WO2009101696A1 - Method for operating eye ball movement tracking device with visual axis and light beam projection axis aligned - Google Patents

Method for operating eye ball movement tracking device with visual axis and light beam projection axis aligned Download PDF

Info

Publication number
WO2009101696A1
WO2009101696A1 PCT/JP2008/052468 JP2008052468W WO2009101696A1 WO 2009101696 A1 WO2009101696 A1 WO 2009101696A1 JP 2008052468 W JP2008052468 W JP 2008052468W WO 2009101696 A1 WO2009101696 A1 WO 2009101696A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
patient
visual axis
eye
light source
Prior art date
Application number
PCT/JP2008/052468
Other languages
French (fr)
Japanese (ja)
Inventor
Hidekazu Hirokawa
Original Assignee
Hidekazu Hirokawa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hidekazu Hirokawa filed Critical Hidekazu Hirokawa
Priority to PCT/JP2008/052468 priority Critical patent/WO2009101696A1/en
Priority to DE112008003724T priority patent/DE112008003724T5/en
Publication of WO2009101696A1 publication Critical patent/WO2009101696A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/113Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining or recording eye movement

Definitions

  • the present invention relates to an operating method of a visual axis irradiation axis coaxial tracking device for eye movement.
  • An apparatus for performing refractive correction surgery is provided with a device for tracking the movement of the patient's eyeball in order to correct the deviation of the irradiation position of the therapeutic laser due to the movement of the patient's eye during treatment.
  • the center position of the pupil of the patient's eye is detected from the eyeball image captured by a video camera or the like, and the patient's eye is tracked (for example, see Patent Document 1)
  • electro-oculography EOG method
  • the conventional eyeball tracking device for example, Patent Document 1 or Patent Document 2 only captures the patient's eye movement in a plane, and when the visual axis of the patient's eye rotates in three dimensions, an actual therapeutic laser is used.
  • a problem eccentric irradiation
  • a deviation occurs between the irradiation position and the intended laser irradiation position and a deviation between the two axial directions.
  • An object of the present invention is to make the actual laser irradiation position and irradiation axis direction coincide with the visual axis of the patient's eye even when the visual axis of the patient's eye rotates in three dimensions in view of the problems of the above-described conventional technology. It is to provide a method of operating a possible visual axis irradiation axis coaxial tracking device.
  • the operation method of the visual axis irradiation axis coaxial tracking device is based on a detection unit for specifying the planar position of the anterior segment of the patient's eye and the planar position information of the anterior segment acquired by the detection unit.
  • An arithmetic unit for calculating the rotation angle of the visual axis of the patient's eye, a beam irradiation light source, two sets of two-axis galvanomirrors disposed on the optical axis of the beam irradiation light source, and a galvanomirror disposed in front of the patient's eyes Comprising a concave mirror for guiding a beam passing through the patient's eye, and a control unit for controlling two sets of two-axis galvanomirrors based on the calculation result calculated by the calculation unit.
  • two sets of two-axis galvanometer mirrors are controlled to generate an apparent displacement of the light source position with respect to the concave mirror and a deflection of the beam irradiation direction, and thereby the beam irradiation direction irradiated by the beam irradiation light source is determined by the patient. Move in the direction of the visual axis of the eye And it said that to Itasa.
  • the optical axis of the beam irradiation light source controls the axis of the beam irradiation side to move and rotate in accordance with the rotation of the visual axis of the patient's eye, and the actual laser irradiation position and irradiation direction completely match the visual axis of the patient's eye. Will do.
  • FIG. 3 is a configuration diagram of a visual axis irradiation axis coaxial tracking device according to principle 1.
  • FIG. 5 is an optical calculation drawing of a light guide unit using two biaxial galvanometer mirrors and a concave mirror half mirror in FIG. 4.
  • Visual axis rotation angle determination method It is a block diagram of a visual axis irradiation axis coaxial tracking device according to principle 2. It is an optical calculation drawing regarding the light guide part and the detection part in the apparatus of FIG.
  • ⁇ Visual axis rotation angle and corneal vertex position determination method Principle 1>
  • One method (principle 1) for determining the visual axis rotation angle and the corneal apex position will be described. This is two data sets obtained from a detection member placed coaxially with the observation member for the operator, ie, (a set of pupil center position and eyeball rotation point position) or (corneal ring center position and eyeball rotation point) This is a method of calculating using any one of a pair with a position). Regardless of which set is used, the calculation principle is exactly the same. In the following description, a case where a set of a pupil center position and an eyeball rotation point position is used will be described.
  • FIG. 1 shows an image of an anterior segment of a patient's eye taken by a video camera or the like of the detection member 6 shown in FIG. 4.
  • the central portion plane position information of the pupil
  • the region of interest is divided into two parts (plane plane position information).
  • marks may be attached to two positions on the face that are symmetrical across the eyeball.
  • the face position measurement is a substitute for the planar position of the eyeball rotation point, which is the original purpose.
  • the face position information is obtained by obtaining position information of two symmetrical points across the eyeball, and by setting the midpoint of the two points to F, the twist / rotation component of the face is canceled and only the translation component is obtained.
  • This F is used as a substitute for the rotation point position.
  • the rotation point F and the pupil center position P at the tracking start time are set as F 0 (0,0) and P 0 (0,0), respectively. Further, when the rotation point position when the eyeball moves after a certain elapsed time t after the start of tracking is Ft (f xt , f yt ) and the pupil center position is Pt (p xt , p yt ), the elapsed time t
  • the vector direction of (pupil center position Pt ⁇ rotation point position Ft) is the rotation direction of the visual axis.
  • FIG. 2 is a cross-sectional view taken along the visual axis rotation direction in FIG.
  • Each of the pupil center position and the corneal apex position rotates with a visual axis rotation angle ( ⁇ ) with respect to the Z axis.
  • r (constant) is the distance between the rotation point and pupil center of the patient's eye
  • R (constant) is the distance between the rotation point and corneal apex
  • the corneal apex position (K) is calculated.
  • Formula 1: r * sin ⁇ (PF)
  • Formula 2: (K ⁇ F) (R / r) * (PF)
  • FIG. 3A shows a state observed by the detection member 30 placed coaxially with the irradiation beam when the aiming light source 16 shown in FIG.
  • the visual axis of the patient's eye is deflected, a relative shift is observed in the movement of the corneal contour of the patient's eye and the movement of the reflected light on the corneal surface.
  • FIG. 3B is a cross-sectional view taken along a plane including the visual axis of the patient's eyeball 20 and parallel to the irradiation beam, and the radius of curvature of the corneal surface of the patient's eye is c (constant), Assuming that the distance between the center of gravity and the apex of the cornea is d (constant) and the visual axis of the patient's eye is deflected by an angle of ⁇ relative to the irradiation beam direction, irradiation from the corneal ring center of gravity of the cornea reflection center of the patient's eye The shift amount Q projected in the plane perpendicular to the beam axis can be obtained by Equation 3.
  • Equation 3: Q (cd) * sin ⁇ Therefore, by measuring the deviation amount Q from the corneal ring center of gravity of the corneal reflection center of the patient's eye, the relative deviation angle of the visual axis of the patient's eye can be obtained.
  • FIG. 4 shows a configuration of an example of the visual axis rotation axis and corneal apex position determining method: the visual axis irradiation axis coaxial tracking device according to Principle 1.
  • the visual axis irradiation axis coaxial tracking device of the present embodiment is a light guide 4 comprising a beam irradiation light source 4 such as a gas laser, a first two-axis galvanometer mirror 10, a second two-axis galvanometer mirror 11, and a concave mirror half mirror 12.
  • the light unit 13 the detection member 6 such as a video camera, the calculation unit 7 for calculating the visual axis rotation angle and the corneal apex position of the patient's eye, and the control unit 8 for controlling the beam irradiation light source 4 and the light guide unit 13.
  • an observation member 9 such as an observation telescope for observing the patient's eyes.
  • the concave mirror half mirror 12 is provided on the Z axis.
  • the detection member 6 such as a video camera is installed on the Z axis between the concave mirror half mirror 12 and the observation member 9.
  • the beam irradiated from the beam irradiation light source 4 is reflected by the first two-axis galvanometer mirror 10 having a fulcrum on its axis, and is installed so as to face the first two-axis galvanometer mirror 10. Head to the biaxial galvanometer mirror 11.
  • the beam further reflected by the second biaxial galvanometer mirror 11 is directed to the concave mirror half mirror 12 and finally guided to the eyeball 20 of the patient.
  • the calculation unit 7 is connected to the detection member 6, receives position information from the detection member 6, and calculates the visual axis rotation angle and the corneal apex position.
  • the control unit 8 connected to the calculation unit 7 controls the beam irradiation light source 4 and the light guide unit 13 based on the information obtained from the calculation unit 7.
  • FIG. 5 shows an optical calculation drawing of the light guide unit using two biaxial galvanometer mirrors and a concave mirror half mirror.
  • the deflection angle of the second two-axis galvanometer mirror 11 is determined so that the image of the fulcrum of the first two-axis galvanometer mirror 10 is at Lm (1), and is driven like that.
  • the beam emitted from the irradiation light source 4 passes through the point G, and it is driven as such.
  • This beam passes through K1 and also through F1. That is, the beam hits the apex of the cornea from the direction that coincides with the visual axis.
  • the conjugate point L2 (1) of the corneal vertex K1 exists on the extension of the line segment G ⁇ Lm (1).
  • the conjugate point L2 (2) of the corneal vertex K2 at this time is obtained on the extension of the line segment J ⁇ Lm (2).
  • L2 (1, 2,..., N) appropriately drives the first biaxial galvanometer mirror 10 and the second biaxial galvanometer mirror 11 and continues the tracking operation described above, whereby the beam irradiation device 4.
  • the conjugate point L2 (n) is distributed in a narrow range W (L2) on the optical axis of the beam corresponding to the locus of the corneal apex position K.
  • the position of the light source image created by the beam irradiation device is placed at the center of W (L2), so that the irradiation beam has the minimum defocus.
  • the visual axis can be tracked three-dimensionally from the coaxial direction.
  • the visual axis rotation angle and the corneal apex position of the patient's eye are calculated by the calculation unit 7 based on the position information acquired by the detection member 6.
  • the information calculated by the calculation unit 7 is transmitted to the control unit 8, and the control unit 8 controls the light source 4 for beam irradiation and the light guide unit 13 for guiding the beam to the patient's eye.
  • the light guide unit 13 including the first biaxial galvano mirror 10, the second biaxial galvano mirror 11, and the concave mirror half mirror 12 is controlled.
  • the irradiation direction of the beam so as to coincide with the visual axis rotation angle ⁇ , it is possible to always irradiate the apex of the cornea coaxially with the visual axis of the patient's eyeball 20.
  • the intended irradiation position and the visual axis direction on the patient's cornea are always accurately identified. In addition, it becomes possible to track three-dimensionally.
  • the light source 4 for beam irradiation may be a semiconductor light emitting element such as a light emitting diode using spontaneous emission light or a semiconductor laser using stimulated emission light.
  • two biaxial galvanometer mirrors and a concave mirror half mirror are used as a light guide for guiding the beam irradiated from the beam irradiation light source 4 to the eyeball 20 of the patient.
  • a half mirror with a wedge-shaped angle may be used.
  • a convex lens may be used instead of the concave mirror, or the beam from the beam irradiation light source 4 may be guided to the patient's eyeball 20 using a polygon mirror, a prism, or the like.
  • a device for changing the image formation position of the light source 4 for beam irradiation is added.
  • the imaging optical system lens 14 inside the beam irradiation light source 4 is moved in the optical axis direction to adjust the imaging position of the beam.
  • a half mirror is provided between the beam irradiation light source 4 and the first galvanometer mirror 10, and a parallel vibration plane mirror 15 is installed on the reflection optical axis of the half mirror, and the optical path is reciprocated.
  • the optical path length of the beam may be adjusted to eliminate the defocus.
  • FIG. 8 shows a configuration of an example of the visual axis irradiation axis coaxial tracking device according to the visual axis rotation angle determination method: Principle 2.
  • the visual axis irradiation axis coaxial tracking device in this embodiment is a light guide comprising a beam irradiation light source 4 such as a gas laser, a first two-axis galvanometer mirror 10, a second two-axis galvanometer mirror 11, and a concave mirror half mirror 12.
  • a detection member 30 such as a video camera
  • a calculation unit 7 that calculates a deviation Q from the geometric center of gravity of the corneal ring part and the center of corneal reflection light from the corneal ring part
  • a beam irradiation light source 4 A control unit 8 that controls the light guide unit 13 and an observation member 9 such as an observation telescope for observing the aiming light source 16 and the patient's eye are provided.
  • the concave mirror half mirror 12 is provided on the Z axis.
  • the beam irradiated from the beam irradiation light source 4 is reflected by the first two-axis galvanometer mirror 10 having a fulcrum on its axis, and is installed so as to face the first two-axis galvanometer mirror 10. Head to the biaxial galvanometer mirror 11.
  • the beam further reflected by the second biaxial galvanometer mirror 11 is directed to the concave mirror half mirror 12 and finally guided to the eyeball 20 of the patient.
  • the detection member 30 such as a video camera is installed on the optical axis between the beam irradiation light source 4 and the first two-axis galvanometer mirror 10.
  • the aiming light source 16 is provided on the optical axis connecting the first two-axis galvanomirror 10 and the detection member 30.
  • the light emitted from the aiming light source 16 follows the same optical path from the beam irradiation light source 4 to the patient's eyeball 20, is reflected by the eyeball 20, and then travels the same optical path in reverse to be detected by the detection member 30. Will be detected.
  • the calculation unit 7 is connected to the detection member 30 and receives positional information from the detection member 30 to calculate the displacement amount of the corneal ring center of gravity and the shift amount between the corneal reflection light center and the corneal ring center of gravity. .
  • the control unit 8 connected to the calculation unit 7 controls the beam irradiation light source 4 and the light guide unit 13 based on the information obtained from the calculation unit 7.
  • the present embodiment forms a Feedback-Loop as a whole.
  • FIG. 9 is an optical functional diagram of a light guide unit using two biaxial galvanometer mirrors and a concave mirror half mirror. It is assumed that the locus L1 ′ (n) of the conjugate point of the corneal ring center of gravity and the Lm curved surface formed by the second biaxial galvanometer mirror 11 are designed to overlap as much as possible.
  • the patient first fixes the fixation lamp 17 in the telescope direction on the Z axis, and the measurement position of the corneal ring center of gravity at this time by the detection member 30 is B0, and the corneal reflection light.
  • Q0 be the amount of deviation between the center and B0.
  • the center of gravity of the corneal ring portion is located at B1 at a certain time t.
  • the angle of the second biaxial galvanometer mirror 11 can be appropriately driven so that the center of gravity of the corneal limbus looks the same as B0 before the start of tracking when viewed from the detection member 30.
  • the angle of the first biaxial galvanometer mirror 10 has an arbitrary value. Even so, the tracking of the center of gravity of the limbus by the second biaxial galvanometer mirror 11 is hardly affected.
  • the corneal reflection light center and the corneal apex coincide with each other, and the irradiation beam continues to be irradiated while the positional relationship between the corneal apex and the corneal ring portion center of gravity is kept the same as the tracking start time.
  • the second biaxial galvanometer mirror 11 is additionally driven. And make corrections.
  • the light source 4 for beam irradiation may be a semiconductor light emitting element such as a light emitting diode using spontaneous emission light or a semiconductor laser using stimulated emission light.
  • a light guide unit composed of two biaxial galvanometer mirrors and a concave mirror half mirror is used as a light guide means for guiding the beam irradiated from the beam irradiation light source 4 to the eyeball 20 of the patient.
  • a half mirror with a wedge-shaped angle may be used.
  • a convex lens may be used instead of the concave mirror, or the beam from the beam irradiation light source 4 may be guided to the patient's eyeball 20 using a polygon mirror, a prism, or the like.
  • infrared light may be used for corneal ring detection
  • a wavelength with visible light may be used for corneal reflection detection

Abstract

An eye ball movement tracking device with the visual axis of the patient aligned with the light beam projection axis. The device is capable of projecting a beam of light aligned with the visual axis of a patient from the front under a cornea refraction correction operation toward a desired position on the cornea at all times even if the eye ball moves. While observing the position on a plane of the anterior ocular segment of the patient, the deflection angle of the visual axis of the patient and a desired position on the cornea are determined. According to the determination, a light guide unit using a concave mirror for directing the beam to the eye ball and two two-axis galvanometer mirrors is controlled. Thus, a projected beam aligned with the visual axis of the patient can be directed to the desired position on the cornea at all times.

