WO2009101858A1 - Oscillatory-type drive device, and method for adjusting piezoelectric element and the oscillatory-type drive device - Google Patents

Oscillatory-type drive device, and method for adjusting piezoelectric element and the oscillatory-type drive device Download PDF

Info

Publication number
WO2009101858A1
WO2009101858A1 PCT/JP2009/051357 JP2009051357W WO2009101858A1 WO 2009101858 A1 WO2009101858 A1 WO 2009101858A1 JP 2009051357 W JP2009051357 W JP 2009051357W WO 2009101858 A1 WO2009101858 A1 WO 2009101858A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric element
voltage
vibration type
piezoelectric
layers
Prior art date
Application number
PCT/JP2009/051357
Other languages
French (fr)
Japanese (ja)
Inventor
Tomoyuki Yuasa
Ryuichi Yoshida
Takashi Hashimoto
Original Assignee
Konica Minolta Opto, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto, Inc. filed Critical Konica Minolta Opto, Inc.
Priority to JP2009553388A priority Critical patent/JP5526786B2/en
Publication of WO2009101858A1 publication Critical patent/WO2009101858A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/021Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors using intermittent driving, e.g. step motors, piezoleg motors
    • H02N2/025Inertial sliding motors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/04Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning
    • H10N30/045Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning by polarising
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure

Definitions

  • the present invention relates to a vibration type driving device, and a method for adjusting a piezoelectric element and a vibration type driving device.
  • Patent Document 1 describes a vibration type driving device that uses a piezoelectric element as a driving source and slides and displaces a moving body by expansion and contraction of the piezoelectric element.
  • the driving amount (speed) is determined by the expansion and contraction characteristics of the piezoelectric element.
  • the piezoelectric element can be manufactured by laminating layers of piezoelectric material as described in Patent Document 2, for example. It is difficult to make the composition of the piezoelectric material and the thickness of the layer strictly uniform, and there is some variation in the expansion / contraction characteristics of the manufactured piezoelectric element.
  • an object of the present invention is to provide a vibration type driving device with small performance variation, and a method for adjusting a piezoelectric element and a vibration type driving device.
  • the vibration type driving device has a piezoelectric element formed by laminating a plurality of layers of piezoelectric materials having different voltages that can be completely polarized.
  • a piezoelectric element having a low expansion / contraction rate can increase the expansion / contraction rate by further polarizing a layer that is not polarized by a higher polarization treatment voltage.
  • a vibration type driving device that adjusts the expansion / contraction characteristics of the piezoelectric element and has no variation in driving performance.
  • the driving speed of the vibration type driving device can be adjusted, and a circuit and control program for adjusting the speed are not necessary. Note that layers that cannot contribute to expansion and contraction, such as dummy layers provided at both ends of the piezoelectric element, are not included in “a plurality of layers of piezoelectric materials having different voltages that can be completely polarized” according to the present invention.
  • the plurality of piezoelectric material layers may include layers having different thicknesses or may include layers of piezoelectric materials having different coercive electric fields.
  • the piezoelectric material layer becomes thicker, the electric field strength becomes lower, so that the voltage required for polarization becomes higher. Even if the piezoelectric material layer has the same thickness, the higher the coercive electric field, the higher the voltage required for polarization.
  • the degree of polarization can be made to progress stepwise with respect to the polarization processing voltage, and the driving performance of the vibration type driving device can be easily adjusted by adjusting the expansion / contraction characteristics of the piezoelectric element. .
  • the piezoelectric element adjustment method according to the present invention starts with a polarization treatment voltage applied to the piezoelectric element, starting from a voltage lower than that at which the piezoelectric element is completely polarized until the desired expansion and contraction characteristics are obtained. It is a method to raise.
  • This method can provide a piezoelectric element having no variation in performance.
  • the piezoelectric element may be polarized in advance, and the polarization processing voltage may be a voltage that polarizes the piezoelectric element in a reverse direction.
  • This method can adjust the performance of commercially available piezoelectric elements.
  • a piezoelectric element is made by stacking multiple layers of piezoelectric materials with different voltages that can be completely polarized, more stable polarization can be achieved than the number of layers with different voltages that can be polarized, allowing fine adjustments. become.
  • the adjustment method of the vibration type driving device that displaces the moving body using the piezoelectric element as a driving source adjusts the piezoelectric element by any one of the above methods, and the desired expansion / contraction characteristic is obtained by the moving body. Confirm by the amount of displacement.
  • the driving speed of the vibration type driving device can be adjusted to be constant.
  • the expansion / contraction characteristics of the piezoelectric element can be adjusted by changing the polarization processing voltage, there is little variation in the performance of the piezoelectric element, and the performance of the vibration type driving device using the piezoelectric element can be made constant. it can.
  • FIG. 5 is a distribution diagram showing variation of products after polarization at the polarization processing voltage Va in FIG. 4.
  • FIG. 5 is a distribution diagram showing variation of products after polarization at the polarization processing voltage Vb of FIG. 4.
  • FIG. 5 is a distribution diagram showing variation of products after polarization at the polarization processing voltage Vc of FIG. 4.
  • FIG. 4 is a distribution diagram showing product variations after final adjustment of the piezoelectric element of FIG. 3.
  • Schematic which shows the structure of the piezoelectric element of 2nd Embodiment of this invention.
  • the graph which shows the reference
  • FIG. 1 shows how the driving speed of the vibration type driving apparatus 1 according to the first embodiment of the present invention is adjusted.
  • the vibration type driving device 1 includes a weight 2, a piezoelectric element 3 having one end fixed to the weight 2 in an expansion / contraction direction, a shaft-like vibration member 4 having one end fixed to the other end of the piezoelectric element 3, and the vibration member 4. And a moving body 5 that is frictionally engaged so as to be able to slide.
  • the piezoelectric element 3 is a laminated piezoelectric element formed by laminating, for example, a piezoelectric material made of PZT and an electrode, and a polarization processing power source 6 is connected to the electrode, and a polarization processing voltage of, for example, about 30 (V) is applied. Then, the piezoelectric material is imparted by polarizing the piezoelectric material.
  • the vibration type driving device 1 uses the piezoelectric element 3 as a drive source, and applies a driving voltage to the piezoelectric element 3 to cause the piezoelectric element 3 to expand and contract asymmetrically in the extension direction and the contraction direction, thereby vibrating the vibration member 4 asymmetrically.
  • the moving body 5 is moved together with the vibration member 4 being frictionally engaged, and in the direction in which the vibration member 4 moves sharply, the moving body 5 is moved in place by the inertial force.
  • the movable body 5 and the driven object fixed to the movable body 5 are driven by sliding and displacing the vibrating member 4 so as to stay in the movable body 5.
  • FIG. 2 shows the relationship between the polarization treatment voltage and the expansion / contraction amount (reference displacement amount) at the rated voltage (eg, 3V) as a value indicating the expansion / contraction characteristics of the piezoelectric element 3 after polarization.
  • the polarization processing voltage is low to some extent, the piezoelectric element 3 is not polarized at all and the reference displacement amount is zero.
  • the reference displacement amount increases with the voltage.
  • the reference displacement amount of the piezoelectric element 3 is saturated and no more increases.
  • the driving speed of the vibration type driving device 1 and the reference displacement amount of the piezoelectric element 3 are substantially proportional. Therefore, by changing the polarization processing voltage, the reference displacement amount of the piezoelectric element 3 and the driving speed of the vibration type driving device 1 (the displacement amount of the moving body 5 with respect to a constant driving voltage) can be set to desired values.
  • the piezoelectric element 3 is polarized by a polarization processing voltage sufficiently lower than the voltage at which the piezoelectric element 3 is completely polarized (saturation of polarization), and a rated voltage is applied to the piezoelectric element 3 to provide a reference for the piezoelectric element 3.
  • the polarization is advanced by applying a higher polarization treatment voltage until the predetermined reference displacement amount is reached.
  • the expansion / contraction amount of the piezoelectric element 3 and the driving speed of the vibration type driving device 1 can be set to substantially desired values.
  • FIG. 3 shows the structure of the piezoelectric element 3 that facilitates the adjustment of the reference displacement amount according to the second embodiment of the present invention.
  • the piezoelectric element 3 of the present embodiment has a plurality of layers of the piezoelectric material 8 sandwiched between the electrodes 7a and 7b, and the first block 3a having the thickness of the layer of the piezoelectric material 8 of ta,
  • the piezoelectric material 8 includes a second block 3b having a thickness of tb and a third block 3c having a thickness of the piezoelectric material 8 of tc.
  • the thickness of each layer of the first block 3a is 10 ⁇ m and the number of stacked layers is 80
  • the thickness of each layer of the second block 3b is 20 ⁇ m
  • the number of stacked layers is 20
  • the thickness of each layer of the third block 3c is 30 ⁇ m.
  • the number of layers is 20 layers.
  • the polarization processing voltage at which each block 3a, 3b, 3c is polarized is proportional to the thicknesses ta, tb, tc of each layer, and the reference displacement amount of the entire piezoelectric element 3 of the present embodiment depends on the polarization processing voltage. It changes as shown in FIG.
  • the first block 3a having the smallest layer thickness starts polarization at the lowest voltage, and is completely polarized and displaced at a lower voltage than the second block 3b and the third block 3c start polarization.
  • the amount is saturated.
  • the second block 3b is subsequently polarized, and the displacement amount becomes the second saturation state.
  • the third block 3c is polarized, and the reference displacement amount is further increased.
  • the polarization processing power source 6 is connected in a state where the piezoelectric element 3 is incorporated in the vibration type driving device 1, and the polarization processing voltage Va (V) is applied so that only the first block 3a is completely polarized. Then, polarization is performed, and a driving voltage of the rated voltage is applied to the piezoelectric element 3 to measure the driving speed of the vibration type driving device 1.
  • FIG. 5 shows the drive speed distribution of individual products (vibration type drive device 1) when the piezoelectric elements 3 of a large number of vibration type drive devices 1 are polarized with the polarization processing voltage Va (V).
  • the driving speed of the vibration type driving device 1 mainly depends on the expansion / contraction characteristics of the piezoelectric element 3, and exhibits a distribution like a normal distribution as shown in the figure due to variations in the expansion / contraction characteristics of the piezoelectric element 3.
  • the driving speed of the vibration type driving device 1 is 7.0 mm / sec
  • a product group in the range indicated by hatching in the figure having a driving speed higher than this value is regarded as an acceptable product.
  • the other piezoelectric elements 3 of the vibration type driving device 1 are further polarized by a polarization voltage Vb (V) that can completely polarize the second block 3b.
  • Vb polarization voltage
  • the driving speed of the vibration type driving device 1 with the driving voltage of the rated voltage is measured.
  • the driving speed distribution of the vibration type driving device 1 is a distribution that is stacked by an increase in vibration due to the polarization of the second block 3 b.
  • the product group in the range indicated by the oblique line having the driving speed equal to or higher than the lower limit (7.0 mm / sec) is regarded as an acceptable product, and the piezoelectric element 3 of the remaining product can be polarized to the third block 3c completely. Further polarization is caused by the voltage Vc (V). Then, the driving speed of the vibration type driving device 1 further increases to show a distribution as shown in FIG.
  • the overall drive speed of the vibration type drive device 1 and the vibration type drive device 1 that has been accepted after the previous two polarizations has a distribution as shown in FIG. 8, and the drive speed variation is small.
  • the variation in expansion / contraction characteristics of the original piezoelectric element 3 is relatively large.
  • the thicknesses ta and tb of the layers of the blocks 3a, 3b, and 3c are adjusted in accordance with the processing accuracy of the piezoelectric element 3. , Tc and the number of stacked layers are preferably selected.
  • the voltage at which the blocks 3a, 3b, 3c are polarized is set by the layer thicknesses ta, tb, tc, but the layer thicknesses ta, tb, tc of the blocks 3a, 3b, 3c are set.
  • the voltage at which the blocks 3a, 3b, and 3c are polarized can also be varied by changing the composition of the piezoelectric material 8 while keeping the constant.
  • a soft material having a low Curie temperature has a low coercive electric field (electric field intensity at which polarization starts)
  • a hard material having a high Curie temperature has a high coercive electric field.
  • the composition of the piezoelectric material 8 may be further varied after changing the thicknesses ta, tb, tc of the layers of the blocks 3a, 3b, 3c.
  • FIG. 9 shows the configuration of the piezoelectric element 3 according to the third embodiment of the present invention.
  • the piezoelectric element 3 according to this embodiment includes two blocks, a first block 3a formed by stacking layers having a small thickness ta, and a second block 3b formed by stacking layers having a large thickness tb.
  • the compositions of the piezoelectric materials 8 of 3a and 3b are the same.
  • the contribution of the second block 3b polarized at a high voltage in the reference displacement amount of the entire piezoelectric element 3 is the third polarized at a low voltage. It is designed to be larger than the contribution of the block 3a.
  • a polarization processing voltage of opposite polarity is applied in a stepwise manner so that the reference displacement amount of the piezoelectric element 3 is reduced to three stable values as shown in FIG. A state is obtained.
  • the reference displacement amount of the piezoelectric element 3 in which both the blocks 3a and 3b are completely polarized is in the first stable state. If this reference displacement amount is too large, the polarization of the first block 3a only disappears.
  • Van (V) By applying a polarization processing voltage Van (V) in the opposite direction to that when prepolarized, a second stable state with a reference displacement amount that depends only on the amount of expansion / contraction of the second block 3b can be obtained.
  • the first block 3a can be polarized in the reverse polarity, and the polarization processing voltage Aap (V) having a voltage at which the polarization of the second block 3b does not disappear can be applied to the first block 3a.
  • the block 3c can be polarized so as to expand and contract in the opposite direction to the second block 3b. Accordingly, the reference displacement amount of the entire piezoelectric element 3 is a value obtained by subtracting the expansion / contraction amount of the first block 3a from the expansion / contraction amount of the second block 3b.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

A polarizing voltage capable of polarizing only a layer (3a) having the lowest polarizable voltage is applied to a piezoelectric element (3) prepared by laminating a plurality of layers (3a, 3b and 3c) of different voltages, which can be completely polarized by making either the layer thickness or a piezoelectric material (8) different. If desired extension characteristics are not attained, the polarizing voltage capable of polarizing a next layer (3b) is applied, and the polarizing voltage is stepwise raised until the desired extension characteristics are attained. Thus, it is possible to provide the oscillatory-type drive device which has a small dispersion in performance.

