WO2009099281A2 - Optical fiber connecting device and optical fiber quality measuring system using same - Google Patents

Optical fiber connecting device and optical fiber quality measuring system using same Download PDF

Info

Publication number
WO2009099281A2
WO2009099281A2 PCT/KR2009/000422 KR2009000422W WO2009099281A2 WO 2009099281 A2 WO2009099281 A2 WO 2009099281A2 KR 2009000422 W KR2009000422 W KR 2009000422W WO 2009099281 A2 WO2009099281 A2 WO 2009099281A2
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
vacuum
optical
measuring
pressure
Prior art date
Application number
PCT/KR2009/000422
Other languages
French (fr)
Korean (ko)
Other versions
WO2009099281A3 (en
WO2009099281A4 (en
Inventor
Tae-Kyoung Yook
Lae-Hyuk Park
Ji-Sang Park
Soon-Il Sohn
Hyung-Soo Shin
Original Assignee
Ls Cable Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ls Cable Ltd. filed Critical Ls Cable Ltd.
Publication of WO2009099281A2 publication Critical patent/WO2009099281A2/en
Publication of WO2009099281A3 publication Critical patent/WO2009099281A3/en
Publication of WO2009099281A4 publication Critical patent/WO2009099281A4/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3809Dismountable connectors, i.e. comprising plugs without a ferrule embedding the fibre end, i.e. with bare fibre end
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/33Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
    • G01M11/336Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face by measuring polarization mode dispersion [PMD]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3616Holders, macro size fixtures for mechanically holding or positioning fibres, e.g. on an optical bench
    • G02B6/362Vacuum holders for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/3632Mechanical coupling means for mounting fibres to supporting carriers characterised by the cross-sectional shape of the mechanical coupling means
    • G02B6/3636Mechanical coupling means for mounting fibres to supporting carriers characterised by the cross-sectional shape of the mechanical coupling means the mechanical coupling means being grooves
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/3648Supporting carriers of a microbench type, i.e. with micromachined additional mechanical structures
    • G02B6/3652Supporting carriers of a microbench type, i.e. with micromachined additional mechanical structures the additional structures being prepositioning mounting areas, allowing only movement in one dimension, e.g. grooves, trenches or vias in the microbench surface, i.e. self aligning supporting carriers