Description

眼球運動の視軸照射軸同軸化追尾装置の作動方法Actuation method of eye-coaxial tracking axis device for eye movement
 本発明は、眼球運動の視軸照射軸同軸化追尾装置の作動方法に関するものである。 The present invention relates to an operating method of a visual axis irradiation axis coaxial tracking device for eye movement.
 網膜上に像を正常に結ぶ事が出来ない屈折異常を矯正する手術において、現在では治療用レーザなどの照射装置で患者眼の角膜の中央を削り、角膜を適切な形状に成形する手術が行われることがある。 In surgery to correct refractive errors that cannot normally connect images on the retina, surgery is currently being performed to shape the cornea into an appropriate shape by shaving the center of the cornea of the patient's eye with an irradiation device such as a therapeutic laser. May be.
 屈折矯正手術を行うための装置には、治療中の患者眼の動きによる治療用レーザの照射位置のズレを補正するため、患者の眼球の動きを追尾する装置が設けられている。例えば、ビデオカメラ等で撮像した眼球の映像から患者眼の瞳孔中心位置を検出し、患者眼の動きを追尾するもの(例えば特許文献1参照)や患者眼周辺に電極を貼布後、患者眼角膜側と網膜側の電位差を検出する(これはelectro-oculography=EOG法と呼ばれている)ことにより、眼球位置を測定するものも提案されている(例えば特許文献2参照)。 An apparatus for performing refractive correction surgery is provided with a device for tracking the movement of the patient's eyeball in order to correct the deviation of the irradiation position of the therapeutic laser due to the movement of the patient's eye during treatment. For example, the center position of the pupil of the patient's eye is detected from the eyeball image captured by a video camera or the like, and the patient's eye is tracked (for example, see Patent Document 1) There has also been proposed a method for measuring an eyeball position by detecting a potential difference between the cornea side and the retina side (this is called electro-oculography = EOG method) (see, for example, Patent Document 2).
特開平9-149914号公報Japanese Patent Laid-Open No. 9-149914 特開2001-276111号公報Japanese Patent Laid-Open No. 2001-276111
 しかしながら、従来の眼球追尾装置は(例えば特許文献1あるいは特許文献2)、患者の眼球運動を平面的に捉えるのみであり、患者眼の視軸が3次元で回転した場合、実際の治療用レーザ照射位置と所期レーザ照射位置との間のズレ、及び両者の軸方向の間にズレが生じてしまうという問題(偏心照射)があった。 However, the conventional eyeball tracking device (for example, Patent Document 1 or Patent Document 2) only captures the patient's eye movement in a plane, and when the visual axis of the patient's eye rotates in three dimensions, an actual therapeutic laser is used. There has been a problem (eccentric irradiation) that a deviation occurs between the irradiation position and the intended laser irradiation position and a deviation between the two axial directions.
 本件発明の課題は、上記従来技術の問題点を鑑み、患者眼の視軸が3次元で回転しても、実際のレーザ照射位置と照射軸方向とを患者眼の視軸に合致させることが可能な視軸照射軸同軸化追尾装置の作動方法を提供することである。 An object of the present invention is to make the actual laser irradiation position and irradiation axis direction coincide with the visual axis of the patient's eye even when the visual axis of the patient's eye rotates in three dimensions in view of the problems of the above-described conventional technology. It is to provide a method of operating a possible visual axis irradiation axis coaxial tracking device.
 本件発明にかかる視軸照射軸同軸化追尾装置の作動方法は、患者眼の前眼部の平面位置を特定するための検出部と、検出部が取得した前眼部の平面位置情報を基に患者眼の視軸の回転角を算出する演算部と、ビーム照射用光源と、ビーム照射用光源の光軸上に配設した2組の2軸ガルバノミラーと患者の眼前に配設しガルバノミラーを経由したビームを患者眼に導く凹面鏡を備えることを特徴とする導光手段と、演算部が算出した演算結果に基づき2組の2軸ガルバノミラーを制御する制御部とを備え、制御部の制御に基づき2組の2軸ガルバノミラーを制御することで凹面鏡に対する見かけの光源位置の偏位とビーム照射方向の偏向とを発生させ、これによりビーム照射用光源が照射したビーム照射方向を前記患者眼の視軸方向に移動し合致させる事を特徴とする。 The operation method of the visual axis irradiation axis coaxial tracking device according to the present invention is based on a detection unit for specifying the planar position of the anterior segment of the patient's eye and the planar position information of the anterior segment acquired by the detection unit. An arithmetic unit for calculating the rotation angle of the visual axis of the patient's eye, a beam irradiation light source, two sets of two-axis galvanomirrors disposed on the optical axis of the beam irradiation light source, and a galvanomirror disposed in front of the patient's eyes Comprising a concave mirror for guiding a beam passing through the patient's eye, and a control unit for controlling two sets of two-axis galvanomirrors based on the calculation result calculated by the calculation unit. Based on the control, two sets of two-axis galvanometer mirrors are controlled to generate an apparent displacement of the light source position with respect to the concave mirror and a deflection of the beam irradiation direction, and thereby the beam irradiation direction irradiated by the beam irradiation light source is determined by the patient. Move in the direction of the visual axis of the eye And it said that to Itasa.
 本件発明の視軸照射軸同軸化追尾装置の作動方法によれば、患者眼の視軸が3次元で回転し、所期照射位置及び軸方向が変化しても、ビーム照射用光源の光軸上に配置された導光手段は患者眼の視軸回転に合わせてビーム照射側の軸を移動・回転させる制御を行い、実際のレーザ照射位置及び照射方向は患者眼の視軸と完全に合致することになる。 According to the operating method of the visual axis irradiation axis coaxial tracking device of the present invention, even if the visual axis of the patient's eye rotates in three dimensions and the intended irradiation position and axial direction change, the optical axis of the beam irradiation light source The light guiding means placed above controls the axis of the beam irradiation side to move and rotate in accordance with the rotation of the visual axis of the patient's eye, and the actual laser irradiation position and irradiation direction completely match the visual axis of the patient's eye. Will do.
患者眼の前眼部を検出部材6のビデオカメラ等で撮影した像である。It is the image which image | photographed the anterior eye part of a patient's eye with the video camera etc. of the detection member 6. FIG. 眼球を、視軸を含むZ軸と平行な平面で切った断面方向からみた図である。It is the figure which looked at the eyeball from the cross-sectional direction cut by the plane parallel to the Z-axis including the visual axis. 視軸回転角決定法:原理2を説明する図である。It is a figure explaining the visual axis rotation angle determination method: Principle 2. FIG. 視軸回転角及び角膜頂点位置決定法:原理1による視軸照射軸同軸化追尾装置の構成図である。Visual axis rotation angle and corneal vertex position determination method: FIG. 3 is a configuration diagram of a visual axis irradiation axis coaxial tracking device according to principle 1. 図4における、2個の2軸ガルバノミラー及び凹面鏡ハーフミラーを用いた導光部の光学計算作図である。FIG. 5 is an optical calculation drawing of a light guide unit using two biaxial galvanometer mirrors and a concave mirror half mirror in FIG. 4. デフォーカス解消手段を追加した視軸追尾装置の、ビーム照射光源4内部における光学計算作図である。It is an optical calculation drawing inside the beam irradiation light source 4 of the visual axis tracking device to which defocus cancellation means is added. デフォーカス解消手段を追加した視軸追尾装置の導光部の光学計算作図である。It is optical calculation drawing of the light guide part of the visual axis tracking device which added the defocus cancellation | release means. 視軸回転角決定法:原理2による視軸照射軸同軸化追尾装置の構成図である。Visual axis rotation angle determination method: It is a block diagram of a visual axis irradiation axis coaxial tracking device according to principle 2. 図8の装置における、導光部及び検出部に関する光学計算作図である。It is an optical calculation drawing regarding the light guide part and the detection part in the apparatus of FIG.
符号の説明Explanation of symbols
1  患者眼前眼部像