Description

振動型駆動装置、並びに、圧電素子および振動型駆動装置の調整方法Vibration type drive device, and piezoelectric element and vibration type drive device adjustment method
 本発明は、振動型駆動装置、並びに、圧電素子および振動型駆動装置の調整方法に関する。 The present invention relates to a vibration type driving device, and a method for adjusting a piezoelectric element and a vibration type driving device.
 例えば、特許文献1には、圧電素子を駆動源とし、圧電素子の伸縮により移動体をすべり変位させる振動型駆動装置が記載されている。このような振動型駆動装置では、圧電素子の伸縮特性によって、その駆動量(速度)が定められる。 For example, Patent Document 1 describes a vibration type driving device that uses a piezoelectric element as a driving source and slides and displaces a moving body by expansion and contraction of the piezoelectric element. In such a vibration type driving device, the driving amount (speed) is determined by the expansion and contraction characteristics of the piezoelectric element.
 圧電素子は、例えば特許文献2に記載されているように、圧電材料の層を積層して製造され得る。圧電材料の組成やその層の厚みを厳密に均一にすることは困難であり、製造される圧電素子の伸縮特性には、ある程度のバラツキが存在する。 The piezoelectric element can be manufactured by laminating layers of piezoelectric material as described in Patent Document 2, for example. It is difficult to make the composition of the piezoelectric material and the thickness of the layer strictly uniform, and there is some variation in the expansion / contraction characteristics of the manufactured piezoelectric element.
 特に、圧電素子を駆動源とする振動型駆動装置では、高精度化の要求が大きく、圧電素子のバラツキによる性能の誤差が問題視される。振動型駆動装置を高精度化するために、製造時に装置毎の駆動量を確認し、駆動電圧等を変更して駆動量が一定になるように調整する場合がある。しかしながら、このような調整を可能とするためには、駆動回路の構成が複雑になったり、調整値を記憶するメモリが必要になったりするという問題がある。
特開2001-103772号公報 特開2003-103772号公報
Particularly, in a vibration type driving apparatus using a piezoelectric element as a driving source, there is a great demand for high accuracy, and performance errors due to variations in the piezoelectric element are regarded as problems. In order to increase the accuracy of the vibration type driving device, the driving amount for each device may be confirmed at the time of manufacture, and the driving voltage may be changed to adjust the driving amount to be constant. However, in order to enable such adjustment, there is a problem that the configuration of the drive circuit becomes complicated and a memory for storing the adjustment value becomes necessary.
JP 2001-103772 A JP 2003-103772 A
 前記問題点に鑑みて、本発明は、性能のバラツキが小さい振動型駆動装置、並びに、圧電素子および振動型駆動装置の調整方法を提供することを課題とする。 In view of the above problems, an object of the present invention is to provide a vibration type driving device with small performance variation, and a method for adjusting a piezoelectric element and a vibration type driving device.
 前記問題点に鑑みて、本発明による振動型駆動装置は、完全に分極できる電圧が異なる複数の圧電材料の層を積層してなる圧電素子を有するものとする。 In view of the above problems, the vibration type driving device according to the present invention has a piezoelectric element formed by laminating a plurality of layers of piezoelectric materials having different voltages that can be completely polarized.
 この構成によれば、分極処理電圧の選択により分極されていない層を残すことができ、それにより圧電素子の伸縮特性を低くできる。伸縮率の低い圧電素子は、より高い分極処理電圧によって分極していない層をさらに分極することで伸縮率を高めることができる。これにより、圧電素子の伸縮特性を調整して、駆動性能にバラツキのない振動型駆動装置を提供できる。また、圧電素子の性能を調整することで、振動型駆動装置の駆動速度を調節することができ、速度調節のための回路や制御プログラムが必要ない。尚、圧電素子の両端に設けられるダミー層のような伸縮に寄与し得ない層は、本発明の「完全に分極できる電圧が異なる複数の圧電材料の層」には含まれない。 According to this configuration, it is possible to leave a non-polarized layer by selecting the polarization processing voltage, thereby reducing the expansion and contraction characteristics of the piezoelectric element. A piezoelectric element having a low expansion / contraction rate can increase the expansion / contraction rate by further polarizing a layer that is not polarized by a higher polarization treatment voltage. As a result, it is possible to provide a vibration type driving device that adjusts the expansion / contraction characteristics of the piezoelectric element and has no variation in driving performance. Further, by adjusting the performance of the piezoelectric element, the driving speed of the vibration type driving device can be adjusted, and a circuit and control program for adjusting the speed are not necessary. Note that layers that cannot contribute to expansion and contraction, such as dummy layers provided at both ends of the piezoelectric element, are not included in “a plurality of layers of piezoelectric materials having different voltages that can be completely polarized” according to the present invention.
 また、本発明の振動型駆動装置において、前記複数の圧電材料の層は、異なる厚みを有する層を含んでもよく、異なる抗電界を有する圧電材料の層を含んでもよい。 Further, in the vibration type driving device of the present invention, the plurality of piezoelectric material layers may include layers having different thicknesses or may include layers of piezoelectric materials having different coercive electric fields.
 圧電材料の層が厚くなると電界強度が低くなるので分極に要する電圧が高くなり、圧電材料の層の厚みが同じでも抗電界が高い程、分極に要する電圧が高くなる。これらの性質を利用することによって、分極処理電圧に対して分極の度合いが段階的に進むようにすることができ、圧電素子の伸縮特性の調整によって振動型駆動装置の駆動性能を容易に調整できる。 As the piezoelectric material layer becomes thicker, the electric field strength becomes lower, so that the voltage required for polarization becomes higher. Even if the piezoelectric material layer has the same thickness, the higher the coercive electric field, the higher the voltage required for polarization. By utilizing these properties, the degree of polarization can be made to progress stepwise with respect to the polarization processing voltage, and the driving performance of the vibration type driving device can be easily adjusted by adjusting the expansion / contraction characteristics of the piezoelectric element. .
 また、本発明による圧電素子の調整方法は、圧電素子に印加する分極処理電圧を、前記圧電素子が完全に分極するよりも低い電圧から開始し、所望の伸縮特性が得られるまで、段階的に上昇させる方法とする。 In addition, the piezoelectric element adjustment method according to the present invention starts with a polarization treatment voltage applied to the piezoelectric element, starting from a voltage lower than that at which the piezoelectric element is completely polarized until the desired expansion and contraction characteristics are obtained. It is a method to raise.
 この方法によれば、性能にバラツキのない圧電素子を提供できる。 This method can provide a piezoelectric element having no variation in performance.
 また、本発明の調整方法において、前記圧電素子は予め分極されており、前記分極処理電圧は、前記圧電素子を逆方向に分極する電圧であってもよい。 In the adjustment method of the present invention, the piezoelectric element may be polarized in advance, and the polarization processing voltage may be a voltage that polarizes the piezoelectric element in a reverse direction.
 この方法によれば、市販の圧電素子の性能を調節できる。また、圧電素子が完全に分極できる電圧が異なる複数の圧電材料の層を積層したものである場合、分極できる電圧が異なる層の数より多くの安定な分極状態ができるため、細かな調整が可能になる。 This method can adjust the performance of commercially available piezoelectric elements. In addition, when a piezoelectric element is made by stacking multiple layers of piezoelectric materials with different voltages that can be completely polarized, more stable polarization can be achieved than the number of layers with different voltages that can be polarized, allowing fine adjustments. become.