Definitions

  • the present invention relates to an apparatus for connecting optical fibers, and more particularly, to an apparatus for connecting an optical fiber under measurement connected to measurement equipment and a measuring optical fiber to be measured, and an optical fiber quality measuring system by the apparatus.
  • optical loss refers to a phenomenon in which an optical signal propagated to an optical fiber is weakened inside, and the optical loss acts as a factor for limiting a transmission distance of the optical signal.
  • polarization mode dispersion refers to a phenomenon in which a speed difference occurs between polarization modes transmitted to the inside of the optical fiber due to refractive index anisotropy (asymmetry) on the optical fiber cross section (ie, core layer) that occurs in optical fiber manufacturing.
  • the optical fiber in which the polarization mode dispersion occurs has a narrow transmission bandwidth and a short transmission distance.
  • the business establishment of the optical fiber measures the quality of the optical fiber before the optical fiber is shipped and searches for the optical fiber that does not meet a predetermined standard value.
  • the optical fiber produced by the measurement of the optical loss and the polarization mode dispersion is measured by the measurement equipment, and the optical fiber that does not meet a certain standard value is discarded.
  • the ends of the optical fiber to be respectively connected to the transmitter and the receiver of the PMD measuring device or the optical loss measuring device are connected to both ends of the finally manufactured optical fiber (ie, the measuring optical fiber).
  • the optical signal is transmitted from the measuring equipment, the optical signal is received through the transmitter, the transmitter connection fiber, the measurement fiber and the receiver connection fiber in sequence, and finally received by the receiver of the measurement equipment. Then, the measurement equipment analyzes the received optical signal to confirm whether the optical loss or polarization mode dispersion of the measurement optical fiber meets a reference value.
  • connection loss such as axial misalignment, angular tilt, and end separation may appear in the process of connecting the measurement optical fiber and the optical fiber to be measured.
  • the measured values of light loss and polarization mode dispersion are distorted. Therefore, the process of connecting the final optical fiber and the optical fiber to be measured serves as an important parameter in the process of measuring the quality of the final optical fiber.
  • the fusion splicing method has a low connection loss, but permanently connects the optical fiber under measurement and the optical fiber to be measured, and thus is not suitable as a method of connecting optical fibers shipped.
  • the mechanical connection method the optical fiber under measurement is connected to the optical fiber by using a connector or the like, so that the connection loss varies depending on the skill of the operator.
  • the mechanical connection method is not suitable for a workplace where a large amount of optical fiber is produced due to a long time for connecting the optical fiber to be measured and the optical fiber to be measured.
  • the present invention has been proposed to solve the above problems, and provides an optical fiber splicing apparatus and a fiber quality measuring system by the apparatus, wherein the connection setting time is fast and the variation of splice loss is low without permanently fusion of the optical fiber under measurement and the optical fiber. Its purpose is.
  • a measuring device for measuring the optical quality characteristics, such as PMD or optical loss of the optical fiber;
  • a connecting optical fiber comprising a first optical fiber connected to a transmitting end of the measuring device and a second optical fiber connected to a receiving end of the measuring device;
  • a measurement optical fiber connected to the first and second optical fibers to measure an optical quality characteristic by the measuring device;
  • a connection device for physically connecting the connection optical fiber and the measurement optical fiber to optically connect the connection optical fiber, wherein the connection device comprises: a vacuum pump for generating a vacuum pressure; And contact holding means for holding the connection optical fiber and the measurement optical fiber in contact with each other with the coating removed while maintaining the contact state by sucking the connection optical fiber and the measurement optical fiber using the vacuum pressure generated in the vacuum pump. Characterized in that.
  • the optical fiber quality measuring system further comprises a vacuum pipe for transmitting the vacuum pressure of the vacuum pump to the contact holding means.
  • the contact holding means comprises a V-shaped groove for supporting the connecting optical fiber and the measuring optical fiber; A slot formed in the bottom surface of the V-shaped groove; And an exhaust passage communicating the vacuum pipe and the slot.
  • the width of the slot is smaller than the diameter of the connecting optical fiber and the measuring optical fiber.
  • the vacuum pressure of the vacuum pump is preferably maintained at 0.15 bar to 0.40 bar when measuring the polarization mode dispersion of the measurement optical fiber, the vacuum pressure of the vacuum pump when measuring the optical loss of the measurement optical fiber It is preferable to keep it between 0.20 bar and 0.35 bar.
  • the contact holding means further includes a pressure sensor for measuring the pressure of the exhaust passage and a display device for displaying the pressure value measured by the pressure sensor to the outside.
  • an optical fiber connecting device includes a vacuum pump for generating a vacuum pressure; And contact holding means for supporting the two optical fibers which are in physical contact for optical connection while maintaining the contact state by suctioning and fixing the two optical fibers at the support surface using the vacuum pressure of the vacuum pump. It features.
  • FIG. 1 is a view showing the configuration of a system for measuring the optical fiber quality according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a jig according to an embodiment of the present invention.
  • FIG 3 is a perspective view of a jig according to an embodiment of the present invention.
  • suction port 130 measuring optical fiber
  • FIG. 1 is a view showing the configuration of a system for measuring the optical fiber quality according to an embodiment of the present invention.
  • a system for measuring optical fiber quality includes a vacuum pump 110 for generating a vacuum pressure, an optical fiber 143 and 144 to be measured, and a measuring optical fiber ( Jig (120) to maintain the connection state while supporting the 130 and Polarization Mode Dispersion (hereinafter referred to as PMD) or measuring device 140 for measuring the optical loss.
  • PMD Polarization Mode Dispersion
  • the vacuum pump 110 includes a control switch 111 for adjusting the vacuum pressure, and is connected to the removable vacuum pipe 112.
  • the jig 120 is connected to the detachable vacuum pipe 112, and the optical fibers 143 and 144 and the optical fiber 130 to be measured are connected to each other with the cover removed in a groove formed in a V shape. Support. It is preferable to minimize the connection loss of the optical fiber (143, 144, 130) by spraying the index matching oil to the connection portion of the optical fiber (143, 144) and the measurement optical fiber (130).
  • an exhaust passage is formed from the bottom of the V-groove of the jig 120 to the point where the vacuum pipe 112 is connected, and thus, the air is formed between the vacuum pipe 112 and the bottom of the V-groove. Will flow. Therefore, when the vacuum pump 110 generates a vacuum pressure and sucks air, the measurement optical fibers 143 and 144 and the measurement optical fiber 130 supported in the V-shaped grooves are sucked to fix the connection state.
  • the measuring apparatus 140 is a PMD measuring apparatus or an optical loss measuring apparatus, and includes a transmitter 141 for transmitting an optical signal and a receiver 142 for receiving an optical signal.
  • the optical fibers 143 and 144 to be measured are connected to each of the transmitter 141 and the receiver 142, and the measuring device 140 transmits an optical signal to the optical fiber 143 connected to the transmitter 141.
  • the optical signal is finally received by the receiving unit 142 via the measuring optical fiber 130 and the measuring optical fiber 144 connected to the receiving unit 142 sequentially.
  • the measuring device 110 measures the optical loss or polarization mode dispersion based on the received optical signal.
  • FIG. 2 is a cross-sectional view of a jig according to an embodiment of the present invention.
  • the jig 120 includes a pressure sensor 121 and a vacuum pressure display 122, and a coupling part 123, an exhaust passage 124, and an intake port. 125 is formed.
  • the pressure sensor 121 is connected to the vacuum pressure display unit 122 and measures the vacuum pressure generated in the exhaust passage 124.
  • the vacuum pressure display unit 122 displays the vacuum pressure measured by the pressure sensor 121.
  • the coupling part 123 inserts and couples the vacuum pipe 112 and transmits the vacuum pressure generated by the vacuum pump 110 to the exhaust passage 124.
  • the exhaust passage 124 is a passage for discharging air between the coupling part 123 and the suction port 125. When the vacuum pressure is generated in the vacuum pump 110, the exhaust passage 124 sucks the air around the suction port 125.
  • the suction port 125 is positioned on the bottom surface of the V-shaped groove in which the optical fibers 143 and 144 and the optical fiber 130 to be measured are aligned, and extend along the length direction of the V-shaped groove.
  • the suction port 125 sucks the measurement optical fiber 130 and the optical fiber 143, 144 to be maintained to maintain the connection state of the optical fibers 130, 143, and 144.
  • the size of the suction port 125 is preferably formed to be narrower than the diameter of the core wire of the optical fiber (130, 143, 144) to prevent the phenomenon.
  • FIG 3 is a perspective view of a jig according to an embodiment of the present invention.
  • the suction port 125 is located at the bottom of the V-shaped groove and extends along the length direction of the V-shaped groove. Therefore, when a vacuum pressure is generated from the vacuum pump 110 while the measurement optical fiber 130 and the optical fiber 143 and 144 to be connected are placed on the suction port 125, the two optical fibers 130, 143, 144 is connected by the suction force of the suction port 125 is fixed. Accordingly, the connection state of the two optical fibers 130, 143, and 144 may be prevented from being deformed due to the external environment such as the shaking of the jig 120 and the shaking of the optical fibers 130, 143, and 144.
  • the vacuum pressure display unit 122 displays the vacuum pressure of the exhaust passage 124 measured by the pressure sensor 121 as a number.
  • an operator can easily connect the optical fibers 143 and 144 to the measurement optical fiber 130.
  • the operator can easily terminate the connection state between the optical fibers 143, 144 and the measurement optical fiber 130 to be measured. have.
  • Table 1 is a table showing the polarization mode dispersion (PMD) values measured while varying the vacuum pressure to the optical fiber connected by the vacuum connect method according to the present invention.
  • the PMD value is 0.058 ps / km 1. Measured with / 2 (measurement error ⁇ 0.05ps). Therefore, when the vacuum connection method according to the invention as it is set to the pressure is less than 0.15 bar and 0.40 bar in the binary jig (120), with the PMD 0.050ps / km 1/2 ⁇ 0.102ps / km 1/2 You can see that it is optimized.
  • Table 2 is a table showing the optical loss value measured while varying the vacuum pressure to the optical fiber connected by the vacuum connection system according to the present invention.
  • the optical loss value is 0.182 dB / km. Error ⁇ 0.002). Accordingly, in the case of the vacuum connection method according to the present invention, when the vacuum pressure generated in the jig 120 is set to 0.20 bar or more and 0.35 or less, the light loss value is optimized to 0.180db / km to 0.183db / km. You can see that.
  • Tables 3 and 4 are tables showing standard deviations of PMD values and standard deviations of optical loss values measured by the same operator repeatedly connecting the same optical fiber by a mechanical connection method and a vacuum connection method according to the present invention.
  • the vacuum connection method has a lower standard deviation of PMD and light loss than the mechanical connection method.
  • the vacuum connection method has an average connection setting time of 5 seconds, which is faster than the mechanical connection method.
  • the PMD and the optical loss of the optical fiber 130 are measured lower than that of the mechanical connection method. That is, the vacuum connection method according to the present invention can be seen that the connection loss is reduced more than the mechanical connection method.
  • Table 5 is a table showing PMD values and light loss values measured by a plurality of workers connecting the same optical fiber by a mechanical connection method and a vacuum connection method according to the present invention.
  • Table 5 it can be seen that the vacuum connection method according to the present invention has a lower standard deviation between the operators of the PMD and the light loss than the mechanical connection method. In other words, the mechanical connection method is severely varied according to the skill of the operator, while the vacuum connection method according to the present invention is less affected by the skill of the operator.
  • the vacuum connection method according to the present invention has a shorter connection setting time than the mechanical connection method, which is useful for a business that mass-produces optical fibers.
  • the vacuum connection method according to the present invention can be usefully used in the field of optical fiber inspection in which the optical fiber has to be temporarily connected to measure the quality state of the optical fiber without permanently connecting the optical fiber.
  • the vacuum connection method according to the present invention has a shorter connection setting time than the conventional mechanical connection method and is useful for a business for mass production of optical fibers.
  • the present invention can minimize the deviation of light loss and polarization mode dispersion (PMD) that depends on the skill of the operator.
  • PMD polarization mode dispersion
  • vacuum connection method according to the present invention can be usefully used in the field of optical fiber inspection for measuring the quality of embedded or installed optical fiber.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

The present invention relates to an optical fiber connecting device and an optical fiber quality measuring system using same. The optical fiber quality measuring system of the present invention includes a measuring unit for measuring optical fiber quality including PMD (Polarization Mode Dispersion) or optical loss of optical fiber; a connecting optical fiber including a first optical fiber connected to a transmitter end of the measuring unit and a second optical fiber connected to a receiver end of the measuring unit; an objective optical fiber connected to the first optical fiber and the second optical fiber such that optical quality of the objective optical fiber can be measured by the measuring unit; and a connector for physically and optically connecting the connecting optical fiber and the objective optical fiber. The connector includes a vacuum pump for generating vacuum pressure; and a contact retention unit for supporting the connecting optical fiber and the objective optical fiber which are uncoated and connected to each other, and retaining the contact state by sucking the connecting optical fiber and the objective optical fiber through the use of the vacuum pressure generated from the vacuum pump. The vacuum connection system of the present invention has a connection setting time shorter than that of a mechanical connection system and is suitable for use in the mass-produced optical fiber industry.

