WO2009097789A1 - 建立安全关联的方法和通信系统 - Google Patents

建立安全关联的方法和通信系统 Download PDF

Info

Publication number
WO2009097789A1
WO2009097789A1 PCT/CN2009/070227 CN2009070227W WO2009097789A1 WO 2009097789 A1 WO2009097789 A1 WO 2009097789A1 CN 2009070227 W CN2009070227 W CN 2009070227W WO 2009097789 A1 WO2009097789 A1 WO 2009097789A1
Authority
WO
WIPO (PCT)
Prior art keywords
relay station
rzk
key
relay
security
Prior art date
Application number
PCT/CN2009/070227
Other languages
English (en)
French (fr)
Inventor
Jing Chen
Xiaoying Xu
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Priority to CN2009801024655A priority Critical patent/CN101926122B/zh
Publication of WO2009097789A1 publication Critical patent/WO2009097789A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/08Access security
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/04Key management, e.g. using generic bootstrapping architecture [GBA]
    • H04W12/041Key generation or derivation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/04Key management, e.g. using generic bootstrapping architecture [GBA]
    • H04W12/043Key management, e.g. using generic bootstrapping architecture [GBA] using a trusted network node as an anchor
    • H04W12/0431Key distribution or pre-distribution; Key agreement
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2209/00Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
    • H04L2209/80Wireless