 また、本発明によれば、圧電素子を駆動源として移動体を変位させる振動型駆動装置の調整方法は、前記いずれかの方法で圧電素子を調整し、前記所望の伸縮特性は、前記移動体の変位量によって確認する。 According to the present invention, the adjustment method of the vibration type driving device that displaces the moving body using the piezoelectric element as a driving source adjusts the piezoelectric element by any one of the above methods, and the desired expansion / contraction characteristic is obtained by the moving body. Confirm by the amount of displacement.
 この方法によれば、移動体の変位量を基準に圧電素子を調整するので、振動型駆動装置の駆動速度が一定になるように調整できる。 According to this method, since the piezoelectric element is adjusted based on the displacement amount of the moving body, the driving speed of the vibration type driving device can be adjusted to be constant.
 本発明によれば、分極処理電圧を変化させることで圧電素子の伸縮特性を調整できるので、圧電素子の性能にバラツキが小さく、圧電素子を用いた振動型駆動装置の性能を一定にすることもできる。 According to the present invention, since the expansion / contraction characteristics of the piezoelectric element can be adjusted by changing the polarization processing voltage, there is little variation in the performance of the piezoelectric element, and the performance of the vibration type driving device using the piezoelectric element can be made constant. it can.
本発明の第1実施形態の振動型駆動装置の調整の様子を示す概略図。Schematic which shows the mode of adjustment of the vibration type drive device of 1st Embodiment of this invention. 図1の圧電素子の分極処理電圧に対する基準変位量を示すグラフ。The graph which shows the reference | standard displacement amount with respect to the polarization process voltage of the piezoelectric element of FIG. 本発明の第2実施形態の圧電素子の構造を示す概略図。Schematic which shows the structure of the piezoelectric element of 2nd Embodiment of this invention. 図3の圧電素子の分極処理電圧に対する基準変位量を示すグラフ。The graph which shows the reference | standard displacement amount with respect to the polarization process voltage of the piezoelectric element of FIG. 図4の分極処理電圧Vaでの分極後の製品のバラツキを示す分布図。FIG. 5 is a distribution diagram showing variation of products after polarization at the polarization processing voltage Va in FIG. 4. 図4の分極処理電圧Vbでの分極後の製品のバラツキを示す分布図。FIG. 5 is a distribution diagram showing variation of products after polarization at the polarization processing voltage Vb of FIG. 4. 図4の分極処理電圧Vcでの分極後の製品のバラツキを示す分布図。FIG. 5 is a distribution diagram showing variation of products after polarization at the polarization processing voltage Vc of FIG. 4. 図3の圧電素子の最終的調整後の製品のバラツキを示す分布図。FIG. 4 is a distribution diagram showing product variations after final adjustment of the piezoelectric element of FIG. 3. 本発明の第2実施形態の圧電素子の構造を示す概略図。Schematic which shows the structure of the piezoelectric element of 2nd Embodiment of this invention. 図9の圧電素子の分極処理電圧に対する基準変位量を示すグラフ。The graph which shows the reference | standard displacement amount with respect to the polarization process voltage of the piezoelectric element of FIG.
符号の説明Explanation of symbols
 1…振動型駆動装置
 2…錘
 3…圧電素子
 3a,3b,3c…ブロック
 4…振動部材
 5…移動体
 6…分極処理用電源
 7a,7b…電極
 8…圧電材料
 ta,tb,tc…層厚
DESCRIPTION OF SYMBOLS 1 ... Vibration type drive device 2 ... Weight 3 ... Piezoelectric element 3a, 3b, 3c ... Block 4 ... Vibration member 5 ... Moving body 6 ... Power supply 7a, 7b ... Electrode 8 ... Piezoelectric material ta, tb, tc ... Layer Thickness
 これより、本発明の実施形態について、図面を参照しながら説明する。
 図1に、本発明の第1実施形態の振動型駆動装置1の駆動速度の調整の様子を示す。振動型駆動装置1は、錘2と、錘2に伸縮方向の一端が固定された圧電素子3と、圧電素子3の他端に一端が固定された軸状の振動部材4と、振動部材4にすべり移動可能に摩擦係合する移動体5とからなる。圧電素子3は、例えばPZTからなる圧電材料と電極とを積層してなる積層型圧電素子であって、電極に分極処理用電源6を接続し、例えば30(V)程度の分極処理電圧を印加して、圧電材料を分極することで、圧電特性を付与するものである。
Embodiments of the present invention will now be described with reference to the drawings.
FIG. 1 shows how the driving speed of the vibration type driving apparatus 1 according to the first embodiment of the present invention is adjusted. The vibration type driving device 1 includes a weight 2, a piezoelectric element 3 having one end fixed to the weight 2 in an expansion / contraction direction, a shaft-like vibration member 4 having one end fixed to the other end of the piezoelectric element 3, and the vibration member 4. And a moving body 5 that is frictionally engaged so as to be able to slide. The piezoelectric element 3 is a laminated piezoelectric element formed by laminating, for example, a piezoelectric material made of PZT and an electrode, and a polarization processing power source 6 is connected to the electrode, and a polarization processing voltage of, for example, about 30 (V) is applied. Then, the piezoelectric material is imparted by polarizing the piezoelectric material.
 振動型駆動装置1は、圧電素子3を駆動源とし、圧電素子3に駆動電圧を印加することで圧電素子3を伸長方向と収縮方向とで非対称に伸縮させ、振動部材4を非対称に振動させることにより、振動部材4が緩慢に移動する方向では移動体5を振動部材4に摩擦係合させたまま共に移動させ、振動部材4が急峻に移動する方向では移動体5を慣性力によりその場に留まらせるように振動部材4に対してすべり変位させることで、移動体5および移動体5に固定した被駆動物を駆動する。 The vibration type driving device 1 uses the piezoelectric element 3 as a drive source, and applies a driving voltage to the piezoelectric element 3 to cause the piezoelectric element 3 to expand and contract asymmetrically in the extension direction and the contraction direction, thereby vibrating the vibration member 4 asymmetrically. Thus, in the direction in which the vibration member 4 moves slowly, the moving body 5 is moved together with the vibration member 4 being frictionally engaged, and in the direction in which the vibration member 4 moves sharply, the moving body 5 is moved in place by the inertial force. The movable body 5 and the driven object fixed to the movable body 5 are driven by sliding and displacing the vibrating member 4 so as to stay in the movable body 5.
 図2に、分極処理電圧と、分極後の圧電素子3の伸縮特性を示す値として、定格電圧(例えば3V)における伸縮量(基準変位量)との関係を示す。図示するように、分極処理電圧がある程度低い場合、圧電素子3は全く分極されず、基準変位量はゼロであるが、分極処理電圧がある電圧を超えると、基準変位量が電圧と共に上昇する。さらに、分極処理電圧を高くすると、圧電素子3の基準変位量は飽和し、それ以上は増大しなくなる。 FIG. 2 shows the relationship between the polarization treatment voltage and the expansion / contraction amount (reference displacement amount) at the rated voltage (eg, 3V) as a value indicating the expansion / contraction characteristics of the piezoelectric element 3 after polarization. As shown in the figure, when the polarization processing voltage is low to some extent, the piezoelectric element 3 is not polarized at all and the reference displacement amount is zero. However, when the polarization processing voltage exceeds a certain voltage, the reference displacement amount increases with the voltage. Further, when the polarization processing voltage is increased, the reference displacement amount of the piezoelectric element 3 is saturated and no more increases.