Description

광섬유 접속 장치 및 그 장치에 의한 광섬유 품질 측정 시스템Optical fiber quality measuring system by optical fiber connection device and device
본 발명은 광섬유 접속하는 장치에 관한 것으로, 더욱 상세하게는 측정 장비와 연결된 피측정 광섬유와 품질 측정 대상인 측정 광섬유를 접속하는 장치 및 그 장치에 의한 광섬유 품질 측정 시스템에 관한 것이다.The present invention relates to an apparatus for connecting optical fibers, and more particularly, to an apparatus for connecting an optical fiber under measurement connected to measurement equipment and a measuring optical fiber to be measured, and an optical fiber quality measuring system by the apparatus.
최근 광통신의 고속화와 장거리화가 진행됨에 따라, 광섬유의 품질 특성 중 광손실 및 편광 모드 분산(PMD, Polarization Mode Dispersion)에 대한 표준 규격이 강화되고 있다. 광손실(Optical Loss)은 광섬유(Optical Fiber)에 전파되는 광신호가 내부에서 약해지는 현상을 말하며, 상기 광손실은 광신호의 전송 거리를 제약하는 요소로서 작용한다. 또한, 편광 모드 분산은 광섬유 제조상에서 발생하는 광섬유 단면상(즉, 코어층)의 굴절률 비등방성(비대칭성) 등으로 인해, 상기 광섬유 내부로 전송되는 각 편광 모드 간에 속도차가 발생하는 현상을 말한다. 상기 편광 모드 분산이 발생된 광섬유는 전송 대역폭이 좁아지고 전송 거리가 짧아지게 된다. As optical communication speeds and long distances progress in recent years, standard specifications for optical loss and polarization mode dispersion (PMD) have been strengthened among optical fiber quality characteristics. Optical loss refers to a phenomenon in which an optical signal propagated to an optical fiber is weakened inside, and the optical loss acts as a factor for limiting a transmission distance of the optical signal. In addition, polarization mode dispersion refers to a phenomenon in which a speed difference occurs between polarization modes transmitted to the inside of the optical fiber due to refractive index anisotropy (asymmetry) on the optical fiber cross section (ie, core layer) that occurs in optical fiber manufacturing. The optical fiber in which the polarization mode dispersion occurs has a narrow transmission bandwidth and a short transmission distance.
이런 광손실 또는 편광 모드 분산이 발생되는 광섬유의 출하를 방지하기 위해, 광섬유를 제작하는 사업장에서는 광섬유가 출하되기 전에 상기 광섬유의 품질을 측정하여 일정 기준치에 부합되지 않은 광섬유를 색출한다. 즉, 최종 제작된 광섬유는 측정 장비를 통해서 광손실 및 편광 모드 분산이 측정되고, 일정 기준치에 부합되지 않은 광섬유는 폐기 처분된다. In order to prevent the shipment of the optical fiber in which the optical loss or polarization mode dispersion occurs, the business establishment of the optical fiber measures the quality of the optical fiber before the optical fiber is shipped and searches for the optical fiber that does not meet a predetermined standard value. In other words, the optical fiber produced by the measurement of the optical loss and the polarization mode dispersion is measured by the measurement equipment, and the optical fiber that does not meet a certain standard value is discarded.
최종 제작된 광섬유 품질을 측정하기 위해, PMD 측정 장비 또는 광손실 측정 장비의 송신부 및 수신부에 각각 연결된 피측정 광섬유의 끝단은, 최종 제작된 광섬유(즉, 측정 광섬유)의 양 끝단과 접속된다. 그리고 측정 장비에서 광신호가 전송되면, 상기 광신호는 송신부, 송신부 연결 광섬유, 측정 광섬유 및 수신부 연결 광섬유를 순차적으로 경유하여, 최종적으로 측정 장비의 수신부로 수신된다. 그러면, 측정 장비는 상기 수신된 광신호를 분석하여 상기 측정 광섬유의 광손실 또는 편광 모드 분산이 기준치에 부합되는지를 확인한다.In order to measure the final manufactured optical fiber quality, the ends of the optical fiber to be respectively connected to the transmitter and the receiver of the PMD measuring device or the optical loss measuring device are connected to both ends of the finally manufactured optical fiber (ie, the measuring optical fiber). When the optical signal is transmitted from the measuring equipment, the optical signal is received through the transmitter, the transmitter connection fiber, the measurement fiber and the receiver connection fiber in sequence, and finally received by the receiver of the measurement equipment. Then, the measurement equipment analyzes the received optical signal to confirm whether the optical loss or polarization mode dispersion of the measurement optical fiber meets a reference value.
그러나 상기 측정 광섬유와 피측정 광섬유를 접속하는 과정에서 축 어긋남(miss alignment), 축의 경사(angular tilt), 간극(end separation) 등의 접속 손실(Connection Loss)이 나타날 수 있고, 이는 상기 측정 광섬유의 광손실 및 편광 모드 분산의 측정값을 왜곡하게 된다. 따라서, 상기 최종 광섬유와 피측정 광섬유를 접속하는 과정이 최종 광섬유의 품질을 측정하는 공정에서 중요한 변수로서 작용한다.However, connection loss such as axial misalignment, angular tilt, and end separation may appear in the process of connecting the measurement optical fiber and the optical fiber to be measured. The measured values of light loss and polarization mode dispersion are distorted. Therefore, the process of connecting the final optical fiber and the optical fiber to be measured serves as an important parameter in the process of measuring the quality of the final optical fiber.
이런 피측정 광섬유와 측정 광섬유를 접속하는 방식으로는, 융착 접속(Fusion Splice) 방식, 기계식 접속(Mechanical Connection) 방식이 있다. 그러나 융착 접속 방식은 접속 손실이 적은데 비해 피측정 광섬유와 측정 광섬유를 영구적으로 접속하기 때문에, 출하되는 광섬유의 접속 방법으로는 적합하지 않다. 또한, 기계식 접속 방식은 피측정 광섬유와 측정 광섬유를 커넥터 등을 이용하여 접속하기 때문에, 작업자의 숙련도에 따라 접속 손실이 다르게 나타난다. 또한, 기계적 접속 방식은 피측정 광섬유와 측정 광섬유를 접속시키는 시간이 오래 걸려 광섬유를 대량 생산하는 사업장에는 적합하지 않다. As a method of connecting the optical fiber to be measured and the optical fiber to be measured, there are a fusion splice method and a mechanical connection method. However, the fusion splicing method has a low connection loss, but permanently connects the optical fiber under measurement and the optical fiber to be measured, and thus is not suitable as a method of connecting optical fibers shipped. In addition, in the mechanical connection method, the optical fiber under measurement is connected to the optical fiber by using a connector or the like, so that the connection loss varies depending on the skill of the operator. In addition, the mechanical connection method is not suitable for a workplace where a large amount of optical fiber is produced due to a long time for connecting the optical fiber to be measured and the optical fiber to be measured.
본 발명은 상기 문제점을 해결하기 위하여 제안된 것으로, 피측정 광섬유와 측정 광섬유를 영구 융착하지 않고 접속 셋팅 시간이 빠르며 접속 손실의 편차가 낮은 광섬유 접속 장치 및 그 장치에 의한 광섬유 품질 측정 시스템을 제공하는데 그 목적이 있다.SUMMARY OF THE INVENTION The present invention has been proposed to solve the above problems, and provides an optical fiber splicing apparatus and a fiber quality measuring system by the apparatus, wherein the connection setting time is fast and the variation of splice loss is low without permanently fusion of the optical fiber under measurement and the optical fiber. Its purpose is.
본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있으며, 본 발명의 실시예에 의해 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허 청구 범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.Other objects and advantages of the present invention can be understood by the following description, and will be more clearly understood by the embodiments of the present invention. Also, it will be readily appreciated that the objects and advantages of the present invention may be realized by the means and combinations thereof indicated in the claims.