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a method and a communication system for establishing a security association. Background technique
  • the user terminal can receive the service through the relay station, and the introduction of the relay station derives a new function of the air interface, and further enhances the distributed processing characteristics of the system.
  • the deployment of the relay station can improve the wireless access performance of the system, cover the shadow area, expand the wired coverage radius of the base station, and enhance the data rate of the specific area.
  • the wireless access technology itself is enhanced in multiple directions.
  • the wireless relay station is one of the important directions. Since a relay station is introduced in the LTE system, a relay station needs to be considered when establishing a security association between the terminal and the network.
  • the security protection in the LTE system is divided into two parts: the access network and the core network. After the relay station is introduced in the system, it is necessary to utilize the good characteristics of the relay system to implement an excellent mobile communication system. At the same time, it is necessary to ensure the LTE after the introduction of the relay station. The complexity and security of the system design.
  • the authentication server After the relay station and the base station complete synchronization and registration, the authentication server obtains a basic key sequence (Master Session Key, referred to as: MSK) through the public key management protocol; the authentication server sends the MSK to the base station, and the base station derives according to the MSK. Get the The authorization key (hereinafter referred to as: AK);
  • MSK Master Session Key
  • AK The authorization key
  • the relay station and the base station synchronize the AK by means of a three-way handshake, and derive the encryption key (Key Encryption Key, the following cylinder: KEK) of the data encryption key (hereinafter referred to as: ⁇ ) according to the AK, and the TEK is generated by the base station. ; TEK is obtained between the terminal and the relay station through the TEK request process;
  • the relay station is located in a certain area of the base station, and the base station sends a security zone key (Security Zone Key, the following cylinder: SZK) to the relay station through a three-way handshake mode.
  • a security zone key Security Zone Key, the following cylinder: SZK
  • Embodiments of the present invention provide a method and a communication system for establishing a security association to establish a security association between a relay station and a network after introducing a relay station in the LTE evolution system.
  • An embodiment of the present invention provides a method for establishing a security association, including: receiving an access request message sent by a relay station, where the access request message includes relay station capability information;
  • Deriving a base station key based on the shared root key comprising: Deriving a base station key based on the shared root key; transmitting the selected security algorithm to the relay station.
  • An embodiment of the present invention further provides a communication system, including:
  • a first receiving unit configured to receive an access request message sent by the relay station, where the access request message includes relay station capability information
  • a negotiating unit configured to negotiate a shared root key with the relay station
  • a selecting unit configured to select a security algorithm according to the relay station capability information obtained by the first receiving unit
  • a derivation unit configured to derive a base station key according to the shared root key obtained by the negotiating unit
  • a first sending unit configured to send the security algorithm selected by the selecting unit to the relay station, and perform protection by using a base station key obtained by the deriving unit.
  • the solution provided by the embodiment of the present invention after transmitting the relay station capability information of the relay station itself to the network side entity, and carrying the algorithm supported by the relay station itself in the relay station capability information, after the relay station and the network side entity establish the shared root key, the network
  • the side entity selects an algorithm supported by both the relay station and the base station as a security algorithm for establishing a security association according to the capability information of the relay station, and solves the problem of establishing a security association between the relay station and the network after the introduction of the relay station in the LTE system and its evolved system, and inherits the problem.
  • the security mechanism of the LTE system ensures the security and ease of use of the system without increasing the complexity of the system.
  • FIG. 1 is a schematic diagram of a method for establishing a security association in an IEEE 16j standard relay system in the prior art
  • FIG. 2 is a schematic diagram of a method for establishing a security association according to a first embodiment of the present invention
  • FIG. 3 is a schematic diagram of a method for establishing a security association according to a second embodiment of the present invention
  • the method is preferentially applied to an LTE system and an evolved system thereof.
  • the relay station informs the network side entity of its capability information, and the network side entity can be both An entity can also be a physical entity.
  • the network side entity may include a base station, a relay authentication server, and a relay information storage unit.
  • the relay authentication server and the relay information storage unit are both located at the network side entity, and the two may exist independently or may coexist as a logical unit in one network node.
  • the network side entity establishes a security association according to the capability information of the relay station, and the specific processes include:
  • Step 201 The relay station sends an access request message to the base station, where the access request message includes a relay identifier (Identity, hereinafter referred to as ID) of the relay station, and relay station capability information of the relay station, and the relay station capability information includes the relay station support information.
  • ID a relay identifier
  • the relay station capability information includes the relay station support information. Algorithms, etc.
  • Step 202 After receiving the access request message sent by the relay station, the base station forwards the access request message to the relay authentication server.
  • the base station may also inform the relay authentication server of the base station capability information of the base station, and the base station capability information may include an algorithm supported by the base station itself.
  • Step 203 The relay authentication server sends the relay ID in the received access request message to the relay information storage unit.
  • Step 205 After generating the authentication vector, the relay information storage unit sends the authentication vector to the relay authentication server.
  • Step 206 The relay authentication server sends the random number RAND and the authentication symbol AUTN to the base station.
  • Step 207 The base station sends the received random number RAND and the authentication symbol AUTN to the relay station.
  • Step 209 If the verification is successful, the response parameter RES is calculated according to the RAND, and the relay station sends a response message to the base station, where the response message includes the RES.
  • Step 210 The base station sends the response message to the relay authentication server.
  • Step 211 The relay authentication server verifies whether the RES is the same as the XRES in the authentication vector. If the same, the relay station and the network side entity obtain the shared key by authenticating the relay station.
  • step 212 If, in step 202, the base station notifies the relay authentication server of the capability information of the base station when forwarding the access request message sent by the relay station, step 212 is performed; if the base station does not inform the relay authentication server of its capability information, Go to step 212.
  • Step 212 The relay authentication server selects a security algorithm supported by both the relay station and the base station according to the capability information of the relay station. Meanwhile, the relay authentication server uses the shared root key negotiated between the relay station and the network side entity, and utilizes the relay station and the base station. A well-known algorithm derives a base station key, and transmits a base station key and an algorithm supported by both the selected relay station and the base station to the base station.
  • Step 212 The relay authentication server sends the shared root key negotiated between the relay station and the network side entity to the base station; the base station selects an algorithm supported by the relay station and itself according to the capability information of the relay station, and the base station derives the base station according to the selected algorithm. Key.