 振動型駆動装置1の駆動速度と圧電素子3の基準変位量とは略比例する。よって、分極処理電圧を変えることで、圧電素子3の基準変位量および振動型駆動装置1の駆動速度(一定の駆動電圧に対する移動体5の変位量)を所望の値に設定できる。 The driving speed of the vibration type driving device 1 and the reference displacement amount of the piezoelectric element 3 are substantially proportional. Therefore, by changing the polarization processing voltage, the reference displacement amount of the piezoelectric element 3 and the driving speed of the vibration type driving device 1 (the displacement amount of the moving body 5 with respect to a constant driving voltage) can be set to desired values.
 しかしながら、圧電素子3の圧電材料の組成や層の厚みや電極の状態などを厳密に管理することは困難であり、分極処理電圧を一定にしても、製品毎に圧電素子3の基準変位量および振動型駆動装置1の駆動速度にバラツキが生じる。そこで、先ず、圧電素子3が完全に分極する(分極が飽和する)電圧よりも十分に低い分極処理電圧によって圧電素子3を分極し、圧電素子3に定格電圧を印加して圧電素子3の基準変位量(または振動部材4の移動量)を計測し、所定の伸縮量に達していない場合にのみ、さらに高い分極処理電圧を印加することで分極を進め、所定の基準変位量に達するまで、分極処理電圧を段階的に上昇させることで、圧電素子3の伸縮量および振動型駆動装置1の駆動速度を、略所望の値にすることができる。 However, it is difficult to strictly control the composition of the piezoelectric material, the layer thickness, the electrode state, and the like of the piezoelectric element 3, and even if the polarization voltage is constant, the reference displacement amount of the piezoelectric element 3 and The driving speed of the vibration type driving device 1 varies. Therefore, first, the piezoelectric element 3 is polarized by a polarization processing voltage sufficiently lower than the voltage at which the piezoelectric element 3 is completely polarized (saturation of polarization), and a rated voltage is applied to the piezoelectric element 3 to provide a reference for the piezoelectric element 3. Only when the amount of displacement (or the amount of movement of the vibrating member 4) is measured and does not reach the predetermined expansion / contraction amount, the polarization is advanced by applying a higher polarization treatment voltage until the predetermined reference displacement amount is reached. By increasing the polarization processing voltage stepwise, the expansion / contraction amount of the piezoelectric element 3 and the driving speed of the vibration type driving device 1 can be set to substantially desired values.
 図3に、本発明の第2実施形態の、基準変位量の調整を容易にした圧電素子3の構造を示す。本実施形態の圧電素子3は、電極7aと7bとの間に挟まれた複数の圧電材料8の層を有しているが、圧電材料8の層の厚みがtaの第1ブロック3aと、圧電材料8の層の厚みがtbの第2ブロック3bと、圧電材料8の層の厚みがtcの第3ブロック3cとからなっている。 FIG. 3 shows the structure of the piezoelectric element 3 that facilitates the adjustment of the reference displacement amount according to the second embodiment of the present invention. The piezoelectric element 3 of the present embodiment has a plurality of layers of the piezoelectric material 8 sandwiched between the electrodes 7a and 7b, and the first block 3a having the thickness of the layer of the piezoelectric material 8 of ta, The piezoelectric material 8 includes a second block 3b having a thickness of tb and a third block 3c having a thickness of the piezoelectric material 8 of tc.
 例えば、第1ブロック3aは各層の厚みが10μm、積層数が80層であり、第2ブロック3bは各層の厚みが20μm、積層数が20層であり、第3ブロック3cは各層の厚みが30μm、積層数が20層である。 For example, the thickness of each layer of the first block 3a is 10 μm and the number of stacked layers is 80, the thickness of each layer of the second block 3b is 20 μm, the number of stacked layers is 20, and the thickness of each layer of the third block 3c is 30 μm. The number of layers is 20 layers.
 一般に、圧電材料8が均質であれば、その分極は、分極処理電圧によって印加される電界の強度に応じて進行する。よって、各ブロック3a,3b,3cが分極する分極処理電圧は、各層の厚みta,tb,tcに比例し、本実施形態の圧電素子3全体の基準変位量は、分極処理電圧に応じて、図4に示すように変化する。 Generally, if the piezoelectric material 8 is homogeneous, the polarization proceeds according to the strength of the electric field applied by the polarization processing voltage. Therefore, the polarization processing voltage at which each block 3a, 3b, 3c is polarized is proportional to the thicknesses ta, tb, tc of each layer, and the reference displacement amount of the entire piezoelectric element 3 of the present embodiment depends on the polarization processing voltage. It changes as shown in FIG.
 具体的には、最も層の厚みの小さい第1ブロック3aは最も低い電圧で分極を開始し、第2ブロック3bおよび第3ブロック3cが分極を開始するよりも低い電圧で完全に分極して変位量が飽和する。さらに分極処理電圧を上げてゆくと、続いて、第2ブロック3bが分極してゆき、変位量が第2の飽和状態となる。そして、さらに分極処理電圧を上げると、第3ブロック3cが分極し、さらに基準変位量を上積みする。 Specifically, the first block 3a having the smallest layer thickness starts polarization at the lowest voltage, and is completely polarized and displaced at a lower voltage than the second block 3b and the third block 3c start polarization. The amount is saturated. When the polarization processing voltage is further increased, the second block 3b is subsequently polarized, and the displacement amount becomes the second saturation state. When the polarization processing voltage is further increased, the third block 3c is polarized, and the reference displacement amount is further increased.
 本実施形態では、先ず圧電素子3を振動型駆動装置1に組み込んだ状態で分極処理用電源6を接続して、第1ブロック3aのみが完全に分極される分極処理電圧Va(V)を印加して分極を行い、圧電素子3に定格電圧の駆動電圧を印加して振動型駆動装置1の駆動速度を測定する。図5に、多数の振動型駆動装置1の圧電素子3を分極処理電圧Va(V)で分極したときの、個々の製品(振動型駆動装置1)の駆動速度の分布を示す。振動型駆動装置1の駆動速度は、主として圧電素子3の伸縮特性に依存し、圧電素子3の伸縮特性のバラツキのために、図示するような正規分布様の分布を示す。 In the present embodiment, first, the polarization processing power source 6 is connected in a state where the piezoelectric element 3 is incorporated in the vibration type driving device 1, and the polarization processing voltage Va (V) is applied so that only the first block 3a is completely polarized. Then, polarization is performed, and a driving voltage of the rated voltage is applied to the piezoelectric element 3 to measure the driving speed of the vibration type driving device 1. FIG. 5 shows the drive speed distribution of individual products (vibration type drive device 1) when the piezoelectric elements 3 of a large number of vibration type drive devices 1 are polarized with the polarization processing voltage Va (V). The driving speed of the vibration type driving device 1 mainly depends on the expansion / contraction characteristics of the piezoelectric element 3, and exhibits a distribution like a normal distribution as shown in the figure due to variations in the expansion / contraction characteristics of the piezoelectric element 3.
 ここで、振動型駆動装置1の駆動速度の許容範囲の下限を、7.0mm/secとした場合、この値以上の駆動速度を有する図中に斜線で示した範囲の製品群を合格品とし、それ以外の振動型駆動装置1の圧電素子3を、第2ブロック3bまでを完全に分極できる分極電圧Vb(V)によってさらに分極する。そして、再度、定格電圧の駆動電圧による振動型駆動装置1の駆動速度を測定する。すると、振動型駆動装置1の駆動速度分布は、図6に示すように、第2ブロック3bの分極による振動の増加分だけ上積みされた分布となる。 Here, when the lower limit of the allowable range of the driving speed of the vibration type driving device 1 is 7.0 mm / sec, a product group in the range indicated by hatching in the figure having a driving speed higher than this value is regarded as an acceptable product. The other piezoelectric elements 3 of the vibration type driving device 1 are further polarized by a polarization voltage Vb (V) that can completely polarize the second block 3b. Then, again, the driving speed of the vibration type driving device 1 with the driving voltage of the rated voltage is measured. Then, as shown in FIG. 6, the driving speed distribution of the vibration type driving device 1 is a distribution that is stacked by an increase in vibration due to the polarization of the second block 3 b.