2  瞳孔      
3  虹彩
4  固有の照射方向偏向装置を内在するビーム照射用光源
5  ハーフミラー
6、30  ビデオカメラ等の検出部材
7  演算部
8  制御部
9  観察望遠鏡等の観察部材
10  第1の2軸ガルバノミラー
11  第2の2軸ガルバノミラー
12  凹面鏡ハーフミラー
13  導光部
14  ビーム照射用光源内部の固有の結像光学系レンズ
15  平行振動平面鏡
16  照準光源
17  固視灯
20  患者の眼球
α  視軸回転角
r  眼球の回旋点・瞳孔中心間距離
R  回旋点・角膜頂点間距離
c  角膜表面の曲率半径
d  角膜輪部重心・角膜頂点間距離
FC  回旋点
K1,K2  角膜頂点
A1  角膜反射光中心
B1  角膜輪部重心位置
L1(1)  回旋点F1の共役点 
L1′(1)  角膜輪部重心B1の共役点
L2(1)  角膜頂点K1の共役点
L2(2)  角膜頂点K2の共役点 
Lm  第2の2軸ガルバノミラーによって作られる所の“第1の2軸ガルバノミラーの支点の虚像”の軌跡がなす曲面
G、J  視軸の延長が凹面鏡ハーフミラーと交差した点
Ω  眼球の視軸と照射ビーム方向の間の相対的ズレ角
1 Patient's anterior eye image 2 Pupil
3 Iris 4 Beam irradiating light source 5 having inherent irradiation direction deflecting device 5 Mirrors 6 and 30 Detection member 7 such as video camera Calculation unit 8 Control unit 9 Observation member 10 such as observation telescope First biaxial galvanometer mirror 11 Second biaxial galvanometer mirror 12 Concave mirror half mirror 13 Light guide 14 Unique imaging optical system lens 15 in the beam irradiation light source 15 Parallel vibration plane mirror 16 Aiming light source 17 Fixation lamp 20 Eyeball α of patient Visual axis rotation angle r Distance between the rotation point of the eyeball and the center of the pupil R Distance between the rotation point and the corneal apex c Radius of curvature of the cornea surface d Center of gravity of the corneal portion / Distance between the corneal vertices FC Rotation point K1, K2 Corneal apex A1 Center of gravity position L1 (1) Conjugate point of rotation point F1
L1 '(1) Conjugate point L2 (1) of corneal ring center of gravity B1 Conjugate point L2 (2) of corneal vertex K1 Conjugate point of corneal vertex K2
Lm Curved surface G formed by the locus of the “virtual image of the fulcrum of the first two-axis galvano mirror” created by the second two-axis galvano mirror. Point where the extension of the visual axis intersects the concave mirror half mirror. Relative misalignment angle between axis and beam direction
 以下、本発明の実施形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
<視軸回転角及び角膜頂点位置決定法:原理1>
 視軸回転角及び角膜頂点位置決定法の一つ(原理1)について説明する。これは術者用の観察部材と同軸に置かれた検出部材から得られる2組のデータセット、即ち(瞳孔中心位置と眼球回旋点位置との組)または(角膜輪部中心位置と眼球回旋点位置との組)のいずれかを用いて算出する方法である。どちらの組を使っても、算出原理はまったく同様である。以下の説明では、瞳孔中心位置と眼球回旋点位置との組を使った場合について説明する。
<Visual axis rotation angle and corneal vertex position determination method: Principle 1>
One method (principle 1) for determining the visual axis rotation angle and the corneal apex position will be described. This is two data sets obtained from a detection member placed coaxially with the observation member for the operator, ie, (a set of pupil center position and eyeball rotation point position) or (corneal ring center position and eyeball rotation point) This is a method of calculating using any one of a pair with a position). Regardless of which set is used, the calculation principle is exactly the same. In the following description, a case where a set of a pupil center position and an eyeball rotation point position is used will be described.
 図1は患者眼の前眼部の像が図4記載の検出部材6のビデオカメラ等により撮影された様子であり、平面位置情報を得るために、中心部(瞳孔の平面位置情報)と周辺部(顔面の平面位置情報)に関心領域が2分割されている。さらに、顔面位置の検出を容易にするために、顔面の、眼球を挟んで対称な2点の位置にマークを貼り付けても良い。顔面位置測定は、本来の目的である眼球回旋点の平面位置の代用である。よって、顔面位置情報は、眼球を挟んで対称な2点の位置情報を入手し、その2点の中点をFとする事により、顔面の捻れ・回転成分をキャンセルし、平行移動成分のみを算出し、このFをもって回旋点位置の代用とする。 FIG. 1 shows an image of an anterior segment of a patient's eye taken by a video camera or the like of the detection member 6 shown in FIG. 4. In order to obtain plane position information, the central portion (plane position information of the pupil) and the periphery The region of interest is divided into two parts (plane plane position information). Furthermore, in order to facilitate the detection of the face position, marks may be attached to two positions on the face that are symmetrical across the eyeball. The face position measurement is a substitute for the planar position of the eyeball rotation point, which is the original purpose. Therefore, the face position information is obtained by obtaining position information of two symmetrical points across the eyeball, and by setting the midpoint of the two points to F, the twist / rotation component of the face is canceled and only the translation component is obtained. This F is used as a substitute for the rotation point position.
 追尾開始時点の回旋点F及び瞳孔中心位置Pをそれぞれ、F(0,0)、及びP(0,0)と置く。また、追尾開始後、ある経過時間t後に眼球が移動した時の回旋点位置をFt(fxt,fyt)及び瞳孔中心位置をPt(pxt,pyt)とした場合、経過時間tにおける(瞳孔中心位置Pt-回旋点位置Ft)のベクトル方向が、視軸の回転方向となる。 The rotation point F and the pupil center position P at the tracking start time are set as F 0 (0,0) and P 0 (0,0), respectively. Further, when the rotation point position when the eyeball moves after a certain elapsed time t after the start of tracking is Ft (f xt , f yt ) and the pupil center position is Pt (p xt , p yt ), the elapsed time t The vector direction of (pupil center position Pt−rotation point position Ft) is the rotation direction of the visual axis.
 図1における視軸回転方向に沿った断面から見た図が図2である。瞳孔中心位置及び角膜頂点位置はそれぞれ、Z軸に対して視軸回転角(α)をもって、回転している。ここで、患者眼の回旋点・瞳孔中心間距離をr(定数)、回旋点・角膜頂点間距離をR(定数)とし、下記数式1及び数式2を用いて患者眼の視軸回転角及び角膜頂点位置(K)を算出する。
数式1:r * sinα =(P-F)
数式2:(K-F)= (R/r)* (P-F)
FIG. 2 is a cross-sectional view taken along the visual axis rotation direction in FIG. Each of the pupil center position and the corneal apex position rotates with a visual axis rotation angle (α) with respect to the Z axis. Here, r (constant) is the distance between the rotation point and pupil center of the patient's eye, and R (constant) is the distance between the rotation point and corneal apex, and the visual axis rotation angle of the patient's eye and The corneal apex position (K) is calculated.
Formula 1: r * sin α = (PF)
Formula 2: (K−F) = (R / r) * (PF)
<視軸回転角決定法:原理2>
 次に、角膜反射光中心の角膜輪部重心からのズレ量を用いた眼球の視軸・照射ビーム方向間の相対的ズレ角の決定法について図3を用いて説明する。
<Visual axis rotation angle determination method: Principle 2>
Next, a method for determining the relative deviation angle between the visual axis of the eyeball and the irradiation beam direction using the deviation amount from the center of the corneal reflection light from the center of gravity of the corneal ring will be described with reference to FIG.
 図3(a)は、図8で示す照準光源16により患者の眼球20に照準光を照射した場合に、照射ビームと同軸に置かれた検出部材30で観察した様子を示す。
患者眼の視軸が偏向すると、患者眼の角膜輪郭の動きと角膜表面での反射光の動きに相対的なズレが観察される。
FIG. 3A shows a state observed by the detection member 30 placed coaxially with the irradiation beam when the aiming light source 16 shown in FIG.
When the visual axis of the patient's eye is deflected, a relative shift is observed in the movement of the corneal contour of the patient's eye and the movement of the reflected light on the corneal surface.
 図3(b)は患者の眼球20の視軸を含みかつ照射ビームと平行な平面で切った断面図であり、患者眼の角膜表面の曲率半径をc(定数)、患者眼の角膜輪部重心・角膜頂点間距離をd(定数)とし、患者眼の視軸が照射ビーム方向と相対的にΩの角度で偏向したとすると、患者眼の角膜反射中心の角膜輪部重心からの、照射ビーム軸に対する垂直な平面内に投影されたズレ量Qは、数式3により求めることができる。
数式3:Q=(c-d)*sinΩ
したがって、患者眼の角膜反射中心の角膜輪部重心からのズレ量Qを計測することにより、患者眼の視軸の相対的なズレ角を求めることが可能となる。