  • Step 213 The base station sends the algorithm supported by the relay station and the base station determined in step 212 or step 212 to the relay station, and sends the message with integrity protection.
  • Step 214 After receiving the algorithm supported by the relay station and the base station, the relay station performs integrity verification on the received content.
  • Step 215 After the verification is correct, the relay station sends an acknowledgement message to the relay authentication server through the base station.
  • a relay station with multiple levels of hops can also be introduced.
  • the relay station In order to establish an association between the multi-hop relay station and the base station, the relay station needs to obtain a shared signal on the protected relay link according to the sub-area to which the relay station belongs.
  • RZK Reflect Zone Key, The relay area key
  • the encryption and/or integrity protection algorithm corresponding to the RZK the method in this embodiment may further include:
  • Step 216 The base station issues an RZK and an algorithm for encryption and/or integrity protection to the relay station, and issues the encryption and/or integrity protection corresponding to the RZK and the RZK through a negotiated good security association between the relay station and the base station.
  • the algorithm's message is protected.
  • Step 217 The relay station receives the RZK sent by the base station and the encryption and/or integrity protection algorithm corresponding to the RZK, returns an acknowledgement message to the base station, and performs protection according to the security association between the relay station and the base station.
  • step 216 and step 217 in this embodiment can be Replace with:
  • Step 216 The relay station sends a request message to the base station, requesting the base station to send an RZK and an algorithm, where the request message is protected by a security association.
  • Step 217 The base station sends a response message to the relay station, where the response message includes an RZK and an algorithm, and the response message is protected by a security association.
  • the relay station and the base station can derive the base station key according to the root key, and then generate a corresponding access layer key according to the base station key, without performing an authentication process.
  • the relay station capability information of the relay station is transmitted to the network side entity through the access request message of the relay station access system, and the algorithm supported by the relay station itself is carried in the relay station capability information, in the relay station and the network.
  • the network side entity selects the algorithm supported by the relay station and the network side entity as the security algorithm for establishing the security association according to the capability information of the relay station, and solves the problem that the relay station is after the introduction of the relay station in the LTE system and its evolved system.
  • the problem of establishing security associations between networks, and inheriting the security mechanism of the LTE system ensures the security and ease of use of the system without increasing the complexity of the system.
  • the method of the present embodiment further includes: step 301 to step 312, which may be implemented by referring to step 201 to step 212 in the first embodiment.
  • Step 313 The base station sends the RZK key and the encryption and/or integrity protection algorithm corresponding to the RZK to the relay station when the selected security algorithm is delivered.
  • RZK and the encryption and/or integrity protection algorithm corresponding to RZK need additional security protection.
  • the key may be a shared root key between the relay station and the network side entity, or any key known to the relay station and the base station, and by the relay authentication server or The security algorithm selected by the base station is cryptographically protected. It is also possible to provide additional integrity protection for the RZK and the encryption and/or integrity protection algorithms corresponding to the RZK using the keys shared by the relay station and the base station;
  • Step 314 The relay station sends an algorithm negotiation and an acknowledgment of security association information such as RZK to the base station, thereby establishing a security association between the relay station and the base station.
  • the base station when the base station sends the relay private protection key algorithm, the RZK key and the encryption and/or integrity protection algorithm corresponding to the RZK are simultaneously sent to the relay station, thereby saving the system to establish a security association. time.
  • the relay station and the base station may derive the base station key according to the root key, and then generate a corresponding access layer key according to the base station key without authentication. process.
  • the communication system 400 includes:
  • the first receiving unit 401 is configured to receive an access request message sent by the relay station, where the access request message includes relay station capability information.
  • the negotiating unit 402 is configured to negotiate with the relay station to share the root key.
  • the deriving unit 403 is configured to derive a base station key according to the shared root key obtained by the negotiating unit 402.
  • the selecting unit 404 is configured to select a security algorithm according to the relay station capability information obtained by the first receiving unit 401.
  • the first sending unit 405 is configured to send the security algorithm selected by the selecting unit 404 to the relay station, and protect the base station key obtained by the deriving unit 403.
  • the units in the communication system 400 may exist independently or in the same entity.
  • the first receiving unit 401 receives an access request message sent by the relay station, where the access request message includes a relay ID, capability information of the relay station, and the like, and the negotiating unit 402 generates an authentication vector according to the relay ID, and the authentication vector The random number and the authentication symbol are sent to the relay station.
  • the relay station verifies the random number and the authentication symbol, and after the verification succeeds, sends a response message to the communication system 400. If the RES in the response message and the XRES in the authentication vector are the same, the communication system 400 and the relay station negotiate to obtain the shared root key. .
  • Derived unit 403 derives the base station key based on the shared root key.
  • the selecting unit 404 can select a security algorithm according to the relay station capability information, and is sent by the first transmitting unit 405 to the relay station, and can be protected by the base station key when transmitting.
  • the communication system 400 can further include:
  • the second receiving unit 406 is configured to receive the verification confirmation message sent by the relay station, and after the relay station receives the security algorithm sent by the first sending unit 405 of the communication system 400, perform security verification, and after the verification succeeds, send the verification to the communication system 400. Confirm the message.
  • the communication system 400 can further include:
  • the second sending unit 407 is configured to send a relay area key RZK and an encryption and/or integrity protection algorithm corresponding to the RZK to the relay station.
  • the second receiving unit 406 is further configured to receive a request message sent by the relay station, where the request message requests the communication system 400 to send an RZK key and an encryption and/or integrity protection algorithm corresponding to the RZK.
  • the second sending unit 407 is further configured to send a response message to the relay station, where the response message includes an RZK key and an encryption and/or integrity protection algorithm corresponding to the RZK.
  • the relay station capability information transmitted by the relay station is received, and the relay station negotiates the shared root key, and the communication system selects an algorithm supported by the relay station and the base station as a security algorithm for establishing a security association according to the relay station capability information, and solves the problem.
  • the security association between the relay station and the network is established, and the security mechanism of the LTE system is inherited, and the security and ease of use of the entire communication system are ensured without increasing the complexity of the system. .
  • the present invention can be implemented by means of software plus a necessary general hardware platform, and of course, can also be through hardware, but in many cases, the former is a better implementation. the way.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium, including a plurality of instructions for making a A computer device (which may be a personal computer, a server, or a network device, etc.) performs the methods described in various embodiments of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

建立安全关联的方法和通信系统 本申请要求于 2008 年 1 月 30 日提交中国专利局, 申请号为 200810065264.X, 发明名称为 "建立安全关联的方法和通信网络" 的 中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及无线通信领域,尤其涉及一种建立安全关联的方法和 通信系统。 背景技术
为了提高链路预算和蜂窝系统的覆盖,用户终端可以通过中继站 来接收服务, 中继站的引入衍生了空中接口的新功能, 并进一步增强 了系统的分布式处理特性。中继站的部署可以提升系统的无线接入性 能, 可以覆盖阴影区域, 扩大基站的有线覆盖半径, 增强特定区域数 据速率。
在 LTE ( Long Term Evolution, 长期演进 ) 系统及其之后的进一 步演进系统中, 无线接入技术自身进行多方位的强化, 其中, 无线中 继站是其中一个重要方向。 由于在 LTE系统中引入了中继站, 因此, 终端和网络之间在建立安全关联时, 需要考虑到中继站。 LTE系统中 的安全保护分为接入网和核心网两部分, 在系统中引入了中继站后, 需要利用中继系统的良好特性, 实现优良的移动通信系统, 同时, 需 要保证引入中继站后的 LTE系统设计的复杂性和安全性。
现有技术中, 如图 1所示, 在 IEEE ( Institute of Electrical and Electronics Engineers , 电气和电子工程师协会 ) 16j标准中介绍了关 于中继系统中建立安全关联的方法, 具体如下:
中继站和基站完成同步和注册后, 通过公共密钥管理协议, 鉴权 服务器获得基本密钥序列 (Master Session Key, 以下筒称: MSK ); 鉴权服务器把 MSK发送给基站, 基站根据该 MSK派生得到鉴 权密钥 ( Authentication Key, 以下筒称: AK );
中继站和基站通过三方握手的方式同步 AK, 根据 AK派生得到 数据加密密钥 ( Traffic Encryption Key , 以下筒称: ΤΕΚ ) 的加密密 钥 (Key Encryption Key, 以下筒称: KEK ), TEK由基站产生; 终端和中继站之间通过 TEK请求过程获得 TEK;
中继站在基站的一定区域内,基站通过三方握手方式给中继站发 布安全区域密钥 (Security Zone Key, 以下筒称: SZK )。
在实现本发明的过程中, 发明人发现现有技术至少存在以下问 题:
在现有的 LTE及其演进系统中密钥比 IEEE 16j系统中的安全密 钥多, 密钥产生的过程更复杂, 现有技术中的安全流程无法用来建立 LTE系统及其演进系统中的中继站与基站之间的安全关联, 因此, 当 LTE系统及其演进系统引入中继站后,无法确保中继站和基站之间的 安全性。 发明内容
本发明实施方式提供一种建立安全关联的方法和通信系统,以在 LTE演进系统中引入中继站后, 建立中继站和网络之间的安全关联。
本发明实施方式提供了一种建立安全关联的方法, 包括: 接收中继站发送的接入请求消息,所述接入请求消息中包括中继 站能力信息;
与所述中继站进行协商, 获得共享根密钥;
根据所述中继站能力信息选择安全算法;
根据所述共享根密钥派生得到基站密钥;将所选择的安全算法发 送给所述中继站。
本发明实施方式还提供了一种通信系统, 包括:
第一接收单元, 用于接收中继站发送的接入请求消息, 所述接入 请求消息中包括中继站能力信息; 协商单元, 用于和所述中继站协商共享根密钥; 选择单元,用于根据所述第一接收单元得到的中继站能力信息选 择安全算法;
派生单元,用于根据所述协商单元得到的共享根密钥派生得到基 站密钥;
第一发送单元,用于将所述选择单元选择的安全算法发送给所述 中继站, 通过所述派生单元得到的基站密钥进行保护。
本发明实施方式提供的方案,通过将中继站自身的中继站能力信 息发送给网络侧实体,并在中继站能力信息中携带该中继站自身支持 的算法, 在中继站和网络侧实体建立共享根密钥后, 网络侧实体根据 中继站能力信息,选择中继站和基站都支持的算法作为建立安全关联 的安全算法, 解决了 LTE 系统及其演进系统中引入中继站后, 中继 站与网络之间建立安全关联的问题, 而且继承了 LTE 系统的安全机 制, 在不增加系统复杂度的情况下, 保证了系统的安全性和易用性。 附图说明
图 1所示为现有技术中 IEEE 16j标准中继系统中建立安全关联 的方法示意图;
图 2所示为本发明第一实施方式中建立安全关联的方法示意图; 图 3所示为本发明第二实施方式中建立安全关联的方法示意图; 图 4所示为本发明第三实施方式中通信系统的结构示意图。 具体实施方式
为了使本发明的具体技术方案、发明目的更加清楚, 下面结合具 体的实施方式和附图作进一步说明。
参照图 2, 介绍本发明第一实施方式, 关于一种建立安全关联的 方法, 本方法优先适用于 LTE 系统及其演进系统中。 在该方法中, 中继站将自身的能力信息告知网络侧实体,该网络侧实体既可以为功 能性实体, 也可以为物理实体。 网络侧实体可以包括基站、 中继认证 服务器和中继信息存储单元, 中继认证服务器和中继信息存储单元都 位于网络侧实体, 两者可以独立存在, 也可以作为逻辑单元共存于一 个网络节点上; 在后续过程中, 网络侧实体根据中继站的能力信息进 行安全关联的建立, 具体过程包括:
步骤 201: 中继站向基站发送接入请求消息, 该接入请求消息中 包括该中继站的中继标识(Identity, 以下筒称: ID )、 该中继站的中 继站能力信息, 中继站能力信息包括该中继站支持的算法等。
步骤 202: 基站接收到中继站发送的接入请求消息后, 将该接入 请求消息转发给中继认证服务器。基站在转发时, 还可以将基站自身 的基站能力信息告知中继认证服务器,基站能力信息可以包括基站自 身所支持的算法。
步骤 203:中继认证服务器将接收到的接入请求消息中的中继 ID 发送给中继信息存储单元。
步骤 204: 中继信息存储单元根据中继 ID生成鉴权向量, 该鉴 权向量用于中继站和基站之间的交互认证, 包括随机数 RAND、期望 响应 ( EXpected user RESponse , 以下筒称: XRES )、 鉴权符号 AUTN [ ( AUTN = SQN ( Sequence Number , 序歹 'J号 ) IIAMF ( Authentication Management Field, 鉴权管理域) IIMAC ( Message Authentication Code, 消息鉴权码) ]、 中继站和网络侧实体的共享根 密钥。
步骤 205: 中继信息存储单元在生成鉴权向量之后, 将鉴权向量 发送给中继认证服务器。
步骤 206: 中继认证服务器将随机数 RAND和鉴权符号 AUTN 发送给基站。
步骤 207: 基站将接收到的随机数 RAND和鉴权符号 AUTN发 送给中继站。
步骤 208:中继站验证 AUTN,中继站计算期望消息鉴权码 XMAC = f ( SQNIIRANDIIAMF ), 若等于 AUTN中的 MAC, 并且 SQN在有 效范围, 则认为对网络鉴权成功。
步骤 209: 若验证成功, 则根据 RAND计算响应参数 RES, 中继 站向基站发送响应消息, 响应消息中包含 RES。
步骤 210: 基站将该响应消息发送给中继认证服务器。
步骤 211: 中继认证服务器验证 RES是否和鉴权向量中的 XRES 相同, 如果相同则通过对中继站的认证, 中继站和网络侧实体获得共 享才 密钥。
若在步骤 202中,基站在转发中继站发送的接入请求消息时, 将 基站自身的能力信息告知中继认证服务器, 则执行步骤 212; 若基站 没有将自身的能力信息告知中继认证服务器, 则执行步骤 212,。
步骤 212: 中继认证服务器根据中继站的能力信息, 选择中继站 和基站都支持的安全算法; 同时, 中继认证服务器根据中继站和网络 侧实体之间协商的共享根密钥、并利用中继站和基站之间所共知的算 法派生得到基站密钥,将基站密钥和所选择的中继站和基站都支持的 算法发送给基站。
步骤 212,:中继认证服务器将中继站和网络侧实体之间协商的共 享根密钥发送给基站; 基站根据中继站的能力信息, 选择中继站和自 身都支持的算法, 基站根据选择的算法派生得到基站密钥。
步骤 213: 基站将步骤 212或步骤 212,中确定的中继站和基站都 支持的算法发送给中继站, 发送消息采用完整性保护。
步骤 214: 中继站接收到该中继站和基站都支持的算法后, 对接 收到的内容进行完整性校验验证。
步骤 215: 验证正确后, 中继站通过基站向中继认证服务器发送 确认消息。
至此, 中继站和基站之间完成了安全算法协商和密钥协商, 中继 站和基站之间完成了安全关联的建立。
在 LTE 系统及其演进系统中, 还可以引入多级跳数的中继站, 为了建立多跳中继站和基站之间的关联, 中继站根据其所属的子区 域, 需要获得保护中继链路上的共享信令的 RZK ( Relay Zone Key, 中继区域密钥)和与 RZK对应的加密和 /或完整性保护算法, 本实施 方式中的方法可以进一步包括:
步骤 216: 基站向中继站发布 RZK和用于加密和 /或完整性保护 的算法,并通过中继站和基站之间协商好的安全关联,对发布该 RZK 和与 RZK对应的加密和 /或完整性保护算法的消息进行保护。
步骤 217: 中继站接收到基站发送的 RZK和与 RZK对应的加密 和 /或完整性保护算法, 向基站返回确认消息, 并根据中继站和基站 之间的安全关联进行保护。
在多跳中继站的系统中, 中继站需要获得 RZK和与 RZK对应的 加密和 /或完整性保护算法时, 中继站也可主动向基站请求 RZK, 因 此, 本实施方式中的步骤 216和步骤 217可以被替换为:
步骤 216,: 中继站向基站发送请求消息, 请求基站发送 RZK和 算法, 该请求消息通过安全关联进行保护。
步骤 217,: 基站向中继站发送响应消息, 响应消息中包括 RZK 和算法, 响应消息通过安全关联进行保护。
如果中继站和基站之间需要进行重建安全关联时,中继站和基站 可以根据根密钥派生基站密钥,进而根据基站密钥生成相应的接入层 密钥, 无需进行认证过程。
根据本实施方式提供的技术方案,通过中继站接入系统的接入请 求消息将中继站自身的中继站能力信息发送给网络侧实体,并在中继 站能力信息中携带该中继站自身支持的算法,在中继站和网络侧实体 建立共享根密钥后, 网络侧实体根据中继站能力信息, 选择中继站和 网络侧实体都支持的算法作为建立安全关联的安全算法,解决了 LTE 系统及其演进系统中引入中继站后, 中继站与网络之间建立安全关联 的问题, 而且继承了 LTE 系统的安全机制, 在不增加系统复杂度的 情况下, 保证了系统的安全性和易用性。 通过进一步的下发 RZK和 与 RZK对应的加密和 /或完整性保护算法, 可以保证在多跳中继链路 之间的信令传输的安全。
下面参照图 3介绍本发明第二实施方式,关于一种建立安全关联 的方法, 其具体过程中, 步骤 301至步骤 312可以参照第一实施方式 中步骤 201至步骤 212实现, 本实施方式提供的方法还包括:
步骤 313: 基站在下发所选择的安全算法时, 把 RZK密钥以及 与 RZK对应的加密和 /或完整性保护算法发送给中继站。
在本步骤中, RZK以及与 RZK对应的加密和 /或完整性保护算法 下发需要额外的安全保护措施。 有两种保护方案:
1、 利用中继站和基站共享的密钥, 该密钥可以为中继站和网络 侧实体之间的共享根密钥, 也可以为中继站和基站所共知的任何密 钥, 以及由中继认证服务器或基站选择的安全算法进行加密保护。 也 可以利用中继站和基站共享的密钥为 RZK以及与 RZK对应的加密和 /或完整性保护算法提供额外的完整性保护;
2、 利用中继站和基站共享的密钥派生得到一个推演密钥, 利用 此推演密钥对 RZK以及与 RZK对应的加密和 /或完整性保护算法进 行异或操作, 从而进行保护。
步骤 314: 中继站向基站发送算法协商以及 RZK等安全关联信 息的确认, 由此, 中继站和基站之间建立安全关联。
因此, 在本实施方式中, 通过基站在下发中继站私有保护密钥的 算法时, 同时将 RZK密钥以及与 RZK对应的加密和 /或完整性保护 算法发送给中继站, 节省了系统建立安全关联的时间。
同样, 在本实施方式中, 如果中继站和网络之间需要进行重建安 全关联时, 中继站和基站可以根据根密钥派生基站密钥, 进而根据基 站密钥生成相应的接入层密钥无需进行认证过程。
下面介绍本发明第三实施方式, 关于一种通信系统, 参照图 4, 该通信系统 400包括:
第一接收单元 401 , 用于接收中继站发送的接入请求消息, 该接 入请求消息中包括中继站能力信息。
协商单元 402, 用于和中继站协商共享根密钥。
派生单元 403, 用于根据协商单元 402得到的共享根密钥派生得 到基站密钥。 选择单元 404, 用于根据第一接收单元 401得到的中继站能力信 息选择安全算法。
第一发送单元 405, 用于将选择单元 404选择的安全算法发送给 中继站, 通过派生单元 403得到的基站密钥进行保护。
该通信系统 400中的各单元可以独立存在,也可以存在于同一实 体之中。 第一接收单元 401接收中继站发送的接入请求消息, 该接入 请求消息中包括中继 ID、 中继站的能力信息等, 协商单元 402根据 中继 ID产生鉴权向量, 并将鉴权向量中的随机数和鉴权符号发送给 中继站。 中继站对随机数和鉴权符号进行验证, 验证成功后发送响应 消息给通信系统 400, 若响应消息中的 RES和鉴权向量中的 XRES 相同, 则通信系统 400 和该中继站协商获得共享根密钥。 派生单元 403则根据共享根密钥派生得到基站密钥。 选择单元 404可以根据中 继站能力信息选择安全算法, 并由第一发送单元 405发送给中继站, 在发送时可以利用基站密钥进行保护。
该通信系统 400还可以进一步包括:
第二接收单元 406, 用于接收中继站发送的验证确认消息, 当中 继站接收到通信系统 400的第一发送单元 405发送的安全算法后,进 行安全性验证, 验证成功后, 向通信系统 400发送验证确认消息。
该通信系统 400还可以进一步包括:
第二发送单元 407, 用于向中继站发送中继区域密钥 RZK和与 RZK对应的加密和 /或完整性保护算法。
上述第二接收单元 406, 还用于接收中继站发送的请求消息, 该 请求消息请求通信系统 400发送 RZK密钥和与 RZK对应的加密和 / 或完整性保护算法。
上述第二发送单元 407, 还用于向中继站发送响应消息, 该响应 消息中包括 RZK密钥和与 RZK对应的加密和 /或完整性保护算法。
通过本实施方式提供的通信系统,接收中继站发送的中继站能力 信息, 和中继站协商共享根密钥, 通信系统根据中继站能力信息, 选 择中继站和基站都支持的算法作为建立安全关联的安全算法,解决了 LTE演进系统中引入中继站后, 中继站与网络之间建立安全关联的问 题, 而且继承了 LTE 系统的安全机制, 在不增加系统复杂度的情况 下, 保证了整个通信系统的安全性和易用性。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解 到本发明可借助软件加必需的通用硬件平台的方式来实现, 当然也可 以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解, 本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以 软件产品的形式体现出来, 该计算机软件产品存储在一个存储介质 中, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服 务器, 或者网络设备等)执行本发明各个实施方式所述的方法。
虽然通过参照本发明的某些优选实施方式, 已经对本发明进行了 图示和描述, 但本领域的普通技术人员应该明白, 可以在形式上和细 节上对其作各种改变, 而不偏离本发明的精神和范围。

Claims

权利要求
1、 一种建立安全关联的方法, 其特征在于, 包括:
接收中继站发送的接入请求消息,所述接入请求消息中包括中继 站能力信息;
与所述中继站进行协商, 获得共享根密钥;
根据所述中继站能力信息选择安全算法;
根据所述共享根密钥派生得到基站密钥;将所选择的安全算法发 送给所述中继站。
2、 根据权利要求 1所述的建立安全关联的方法, 其特征在于, 该方法还包括:
接收所述中继站发送的验证确认信息。
3、 根据权利要求 2所述的建立安全关联的方法, 其特征在于, 所述接收中继站发送的验证确认消息后, 进一步包括:
向所述中继站发送中继区域密钥 RZK和与所述 RZK对应的加密 和 /或完整性保护算法。
4、 根据权利要求 2所述的建立安全关联的方法, 其特征在于, 所述接收中继站发送的验证确认消息后, 进一步包括:
接收到所述中继站发送的请求消息,所述请求消息用以请求发送 RZK和与所述 RZK对应的加密和 /或完整性保护算法;
向所述中继站发送响应消息, 所述响应消息中包括所述 RZK和 与所述 RZK对应的加密和 /或完整性保护算法。
5、 根据权利要求 1所述的建立安全关联的方法, 其特征在于, 还包括, 在将所选择的安全算法发送给所述中继站时, 将 RZK和与 所述 RZK对应的加密和 /或完整性保护算法发送给所述中继站。
6、 根据权利要求 5所述的建立安全关联的方法, 其特征在于, 利用与所述中继站共享的密钥, 以及所选择的安全算法对所述 RZK 以及与所述 RZK对应的加密和 /或完整性保护算法进行加密保护; 或 利用与所述中继站共享的密钥为所述 RZK和与所述 RZK对应的 加密和 /或完整性保护算法进行完整性保护; 或
利用与所述中继站共享的密钥派生得到的新密钥对所述 RZK和 与所述 RZK对应的加密和 /或完整性保护算法进行异或操作。
7、 一种通信系统, 其特征在于, 包括:
第一接收单元, 用于接收中继站发送的接入请求消息, 所述接入 请求消息中包括中继站能力信息;
协商单元, 用于和所述中继站协商共享根密钥;
选择单元,用于根据所述第一接收单元得到的中继站能力信息选 择安全算法;
派生单元,用于根据所述协商单元得到的共享根密钥派生得到基 站密钥;
第一发送单元,用于将所述选择单元选择的安全算法发送给所述 中继站, 通过所述派生单元得到的基站密钥进行保护。
8、 根据权利要求 7所述的通信系统, 其特征在于, 还包括: 第二接收单元, 用于接收所述中继站发送的验证确认消息。
9、 根据权利要求 8所述的通信系统, 其特征在于, 还包括: 第二发送单元, 用于向所述中继站发送中继区域密钥 RZK和与 RZK对应的加密和 /或完整性保护算法。
10、 根据权利要求 9所述的通信系统, 其特征在于,
所述第二接收单元, 还用于接收中继站发送的请求消息, 所述请 求消息请求通信系统发送 RZK密钥和与 RZK对应的加密和 /或完整 性保护算法;
所述第二发送单元, 还用于向所述中继站发送响应消息, 所述响 应消息中包括 RZK密钥和与 RZK对应的加密和 /或完整性保护算法。
PCT/CN2009/070227 2008-01-30 2009-01-20 建立安全关联的方法和通信系统 WO2009097789A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009801024655A CN101926122B (zh) 2008-01-30 2009-01-20 建立安全关联的方法和通信系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810065264.X 2008-01-30
CN200810065264XA CN101500230B (zh) 2008-01-30 2008-01-30 建立安全关联的方法和通信网络

Publications (1)

Publication Number Publication Date
WO2009097789A1 true WO2009097789A1 (zh) 2009-08-13

Family

ID=40947059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/070227 WO2009097789A1 (zh) 2008-01-30 2009-01-20 建立安全关联的方法和通信系统

Country Status (2)

Country Link
CN (2) CN101500230B (zh)
WO (1) WO2009097789A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102090093B (zh) 2009-04-30 2013-04-17 华为技术有限公司 空口链路安全机制建立的方法、设备
TWI430674B (zh) * 2009-08-14 2014-03-11 Ind Tech Res Inst 用於具有中繼節點之無線通訊系統的安全性方法
US8605904B2 (en) 2009-08-14 2013-12-10 Industrial Technology Research Institute Security method in wireless communication system having relay node
CN102098676B (zh) * 2010-01-04 2015-08-12 电信科学技术研究院 一种实现完整性保护的方法、装置和系统
CN102281535A (zh) * 2010-06-10 2011-12-14 华为技术有限公司 一种密钥更新方法与装置
CN102300335B (zh) * 2010-06-22 2016-12-21 中兴通讯股份有限公司 一种处理无线链路错误的方法及装置
CN101931955B (zh) * 2010-09-03 2015-01-28 中兴通讯股份有限公司 认证方法、装置及系统
CN101945386B (zh) * 2010-09-10 2015-12-16 中兴通讯股份有限公司 一种实现安全密钥同步绑定的方法及系统
CN101977378B (zh) * 2010-09-30 2015-08-12 中兴通讯股份有限公司 信息传输方法、网络侧及中继节点
CN102098672A (zh) * 2011-03-16 2011-06-15 北京邮电大学 密钥信息的传递方法与系统、发送端及接收端
CN102821385B (zh) * 2011-06-10 2017-03-22 中兴通讯股份有限公司 一种向终端发送公共警报系统密钥信息的方法和网络实体
CN103905389B (zh) * 2012-12-26 2017-05-24 华为终端有限公司 基于中继设备的安全关联、数据传输方法及装置、系统
WO2017031661A1 (zh) 2015-08-24 2017-03-02 华为技术有限公司 一种设备关联方法以及相关设备
WO2024065469A1 (zh) * 2022-09-29 2024-04-04 北京小米移动软件有限公司 一种直连链路建立方法、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1601943A (zh) * 2003-09-25 2005-03-30 华为技术有限公司 一种选择安全通信算法的方法
CN1783778A (zh) * 2004-12-02 2006-06-07 株式会社日立制作所 网关服务器、加密通信的中继方法、程序及其存储媒体
CN1921379A (zh) * 2005-08-25 2007-02-28 华为技术有限公司 一种目标鉴权者/密钥提供者获取密钥的方法
US20070064952A1 (en) * 2005-08-26 2007-03-22 Makoto Takada Internet facsimile relay apparatus and method, and storage medium

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100403742C (zh) * 2003-07-25 2008-07-16 华为技术有限公司 一种媒体网关与媒体网关控制器之间安全认证的方法
JP2005223838A (ja) * 2004-02-09 2005-08-18 Kawasaki Microelectronics Kk 通信システムおよび中継装置
CN100583756C (zh) * 2005-06-15 2010-01-20 华为技术有限公司 实现用户设备和网络业务应用实体安全通讯的方法
JP4946121B2 (ja) * 2006-03-24 2012-06-06 パナソニック株式会社 認証中継装置、認証中継システム、及び認証中継方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1601943A (zh) * 2003-09-25 2005-03-30 华为技术有限公司 一种选择安全通信算法的方法
CN1783778A (zh) * 2004-12-02 2006-06-07 株式会社日立制作所 网关服务器、加密通信的中继方法、程序及其存储媒体
CN1921379A (zh) * 2005-08-25 2007-02-28 华为技术有限公司 一种目标鉴权者/密钥提供者获取密钥的方法
US20070064952A1 (en) * 2005-08-26 2007-03-22 Makoto Takada Internet facsimile relay apparatus and method, and storage medium

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SUN, S., ET AL., SZK DEFINITION AND MANAGEMENT, 25 August 2007 (2007-08-25) *

Also Published As

Publication number Publication date
CN101926122B (zh) 2012-08-08
CN101500230B (zh) 2010-12-08
CN101926122A (zh) 2010-12-22
CN101500230A (zh) 2009-08-05

Similar Documents

Publication Publication Date Title
WO2009097789A1 (zh) 建立安全关联的方法和通信系统
JP4286224B2 (ja) 無線ローカルエリアネットワーク(wlan)に用いられる安全な機密通信のための方法
US8533461B2 (en) Wireless local area network terminal pre-authentication method and wireless local area network system
KR100813295B1 (ko) 무선 휴대 인터넷 시스템에서 eap를 이용한 보안 관계협상 방법
US8561200B2 (en) Method and system for controlling access to communication networks, related network and computer program therefor
WO2009094942A1 (fr) Procédé et système de réseau de communication pour établir une conjonction de sécurité
EP2421292B1 (en) Method and device for establishing security mechanism of air interface link
JP4921557B2 (ja) インフラストラクチャベースの無線マルチホップネットワークにおけるセキュリティ認証及び鍵管理方法
JP5597676B2 (ja) 鍵マテリアルの交換
KR100923176B1 (ko) 무선 네트워크에 보안성을 제공하기 위한 시스템 및 방법
US20080046732A1 (en) Ad-hoc network key management
JP2010503330A (ja) アドホック無線ネットワークのノード間においてセキュリティ・アソシエーションを確立するための方法及び装置
US7421582B2 (en) Method and apparatus for mutual authentication at handoff in a mobile wireless communication network
WO2010012203A1 (zh) 鉴权方法、重认证方法和通信装置
JP2009524274A (ja) マルチホップ無線ネットワークにおける無線ルータ支援セキュリティハンドオフ(wrash)
JP2010503328A (ja) メッシュネットワーク経由のセキュリティ接続メッセージのトンネル転送
WO2012083828A1 (zh) 本地路由业务的实现方法、基站及系统
WO2012028043A1 (zh) 认证方法、装置及系统
WO2016023198A1 (zh) 异构网络之间的切换方法及切换系统
WO2011072513A1 (zh) 交换设备间安全连接的建立方法及系统
WO2010121462A1 (zh) 一种自组网络下wapi站点间安全关联的建立方法
WO2013104301A1 (zh) 发送消息的方法、建立安全连接的方法、接入点和工作站
니반제 et al. Handover Protocol for Mobility Support in Ubiquitous Sensor Network

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980102465.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09707134

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09707134

Country of ref document: EP

Kind code of ref document: A1