 ここでも、下限値(7.0mm/sec)以上の駆動速度を有する斜線で示した範囲の製品群を合格品とし、残りの製品の圧電素子3を、第3ブロック3cまで完全に分極できる分極電圧Vc(V)によってさらに分極する。すると、これらの振動型駆動装置1の駆動速度は、さらに上昇して図7に示すような分布を示す。 Here, too, the product group in the range indicated by the oblique line having the driving speed equal to or higher than the lower limit (7.0 mm / sec) is regarded as an acceptable product, and the piezoelectric element 3 of the remaining product can be polarized to the third block 3c completely. Further polarization is caused by the voltage Vc (V). Then, the driving speed of the vibration type driving device 1 further increases to show a distribution as shown in FIG.
 これらの振動型駆動装置1と先の2回の分極後に合格品とした振動型駆動装置1との全体の駆動速度は、図8に示すような分布となり、駆動速度のバラツキが小さい。図示した実施例では、元々の圧電素子3の伸縮特性のバラツキが比較的大きいものを示したが、圧電素子3の加工精度にあわせて、各ブロック3a,3b,3cの層の厚みta,tb,tcやそれぞれの積層数を選択することが望ましい。 The overall drive speed of the vibration type drive device 1 and the vibration type drive device 1 that has been accepted after the previous two polarizations has a distribution as shown in FIG. 8, and the drive speed variation is small. In the illustrated embodiment, the variation in expansion / contraction characteristics of the original piezoelectric element 3 is relatively large. However, the thicknesses ta and tb of the layers of the blocks 3a, 3b, and 3c are adjusted in accordance with the processing accuracy of the piezoelectric element 3. , Tc and the number of stacked layers are preferably selected.
 また、本実施形態では、層の厚みta,tb,tcによって各ブロック3a,3b,3cが分極される電圧を設定しているが、ブロック3a,3b,3cの層の厚みta,tb,tcを一定とし、圧電材料8の組成を変えることでも、各ブロック3a,3b,3cが分極される電圧を異ならせることができる。 In this embodiment, the voltage at which the blocks 3a, 3b, 3c are polarized is set by the layer thicknesses ta, tb, tc, but the layer thicknesses ta, tb, tc of the blocks 3a, 3b, 3c are set. The voltage at which the blocks 3a, 3b, and 3c are polarized can also be varied by changing the composition of the piezoelectric material 8 while keeping the constant.
 一般に、圧電材料の中でも、キュリー温度が低いソフト材と呼ばれるものは抗電界(分極を開始する電界強度)が低く、キュリー温度が高いハード材と呼ばれるものは抗電界が高いことが知られている。よって、例えば、第1ブロック3aにソフト材、第3ブロック3cにハード材、第2ブロック3bにその中間の圧電材料を使用すれば、図4と同様の分極処理電圧と基準変位量との関係が得られる。もちろん、ブロック3a,3b,3cの層の厚みta,tb,tcを変えた上で、さらに、圧電材料8の組成を異ならせてもよい。 In general, among piezoelectric materials, what is called a soft material having a low Curie temperature has a low coercive electric field (electric field intensity at which polarization starts), and what is called a hard material having a high Curie temperature has a high coercive electric field. . Therefore, for example, if a soft material is used for the first block 3a, a hard material is used for the third block 3c, and an intermediate piezoelectric material is used for the second block 3b, the relationship between the polarization processing voltage and the reference displacement amount similar to FIG. Is obtained. Of course, the composition of the piezoelectric material 8 may be further varied after changing the thicknesses ta, tb, tc of the layers of the blocks 3a, 3b, 3c.
 さらに、図9に、本発明の第3実施形態の圧電素子3の構成を示す。本実施形態の圧電素子3は、厚みtaの小さい層を積層してなる第1ブロック3aと、厚みtbの大きい層を積層してなる第2ブロック3bとの2つのブロックからなり、2つのブロック3a,3bの圧電材料8の組成は同じである。 Further, FIG. 9 shows the configuration of the piezoelectric element 3 according to the third embodiment of the present invention. The piezoelectric element 3 according to this embodiment includes two blocks, a first block 3a formed by stacking layers having a small thickness ta, and a second block 3b formed by stacking layers having a large thickness tb. The compositions of the piezoelectric materials 8 of 3a and 3b are the same.
 本実施形態では、両ブロック3a,3bを完全に分極したとき、圧電素子3全体の基準変位量において、高い電圧で分極される第2ブロック3bの寄与分が、低い電圧で分極される第3ブロック3aの寄与分より大きくなるように設計されている。 In the present embodiment, when both the blocks 3a and 3b are completely polarized, the contribution of the second block 3b polarized at a high voltage in the reference displacement amount of the entire piezoelectric element 3 is the third polarized at a low voltage. It is designed to be larger than the contribution of the block 3a.
 本実施形態では、両ブロック3a,3bを完全に分極した後、逆極性の分極処理電圧を段階的に印加することで、図10に示すように、圧電素子3の基準変位量に3つの安定状態が得られる。具体的には、両ブロック3a,3bを完全に分極した圧電素子3の基準変位量が第1の安定状態であり、この基準変位量が大きすぎる場合、第1ブロック3aの分極が消滅するだけの、予め分極したときと逆方向の分極処理電圧Van(V)を印加することで、第2ブロック3bの伸縮量だけに依存する基準変位量の第2の安定状態を得ることができる。さらに、この基準変位量でも大きすぎる場合、第1ブロック3aを逆極性に分極でき、且つ、第2ブロック3bの分極が消滅しない電圧の分極処理電圧Aap(V)を印加することで、第1ブロック3cを第2ブロック3bと逆方向に伸縮するように分極させることができる。これにより、圧電素子3全体の基準変位量は、第2ブロック3bの伸縮量から第1ブロック3aの伸縮量を差し引いた値となる。 In the present embodiment, after both blocks 3a and 3b are completely polarized, a polarization processing voltage of opposite polarity is applied in a stepwise manner so that the reference displacement amount of the piezoelectric element 3 is reduced to three stable values as shown in FIG. A state is obtained. Specifically, the reference displacement amount of the piezoelectric element 3 in which both the blocks 3a and 3b are completely polarized is in the first stable state. If this reference displacement amount is too large, the polarization of the first block 3a only disappears. By applying a polarization processing voltage Van (V) in the opposite direction to that when prepolarized, a second stable state with a reference displacement amount that depends only on the amount of expansion / contraction of the second block 3b can be obtained. Furthermore, if this reference displacement amount is too large, the first block 3a can be polarized in the reverse polarity, and the polarization processing voltage Aap (V) having a voltage at which the polarization of the second block 3b does not disappear can be applied to the first block 3a. The block 3c can be polarized so as to expand and contract in the opposite direction to the second block 3b. Accordingly, the reference displacement amount of the entire piezoelectric element 3 is a value obtained by subtracting the expansion / contraction amount of the first block 3a from the expansion / contraction amount of the second block 3b.
 第2ブロック3bの分極を消滅させるさらに高い分極処理電圧Vbn(V)を印加すると圧電素子3の変位方向が逆転する。基準変位量の絶対値だけを見ればこの状態を第4の安定状態として使用することもできるが、振動型駆動装置1に組み込んだ状態では、圧電素子3の伸縮方向の逆転は、駆動方向の反転を意味するので、駆動回路の極性を反転する必要が生じるので注意が必要である。 When a higher polarization voltage Vbn (V) that eliminates the polarization of the second block 3b is applied, the displacement direction of the piezoelectric element 3 is reversed. If only the absolute value of the reference displacement amount is seen, this state can be used as the fourth stable state. However, in the state incorporated in the vibration type driving device 1, the reversal of the expansion / contraction direction of the piezoelectric element 3 is caused in the driving direction. Since it means inversion, it is necessary to reverse the polarity of the drive circuit, so care must be taken.