상기 목적을 달성하기 위한 본 발명의 제 1 측면에 따른, 광섬유의 PMD나 광손실과 같은 광품질 특성을 측정하는 측정장치; 상기 측정 장치의 송신단에 연결되는 제 1 광섬유와 상기 측정 장치의 수신단에 연결되는 제 2 광섬유로 이루어지는 연결 광섬유; 상기 제 1 및 제 2 광섬유와 연결되어 상기 측정 장치에 의해 광품질 특성이 측정되는 측정 광섬유; 및 상기 연결 광섬유와 측정 광섬유를 물리적으로 접속시켜 광학적으로 연결하는 접속 장치를 포함하는 광섬유 품질 측정 시스템에 있어서, 상기 접속 장치는 진공압을 발생시키는 진공 펌프; 피복이 제거된 상태로 서로 접촉된 상기 연결 광섬유 및 측정 광섬유를 지지하면서 상기 진공 펌프에서 발생하는 진공압을 이용하여 상기 연결 광섬유와 측정 광섬유를 흡입하는 것에 의해 접촉 상태를 유지시키는 접촉 유지 수단을 포함하는 것을 특징으로 한다.According to a first aspect of the present invention for achieving the above object, a measuring device for measuring the optical quality characteristics, such as PMD or optical loss of the optical fiber; A connecting optical fiber comprising a first optical fiber connected to a transmitting end of the measuring device and a second optical fiber connected to a receiving end of the measuring device; A measurement optical fiber connected to the first and second optical fibers to measure an optical quality characteristic by the measuring device; And a connection device for physically connecting the connection optical fiber and the measurement optical fiber to optically connect the connection optical fiber, wherein the connection device comprises: a vacuum pump for generating a vacuum pressure; And contact holding means for holding the connection optical fiber and the measurement optical fiber in contact with each other with the coating removed while maintaining the contact state by sucking the connection optical fiber and the measurement optical fiber using the vacuum pressure generated in the vacuum pump. Characterized in that.
또한, 상기 광섬유 품질 측정 시스템은 상기 진공 펌프의 진공압을 상기 접촉 유지 수단에 전달하기 위한 진공 파이프를 더 포함한다.The optical fiber quality measuring system further comprises a vacuum pipe for transmitting the vacuum pressure of the vacuum pump to the contact holding means.
그리고 상기 접촉 유지 수단은 상기 연결 광섬유 및 측정 광섬유를 지지하기 위한 V자형 홈; 이 V자형 홈의 바닥면에 형성되어 있는 슬롯; 상기 진공 파이프와 상기 슬롯을 연통시키는 배기 통로를 포함한다. 바람직하게는, 상기 슬롯의 폭은 상기 연결 광섬유 및 측정 광섬유의 직경 보다 작다.And the contact holding means comprises a V-shaped groove for supporting the connecting optical fiber and the measuring optical fiber; A slot formed in the bottom surface of the V-shaped groove; And an exhaust passage communicating the vacuum pipe and the slot. Preferably, the width of the slot is smaller than the diameter of the connecting optical fiber and the measuring optical fiber.
한편, 상기 측정 광섬유의 편광 모드 분산을 측정할 때 상기 진공 펌프의 진공압은, 0.15 bar ~ 0.40 bar로 유지되는 것이 바람직하며, 상기 측정 광섬유의 광손실을 측정할 때 상기 진공 펌프의 진공압은, 0.20 bar ~ 0.35bar로 유지되는 것이 바람직하다.On the other hand, the vacuum pressure of the vacuum pump is preferably maintained at 0.15 bar to 0.40 bar when measuring the polarization mode dispersion of the measurement optical fiber, the vacuum pressure of the vacuum pump when measuring the optical loss of the measurement optical fiber It is preferable to keep it between 0.20 bar and 0.35 bar.
또한, 상기 접촉 유지 수단은 상기 배기 통로의 압력을 측정하기 위한 압력 센서와 상기 압력 센서에 의해 측정된 압력값을 외부에 표시하기 위한 표시 장치를 더 포함한다.The contact holding means further includes a pressure sensor for measuring the pressure of the exhaust passage and a display device for displaying the pressure value measured by the pressure sensor to the outside.
상기 목적을 달성하기 위한 본 발명의 제 2 측면에 따른, 광섬유 접속 장치는 진공압을 발생시키는 진공 펌프; 및 광학적으로 연결하기 위하여 물리적으로 접촉되는 두 개의 광섬유를 지지하면서 상기 진공 펌프의 진공압을 이용하여 상기 두 개의 광섬유를 그 지지면에서 흡입, 고정함으로써 접촉 상태를 유지시키는 접촉 유지 수단을 포함하는 것을 특징으로 한다.According to a second aspect of the present invention for achieving the above object, an optical fiber connecting device includes a vacuum pump for generating a vacuum pressure; And contact holding means for supporting the two optical fibers which are in physical contact for optical connection while maintaining the contact state by suctioning and fixing the two optical fibers at the support surface using the vacuum pressure of the vacuum pump. It features.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술하는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니된다.The following drawings, which are attached to this specification, illustrate exemplary embodiments of the present invention, and together with the detailed description of the present invention, serve to further understand the technical spirit of the present invention. It should not be construed as limited to.
도 1은 본 발명의 일 실시예에 따른 광섬유 품질을 측정하는 시스템의 구성을 나타내는 도면이다.1 is a view showing the configuration of a system for measuring the optical fiber quality according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 지그의 단면도이다.2 is a cross-sectional view of a jig according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 지그의 사시도이다.3 is a perspective view of a jig according to an embodiment of the present invention.
<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>
110 : 진공 펌프 111 : 제어 스위치110: vacuum pump 111: control switch
112 : 진공 파이프 120 : 지그112: vacuum pipe 120: jig
121 : 압력 센서 122 : 진공압 표시부121: pressure sensor 122: vacuum pressure display unit
123 : 결합부 124 : 배기 통로123: coupling portion 124: exhaust passage
125 : 흡입구 130 : 측정 광섬유 125: suction port 130: measuring optical fiber
140 : 측정 장치 141 : 송신부 140: measuring device 141: transmitting unit
142 : 수신부 143, 144 : 피측정 광섬유142: receiver 143, 144: optical fiber to be measured
상술한 목적, 특징 및 장점은 첨부된 도면과 관련한 다음의 상세한 설명을 통하여 보다 분명해 질 것이며, 그에 따라 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다. 또한, 본 발명을 설명함에 있어서 본 발명과 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에 그 상세한 설명을 생략하기로 한다. 이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 일 실시예를 상세히 설명하기로 한다.The above objects, features and advantages will become more apparent from the following detailed description taken in conjunction with the accompanying drawings, whereby those skilled in the art may easily implement the technical idea of the present invention. There will be. In addition, in describing the present invention, when it is determined that the detailed description of the known technology related to the present invention may unnecessarily obscure the gist of the present invention, the detailed description thereof will be omitted. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 일 실시예에 따른 광섬유 품질을 측정하는 시스템의 구성을 나타내는 도면이다.1 is a view showing the configuration of a system for measuring the optical fiber quality according to an embodiment of the present invention.
도 1에 도시된 바와 같이, 본 발명의 일 실시예에 따른 광섬유 품질을 측정하는 시스템은 진공압(Vaccum Pressure)을 발생시키는 진공 펌프(110), 피측정 광섬유(143, 144)와 측정 광섬유(130)를 지지하면서 접속 상태를 유지시키는 지그(jig, 120) 및 편광 모드 분산(Polarization Mode Dispersion, 이하, PMD) 또는 광손실을 측정하는 측정 장치(140)를 포함한다.As shown in FIG. 1, a system for measuring optical fiber quality according to an embodiment of the present invention includes a vacuum pump 110 for generating a vacuum pressure, an optical fiber 143 and 144 to be measured, and a measuring optical fiber ( Jig (120) to maintain the connection state while supporting the 130 and Polarization Mode Dispersion (hereinafter referred to as PMD) or measuring device 140 for measuring the optical loss.
진공 펌프(110)는 진공압을 조절하는 제어 스위치(111)를 포함하고, 착탈 가능한 진공 파이프(112)와 연결된다. The vacuum pump 110 includes a control switch 111 for adjusting the vacuum pressure, and is connected to the removable vacuum pipe 112.
지그(120)는 착탈 가능한 진공 파이프(112)와 연결되고, V자 형태로 형성된 홈(groove)에 피복이 제거된 상태로 서로 접속되어 있는 피측정 광섬유(143, 144)와 측정 광섬유(130)를 지지한다. 상기 피측정 광섬유(143, 144)와 측정 광섬유(130)의 접속 부위에 인덱스 매칭(index matching) 오일을 분사시켜, 상기 광섬유(143, 144, 130)의 접속 손실을 최소화시키는게 바람직하다.The jig 120 is connected to the detachable vacuum pipe 112, and the optical fibers 143 and 144 and the optical fiber 130 to be measured are connected to each other with the cover removed in a groove formed in a V shape. Support. It is preferable to minimize the connection loss of the optical fiber (143, 144, 130) by spraying the index matching oil to the connection portion of the optical fiber (143, 144) and the measurement optical fiber (130).
또한, 지그(120)의 V자 홈(V-groove) 하단부터 진공 파이프(112)와 연결되는 지점까지 배기 통로가 형성되어, 이에 따라 상기 진공 파이프(112)와 상기 V자 홈 하단 사이에 공기가 흐르게 된다. 따라서, 진공 펌프(110)에서 진공압을 발생시켜 공기를 흡입하게 되면, V자 홈에 지지된 피측정 광섬유(143, 144) 및 측정 광섬유(130)가 흡입되어 접속 상태가 고정된다. In addition, an exhaust passage is formed from the bottom of the V-groove of the jig 120 to the point where the vacuum pipe 112 is connected, and thus, the air is formed between the vacuum pipe 112 and the bottom of the V-groove. Will flow. Therefore, when the vacuum pump 110 generates a vacuum pressure and sucks air, the measurement optical fibers 143 and 144 and the measurement optical fiber 130 supported in the V-shaped grooves are sucked to fix the connection state.
측정 장치(140)는 PMD 측정 장치 또는 광손실 측정 장치로서, 광신호가 전송되는 송신부(141) 및 광신호가 수신되는 수신부(142)를 포함한다. 상기 송신부(141) 및 수신부(142) 각각에 피측정 광섬유(143, 144)가 연결되고, 측정 장치(140)는 상기 송신부(141)에 연결된 피측정 광섬유(143)에 광신호를 전송한다. 그러면, 상기 광신호는 측정 광섬유(130) 및 수신부(142)와 연결된 피측정 광섬유(144)를 순차적으로 경유하여, 최종적으로 수신부(142)로 수신된다. 이에 따라, 측정 장치(110)는 상기 수신된 광신호를 토대로 광손실 또는 편광 모드 분산을 측정한다.The measuring apparatus 140 is a PMD measuring apparatus or an optical loss measuring apparatus, and includes a transmitter 141 for transmitting an optical signal and a receiver 142 for receiving an optical signal. The optical fibers 143 and 144 to be measured are connected to each of the transmitter 141 and the receiver 142, and the measuring device 140 transmits an optical signal to the optical fiber 143 connected to the transmitter 141. Then, the optical signal is finally received by the receiving unit 142 via the measuring optical fiber 130 and the measuring optical fiber 144 connected to the receiving unit 142 sequentially. Accordingly, the measuring device 110 measures the optical loss or polarization mode dispersion based on the received optical signal.
도 2는 본 발명의 일 실시예에 따른 지그의 단면도이다.2 is a cross-sectional view of a jig according to an embodiment of the present invention.
도 2에 도시된 바와 같이, 본 발명의 일 실시예에 따른 지그(120)는 압력 센서(121), 진공압 표시부(122)를 포함하고, 결합부(123), 배기 통로(124) 및 흡입구(125)가 형성된다.As shown in FIG. 2, the jig 120 according to the exemplary embodiment of the present invention includes a pressure sensor 121 and a vacuum pressure display 122, and a coupling part 123, an exhaust passage 124, and an intake port. 125 is formed.
압력 센서(121)는 진공압 표시부(122)와 연결되고, 배기 통로(124)에 발생하는 진공압을 측정한다.The pressure sensor 121 is connected to the vacuum pressure display unit 122 and measures the vacuum pressure generated in the exhaust passage 124.
진공압 표시부(122)는 압력 센서(121)에서 측정된 진공압을 표시한다.The vacuum pressure display unit 122 displays the vacuum pressure measured by the pressure sensor 121.
결합부(123)는 진공 파이프(112)를 삽입 결합하며, 진공 펌프(110)에서 발생하는 진공압을 상기 배기 통로(124)로 전달시킨다.The coupling part 123 inserts and couples the vacuum pipe 112 and transmits the vacuum pressure generated by the vacuum pump 110 to the exhaust passage 124.
배기 통로(124)는 결합부(123)와 흡입구(125) 사이의 공기를 배출시키는 통로로서, 진공 펌프(110)에서 진공압이 발생하면 흡입구(125) 주변의 공기를 흡입한다.The exhaust passage 124 is a passage for discharging air between the coupling part 123 and the suction port 125. When the vacuum pressure is generated in the vacuum pump 110, the exhaust passage 124 sucks the air around the suction port 125.
흡입구(125)는 피측정 광섬유(143, 144) 및 측정 광섬유(130)가 정렬되는 V자 홈의 바닥면에 위치하며, 상기 V자 홈의 길이 방향을 따라 연장된다. 흡입구(125)는 진공 펌프(110)에서 진공압이 발생하면 측정 광섬유(130)와 피측정 광섬유(143, 144)를 흡입하여 상기 광섬유(130, 143, 144)의 접속 상태를 유지시킨다. The suction port 125 is positioned on the bottom surface of the V-shaped groove in which the optical fibers 143 and 144 and the optical fiber 130 to be measured are aligned, and extend along the length direction of the V-shaped groove. When the vacuum pressure is generated in the vacuum pump 110, the suction port 125 sucks the measurement optical fiber 130 and the optical fiber 143, 144 to be maintained to maintain the connection state of the optical fibers 130, 143, and 144.
한편, 상기 V자 홈의 바닥면에 위치한 측정 광섬유(130)와 피측정 광섬유(143, 144)는 진공압 발생으로 인하여 배기 통로(124) 안으로 빨려들어가는 현상이 발생할 수 있다. 따라서, 상기 현상이 방지되도록 상기 흡입구(125)의 크기는 상기 광섬유(130, 143, 144) 심선의 직경 보다 좁게 형성되는 것이 바람직하다. Meanwhile, the measurement optical fiber 130 and the measurement optical fiber 143 and 144 located on the bottom surface of the V-shaped groove may be sucked into the exhaust passage 124 due to the generation of vacuum pressure. Therefore, the size of the suction port 125 is preferably formed to be narrower than the diameter of the core wire of the optical fiber (130, 143, 144) to prevent the phenomenon.
도 3은 본 발명의 일 실시예에 따른 지그의 사시도이다.3 is a perspective view of a jig according to an embodiment of the present invention.
도 3을 참조하면, 흡입구(125)는 V자 홈 바닥면에 위치되고, 상기 V자 홈의 길이 방향을 따라 연장된다. 따라서, 측정 광섬유(130)와 피측정 광섬유(143, 144)가 접속되어 상기 흡입구(125)상에 놓인 상태에서, 진공 펌프(110)로부터 진공압이 발생하면, 상기 두 광섬유(130, 143, 144)는 흡입구(125)의 흡입력에 의해서 접속 상태가 고정된다. 이에 따라, 지그(120)의 흔들림, 광섬유의 흔들림(130, 143, 144) 등의 외부 환경으로 인해 상기 두 광섬유(130, 143, 144)의 접속 상태를 변형되는 것을 방지할 수 있다.Referring to FIG. 3, the suction port 125 is located at the bottom of the V-shaped groove and extends along the length direction of the V-shaped groove. Therefore, when a vacuum pressure is generated from the vacuum pump 110 while the measurement optical fiber 130 and the optical fiber 143 and 144 to be connected are placed on the suction port 125, the two optical fibers 130, 143, 144 is connected by the suction force of the suction port 125 is fixed. Accordingly, the connection state of the two optical fibers 130, 143, and 144 may be prevented from being deformed due to the external environment such as the shaking of the jig 120 and the shaking of the optical fibers 130, 143, and 144.
또한, 진공압 표시부(122)는 압력 센서(121)에서 측정된 배기 통로(124)의 진공압을 숫자로서 디스플레이한다.In addition, the vacuum pressure display unit 122 displays the vacuum pressure of the exhaust passage 124 measured by the pressure sensor 121 as a number.
상술한 실시예를 통해서, 작업자는 손쉽게 피측정 광섬유(143, 144)와 측정 광섬유(130)를 접속할 수 있다. 또한, 작업자는 진공 펌프(110)의 제어 스위치(111)를 통해 지그(120)의 진공압을 제거함으로써, 피측정 광섬유(143, 144)와 측정 광섬유(130)의 접속 상태를 간편하게 해지시킬 수 있다.Through the above-described embodiment, an operator can easily connect the optical fibers 143 and 144 to the measurement optical fiber 130. In addition, by removing the vacuum pressure of the jig 120 through the control switch 111 of the vacuum pump 110, the operator can easily terminate the connection state between the optical fibers 143, 144 and the measurement optical fiber 130 to be measured. have.
표 1은 본 발명에 따른 진공 접속(Vaccum Connect) 방식으로 접속된 광섬유에 진공압을 변화시키면서 측정한 편광 모드 분산(PMD)값을 나타내는 표이다.Table 1 is a table showing the polarization mode dispersion (PMD) values measured while varying the vacuum pressure to the optical fiber connected by the vacuum connect method according to the present invention.
표 1
No 진공압 (bar) 측정 PMD [ps/km1/2]
실험 1 0.05 측정불가
실험 2 0.10 측정불가
실험 3 0.15 0.059
실험 4 0.20 0.055
실험 5 0.25 0.050
실험 6 0.30 0.060
실험 7 0.35 0.072
실험 8 0.40 0.102
실험 9 0.45 0.157
실험 10 0.50 0.210
Table 1
No Vacuum pressure (bar) PMD Measurement [ps / km 1/2 ]
Experiment 1 0.05 Not measurable
Experiment 2 0.10 Not measurable
Experiment 3 0.15 0.059
Experiment 4 0.20 0.055
Experiment 5 0.25 0.050
Experiment 6 0.30 0.060
Experiment 7 0.35 0.072
Experiment 8 0.40 0.102
Experiment 9 0.45 0.157
Experiment 10 0.50 0.210
즉, 두 개의 광섬유를 접속할 때, 접속 손실이 가장 적게 나타나는 것으로 알려진 종래의 융착 접속 방식으로 피측정 광섬유(143, 144)와 측정 광섬유(130)를 접속하게 되면, PMD 값은 0.058ps/km1/2(측정 오차 ±0.05ps)로 측정된다. 따라서, 본 발명에 따른 진공 접속 방식의 경우에는 지그(120)의 진공압이 0.15 bar 이상이고 0.40 bar 이하로 설정될 때, PMD가 0.050ps/km1 /2 ~ 0.102ps/km1 /2로 최적화되는 것을 확인할 수 있다.That is, when the two optical fibers are connected, when the optical fibers 143 and 144 and the optical fiber 130 are connected by the conventional fusion splicing method, which is known to show the least connection loss, the PMD value is 0.058 ps / km 1. Measured with / 2 (measurement error ± 0.05ps). Therefore, when the vacuum connection method according to the invention as it is set to the pressure is less than 0.15 bar and 0.40 bar in the binary jig (120), with the PMD 0.050ps / km 1/2 ~ 0.102ps / km 1/2 You can see that it is optimized.
