WO2009097806A1 - Frame structure and transmission method in a time division duplex wireless communication system - Google Patents

Frame structure and transmission method in a time division duplex wireless communication system Download PDF

Info

Publication number
WO2009097806A1
WO2009097806A1 PCT/CN2009/070283 CN2009070283W WO2009097806A1 WO 2009097806 A1 WO2009097806 A1 WO 2009097806A1 CN 2009070283 W CN2009070283 W CN 2009070283W WO 2009097806 A1 WO2009097806 A1 WO 2009097806A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
downlink
terminal
base station
data
Prior art date
Application number
PCT/CN2009/070283
Other languages
French (fr)
Chinese (zh)
Inventor
Yu Xin
Xiaowu Zhao
Yonggang Fang
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CNA2008100062500A external-priority patent/CN101505187A/en
Priority claimed from CNA2008100093246A external-priority patent/CN101515823A/en
Priority claimed from CNA2008100083278A external-priority patent/CN101515848A/en
Application filed by Zte Corporation filed Critical Zte Corporation
Publication of WO2009097806A1 publication Critical patent/WO2009097806A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing

Abstract

A frame structure and a transmission method in a time division duplex wireless communication system are disclosed in the present invention. The method includes that: a base station and a terminal transmit data in a unit of superframe; in the time length of a superframe, the base station transmits a preamble to the terminal, and transmits downlink data via m downlink physical frames to the terminal; and the terminal transmits uplink data to the base station via n uplink physical frames, wherein the m and n are both natural numbers, and they fulfill the equation: m+n=24. A method for dividing uplink/downlink resource of PHY frames in the TDD mode is provided in the present invention, and so that the problem of the uplink and downlink division of the PHY frames is solved, meanwhile, the problems of resource distribution, time delay and guard interval etc. are also solved, so as to improve the usage efficiency of the system.