Claims (8)

  1.  完全に分極できる電圧が異なる複数の圧電材料の層を積層してなる圧電素子を有することを特徴とする振動型駆動装置。 A vibration type driving device having a piezoelectric element formed by laminating a plurality of layers of piezoelectric materials having different voltages that can be completely polarized.
  2.  前記複数の圧電材料の層は、異なる厚みを有する層を含むことを特徴とする請求項1に記載の振動型駆動装置。 The vibration type driving device according to claim 1, wherein the layers of the plurality of piezoelectric materials include layers having different thicknesses.
  3.  前記圧電材料の複数の層は、異なる抗電界を有する圧電材料の層を含むことを特徴とする請求項1または2に記載の振動型駆動装置。 3. The vibration type driving device according to claim 1, wherein the plurality of layers of the piezoelectric material include layers of piezoelectric materials having different coercive electric fields.
  4.  圧電素子に印加する分極処理電圧を、前記圧電素子が完全に分極するよりも低い電圧から開始し、所望の伸縮特性が得られるまで、段階的に上昇させることを特徴とする圧電素子の調整方法。 A method for adjusting a piezoelectric element, characterized in that a polarization treatment voltage applied to the piezoelectric element starts from a voltage lower than that at which the piezoelectric element is completely polarized and is increased stepwise until a desired expansion / contraction characteristic is obtained. .
  5.  前記圧電素子は予め分極されており、前記分極処理電圧は、前記圧電素子を逆方向に分極する電圧であることを特徴とする請求項4に記載の圧電素子の調整方法。 5. The method of adjusting a piezoelectric element according to claim 4, wherein the piezoelectric element is previously polarized, and the polarization processing voltage is a voltage that polarizes the piezoelectric element in a reverse direction.
  6.  前記圧電素子は、複数の異なる厚みを有する層を積層してなることを特徴とする請求項4または5に記載の圧電素子の調整方法。 The method of adjusting a piezoelectric element according to claim 4 or 5, wherein the piezoelectric element is formed by laminating a plurality of layers having different thicknesses.
  7.  前記圧電素子は、複数の異なる抗電界を有する圧電材料の層を積層してなることを特徴とする請求項4から6のいずれかに記載の圧電素子の調整方法。 The method for adjusting a piezoelectric element according to any one of claims 4 to 6, wherein the piezoelectric element is formed by laminating a plurality of layers of piezoelectric materials having different coercive electric fields.
  8.  圧電素子を駆動源として移動体を変位させる振動型駆動装置の調整方法であって、
     請求項4から7のいずれかに記載の方法で圧電素子を調整し、
     前記所望の伸縮特性は、前記移動体の変位量によって確認することを特徴とする振動型駆動装置の調整方法。
    An adjustment method of a vibration type driving device that displaces a moving body using a piezoelectric element as a driving source,
    A piezoelectric element is adjusted by the method according to any one of claims 4 to 7,
    The adjustment method of the vibration type driving device, wherein the desired expansion / contraction characteristic is confirmed by a displacement amount of the moving body.
PCT/JP2009/051357 2008-02-12 2009-01-28 Oscillatory-type drive device, and method for adjusting piezoelectric element and the oscillatory-type drive device WO2009101858A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009553388A JP5526786B2 (en) 2008-02-12 2009-01-28 Manufacturing method of vibration type driving device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008030076 2008-02-12
JP2008-030076 2008-02-12