FIG. 3B is a cross-sectional view taken along a plane including the visual axis of the patient's eyeball 20 and parallel to the irradiation beam, and the radius of curvature of the corneal surface of the patient's eye is c (constant), Assuming that the distance between the center of gravity and the apex of the cornea is d (constant) and the visual axis of the patient's eye is deflected by an angle of Ω relative to the irradiation beam direction, irradiation from the corneal ring center of gravity of the cornea reflection center of the patient's eye The shift amount Q projected in the plane perpendicular to the beam axis can be obtained by Equation 3.
Formula 3: Q = (cd) * sinΩ
Therefore, by measuring the deviation amount Q from the corneal ring center of gravity of the corneal reflection center of the patient's eye, the relative deviation angle of the visual axis of the patient's eye can be obtained.
<原理1による視軸照射軸同軸化追尾装置>
 図4は、視軸回転角及び角膜頂点位置決定法:原理1による視軸照射軸同軸化追尾装置の一例の構成を示す。本実施例の視軸照射軸同軸化追尾装置は、ガスレーザなどのビーム照射用光源4と、第1の2軸ガルバノミラー10と第2の2軸ガルバノミラー11及び凹面鏡ハーフミラー12とからなる導光部13と、ビデオカメラ等の検出部材6と、患者眼の視軸回転角及び角膜頂点位置を算出する演算部7と、ビーム照射用光源4と導光部13とを制御する制御部8及び患者眼を観察するための観察望遠鏡などの観察部材9とを備える。
<Visual axis irradiation axis coaxial tracking device according to Principle 1>
FIG. 4 shows a configuration of an example of the visual axis rotation axis and corneal apex position determining method: the visual axis irradiation axis coaxial tracking device according to Principle 1. The visual axis irradiation axis coaxial tracking device of the present embodiment is a light guide 4 comprising a beam irradiation light source 4 such as a gas laser, a first two-axis galvanometer mirror 10, a second two-axis galvanometer mirror 11, and a concave mirror half mirror 12. The light unit 13, the detection member 6 such as a video camera, the calculation unit 7 for calculating the visual axis rotation angle and the corneal apex position of the patient's eye, and the control unit 8 for controlling the beam irradiation light source 4 and the light guide unit 13. And an observation member 9 such as an observation telescope for observing the patient's eyes.
 凹面鏡ハーフミラー12は、Z軸上に設けられる。 The concave mirror half mirror 12 is provided on the Z axis.
 ビデオカメラ等の検出部材6は、凹面鏡ハーフミラー12と観察部材9との間のZ軸上に設置される。 The detection member 6 such as a video camera is installed on the Z axis between the concave mirror half mirror 12 and the observation member 9.
 ビーム照射用光源4から照射されたビームは、その軸上に支点を置いた第1の2軸ガルバノミラー10によって反射され、第1の2軸ガルバノミラー10に対向するように設置した第2の2軸ガルバノミラー11に向かう。 The beam irradiated from the beam irradiation light source 4 is reflected by the first two-axis galvanometer mirror 10 having a fulcrum on its axis, and is installed so as to face the first two-axis galvanometer mirror 10. Head to the biaxial galvanometer mirror 11.
 第2の2軸ガルバノミラー11によってさらに反射されたビームは、凹面鏡ハーフミラー12に向かい、最終的には、患者の眼球20に導光される。 The beam further reflected by the second biaxial galvanometer mirror 11 is directed to the concave mirror half mirror 12 and finally guided to the eyeball 20 of the patient.
 演算部7は検出部材6に接続されており、検出部材6からの位置情報が入力され、視軸回転角と角膜頂点位置とを算出する。 The calculation unit 7 is connected to the detection member 6, receives position information from the detection member 6, and calculates the visual axis rotation angle and the corneal apex position.
 演算部7に接続した制御部8は、演算部7より得られた情報を基にビーム照射用光源4及び導光部13を制御する。 The control unit 8 connected to the calculation unit 7 controls the beam irradiation light source 4 and the light guide unit 13 based on the information obtained from the calculation unit 7.
 次に、本実施例にかかる2個の2軸ガルバノミラー及び凹面鏡ハーフミラーを導光手段として用いた患者眼の視軸の追尾機構について図5を用いて説明する。 Next, the tracking mechanism of the visual axis of the patient's eye using the two biaxial galvanometer mirrors and the concave mirror half mirror according to the present embodiment as light guiding means will be described with reference to FIG.
 図5は、2個の2軸ガルバノミラー及び凹面鏡ハーフミラーを用いた導光部の光学計算作図を示す。 FIG. 5 shows an optical calculation drawing of the light guide unit using two biaxial galvanometer mirrors and a concave mirror half mirror.
 眼球追尾を開始して、ある経過時間における眼球の回旋点がF1にある時、視軸の延長が凹面鏡ハーフミラー12と交差する点をGとする。このGと、F1の共役点L1(1)を結ぶ線分の延長が、第2の2軸ガルバノミラー11により写される第1の2軸ガルバノミラー10の支点の虚像の軌跡が作る曲面Lmとの交点をLm(1)とする。 When the eyeball tracking is started and the rotation point of the eyeball at a certain elapsed time is at F1, let G be the point where the extension of the visual axis intersects the concave mirror half mirror 12. A curved surface Lm formed by the extension of the line connecting G and the conjugate point L1 (1) of F1 is formed by the locus of the virtual image of the fulcrum of the first biaxial galvanometer mirror 10 that is copied by the second biaxial galvanometer mirror 11. Let Lm (1) be the intersection with.
 第2の2軸ガルバノミラー11の偏向角は、第1の2軸ガルバノミラー10の支点の像がLm(1)に来るようにただ1つ定まり、その様に駆動する。 The deflection angle of the second two-axis galvanometer mirror 11 is determined so that the image of the fulcrum of the first two-axis galvanometer mirror 10 is at Lm (1), and is driven like that.
 この時、照射用光源4から出たビームが点Gを通る様な第1の2軸ガルバノミラー10の偏向角がただ1つ定まり、その様に駆動する。このビームは、K1を通過しかつF1も通過する。
即ち、角膜頂点に対し、視軸に一致した向きからビームが当たることになる。
At this time, there is only one deflection angle of the first biaxial galvanometer mirror 10 such that the beam emitted from the irradiation light source 4 passes through the point G, and it is driven as such. This beam passes through K1 and also through F1.
That is, the beam hits the apex of the cornea from the direction that coincides with the visual axis.
 角膜頂点K1の共役点L2(1)は、線分G→Lm(1)の延長上に存在する。 The conjugate point L2 (1) of the corneal vertex K1 exists on the extension of the line segment G → Lm (1).
 次に、F1はそのままに、視軸が回転し瞳孔位置がPまで変位したとする。それに相当する視軸回転角が決まる。この時、新たな視軸の延長が凹面鏡ハーフミラー12と交差した点Jが求まる。JからL1(1)に向う線分の延長が曲面Lmと交差する点Lm(2)が決定する。 Next, it is assumed that the visual axis rotates and the pupil position is displaced to P while F1 remains unchanged. The corresponding visual axis rotation angle is determined. At this time, a point J at which the extension of the new visual axis intersects the concave mirror half mirror 12 is obtained. A point Lm (2) at which the extension of the line segment from J to L1 (1) intersects the curved surface Lm is determined.
 この時の角膜頂点K2の共役点L2(2)は、線分J→Lm(2)の延長上に求まる。L2(1,2,・・・n)は、第1の2軸ガルバノミラー10と第2の2軸ガルバノミラー11を適切に駆動し、上記の追尾操作を持続する事により、ビーム照射装置4と第1の2軸ガルバノミラー10の支点を結ぶ光軸上に常時写される。その結果として、共役点L2(n)は、角膜頂点位置Kの軌跡に対応してビームの光軸上のある狭い範囲W(L2)に分布する。 The conjugate point L2 (2) of the corneal vertex K2 at this time is obtained on the extension of the line segment J → Lm (2). L2 (1, 2,..., N) appropriately drives the first biaxial galvanometer mirror 10 and the second biaxial galvanometer mirror 11 and continues the tracking operation described above, whereby the beam irradiation device 4. On the optical axis connecting the fulcrum of the first two-axis galvanometer mirror 10. As a result, the conjugate point L2 (n) is distributed in a narrow range W (L2) on the optical axis of the beam corresponding to the locus of the corneal apex position K.