Description

时分双工无线通信系统的帧结构和传输方法 技术领域 本发明涉及无线通信系统, 尤其涉及一种 TDD ( Time Division Duplex , 时分双工) 无线通信系统的帧结构和传输方法。 背景技术 在以 superframe (超帧) 为单位进行数据传输的无线系统中, 无线空口 传输的上 /下行链路一般是以 superframe为单位进行传输数据的; 其中, 每个 superframe由一个 reamble (前导 ) 和若干个 PHY Frame (物理帧) 组成, 并且, preamble和 PHY Frame均以 OFDM ( Orthogonal Frequency Division Multiplexing , 正交频分复用) Symbol (符号) 为基本单位。 目前的 UMB ( Ultra Mobile Broadband,超级移动宽带)、 LTE( Long-Term Evolution , 长期演进)、 Wimax ( Worldwide Interoperability for Microwave Access , 波接入全球互通)系统都有两种双工方式: FDD( Frequency Division Duplex, 频分双工) 方式和 TDD方式。 在 FDD方式下, 上 /下行链路釆用不同的频带进行数据传输, 这样, 系 统的上 /下行 PHY Frames 的资源分配相对比较独立, 即, 可以对下行 PHY Frames和上行 PHY Frames分别进行资源分配。 在 TDD方式下, 由于上 /下行链路使用相同的频段分时进行数据传输, 这样, 如何将 PHY frames设置为用于上行 /下行, 以及, 如何进行资源分配、 设置时延和保护间隔, 目前尚未提出有效的解决方案。 发明内容 考虑到相关技术中存在的在 TDD方式下,如何将 PHY frames设置为用 于上行 /下行, 以及如何进行资源分配、 设置时延和保护间隔的问题而提出本 发明, 为此, 本发明的主要目的在于提供一种时分双工无线通信系统的帧结 构和传输方法, 以解决上述问题。 才艮据本发明的一个方面, 提供一种时分双工无线通信系统的传输方法。 才艮据本发明的时分双工无线通信系统的传输方法包括:基站和终端以超 帧为单位进行数据传输, 在一个超帧的时长内, 基站向终端发送一前导, 并 通过 m个下行物理帧向终端发送下行数据,终端通过 n个上行物理帧向基站 发送上行数据, 其中, m、 n均为自然数, 且满足 m+n=24。 进一步地,上述方法还包括:对于不同的 m:n取值,超帧的时长均相同。 其中, 在一个超帧的时长内, 基站首先向终端发送前导, 给终端提供系 统开销信息。 在 m=15 , n=9的情况下, 在一个超帧的时长内, 基站先后通过 3个由 5 个连续下行物理帧组成的下行传输块向终端发送下行数据; 终端先后通过 3个由 3个连续上行物理帧组成的上行传输块给基站发送上行数据。 在 m=9 , n=15的情况下, 在一个超帧的时长内, 基站先后通过 3个由 3 个连续下行物理帧组成的下行传输块向终端发送下行数据; 终端先后通过 3个由 5个连续上行物理帧组成的上行传输块向基站发送上行数据。 在 m=18 , n=6的情况下, 在一个超帧的时长内, 基站先后通过 3个由TECHNICAL FIELD The present invention relates to a wireless communication system, and more particularly to a frame structure and transmission method of a TDD (Time Division Duplex) wireless communication system. BACKGROUND In a wireless system that performs data transmission in units of superframes, uplink/downlinks of wireless air interface transmission generally transmit data in units of superframes; wherein each superframe is composed of a reamble (preamble) It is composed of a number of PHY Frames (physical frames), and both the preamble and the PHY Frame are based on OFDM (Orthogonal Frequency Division Multiplexing) Symbol (symbol). The current UMB (Ultra Mobile Broadband), LTE (Long-Term Evolution), Wimax (Worldwide Interoperability for Microwave Access) systems have two duplex modes: FDD (Frequency Division Duplex, Frequency Division Duplex) mode and TDD mode. In the FDD mode, the uplink/downlink uses different frequency bands for data transmission. Thus, the resource allocation of the uplink/downlink PHY Frames of the system is relatively independent, that is, resource allocation can be performed separately for the downlink PHY Frames and the uplink PHY Frames. . In TDD mode, since the uplink/downlink uses the same frequency band for time-division data transmission, how to set PHY frames for uplink/downlink, and how to allocate resources, set delay and guard interval, currently No effective solution has been proposed. SUMMARY OF THE INVENTION The present invention has been made in view of the problems in the related art, how to set PHY frames to be used for uplink/downlink, and how to perform resource allocation, set delay, and guard interval, and the present invention The main purpose of the present invention is to provide a frame structure and transmission method for a time division duplex wireless communication system to solve the above problems. According to an aspect of the present invention, a transmission method of a time division duplex wireless communication system is provided. The transmission method of the time division duplex wireless communication system according to the present invention includes: the base station and the terminal perform data transmission in units of superframes, and within a duration of one superframe, the base station transmits a preamble to the terminal, and passes m downlink physicals. The frame sends downlink data to the terminal, and the terminal sends uplink data to the base station through n uplink physical frames, where m and n are both natural numbers and satisfy m+n=24. Further, the above method further includes: for different values of m:n, the durations of the superframes are the same. The base station first sends a preamble to the terminal to provide system overhead information to the terminal within the duration of one superframe. In the case of m = 15 and n=9, the base station transmits downlink data to the terminal through three downlink transmission blocks consisting of five consecutive downlink physical frames in the duration of one superframe; the terminal passes three by three. An uplink transport block consisting of consecutive uplink physical frames sends uplink data to the base station. In the case of m = 9 and n=15, the base station transmits downlink data to the terminal through three downlink transport blocks consisting of three consecutive downlink physical frames in a duration of one superframe; the terminal passes three by five. An uplink transport block composed of consecutive uplink physical frames transmits uplink data to the base station. In the case of m=18 and n=6, the base station passes three times in the duration of one superframe.
6 个连续下行物理帧组成的下行传输块向终端发送下行数据; 终端先后通过 3个由 2个连续上行物理帧组成的上行传输块向基站发送上行数据。 其中, 在一个超帧的时长内, 基站首先通过一个或多个下行物理帧组成 的下行传输块向终端发送下行数据, 终端再通过一个或多个上行物理帧组成 的上行传输块向基站发送上行数据, 如此交替发送, 在一个超帧时长内, 上 行、 下行数据各发送一次或多次。 其中, 在一个超帧的时长内, 在基站发送下行数据之后和终端发送上行 数据之前, 和 /或终端发送上行数据之后和基站发送下行数据之前, 均有一时 间间隔, 在该时间间隔上基站和终端均不发送数据。 根据本发明的一个方面, 提供一种时分双工无线通信系统的传输方法。 才艮据本发明的时分双工无线通信系统的传输方法包括:基站和终端以超 帧为单位进行数据传输, 在一个超帧的时长内, 基站向终端发送前导; 基站 通过 3个由 a个连续下行物理帧组成的下行传输块, 向终端发送下行数据; 终端通过 3个由 b个连续上行物理帧组成的上行传输块, 向基站发送上行数 据; 在一个超帧的时长内, 包括一个或多个时间间隔, 且在时间间隔上, 基 站和终端都不发送数据; 其中, a、 b均为自然数, 且满足 a+b=8。 其中, a和 b的取值满足以下条件之一: a=5、 b=3; 或者, a=3、 b=5; 或者, a=6、 b=2。 根据本发明的另一个方面, 提供一种时分双工无线通信系统的帧结构。 才艮据本发明的时分双工无线通信系统的帧结构包括: 该帧结构为一超 帧, 超帧由一个前导和 24个物理帧组成, 该 24个物理帧按照下行和上行个 数比为 a:b划分为下行物理帧和上行物理帧; 其中, a、 b均为自然数, 且满 足 a+b=8。 其中, 前导位于帧结构的起始位置, 包含系统开销信息。 优选地, 超帧中包括 3个由 a个连续下行物理帧组成的下行传输块, 以 及 3个由 b个连续上行物理帧组成的上行传输块。 在 a:b=5:3的情况下, 超帧中包括 3个由 5个连续下行物理帧组成的下 行传输块, 以及 3个由 3个连续上行物理帧组成的上行传输块。 在 a:b=3:5的情况下, 超帧中包括 3个由 3个连续下行物理帧组成的下 行传输块, 以及 3个由 5个连续上行物理帧组成的上行传输块。 在 a:b=6:2的情况下, 超帧中包括 3个由 6个连续下行物理帧组成的下 行传输块, 以及 3个由 2个连续上行物理帧组成的上行传输块。 优选地, 超帧中从起始位置开始, 先设有一个或多个下行物理帧组成的 下行传输块, 之后设有一个或多个上行物理帧组成的上行传输块, 超帧中包 括一组或多组这样交替分布的上行传输块和下行传输块。 其中, 在下行传输块与上行传输块之间插入有一定时间长度的保护间 隔; 在下行传输块与随后的上行传输块之间插入的时间保护间隔, 与在上行 传输块与随后的下行传输块之间插入的时间保护间隔相等或不相等。 根据本发明的另一个方面, 提供一种时分双工无线通信系统的帧结构。 才艮据本发明的时分双工无线通信系统的帧结构包括: 该帧结构为一超 帧, 在超帧中依次包括一前导、 a 个连续下行物理帧组成的一下行传输块、 第一时间间隔, b个连续上行物理帧组成的一上行传输块、 第二时间间隔、 a 个连续下行物理帧组成的另一下行传输块、 第三时间间隔、 b 个连续上行物 理帧组成的另一上行传输块、 第四时间间隔、 a 个连续下行物理帧组成的另 一下行传输块、第五时间间隔和 b个连续上行物理帧组成的另一上行传输块; 其中, a、 b均为自然数, 且满足 a+b=8。 其中, a和 b的取值满足以下条件之一: a=5、 b=3; 或者, a=3、 b=5; 或者, a=6、 b=2。 通过本发明的上述至少一个技术方案, 本发明提供一种在 TDD方式下 的 PHY frames上 /下行资源划分方法, 解决了 PHY frames上行和下行划分的 问题, 同时还解决了资源分配、 时延和保护间隔等问题, 可以提高系统的使 用效率。 本发明的其它特征和优点将在随后的说明书中阐述, 并且, 部分地从说 明书中变得显而易见, 或者通过实施本发明而了解。 本发明的目的和其他优 点可通过在所写的说明书、 权利要求书、 以及附图中所特别指出的结构来实 现和获得。 附图说明 附图用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与本 发明的实施例一起用于解释本发明, 并不构成对本发明的限制。 在附图中: 图 1为才艮据本发明实施例的 TDD 5:3方式下的 superframe结构示意图; 图 2为才艮据本发明实施例的 TDD 5:3方式下的传输方法的流程图; 图 3为才艮据本发明实施例的 TDD 3:5方式下的 superframe结构示意图; 图 4为才艮据本发明实施例的 TDD 3:5方式下的传输方法的流程图; 图 5为才艮据本发明实施例的 TDD 6:2方式下的 superframe结构示意图; 图 6为才艮据本发明实施例的 TDD 6:2方式下的传输方法的流程图。 具体实施方式 功能相无述 如上所述, 在时分双工 (TDD ) 方式下, 其上 /下行链路使用相同的频 段分时进行数据传输, 由于其不同于频分双工(FDD )方式, 上 /下行链路釆 用不同的频带进行数据传输, 使得系统的上 /下行 PHY Frames进行资源分配 时, 可以对下行 PHY Frames和上行 PHY Frames分别进行资源分配, 这样, 在 TDD方式下,釆用何种方法对 PHY frames的上行 /下行进行设置是急待解 决的一个问题。 基于此, 本发明提供一种时分双工无线通信系统的传输方案, 其中, 基 站和终端以超帧为单位进行数据传输, 并在一个超帧的时长内, 基站向终端 发送一前导, 其中, 基站可以通过 m个下行物理帧向终端发送下行数据, 终 端可以通过 n个上行物理帧向基站发送上行数据, 且 m、 n之间满足一定的 关系。 在不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互组 合。 以下结合附图对本发明的优选实施例进行说明, 应当理解, 此处所描述 的优选实施例仅用于说明和解释本发明, 并不用于限定本发明。 才艮据本发明实施例, 提供一种时分双工无线通信系统的传输方法。 根据本发明实施例的时分双工无线通信系统的传输方法包括:基站和终 端以超帧为单位进行数据传输, 在一个超帧的时长内, 基站向终端发送一前 导, 并通过 m个下行物理帧向终端发送下行数据, 所述终端通过 n个上行物 理帧向所述基站发送上行数据, 其中, m、 n均为大于 0 的自然数, 且满足 m+n=24; 并且, 对于不同的 m:n取值, 超帧的时长均相同。 需要说明的是, 在下文中, 如无特殊说明, 基站和终端均以超帧为单位 进行数据传输, 并且, 在一个超帧的时长内, 可以包括一个或多个时间间隔, 在该超帧时长内, 基站可以向终端发送前导; 基站可以通过 3个由 a个连续 下行物理帧组成的下行传输块, 向终端发送下行数据; 终端也可以通过 3个 由 b个连续上行物理帧组成的上行传输块, 向基站发送上行数据; 在上述时 间间隔上,基站和终端都不发送数据;其中, a、 b均为自然数,且满足 a+b=8。 可以看出, 在上述基站和终端以超帧为单位进行数据传输的过程中, 在 每个超帧时长内, 基站与终端之间可以包括以下四种通信方式: ( 1 )基站向 终端发送前导、 (2 )基站通过下行传输块向终端发送下行数据、 ( 3 ) 终端通 过上行传输块向基站发送上行数据、 ( 4 ) 在时间间隔内基站与终端之间不进 行数据传输。 需要说明的是, 在每个超帧时长内, 对于上述四种通信方式的 执行并无先后顺序的限制, 基站和终端可以根据实际需要选择合适的顺序使 用上述四种方式进行通信。 例如, 在某个超帧时长内, 可以有如下顺序的操作: 基站向终端发送前 导——〉基站通过下行传输块向终端发送下行数据——〉在一个时间间隔内, 基站与终端之间不进行数据传输——〉终端通过上行传输块向基站发送上行 数据; 在另一超帧时长内, 可以有如下顺序的操作: 基站通过下行传输块向 终端发送下行数据——〉在一个时间间隔内, 基站与终端之间不进行数据传 输——〉基站向终端发送前导——〉在一个时间间隔内基站与终端之间不进 行数据传输——〉终端通过上行传输块向基站发送上行数据。 以上仅是对上 述四种通信方式的实现方式的举例说明, 对于其他各种情况, 在此不再—— 列举。 下面根据 m、 n的不同取值, 结合具体实施例对图 1所示的方法进行详 细说明。 实施例 1 在该实施例中, 可以令 m=15 , n=9 , 即, 基站通过 15个下行物理帧向 终端发送下行数据, 终端通过 9个上行物理帧向基站发送上行数据。 The downlink transport block consisting of 6 consecutive downlink physical frames sends downlink data to the terminal; the terminal sends uplink data to the base station through three uplink transport blocks consisting of two consecutive uplink physical frames. The base station first sends downlink data to the terminal by using one or more downlink physical blocks of the downlink physical frame, and the terminal sends the uplink to the base station by using one or more uplink physical blocks. The data is thus alternately transmitted. In one superframe duration, the uplink and downlink data are transmitted one or more times each. In the duration of a superframe, after the base station sends the downlink data and before the terminal sends the uplink data, and/or after the terminal sends the uplink data and before the base station sends the downlink data, there is a time interval at which the base station and the base station The terminal does not send data. According to an aspect of the present invention, a transmission method of a time division duplex wireless communication system is provided. The transmission method of the time division duplex wireless communication system according to the present invention includes: the base station and the terminal perform data transmission in units of superframes, and within a duration of one superframe, the base station transmits a preamble to the terminal; the base station passes three by a a downlink transport block consisting of consecutive downlink physical frames, and transmitting downlink data to the terminal; The terminal sends uplink data to the base station through three uplink transmission blocks consisting of b consecutive uplink physical frames; one or more time intervals are included in the duration of one super frame, and the base station and the terminal are not in the time interval. Send data; where a and b are natural numbers and satisfy a+b=8. Wherein, the values of a and b satisfy one of the following conditions: a=5, b=3; or, a=3, b=5; or, a=6, b=2. According to another aspect of the present invention, a frame structure of a time division duplex wireless communication system is provided. The frame structure of the time division duplex wireless communication system according to the present invention includes: the frame structure is a super frame, the super frame is composed of one preamble and 24 physical frames, and the ratio of the downlink and the uplink is a: b is divided into a downlink physical frame and an uplink physical frame; where a and b are both natural numbers and satisfy a+b=8. The preamble is located at the beginning of the frame structure and contains system overhead information. Preferably, the superframe includes three downlink transport blocks consisting of a consecutive downlink physical frames, and three uplink transport blocks consisting of b consecutive uplink physical frames. In the case of a:b=5:3, the superframe includes three downlink transport blocks consisting of five consecutive downlink physical frames, and three uplink transport blocks consisting of three consecutive uplink physical frames. In the case of a:b=3:5, the superframe includes three downlink transport blocks composed of three consecutive downlink physical frames, and three uplink transport blocks composed of five consecutive uplink physical frames. In the case of a:b=6:2, the superframe includes three downlink transport blocks composed of 6 consecutive downlink physical frames, and three uplink transport blocks composed of 2 consecutive uplink physical frames. Preferably, in the superframe, starting from a starting position, a downlink transport block consisting of one or more downlink physical frames is first provided, and then an uplink transport block consisting of one or more uplink physical frames is provided, and the superframe includes a group. Or a plurality of sets of such uplink transmission blocks and downlink transmission blocks that are alternately distributed. Wherein, a guard interval of a certain length of time is inserted between the downlink transport block and the uplink transport block; a time guard interval inserted between the downlink transport block and the subsequent uplink transport block, and the uplink transport block and the subsequent downlink transport block The time guard intervals inserted between are equal or unequal. According to another aspect of the present invention, a frame structure of a time division duplex wireless communication system is provided. The frame structure of the time division duplex wireless communication system according to the present invention includes: the frame structure is a super a frame, in the superframe, sequentially includes a preamble, a downlink transmission block consisting of a consecutive downlink physical frame, a first time interval, an uplink transmission block consisting of b consecutive uplink physical frames, a second time interval, and a continuous Another downlink transport block consisting of downlink physical frames, a third time interval, another uplink transport block consisting of b consecutive uplink physical frames, a fourth time interval, and another downlink transport block consisting of a consecutive downlink physical frames, Another uplink transport block consisting of five time intervals and b consecutive uplink physical frames; wherein a and b are both natural numbers and satisfy a+b=8. Wherein, the values of a and b satisfy one of the following conditions: a=5, b=3; or, a=3, b=5; or, a =6, b=2. With the above at least one technical solution of the present invention, the present invention provides a PHY frame uplink/downlink resource division method in a TDD mode, which solves the problem of PHY frames uplink and downlink division, and also solves resource allocation, delay, and Problems such as guard interval can improve the efficiency of system use. Other features and advantages of the invention will be set forth in the description which follows, and The objectives and other advantages of the invention will be realized and attained by the <RTI The drawings are intended to provide a further understanding of the invention, and are intended to be a part of the description of the invention. In the drawings: FIG. 1 is a schematic diagram of a superframe structure in a TDD 5:3 mode according to an embodiment of the present invention; FIG. 2 is a flowchart of a transmission method in a TDD 5:3 mode according to an embodiment of the present invention. 3 is a schematic diagram of a superframe structure in a TDD 3:5 mode according to an embodiment of the present invention; FIG. 4 is a flowchart of a transmission method in a TDD 3:5 mode according to an embodiment of the present invention; A schematic diagram of a superframe structure in a TDD 6:2 mode according to an embodiment of the present invention; FIG. 6 is a flowchart of a transmission method in a TDD 6:2 mode according to an embodiment of the present invention. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, in the time division duplex (TDD) mode, the uplink/downlink uses the same frequency band for time-division data transmission, since it is different from the frequency division duplex (FDD) method. The uplink/downlink uses different frequency bands for data transmission, so that when the uplink/downlink PHY Frames of the system perform resource allocation, resource allocation can be performed for the downlink PHY Frames and the uplink PHY Frames respectively, so that in the TDD mode, the data is used. Which method is used to set the uplink/downlink of PHY frames is an urgent problem to be solved. Based on the above, the present invention provides a transmission scheme of a time division duplex wireless communication system, in which a base station and a terminal perform data transmission in units of superframes, and within a duration of one superframe, the base station sends a preamble to the terminal, where The base station can send downlink data to the terminal through the m downlink physical frames, and the terminal can send the uplink data to the base station through the n uplink physical frames, and a certain relationship is satisfied between m and n. The embodiments in the present application and the features in the embodiments may be combined with each other without conflict. The preferred embodiments of the present invention are described in the following with reference to the accompanying drawings, which are intended to illustrate and illustrate the invention. According to an embodiment of the present invention, a transmission method of a time division duplex wireless communication system is provided. The transmission method of the time division duplex wireless communication system according to the embodiment of the present invention includes: the base station and the terminal perform data transmission in units of super frames, and within a duration of one super frame, the base station sends a preamble to the terminal, and passes m downlink physicals. The frame transmits downlink data to the terminal, and the terminal sends uplink data to the base station by using n uplink physical frames, where m and n are both natural numbers greater than 0, and satisfies m+n=24; and, for different m The value of :n is the same, and the duration of the superframe is the same. It should be noted that, in the following, unless otherwise specified, the base station and the terminal perform data transmission in units of super frames, and may include one or more time intervals in the duration of one super frame, in the duration of the super frame. The base station may send a preamble to the terminal; the base station may send downlink data to the terminal by using three downlink transport blocks consisting of a consecutive downlink physical frames; the terminal may also pass three uplink transmissions consisting of b consecutive uplink physical frames. Block, sending uplink data to the base station; at the above time interval, the base station and the terminal do not send data; wherein a and b are both natural numbers and satisfy a+b=8. It can be seen that, in the process of data transmission by the base station and the terminal in the superframe unit, the following four communication modes can be included between the base station and the terminal in each superframe duration: (1) the base station sends a preamble to the terminal. (2) the base station transmits downlink data to the terminal through the downlink transport block, (3) the terminal transmits uplink data to the base station through the uplink transport block, and (4) does not perform data transmission between the base station and the terminal in the time interval. It should be noted that, in each superframe duration, there is no limitation on the execution of the above four communication modes, and the base station and the terminal can select the appropriate order to communicate using the above four methods according to actual needs. For example, within a certain superframe duration, the following sequence of operations may be performed: The base station sends a preamble to the terminal—> the base station transmits downlink data to the terminal through the downlink transport block—> within a time interval, between the base station and the terminal Data transmission -> the terminal transmits uplink data to the base station through the uplink transmission block; in another superframe duration, the following sequence of operations can be performed: The base station transmits downlink data to the terminal through the downlink transmission block -> in a time interval No data transmission is performed between the base station and the terminal - the base station transmits the preamble to the terminal -> no data transmission between the base station and the terminal in one time interval - the terminal transmits the uplink data to the base station through the uplink transmission block. The above is only an example of the implementation of the above four communication methods. For other various situations, it is not listed here. The method shown in FIG. 1 will be described in detail below based on the specific values of m and n. Embodiment 1 In this embodiment, m=15 and n=9 can be obtained. That is, the base station sends downlink data to the terminal through 15 downlink physical frames, and the terminal sends uplink data to the base station through 9 uplink physical frames.
TDD 5: 3方式下的 superframe结构 图 1为本发明实施例的 TDD 5:3方式下 superframe的结构示意图。 其中, Preamble由基站向下发送, 给终端提供系统开销信息。 这 24个 PHY Frame ^夸分成下行的 PHY Frame和上行的 PHY Frame , preamble和前面 几个 PHY Frame用于下行传输。 也即, 先传输下行的 PHY Frame, 再传输上 行的 PHY Frame , 这样在时间上交替进行。 在该实施例中, 24个 PHY Frame划分为下行和上行个数比为 5:3 ,称为 TDD 5:3方式,在这种划分方式中,每个下行传输块由 5个连续的 PHY Frame 组成, 每个上行传输块由 3个连续的 PHY Frame组成。 如 图 1 所 示 , 具 体 的 划 分 方 式 可 以 为 如 下 方 式 : F0F1F2F3F4->R0R1R2->F5F6F7F8F9->R3R4R5->F10F11F12F13F14->R6R7RTDD 5: superframe structure in the 3 mode. FIG. 1 is a schematic structural diagram of a superframe in a TDD 5:3 mode according to an embodiment of the present invention. The Preamble is sent downward by the base station to provide system overhead information to the terminal. These 24 PHY Frames are subdivided into downlink PHY Frames and upstream PHY Frames, preambles and the first few PHY Frames for downstream transmission. That is, the downlink PHY Frame is transmitted first, and then the uplink PHY Frame is transmitted, so that it alternates in time. In this embodiment, 24 PHY frames are divided into downlink and uplink ratios of 5:3, which is called TDD 5:3 mode. In this division mode, each downlink transport block consists of 5 consecutive PHY frames. Composition, each uplink transport block consists of 3 consecutive PHY Frames. As shown in Figure 1, the specific division mode can be as follows: F0F1F2F3F4->R0R1R2->F5F6F7F8F9->R3R4R5->F10F11F12F13F14->R6R7R
8。 F0表示第一个下行 PHY Frame, F1表示第二个下行 PHY Frame, 以 匕 类推, 因 匕下行 15个 PHY Frame可以分别表示为: "F0F1...F14"。 其中, F0F1F2F3F4这 5个连续的 PHY Frame组成第一个下行传输块, F5F6F7F8F9 这 5 个连续的 PHY Frame 组成第二个下行传输块, F10F11F12F13F14这 5个连续的 PHY Frame组成第三个下行传输块,基站通 过这三个下行传输块给终端传输数据信息。 并且,可以用 R0表示上行第一个 PHY Frame, R1表示上行第二个 PHY Frame, 、 it匕类 因 ^匕上 4亍 9个 PHY Frame 另'』 示为: "R0R1...R8"。 8. F0 represents the first downlink PHY Frame, F1 represents the second downlink PHY Frame, and so on, because the downlink 15 PHY Frames can be represented as: "F0F1...F14". The five consecutive PHY frames of F0F1F2F3F4 form the first downlink transmission block, and the five consecutive PHY frames of F5F6F7F8F9 form the second downlink transmission block, and the five consecutive PHY frames of F10F11F12F13F14 form the third downlink transmission block. The base station transmits data information to the terminal through the three downlink transmission blocks. In addition, R0 can be used to indicate the first PHY Frame on the uplink, R1 is the second PHY Frame on the uplink, and it is the same as 4 亍 9 PHY Frames on the other side of the frame: "R0R1...R8".
R0R1R2这 3个连续的 PHY Frame组成第一个上行传输块,并且时间上 处于第一个下行传输块和第二个下行传输块之间, 如图 1所示; R3R4R5这 3个连续的 PHY Frame组成第二个上行传输块, 并且在时间上处于第二个下 行传输块和第三个下行传输块之间传输; R6R7R8这 3个连续的 PHY Frame 组成第三个上行传输块, 并且在第三个下行传输块之后传输。 终端通过这三 个上行传输块向基站发送数据信息。 基站和终端的数据传输过程 在传输过程中, 基站通过下行传输块向终端发送数据信息期间, 终端只 能接收数据信息, 而不能给基站发送数据信息; 同理, 终端通过上行传输块 向基站发送数据信息期间, 基站只能接收数据信息, 而不能向终端发送数据 信息。 也就是说基站和终端不能同时发送数据信息和接收数据信息。 由于基站和终端在接收信息状态和发送信息状态之间进行状态转换的 过程中需要一定的时间, 因此需要在下行传输块与上行传输块之间插入具有 一定时间长度的保护间隔。 具体地, 如图 1所示, 在下行传输块与随后的上 行传输块之间需要插入时间保护间隔 TO ( guard interval ); 同理, 在上行传输 块与随后的下行传输块之间需要插入时间保护间隔 Tl( guard interval );其中, TO与 T1可以相等, 也可以不相等。 基于 TDD 5: 3方式下 superframe结构的传输方式 基于上面描述的帧结构,本发明提供了一种以 superframe结构为基础的 无线通信系统的 TDD 数据传输方式, 其中, 无线通信系统上下行空口链路 以 superframe 为单位进行传输数据, ^口上所述, 每个 superframe 由一个 preamble 和 24 个 PHY Frame 组成。 图 1 中示出的最左边的资源方块为 superframe preamble , 右边 24个资源方块为 PHY Frame。 在根据本发明实施例的数据传输方法中,基站和终端以超帧为单位进行 数据传输, 在一个超帧的时长内, 基站向终端发送一前导, 并通过 15 个下 行物理帧向终端发送下行数据, 终端通过 9个上行物理帧向基站发送上行数 据。 优选地, 在上述方法中, 在一个超帧的时长内, 基站首先向终端发送前 导, 给终端提供系统开销信息。 具体地, 在一个超帧的时长内,基站先后通过 3个由 5个连续下行物理 帧组成的下行传输块向终端发送下行数据; 终端先后通过 3个由 3个连续上 行物理帧组成的上行传输块给基站发送上行数据。 并且, 在一个超帧的时长内, 基站先通过一个或多个下行物理帧组成的 下行传输块向终端发送下行数据, 终端再通过一个或多个上行物理帧组成的 上行传输块向基站发送上行数据, 如此交替发送, 在一个超帧时长内上、 下 行数据各发送一次或多次。 如上文所述, 在一个超帧的时长内, 在基站发送下行数据之后和终端发 送上行数据之前, 和 /或终端发送上行数据之后和基站发送下行数据之前, 均 有一时间间隔, 在该时间间隔上基站和终端均不向对方发送数据。 对基于 TDD 5: 3方式下 superframe结构的传输方式和 superframe结 构的具体描述 首先, 定义如下的超帧结构: 在超帧中依次包括一前导、 5个连续下行 物理帧组成的一下行传输块、 第一时间间隔, 3 个连续上行物理帧组成的一 上行传输块、 第二时间间隔、 5 个连续下行物理帧组成的另一下行传输块、 第三时间间隔, 3个连续上行物理帧组成的另一上行传输块、 第二时间间隔、 5个连续下行物理帧组成的另一下行传输块、 第三时间间隔和 3个连续上行 物理帧组成的另一上行传输块。 基于上述的帧结构, 基站和终端以上述超帧为单位进行数据传输, 具体 地, 如图 2所示, 才艮据本发明实施例的 TDD3: 1方式的数据传输方法可以包 括如下处理 (步骤 S202至步骤 S210 )。 步骤 S202 , 在一个超帧的时长内, 基站首先向终端发送前导, 然后通 过 5个连续下行物理帧组成的下行传输块向终端发送下行数据, 然后在第一 时间间隔上基站和终端都不发送数据。 步骤 S204 , 然后, 基站接收终端通过 3个连续上行物理帧组成的上行 传输块发送的上行数据, 然后在第二时间间隔上基站和终端都不发送数据。 步骤 S206 , 然后, 基站再通过 5个连续下行物理帧组成的另一下行传 输块向终端发送下行数据, 然后在第三时间间隔上基站和终端不发送数据。 步骤 S208 , 然后基站再接收终端通过 3个连续上行物理帧组成的另一 上行传输块发送的上行数据, 然后在第四时间间隔上基站和终端都不发送数 据。 步骤 S210 , 然后, 基站再通过 5个连续下行物理帧组成的另一下行传 输块向终端发送下行数据, 然后在第五时间间隔上基站和终端不发送数据, 然后基站再接收终端通过 3个连续上行物理帧组成的另一上行传输块发送的 上行数据。 在该实施例中, 通过将 TDD方式下的 PHY frames上 /下行资源划分为 3:5 , 解决了 PHY frames上行和下行划分的问题, 同时还解决了资源分配、 时延和保护间隔等问题, 可以提高系统的使用效率。 实施例 2 在该实施例中, 可以令 m=9 , n=15 , 即, 基站通过 9个下行物理帧向 终端发送下行数据, 终端通过 15个上行物理帧向基站发送上行数据。 TDD 3: 5方式下的 superframe结构 图 3为本发明实施例的 TDD 3:5方式下 superframe的结构示意图。 其中, Preamble由基站向下发送, 给终端提供系统开销信息。 这 24个 PHY Frame ^夸分成下行的 PHY Frame和上行的 PHY Frame, preamble和前面 几个 PHY Frame用于下行传输。 也即, 先传输下行的 PHY Frame, 再传输上 行的 PHY Frame, 这样在时间上交替进行。 在该实施例中, 这 24个 PHY Frame划分为下行和上行个数比为 3:5 , 称为 TDD 3:5方式, 在这种划分方式中, 每个下行传输块由 3个连续的 PHY Frame组成, 每个上行传输块由 5个连续的 PHY Frame组成。 如 图 3 所 示 , 具 体 的 划 分 方 式 可 以 为 如 下 方 式 : F0F1F2->R0R1R2R3R4->F3F4F5->R5R6R7R8R9->F6F7F8->R10R11R12R13 R14。 F0表示第一个下行 PHY Frame, F1表示第二个下行 PHY Frame, 以 匕 类推, 因 匕下行 9个 PHY Frame的表示分别为: "F0F1...F8"。 其中, F0F1F2这连续 3个 PHY Frame组成第一个下行传输块, F3F4F5 这连续 3个 PHY Frame组成第二个下行传输块, F6F7F8这连续 3个 PHY Frame组成第三个下行传输块, 基站通过这三个下行传输块给终端传输数据 信息。 并且,可以用 R0表示上行第一个 PHY Frame, R1表示上行第二个 PHY Frame, 以 匕类推, 因 it匕上行 15个 PHY Frame分别表示为: "R0R1...R14"。 The three consecutive PHY frames of R0R1R2 form the first uplink transport block, and are temporally between the first downlink transport block and the second downlink transport block, as shown in FIG. 1; R3R4R5, three consecutive PHY frames Forming a second uplink transport block and transmitting between the second downlink transport block and the third downlink transport block in time; the R6R7R8 three consecutive PHY frames form a third uplink transport block, and in the third After the downlink transport block is transmitted. The terminal transmits data information to the base station through the three uplink transport blocks. During the transmission process of the base station and the terminal, during the transmission process, when the base station transmits the data information to the terminal through the downlink transmission block, the terminal can only receive the data information, but cannot send the data information to the base station; similarly, the terminal sends the data to the base station through the uplink transmission block. During the data information, the base station can only receive data information, but cannot send data information to the terminal. That is to say, the base station and the terminal cannot simultaneously transmit data information and receive data information. Since the base station and the terminal need a certain time in the process of performing state transition between receiving the information state and transmitting the information state, it is necessary to insert a guard interval having a certain length of time between the downlink transport block and the uplink transport block. Specifically, as shown in FIG. 1, a time guard interval TO (guard interval) needs to be inserted between the downlink transport block and the subsequent uplink transport block. Similarly, an insertion time is required between the uplink transport block and the subsequent downlink transport block. The guard interval T1 (guard interval); wherein, TO and T1 may be equal or not equal. The transmission mode of the superframe structure based on the TDD 5:3 mode is based on the frame structure described above, and the present invention provides a TDD data transmission mode of a wireless communication system based on a superframe structure, wherein the uplink and downlink air interface of the wireless communication system Data is transmitted in units of superframes. As described on the ^ port, each superframe consists of a preamble and 24 PHY Frames. The leftmost resource block shown in Figure 1 is a superframe preamble, and the right 24 resource blocks are PHY Frames. In the data transmission method according to the embodiment of the present invention, the base station and the terminal perform data transmission in units of super frames. During a superframe duration, the base station sends a preamble to the terminal, and sends downlinks to the terminal through 15 downlink physical frames. Data, the terminal sends uplink data to the base station through 9 uplink physical frames. Preferably, in the above method, within a duration of a superframe, the base station first sends a preamble to the terminal to provide system overhead information to the terminal. Specifically, in a duration of a superframe, the base station sequentially sends downlink data to the terminal by using three downlink transport blocks consisting of five consecutive downlink physical frames; the terminal sequentially passes three uplink transmissions consisting of three consecutive uplink physical frames. The block sends uplink data to the base station. And, in a duration of a superframe, the base station first sends downlink data to the terminal by using one or more downlink physical blocks, and the terminal sends the uplink to the base station by using one or more uplink physical blocks. The data is transmitted alternately, and the uplink and downlink data are transmitted one or more times within one superframe duration. As described above, within a duration of a superframe, after the base station transmits the downlink data and before the terminal sends the uplink data, and/or after the terminal sends the uplink data and before the base station sends the downlink data, there is a time interval at the time interval. The upper base station and the terminal do not send data to each other. A detailed description of the transmission mode and the superframe structure of the superframe structure based on the TDD 5:3 mode firstly, the following superframe structure is defined: a sub-transport block consisting of a preamble and 5 consecutive downlink physical frames in sequence in the superframe, The first time interval, an uplink transmission block composed of 3 consecutive uplink physical frames, a second time interval, another downlink transmission block composed of 5 consecutive downlink physical frames, a third time interval, and three consecutive uplink physical frames. Another uplink transport block, a second time interval, another downlink transport block consisting of 5 consecutive downlink physical frames, a third time interval, and three consecutive uplinks Another uplink transport block composed of physical frames. Based on the above-mentioned frame structure, the base station and the terminal perform data transmission in units of the superframe. Specifically, as shown in FIG. 2, the data transmission method according to the TDD3:1 mode according to the embodiment of the present invention may include the following processing (step S202 to step S210). Step S202: In a duration of a superframe, the base station first sends a preamble to the terminal, and then sends downlink data to the terminal by using a downlink transport block consisting of 5 consecutive downlink physical frames, and then the base station and the terminal do not send at the first time interval. data. Step S204, Then, the base station receives the uplink data sent by the terminal through the uplink transport block composed of 3 consecutive uplink physical frames, and then the base station and the terminal do not send the data at the second time interval. Step S206, then, the base station sends downlink data to the terminal through another downlink transport block composed of 5 consecutive downlink physical frames, and then the base station and the terminal do not send data at the third time interval. Step S208, the base station then receives the uplink data sent by the terminal through another uplink transport block composed of 3 consecutive uplink physical frames, and then the base station and the terminal do not send data at the fourth time interval. Step S210, then, the base station sends downlink data to the terminal through another downlink transport block composed of 5 consecutive downlink physical frames, and then the base station and the terminal do not send data at the fifth time interval, and then the base station receives the terminal through 3 consecutive Uplink data sent by another uplink transport block composed of uplink physical frames. In this embodiment, the PHY frame uplink/downlink resources are divided into 3:5 in the TDD mode, which solves the problem of PHY frames uplink and downlink partitioning, and also solves resource allocation, delay, and guard interval. Can improve the efficiency of the system. Embodiment 2 In this embodiment, m=9 and n=15 can be obtained, that is, the base station transmits downlink data to the terminal through 9 downlink physical frames, and the terminal transmits uplink data to the base station through 15 uplink physical frames. TDD 3: superframe structure in the 5 mode FIG. 3 is a schematic structural diagram of a superframe in the TDD 3:5 mode according to an embodiment of the present invention. The Preamble is sent downward by the base station to provide system overhead information to the terminal. These 24 The PHY Frame ^ is divided into a downlink PHY Frame and an uplink PHY Frame, and the preamble and the first few PHY Frames are used for downlink transmission. That is, the downlink PHY Frame is transmitted first, and then the uplink PHY Frame is transmitted, thus alternately in time. In this embodiment, the 24 PHY frames are divided into downlink and uplink ratios of 3:5, which is called TDD 3:5 mode. In this division mode, each downlink transport block consists of 3 consecutive PHYs. Frame, each uplink transport block consists of 5 consecutive PHY Frames. As shown in Figure 3, the specific division mode can be as follows: F0F1F2->R0R1R2R3R4->F3F4F5->R5R6R7R8R9->F6F7F8->R10R11R12R13 R14. F0 represents the first downlink PHY Frame, and F1 represents the second downlink PHY Frame, and so on, because the representations of the downlink 9 PHY Frames are: "F0F1...F8". Among them, F0F1F2 consecutive 3 PHY Frames constitute the first downlink transport block, F3F4F5 3 consecutive PHY Frames constitute the second downlink transport block, and F6F7F8 3 consecutive PHY Frames constitute the third downlink transport block, and the base station passes this Three downlink transport blocks transmit data information to the terminal. Moreover, R0 can be used to indicate the first PHY frame in the uplink, and R1 is the second PHY frame in the uplink, and so on, because 15 uplink PHY frames are represented as: "R0R1...R14".
R0R1R2R3R4这连续 5个 PHY Frame组成第一个上行传输块, 并且时 间上处在第一个下行传输块和第二个下行传输块之间, 如图 3 所示; R5R6R7R8R9这连续 5个 PHY Frame组成第二个上行传输块,并且在第二个 下行传输块和第三个下行传输块之间传输; R10R11R12R13R14这连续 5 个 PHY Frame组成第三个上行传输块, 并且在第三个下行传输块之后传输。 终 端通过这三个上行传输块给基站发送数据信息。 基站和终端的数据传输过程 在传输过程中, 基站通过下行传输块向终端发送数据信息期间, 终端只 能接收数据信息, 而不能给基站发送数据信息; 同理, 终端通过上行传输块 向基站发送数据信息期间, 基站只能接收数据信息, 而不能向终端发送数据 信息。 也就是说基站和终端不能同时发送数据信息和接收数据信息。 由于基站和终端在接收信息状态和发送信息状态之间进行状态转换的 过程中需要一定的时间, 因此需要在下行传输块与上行传输块之间插入具有 一定时间长度的保护间隔。 具体地, 如图 3所示, 在下行传输块与随后的上 行传输块之间需要插入时间保护间隔 TO ( guard interval ); 同理, 在上行传输 块与随后的下行传输块之间需要插入时间保护间隔 Tl( guard interval );其中, TO与 T1可以相等, 也可以不相等。 基于 TDD 3: 5方式下 superframe结构的传输方式 基于上面描述的帧结构,本发明提供了一种以 superframe结构为基础的 无线通信系统的 TDD 数据传输方式, 其中, 无线通信系统上下行空口链路 以 superframe 为单位进行传输数据, ^口上所述, 每个 superframe 由一个 preamble 和 24 个 PHY Frame 组成。 图 3 中示出的最左边的资源方块为 superframe preamble , 右边的 24个资源方块为 PHY Frame。 在根据本发明实施例的数据传输方法中,基站和终端以超帧为单位进行 数据传输, 在一个超帧的时长内, 基站向终端发送一前导, 并通过 9个下行 物理帧向终端发送下行数据, 终端通过 15 个上行物理帧向基站发送上行数 据。 优选地, 在上述方法中, 在一个超帧的时长内, 基站首先向终端发送前 导, 为终端提供系统开销信息。 具体地, 在一个超帧的时长内,基站先后通过 3个由 3个连续下行物理 帧组成的下行传输块向终端发送下行数据; 终端先后通过 3个由 5个连续上 行物理帧组成的上行传输块给基站发送上行数据。 并且, 在一个超帧的时长内, 基站先通过一个或多个下行物理帧组成的 下行传输块向终端发送下行数据, 终端再通过一个或多个上行物理帧组成的 上行传输块向基站发送上行数据, 如此交替发送, 在一个超帧时长内上、 下 行数据各发送一次或多次。 如上文所述, 在一个超帧的时长内, 在基站发送下行数据之后和终端发 送上行数据之前, 和 /或终端发送上行数据之后和基站发送下行数据之前, 均 有一时间间隔, 在该时间间隔上所述基站和终端均向对方不发送数据。 对基于 TDD 3: 5方式下 super frame结构的传输方式和 superframe结 构的具体描述 首先, 定义如下的超帧结构: 在超帧中依次包括一前导、 3个连续下行 物理帧组成的一下行传输块、 第一时间间隔、 5 个连续上行物理帧组成的一 上行传输块、 第二时间间隔、 3 个连续下行物理帧组成的另一下行传输块、 第三时间间隔、 5个连续上行物理帧组成的另一上行传输块、 第二时间间隔、 3个连续下行物理帧组成的另一下行传输块、 第三时间间隔和 5个连续上行 物理帧组成的另一上行传输块。 基于上述的帧结构, 基站和终端以上述超帧为单位进行数据传输, 具体 地, 如图 4所示, 才艮据本发明实施例的 TDD3:5方式的数据传输方法可以包 括 口下处理 (步骤 S402至步骤 S412 )。 步骤 S402 , 在一个超帧的时长内, 基站首先向终端发送前导, 然后通 过 3个连续下行物理帧组成的下行传输块向终端发送下行数据, 然后在第一 时间间隔上基站和终端都不发送数据。 步骤 S404 , 基站接收终端通过 5个连续上行物理帧组成的上行传输块 发送的上行数据, 然后在第二时间间隔上基站和终端都不发送数据。 步骤 S406 , 基站再通过 3个连续下行物理帧组成的另一下行传输块向 终端发送下行数据, 然后在第三时间间隔上基站和终端不发送数据。 步骤 S408 , 然后基站再接收终端通过 5个连续上行物理帧组成的另一 上行传输块发送的上行数据, 然后在第四时间间隔上基站和终端都不发送数 据。 步骤 S410 , 基站再通过 3个连续下行物理帧组成的另一下行传输块向 终端发送下行数据, 然后在第五时间间隔上基站和终端不发送数据。 步骤 S412 , 基站再接收终端通过 5个连续上行物理帧组成的另一上行 传输块发送的上行数据。 在该实施例中, 通过将 TDD方式下的 PHY frames上 /下行资源划分为 5: 3 , 解决了 PHY frames上行和下行划分的问题, 同时还解决了资源分配、 时延和保护间隔等问题, 可以提高系统的使用效率。 实施例 3 在该实施例中, 可以令 m=18 , n=6, 即, 基站通过 18个下行物理帧向 终端发送下行数据, 终端通过 6个上行物理帧向基站发送上行数据。 R0R1R2R3R4, the five consecutive PHY Frames form the first uplink transport block, and the time is between the first downlink transport block and the second downlink transport block, as shown in Figure 3; R5R6R7R8R9 consists of five consecutive PHY Frames. a second uplink transport block, and transmitted between the second downlink transport block and the third downlink transport block; R10R11R12R13R14, the 5 consecutive PHY frames constitute a third uplink transport block, and after the third downlink transport block transmission. The terminal sends data information to the base station through the three uplink transport blocks. During the transmission process of the base station and the terminal, during the transmission process, when the base station transmits the data information to the terminal through the downlink transmission block, the terminal can only receive the data information, but cannot send the data information to the base station; similarly, the terminal sends the data to the base station through the uplink transmission block. During the data information, the base station can only receive data information, but cannot send data information to the terminal. That is to say, the base station and the terminal cannot simultaneously transmit data information and receive data information. Since the base station and the terminal perform state transition between receiving the information state and transmitting the information state A certain time is required in the process, so it is necessary to insert a guard interval with a certain length of time between the downlink transport block and the uplink transport block. Specifically, as shown in FIG. 3, a time guard interval TO (guard interval) needs to be inserted between the downlink transport block and the subsequent uplink transport block. Similarly, an insertion time is required between the uplink transport block and the subsequent downlink transport block. The guard interval T1 (guard interval); wherein, TO and T1 may be equal or not equal. The transmission mode of the superframe structure based on the TDD 3:5 mode is based on the frame structure described above, and the present invention provides a TDD data transmission mode of a wireless communication system based on a superframe structure, wherein the uplink and downlink air interface of the wireless communication system Data is transmitted in units of superframes. As described on the ^ port, each superframe consists of a preamble and 24 PHY Frames. The leftmost resource block shown in Figure 3 is a superframe preamble, and the right 24 resource blocks are PHY Frames. In the data transmission method according to the embodiment of the present invention, the base station and the terminal perform data transmission in units of superframes. During a superframe duration, the base station sends a preamble to the terminal, and sends downlinks to the terminal through 9 downlink physical frames. Data, the terminal sends uplink data to the base station through 15 uplink physical frames. Preferably, in the above method, within a duration of a superframe, the base station first sends a preamble to the terminal to provide system overhead information for the terminal. Specifically, in a duration of a superframe, the base station sequentially sends downlink data to the terminal by using three downlink transport blocks consisting of three consecutive downlink physical frames; the terminal sequentially passes three uplink transmissions consisting of five consecutive uplink physical frames. The block sends uplink data to the base station. And, in a duration of a superframe, the base station first sends downlink data to the terminal by using one or more downlink physical blocks, and the terminal sends the uplink to the base station by using one or more uplink physical blocks. The data is transmitted alternately, and the uplink and downlink data are transmitted one or more times within one superframe duration. As described above, within a duration of a superframe, after the base station transmits the downlink data and before the terminal sends the uplink data, and/or after the terminal sends the uplink data and before the base station sends the downlink data, there is a time interval at the time interval. Both the base station and the terminal do not send data to the other party. A detailed description of the transmission mode and superframe structure of the super frame structure based on the TDD 3:5 mode firstly, the following superframe structure is defined: a sub-transport block consisting of a preamble and three consecutive downlink physical frames in sequence in the superframe The first time interval, an uplink transmission block composed of 5 consecutive uplink physical frames, the second time interval, another downlink transmission block composed of 3 consecutive downlink physical frames, the third time interval, and 5 consecutive uplink physical frames. Another uplink transport block, a second time interval, another downlink transport block composed of 3 consecutive downlink physical frames, a third time interval, and another uplink transport block composed of 5 consecutive uplink physical frames. Based on the above frame structure, the base station and the terminal perform data transmission in units of the superframe. Specifically, as shown in FIG. 4, the TDD3:5 mode data transmission method according to the embodiment of the present invention may include sub-oral processing ( Step S402 to step S412). Step S402: The base station first sends a preamble to the terminal within a duration of a superframe, and then sends downlink data to the terminal by using a downlink transport block composed of three consecutive downlink physical frames, and then the base station and the terminal do not send at the first time interval. data. Step S404: The base station receives uplink data sent by the terminal through an uplink transport block composed of 5 consecutive uplink physical frames, and then the base station and the terminal do not send data at the second time interval. Step S406: The base station sends downlink data to the terminal through another downlink transport block consisting of three consecutive downlink physical frames, and then the base station and the terminal do not send data at the third time interval. Step S408, the base station then receives the uplink data sent by the terminal through another uplink transport block composed of 5 consecutive uplink physical frames, and then the base station and the terminal do not send data at the fourth time interval. Step S410: The base station sends downlink data to the terminal by using another downlink transport block consisting of three consecutive downlink physical frames, and then the base station and the terminal do not send data at the fifth time interval. Step S412: The base station further receives uplink data sent by the terminal through another uplink transport block composed of 5 consecutive uplink physical frames. In this embodiment, by dividing the PHY frame uplink/downlink resources in the TDD mode into 5:3, the problem of uplink and downlink division of the PHY frames is solved, and the problems of resource allocation, delay, and guard interval are also solved. Can improve the efficiency of the system. Embodiment 3 In this embodiment, m=18, n=6, that is, the base station sends downlink data to the terminal through 18 downlink physical frames, and the terminal sends uplink data to the base station through 6 uplink physical frames.
TDD 6: 2方式下的 superframe结构 图 5为本发明实施例的 TDD 6: 2方式下 superframe的结构示意图。 其中, Preamble由基站向下发送, 给终端提供系统开销信息。 这 24个 PHY Frame ^夸分成下行的 PHY Frame和上行的 PHY Frame, preamble和前面 几个 PHY Frame用于下行传输。 也即, 先传输下行的 PHY Frame, 再传输上 行的 PHY Frame, 这样在时间上交替进行。 在该实施例中, 这 24个 PHY Frame划分为下行和上行个数比为 6:2, 称为 TDD 6:2方式, 在这种划分方式中, 每个下行传输块由 6个连续的 PHY Frame组成, 每个上行传输块由 2个连续的 PHY Frame组成。 如 图 5 所 示 , 具 体 的 划 分 方 式 可 以 为 如 下 方 式 : F0F1F2F3F4F5->R0R1->F6F7F8F9F10F11->R2R3->F12F13F14F15F16F17->R 4R5。 Superframe structure in TDD 6: 2 mode FIG. 5 is a schematic structural diagram of a superframe in the TDD 6: 2 mode according to an embodiment of the present invention. The Preamble is sent downward by the base station to provide system overhead information to the terminal. These 24 PHY Frames are subdivided into downlink PHY Frames and upstream PHY Frames, preamble and the first few PHY Frames for downstream transmission. That is, the downlink PHY Frame is transmitted first, and the uplink PHY Frame is transmitted, so that it alternates in time. In this embodiment, the 24 PHY frames are divided into a downlink and uplink ratio of 6:2, which is called a TDD 6:2 mode. In this division mode, each downlink transport block consists of 6 consecutive PHYs. Frame, each uplink transport block consists of 2 consecutive PHY Frames. As shown in Fig. 5, the specific division method can be as follows: F0F1F2F3F4F5->R0R1->F6F7F8F9F10F11->R2R3->F12F13F14F15F16F17->R 4R5.
F0表示第一个下行 PHY Frame, F1表示第二个下行 PHY Frame, 以 匕 类推, 因 匕下行 18个 PHY Frame可以分别表示为: "F0F1...F17"。 其中, F0F1F2F3F4F5这 6个连续 PHY Frame组成第一个下行传输块, F6F7F8F9F10F11 这 6 个连续 PHY Frame 组成第二个下行传输块, F12F13F14F15F16F17这 6个连续 PHY Frame组成第三个下行传输块, 基站 通过这三个下行传输块给终端传输数据信息。 并且,可以用 R0表示上行第一个 PHY Frame, R1表示上行第二个 PHY Frame, 、 it匕类 因 ^匕上 4亍 6个 PHY Frame 另'』 示为: "R0R1...R5"。 F0 represents the first downlink PHY Frame, and F1 represents the second downlink PHY Frame, and so on, because the downlink 18 PHY Frames can be represented as: "F0F1...F17". Among them, F0F1F2F3F4F5 6 consecutive PHY Frames constitute the first downlink transmission block, F6F7F8F9F10F11 6 consecutive PHY Frames constitute the second downlink transmission block, F12F13F14F15F16F17 these 6 consecutive PHY Frames constitute the third downlink transmission block, the base station passes this Three downlink transport blocks transmit data information to the terminal. Moreover, R0 can be used to indicate the first PHY Frame on the uplink, R1 is the second PHY Frame on the uplink, and it is the same as 4 亍 6 PHY Frames on the other 』 " " " " " 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。.
R0R1这 2个连续 PHY Frame组成第一个上行传输块,并且时间上处于 第一个下行传输块和第二个下行传输块之间, 如图 5所示; R2R3这 2个连 续 PHY Frame组成第二个上行传输块,并且在时间上处于第二个下行传输块 和第三个下行传输块之间传输; R4R5这 2个连续 PHY Frame组成第三个上 行传输块, 并且在第三个下行传输块之后传输, 终端通过这三个上行传输块 向基站发送数据信息。 基站和终端的数据传输过程 在传输过程中, 基站通过下行传输块向终端发送数据信息期间, 终端只 能接收数据信息, 而不能给基站发送数据信息; 同理, 终端通过上行传输块 向基站发送数据信息期间, 基站只能接收数据信息, 而不能向终端发送数据 信息。 也就是说基站和终端不能同时发送数据信息和接收数据信息。 由于基站和终端在接收信息状态和发送信息状态之间进行状态转换的 过程中需要一定的时间, 因此需要在下行传输块与上行传输块之间插入具有 一定时间长度的保护间隔。 具体地, 如图 5所示, 在下行传输块与随后的上 行传输块之间需要插入时间保护间隔 TO ( guard interval ); 同理, 在上行传输 块与随后的下行传输块之间需要插入时间保护间隔 Tl( guard interval );其中, TO与 T1可以相等, 也可以不相等。 基于 TDD 6: 2方式下 superframe结构的传输方式 基于上面描述的帧结构,本发明提供了一种以 superframe结构为基础的 无线通信系统的 TDD 数据传输方式, 其中, 无线通信系统上下行空口链路 以 superframe 为单位进行传输数据, ^口上所述, 每个 superframe 由一个 preamble 和 24 个 PHY Frame 组成。 图 5 中示出的最左边的资源方块为 superframe preamble , 右边 24个资源方块为 PHY Frame。 在根据本发明实施例的数据传输方法中,基站和终端以超帧为单位进行 数据传输, 在一个超帧的时长内, 基站向终端发送一前导, 并通过 18 个下 行物理帧向终端发送下行数据, 终端通过 6个上行物理帧向基站发送上行数 据。 优选地, 在上述方法中, 在一个超帧的时长内, 基站首先向终端发送前 导, 给终端提供系统开销信息。 具体地, 在一个超帧的时长内,基站先后通过 3个由 6个连续下行物理 帧组成的下行传输块向终端发送下行数据; 终端先后通过 3个由 2个连续上 行物理帧组成的上行传输块给基站发送上行数据。 并且, 在一个超帧的时长内, 基站先通过一个或多个下行物理帧组成的 下行传输块向终端发送下行数据, 终端再通过一个或多个上行物理帧组成的 上行传输块向基站发送上行数据, 如此交替发送, 在一个超帧时长内上、 下 行数据各发送一次或多次。 如上文所述, 在一个超帧的时长内, 在基站发送下行数据之后和终端发 送上行数据之前, 和 /或终端发送上行数据之后和基站发送下行数据之前, 均 有一时间间隔, 在该时间间隔上基站和终端均不向对方发送数据。 对基于 TDD 6: 2方式下 super frame结构的传输方式和 superframe结 构的具体描述 首先, 定义如下的超帧结构: 在超帧中依次包括一前导、 6个连续下行 物理帧组成的一下行传输块、 第一时间间隔、 2 个连续上行物理帧组成的一 上行传输块、 第二时间间隔、 6 个连续下行物理帧组成的另一下行传输块、 第三时间间隔, 2个连续上行物理帧组成的另一上行传输块、 第二时间间隔、 6个连续下行物理帧组成的另一下行传输块、 第三时间间隔和 2个连续上行 物理帧组成的另一上行传输块。 基于上述的帧结构, 基站和终端以上述超帧为单位进行数据传输, 具体 地, 如图 6所示, 才艮据本发明实施例的 TDD6:2方式的数据传输方法可以包 括如下处理 (步骤 S602至步骤 S610 )。 步骤 S602 , 在一个超帧的时长内, 基站首先向终端发送前导, 并通过 6 个连续下行物理帧组成的下行传输块向终端发送下行数据, 然后在第一时间 间隔上基站和终端都不发送数据。 步骤 S604 , 基站接收终端通过 2个连续上行物理帧组成的上行传输块 发送的上行数据, 然后在第二时间间隔上基站和终端都不发送数据。 步骤 S606 , 基站再通过 6个连续下行物理帧组成的另一下行传输块向 终端发送下行数据, 然后在第三时间间隔上基站和终端不发送数据。 步骤 S608 , 基站再接收终端通过 2个连续上行物理帧组成的另一上行 传输块发送的上行数据, 然后在第四时间间隔上基站和终端都不发送数据。 步骤 S610 , 基站再通过 6个连续下行物理帧组成的另一下行传输块向 终端发送下行数据, 然后在第五时间间隔上基站和终端不发送数据, 然后, 基站再接收终端通过 2个连续上行物理帧组成的另一上行传输块发送的上行 数据。 在该实施例中, 通过将 TDD方式下的 PHY frames上 /下行资源划分为 2:6, 解决了 PHY frames上行和下行划分的问题, 同时还解决了资源分配、 时延和保护间隔等问题, 可以提高系统的使用效率。 通过本发明提供的上述至少一个技术方案, 提供在 TDD方式下的 PHY frames上 /下行资源划分方法, 解决了 PHY frames的上行和下行的划分问题, 同时还解决了资源分配、 时延和保护间隔等问题,可以提高系统的使用效率。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变^^ 凡在本发明的^^申和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。 The two consecutive PHY frames of R0R1 form the first uplink transport block, and are temporally between the first downlink transport block and the second downlink transport block, as shown in FIG. 5; R2R3 is composed of two consecutive PHY frames. Two uplink transmission blocks, and are transmitted between the second downlink transmission block and the third downlink transmission block in time; the R4R5 two consecutive PHY frames form a third uplink transmission block, and are transmitted in the third downlink transmission block. After the block is transmitted, the terminal passes through the three uplink transport blocks. Send data information to the base station. During the transmission process of the base station and the terminal, during the transmission process, when the base station transmits the data information to the terminal through the downlink transmission block, the terminal can only receive the data information, but cannot send the data information to the base station; similarly, the terminal sends the data to the base station through the uplink transmission block. During the data information, the base station can only receive data information, but cannot send data information to the terminal. That is to say, the base station and the terminal cannot simultaneously transmit data information and receive data information. Since the base station and the terminal need a certain time in the process of performing state transition between receiving the information state and transmitting the information state, it is necessary to insert a guard interval having a certain length of time between the downlink transport block and the uplink transport block. Specifically, as shown in FIG. 5, a time guard interval TO (guard interval) needs to be inserted between the downlink transport block and the subsequent uplink transport block. Similarly, an insertion time is required between the uplink transport block and the subsequent downlink transport block. The guard interval T1 (guard interval); wherein, TO and T1 may be equal or not equal. The transmission mode of the superframe structure based on the TDD 6:2 mode is based on the frame structure described above, and the present invention provides a TDD data transmission mode of a wireless communication system based on a superframe structure, wherein the uplink and downlink air interface of the wireless communication system Data is transmitted in units of superframes. As described on the ^ port, each superframe consists of a preamble and 24 PHY Frames. The leftmost resource block shown in Figure 5 is a superframe preamble, and the right 24 resource blocks are PHY Frames. In the data transmission method according to the embodiment of the present invention, the base station and the terminal perform data transmission in units of super frames. During a superframe duration, the base station sends a preamble to the terminal, and sends downlinks to the terminal through 18 downlink physical frames. Data, the terminal sends uplink data to the base station through six uplink physical frames. Preferably, in the above method, within a duration of a superframe, the base station first sends a preamble to the terminal to provide system overhead information to the terminal. Specifically, in a duration of a superframe, the base station sequentially sends downlink data to the terminal by using three downlink transport blocks consisting of six consecutive downlink physical frames; the terminal sequentially passes three uplink transmissions consisting of two consecutive uplink physical frames. The block sends uplink data to the base station. And, in a duration of a superframe, the base station first sends downlink data to the terminal by using one or more downlink physical blocks, and the terminal further comprises one or more uplink physical frames. The uplink transport block sends uplink data to the base station, and thus alternately transmits, and the uplink and downlink data are transmitted one or more times within one superframe duration. As described above, within a duration of a superframe, after the base station transmits the downlink data and before the terminal sends the uplink data, and/or after the terminal sends the uplink data and before the base station sends the downlink data, there is a time interval at the time interval. The upper base station and the terminal do not send data to each other. A detailed description of the transmission mode and superframe structure of the super frame structure based on the TDD 6:2 mode firstly, the following superframe structure is defined: a sub-transport block consisting of a preamble and 6 consecutive downlink physical frames in sequence in the superframe The first time interval, an uplink transmission block composed of 2 consecutive uplink physical frames, the second time interval, another downlink transmission block composed of 6 consecutive downlink physical frames, the third time interval, and two consecutive uplink physical frames. Another uplink transport block, a second time interval, another downlink transport block composed of 6 consecutive downlink physical frames, a third time interval, and another uplink transport block composed of 2 consecutive uplink physical frames. Based on the above-mentioned frame structure, the base station and the terminal perform data transmission in units of the above-mentioned superframe. Specifically, as shown in FIG. 6, the data transmission method according to the TDD6:2 mode according to the embodiment of the present invention may include the following processing (step S602 to step S610). Step S602: The base station first sends a preamble to the terminal within a duration of a superframe, and sends downlink data to the terminal by using a downlink transport block composed of 6 consecutive downlink physical frames, and then the base station and the terminal do not send at the first time interval. data. Step S604: The base station receives uplink data sent by the terminal through an uplink transport block composed of two consecutive uplink physical frames, and then the base station and the terminal do not send data at the second time interval. Step S606: The base station sends downlink data to the terminal by using another downlink transport block composed of 6 consecutive downlink physical frames, and then the base station and the terminal do not send data at the third time interval. Step S608: The base station further receives uplink data sent by the terminal through another uplink transport block composed of two consecutive uplink physical frames, and then the base station and the terminal do not send data at the fourth time interval. Step S610, the base station sends downlink data to the terminal through another downlink transport block composed of 6 consecutive downlink physical frames, and then the base station and the terminal do not send data at the fifth time interval, and then the base station receives the terminal through 2 consecutive uplinks. Uplink data sent by another uplink transport block composed of physical frames. In this embodiment, by dividing the PHY frame uplink/downlink resources in the TDD mode into 2:6, the problem of uplink and downlink division of the PHY frames is solved, and the problems of resource allocation, delay, and guard interval are also solved. Can improve the efficiency of the system. The above-mentioned at least one technical solution provided by the present invention provides a PHY frame uplink/downlink resource division method in the TDD mode, which solves the problem of uplink and downlink division of PHY frames, and also solves resource allocation, delay, and guard interval. Such problems can improve the efficiency of the system. The above is only the preferred embodiment of the present invention, and is not intended to limit the present invention. For those skilled in the art, the present invention can be variously modified and modified. Any modifications, equivalent substitutions, improvements, etc. made therein are intended to be included within the scope of the present invention.

Claims

权 利 要 求 书 Claim
1. 一种时分双工无线通信系统的传输方法, 其特征在于, 包括:  A transmission method for a time division duplex wireless communication system, comprising:
基站和终端以超帧为单位进行数据传输, 在一个超帧的时长内, 基 站向终端发送一前导, 并通过 m个下行物理帧向终端发送下行数据, 所 述终端通过 n个上行物理帧向所述基站发送上行数据, 其中, m、 n均为 自然数, 且满足 m+n=24。  The base station and the terminal perform data transmission in units of superframes. During a superframe duration, the base station sends a preamble to the terminal, and sends downlink data to the terminal through m downlink physical frames, where the terminal passes n uplink physical frames. The base station sends uplink data, where m and n are both natural numbers and satisfy m+n=24.
2. 4艮据权利要求 1所述的传输方法, 其特征在于, 所述方法还包括: 对于 不同的 m:n取值, 所述超帧的时长均相同。  The transmission method according to claim 1, wherein the method further comprises: for different values of m:n, the durations of the superframes are the same.
3. 根据权利要求 1所述的传输方法, 其特征在于, 在一个超帧的时长内, 所述基站首先向所述终端发送所述前导, 给终端提供系统开销信息。 The transmission method according to claim 1, wherein, in a duration of a superframe, the base station first sends the preamble to the terminal, and provides system overhead information to the terminal.
4. 根据权利要求 1所述的方法, 其特征在于, m=15 , n=9。 4. Method according to claim 1, characterized in that m=15 and n=9.
5. 根据权利要求 4所述的方法, 其特征在于, 在一个超帧的时长内, 所述 基站先后通过 3个由 5个连续下行物理帧组成的下行传输块向终端发送 下行数据; 所述终端先后通过 3个由 3个连续上行物理帧组成的上行传 输块给基站发送上行数据。  The method according to claim 4, wherein, in a duration of a superframe, the base station sequentially transmits downlink data to the terminal by using three downlink transport blocks consisting of five consecutive downlink physical frames; The terminal sends uplink data to the base station through three uplink transmission blocks consisting of three consecutive uplink physical frames.
6. 根据权利要求 1所述的方法, 其特征在于, m=9 , n=15。 6. Method according to claim 1, characterized in that m=9 and n=15.
7. 根据权利要求 6所述的方法, 其特征在于, 在一个超帧的时长内, 所述 基站先后通过 3个由 3个连续下行物理帧组成的下行传输块向所述终端 发送下行数据; 所述终端先后通过 3个由 5个连续上行物理帧组成的上 行传输块向所述基站发送上行数据。  The method according to claim 6, wherein, in a duration of a superframe, the base station sequentially sends downlink data to the terminal by using three downlink transport blocks consisting of three consecutive downlink physical frames; The terminal sends uplink data to the base station through three uplink transmission blocks consisting of five consecutive uplink physical frames.
8. 根据权利要求 1所述的方法, 其特征在于, m=18 , n=6。 8. Method according to claim 1, characterized in that m=18 and n=6.
9. 根据权利要求 8所述的方法, 其特征在于, 在一个超帧的时长内, 所述 基站先后通过 3个由 6个连续下行物理帧组成的下行传输块向所述终端 发送下行数据; 所述终端先后通过 3个由 2个连续上行物理帧组成的上 行传输块向所述基站发送上行数据。 The method according to claim 8, wherein, in a duration of a superframe, the base station sequentially sends downlink data to the terminal by using three downlink transport blocks consisting of six consecutive downlink physical frames; The terminal sends uplink data to the base station through three uplink transmission blocks consisting of two consecutive uplink physical frames.
10. 根据权利要求 1至 9中任一项所述的传输方法, 其特征在于, 在一个超 帧的时长内, 所述基站首先通过一个或多个下行物理帧组成的下行传输 块向所述终端发送下行数据, 所述终端再通过一个或多个上行物理帧组 成的上行传输块向所述基站发送上行数据, 如此交替发送, 在一个超帧 时长内, 上行、 下行数据各发送一次或多次。 The transmission method according to any one of claims 1 to 9, wherein, in a duration of one superframe, the base station first transmits the downlink transmission block composed of one or more downlink physical frames to the The terminal sends the downlink data, and the terminal sends the uplink data to the base station through the uplink transmission block formed by the one or more uplink physical frames, and then sends the uplink data, and the uplink and downlink data are sent once or more in a superframe duration. Times.
11. 根据权利要求 1至 9中任一项所述传输方法, 其特征在于, 在一个超帧 的时长内,在所述基站发送下行数据之后和所述终端发送上行数据之前, 和 /或所述终端发送上行数据之后和所述基站发送下行数据之前, 均有一 时间间隔, 在该时间间隔上所述基站和所述终端均不发送数据。 The transmission method according to any one of claims 1 to 9, characterized in that, within a duration of one superframe, after the base station transmits downlink data and before the terminal transmits uplink data, and/or After the terminal sends the uplink data and before the base station sends the downlink data, there is a time interval during which neither the base station nor the terminal transmits data.
12. 一种时分双工无线通信系统的传输方法, 其特征在于, 基站和终端以超 帧为单位进行数据传输, 在一个超帧的时长内, 所述方法包括: A transmission method for a time division duplex wireless communication system, characterized in that: the base station and the terminal perform data transmission in units of superframes, and the method includes:
所述基站向所述终端发送前导;  The base station sends a preamble to the terminal;
所述基站通过 3个由 a个连续下行物理帧组成的下行传输块, 向所 述终端发送下行数据;  The base station sends downlink data to the terminal by using three downlink transport blocks consisting of a consecutive downlink physical frames;
所述终端通过 3个由 b个连续上行物理帧组成的上行传输块,向所 述基站发送上行数据;  The terminal sends uplink data to the base station by using three uplink transmission blocks consisting of b consecutive uplink physical frames;
在所述一个超帧的时长内, 包括一个或多个时间间隔, 且在所述时 间间隔上, 所述基站和所述终端都不发送数据;  Included in the duration of the one superframe, one or more time intervals, and the base station and the terminal do not send data during the time interval;
其中, a、 b均为自然数, 且满足 a+b=8。  Where a and b are both natural numbers and satisfy a+b=8.
13. 根据权利要求 12所述的方法, 其特征在于, a和 b的取值满足以下条件 之一: a=5、 b=3; 或者, a=3、 b=5; 或者, a=6、 b=2。  The method according to claim 12, wherein the values of a and b satisfy one of the following conditions: a=5, b=3; or, a=3, b=5; or, a=6 , b=2.
14. 一种时分双工无线通信系统的帧结构, 其特征在于, 所述帧结构为一超 帧, 所述超帧由一个前导和 24个物理帧组成, 该 24个物理帧按照下行 和上行个数比为 a:b划分为下行物理帧和上行物理帧;  A frame structure of a time division duplex wireless communication system, wherein the frame structure is a super frame, the super frame is composed of one preamble and 24 physical frames, and the 24 physical frames are according to downlink and uplink. The ratio of a:b is divided into a downlink physical frame and an uplink physical frame;
其中, a、 b均为自然数, 且满足 a+b=8。  Where a and b are both natural numbers and satisfy a+b=8.
15. 才艮据权利要求 14所述的帧结构, 其特征在于, 所述前导位于所述帧结构 的起始位置, 包含系统开销信息。 15. The frame structure according to claim 14, wherein the preamble is located at a starting position of the frame structure and includes system overhead information.
16. 根据权利要求 14所述的帧结构, 其特征在于, 所述超帧中包括 3个由 a 个连续下行物理帧组成的下行传输块, 以及 3个由 b个连续上行物理帧 组成的上行传输块。 The frame structure according to claim 14, wherein the superframe includes three downlink transport blocks consisting of a consecutive downlink physical frames, and three uplinks consisting of b consecutive uplink physical frames. Transport block.
17. 根据权利要求 16所述的帧结构, 其特征在于, a:b=5:3 , 所述超帧中包括 3个由 5个连续下行物理帧组成的下行传输块, 以及 3个由 3个连续上 行物理帧组成的上行传输块。 The frame structure according to claim 16, wherein a:b=5:3, the superframe includes three downlink transport blocks consisting of five consecutive downlink physical frames, and three by three. An uplink transport block consisting of consecutive uplink physical frames.
18. 根据权利要求 16所述的帧结构, 其特征在于, a:b=3:5 , 所述超帧中包括 3个由 3个连续下行物理帧组成的下行传输块, 以及 3个由 5个连续上 行物理帧组成的上行传输块。 The frame structure according to claim 16, wherein a:b=3:5, the superframe includes three downlink transport blocks consisting of three consecutive downlink physical frames, and three by five. An uplink transport block consisting of consecutive uplink physical frames.
19. 根据权利要求 16所述的帧结构, 其特征在于, a:b=6:2 , 所述超帧中包括 3个由 6个连续下行物理帧组成的下行传输块, 以及 3个由 2个连续上 行物理帧组成的上行传输块。 The frame structure according to claim 16, wherein a:b=6:2, the superframe includes three downlink transport blocks consisting of six consecutive downlink physical frames, and three by two. An uplink transport block consisting of consecutive uplink physical frames.
20. 根据权利要求 14至 19中任一项所述的帧结构, 其特征在于, 所述超帧 中从起始位置开始, 先设有一个或多个下行物理帧组成的下行传输块, 之后设有一个或多个上行物理帧组成的上行传输块, 超帧中包括一组或 多组这样交替分布的上行传输块和下行传输块。 The frame structure according to any one of claims 14 to 19, wherein, in the superframe, starting from a starting position, a downlink transmission block consisting of one or more downlink physical frames is first provided, and then An uplink transport block consisting of one or more uplink physical frames is provided, and the superframe includes one or more sets of such uplink transport blocks and downlink transport blocks that are alternately distributed.
21. 才艮据权利要求 20所述的帧结构, 其特征在于, 在所述下行传输块与所述 上行传输块之间插入有一定时间长度的保护间隔; 在所述下行传输块与 随后的上行传输块之间插入的时间保护间隔, 与在所述上行传输块与随 后的下行传输块之间插入的时间保护间隔相等或不相等。 The frame structure according to claim 20, wherein a guard interval of a certain length of time is inserted between the downlink transport block and the uplink transport block; and the downlink transport block and the subsequent The time guard interval inserted between the uplink transport blocks is equal or unequal to the time guard interval inserted between the uplink transport block and the subsequent downlink transport block.
22. 一种时分双工无线通信系统的帧结构, 其特征在于, 所述帧结构为一超 帧, 在超帧中依次包括一前导、 a 个连续下行物理帧组成的一下行传输 块、 第一时间间隔, b 个连续上行物理帧组成的一上行传输块、 第二时 间间隔、 a个连续下行物理帧组成的另一下行传输块、 第三时间间隔、 b 个连续上行物理帧组成的另一上行传输块、 第四时间间隔、 a 个连续下 行物理帧组成的另一下行传输块、 第五时间间隔和 b个连续上行物理帧 组成的另一上行传输块; A frame structure of a time division duplex wireless communication system, wherein the frame structure is a superframe, and a sub-transport block consisting of a preamble and a continuous downlink physical frame in sequence in a superframe, a time interval, an uplink transport block consisting of b consecutive uplink physical frames, a second time interval, another downlink transport block consisting of a consecutive downlink physical frame, a third time interval, and b consecutive uplink physical frames. An uplink transport block, a fourth time interval, another downlink transport block consisting of a consecutive downlink physical frames, a fifth time interval, and another uplink transport block consisting of b consecutive uplink physical frames;
其中, a、 b均为自然数, 且满足 a+b=8。  Where a and b are both natural numbers and satisfy a+b=8.
23 根据权利要求 22所述的帧结构, 其特征在于, a和 b的取值满足以下条 件之一: a=5、 b=3; 或者, a=3、 b=5; 或者, a=6、 b=2。 The frame structure according to claim 22, wherein the values of a and b satisfy one of the following conditions: a=5, b=3; or, a=3, b=5; or, a=6 , b=2.
PCT/CN2009/070283 2008-02-04 2009-01-22 Frame structure and transmission method in a time division duplex wireless communication system WO2009097806A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN200810006250.0 2008-02-04
CNA2008100062500A CN101505187A (en) 2008-02-04 2008-02-04 Frame structure and data transmission method for time division duplex radio communication system
CNA2008100093246A CN101515823A (en) 2008-02-18 2008-02-18 Frame structure and data transmission method fora time division duplexing wireless communication system
CN200810009324.6 2008-02-18
CNA2008100083278A CN101515848A (en) 2008-02-22 2008-02-22 Frame structure and data transmission method for time division duplexing wireless communication system
CN200810008327.8 2008-02-22

Publications (1)

Publication Number Publication Date
WO2009097806A1 true WO2009097806A1 (en) 2009-08-13

Family

ID=40951785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/070283 WO2009097806A1 (en) 2008-02-04 2009-01-22 Frame structure and transmission method in a time division duplex wireless communication system

Country Status (1)

Country Link
WO (1) WO2009097806A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107925555A (en) * 2015-09-02 2018-04-17 高通股份有限公司 The flexible time division duplex subframe structure reduced with delay

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1909533A (en) * 2005-08-05 2007-02-07 中兴通讯股份有限公司 Frame creating method based on crossing frequency division multiplexing in time-division duplex mode
CN1909691A (en) * 2005-07-21 2007-02-07 三菱电机株式会社 Wireless telecommunication system including at least a base station intended to communicate with terminals
CN1957547A (en) * 2004-05-24 2007-05-02 英特尔公司 Transformation of uplink/downlink subframe ratio in time division duplex physical frames
CN1965513A (en) * 2004-05-01 2007-05-16 桥扬科技有限公司 Methods and apparatus for communication with time-division duplexing
CN101005344A (en) * 2006-01-19 2007-07-25 中兴通讯股份有限公司 Signal transmission method between base station and mobile station
WO2008004840A2 (en) * 2006-07-07 2008-01-10 Lg Electronics Inc. A method of utilizing resources efficiently in a reverse link transmission
CN101150389A (en) * 2006-09-20 2008-03-26 华为技术有限公司 Time division duplex radio communication system and its signal transmission method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1965513A (en) * 2004-05-01 2007-05-16 桥扬科技有限公司 Methods and apparatus for communication with time-division duplexing
CN1957547A (en) * 2004-05-24 2007-05-02 英特尔公司 Transformation of uplink/downlink subframe ratio in time division duplex physical frames
CN1909691A (en) * 2005-07-21 2007-02-07 三菱电机株式会社 Wireless telecommunication system including at least a base station intended to communicate with terminals
CN1909533A (en) * 2005-08-05 2007-02-07 中兴通讯股份有限公司 Frame creating method based on crossing frequency division multiplexing in time-division duplex mode
CN101005344A (en) * 2006-01-19 2007-07-25 中兴通讯股份有限公司 Signal transmission method between base station and mobile station
WO2008004840A2 (en) * 2006-07-07 2008-01-10 Lg Electronics Inc. A method of utilizing resources efficiently in a reverse link transmission
CN101150389A (en) * 2006-09-20 2008-03-26 华为技术有限公司 Time division duplex radio communication system and its signal transmission method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107925555A (en) * 2015-09-02 2018-04-17 高通股份有限公司 The flexible time division duplex subframe structure reduced with delay
US11722287B2 (en) 2015-09-02 2023-08-08 Qualcomm Incorporated Flexible time division duplexing subframe structure with latency reduction

Similar Documents

Publication Publication Date Title
WO2019201165A1 (en) Method for allocating sidelink resource, device, and system
CA3036351C (en) Method for reserving finite number of resources used for performing v2x communication in wireless communication system, and terminal using same
JP6907330B2 (en) V2X communication method of terminal in wireless communication system and terminal using the above method
US11695515B2 (en) Data transmission method, user equipment, and base station
EP2849494B1 (en) Lte cellular communication system based d2d device discovering method and apparatus
WO2015169156A1 (en) Configuration for different cp lengths coexistence in d2d communication
JP7254064B2 (en) Method and apparatus for allocating resources based on anchor carriers in a wireless communication system
JP6800980B2 (en) Data signal transmission in wireless communication systems with reduced end-to-end latency
GB2485355A (en) Compatible channel for efficient coexistence of voice and data traffic
WO2018201992A1 (en) Data packet transmission method and device
KR20140109893A (en) Telecommunications apparatus and methods for half-duplex and full-duplex
EP3592071B1 (en) V2x communication method performed by v2x terminal in wireless communication system and terminal using same method
CN112567831A (en) Method and device for transmitting and receiving synchronization signals in a new radio vehicle-to-everything system
KR20200036995A (en) Method and apparatus for performing harq in nr v2x system
WO2017133417A1 (en) Data channel subframe indication method and device
AU2015380135B2 (en) Method, terminal, and base station for asynchronous uplink transmission
GB2497939A (en) Radio subframe arrangement to support an additional physical channel for communication links operating in half-duplex mode
EP3375233A1 (en) Technique for downlink control
WO2010127632A1 (en) Method for transmitting/receiving sounding reference signal (srs), mobile communication terminal and base station
JP2008141247A (en) Communication system, base station, terminal, and communication method
CN103546411B (en) Uplink authorization information sending method, authorization message indicating means and base station
WO2009097806A1 (en) Frame structure and transmission method in a time division duplex wireless communication system
JP4846047B2 (en) Communication system, base station, terminal and communication method
WO2018032915A1 (en) Method and device for transmitting data on unlicensed spectrum
JP2008141710A (en) Communication system, base station, terminal and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09709300

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09709300

Country of ref document: EP

Kind code of ref document: A1