표 2는 본 발명에 따른 진공 접속 방식으로 접속된 광섬유에 진공압을 변화시키면서 측정한 광손실 값을 나타내는 표이다.Table 2 is a table showing the optical loss value measured while varying the vacuum pressure to the optical fiber connected by the vacuum connection system according to the present invention.
표 2
No 진공압 (bar) 광손실 측정[db/km@1550nm]
실험 1 0.05 0.301
실험 2 0.10 0.290
실험 3 0.15 0.300
실험 4 0.20 0.180
실험 5 0.25 0.182
실험 6 0.30 0.182
실험 7 0.35 0.183
실험 8 0.40 0.186
실험 9 0.45 0.189
실험 10 0.50 0.200
TABLE 2
No Vacuum pressure (bar) Optical loss measurement [db / km @ 1550nm]
Experiment 1 0.05 0.301
Experiment 2 0.10 0.290
Experiment 3 0.15 0.300
Experiment 4 0.20 0.180
Experiment 5 0.25 0.182
Experiment 6 0.30 0.182
Experiment 7 0.35 0.183
Experiment 8 0.40 0.186
Experiment 9 0.45 0.189
Experiment 10 0.50 0.200
두 개의 광섬유를 접속할 때, 접속 손실이 가장 적게 나타나는 것으로 알려진 종래의 융착 접속 방식으로 피측정 광섬유(143, 444)와 측정 광섬유(130)를 접속하게 되면, 광손실 값은 0.182dB/km(측정 오차 ±0.002)로 측정된다. 따라서, 본 발명에 따른 진공 접속 방식의 경우에는, 지그(120)에서 발생하는 진공압을 0.20 bar 이상이고 0.35 이하로 설정될 때, 광손실값이 0.180db/km ~ 0.183db/km로 최적화되는 것을 확인할 수 있다.When the two optical fibers are connected, when the optical fibers 143 and 444 and the measurement optical fiber 130 are connected by the conventional fusion splicing method, which is known to have the least splicing loss, the optical loss value is 0.182 dB / km. Error ± 0.002). Accordingly, in the case of the vacuum connection method according to the present invention, when the vacuum pressure generated in the jig 120 is set to 0.20 bar or more and 0.35 or less, the light loss value is optimized to 0.180db / km to 0.183db / km. You can see that.
표 3 및 표 4는 동일 작업자가 동일 광섬유를 기계적 접속 방식 및 본 발명에 따른 진공 접속 방식으로 반복적으로 접속하여 측정한 PMD 값의 표준 편차 및 광손실값의 표준 편차를 나타내는 표이다.Tables 3 and 4 are tables showing standard deviations of PMD values and standard deviations of optical loss values measured by the same operator repeatedly connecting the same optical fiber by a mechanical connection method and a vacuum connection method according to the present invention.
표 3
구분 진공 접속 방식 기계적 접속 방식
평균 0.055 0.059
표준 편차 0.003 0.015
접속 셋업 시간 5초 20초
TABLE 3
division Vacuum connection method Mechanical connection method
Average 0.055 0.059
Standard Deviation 0.003 0.015
Connection setup time 5 sec 20 seconds
표 4
구분 진공 접속 방식 기계적 접속 방식
평균 0.181 0.182
표준 편차 0.002 0.040
접속 셋업 시간 5초 20초
Table 4
division Vacuum connection method Mechanical connection method
Average 0.181 0.182
Standard Deviation 0.002 0.040
Connection setup time 5 sec 20 seconds
상기 표 3 및 표 4로부터 알 수 있는 바와 같이, 본 발명에 따른 진공 접속 방식으로 동일 작업자가 동일 광섬유를 접속·분리를 반복하여 상기 광섬유의 품질(즉, PMD 또는 광손실)을 측정한 결과, 진공 접속 방식이 기계적 접속 방식보다 PMD 및 광손실의 표준 편차가 낮다. 또한, 진공 접속 방식은 접속 셋팅 시간이 평균 5초로서, 기계적 접속 방식 보다 빠름을 알 수 있다. 그리고 본 발명에 따른 진공 접속 방식은 기계적 접속 방식보다 측정 광섬유(130)의 PMD 및 광손실이 낮게 측정된다. 즉, 본 발명의 따른 진공 접속 방식은 기계적 접속 방식 보다 접속 손실이 더 줄어듬을 알 수 있다.As can be seen from Table 3 and Table 4, the same operator repeatedly connected and disconnected the same optical fiber in the vacuum connection method according to the present invention and measured the quality (ie PMD or optical loss) of the optical fiber, The vacuum connection method has a lower standard deviation of PMD and light loss than the mechanical connection method. In addition, the vacuum connection method has an average connection setting time of 5 seconds, which is faster than the mechanical connection method. In the vacuum connection method according to the present invention, the PMD and the optical loss of the optical fiber 130 are measured lower than that of the mechanical connection method. That is, the vacuum connection method according to the present invention can be seen that the connection loss is reduced more than the mechanical connection method.
표 5는 다수의 작업자가 동일 광섬유를 기계적 접속 방식과 본 발명에 따른 진공 접속 방식으로 접속하여 측정한 PMD 값 및 광손실 값을 나타내는 표이다. 상기 표 5를 통해, 본 발명에 따른 진공 접속 방식이 기계적 접속 방식보다 PMD 및 광손실의 작업자간 표준 편차가 낮은 것을 알 수 있다. 즉, 기계적 접속 방식은 작업자의 숙련도에 따라 편차가 심한데 비해, 본 발명에 따른 진공 접속 방식은 작업자의 숙련도의 영향을 덜 받는다.Table 5 is a table showing PMD values and light loss values measured by a plurality of workers connecting the same optical fiber by a mechanical connection method and a vacuum connection method according to the present invention. Through Table 5, it can be seen that the vacuum connection method according to the present invention has a lower standard deviation between the operators of the PMD and the light loss than the mechanical connection method. In other words, the mechanical connection method is severely varied according to the skill of the operator, while the vacuum connection method according to the present invention is less affected by the skill of the operator.
표 5
구분 PMD [ps/km1/2] 광손실 [db/km]
기계적접속방식 진공접속방식 기계적접속방식 진공접속방식
작업자 1 0.075 0.059 0.182 0.182
작업자 2 0.089 0.061 0.183 0.183
작업자 3 0.065 0.061 0.185 0.183
작업자 4 0.088 0.061 0.189 0.183
Table 5
division PMD [ps / km 1/2 ] Optical loss [db / km]
Mechanical connection method Vacuum connection method Mechanical connection method Vacuum connection method
Worker 1 0.075 0.059 0.182 0.182
Worker 2 0.089 0.061 0.183 0.183
Worker 3 0.065 0.061 0.185 0.183
Worker 4 0.088 0.061 0.189 0.183
상술한 바와 같이, 본 발명에 따른 진공 접속 방식은 기계적 접속 방식보다 접속 셋팅 시간이 짧아 광섬유를 대량 생산하는 사업장에 유용하다. 특히, 본 발명에 따른 진공 접속 방식은 광섬유를 영구적으로 접속하지 않고, 임시적으로 접속하여 광 섬유의 품질 상태를 측정해야되는 광섬유 점검 분야에서 유용하게 사용될 수 있다. As described above, the vacuum connection method according to the present invention has a shorter connection setting time than the mechanical connection method, which is useful for a business that mass-produces optical fibers. In particular, the vacuum connection method according to the present invention can be usefully used in the field of optical fiber inspection in which the optical fiber has to be temporarily connected to measure the quality state of the optical fiber without permanently connecting the optical fiber.
이상에서 설명한 본 발명은, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하므로 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니다.The present invention described above is capable of various substitutions, modifications, and changes without departing from the technical spirit of the present invention for those skilled in the art to which the present invention pertains. It is not limited by the drawings.
본 발명에 따른 진공 접속 방식은 종래의 기계적 접속 방식보다 접속 셋팅 시간이 짧아 광섬유를 대량 생산하는 사업장에 유용하다. The vacuum connection method according to the present invention has a shorter connection setting time than the conventional mechanical connection method and is useful for a business for mass production of optical fibers.
특히, 본 발명은 작업자의 숙련도에 따라 달라지는 광손실 및 편광 모드 분산(PMD)의 편차를 최소화시킬 수 있다.In particular, the present invention can minimize the deviation of light loss and polarization mode dispersion (PMD) that depends on the skill of the operator.
또한, 본 발명에 따른 진공 접속 방식은 매설되거나 설치된 광섬유의 품질을 측정하는 광섬유 점검 분야에서 유용하게 사용될 수 있다.In addition, the vacuum connection method according to the present invention can be usefully used in the field of optical fiber inspection for measuring the quality of embedded or installed optical fiber.

Claims (11)

  1. 광섬유의 PMD나 광손실과 같은 광품질 특성을 측정하는 측정장치; 상기 측정 장치의 송신단에 연결되는 제 1 광섬유와 상기 측정 장치의 수신단에 연결되는 제 2 광섬유로 이루어지는 연결 광섬유; 상기 제 1 및 제 2 광섬유와 연결되어 상기 측정 장치에 의해 광품질 특성이 측정되는 측정 광섬유; 및 상기 연결 광섬유와 측정 광섬유를 물리적으로 접속시켜 광학적으로 연결하는 접속 장치를 포함하는 광섬유 품질 측정 시스템에 있어서,A measuring device for measuring optical quality characteristics such as PMD and optical loss of an optical fiber; A connecting optical fiber comprising a first optical fiber connected to a transmitting end of the measuring device and a second optical fiber connected to a receiving end of the measuring device; A measurement optical fiber connected to the first and second optical fibers to measure an optical quality characteristic by the measuring device; And a connection device for physically connecting the connection optical fiber and the measurement optical fiber to optically connect the optical fiber.
    상기 접속 장치는, The connection device,
    진공압을 발생시키는 진공 펌프;A vacuum pump for generating a vacuum pressure;
    피복이 제거된 상태로 서로 접촉된 상기 연결 광섬유 및 측정 광섬유를 지지하면서 상기 진공 펌프에서 발생하는 진공압을 이용하여 상기 연결 광섬유와 측정 광섬유를 흡입하는 것에 의해 접촉 상태를 유지시키는 접촉 유지 수단을 포함하는 것을 특징으로 하는 광섬유 품질 측정 시스템.And contact holding means for holding the connection optical fiber and the measurement optical fiber in contact with each other with the coating removed while maintaining the contact state by sucking the connection optical fiber and the measurement optical fiber using the vacuum pressure generated in the vacuum pump. Optical fiber quality measurement system, characterized in that.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 진공 펌프의 진공압을 상기 접촉 유지 수단에 전달하기 위한 진공 파이프를 더 포함하는 것을 특징으로 하는 광섬유 품질 측정 시스템.And a vacuum pipe for transmitting the vacuum pressure of the vacuum pump to the contact holding means.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 접촉 유지 수단은,The contact holding means,
    상기 연결 광섬유 및 측정 광섬유를 지지하기 위한 V자형 홈;A V-shaped groove for supporting the connecting optical fiber and the measuring optical fiber;
    이 V자형 홈의 바닥면에 형성되어 있는 슬롯;A slot formed in the bottom surface of the V-shaped groove;
    상기 진공 파이프와 상기 슬롯을 연통시키는 배기 통로를 포함하는 것을 특징으로 하는 광섬유 품질 측정 시스템.And an exhaust passage communicating the vacuum pipe and the slot.
  4. 제 3 항에 있어서,The method of claim 3, wherein
    상기 슬롯의 폭은 상기 연결 광섬유 및 측정 광섬유의 직경 보다 작은 것을 특징으로 하는 광섬유 품질 측정 시스템.And the width of the slot is smaller than the diameter of the connecting fiber and the measuring fiber.
  5. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 4,
    상기 측정 광섬유의 편광 모드 분산을 측정할 때, 상기 진공 펌프의 진공압은, 0.15 bar ~ 0.40 bar로 유지되는 것을 특징으로 하는 광섬유 품질 측정 시스템.And the vacuum pressure of the vacuum pump is maintained at 0.15 bar to 0.40 bar when measuring the polarization mode dispersion of the measuring optical fiber.
  6. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 4,
    상기 측정 광섬유의 광손실을 측정할 때, 상기 진공 펌프의 진공압은, 0.20 bar ~ 0.35bar로 유지되는 것을 특징으로 하는 광섬유 품질 측정 시스템.When measuring the optical loss of the optical fiber, the vacuum pressure of the vacuum pump, the optical fiber quality measurement system, characterized in that maintained at 0.20 bar ~ 0.35 bar.
  7. 제 4 항에 있어서,The method of claim 4, wherein
    상기 접촉 유지 수단은,The contact holding means,
    상기 배기 통로의 압력을 측정하기 위한 압력 센서와,A pressure sensor for measuring pressure in the exhaust passage;
    상기 압력 센서에 의해 측정된 압력값을 외부에 표시하기 위한 표시 장치를 더 포함하는 것을 특징으로 하는 광섬유 품질 측정 시스템.And a display device for displaying the pressure value measured by the pressure sensor to the outside.
  8. 진공압을 발생시키는 진공 펌프; 및A vacuum pump for generating a vacuum pressure; And
    광학적으로 연결하기 위하여 물리적으로 접촉되는 두 개의 광섬유를 지지하면서 상기 진공 펌프의 진공압을 이용하여 상기 두 개의 광섬유를 그 지지면에서 흡입, 고정함으로써 접촉 상태를 유지시키는 접촉 유지 수단을 포함하는 광섬유 접속 장치.An optical fiber connection including contact holding means for holding two optical fibers that are in physical contact for optical connection while maintaining the contact state by suctioning and fixing the two optical fibers at their support surfaces using the vacuum pressure of the vacuum pump Device.
  9. 제 8 항에 있어서,The method of claim 8,
    상기 진공 펌프의 진공압을 전달하는 진공 파이프를 더 포함하고;Further comprising a vacuum pipe for transferring a vacuum pressure of the vacuum pump;
    상기 접촉 유지 수단은,The contact holding means,
    상기 두 개의 광섬유를 수용한 상태에서 지지하기 위하여 광섬유의 길이 방향을 따라 형성되는 지지 홈과, 상기 지지 홈의 바닥면에 광섬유의 길이 방향을 따라 연장되는 슬롯과, 상기 슬롯과 상기 진공 파이프를 연통시키기 위한 배기 통로를 포함하는 광섬유 접속 장치.A support groove formed along the longitudinal direction of the optical fiber for supporting the two optical fibers in a received state, a slot extending along the longitudinal direction of the optical fiber at a bottom surface of the support groove, and communicating the slot with the vacuum pipe And an exhaust passage for discharging the optical fiber.
  10. 제 8 항에 있어서,The method of claim 8,
    상기 슬롯의 폭은 상기 두 개의 광섬유의 직경 보다 작은 것을 특징으로 하는 광섬유 접속 장치.And the width of the slot is smaller than the diameter of the two optical fibers.
  11. 제 10 항에 있어서,The method of claim 10,
    상기 접촉 유지 수단은,The contact holding means,
    상기 배기 통로의 압력을 측정하기 위한 압력 센서와,A pressure sensor for measuring pressure in the exhaust passage;
    상기 압력 센서에 의해 측정된 압력값을 외부에 표시하기 위한 표시 장치를 더 포함하는 것을 특징으로 하는 광섬유 접속 장치.And a display device for displaying the pressure value measured by the pressure sensor to the outside.
PCT/KR2009/000422 2008-02-05 2009-01-29 Optical fiber connecting device and optical fiber quality measuring system using same WO2009099281A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2008-0011794 2008-02-05
KR1020080011794A KR100956485B1 (en) 2008-02-05 2008-02-05 Apparatus for connecting optical fiber and system for measuring quality of optical fiber thereof

Publications (3)

Publication Number Publication Date
WO2009099281A2 true WO2009099281A2 (en) 2009-08-13
WO2009099281A3 WO2009099281A3 (en) 2009-11-05
WO2009099281A4 WO2009099281A4 (en) 2010-01-28

Family

ID=40952553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/000422 WO2009099281A2 (en) 2008-02-05 2009-01-29 Optical fiber connecting device and optical fiber quality measuring system using same

Country Status (2)

Country Link
KR (1) KR100956485B1 (en)
WO (1) WO2009099281A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102047123B1 (en) * 2019-05-20 2019-11-20 한국해양과학기술원 Method for layer identification in the time domain

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000009961A (en) * 1998-06-19 2000-01-14 Japan Tobacco Inc Connector connecting device
KR20010113894A (en) * 1999-04-26 2001-12-28 알프레드 엘. 미첼슨 Apparatus and method for measuring polarization dependent loss
KR20020021084A (en) * 1999-03-31 2002-03-18 알프레드 엘. 미첼슨 System and method for measuring polarization mode dispersion suitable for a production environment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000009961A (en) * 1998-06-19 2000-01-14 Japan Tobacco Inc Connector connecting device
KR20020021084A (en) * 1999-03-31 2002-03-18 알프레드 엘. 미첼슨 System and method for measuring polarization mode dispersion suitable for a production environment
KR20010113894A (en) * 1999-04-26 2001-12-28 알프레드 엘. 미첼슨 Apparatus and method for measuring polarization dependent loss

Also Published As

Publication number Publication date
WO2009099281A3 (en) 2009-11-05
KR20090085885A (en) 2009-08-10
WO2009099281A4 (en) 2010-01-28
KR100956485B1 (en) 2010-05-07

Similar Documents

Publication Publication Date Title
US20180172925A1 (en) Traceable end point cable assembly having a tracing waveguide
US6986608B2 (en) Passive alignment connection for fiber optics
US20180095227A1 (en) Systems and methods for optically connecting fiber arrays with paired transmit and receive fibers
US10451803B2 (en) Multimode optical transmission system employing modal-conditioning fiber
WO2002073277A3 (en) Apparatus for coupling a fiber optic cable to an optoelectronic device, a system including the apparatus, and a method of forming the same
US20020101577A1 (en) Optical fiber test method and apparatus
WO2014035022A1 (en) Fusion splicer having added optical fiber inspection function
WO2011139046A2 (en) Optical fiber connector in which bragg grating is built
US9151912B2 (en) Optical fiber segment holders including shielded optical fiber segments, connectors, and methods
AU2008205676B2 (en) Non-physical contact visual fault locator coupler
WO2009099281A2 (en) Optical fiber connecting device and optical fiber quality measuring system using same
US20240036279A1 (en) Fiber optic system with multimode optical fiber cables and fiber connections with mode-matching single-mode fiber devices
US11740410B2 (en) Routing of multicore optical fibers in data networks
WO2018097420A1 (en) Fibre optic fusion splicer
Morishima et al. Simple-structure LC-type multi-core fiber connector with low insertion loss
Oda et al. Loss performance of field-deployed high-density 1152-channel link constructed with 4-core multicore fiber cable
US10816734B2 (en) Multimode optical transmission system employing modal-conditioning fiber
JP3680565B2 (en) Mode conditioner
ITRM20100283A1 (en) CONNECTION DEVICE FOR OPTICAL FIBERS.
JP3820802B2 (en) Optical transmitter
US20230086950A1 (en) Splice-on optical connectors for multicore fibers
CN207946565U (en) A kind of passive optical fiber devices device
US10859772B1 (en) Routing of multicore optical fibers in data networks
Barrett et al. A Standard Duplex Fiber Optic Receptacle/Connector: Requirements And Test Methods
GB2179145A (en) Optical fibre end-face assessment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09709158

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09709158

Country of ref document: EP

Kind code of ref document: A2