Publications (1)

Publication Number Publication Date
WO2009101858A1 true WO2009101858A1 (en) 2009-08-20

Family

ID=40956888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051357 WO2009101858A1 (en) 2008-02-12 2009-01-28 Oscillatory-type drive device, and method for adjusting piezoelectric element and the oscillatory-type drive device

Country Status (2)

Country Link
JP (1) JP5526786B2 (en)
WO (1) WO2009101858A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010161286A (en) * 2009-01-09 2010-07-22 Murata Mfg Co Ltd Laminated piezoelectric element and method of manufacturing the same
JP2012528475A (en) * 2009-05-29 2012-11-12 エプコス アーゲー Piezoelectric element
JP2013518422A (en) * 2010-01-27 2013-05-20 エプコス アクチエンゲゼルシャフト Piezoelectric element
JP2013229663A (en) * 2012-04-24 2013-11-07 Kyocera Corp Piezoelectric vibration element, piezoelectric vibration device and portable terminal each using the same
CN107851711A (en) * 2015-08-14 2018-03-27 大陆汽车有限公司 Piezoelectric device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0750437A (en) * 1990-11-30 1995-02-21 Ngk Spark Plug Co Ltd Compound piezoelectric material
JP2001077438A (en) * 1999-09-07 2001-03-23 Matsushita Electric Ind Co Ltd Piezoelectric element, ink-jet recorder head and manufacture thereof
JP2001277525A (en) * 1999-12-27 2001-10-09 Seiko Epson Corp Method for manufacturing piezoelectric vibrator unit and liquid jet head, piezoelectric vibrator unit, and liquid jet head
JP2002118302A (en) * 2000-10-10 2002-04-19 Japan Science & Technology Corp Piezoelectric actuator and its manufacturing method
JP2003347622A (en) * 2002-03-18 2003-12-05 Seiko Epson Corp Manufacturing method of piezoelectric element and piezoelectric element, manufacturing method of electrostrictive actuator and electrostrictive actuator, and manufacturing method of liquid jet head and liquid jet head

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3879685B2 (en) * 2002-03-18 2007-02-14 セイコーエプソン株式会社 Piezoelectric element, piezoelectric actuator, and liquid jet head
JP2004274029A (en) * 2003-02-19 2004-09-30 Denso Corp Piezoelectric actuator
JP4628017B2 (en) * 2003-05-22 2011-02-09 セイコーインスツル株式会社 Multilayer piezoelectric element, ultrasonic motor, electronic device, stage, and multilayer piezoelectric element manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0750437A (en) * 1990-11-30 1995-02-21 Ngk Spark Plug Co Ltd Compound piezoelectric material
JP2001077438A (en) * 1999-09-07 2001-03-23 Matsushita Electric Ind Co Ltd Piezoelectric element, ink-jet recorder head and manufacture thereof
JP2001277525A (en) * 1999-12-27 2001-10-09 Seiko Epson Corp Method for manufacturing piezoelectric vibrator unit and liquid jet head, piezoelectric vibrator unit, and liquid jet head
JP2002118302A (en) * 2000-10-10 2002-04-19 Japan Science & Technology Corp Piezoelectric actuator and its manufacturing method
JP2003347622A (en) * 2002-03-18 2003-12-05 Seiko Epson Corp Manufacturing method of piezoelectric element and piezoelectric element, manufacturing method of electrostrictive actuator and electrostrictive actuator, and manufacturing method of liquid jet head and liquid jet head

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010161286A (en) * 2009-01-09 2010-07-22 Murata Mfg Co Ltd Laminated piezoelectric element and method of manufacturing the same
JP2012528475A (en) * 2009-05-29 2012-11-12 エプコス アーゲー Piezoelectric element
JP2013518422A (en) * 2010-01-27 2013-05-20 エプコス アクチエンゲゼルシャフト Piezoelectric element
US9209382B2 (en) 2010-01-27 2015-12-08 Epcos Ag Piezoelectric component
JP2013229663A (en) * 2012-04-24 2013-11-07 Kyocera Corp Piezoelectric vibration element, piezoelectric vibration device and portable terminal each using the same
CN107851711A (en) * 2015-08-14 2018-03-27 大陆汽车有限公司 Piezoelectric device

Also Published As

Publication number Publication date
JP5526786B2 (en) 2014-06-18
JPWO2009101858A1 (en) 2011-06-09

Similar Documents

Publication Publication Date Title
JP5526786B2 (en) Manufacturing method of vibration type driving device
Bruno et al. Properties of piezoceramic materials in high electric field actuator applications
CN108463893B (en) Method for controlling an electromechanical element
WO2009107488A1 (en) Variable-capacitance element, method for controlling variable-capacitance element, electronic device and communication mobile apparatus
CN107438942B (en) The control method of ultrasonic motor and corresponding control mechanism
Wang et al. A low-working-field (2 kV/mm), large-strain (> 0.5%) piezoelectric multilayer actuator based on periodically orthogonal poled PZT ceramics
Li et al. Giant actuation strain nearly 0.6% in a periodically orthogonal poled lead titanate zirconate ceramic via reversible domain switching
JP2012009786A (en) Memory device
JP5743532B2 (en) Driving method of piezoelectric device
WO2015178196A1 (en) Piezoelectric thin film, and piezoelectric thin film element
Islam et al. Piezoelectric creep in LiNbO3, PMN-PT and PZT-5A at low temperatures
JP4892661B2 (en) Ultrasonic motor vibrator
Uchino High-Power Piezoelectrics and Loss Mechanisms
JP2006066655A (en) Driving method and driving device for electromechanical energy transducer
JP6638124B2 (en) Stage device and drive mechanism used for same
US9287489B1 (en) Piezoelectronic transistor with co-planar common and gate electrodes
JPH06232469A (en) Driving method of piezoelectric actuator
JP2013140852A5 (en) Piezoelectric element driving method and liquid ejecting apparatus
Li et al. Domain reorientation of piezoelectric bending actuators
Kadota et al. Fatigue and retention properties of shape memory piezoelectric actuator with non-180° domain switching
KR102176109B1 (en) Setting Method of Exchange Bias Field
US9755138B2 (en) Method for producing an electronic component
JPH08293632A (en) Bimorph piezoelectric element and manufacture thereof
WO2005064699A1 (en) Piezoelectric device
JP2006140342A (en) Piezoelectric actuator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09710483

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009553388

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09710483

Country of ref document: EP

Kind code of ref document: A1