 以上から、角膜表面への光源の結像に関しわずかなデフォーカスを許す場合、ビーム照射装置が作る光源像位置をW(L2)の中心に置く事により、最小のデフォーカスを持って照射ビームが視軸を3次元的に同軸方向から追尾できる事になる。 From the above, when a slight defocus is allowed with respect to the image formation of the light source on the corneal surface, the position of the light source image created by the beam irradiation device is placed at the center of W (L2), so that the irradiation beam has the minimum defocus. The visual axis can be tracked three-dimensionally from the coaxial direction.
 患者眼の視軸回転角及び角膜頂点位置は、検出部材6により取得された位置情報を基に演算部7において算出される。演算部7で算出された情報は制御部8に伝達され、制御部8はビーム照射用光源4及び患者眼にビームを導くための導光部13を制御する。 The visual axis rotation angle and the corneal apex position of the patient's eye are calculated by the calculation unit 7 based on the position information acquired by the detection member 6. The information calculated by the calculation unit 7 is transmitted to the control unit 8, and the control unit 8 controls the light source 4 for beam irradiation and the light guide unit 13 for guiding the beam to the patient's eye.
 つまり、患者の眼球20が視軸回転角αをもって回転した際も、第1の2軸ガルバノミラー10と第2の2軸ガルバノミラー11及び凹面鏡ハーフミラー12からなる導光部13を制御し、視軸回転角αと一致する様にビームの照射方向を調節することで、ビームを常に患者の眼球20の視軸と同軸で角膜頂点に照射することができる。 That is, even when the patient's eyeball 20 is rotated with the visual axis rotation angle α, the light guide unit 13 including the first biaxial galvano mirror 10, the second biaxial galvano mirror 11, and the concave mirror half mirror 12 is controlled. By adjusting the irradiation direction of the beam so as to coincide with the visual axis rotation angle α, it is possible to always irradiate the apex of the cornea coaxially with the visual axis of the patient's eyeball 20.
 上述した検出部材6から制御部8によるビーム照射光源4及び導光部13の制御までの一連の流れを繰り返すことによって、常に正確に患者の角膜上の所期照射位置と視軸方向とを特定し、3次元的に追尾することが可能となる。 By repeating a series of processes from the detection member 6 to the control of the beam irradiation light source 4 and the light guide unit 13 by the control unit 8, the intended irradiation position and the visual axis direction on the patient's cornea are always accurately identified. In addition, it becomes possible to track three-dimensionally.
 ビーム照射用光源4は、自然放出光を利用した発光ダイオードや、誘導放出光を利用した半導体レーザなどの半導体発光素子を用いてもよい。 The light source 4 for beam irradiation may be a semiconductor light emitting element such as a light emitting diode using spontaneous emission light or a semiconductor laser using stimulated emission light.
 図4においては、ビーム照射用光源4から照射されたビームを患者の眼球20へと導く導光部として、2枚の2軸ガルバノミラーと凹面鏡ハーフミラーを用いているが、反射面以外の反射光による干渉を抑制するために、ハーフミラーにくさび状の角度をつけたものを用いてもよい。また、前記導光手段以外にも、凹面鏡の代わりに凸レンズを用いたり、多面鏡やプリズム等を用いてビーム照射用光源4からのビームを患者の眼球20に導いてもよい。 In FIG. 4, two biaxial galvanometer mirrors and a concave mirror half mirror are used as a light guide for guiding the beam irradiated from the beam irradiation light source 4 to the eyeball 20 of the patient. In order to suppress interference due to light, a half mirror with a wedge-shaped angle may be used. In addition to the light guiding means, a convex lens may be used instead of the concave mirror, or the beam from the beam irradiation light source 4 may be guided to the patient's eyeball 20 using a polygon mirror, a prism, or the like.
 前記角膜表面への光源の結像に関しデフォーカスを許容できない場合は、ビーム照射用光源4の結像位置を変更する装置等を追加する。 If a defocus is not allowed for the image formation of the light source on the corneal surface, a device for changing the image formation position of the light source 4 for beam irradiation is added.
 例えば、図6に示すように、ビーム照射用光源4の内部の結像光学系レンズ14を光軸方向に移動させ、ビームの結像位置を調整する。 For example, as shown in FIG. 6, the imaging optical system lens 14 inside the beam irradiation light source 4 is moved in the optical axis direction to adjust the imaging position of the beam.
 また、図7に示すように、ビーム照射用光源4と第1のガルバノミラー10間にハーフミラーを設け、ハーフミラーの反射光軸上に平行振動平面鏡15を設置し、光路を往復させることで、ビームの光路長を調節し、デフォーカスを解消してもよい。 Further, as shown in FIG. 7, a half mirror is provided between the beam irradiation light source 4 and the first galvanometer mirror 10, and a parallel vibration plane mirror 15 is installed on the reflection optical axis of the half mirror, and the optical path is reciprocated. The optical path length of the beam may be adjusted to eliminate the defocus.
<原理2による視軸照射軸同軸化追尾装置>
 図8は、視軸回転角決定法:原理2による視軸照射軸同軸化追尾装置の一例の構成を示す。本実施例における視軸照射軸同軸化追尾装置は、ガスレーザなどのビーム照射用光源4と、第1の2軸ガルバノミラー10と第2の2軸ガルバノミラー11及び凹面鏡ハーフミラー12からなる導光部13と、ビデオカメラ等の検出部材30と、角膜輪部の幾何学的重心及び角膜反射光中心の角膜輪部重心からのズレ量Qを算出する演算部7と、ビーム照射用光源4と導光部13とを制御する制御部8と、照準光源16及び患者眼を観察するための観察望遠鏡などの観察部材9とを備える。
<Visual axis irradiation axis coaxial tracking device based on Principle 2>
FIG. 8 shows a configuration of an example of the visual axis irradiation axis coaxial tracking device according to the visual axis rotation angle determination method: Principle 2. The visual axis irradiation axis coaxial tracking device in this embodiment is a light guide comprising a beam irradiation light source 4 such as a gas laser, a first two-axis galvanometer mirror 10, a second two-axis galvanometer mirror 11, and a concave mirror half mirror 12. Unit 13, a detection member 30 such as a video camera, a calculation unit 7 that calculates a deviation Q from the geometric center of gravity of the corneal ring part and the center of corneal reflection light from the corneal ring part, and a beam irradiation light source 4 A control unit 8 that controls the light guide unit 13 and an observation member 9 such as an observation telescope for observing the aiming light source 16 and the patient's eye are provided.
 凹面鏡ハーフミラー12は、Z軸上に設けられる。 The concave mirror half mirror 12 is provided on the Z axis.
 ビーム照射用光源4から照射されたビームは、その軸上に支点を置いた第1の2軸ガルバノミラー10によって反射され、第1の2軸ガルバノミラー10に対向するように設置した第2の2軸ガルバノミラー11に向かう。 The beam irradiated from the beam irradiation light source 4 is reflected by the first two-axis galvanometer mirror 10 having a fulcrum on its axis, and is installed so as to face the first two-axis galvanometer mirror 10. Head to the biaxial galvanometer mirror 11.
 第2の2軸ガルバノミラー11によってさらに反射されたビームは、凹面鏡ハーフミラー12に向かい、最終的には、患者の眼球20に導光される。 The beam further reflected by the second biaxial galvanometer mirror 11 is directed to the concave mirror half mirror 12 and finally guided to the eyeball 20 of the patient.
 一方、ビデオカメラ等の検出部材30は、ビーム照射用光源4と第1の2軸ガルバノミラー10との間の光軸上に設置されている。 On the other hand, the detection member 30 such as a video camera is installed on the optical axis between the beam irradiation light source 4 and the first two-axis galvanometer mirror 10.
 図8に示すように、第1の2軸ガルバノミラー10と検出部材30を結ぶ光軸上には、照準光源16が設けられている。 As shown in FIG. 8, the aiming light source 16 is provided on the optical axis connecting the first two-axis galvanomirror 10 and the detection member 30.
 照準光源16から照射された光は、ビーム照射用光源4から患者の眼球20までにいたる光路と同じ路を辿り、眼球20で反射された後、同じ光路を逆に辿って、検出部材30により検出されることになる。 The light emitted from the aiming light source 16 follows the same optical path from the beam irradiation light source 4 to the patient's eyeball 20, is reflected by the eyeball 20, and then travels the same optical path in reverse to be detected by the detection member 30. Will be detected.
