cyclic carbonate. The yield was 43%, the head-to-head binding selectivity was 91%, the Mn was 1790, and the Mw Mn was 1, 0 (standard polystyrene standard, THF).
実施例 5 Example 5
上記実施例 1 において、 P P N Fを トリフエニルホスフィ ンに変 更した以外は同様にして反応を行った。 このとき得られた反応混合 物は、 9 9 %以上の選択性でポリカーボネートであった。 収率は 1 0 %、 頭一尾結合選択性は 8 5 %、 M r i 4 4 0 0、 Mw/M nは 1. 1 (標準ポリスチレン基準、 TH F) であった。  The reaction was conducted in the same manner as in Example 1 except that P P N F was changed to triphenylphosphine. The reaction mixture obtained at this time was polycarbonate with a selectivity of 99% or more. Yield was 10%, head-to-head binding selectivity was 85%, M r i 4 400, Mw / M n was 1.1 (standard polystyrene standard, THF).
(求核剤の検討)  (Examination of nucleophiles)
実施例 6〜 1 7 Examples 6 to 1 7
上記実施例 1 において、 求核剤を変更した以外は特に明記しない 限り、 同様にして反応を行った。 結果を下表に示す (標準ポリスチ レン基準、 ク口口ホルム) 。 In Example 1 above, the reaction was carried out in the same manner unless otherwise specified except that the nucleophile was changed. The results are shown in the table below (standard polystyrene standard, Kuguchiguchi Holm).
表 1 table 1
実施例 求核剤 (条件) 変換率 収率 選択性 頭 -尾結合 Mn Mw/Mn 番号 ( ) (%) / PPC %  Examples Nucleophiles (Conditions) Conversion Yield Selectivity Head-to-tail binding Mn Mw / Mn number () (%) / PPC%
6 ピぺリジン (1.3 Pa) 41 35 >99 86 11267 1.10 6 Piperidine (1.3 Pa) 41 35> 99 86 11267 1.10
7 ピぺリジン (2.0MPa, 24時間) 21 9 >99 87 8769 1.387 Piperidine (2.0MPa, 24 hours) 21 9> 99 87 8769 1.38
8 ピペリジン 39 27 >99 86 9677 1.308 Piperidine 39 27> 99 86 9677 1.30
9 PPNF 80 84 99 92 26403 1.839 PPNF 80 84 99 92 26403 1.83
(クェンチ前に超音波を使わない) (Do not use ultrasound before quenching)
10 PPNF (4.5MPa) 55 56 >99 93 -(*) - 10 PPNF (4.5MPa) 55 56> 99 93-(*)-
11 PPNF (10時間) 32 一 >99 - - -11 PPNF (10 hours) 32 1> 99---
12 PPNF (24時間) 54 - >99 - - 一12 PPNF (24 hours) 54-> 99--One
13 nBu4NBr 70 46 68 92 - -13 nBu 4 NBr 70 46 68 92--
14 nBu4NBr3 61 35 58 84 - 一14 nBu 4 NBr 3 61 35 58 84-One
15 nBu4NI 71 47 62 91 - -15 nBu 4 NI 71 47 62 91--
16 nBu4N0Ac 47 40 >99 91 - 一16 nBu 4 N0Ac 47 40> 99 91-One
17 Ph3P 31 10 >99 85 - -17 Ph 3 P 31 10> 99 85--
(*) データが無いことを示す。 実施例 1 8 (*) Indicates that there is no data. Example 1 8
上記実施例 1において、 ケトイミナトコバルトペン夕フルォ口べ ンゾエート錯体をケトイミナトコバル卜ベンゾェ一ト錯体 ( 3 _ 2 ) に変更した以外は同様にして反応を行った。 このとき得られた反 応混合物は、 9 9 %以上の選択性でポリ力一ポネートであった。 収 率は 8 5 %、 頭—尾結合選択性は 9 1 %、 Mnは 2 6 4 0 0、 M w Mnは 1. 7 (標準ポリスチレン基準、 THF) であった。  The reaction was carried out in the same manner as in Example 1 except that the ketoiminato cobalt pen fluorate benzoate complex was changed to the ketoiminato cobalt benzoate complex (3 — 2). The reaction mixture obtained at this time was polyponeate with a selectivity of 99% or more. The yield was 85%, the head-to-tail selectivity was 91%, Mn was 2 6400, and MwMn was 1.7 (standard polystyrene standard, THF).
実施例 1 9 Example 1 9
上記実施例 1において、 ケトイミナトコバルトペン夕フルォ口べ ンゾエート錯体をケトイミナトコバルトニトラート錯体 ( 3— 3 ) に変更した以外は同様にして反応を行った。 このとき得られた反応 混合物は、 9 9 %以上の選択性でポリ力一ポネートであった。 収率 は 8 1 %、 頭一尾結合選択性は 9 1 %、 Mnは 1 6 9 0 0、 Mw/ M nは 1 . 2 (標準ポリスチレン基準、 T H F ) であった。 The reaction was conducted in the same manner as in Example 1 except that the ketoiminato cobalt pen fluorobenzoate complex was changed to the ketoiminato cobalt nitrate complex (3-3). The reaction mixture obtained at this time was a poly force mononate with a selectivity of 99% or more. Yield 8 1%, head-to-head binding selectivity 9 1%, Mn 1 6 90 0, Mw / M n was 1.2 (standard polystyrene standard, THF).
実施例 2 0 Example 2 0
上記実施例 1 において、 ケトイミナトコバルトペン夕フルォ口べ ンゾェ一ト錯体をケ卜ィミナトコバルト トリフルォロアセテート錯 体 ( 3 — 4 ) に変更した以外は同様にして反応を行った。 このとき 得られた反応混合物は、 9 9 %以上の選択性でポリ力一ポネートで あった。 収率は 8 2 %、 頭一尾結合選択性は 9 1 %、 M nは 2 6 5 0 0、 MwZM nは 1 . 7 (標準ポリスチレン基準、 T H F ) であ つた  The reaction was carried out in the same manner as in Example 1 except that the ketoiminato cobalt pen fluorate benzoate complex was changed to the cheminatocobalt trifluoroacetate complex (3-4). The reaction mixture obtained at this time was a polystrength with a selectivity of 99% or more. Yield was 82%, head-to-head binding selectivity was 91%, Mn was 265500, MwZMn was 1.7 (standard polystyrene standard, THF).
実施例 2 1 Example 2 1
上記実施例 1 において、 ケトイミナトコバルトペンタフルォ口べ ンゾエート錯体をケトイミナトコバルトョ一ジド錯体 ( 3 — 5 ) に 変更した以外は同様にして反応を行った。 このとき得られた反応混 合物には、 3 6 %程度の環状カーボネートが含まれていた。 収率は 5 0 %、 頭一尾結合選択性は 7 7 %、 M i 4 2 0 0、 w/M n は 1 . 0 (標準ポリスチレン基準、 T H F ) であった。  The reaction was conducted in the same manner as in Example 1 except that the ketoiminatocobalt pentafluorene benzoate complex was changed to the ketoiminatocobaltate complex (3-5). The reaction mixture obtained at this time contained about 36% cyclic carbonate. Yield was 50%, head-to-head binding selectivity was 77%, M i 4 2 0 0, w / M n was 1.0 (standard polystyrene standard, T H F).
実施例 2 2 Example 2 2
上記実施例 1 において、 ケトイミナトコバルトペンタフルォ口べ ンゾェ一ト錯体をケトイミナトコバルトョージド錯体 ( 3 — 6 ) に 変更した以外は同様にして反応を行った。 このとき得られた反応混 合物には、 4 3 %程度の環状カーボネートが含まれていた。 収率は 4 1 %、 頭一尾結合選択性は 7 6 %、 M nは 8 2 0 0、 M w/ n は 1 . 4 (標準ポリスチレン基準、 クロ口ホルム) であった。  The reaction was conducted in the same manner as in Example 1 except that the ketoiminato cobalt pentafluoride complex was changed to the ketoiminato cobalt iodide complex (3-6). The reaction mixture obtained at this time contained about 43% cyclic carbonate. Yield was 41%, head-to-head binding selectivity was 76%, Mn was 8200, and Mw / n was 1.4 (standard polystyrene standard, black mouth form).
実施例 2 3 Example 2 3