 演算部7は検出部材30に接続されており、検出部材30からの位置情報が入力され、角膜輪部重心の変位量と角膜反射光中心・角膜輪部重心間からのズレ量とを算出する。 The calculation unit 7 is connected to the detection member 30 and receives positional information from the detection member 30 to calculate the displacement amount of the corneal ring center of gravity and the shift amount between the corneal reflection light center and the corneal ring center of gravity. .
 演算部7に接続した制御部8は、演算部7より得られた情報を基にビーム照射用光源4及び導光部13を制御する。 The control unit 8 connected to the calculation unit 7 controls the beam irradiation light source 4 and the light guide unit 13 based on the information obtained from the calculation unit 7.
 上述した構成とすることで、本実施例は、全体としてFeedback-Loopを形成することになる。 By adopting the above-described configuration, the present embodiment forms a Feedback-Loop as a whole.
 次に、本実施例にかかる2個の2軸ガルバノミラー及び凹面鏡ハーフミラーを導光手段として用いた患者眼の視軸の追尾機構について図9を用いて説明する。なお、図9において、図5と同じ符号を付した部分は略同一のものを示す。 Next, the tracking mechanism of the visual axis of the patient's eye using the two biaxial galvanometer mirrors and the concave mirror half mirror according to the present embodiment as light guiding means will be described with reference to FIG. In FIG. 9, the same reference numerals as those in FIG.
 図9は2個の2軸ガルバノミラー及び凹面鏡ハーフミラーを用いた導光部の光学機能図である。角膜輪部重心の共役点の軌跡L1'(n)と、第2の2軸ガルバノミラー11が作るLm曲面とは可能な限り重なる様に設計してあるものとする。また、追尾の開始時点で、患者は最初にZ軸上で望遠鏡方向にある固視灯17を固視し、検出部材30によるこの時点での角膜輪部重心の測定位置をB0、角膜反射光中心とB0とのズレ量をQ0と置く。 FIG. 9 is an optical functional diagram of a light guide unit using two biaxial galvanometer mirrors and a concave mirror half mirror. It is assumed that the locus L1 ′ (n) of the conjugate point of the corneal ring center of gravity and the Lm curved surface formed by the second biaxial galvanometer mirror 11 are designed to overlap as much as possible. At the start of tracking, the patient first fixes the fixation lamp 17 in the telescope direction on the Z axis, and the measurement position of the corneal ring center of gravity at this time by the detection member 30 is B0, and the corneal reflection light. Let Q0 be the amount of deviation between the center and B0.
 ある時刻tで、角膜輪部重心がB1に位置しているとする。
この時、検出部材30からみて、角膜輪部重心が追尾開始前のB0と同じに見えるように、第2の2軸ガルバノミラー11の角度を適切に駆動することができる。
Assume that the center of gravity of the corneal ring portion is located at B1 at a certain time t.
At this time, the angle of the second biaxial galvanometer mirror 11 can be appropriately driven so that the center of gravity of the corneal limbus looks the same as B0 before the start of tracking when viewed from the detection member 30.
 この場合、第1の2軸ガルバノミラー10の支点は、凹面鏡ハーフミラー12におけるB1の共役点あるいはその近傍に存在するので、第1の2軸ガルバノミラー10の角度が仮に任意の値を取っていたとしても、第2の2軸ガルバノミラー11による角膜輪部重心の追尾には、ほとんど影響を与えない。 In this case, since the fulcrum of the first biaxial galvanometer mirror 10 exists at or near the conjugate point of B1 in the concave mirror half mirror 12, the angle of the first biaxial galvanometer mirror 10 has an arbitrary value. Even so, the tracking of the center of gravity of the limbus by the second biaxial galvanometer mirror 11 is hardly affected.
 なぜなら、光軸中心を通ってきた照射ビームは、第1の2軸ガルバノミラー10の支点を通り、従ってその共役点である所のB1またはその近傍の点を通過し、かつ、第1の2軸ガルバノミラー10によって作られる所のある方向から進んでいく事になり、第2の2軸ガルバノミラー11によるB1点の追尾は第1の2軸ガルバノミラー10の偏向角によらず、問題なく実行される事になるからである。 This is because the irradiation beam that has passed through the center of the optical axis passes through the fulcrum of the first biaxial galvanometer mirror 10, and thus passes through B1 that is the conjugate point or a point in the vicinity thereof, and the first 2 It will proceed from a certain direction where it is made by the axial galvanometer mirror 10, and the tracking of the point B1 by the second biaxial galvanometer mirror 11 will be performed without any problem regardless of the deflection angle of the first biaxial galvanometer mirror 10. Because it will be executed.
 次に、上記の検出部材30と演算部7が算出したQ値=Q1を利用して第1の2軸ガルバノミラー10を駆動し、Q=Q0となる様に制御する。このとき、角膜反射光中心と角膜頂点は一致し、照射ビームは角膜頂点と角膜輪部重心との位置関係が追尾開始時点と同じ関係を保ちつつ、照射が続く事になる。 Next, the first biaxial galvanometer mirror 10 is driven using the Q value = Q1 calculated by the detection member 30 and the calculation unit 7, and control is performed so that Q = Q0. At this time, the corneal reflection light center and the corneal apex coincide with each other, and the irradiation beam continues to be irradiated while the positional relationship between the corneal apex and the corneal ring portion center of gravity is kept the same as the tracking start time.
 この第1の2軸ガルバノミラー10の駆動・偏向が原因で、検出部材30での角膜輪部重心の観察位置に仮にズレが発生した場合には、第2の2軸ガルバノミラー11を追加駆動して修正を行う。 If the observation position of the center of gravity of the corneal ring portion on the detection member 30 is shifted due to the drive / deflection of the first biaxial galvanometer mirror 10, the second biaxial galvanometer mirror 11 is additionally driven. And make corrections.
以上を続ける事により、角膜頂点に向けて患者眼の視軸と同軸方向からビームを照射するためのClosed Loop型の視軸照射軸同軸化追尾機能が実現する。 By continuing the above, a Closed Loop type visual axis irradiation axis coaxial tracking function for irradiating a beam from the direction coaxial with the visual axis of the patient's eye toward the apex of the cornea is realized.
 ビーム照射用光源4は、自然放出光を利用した発光ダイオードや、誘導放出光を利用した半導体レーザなどの半導体発光素子を用いてもよい。 The light source 4 for beam irradiation may be a semiconductor light emitting element such as a light emitting diode using spontaneous emission light or a semiconductor laser using stimulated emission light.
 図8においては、ビーム照射用光源4から照射されたビームを患者の眼球20へと導く導光手段として、2枚の2軸ガルバノミラーと凹面鏡ハーフミラーとからなる導光部を用いているが、反射面以外の反射光による干渉を抑制するために、ハーフミラーにくさび状の角度をつけたものを用いてもよい。また、前記導光手段以外にも、凹面鏡の代わりに凸レンズを用いたり、多面鏡やプリズム等を用いてビーム照射用光源4からのビームを患者の眼球20に導いてもよい。 In FIG. 8, a light guide unit composed of two biaxial galvanometer mirrors and a concave mirror half mirror is used as a light guide means for guiding the beam irradiated from the beam irradiation light source 4 to the eyeball 20 of the patient. In order to suppress interference caused by reflected light other than the reflecting surface, a half mirror with a wedge-shaped angle may be used. In addition to the light guiding means, a convex lens may be used instead of the concave mirror, or the beam from the beam irradiation light source 4 may be guided to the patient's eyeball 20 using a polygon mirror, a prism, or the like.
 また、反射光強度分布の重心位置情報を得る処理を容易にする為に、例えば、角膜輪部検出には赤外線を用い、角膜反射光検出には可視光のある波長を用いてもよい。 In addition, in order to facilitate the process of obtaining the barycentric position information of the reflected light intensity distribution, for example, infrared light may be used for corneal ring detection, and a wavelength with visible light may be used for corneal reflection detection.
 なお、上述した各実施形態は、本発明の好適な実施形態であるが、本発明はこれに限定されるものではなく、本発明の要旨を逸脱しない範囲において、各種変形実施可能である。 Each embodiment described above is a preferred embodiment of the present invention, but the present invention is not limited to this, and various modifications can be made without departing from the gist of the present invention.

Claims (1)

  1.  患者眼の前眼部の平面位置を特定するための検出部と、
     前記検出部が取得した前記前眼部の平面位置情報を基に前記患者眼の視軸の回転角を算出する演算部と、
     ビーム照射用光源と、
     前記ビーム照射用光源の光軸上に配設した2組の2軸ガルバノミラーと患者の眼前に配設し前記2組の2軸ガルバノミラーを経由したビームを前記患者眼に導く凹面鏡とを備えることを特徴とする導光手段と、
     前記演算部が算出した演算結果に基づき前記2組の2軸ガルバノミラーを制御する制御部とを備え、
     前記制御部の制御に基づき前記2組の2軸ガルバノミラーを制御することで前記凹面鏡に対する見かけの光源位置の偏位とビーム照射方向の偏向とを発生させ、これにより前記ビーム照射光源が照射したビーム照射方向を前記患者眼の視軸方向に移動し合致させる事を特徴とする視軸照射軸同軸化追尾装置の作動方法。
    A detection unit for specifying the planar position of the anterior segment of the patient's eye;
    A calculation unit that calculates a rotation angle of the visual axis of the patient's eye based on the planar position information of the anterior segment acquired by the detection unit;
    A light source for beam irradiation;
    Two sets of two-axis galvanometer mirrors arranged on the optical axis of the beam irradiation light source and a concave mirror arranged in front of the patient's eyes and guiding the beam passing through the two sets of two-axis galvanometer mirrors to the patient's eyes. A light guide means characterized by:
    A control unit that controls the two sets of two-axis galvanometer mirrors based on a calculation result calculated by the calculation unit;
    Based on the control of the control unit, the two sets of two-axis galvanometer mirrors are controlled to generate a deviation of the apparent light source position with respect to the concave mirror and a deflection of the beam irradiation direction. A method of operating a visual axis irradiation axis coaxial tracking device, characterized in that the beam irradiation direction is moved to coincide with the visual axis direction of the patient's eye.
PCT/JP2008/052468 2008-02-14 2008-02-14 Method for operating eye ball movement tracking device with visual axis and light beam projection axis aligned WO2009101696A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2008/052468 WO2009101696A1 (en) 2008-02-14 2008-02-14 Method for operating eye ball movement tracking device with visual axis and light beam projection axis aligned
DE112008003724T DE112008003724T5 (en) 2008-02-14 2008-02-14 A method of operating a device for tracking the movements of an eyeball, wherein the optical axis and the axis of an emitted beam are aligned with each other