上記実施例 1 において、 ケトイミナトコバルトペン夕フルォ口べ ンゾエート錯体をケトイミナトコバルト ( I I ) 錯体 ( 2 — 1 ) に 変更した以外は同様にして反応を行った。 このとき得られた反応混 合物には、 3 %程度の環状カーボネートが含まれていた。 収率は 5 7 %、 頭—尾結合選択性は 9 2 %、 M nは 2 0 7 0 0、 Mw/M n は 1. 4 (標準ポリスチレン基準、 TH F) であった。 The reaction was conducted in the same manner as in Example 1 except that the ketoiminato cobalt pen fluorobenzoate complex was changed to the ketoiminatocobalt (II) complex (2-1). The reaction mixture obtained at this time The compound contained about 3% cyclic carbonate. Yield was 57%, head-to-tail selectivity was 92%, Mn was 2070, and Mw / Mn was 1.4 (standard polystyrene standard, THF).
錯体における配位子の検討 (実施例 2 4〜 2 8 ) Examination of ligand in complex (Examples 2 4 to 2 8)
上記実施例 1 において、 錯体を変更し、 また P P N Fを P P N C 1 に変更した以外は、 特に明記しない限り、 同様にして反応を行つ た。 結果を下表に示す (標準ポリスチレン基準、 クロ口ホルム) 。 表 2  In Example 1 above, the reaction was carried out in the same manner unless otherwise specified except that the complex was changed and P P N F was changed to P P N C 1. The results are shown in the table below (standard polystyrene standards, black mouth form). Table 2
実施例 コバルト錯体 変換率 収率 選択性 頭 -尾結合 Mn Mw/ n 番号 [条件] (%) (%) /%PPC %  Example Cobalt Complex Conversion Yield Selectivity Head-Tail Bond Mn Mw / n Number [Condition] (%) (%) /% PPC%
24 (3-5) [5日] 96 33 76 80 9407 1.36 24 (3-5) [5 days] 96 33 76 80 9407 1.36
25 (3-7) 71 57 75 83 15120 1.4825 (3-7) 71 57 75 83 15 120 1.48
26 (3-8) 77 66 82 86 10464 4.4526 (3-8) 77 66 82 86 10464 4.45
27 (3-9) 41 68 84 86 9951 1.4927 (3-9) 41 68 84 86 9951 1.49
28 (3-10) 71 46 58 89 9505 1.83 28 (3-10) 71 46 58 89 9505 1.83
(錯体における陰イオン対の検討) (Examination of anion pairs in complexes)
実施例 2 9〜 4 1 Example 2 9-4 1
上記実施例 1 において、 ケトイミナトコバルトペン夕フルォ口べ ンゾェ一ト錯体 ( 3— 1 ) の陰イオン対を変更し、 また P P N Fを P P N C 1 に変更した以外は、 特に明記しない限り、 同様にして反 応を行った。 結果を下表に示す (標準ポリスチレン基準、 クロロホ ルム) 。 表 3 Unless otherwise specified, in Example 1 above, except that the anion pair of the ketoiminato cobalt pen fluorobenzoate complex (3-1) was changed and PPNF was changed to PPNC 1, the same applies. A response was made. The results are shown in the table below (standard polystyrene standards, chloroform). Table 3
実施例 求核剤 [条件] 変換率 収率 選択性 Μη Mw/Mn 番号 ( ) (%) /%PPC %  Examples Nucleophiles [Conditions] Conversion Yield Selectivity Μη Mw / Mn Number () (%) /% PPC%
29 SbF6 38 14 90 66 2869 1.0929 SbF 6 38 14 90 66 2869 1.09
30 OTf 38 21 97 71 2836 1.1830 OTf 38 21 97 71 2836 1.18
31 OTs 84 60 69 89 10591 1.2131 OTs 84 60 69 89 10591 1.21
32 N03 84 53 62 85 9024 1.3432 N0 3 84 53 62 85 9024 1.34
33 BF4 35 -(*) 93 - - -33 BF 4 35-(*) 93---
34 0C0CF3 84 50 63 87 7215 1.5434 0C0CF 3 84 50 63 87 7215 1.54
35 N02 78 58 81 88 9347 1.3235 N0 2 78 58 81 88 9347 1.32
36 OBz 76 60 78 88 8583 1.3936 OBz 76 60 78 88 8583 1.39
37 OAc [求核剤: PPNF] 81 56 70 86 10363 1.2237 OAc [Nucleophile: PPNF] 81 56 70 86 10363 1.22
38 OBz (3, 5CF3) 78 80 >99 92 一 -38 OBz (3, 5CF 3 ) 78 80> 99 92 One-
39 OBz (3, 5C1) 77 72 98 91 - -39 OBz (3, 5C1) 77 72 98 91--
40 OBz (4Me2N) 80 85 >99 90 一 一40 OBz (4Me 2 N) 80 85> 99 90
41 OBz (4tBu) 57 54 >99 93 - -41 OBz (4tBu) 57 54> 99 93--
(*) データが無いことを示す。 実施例 4 2 (*) Indicates that there is no data. Example 4 2
上記実施例 1 において、 無溶媒であるところをテトラヒ ドロフラ ン溶媒 2 mLに変更した以外は同様にして反応を行った。 このとき 得られた反応混合物には、 7 %程度の環状カーボネートが含まれて いた。 収率は 5 2 %、 頭一尾結合選択性は 8 8 %、 M nは 1 3 7 0 0、 MwZM nは 1. 2 (標準ポリスチレン基準、 TH F) であつ た。  The reaction was carried out in the same manner as in Example 1 except that the solvent-free place was changed to 2 mL of the tetrahydrofuran solvent. The reaction mixture obtained at this time contained about 7% cyclic carbonate. Yield was 52%, head-to-head binding selectivity was 88%, Mn was 1370, and MwZMn was 1.2 (standard polystyrene standard, THF).
実施例 4 3 Example 4 3
上記実施例 1 において、 無溶媒であるところを塩化メチレン溶媒 2 mLに変更した以外は同様にして反応を行った。 このとき得られ た反応混合物には、 4 %程度の環状カーボネ一卜が含まれていた。 収率は 2 8 %、 頭一尾結合選択性は 8 9 %、 M r 9 2 0 0、 Mw ZM nは 1. 5 (標準ポリスチレン基準、 TH F) であった。 実施例 44 The reaction was conducted in the same manner as in Example 1 except that the solvent-free place was changed to 2 mL of methylene chloride solvent. The reaction mixture obtained at this time contained about 4% of a ring carbon nanotube. Yield was 28%, head-to-head binding selectivity was 89%, Mr9200, MwZMn was 1.5 (standard polystyrene standard, THF). Example 44
上記実施例 1において、 無溶媒であるところをクロ口ホルム溶媒 2mLに変更した以外は同様にして反応を行った。 このとき得られ た反応混合物には、 6 %程度の環状カーボネートが含まれていた。 収率は 8 6 %、 頭一尾結合選択性は 8 2 %、 Mnは 1 2 3 0 0、 wZMnは 1. 3 (標準ポリスチレン基準、 THF) であった。 実施例 4 5  The reaction was carried out in the same manner as in Example 1 except that the solvent-free place was changed to 2 mL of chloroform-form solvent. The reaction mixture obtained at this time contained about 6% cyclic carbonate. The yield was 86%, the head-to-head binding selectivity was 82%, the Mn was 1230, and the wZMn was 1.3 (standard polystyrene standard, THF). Example 4 5
上記実施例 1において、 反応時間を 5時間に変更した以外は同様 にして反応を行った。 このとき得られた反応混合物には、 1 0 %程 度の環状カーボネートが含まれていた。 収率は 6 %、 頭一尾結合選 択性は 9 1 %、 Mnは 44 6 1、 MwZMnは 1. 2 (標準ポリス チレン基準、 THF) であった。  The reaction was conducted in the same manner as in Example 1 except that the reaction time was changed to 5 hours. The reaction mixture obtained at this time contained about 10% cyclic carbonate. The yield was 6%, head-to-head binding selectivity was 91%, Mn was 44 61, and MwZMn was 1.2 (standard polystyrene standard, THF).
実施例 4 6 Example 4 6
上記実施例 1において、 反応時間を 1 0時間に変更した以外は同 様にして反応を行った。 このとき得られた反応混合物は、 9 9 %以 上の選択性でポリ力一ポネートであった。 収率は 2 9 %、 頭一尾結 合選択性は 9 1 %、 Mnは 1 5 6 0 0、 w/M nは 1. 1 (標準 ポリスチレン基準、 THF) であった。 .  The reaction was conducted in the same manner as in Example 1 except that the reaction time was changed to 10 hours. The reaction mixture obtained at this time was polyponicate with a selectivity of more than 99%. The yield was 29%, head-to-head binding selectivity was 91%, Mn was 1560,00 and w / Mn was 1.1 (standard polystyrene standard, THF). .
実施例 4 7 Example 4 7
上記実施例 1において、 反応時間を 1 5時間に変更した以外は同 様にして反応を行った。 このとき得られた反応混合物は、 9 9 %以 上の選択性でポリカーボネートであった。 収率は 3 4 %、 頭一尾結 合選択性は 9 1 %、 Mnは 1 7 3 0 0、 MwZMnは 1. 0 (標準 ポリスチレン基準、 THF) であった。  The reaction was conducted in the same manner as in Example 1 except that the reaction time was changed to 15 hours. The reaction mixture obtained at this time was polycarbonate with a selectivity of 99% or more. Yield was 34%, head-to-head binding selectivity was 91%, Mn was 1730, and MwZMn was 1.0 (standard polystyrene standard, THF).
実施例 4 8 Example 4 8
上記実施例 1において、 反応時間を 2 4時間に変更した以外は同 様にして反応を行った。 このとき得られた反応混合物は、 9 9 %以 上の選択性でポリカーボネートであった。 収率は 5 6 %、 頭—尾結 合選択性は 9 3 %、 Mnは 1 7 4 0 0、 MwZMnは 1. 0 (標準 ポリスチレン基準、 THF) であった。 The reaction was conducted in the same manner as in Example 1 except that the reaction time was changed to 24 hours. The reaction mixture obtained at this time was 99% or more. Polycarbonate with the above selectivity. Yield was 56%, head-to-tail selectivity was 93%, Mn was 1740, and MwZMn was 1.0 (standard polystyrene standard, THF).
実施例 49 Example 49
上記実施例 1において、 反応時間を 7 2時間に変更した以外は同 様にして反応を行った。 このとき得られた反応混合物は、 9 9 %以 上の選択性でポリ力一ポネートであった。 収率は 6 9 %、 頭一尾結 合選択性は 9 2 %、 Mnは 3 3 5 0 0、 MwZMnは 1. 7 (標準 ポリスチレン基準、 THF) であった。  The reaction was performed in the same manner as in Example 1 except that the reaction time was changed to 72 hours. The reaction mixture obtained at this time was polyponicate with a selectivity of more than 99%. Yield was 69%, head-to-head binding selectivity was 92%, Mn was 335,000 and MwZMn was 1.7 (standard polystyrene standard, THF).
実施例 5 0 Example 5 0
上記実施例 1において、 耐圧容器を予め減圧加熱乾燥した以外は 同様にして反応を行った。 このとき得られた反応混合物は、 9 9 % 以上の選択性でポリカーボネートであった。 収率は 8 3 %、 頭一尾 結合選択性は 9 3 %、 Mnは 3 1 0 0 0、 Mw/Mnは 1. 6 (標 準ポリスチレン基準、 THF) であった。  In Example 1, the reaction was carried out in the same manner except that the pressure vessel was previously dried under reduced pressure. The reaction mixture obtained at this time was polycarbonate with a selectivity of 99% or more. Yield was 83%, head-to-head binding selectivity was 93%, Mn was 3100, and Mw / Mn was 1.6 (standard polystyrene standard, THF).
実施例 5 1 Example 5 1
上記実施例 1 0において、 耐圧容器を予め減圧加熱乾燥した以外 は同様にして反応を行った。 このとき得られた反応混合物には、 2 %程度の環状カーボネートが含まれていた。 収率は 6 9 %、 頭一尾 結合選択性は 9 2 %、 Mnは 1 7 2 0 0、 MwZMnは 1. 0 (標 準ポリスチレン基準、 THF) であった。  In Example 10 above, the reaction was carried out in the same manner except that the pressure vessel was previously dried under reduced pressure. The reaction mixture obtained at this time contained about 2% cyclic carbonate. The yield was 69%, head-to-head binding selectivity was 92%, Mn was 1720, and MwZMn was 1.0 (standard polystyrene standard, THF).
比較例 1 Comparative Example 1
上記実施例 1において、 ケトイミナトコバルトペン夕フルォ口べ ンゾェ一卜錯体を用いない以外は同様にして反応を行ったが、 反応 は全く進行しなかった。  In Example 1 above, the reaction was carried out in the same manner except that the ketoiminato cobalt pen fluor benzene complex was not used, but the reaction did not proceed at all.
(シクロへキセンォキシドと co2 の交互共重合) (Alternate copolymerization of cyclohexenoxide and co 2 )
実施例 5 2 ステンレス耐圧容器に、 ケトイミナトコバルトペン夕フルォ口べ ンゾェ一ト錯体 ( 3 — 1 ) 0. 0 1 4 3 mm o 1 およびビス (トリ フエニルホスフオラニリデン) アンモニゥムフルオリ ド (P P N F ) 0. 0 1 4 3 mm o l を入れ、 シクロへキセンォキシド 1 4. 8 mm o l を加えた後、 二酸化炭素を圧力をかけて注入し、 全圧が 2 . 0 M P aとなるように調整した。 3 0 °Cで 4 8時間反応させた後 、 二酸化炭素を抜き、 この反応混合物について、 — NMRによ り分析を行った。 Example 5 2 In a stainless steel pressure vessel, ketoiminato cobalt pen fluorinated benzoate complex (3 — 1) 0.0 1 4 3 mm o 1 and bis (triphenylphosphoranilidene) ammonium fluoride (PPNF) After adding 0.01 4 3 mmol and adding cyclohexenoxide 14.8 mmol, carbon dioxide was injected under pressure to adjust the total pressure to 2.0 MPa. After reacting at 30 ° C. for 48 hours, carbon dioxide was removed, and the reaction mixture was analyzed by —NMR.
得られた反応混合物には、 二酸化炭素とシクロへキセンォキシド とが交互に反応したポリ力一ポネートが 9 9 %以上存在しており、 二酸化炭素とシクロへキセンォキシドとが 1分子ずつ反応した環状 力一ポネートはほぼ生成していなかった。 さらに、 ' H— NMRに より、 ポリカーボネート鎖に含まれるカーボネート結合の割合は 9 9 %以上であり、 すなわち、 生成物は完全な交互共重合体であった 。 得られたポリカーボネートの収率は 5 8 %であった。 また得られ たポリ力一ボネ一トを G P Cで分析したところ、 数平均分子量 Μ η は 6 0 0 0、 分子量分布¥ / ^ 11は 1. 4 (標準ポリスチレン基 準、 TH F) であった。  The resulting reaction mixture contains 99% or more of poly force monoponate in which carbon dioxide and cyclohexenoxide react alternately, and cyclic force in which carbon dioxide and cyclohexene oxide react one molecule at a time. Almost no ponate was produced. Furthermore, according to 'H-NMR, the proportion of carbonate bonds contained in the polycarbonate chain was 99% or more, that is, the product was a complete alternating copolymer. The yield of the obtained polycarbonate was 58%. In addition, when the obtained polyforce was analyzed by GPC, the number average molecular weight Μ η was 6 00 0 and the molecular weight distribution ¥ / ^ 11 was 1.4 (standard polystyrene standard, THF). .
実施例 5 3 Example 5 3
上記実施例 5 2において、 P P N Fをビス (トリフエニルホスフ オラニリデン) アンモニゥムクロリ ド (P P N C 1 ) に変更し、 反 応時間を 4 8時間から 6 5時間に変更した以外は同様にして反応を 行った。 収率は 5 7 %、 M rW¾ 5 1 0 0、 分子量分布 Mw/M nは 1. 1 (標準ポリスチレン基準、 TH F) であった。  In Example 52 above, except that PPNF was changed to bis (triphenylphosphranylidene) ammonium chloride (PPNC 1) and the reaction time was changed from 48 hours to 65 hours, the reaction was conducted in the same manner. went. The yield was 57%, MrW¾5 100, and the molecular weight distribution Mw / Mn was 1.1 (standard polystyrene standard, THF).
実施例 5 4 Example 5 4
上記実施例 5 2において、 溶媒としてトルエンを 0. 5 mL加え た以外は同様にして反応を行った。 収率は 6 9 %、 ^[ 11は 6 0 0 0 、 分子量分布 MwZM nは 1. 1 (標準ポリスチレン基準、 TH F ) であった。 In Example 52, the reaction was performed in the same manner except that 0.5 mL of toluene was added as a solvent. Yield is 69%, ^ [11 is 6 0 0 0 The molecular weight distribution MwZM n was 1.1 (standard polystyrene standard, TH F).
実施例 5 5 Example 5 5
上記実施例 5 2において、 ケトイミナトコバルトペンタフルォロ ベンゾェ一ト錯体 ( 3 — 1 ) をケトイミナトコバルトヨージド錯体 ( 3— 5 ) に変更した以外は同様にして反応を行った。 収率は 2 9 %、 M nは 4 5 0 0、 分子量分布 MwZM nは 1. 1 (標準ポリス チレン基準、 TH F) であった。  The reaction was carried out in the same manner as in Example 52 except that the ketoiminatocobalt pentafluorobenzoate complex (3-1) was changed to the ketoiminatocobalt iodide complex (3-5). The yield was 29%, M n was 45 500, and the molecular weight distribution MwZM n was 1.1 (standard polystyrene standard, THF).
実施例 5 6 Example 5 6
上記実施例 5 2において、 ケトイミナトコバルトペン夕フルォロ ベンゾエート錯体 ( 3 — 1 ) をケトイミナトコバルトョ一ジド錯体 ( 3— 5 ) に変更し、 また P P N Fを P P N C 1 に変更した以外は 同様にして反応を行った。 収率は 5 %、 M nは 1 9 0 0、 分子量分 布 Mw/M nは 1. 1 (標準ポリスチレン基準、 TH F) であった 実施例 5 7  In Example 52 above, except that the ketoiminato cobalt pen fluorobenzoate complex (3—1) was changed to the ketoiminatocobalt complex complex (3—5) and PPNF was changed to PPNC 1 Reaction was performed. The yield was 5%, M n was 190,000, and the molecular weight distribution Mw / M n was 1.1 (standard polystyrene standard, THF). Example 5 7
上記実施例 5 2において、 ケトイミナトコバルトペン夕フルォロ ベンゾエート錯体 ( 3 — 1 ) をケトイミナトコバルトョージド錯体 ( 3 — 5 ) に変更し、 また P P N Fを P P N C 1 に変更し、 さらに 溶媒としてトルエンを 0. 5 mL加えた以外は同様にして反応を行 つた。 収率は 7 0 %、 M nは 4 3 0 0、 分子量分布 M wZM nは 1 . 1 (標準ポリスチレン基準、 TH F) であった。  In Example 52 above, the ketoiminato cobalt pen fluorobenzoate complex (3 — 1) was changed to the ketiminatocobalt iodide complex (3 — 5), PPNF was changed to PPNC 1, and toluene was used as the solvent. The reaction was performed in the same manner except that 0.5 mL was added. The yield was 70%, Mn was 4300, and the molecular weight distribution MwZMn was 1.1 (standard polystyrene standard, THF).
実施例 5 8 Example 5 8
上記実施例 5 2において、 ケトイミナトコバルトペン夕フルォロ ベンゾエート錯体 ( 3— 1 ) をケトイミナトコバルトョージド錯体 ( 3 — 5 ) に変更し、 また溶媒としてトルエンを 0. 5 mL加えた 以外は同様にして反応を行った。 収率は 3 9 %、 M nは 1 5 0 0、 分子量分布 MwZM nは 1 . 2 (標準ポリスチレン基準、 T H F) であった。 In Example 52 above, except that the ketoiminato cobalt pen fluorobenzoate complex (3-1) was changed to the ketoiminato cobalt iodide complex (3-5), and 0.5 mL of toluene was added as a solvent. The reaction was carried out. Yield 39%, Mn 1 5 0 0, The molecular weight distribution MwZM n was 1.2 (standard polystyrene standard, THF).
実施例 5 2〜 5 8の結果を下記表にまとめる。  The results of Examples 5 2 to 58 are summarized in the following table.
表 4 Table 4
実施例 コパルト (条件) 求核剤 収率 選択性 Mn w/Mn 番号 錯体 (%) /%PPC  Example Copalto (Condition) Nucleophile Yield Selectivity Mn w / Mn Number Complex (%) /% PPC
52 (3-1) PPNF 58 >99 6000 1.4 52 (3-1) PPNF 58> 99 6000 1.4
53 (3-1) (65時間) PPNC1 57 >99 5100 1.153 (3-1) (65 hours) PPNC1 57> 99 5100 1.1
54 (3-1) (溶媒 . トルエン 0.5mL) PPNF 69 >99 6000 1.154 (3-1) (Solvent.Toluene 0.5 mL) PPNF 69> 99 6000 1.1
55 (3-5) PPNF 29 >99 4500 1.155 (3-5) PPNF 29> 99 4500 1.1
56 (3-5) PPNC1 5 >99 1900 1.156 (3-5) PPNC1 5> 99 1900 1.1
57 (3-5) (溶媒 トルエン 0.5mL) PPNC1 70 >99 4300 1.157 (3-5) (Solvent Toluene 0.5 mL) PPNC1 70> 99 4300 1.1
58 (3-5) (溶媒 トルエン 0.5mL) PPNF 39 >99 1500 1.2 58 (3-5) (Solvent Toluene 0.5 mL) PPNF 39> 99 1500 1.2
(エチレンォキシドと c o 2 の交互共重合) (Alternate copolymerization of ethylene oxide and co 2 )
実施例 5 9 · Example 5 9
内容積 5 O mLのオートクレープにケトイミナトコバルトョージ ド錯体 ( 3 — 5 ) 5. 8 m g ( 1 0 ΐη ο 1 ) , P P N F 5. 4 m g ( l O m o l )、 塩化メチレン 1 . O mL、 エチレンォキシド 1 . 5 6 g ( 3 5 mm o 1 ) を仕込み、 二酸化炭素を充填し ( 2 . 0 P a ) 、 2 5 °Cで 4 8時間反応させた。 その後、 脱圧し、 希塩酸、 メタノールを加え反応を停止させた。 内容物を希塩酸で洗 浄し、 メタノールに注ぎ、 白色沈殿物を得た。 これをろ過し、 減圧 乾燥して、 ポリエチレンカーボネート 1 . 9 4 gを得た。 このポリ カーボネートを G P C (ポリスチレン標準) で分析したところ、 数 平均分子量 M nは 2 2 0 0 0であり、 また Mw/M nは 1 . 1 6で あった。 また、 1 H— N M Rによる分析結果から、 ポリエチレン力 ーポネートとエチレン力一ポネート (環状カーボネート) の比は 1 0 0 : 0であった。 なお、 触媒活性は 1 7 3 gノ g触媒 (コバルト 錯体と P P N Fの合計量) であった。 Ketominato cobalt iodide complex (3 — 5) 5.8 mg (1 0 ΐη ο 1), PPNF 5.4 mg (l O mol), methylene chloride 1. O mL Ethylene oxide (1.56 g, 35 mm o 1) was charged, charged with carbon dioxide (2.0 Pa), and reacted at 25 ° C. for 48 hours. Thereafter, the pressure was released, and dilute hydrochloric acid and methanol were added to stop the reaction. The contents were washed with dilute hydrochloric acid and poured into methanol to obtain a white precipitate. This was filtered and dried under reduced pressure to obtain 1.94 g of polyethylene carbonate. When this polycarbonate was analyzed by GPC (polystyrene standard), the number average molecular weight Mn was 2200 and Mw / Mn was 1.16. From the result of analysis by 1 H-NMR, the ratio of polyethylene force-ponate to ethylene force monoponate (cyclic carbonate) was 100: 0. The catalytic activity is 1 7 3 g g catalyst (cobalt The total amount of complex and PPNF).
実施例 6 0 Example 6 0
内容積 5 O mLのォ一トクレーブにケトイミナトコバルトョージ ド錯体 ( 3— 5 ) 5. 8 m g ( 1 0 m o 1 ) , P P N C 1 5. 7 m g (l O m o l )、 塩化メチレン 1. O mL、 エチレンォキシ ド 1. 5 0 g ( 3 4 mm o 1 ) を仕込み、 二酸化炭素を充填し ( 2. 0 M P a ) 、 2 5 で 4 8時間反応させた。 その後、 脱圧し 、 希塩酸、 メタノールを加え反応を停止させた。 内容物を希塩酸で 洗浄し、 メタノールに注ぎ、 白色沈殿物を得た。 これをろ過し、 減 圧乾燥して、 ポリエチレンカーボネート 0. 8 6 gを得た。 このポ リカーポネートを G P C (ポリスチレン標準) で分析したところ、 数平均分子量 M nは 8 7 0 0であり、 また MwZM nは 1. 2 0で あった。 また、 1 H— NMRによる分析結果から、 ポリエチレン力 ーポネートとエチレンカーボネート (環状カーボネート) の比は 4 8 : 5 2であった。 なお、 触媒活性は 7 4 g Z g触媒 (コバルト錯 体と P P N C 1 の合計量) であった。 Ketominato cobalt iodide complex (3-5) 5.8 mg (1 0 mo 1), PPNC 1 5. 7 mg (l O mol), methylene chloride in a 5 O mL autoclave mL, 1.50 g (3 4 mm o 1) of ethylene oxide were charged, charged with carbon dioxide (2.0 MPa), and reacted at 25 for 48 hours. Thereafter, the pressure was released and dilute hydrochloric acid and methanol were added to stop the reaction. The contents were washed with dilute hydrochloric acid and poured into methanol to obtain a white precipitate. This was filtered and dried under reduced pressure to obtain 0.86 g of polyethylene carbonate. When this polycarbonate was analyzed by GPC (polystyrene standard), the number average molecular weight Mn was 8700 and MwZMn was 1.20. From the result of analysis by 1 H-NMR, the ratio of polyethylene strength-ponate to ethylene carbonate (cyclic carbonate) was 48:52. The catalytic activity was 74 g Zg catalyst (total amount of cobalt complex and PPNC 1).
実施例 6 1 Example 6 1
内容積 5 O mLのォ一トクレーブにケトイミナトコバルトテトラ フルォロポレート錯体 ( 3— 1 3 ) 5. 4 m g (1 0 /i m o l )、 P P N C 1 5. 7 m g (1 0 ^ m o l )、 塩化メチレン 1. O mL 、 エチレンォキシド 1. 1 6 g ( 2 6 mm o 1 ) を仕込み、 二酸 化炭素を充填し ( 2. 0 M P a ) 、 2 5 °Cで 4 8時間反応させた 。 その後、 脱圧し、 希塩酸、 メタノールを加え反応を停止させた。 内容物を希塩酸で洗浄し、 メタノールに注ぎ、 白色沈殿物を得た。 これをろ過し、 減圧乾燥して、 ポリエチレンカーボネー卜 0. 0 8 gを得た。 このポリカーボネートを G P C (ポリスチレン標準) で 分析したところ、 数平均分子量 M nは 4 6 0 0であり、 また MwZ M nは 1 . 2 4であった。 また、 1 H— NMRによる分析結果から 、 ポリエチレンカーボネートとエチレン力一ポネート (環状カーボ ネート) の比は 7 5 : 2 5であった。 なお、 触媒活性は 7 gノ g触 媒 (コバルト錯体と P P N C 1 の合計量) であった。 Ketominatocobalt tetrafluoroporate complex (3-1 3) 5.4 mg (1 0 / imol), PPNC 1 5. 7 mg (1 0 ^ mol), methylene chloride in a 5 O mL autoclave O mL and 1.16 g (26 mm o 1) of ethylene oxide were charged, charged with carbon dioxide (2.0 MPa), and reacted at 25 ° C. for 48 hours. Thereafter, the pressure was released, and dilute hydrochloric acid and methanol were added to stop the reaction. The contents were washed with dilute hydrochloric acid and poured into methanol to obtain a white precipitate. This was filtered and dried under reduced pressure to obtain 0.08 g of polyethylene carbonate. When this polycarbonate was analyzed by GPC (polystyrene standard), the number average molecular weight Mn was 4600 and MwZ M n was 1.2 4. Further, from the analysis result by 1 H-NMR, the ratio of polyethylene carbonate to ethylene force monoponate (cyclic carbonate) was 75:25. The catalytic activity was 7 g catalyst (total amount of cobalt complex and PPNC 1).
実施例 6 2 Example 6 2
内容積 5 O mLのオートクレーブにケトイミナトコバルトフルォ リ ド錯体 ( 3 — 1 4 ) 4. 7 m g (l O ^ m o l ) P P N C 1 5 . 7 m g (1 0 m o l )、 塩化メチレン 1 . O mL、 エチレンォ キシド 1 . 0 2 g ( 2 3 mm o l ) を仕込み、 二酸化炭素を充填 し ( 2. 0 M P a ) 、 2 5 °Cで 4 8時間反応させた。 その後、 脱 圧し、 希塩酸、 メタノールを加え反応を停止させた。 内容物を希塩 酸で洗浄し、 メタノールに注ぎ、 白色沈殿物を得た。 これをろ過し 、 減圧乾燥して、 ポリエチレンカーボネート 1 . 0 4 gを得た。 こ のポリカーボネートを G P C (ポリスチレン標準) で分析したとこ ろ、 数平均分子量 M nは 1 5 0 0 0であり、 また Mw/M nは 1. 1 3であった。 また、 1 H— N M Rによる分析結果から、 ポリェチ レンカーボネートとエチレンカーボネート (環状力一ポネート) の 比は 1 0 0 : 0であった。 なお、 触媒活性は 1 0 0 g / g触媒 (コ パルト錯体と P P N C 1 の合計量) であった。 Ketominatocobalt fluoride complex (3 — 1 4) 4.7 mg (l O ^ mol) PPNC 1 5.7 mg (1 0 mol), methylene chloride 1. O mL in an autoclave with an internal volume of 5 O mL Then, ethylene oxide (1.02 g, 23 mmol) was charged, charged with carbon dioxide (2.0 MPa), and reacted at 25 ° C for 48 hours. Thereafter, the pressure was released, and dilute hydrochloric acid and methanol were added to stop the reaction. The contents were washed with dilute hydrochloric acid and poured into methanol to obtain a white precipitate. This was filtered and dried under reduced pressure to obtain 1.04 g of polyethylene carbonate. When this polycarbonate was analyzed by GPC (polystyrene standard), the number average molecular weight Mn was 15500 and Mw / Mn was 1.13. Further, from the analysis result by 1 H-NMR, the ratio of polyethylene carbonate to ethylene carbonate (cyclic force monoponate) was 100: 0. The catalytic activity was 100 g / g catalyst (total amount of cobalt complex and PPNC 1).
実施例 6 3 Example 6 3
内容積 5 0 mLのオートクレーブにケトイミナトコバルトョージ ド錯体 ( 3 — 5 ) 5. 8 m g ( 1 0 m o 1 ) , P P N F 5. 4 m g ( l O m o l )、 塩化メチレン 1 , O mL、 エチレンォキシド 1 0. 3 7 g ( 2 5 0 mm o l ) を仕込み、 二酸化炭素を充填し ( 2. 0 M P a ) 、 2 5 でで 4 8時間反応させた。 その後、 脱圧 し、 希塩酸、 メタノールを加え反応を停止させた。 内容物を希塩酸 で洗浄し、 メタノールに注ぎ、 白色沈殿物を得た。 これをろ過し、 減圧乾燥して、 ポリエチレンカーボネート 2. 4 5 gを得た。 この ポリ力一ポネートを G P C (ポリスチレン標準) で分析したところ 、 数平均分子量 M nは 6 3 0 0 0であり、 また MwZM nは 1. 1 7であった。 また、 1 H— N M Rによる分析結果から、 ポリエチレ ンカーボネートとエチレンカーボネート (環状カーボネート) の比 は 1 0 0 : 0であった。 なお、 触媒活性は 2 1 9 g Z g触媒 (コバ ルト錯体と P P N Fの合計量) であった。 得られたポリエチレン力 ーポネ一卜の 1 H— N M R分析、 D S C分析および T G A分析の結 果を、 それぞれ図 1、 図 2および図 3 に示す。 Ketominato cobalt iodide complex (3 — 5) 5.8 mg (1 0 mo 1), PPNF 5.4 mg (l O mol), methylene chloride 1, O mL, ethylene Oxide 10 0.37 g (2500 mmol) was charged, charged with carbon dioxide (2.0 MPa), and reacted at 25 for 48 hours. Then, the pressure was released and dilute hydrochloric acid and methanol were added to stop the reaction. The contents were washed with dilute hydrochloric acid and poured into methanol to obtain a white precipitate. This is filtered After drying under reduced pressure, 2.45 g of polyethylene carbonate was obtained. When this polystrength Ponate was analyzed by GPC (polystyrene standard), the number average molecular weight Mn was 6300 and MwZMn was 1.17. From the result of analysis by 1 H-NMR, the ratio of polyethylene carbonate to ethylene carbonate (cyclic carbonate) was 100: 0. The catalytic activity was 2 19 g Zg catalyst (total amount of cobalt complex and PPNF). The results of 1 H-NMR analysis, DSC analysis, and TGA analysis of the obtained polyethylene strength-one Pone are shown in Fig. 1, Fig. 2 and Fig. 3, respectively.
実施例 6 4 Example 6 4
内容積 5 0 mLのォ一トクレーブにケトイミナトコバルトョージ ド錯体 ( 3 — 5 ) 5. 8 m g (l O ^m o l ) P P N F 5. 4 m g (l O m o l )、 塩化メチレン 1. O mL、 エチレンォキシド 9. 9 7 g ( 2 3 0 mm o 1 ) を仕込み、 二酸化炭素を充填し ( 2. 0 P a ) 、 4 0 °Cで 4 8時間反応させた。 その後、 脱圧し 、 希塩酸、 メタノールを加え反応を停止させた。 内容物を希塩酸で 洗浄し、 メタノールに注ぎ、 白色沈殿物を得た。 これをろ過し、 減 圧乾燥して、 ポリエチレン力一ポネート 3. 4 5 gを得た。 このポ リカーポネートを G P C (ポリスチレン標準) で分析したところ、 数平均分子量 M nは 3 8 0 0 0であり、 また MwZM nは 1. 4 1 であった。 また、 1 H— NMRによる分析結果から、 ポリエチレン カーボネートとエチレンカーボネート (環状力一ポネート) の比は 7 0 : 3 0であった。 なお、 触媒活性は 3 3 8 g / g触媒 (コバル ト錯体と P P N Fの合計量) であった。 Ketominato cobalt iodide complex (3 — 5) 5.8 mg (l O ^ mol) PPNF 5.4 mg (l O mol), methylene chloride 1. O mL Ethylene oxide (9.97 g, 230 mm o 1) was charged, charged with carbon dioxide (2.0 Pa), and reacted at 40 ° C. for 48 hours. Thereafter, the pressure was released and dilute hydrochloric acid and methanol were added to stop the reaction. The contents were washed with dilute hydrochloric acid and poured into methanol to obtain a white precipitate. This was filtered and dried under reduced pressure to obtain 3.45 g of polyethylene strength. When this polycarbonate was analyzed by GPC (polystyrene standard), the number average molecular weight Mn was 3800 and MwZMn was 1.41. From the result of analysis by 1 H-NMR, the ratio of polyethylene carbonate to ethylene carbonate (cyclic force monoponate) was 70:30. The catalytic activity was 3 38 g / g catalyst (total amount of cobalt complex and PPNF).
比較例 2 Comparative Example 2
Em p o w e r社から入手したポリエチレン力一ポネート (商品 名 : Q P A C 2 5 ) の 1 H— NMR分析、 D S C分析および T GA 分析の結果を、 それぞれ図 4、 図 5および図 6 に示す。 1 H-NMR analysis, DSC analysis, and T GA of polyethylene power Ponate (product name: QPAC 2 5) obtained from Em power The analysis results are shown in Fig. 4, Fig. 5 and Fig. 6, respectively.
実施例 6 3で得られたポリエチレン力一ポネートは、 — NM R分析において、 エーテル結合に由来するピーク ( 3. 6 p p m付 近) を実質的に含まない (図 1 ) 。 図 1 中、 3. 7 p p m付近にわ ずかに見えるピーク ( 1 %以下) は、 ポリエチレン力一ポネートの 末端メチレン基のプロ トンに由来するピークである。 したがって、 このポリエチレンカーボネートは、 エチレンォキシドと二酸化炭素 とが一つずつ交互に重合している完全交互共重合体であるといえる (エーテル結合が存在したとしても 1 H— NMR分析の検出限界以 下の量である) 。 対照的に、 市販のポリエチレン力一ポネート 「Q P A C 2 5」 は、 — NMR分析において、 末端プロ トン由来の ピーク ( 3. 7 p p m付近) の他に、 エーテル結合に由来するピー ク ( 3. 6 p p m付近) を 3〜 5 %程度含有している (図 4 ) 。 す なわち、 このポリエチレンカーボネー卜は、 エチレンォキシド同士 が結合している部分を含む。 The polyethylene strength monoponate obtained in Example 63 is substantially free of peaks derived from ether linkages (around 3.6 ppm) in the NMR analysis (Fig. 1). In Fig. 1, the peak (less than 1%) that appears only around 3.7 ppm is a peak derived from the proton of the terminal methylene group of polyethylene saponate. Therefore, it can be said that this polyethylene carbonate is a completely alternating copolymer in which ethylene oxide and carbon dioxide are alternately polymerized one by one (even if an ether bond is present, the detection limit of 1 H-NMR analysis is exceeded). Is the amount below). In contrast, the commercially available polyethylene strength “QPAC 2 5” has the following characteristics: — In the NMR analysis, in addition to the peak derived from the terminal proton (around 3.7 ppm), the peak derived from the ether bond (3.6) about 3 to 5%) (Fig. 4). In other words, the polyethylene carbonate includes a portion where ethylene oxides are bonded to each other.
実施例 6 3で得られたポリエチレンカーボネートは、 D S C分析 において、 ガラス転移温度 T gが 1 7. 5 °Cであった (図 2 ) 。 一 方、 市販のポリエチレンカーボネート 「Q P AC 2 5」 は、 D S C 分析において、 ガラス転移温度 T gが 1 5. 7 °Cであった (図 5 ) 。 また、 実施例 6 3で得られたポリエチレンカーボネートは、 T G A分析において、 2 5 0 °C付近で実質的に全部が分解したことが示 された (図 3 ) 。 一方、 市販のポリエチレンカーボネート 「Q P A C 2 5」 は、 T G A分析において、 3 0 0で.を超えても 5 %程度が 分解されず、 完全分解には 3 5 0 以上を要することが示された ( 図 6 ) 。 このように、 本発明によるポリエチレンカーボネートは、 完全交互共重合体であるが故に、 従来存在するポリエチレンカーボ ネートとは顕著に異なる熱特性を具備していることがわかる。 産業上の利用可能性 The polyethylene carbonate obtained in Example 63 had a glass transition temperature Tg of 17.5 ° C. in DSC analysis (FIG. 2). On the other hand, the commercially available polyethylene carbonate “QP AC 25” had a glass transition temperature Tg of 15.7 ° C. in DSC analysis (FIG. 5). In addition, the polyethylene carbonate obtained in Example 63 was shown to be substantially entirely decomposed at around 2500 ° C. by TGA analysis (FIG. 3). On the other hand, in the case of commercially available polyethylene carbonate “QPAC 25”, TGA analysis showed that about 3% was not decomposed even if it exceeded 300, and complete decomposition requires more than 3500 ( Figure 6). Thus, since the polyethylene carbonate according to the present invention is a completely alternating copolymer, it can be seen that it has remarkably different thermal characteristics from the existing polyethylene carbonate. Industrial applicability
本発明による方法は、 二酸化炭素を炭素源として利用したポリ力 ーポネート樹脂製造の工業化に有用である。 また、 本発明によるポ リカーポネートは、 完全交互共重合体であることにより従来にない 高い諸物性を発揮し、 新規用途の開発に寄与するものである。  The method according to the present invention is useful for the industrialization of the production of polystrengthen resin using carbon dioxide as a carbon source. Further, the polycarbonate according to the present invention is a completely alternating copolymer, and thus exhibits various unprecedented physical properties and contributes to the development of new applications.

Claims

1. 一般式 ( 1 )
Figure imgf000045_0001
1. General formula (1)
Figure imgf000045_0001
(式中、 1^ぉょび1 2は、 同一でも異なっていてもよく、 水素原子(Where 1 ^ 11 2 may be the same or different, and a hydrogen atom
、 置換もしくは非置換のアルキル基、 または置換もしくは非置換の 芳香族基であるか、 または R 1との R2が互いに結合して置換もしくは 非置換の環を形成してもよい) , Substituted or unsubstituted alkyl group or a substituted or unsubstituted aromatic group, or R 2 may bond together to form a substituted or unsubstituted ring together with R 1,)
で表されるエポキシドを、 二酸化炭素と、匪一般式 ( 2 ) または一般 式 ( 3 ) : The epoxide represented by carbon dioxide, and the general formula (2) or general formula (3):
Figure imgf000045_0002
Figure imgf000045_0002
(式中、 R3および R4は、 同一でも異なっていてもよく、 互いに独 立して、 水素原子、 置換もしくは非置換のアルキル基、 置換もしく は非置換の芳香族基、 または置換もしくは非置換の芳香族複素環基 であるか、 または 2個の R 3同士もしくは 2個の R 4同士が、 互いに 結合して置換もしくは非置換の環を形成してもよく、 そして R5、 Rfiおよび R7は、 同一でも異なっていてもよく、 水素原子、 置換も しくは非置換のアルキル基、 置換もしくは非置換のアルケニル基、 置換もしくは非置換の芳香族基、 置換もしくは非置換の芳香族複素 環基、 ァシル基、 置換もしくは非置換のアルコキシカルボニル基、 置換もしくは非置換の芳香族ォキシカルボ二ル基、 または置換もし くは非置換のァラルキルォキシカルポニル基であり、 R6および R7 は、 互いに結合して置換または非置換の脂肪族環を形成してもよく 、 そして、 一般式 ( 3 ) 中の X—は、 塩を形成し得る陰イオン対を 表す) (In the formula, R 3 and R 4 may be the same or different, and independently of each other, a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or Is an unsubstituted aromatic group, or a substituted or unsubstituted aromatic heterocyclic group, or two R 3 or two R 4 are bonded to each other to form a substituted or unsubstituted ring. And R 5 , R fi and R 7 may be the same or different, and are a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, substituted or unsubstituted. Aromatic group, substituted or unsubstituted aromatic heterocyclic group, acyl group, substituted or unsubstituted alkoxycarbonyl group, substituted or unsubstituted aromatic oxycarbonyl group, or substituted or unsubstituted arral A hydroxycarbonyl group, R 6 and R 7 may be bonded to each other to form a substituted or unsubstituted aliphatic ring, and X— in the general formula (3) forms a salt Possible negative Io Represents a counter)
で表される光学活性コバルト錯体の存在下で反応させることを含む 、 一般式 (4 ) : Including the reaction in the presence of an optically active cobalt complex represented by the general formula (4):
Figure imgf000046_0001
Figure imgf000046_0001
(式中、 R 1および R 2は上記のとおりである) (Wherein R 1 and R 2 are as described above)
で表されるポリカーボネー ト樹脂の製造方法。 A method for producing a polycarbonate resin represented by the formula:
2、 一般式 ( 1 ) において、 R 1および R 2のうちの一方が水素原 子で、 もう一方が置換または非置換のアルキル基である、 請求項 1 記載の製造方法。 2. The production method according to claim 1, wherein in general formula (1), one of R 1 and R 2 is a hydrogen atom, and the other is a substituted or unsubstituted alkyl group.
3. —般式 ( 1 ) で表されるエポキシドが、 以下 : 3. — The epoxide represented by the general formula (1) is:
Figure imgf000047_0001
Figure imgf000047_0001
Figure imgf000047_0002
Figure imgf000047_0002
Figure imgf000047_0003
および
Figure imgf000047_0003
and
Figure imgf000047_0004
Figure imgf000047_0004
からなる群より選択される、 請求項 1記載の製造方法。 The production method according to claim 1, which is selected from the group consisting of:
4. 一般式 ( 2 ) および一般式 ( 3 ) において、 R3と R4が水素 原子または置換もしくは非置換の芳香族基であるか、 または 2個の R 3同士もしくは 2個の R4同士が互いに結合して置換もしくは非置 換の環を形成してもよく、 そして R5、 R6および R7が水素原子、 置換もしくは非置換のアルキル基、 置換もしくは非置換のアルコキ シカルポニル基、 または置換もしくは非置換のァラルキルォキシ力 ルポニル基である、 請求項 1〜 3のいずれか 1項記載の製造方法。 4. In the general formula (2) and general formula (3), R 3 and one R 4 is a hydrogen atom or a substituted or unsubstituted aromatic group, or two R 3 together or two R 4 together May be bonded to each other to form a substituted or unsubstituted ring, and R 5 , R 6 and R 7 are hydrogen atoms, substituted or unsubstituted alkyl groups, substituted or unsubstituted alkoxycarbonyl groups, or The production method according to any one of claims 1 to 3, which is a substituted or unsubstituted aralkyloxyl sulfonyl group.
5. —般式 ( 3 ) において、 X が 0 B z F 5—、 0 B z -、 N〇 3一 、 〇 C〇 C F3-、 F-または I—である、 請求項:!〜 4のいずれか 1 項記載の製造方法。 5. - In general formula (3), X is 0 B z F 5 -, 0 B z -, N_〇 3 primary, 〇 C_〇 CF 3 -, a F- or I-, claim! The manufacturing method of any one of -4.
6. —般式 ( 2 ) および一般式 ( 3 ) で表される光学活性コバル ト錯体が以下 : 6. — Optically active cobalt complexes represented by general formula (2) and general formula (3) are as follows:
Figure imgf000048_0001
Figure imgf000048_0001
Figure imgf000048_0002
Figure imgf000048_0002
47 47
Figure imgf000049_0001
Figure imgf000049_0001
およぴAnd
Figure imgf000049_0002
Figure imgf000049_0002
Figure imgf000049_0003
からなる群より選択される、 請求項 1〜 5のいずれか 1項記載の製 造方法。
Figure imgf000049_0003
The production method according to claim 1, wherein the production method is selected from the group consisting of:
7. 求核剤を使用する、 請求項 1〜 6のいずれか 1項記載の製造 方法。 7. The production method according to any one of claims 1 to 6, wherein a nucleophile is used.
一般式 ( 1 )
Figure imgf000050_0001
General formula (1)
Figure imgf000050_0001
(式中、 R 1および R2は、 同一でも異なっていてもよく、 水素原子 、 置換もしくは非置換のアルキル基、 または置換もしくは非置換の 芳香族基であるか、 または R1と R2が互いに結合して置換もしくは 非置換の環を形成してもよい) (Wherein R 1 and R 2 may be the same or different and are a hydrogen atom, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted aromatic group, or R 1 and R 2 are They may combine with each other to form a substituted or unsubstituted ring)
で表されるエポキシドと二酸化炭素とが交互に結合して得られたポ リカ一ボネートであって、 1 H— NMR分析により検出可能なエー テル結合成分を含まないポリカーポネ一 卜。 A polycarbonate obtained by alternately bonding epoxides and carbon dioxide represented by the above formula, and containing no polycarbonate-linked component detectable by 1 H-NMR analysis.
9. エチレンォキシドと二酸化炭素とが交互に結合して得られた ポリエチレンカーボネートであって、 1 H— NMR分析により検出 可能なエーテル結合成分を含まないポリエチレンカーボネー卜。 9. Polyethylene carbonate obtained by alternately bonding ethylene oxide and carbon dioxide, which does not contain an ether bond component detectable by 1 H-NMR analysis.
PCT/JP2009/052827 2008-02-14 2009-02-12 Process for production of polycarbonate resin WO2009102078A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-032798 2008-02-14
JP2008032798 2008-02-14
JP2008208678A JP2009215529A (en) 2008-02-14 2008-08-13 Method for producing polycarbonate resin
JP2008-208678 2008-08-13

Publications (1)

Publication Number Publication Date
WO2009102078A1 true WO2009102078A1 (en) 2009-08-20

Family

ID=40957103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052827 WO2009102078A1 (en) 2008-02-14 2009-02-12 Process for production of polycarbonate resin

Country Status (2)

Country Link
JP (1) JP2009215529A (en)
WO (1) WO2009102078A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011102343A (en) * 2009-11-10 2011-05-26 Keio Gijuku Crosslinked aliphatic polycarbonate and method for producing the same
JP2011153186A (en) * 2010-01-26 2011-08-11 Univ Of Tokyo Cobalt-ketoiminate complex and method for producing polycarbonate using the complex
US9012675B2 (en) 2008-09-17 2015-04-21 Novomer, Inc. Aliphatic polycarbonate quench method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5665734B2 (en) * 2008-05-09 2015-02-04 コーネル ユニバーシティー Polymer of ethylene oxide and carbon dioxide
SG193220A1 (en) * 2008-08-22 2013-09-30 Novomer Inc Catalysts and methods for polymer synthesis
NO2337809T3 (en) 2008-09-08 2017-12-30
JP2011153181A (en) * 2010-01-26 2011-08-11 Keio Gijuku Ketoiminatocobalt complex, and method for producing polycarbonate using the complex
JP2011191687A (en) * 2010-03-16 2011-09-29 Univ Of Tokyo Optical element having photoelasticity
JP2011195637A (en) * 2010-03-17 2011-10-06 Univ Of Tokyo Polycarbonate composition
JP2011195635A (en) * 2010-03-17 2011-10-06 Univ Of Tokyo Dinuclear metal complex and method for producing polycarbonate using the same
JPWO2012102101A1 (en) * 2011-01-28 2014-06-30 国立大学法人 東京大学 Polycarbonate excellent in heat stability and method for producing the same
WO2020028606A1 (en) 2018-08-02 2020-02-06 Saudi Aramco Technologies Company Sustainable polymer compositions and methods

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0285286A (en) * 1988-04-11 1990-03-26 Tokuyama Soda Co Ltd Porphyrin aluminum complex
JPH02132123A (en) * 1988-07-27 1990-05-21 Tokuyama Soda Co Ltd Polyepichlorohydrin carbonate
EP0597276A1 (en) * 1992-11-11 1994-05-18 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. N,N'-2.2-3.3-Tetramethylethylene-bis(5-NO2-salicyliden-iminato) cobalt(II) and its use as oxygene carrier
JP2006241247A (en) * 2005-03-01 2006-09-14 Tokyo Univ Of Science Preparation method of polycarbonate
CN100334130C (en) * 2004-02-27 2007-08-29 大连理工大学 Preparation process of polyester carbonate with high molecular weight whole alternant structure
JP2008081518A (en) * 2006-09-25 2008-04-10 Tokyo Univ Of Science Method for producing copolymer of alkylene oxide and carbon dioxide and copolymer
JP2008285545A (en) * 2007-05-16 2008-11-27 Tokyo Univ Of Science Manufacturing method of polycarbonate and polycarbonate
WO2008150033A1 (en) * 2007-06-08 2008-12-11 The University Of Tokyo Epoxide-carbon dioxide stereoselective alternating copolymer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3869229D1 (en) * 1987-06-10 1992-04-23 Siemens Ag GENERATOR CIRCUIT.
DE19914953A1 (en) * 1999-04-01 2000-10-05 Basf Ag Radical-initiated emulsion polymerisation for production of aqueous polymer dispersions, for use e.g. as adhesives, carried out in presence of special metal-organic compound which is more soluble in water than in styrene
JP2008032798A (en) * 2006-07-26 2008-02-14 Canon Inc Image forming apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0285286A (en) * 1988-04-11 1990-03-26 Tokuyama Soda Co Ltd Porphyrin aluminum complex
JPH02132123A (en) * 1988-07-27 1990-05-21 Tokuyama Soda Co Ltd Polyepichlorohydrin carbonate
EP0597276A1 (en) * 1992-11-11 1994-05-18 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. N,N'-2.2-3.3-Tetramethylethylene-bis(5-NO2-salicyliden-iminato) cobalt(II) and its use as oxygene carrier
CN100334130C (en) * 2004-02-27 2007-08-29 大连理工大学 Preparation process of polyester carbonate with high molecular weight whole alternant structure
JP2006241247A (en) * 2005-03-01 2006-09-14 Tokyo Univ Of Science Preparation method of polycarbonate
JP2008081518A (en) * 2006-09-25 2008-04-10 Tokyo Univ Of Science Method for producing copolymer of alkylene oxide and carbon dioxide and copolymer
JP2008285545A (en) * 2007-05-16 2008-11-27 Tokyo Univ Of Science Manufacturing method of polycarbonate and polycarbonate
WO2008150033A1 (en) * 2007-06-08 2008-12-11 The University Of Tokyo Epoxide-carbon dioxide stereoselective alternating copolymer

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LEI SHI ET AL.: "Asymmetric Alternating Copolymerization and Terpolymerization of Epoxides with Carbon Dioxide at Mild Conditions", MACROMOLECULES, vol. 39, no. 17, 2006, pages 5679 - 5685 *
XIAO-BING LU ET AL.: "HIghly Active, Binary Catalyst Systems for the Alternating Copolymerization of CO2 and Epoxides under Mild Conditions", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, vol. 43, no. 27, 2004, pages 3574 - 3577 *
YONGSHENG NIU ET AL.: "Alternating copolymerization of carbon dioxide and propylene oxide catlayzed by (R,R)-SalenColll- (2,4-dinitrophenoxy) and Lewis-basic cocatalyst", JOURNAL OF POLYMER SCIENCE, PARTA:POLYMER CHEMISTRY, vol. 45, no. 22, 15 November 2007 (2007-11-15), pages 5050 - 5056 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9012675B2 (en) 2008-09-17 2015-04-21 Novomer, Inc. Aliphatic polycarbonate quench method
EP3002305A1 (en) 2008-09-17 2016-04-06 Novomer, Inc. Aliphatic polycarbonate quench method
US9868816B2 (en) 2008-09-17 2018-01-16 Saudi Aramco Technologies Company Aliphatic polycarbonate quench method
JP2011102343A (en) * 2009-11-10 2011-05-26 Keio Gijuku Crosslinked aliphatic polycarbonate and method for producing the same
JP2011153186A (en) * 2010-01-26 2011-08-11 Univ Of Tokyo Cobalt-ketoiminate complex and method for producing polycarbonate using the complex

Also Published As

Publication number Publication date
JP2009215529A (en) 2009-09-24

Similar Documents

Publication Publication Date Title
WO2009102078A1 (en) Process for production of polycarbonate resin
Coates et al. Discrete metal‐based catalysts for the copolymerization of CO2 and epoxides: discovery, reactivity, optimization, and mechanism
CN107849233B (en) Method for preparing polycarbonate and method for controlling polymer composition
JP4590284B2 (en) Method for producing polycarbonate
CN111909366B (en) Method for preparing polyester by catalyzing ring-opening alternate copolymerization of cyclic anhydride/epoxide through potassium acetate
Wang et al. Synthesis and structural determination of zinc complexes based on an anilido-aldimine ligand containing an O-donor pendant arm: Zinc alkoxide derivative as an efficient initiator for ring-opening polymerization of cyclic esters
JPS61218632A (en) Polyalkylene oxide having unsaturated group at molecular end and narrow molecular weight distribution
JPH05500982A (en) Lactone polymerization catalyzed by yttrium and rare earth compounds
KR20160013874A (en) Method and catalyst system for preparing polymers and block copolymers
CN108409954B (en) Synthesis method of carbon dioxide-based polycarbonate block copolymer
WO2011028007A2 (en) Organotin compound, method for preparing same, and method for preparing polylactide using same
RU2018106511A (en) Multiblock copolymers
WO2010147237A1 (en) Method for producing multicomponent aliphatic polycarbonate
Kayahara et al. Generation of Carbanions through Stibine–Metal and Bismuthine–Metal Exchange Reactions and Its Applications to Precision Synthesis of ω‐End‐Functionalized Polymers
Han et al. Cyclopolymerization of bis (fluoroalkyl) dipropargylmalonate derivatives and characterization of the products
WO2020153329A1 (en) Aliphatic polycarbonate
CN115584018B (en) Preparation method of polyester I-polyester II-polycarbonate triblock copolymer
CN111925400A (en) Redox-responsive metalloporphyrin complex, preparation method thereof and preparation method of polylactic acid
US20150361197A1 (en) Initiation of controlled radical polymerization from lactide monomer
Patil et al. Orthogonally grown polycarbonate and polyvinyl block copolymers from mechanistically distinct (co) polymerizations
KR101864005B1 (en) Catalyst for polymerization of monomer having a ring-type ester group, and method of forming polymer using the catalyst
WO1991014720A1 (en) Butadiene monoepoxide/maleic anhydride copolymers
CN108395510B (en) Catalytic system and application thereof in preparation of carbon dioxide-based polycarbonate block copolymer
TW201211351A (en) Composition for paper coating
JP2011213982A (en) Method for producing polycarbonate using metal complex, the metal complex, and catalyst system including the metal complex

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09709811

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09709811

Country of ref document: EP

Kind code of ref document: A1