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/052468 WO2009101696A1 (en) 2008-02-14 2008-02-14 Method for operating eye ball movement tracking device with visual axis and light beam projection axis aligned

Publications (1)

Publication Number Publication Date
WO2009101696A1 true WO2009101696A1 (en) 2009-08-20

Family

ID=40956740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/052468 WO2009101696A1 (en) 2008-02-14 2008-02-14 Method for operating eye ball movement tracking device with visual axis and light beam projection axis aligned

Country Status (2)

Country Link
DE (1) DE112008003724T5 (en)
WO (1) WO2009101696A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104216122A (en) * 2013-05-31 2014-12-17 原相科技股份有限公司 Eyeball tracking device and optical assembly thereof
JP2015513933A (en) * 2012-04-20 2015-05-18 バーフェリヒト ゲゼルシャフト ミット ベシュレンクテル ハフツング Technology to control the corneal ablation laser
US20190324276A1 (en) * 2018-04-19 2019-10-24 Magic Leap, Inc. Systems and methods for operating a display system based on user perceptibility

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09149914A (en) * 1995-09-29 1997-06-10 Nidek Co Ltd Ophthalmologic operation device
JP2007054423A (en) * 2005-08-25 2007-03-08 Nidek Co Ltd Corneal surgery apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4988086B2 (en) 2000-06-13 2012-08-01 ルネサスエレクトロニクス株式会社 Semiconductor device, manufacturing method thereof, resistor, and semiconductor element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09149914A (en) * 1995-09-29 1997-06-10 Nidek Co Ltd Ophthalmologic operation device
JP2007054423A (en) * 2005-08-25 2007-03-08 Nidek Co Ltd Corneal surgery apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015513933A (en) * 2012-04-20 2015-05-18 バーフェリヒト ゲゼルシャフト ミット ベシュレンクテル ハフツング Technology to control the corneal ablation laser
US10238539B2 (en) 2012-04-20 2019-03-26 Wavelight Gmbh Technique for controlling a corneal ablation laser
CN104216122A (en) * 2013-05-31 2014-12-17 原相科技股份有限公司 Eyeball tracking device and optical assembly thereof
US20190324276A1 (en) * 2018-04-19 2019-10-24 Magic Leap, Inc. Systems and methods for operating a display system based on user perceptibility
US11067805B2 (en) * 2018-04-19 2021-07-20 Magic Leap, Inc. Systems and methods for operating a display system based on user perceptibility
US11892636B2 (en) 2018-04-19 2024-02-06 Magic Leap, Inc. Systems and methods for operating a display system based on user perceptibility

Also Published As

Publication number Publication date
DE112008003724T5 (en) 2011-06-22

Similar Documents

Publication Publication Date Title
EP2578192B1 (en) System for precise beam positioning in ocular surgery
JP4837910B2 (en) Corneal laser surgical beam guidance system and method
JP5529859B2 (en) Equipment for ophthalmic laser surgery
AU2019316264A1 (en) Full depth laser ophthalmic surgical system, methods of calibrating the surgical system and treatment methods using the same
WO2018056377A1 (en) Scanning-type laser microscope
JP2018051210A (en) Ophthalmic surgical system, ophthalmic surgical system control program, and ophthalmic surgical microscope
US10010451B2 (en) Ophthalmic laser surgical apparatus
WO2009101696A1 (en) Method for operating eye ball movement tracking device with visual axis and light beam projection axis aligned
JP2016193030A (en) Ophthalmic laser surgery device and ophthalmic surgery control program
JP4078654B2 (en) Actuation method of eye-coaxial tracking axis device for eye movement
US7219999B2 (en) Device for measuring optical characteristic of eye
WO2000021475A1 (en) Laser system with projected reference pattern
JP2016193033A (en) Ophthalmologic apparatus and ophthalmologic apparatus control program
JP2016193028A (en) Ophthalmic laser surgery device
JP2642402B2 (en) Non-contact tonometer
JP7349713B2 (en) ophthalmology equipment
JP2014188273A (en) Ophthalmologic apparatus, control method for the same, and program
US20160051405A1 (en) Ophthalmological laser treatment system
JP6338043B2 (en) Ophthalmic laser surgery device
JP3675852B2 (en) Ophthalmic surgery equipment
JP6572596B2 (en) Ophthalmic apparatus and ophthalmic apparatus control program
TWI795307B (en) Laser ophthalmological apparatus having confocal detecting assembly and confocal detection method of laser target location
JP3206953B2 (en) Ophthalmic equipment
WO2016159331A1 (en) Ophthalmic laser surgery device, ophthalmic device, ophthalmic device control program, and ophthalmic surgery control program
JP7178683B2 (en) ophthalmic equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08711304

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
122 Ep: pct application non-entry in european phase

Ref document number: 08711304

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP