WO2009097755A1 - A method and apparatus for locally detecting signal, a method and apparatus for detecting signal at center, and a system for detecting signal - Google Patents

A method and apparatus for locally detecting signal, a method and apparatus for detecting signal at center, and a system for detecting signal Download PDF

Info

Publication number
WO2009097755A1
WO2009097755A1 PCT/CN2009/070075 CN2009070075W WO2009097755A1 WO 2009097755 A1 WO2009097755 A1 WO 2009097755A1 CN 2009070075 W CN2009070075 W CN 2009070075W WO 2009097755 A1 WO2009097755 A1 WO 2009097755A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantization
local
signal
local node
result
Prior art date
Application number
PCT/CN2009/070075
Other languages
French (fr)
Chinese (zh)
Inventor
Lei Chen
Jun Wang
Shaoqian Li
Linjun Lu
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Publication of WO2009097755A1 publication Critical patent/WO2009097755A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/06Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection

Abstract

A method and apparatus for locally detecting signal, a method and apparatus for detecting signal at center, and a system for detecting signal are disclosed. The method for locally detecting signal comprises: according to the determined quantification threshold corresponding to the local node, detection statistic corresponding to the signal to be detected is quantified and the quantification result is obtained. The quantification result is used for judging whether the signal to be detected is valid signal. The method for detecting signal at center comprises: obtaining the quantification result which is acquired through quantifying detection statistic by local node. According to the quantification result, global decision result indicating whether the signal to be detected is valid signal is obtained. Applying the solutions above, detection performance can be expediently and simply improved.

Description

本地、 中心检测信号的方法、 装置及检测信号的系统 本申请要求于 2008年 2月 1 日提交中国专利局、申请号为 200810006087.8、 发明名称为 "本地、 中心检测信号的方法及本地、 中心检测装置" 的中国专利 申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域 本发明涉及检测技术领域, 特别涉及一种本地检测信号的方法、 中心检测 信号的方法、 本地检测装置和中心检测装置、 以及检测信号的系统。 背景技术 在无线传感器网络及认知无线电(Cognitive Radio, CR )等通信领域中, 在 对有效信号进行检测时, 常采用分布式检测方式, 由至少一个本地节点对待检 测信号进行检测, 在本地得到一个检测统计量, 然后向中心节点上报, 由中心 节点根据各个检测统计量, 得出一个 "待检测信号是否是有效信号" 的全局判 决结果。 比如, 在 CR网络中, 为了提高频谱利用率, 具有认知功能的无线通信 设备可以按照某种 "伺机 (Opportunistic Way)" 的方式工作在已授权的频段内。 这里, 已授权用户也可以称为主用户 ( Primary User, PU )。 因此, CR系统需要 检测目标频段上是否存在 PU信号, 以便为认知无线电提供未被 PU占用的可供 CR系统接入的候选频道。  Local and central detection signal method, device and detection signal system The present application claims to be submitted to the Chinese Patent Office on February 1, 2008, the application number is 200810006087.8, the invention name is "local, central detection signal method and local, central detection The priority of the Chinese Patent Application, the entire disclosure of which is incorporated herein by reference. TECHNICAL FIELD The present invention relates to the field of detection technologies, and in particular, to a method for locally detecting a signal, a method for centrally detecting a signal, a local detecting device and a center detecting device, and a system for detecting a signal. BACKGROUND In a wireless sensor network and a cognitive communication (Cognitive Radio, CR) communication field, when detecting an effective signal, a distributed detection method is often used, and at least one local node detects the detected signal, and obtains it locally. A detection statistic is then reported to the central node, and the central node obtains a global decision result of "whether the signal to be detected is a valid signal" according to each detection statistic. For example, in a CR network, in order to improve spectrum utilization, cognitive wireless communication devices can operate in an authorized frequency band in an "Opportunistic Way" manner. Here, an authorized user can also be called a Primary User (PU). Therefore, the CR system needs to detect whether there is a PU signal on the target frequency band in order to provide the cognitive radio with a candidate channel that is not occupied by the PU and is accessible to the CR system.
通常, 这种实现分布式检测信号的系统包括本地节点和中心节点, 本地节 点用于根据本地检测算法得到有效信号是否存在的本地判决结果或者得到用于 判决的待检测信号的检测统计量, 中心节点用于融合各个本地节点的本地判决 结果或检测统计量得到最终判决, 从而判断出是否存在有效信号的检测结果。 比如, 目前检测 PU信号的频谱感知技术可以分为单节点感知和协同感知两大 类, 在协同感知中, 按传输开销的不同可以分为两类: 一种是各本地检测节点 做出 "PU信号是否存在" 的本地判决后, 将本地判决结果传送至中心节点, 然 后由中心节点采用 "与" 和 "或" 准则, 对各个本地节点进行数据融合, 得出Generally, the system for implementing a distributed detection signal includes a local node and a central node, and the local node is configured to obtain a local decision result of whether a valid signal exists according to a local detection algorithm or obtain a detection statistic of a signal to be detected for determining, the center Node is used to fuse local decisions of various local nodes The result or the detected statistic is finally judged to determine whether there is a detection result of the valid signal. For example, the spectrum sensing technology for detecting PU signals can be divided into two categories: single-node sensing and cooperative sensing. In cooperative sensing, there are two types according to different transmission overheads: one is that each local detecting node makes a "PU". After the local decision of the signal exists, the local decision result is transmitted to the central node, and then the central node uses the "and" and "or" criteria to perform data fusion on each local node.
"是否存在 PU信号"的全局判决结果。由于本地节点只提供 1比特的判决结果, 无法提供更多信息, 比如, 用于判决的能量信号等, 因此该协同方案的性能有 限。 这种方案适用于系统对传输开销要求很严格的情况。 第二种是各本地检测 节点不做判决, 将检测到的部分或全部连续数据传送至中心节点, 比如待检测 信号的能量数据, 然后, 中心节点可以采用贝叶斯准则进行数据融合, 做出综 合判决得到一个全局判决结果。 这种方法检测性能较好, 但由于传输检测数据 的动态范围较大, 因而传输开销往往很大, 在实际中较难实现。 The global decision result of "whether there is a PU signal". Since the local node only provides a 1-bit decision result, it cannot provide more information, such as an energy signal for decision, etc., so the performance of the cooperative scheme is limited. This scheme is suitable for situations where the system has strict transmission overhead requirements. The second is that each local detecting node does not make a decision, and transmits some or all of the detected continuous data to the central node, such as the energy data of the signal to be detected. Then, the central node can use Bayesian criteria for data fusion, and The comprehensive judgment yields a global judgment result. The detection performance of this method is good, but because the dynamic range of the transmission detection data is large, the transmission overhead is often large, which is difficult to implement in practice.
可见, 目前检测信号的方法, 还不能有效地提高信号检测性能。 发明内容 本发明实施例提供一种本地检测信号的方法, 该方法能够有效地提高信号 检测性能。  It can be seen that the current method of detecting signals cannot effectively improve the signal detection performance. SUMMARY OF THE INVENTION Embodiments of the present invention provide a method for locally detecting a signal, which can effectively improve signal detection performance.
本发明实施例还提供一种中心检测信号的方法, 该方法能够有效地提高信 号检测性能。  Embodiments of the present invention also provide a method for detecting a center, which can effectively improve signal detection performance.
本发明实施例另外提供一种本地检测装置, 该本地检测装置能够有效地提 高信号检测性能。  Embodiments of the present invention additionally provide a local detecting device that can effectively improve signal detection performance.
本发明实施例另外提供一种中心检测装置, 该中心检测装置能够有效地提 高信号检测性能。 本发明实施例另外提供一种检测信号的系统, 该检测信号的系统能够有效 地提高信号检测性能。 Embodiments of the present invention additionally provide a center detecting device that can effectively improve signal detection performance. Embodiments of the present invention further provide a system for detecting a signal, which system can effectively improve signal detection performance.
为达到上述目的, 本发明实施例的技术方案具体是这样实现的:  To achieve the above objective, the technical solution of the embodiment of the present invention is specifically implemented as follows:
本发明实施例提供了一种本地检测信号的方法, 该方法包括:  An embodiment of the present invention provides a method for locally detecting a signal, where the method includes:
根据确定的本地节点对应的量化阈值, 对待检测信号对应的检测统计量进 行量化, 得到量化结果, 所述量化结果用于判决所述待检测信号是否为有效信 号。  And determining, according to the determined quantization threshold corresponding to the local node, the detection statistic corresponding to the detection signal, to obtain a quantization result, where the quantization result is used to determine whether the to-be-detected signal is a valid signal.
本发明实施例提供了一种中心检测信号的方法, 该方法包括:  The embodiment of the invention provides a method for detecting a center, the method comprising:
获取本地节点对检测统计量进行量化所得到的量化结果;  Obtaining a quantized result obtained by quantifying a detection statistic by a local node;
根据所述量化结果, 得出表征待检测信号是否为有效信号的全局判决结杲。 本发明实施例提供了一种本地检测装置, 该本地检测装置包括:  Based on the quantized result, a global decision result indicating whether the signal to be detected is a valid signal is obtained. An embodiment of the present invention provides a local detecting device, where the local detecting device includes:
检测器, 用于检测得到本地节点中待检测信号对应的检测统计量; 量化器, 用于根据预先确定的量化阈值, 对所述检测器得到的所述检测统 计量进行量化。  a detector, configured to detect a detection statistic corresponding to the signal to be detected in the local node, and a quantizer, configured to quantize the detection metric obtained by the detector according to a predetermined quantization threshold.
本发明实施例提供了一种中心检测装置, 该中心检测装置包括:  An embodiment of the present invention provides a center detecting device, where the center detecting device includes:
获取模块, 用于获取本地检测装置的量化结果, 所述量化结果为对待检测 信号对应的检测统计量进行量化后, 得到的结果;  An obtaining module, configured to obtain a quantized result of the local detecting device, where the quantized result is a result obtained by quantifying a detection statistic corresponding to the signal to be detected;
执行模块, 根据所述获取模块得到的量化结果, 得出表征待检测信号是否 为有效信号的全局判决结果。  The execution module obtains, according to the quantized result obtained by the obtaining module, a global decision result indicating whether the signal to be detected is a valid signal.
本发明实施例提供了一种检测信号的系统, 该检测信号的系统包括: 本地节点, 用于确定本地节点对应的量化阈值, 根据所述量化阀值对待检 测信号对应的检测统计量进行量化, 得到量化结果, 所述本地节点为至少一个; 中心节点, 用于获取本地节点对检测统计量进行量化所得到的量化结果, 并根据所述量化结果, 得出表征待检测信号是否为有效信号的全局判决结果。 实施本发明实施例, 具有以下有益效果: An embodiment of the present invention provides a system for detecting a signal, where the system for detecting a signal includes: a local node, configured to determine a quantization threshold corresponding to the local node, and quantize the detection statistic corresponding to the detection signal according to the quantization threshold, Obtaining a quantized result, the local node is at least one; the central node is configured to obtain a quantized result obtained by the local node to quantize the detection statistic, And according to the quantized result, a global decision result indicating whether the signal to be detected is a valid signal is obtained. Embodiments of the present invention have the following beneficial effects:
本发明实施例提供的本地、 中心检测信号的方法、 本地、 中心检测装置及 检测信号的系统, 通过对每一个本地节点的检测统计量进行量化, 能够调整向 中心节点传输的比特数, 向中心节点提供较多的检测统计量信息, 因而能够有 效地提高检测性能。 附图说明 图 1为本发明实施例中检测信号的系统结构示意图;  The local, central detection signal method, the local, the central detection device, and the detection signal system provided by the embodiments of the present invention can adjust the number of bits transmitted to the central node by quantifying the detection statistics of each local node to the center. The node provides more detection statistic information, which can effectively improve detection performance. BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a schematic structural diagram of a system for detecting a signal according to an embodiment of the present invention;
图 2本发明实施例一中检测信号的方法流程示意图;  2 is a schematic flow chart of a method for detecting a signal in Embodiment 1 of the present invention;
图 3为本发明实施例二中检测信号的方法流程示意图;  3 is a schematic flowchart of a method for detecting a signal according to Embodiment 2 of the present invention;
图 3-1为本发明实施例二中步骤 303的流程示意图;  3-1 is a schematic flowchart of step 303 in the second embodiment of the present invention;
图 4为本发明实施例中本地检测装置的结构示意图;  4 is a schematic structural diagram of a local detecting apparatus according to an embodiment of the present invention;
图 5为本发明实施例中中心检测装置的结构示意图;  FIG. 5 is a schematic structural diagram of a center detecting apparatus according to an embodiment of the present invention; FIG.
图 6为错误概率和本地检测节点数量的关系曲线图;  Figure 6 is a graph showing the relationship between the error probability and the number of locally detected nodes;
图,为错误概率和本地检测节点数量的关系曲线图。 具体实施方式 以下参照附图并举实施例, 对本发明作进一步详细说明。  Graph, which is a graph of the relationship between the probability of error and the number of locally detected nodes. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in further detail with reference to the accompanying drawings.
图 1为本发明实施例中检测信号的系统结构示意图。 如图 1所示, 该系统 包括: 至少一个本地节点和一个中心节点, 在本地节点和中心节点之间通过信 道相联。 这里, 本地节点可以是在本地实现检测的物理实体, 而中心节点则是 集中至少一个本地节点的检测结果的物理实体。 其中, 本地节点包括: 用于在 本地对待检测信号进行检测的检测器和对检测器得到的检测统计量进行量化的 量化器; 而中心节点包括: 用于根据来自各本地节点的量化结果, 估计各本地 节点似然比的估计器和对各个估计器得到的似然比及各量化结果进行融合的执 行模块。 FIG. 1 is a schematic structural diagram of a system for detecting a signal according to an embodiment of the present invention. As shown in FIG. 1, the system includes: at least one local node and one central node, which are connected by a channel between the local node and the central node. Here, the local node may be a physical entity that implements detection locally, and the central node is a physical entity that aggregates detection results of at least one local node. Wherein, the local node includes: a detector that locally detects the detected signal and a quantizer that quantizes the detected statistic obtained by the detector; and the central node includes: an estimator for estimating the likelihood ratio of each local node based on the quantized result from each local node And an execution module that fuses the likelihood ratios obtained by the respective estimators and the respective quantized results.
在本实施例检测信号的系统中, 本地节点中的量化器对本地检测后的判决 数据做进一步压缩, 用 β(·)表示量化器的量化过程, 表示为公式 (1 ):  In the system for detecting signals in this embodiment, the quantizer in the local node further compresses the locally determined decision data, and uses β(·) to represent the quantization process of the quantizer, expressed as equation (1):
Q (x) = Vi , x e Ai, i = l, 2,- - - , q ( 1 ) Q (x) = Vi , xe A i , i = l, 2,- - - , q ( 1 )
其中, iff 的含义为当且仅当, JC表示被量化的数据, ^表示量化器输出, q 表示量化电平数, 为量化间隔, 且 Δ, = [ί¾,αί+1;) , 这里的 表示量化阈值。 Where iff means if and only if, JC denotes the quantized data, ^ denotes the quantizer output, q denotes the number of quantization levels, is the quantization interval, and Δ, = [ί3⁄4, αί+1 ;) , where Represents the quantization threshold.
本实施例中使用的量化器可以是局部最优量化器或均匀量化器。  The quantizer used in this embodiment may be a local optimum quantizer or a uniform quantizer.
对于第一种量化器, 设计为在系统要求的最低信噪比下是最优的, 这是因 为在信号检测中, 由于对于微弱信号的检测更具有挑战性, 而对于信噪比较高 的信号, 即使采用一些非最优的技术也很容易就能达到系统要求。 在设计量化 器时, 其信噪比(Signal to Noise Ratio, SNR )正好是系统要求的最低水平, 在 这种假设下得到的最优量化器实际就是所述的局部最优量化器 (Locally Optimal Quantizer, LOQ)。 可采用偏差准则 ( deflection criteria ) 来设计局部最优量化器, 偏差用来表示检测统计量在 H。和 两种情况下的统计距离,偏差越大,表明检 测性能越好 , Q表示量化后的检测统计量, 则偏差 D (β)可以表示为公式( 2 ):
Figure imgf000007_0001
For the first quantizer, it is designed to be optimal at the lowest signal-to-noise ratio required by the system, because in signal detection, it is more challenging to detect weak signals, but higher in signal-to-noise. Signals, even with some non-optimal techniques, can easily meet system requirements. When designing the quantizer, its Signal to Noise Ratio (SNR) is exactly the lowest level required by the system. Under this assumption, the optimal quantizer is actually the local optimal quantizer (Locally Optimal). Quantizer, LOQ). The local optimum quantizer can be designed using the deflection criteria, and the deviation is used to indicate that the detection statistic is at H. And the statistical distance between the two cases, the greater the deviation, indicating the better the detection performance, Q represents the quantized detection statistic, then the deviation D (β) can be expressed as the formula ( 2 ):
Figure imgf000007_0001
其中, Α表示在假设条件 下的数学期望, £。表示在假设条件 下的数 学期望。 V。表示在假设条件 H。下的方差。  Where Α denotes the mathematical expectation under the assumption, £. Represents mathematical expectations under hypothetical conditions. V. Indicated under the assumption H. The variance below.
假设对于任意一个量化间隔^ , 检测统计量在 的范围内的概率为: 7(Ζ)^ Ρ[ Ε Δ,] = |Δ ( >. Suppose that for any quantization interval ^, the probability that the detection statistic is within the range is: 7 (Ζ)^ Ρ[ Ε Δ,] = | Δ ( >.
"'… ' ( 3 )  "'... ' ( 3 )
其中, j=0,l, 分别对应 H。和 两种假设, /^x)表示概率密度函数。 则根 据公式 (8 ) 以及期望和方差的定义, 将公式 (2 ) 改写为:  Where j=0, l, respectively correspond to H. And two hypotheses, /^x), represent the probability density function. Then, according to formula (8) and the definition of expectation and variance, formula (2) is rewritten as:
Figure imgf000008_0001
Figure imgf000008_0001
其中, ^表示概率的系数, V为由 ¼构成的向量, 对于一个给定的量化间隔 Δ, 使公式(7 ) 最大的 V满足:
Figure imgf000008_0002
Where ^ denotes the coefficient of probability, V is a vector consisting of 1⁄4 , for a given quantization interval Δ, the maximum V of equation (7) is satisfied:
Figure imgf000008_0002
在满足公式 (10 ) 时, 对应得到在该量化间隔 Α下的偏差! ^Δ)为:  When the formula (10) is satisfied, the deviation is obtained at the quantization interval !! ^Δ) is:
D(A) = l(D)-l ( 6 ) 式 (11 ) 中, (7)D(A) = l(D)-l ( 6 ) In (11), ( 7 )
Figure imgf000008_0003
Figure imgf000008_0003
而确定量化间隔的最终目标, 是使得在该量化间隔 下的偏差最大, 因而可 由公式 ( 12 )推导出最终确定的量化间隔为△: Δ = argmax/(A) ( 8 )  The final goal of determining the quantization interval is to maximize the deviation at the quantization interval, so the final quantization interval can be derived from equation (12) as Δ: Δ = argmax / (A) ( 8 )
Δ  Δ
假设检测统计量的分布函数 (x)和 F。(X)可以通过理论分析法或仿真法两 种方法求出。 则 和 PQ(1)可以通过分布函数求出, 即: Assume that the distribution functions (x) and F of the statistic are detected. (X) can be obtained by theoretical analysis or simulation. Then P Q (1) can be found by the distribution function, namely:
P1(l) = Fl(al+1)-F1(al), P0 (I) = F0 (al+1) - F0 这里, ί¾为量化阈值, 且有 αι=-∞和 α¾+1=+, 这里的 -∞表示负无穷, +∞表 示正无穷。 公式 (8 ) 可以转换成: P 1 (l) = F l (a l+1 )-F 1 (a l ), P 0 (I) = F 0 (a l+1 ) - F 0 where ί3⁄4 is the quantization threshold and has αι = -∞ and α3⁄4+1 =+ , where -∞ means negative infinity, and +∞ means positive infinity. Equation (8) can be converted to:
Δ = arg max ~ Δ = arg max ~
/=1 Fo {ai+i)-Fo {ai) ( 9 ) /=1 F o { a i + i)- F o { a i) ( 9 )
对于第二种量化器, 是基于动态范围的均匀量化器 (Dynamic Range based Uniform Quantizer, DRUQ): 该量化器根据确定的量化电平数^ 将检测统计量 的动态范围均匀地划分成 q个量化间隔,假设某个本地检测节点第 i个时刻的检 测统计量为 7;(Ζ· = 1,2,· · ·, «),统计出这 w个时刻内 7;的最大值 Tmax和最小值 7^ , 则经 过均勾量化后, 得到量化间隔为: For the second quantizer, it is a dynamic range based uniform quantizer (Dynamic Range based Uniform Quantizer, DRUQ): The quantizer uniformly divides the dynamic range of the detection statistic into q quantization intervals according to the determined number of quantization levels, assuming that the detection statistic of the i-th moment of a local detection node is 7; ( Ζ · = 1,2,· · ·, «), the maximum value T max and the minimum value 7^ of 7; in this w time are counted, and after the double-quantization, the quantization interval is:
A― T max -T nun  A― T max -T nun
q ( 10 )  q ( 10 )
最后, 确定出量4乜阈值 α;为: = 7^ + (/— 1)Δ, = 1, 2, · · ·^ + 1 Finally, determine the amount 4乜 threshold α ; for: = 7^ + (/-1) Δ, = 1, 2, · · ·^ + 1
为实现上述确定量化阈值的功能, 本地节点还可以包括:  To implement the above-mentioned function of determining the quantization threshold, the local node may further include:
量化阈值确定器, 用于根据所述本地节点到中心节点的传输开销要求, 确 定量化电平数。 根据所述检测器得到的检测统计量的统计规律, 确定出该本地 节点对应的量化阈值。  A quantization threshold determiner is configured to quantify the number of levels according to a transmission overhead requirement of the local node to the central node. And determining, according to a statistical rule of the detection statistics obtained by the detector, a quantization threshold corresponding to the local node.
对于第一种量化器, 量化阈值确定器包括:  For the first quantizer, the quantization threshold determiner includes:
统计获取单元, 用于获取检测统计量的分布函数、 均值或方差;  a statistical acquisition unit, configured to acquire a distribution function, a mean value, or a variance of the detection statistic;
第一量化阈值确定单元 , 用于根据统计获取单元得到的检测统计量的分布 函数、均值或方差,确定出使得所述检测统计量在 ¾)和 之间偏差最大的量化 间隔, 根据所述量化间隔, 确定出所述本地节点对应的量化阈值, 这里, Η。表 示所述待检测信号为有效信号, 表示所述待检测信号不是有效信号。  a first quantization threshold determining unit, configured to determine, according to a distribution function, a mean value, or a variance of the detection statistic obtained by the statistical acquisition unit, a quantization interval that maximizes a deviation between the detection statistic and a maximum deviation, according to the quantization Interval, determining a quantization threshold corresponding to the local node, where Η. The signal to be detected is a valid signal, indicating that the signal to be detected is not a valid signal.
对于第二种量化器, 量化阈值确定器包括:  For the second quantizer, the quantization threshold determiner includes:
动态范围确定单元, 用于根据检测统计量的最大值和最小值, 确定出检测 统计量的动态范围。  The dynamic range determining unit is configured to determine a dynamic range of the detected statistic according to the maximum value and the minimum value of the detected statistic.
第二量化阈值确定单元, 用于动态范围确定单元得到的动态范围与量化电 平数相除, 得到所述本地节点的量化间隔, 根据本地节点量化间隔和检测统计 量的最小值, 确定出该本地节点对应的量化阈值。  a second quantization threshold determining unit, wherein the dynamic range obtained by the dynamic range determining unit is divided by the number of quantization levels, and the quantization interval of the local node is obtained, and the local node quantization interval and the minimum value of the detection statistic are determined. The quantization threshold corresponding to the local node.
本实施例通过在本地节点增加量化器的方式来对本地节点检测到的本地检 测统计量的传输数据进行调整, 向中心节点提供较多的检测统计量信息的同时, 有较好的协同增益, 可以在较少本地节点和较低本地检测性能的条件下获得较 好的性能。 从而能够减轻系统拓朴的设计难度和本地感知算法的设计难度, 因 而能够有效地提高检测性能。 In this embodiment, the local check detected by the local node by adding a quantizer to the local node The transmission data of the measured statistic is adjusted to provide more detection statistic information to the central node, and has better synergistic gain, and can obtain better performance under the condition of less local node and lower local detection performance. . Therefore, the design difficulty of the system topology and the design difficulty of the local sensing algorithm can be alleviated, so that the detection performance can be effectively improved.
图 2 为本发明实施例一中检测信号的方法流程示意图。 本实施例中, 使用 了局部最优量化器对本地检测统计量进行量化, 如图 2所示, 具体包括以下步 骤:  FIG. 2 is a schematic flow chart of a method for detecting a signal according to Embodiment 1 of the present invention. In this embodiment, the local optimal statistic is used to quantize the local detection statistic. As shown in FIG. 2, the method includes the following steps:
步骤 201 : 根据传输开销的要求, 确定本地节点的量化电平数。  Step 201: Determine the number of quantization levels of the local node according to the requirement of the transmission overhead.
本实施例中, 本地节点为 ( ≥l)个。 量化电平数可以根据本地节点到中心 节点的传输开销要求确定, 即在系统能够容忍较大传输开销时, 可以将量化器 的量化电平设置成较多位数, 以增加判决的准确性, 而在系统不能容忍较大传 输开销时, 则将量化器的量化电平设置成较少位数, 以减少传输开销。  In this embodiment, the local nodes are (≥1). The number of quantization levels can be determined according to the transmission overhead requirement of the local node to the central node, that is, when the system can tolerate a large transmission overhead, the quantization level of the quantizer can be set to a larger number of bits to increase the accuracy of the decision. When the system cannot tolerate a large transmission overhead, the quantization level of the quantizer is set to a small number of bits to reduce the transmission overhead.
步骤 202: 根据本地节点的量化电平数, 确定本地节点的量化阈值。  Step 202: Determine a quantization threshold of the local node according to the number of quantization levels of the local node.
本实施例中, 使用了局部最优量化器, 其确定量化阈值方法为: 根据分布 函数, 确定出使得检测统计量在 H0和 两种情况下的统计距离, 也就是偏差, 最大的量化间隔和量化阈值 (/ = 1, 2,… 。 In this embodiment, a local optimal quantizer is used, and the method for determining the quantization threshold is: according to the distribution function, determining a statistical distance such that the detection statistic is at H 0 and the two cases, that is, the deviation, the maximum quantization interval And the quantization threshold (/ = 1, 2,...).
这里, 本地节点利用理论分析法求出检测统计量的分布函数 和 F。(x) , 本实施例中, 假设利用理论分析法通过检测统计量的解析式以及噪声和信号的 信息来确定 (x)和 F。 (x)的表达式。 并假设本地节点使用能量检测得到检测统计 量, 则 ( )和 FQ (x)由噪声、 信号的功率和检测时间三个因素所决定, 通常使用 热噪声来估计或者在空载的信道上测量,这样可以才艮据 F。(x)的定义,求出 F。^)。 同时, 由于本实施例使用了局部最优量化准则, 使得信号的功率为系统要求的 最低水平, 因而能够求出 F x^ 当然, 本实施在较难通过理论分析法求出 (x)和 F0 (x)的情况下, 还可以通 过仿真法来求取。 由于不同时刻的检测统计量可以看作是独立同分布的, 根据 中心极限定理, 检测统计量可以看作服从正态分布。 因此只需要根据信号类型、 噪声功率等易于得出的信息, 通过运行仿真直接得到检测统计量均值和方差。 而后,根据检测统计量均值和方差,确定出使得检测统计量在 H。和 两种情况 下的偏差最大的量化间隔和量化阈值 ί¾ (/ = 1, 2, · · · , 。 Here, the local node uses the theoretical analysis method to find the distribution function and F of the detection statistic. (x) In the present embodiment, it is assumed that (x) and F are determined by theoretical analysis by detecting the analytical expression of the statistic and the information of the noise and the signal. (x) expression. Assuming that the local node uses the energy detection to obtain the detection statistic, then ( ) and F Q (x) are determined by three factors: noise, signal power and detection time. Usually, thermal noise is used to estimate or measure on the no-load channel. So that can be based on F. For the definition of (x), find F. ^). At the same time, since the local optimum quantization criterion is used in this embodiment, the power of the signal is the lowest level required by the system, so that F x^ can be obtained. Of course, in the case where it is difficult to obtain (x) and F 0 (x) by the theoretical analysis method, the present embodiment can also be obtained by a simulation method. Since the detection statistic at different moments can be regarded as independent and identical distribution, according to the central limit theorem, the detection statistic can be regarded as obeying the normal distribution. Therefore, it is only necessary to directly obtain the mean and variance of the detected statistics by running the simulation based on the easily available information such as the signal type and noise power. Then, based on the mean and variance of the detected statistics, it is determined that the detection statistic is at H. The quantization interval and the quantization threshold ί3⁄4 (/ = 1, 2, · · · , ) with the largest deviation from the two cases.
步骤 203: 本地节点在本地进行检测, 得到量化前的本地检测统计量。  Step 203: The local node performs local detection to obtain local detection statistics before quantization.
本实施例, 可以采用现有技术中本地检测的方法, 得到量化前的本地检测 统计量, 比如信号能量数据。  In this embodiment, the local detection statistic, such as signal energy data, before quantization can be obtained by using the local detection method in the prior art.
步骤 204: 根据确定的量化阈值, 对本地检测统计量进行量化。  Step 204: Quantify the local detection statistic according to the determined quantization threshold.
本实施例, 根据确定的量化阈值, 利用公式(1 )对本地检测统计量进行量 化。  In this embodiment, the local detection statistic is quantized using equation (1) based on the determined quantization threshold.
步骤 205: 中心节点获取在对各本地检测统计量进行量化后的量化结果。 步骤 206:中心节点对各个量化结果进行数据融合,得出一个全局判决结杲。 本实施例中, 采用了最小错误概率准则的方法来对各个量化结果进行数据 融合。  Step 205: The central node acquires the quantized result after quantizing each local detection statistic. Step 206: The central node performs data fusion on each quantized result to obtain a global decision balance. In this embodiment, the method of minimum error probability criterion is adopted to perform data fusion on each quantization result.
假设量化结果为^ 其中 /表示本地节点的编号, 且 / = 1,2, · · · ,«。 在没有代价 信息的情况下, 它是最优的融合准则。 最小错误概率准则可以表示为:
Figure imgf000011_0001
Suppose the quantization result is ^ where / represents the number of the local node, and / = 1, 2, · · · , «. In the absence of cost information, it is the optimal fusion criterion. The minimum error probability criterion can be expressed as:
Figure imgf000011_0001
其中, 和 分别表示待检测信号为有效信号和不存在两种情况,尸 ( )表 示待检测信号为有效信号的先验概率, Ρ(Η。;)表示待检测信号不是有效信号的先 验概率, 公式左边表示检测结果的似然比, 右边表示判决门限。 该判决门限表 时, 在中心节点得到 " 为真" 的全局判决结果, 当
Figure imgf000012_0001
Wherein, and respectively indicate that the signal to be detected is a valid signal and there are no two cases, the corpse ( ) indicates a prior probability that the signal to be detected is a valid signal, and Ρ(Η.;) indicates a prior probability that the signal to be detected is not a valid signal. The left side of the formula indicates the likelihood ratio of the test result, and the right side indicates the decision threshold. Decision threshold table When the central node gets a "true" global decision result, when
Figure imgf000012_0001
…, Ηι)< ≤ 时, 在中心节点得到 " 为真" 的全局判决结果, 当 (Μι, (Η0) ..., Ηι )< ≤, get the "true" global decision result at the center node, when ( Μι , (Η 0 )
= 时, 可以根据设置的策略, 得到 ' 为真" 或 'Ή。为真" 尸 …, |Η。) (Η0) 的全局判决结果。 将公式 ( 11 )转化为对数似然比检验形式, 得到公式( 12):
Figure imgf000012_0002
= When you can get 'true' or 'Ή. true' according to the set policy, corpse..., |Η. ) (Η 0 ) The global decision result. Convert the formula (11) into a log-likelihood ratio test form, and obtain the formula (12):
Figure imgf000012_0002
如果各检测节点的检测统计量相互独立, 并且为筒便起见, 假设量化后得 到的检测统计量为 1、 2...... 个取值结果, 则有:  If the detection statistic of each detection node is independent of each other, and it is for the sake of convenience, it is assumed that the detection statistic obtained after quantization is 1, 2, ... results, then:
corpse
Figure imgf000012_0003
Figure imgf000012_0003
=ΠΓΜ"'= )  =ΠΓΜ"'= )
i=1 (13) 其中 表示检测统计量取值为 j的所有节点 ^的集合。 类似的, 得到公式 i =1 (13) where represents the set of all nodes ^ whose detection statistic takes the value j. Similar, get the formula
(14):
Figure imgf000012_0004
(14):
Figure imgf000012_0004
将公式 (13)和公式(14) 式代入(12) 式并化简得到:  Substituting equations (13) and (14) into equation (12) and simplifying it:
其中, Λ。= ^, 是第 /个检测节点 Among them, Λ . = ^, is the /th detection node
Ρ(Η。)
Figure imgf000012_0005
11 的检测统计量取值为 时的似然比。 因而, 中心节点得到全局判决结果是由各个 本地节点的先验 ^既率和似然比确定的。
Ρ (Η.)
Figure imgf000012_0005
The probability of the detection statistic of 11 is the likelihood ratio. Thus, the central node gets the global decision result is The a priori rate and likelihood ratio of the local node are determined.
当然, 如果量化后的本地检测统计量为一个比特, 也可以采用现有技术中 使用的 "与" "或" 准则来进行数据融合。  Of course, if the quantized local detection statistic is one bit, the "and" or "or" criteria used in the prior art can also be used for data fusion.
本实施例中, 通过采用局部最优量化器来对本地检测统计量进行量化后, 并且能够将量化后的离散的本地检测统计量, 通过最小错误准则来进行数据融 合, 从而估计出较正确的全局判决结果。  In this embodiment, after the local detection statistic is quantized by using a local optimal quantizer, and the quantized discrete local detection statistic can be data fusion through the minimum error criterion, thereby estimating the correct one. Global judgment result.
下面以在 CR系统检测 PU信号为例进行详细说明。 图 3使用了均匀量化器 对本地检测统计量进行量化, 为本发明实施例一中检测信号的方法流程示意图, 本实施例还具体给出了最小错误概率准则的具体实现方法。  The following is an example of detecting the PU signal in the CR system as an example. FIG. 3 is a schematic diagram of a method for detecting a signal in the first embodiment of the present invention by using a uniform quantizer to quantize the local detection statistic. The specific implementation method of the minimum error probability criterion is also specifically given in this embodiment.
步骤 301: 各本地节点根据预先确定的量化阈值, 对本地检测统计量进行量 化。  Step 301: Each local node quantizes the local detection statistic according to a predetermined quantization threshold.
本实施例中, 使用了均匀量化器, 在初始时刻, 各本地节点自行检测目标 频段, 并根据公式 ( 10)确定的量化阈值进行量化, 得到量化后的检测统计量 In this embodiment, a uniform quantizer is used. At the initial moment, each local node detects the target frequency band by itself and quantizes according to the quantization threshold determined by the formula (10) to obtain the quantized detection statistic.
M!(0) = /, l=l,2,---,q M !(0) = /, l=l,2,---,q
步骤 302: 中心节点将初始时刻各本地节点量化后的检测统计量 M;(0) = /, Z = 1,2,—,^和设置的初始先验概率 Λ。(0)和初始似然比 Aa(0) , 得到全局判 决结果的初始值。 Step 302: The central node quantizes the detection statistic M of each local node at the initial moment ; (0) = /, Z = 1, 2, -, ^ and the set initial prior probability Λ. (0) and the initial likelihood ratio A a (0), the initial value of the global decision result is obtained.
为了保障迭代算法的收敛性, 应当尽量将初始值设计的接近真实值。 在没 有先验信息的前提下, 本实施例将 Λ。(0)设置为 1, 将 Λ,7(0)设置为根据 1的增加 而递增。 利用公式 ( 15)对各检测统计量《;(0)=/, Ζ=1,2,···, 进行数据融合, 计 算出全局判决结果的初始值《。(0)。 In order to guarantee the convergence of the iterative algorithm, the initial value should be designed to be close to the true value. In the absence of a priori information, this embodiment will be embarrassing. (0) Set to 1, set Λ, 7 (0) to increment according to the increase of 1. Using the formula (15), the data of each detection statistic "; (0) = /, Ζ = 1, 2, ..., is fused, and the initial value of the global judgment result is calculated." (0).
步骤 303: 才艮据先前时刻的全局判决结果和所述本地节点的量化结果, 估计 当前时刻本地节点的先验概率和似然比。 下面具体以估计 k时刻的先验概率 Λ。( )和初始似然比 为例进行说明。 步骤 303可具体分作以下步骤: Step 303: Estimate the prior probability and likelihood ratio of the local node at the current moment according to the global decision result of the previous moment and the quantization result of the local node. The following is specifically to estimate the prior probability k at time k. ( ) and the initial likelihood ratio are taken as an example for explanation. Step 303 can be specifically divided into the following steps:
303-1: 根据第 k时刻的全局判决结果《。( )和各本地节点量化后的检测统计 量《 )=/, l=i,2 ",q, 确定各本地节点在第 时刻的判决状态 ( ) ( i = \ -,n ) 的取值。  303-1: According to the global judgment result at the k-th moment. ( ) and the quantized detection statistic of each local node ") = /, l = i, 2 ", q, determine the value of the decision state ( ) ( i = \ -, n ) of each local node at the moment.
考虑到经过数据融合后的判决结果具有较高的准确性, 本实施例以全局判 决结果来代替待检测信号是否为有效信号的实际信号信息, 可以获得等于或接 近于真实情况的估计值。 假设 D。表示 H。为真的全局判决空间, 表示 为真 的全局判决空间, 在全局判决结果具有较高的正确度时, 则满足以下公式: 尸 ( , j = ^ ( 16)  Considering that the decision result after the data fusion has high accuracy, the embodiment replaces the actual signal information of whether the signal to be detected is a valid signal by the global judgment result, and an estimated value equal to or close to the real situation can be obtained. Assume D. Indicates H. For the global judgment space, the global judgment space expressed as true, when the global judgment result has a high degree of accuracy, the following formula is satisfied: corpse ( , j = ^ ( 16)
P(M,=;|D.)*P(M;=/|H.), ; = 0,1 ( 17) 所以 /^Hj、 P(H0), P(Ui =/ )和/^ W; =/|H。)概率值的计算可转化为对 /^Dj、 P(D0) , 尸(^ =/| )和/^;=/|£)。)的计算。 这时, (t)来表示第 ϊ·个本地节点在第 &时刻的判决状态值:P( M ,=;|D.)*P( M; =/|H.), ; = 0,1 ( 17 ) So /^Hj, P(H 0 ), P( Ui =/ ) and /^ W; =/|H. The calculation of the probability value can be converted to /^Dj, P(D 0 ), corpse (^ =/| ) and /^ ; =/|£). ) calculation. At this time, (t) indicates the judgment state value of the third local node at the time & time:
Figure imgf000014_0001
Figure imgf000014_0001
其中, 表示判决状态可能的取值空间。 j'表示全局判决结果, j=0表示判 决待检测信号不是有效信号, j=l表示判决待检测信号为有效信号。 /表示量化 后的本地检测统计量。  Among them, it indicates the possible value space of the decision state. j' denotes a global decision result, j=0 denotes that the signal to be detected is not a valid signal, and j=l denotes that the signal to be detected is a valid signal. / Indicates the quantized local detection statistic.
303-2: 根据第 时刻的判决状态值 ( i = \, -,n ), 更新判决状态的累 计值 。  303-2: Update the accumulated value of the decision state according to the decision status value (i = \, -, n ) at the first moment.
本实施例中, 累计值 定义为: (^) =∑5;(Ρ) 其中, Ns(fe)表示在 时刻, 状态 发生的次数。 公式 (19) 可以改写为: In this embodiment, the cumulative value is defined as: (^) = ∑ 5 ; (Ρ) Where N s (fe) represents the number of times the state occurred at the time. Equation (19) can be rewritten as:
Ji(k) = Ji(k-l) + Si(k) ( 20) 本实施例可采用了限定记忆法来避免历史数据的影响, 具体为: 可以根据 预先设置的固定窗长, 确定出更新前的判决状态值的累计值, 将前一时刻的判 决状态值叠加到更新前的判决状态的累计值中。 也就是在统计判决状态值时, 使用一个固定长度的窗, 每统计一个新时刻的判决状态值, 就去掉最早时刻的 一个判决状态值。 设前一时刻为 k时刻, N为预先设置的固定窗长, & (t)来表示 第 i个本地节点在第 k时刻的判决状态值, 则可以对公式( 20 )进行调整得到公 式(21 ): J i (k) = J i (kl) + S i (k) (20) In this embodiment, a limited memory method can be used to avoid the influence of historical data, specifically: It can be determined according to a preset fixed window length. The cumulative value of the decision status value before the update is superimposed on the judgment status value of the previous time to the accumulated value of the decision status before the update. That is, when statistically determining the state value, a fixed-length window is used, and each time a decision state value of a new time is counted, a decision state value at the earliest time is removed. Let the previous moment be k, N is the preset fixed window length, and & (t) is the judgment state value of the i-th local node at the kth time, then the formula (20) can be adjusted to obtain the formula (21). ):
J ) = ∑ S;(P) (21 ) 本实施例也可以采用遗忘因子法来更新判决状态的累积值, 具体为: 先将 更新前的判决状态的累积值乘以一个小于 1 的数值, 再与前一时刻的判决状态 的累积值相加, 得到更新后的判决状态的累积值。 可以将公式 (20 )调整为:
Figure imgf000015_0001
其中, 遗忘因子 为大于 0.9小于 1的数。 通过(22) 式的迭代, 越早时刻 的判决结果状态值对应的权重越小, 而当前时刻的判决结果状态值对应的权重 为 1, 从而逐步消除历史数据的影响。
J) = ∑ S ; (P) (21) This embodiment can also use the forgetting factor method to update the cumulative value of the decision state, specifically: first multiply the cumulative value of the decision state before the update by a value less than one. Then, the cumulative value of the decision state at the previous time is added to obtain the accumulated value of the updated decision state. Equation (20) can be adjusted to:
Figure imgf000015_0001
Wherein, the forgetting factor is a number greater than 0.9 and less than 1. By the iteration of (22), the earlier the decision result state value corresponding to the weight is smaller, and the current result of the decision result state value corresponds to 1, thereby gradually eliminating the influence of the historical data.
303-3: 根据更新后的判决状态的累积值提取出判决状态值的加权值, 估计 出 k+1时刻使用的先验概率 Λ。( )和初始似然比 Aa(t):
Figure imgf000015_0002
Figure imgf000016_0001
303-3: Extract the weighted value of the decision state value according to the accumulated value of the updated decision state, and estimate the prior probability Λ used at time k+1. ( ) and initial likelihood ratio A a (t):
Figure imgf000015_0002
Figure imgf000016_0001
303-4: 判断 k+1 时刻使用的先验概率 A。(fe)和初始似然比 )是否收敛, 如杲是, 执行步骤 304, 否则, 令t = t + l, 执行 303-1。  303-4: Determine the prior probability A used at time k+1. (fe) and initial likelihood ratio) converge, if 杲 Yes, go to step 304, otherwise, let t = t + l, execute 303-1.
本实施例中, 判断 Λ。 (it)和 Λί7 (fc) ( = 1, 2, · · ·, )是否收敛的方法, 可以采用现有 技术常使用的判断 |A。(yt)-A。 t- 1)1和 |Λ )-Λ, - 1)1是否小于设定的数值, 如果 是, 则认为收敛。 In this embodiment, Λ is judged. The method of whether (it) and Λ ί7 (fc) ( = 1, 2, · · ·, ) converge can be determined by the judgment commonly used in the prior art |A. (yt)-A. T-1)1 and |Λ)-Λ, -1)1 is less than the set value, and if so, it is considered to converge.
步骤 304: 根据估计的先险 ^率 Λ。 (k)和初始似然比 Aa 和当前时刻量化后 的各本地检测统计量, 计算得到一个较准确全局判断结果。 Step 304: According to the estimated first risk rate Λ. (k) and the initial likelihood ratio A a and the local detection statistics quantized at the current time, a relatively accurate global judgment result is calculated.
本实施例中, 通过采用均勾量化器来对本地检测统计量进行量化后, 并且 能够将量化后的离散的本地检测统计量, 通过最小错误准则来进行数据融合, 从而估计出较正确的全局判决结果, 还使用了限定记忆法来消除历史数据的影 响, 能够增加估计算法对时变的检测环境的适应性。  In this embodiment, after the local detection statistic is quantized by using the homo-quantizer, and the quantized discrete local detection statistic can be data fusion through the minimum error criterion, the correct global is estimated. As a result of the decision, the finite memory method is also used to eliminate the influence of historical data, which can increase the adaptability of the estimation algorithm to the time-varying detection environment.
图 4为本发明实施例中本地检测装置结构示意图。 如图 4所示, 该本地检 测装置包括: 检测器 410, 检测得到本地节点中待检测信号对应的检测统计量。 量化器 420, 用于根据该本地检测装置对应的量化阈值, 对所述检测器得到的所 述检测统计量进行量化。  FIG. 4 is a schematic structural diagram of a local detecting apparatus according to an embodiment of the present invention. As shown in FIG. 4, the local detecting device includes: a detector 410, which detects a detection statistic corresponding to a signal to be detected in the local node. The quantizer 420 is configured to quantize the detection statistic obtained by the detector according to a quantization threshold corresponding to the local detecting device.
本地检测装置还可以包括:  The local detecting device may further include:
量化阈值确定器 430, 根据该本地检测装置到中心节点间的传输开销要求, 确定量化电平数; 根据检测器 410得到的检测统计量的统计规律, 确定出该本 地检测装置对应的量化阈值。  The quantization threshold determiner 430 determines the quantization level according to the transmission overhead requirement between the local detection device and the central node; and determines the quantization threshold corresponding to the local detection device according to the statistical rule of the detection statistics obtained by the detector 410.
量化阈值确定模块 430包括:  The quantization threshold determination module 430 includes:
统计获取单元 431, 获取所述检测统计量的分布函数、 均值或方差。 第一量化阈值确定单元 432,根据统计获取单元 431得到的检测统计量的分 布函数、均值或方差,确定出使得检测统计量在 H。和 之间偏差最大的量化间 隔, 根据量化间隔, 确定出该本地检测装置对应的量化阈值, 这里, H。表示所 述待检测信号为有效信号, 表示所述待检测信号不是有效信号。 The statistics obtaining unit 431 acquires a distribution function, a mean value, or a variance of the detection statistic. The first quantization threshold determination unit 432 determines that the detection statistic is at H based on the distribution function, the mean value, or the variance of the detection statistic obtained by the statistical acquisition unit 431. And the quantization interval with the largest deviation between the two, and the quantization threshold corresponding to the local detecting device is determined according to the quantization interval, where H is. The signal to be detected is a valid signal, indicating that the signal to be detected is not a valid signal.
当然, 本实施例若采用动态范围的方法确定量化阈值, 则量化阈值确定模 块包括:  Of course, in this embodiment, if the quantization threshold is determined by using a dynamic range method, the quantization threshold determination module includes:
动态范围确定单元, 用于根据检测统计量的最大值和最小值, 确定出检测 统计量的动态范围。  The dynamic range determining unit is configured to determine a dynamic range of the detected statistic according to the maximum value and the minimum value of the detected statistic.
第二量化阈值确定单元, 用于动态范围确定单元得到的检测统计量的动态 范围与所述量化电平数相除, 得到该本地检测装置的量化间隔, 根据该本地检 测装置的量化间隔和检测统计量的最小值, 确定出该本地检测装置对应的量化 阈值。  a second quantization threshold determining unit, wherein a dynamic range of the detection statistic obtained by the dynamic range determining unit is divided by the number of the quantized levels, and a quantization interval of the local detecting device is obtained, according to the quantization interval and detection of the local detecting device The minimum value of the statistic determines the quantization threshold corresponding to the local detecting device.
图 5为本发明实施例中中心检测装置结构示意图。 如图 5所示, 该中心检 测装置包括:  FIG. 5 is a schematic structural diagram of a center detecting device according to an embodiment of the present invention. As shown in Figure 5, the center detecting device includes:
获取模块 510, 获取至少一个本地检测装置的量化结果, 这里, 量化结果为 对待检测信号对应的检测统计量进行量化后, 得到的量化结果。  The obtaining module 510 is configured to obtain a quantization result of at least one local detecting device, where the quantization result is a quantized result obtained by quantizing the detection statistic corresponding to the detection signal.
执行模块 520, 根据获取模块 510得到的量化结果, 得出表征待检测信号是 否为有效信号的全局判决结果。  The executing module 520 obtains, according to the quantization result obtained by the obtaining module 510, a global decision result indicating whether the signal to be detected is a valid signal.
执行模块 520包括:  Execution module 520 includes:
估计单元 521 ,根据先前时刻的全局判决结果和获取模块 510得到的量化结 果, 估计当前时刻的本地节点的先验概率和似然比。  The estimating unit 521 estimates the prior probability and the likelihood ratio of the local node at the current moment according to the global decision result of the previous moment and the quantization result obtained by the obtaining module 510.
数据融合单元 522,根据估计单元 521估计出的当前时刻的本地节点的先验 概率和似然比, 得到全局判决结果。 估计单元 521包括: The data fusion unit 522 obtains the global decision result based on the prior probability and the likelihood ratio of the local node at the current time estimated by the estimation unit 521. The estimating unit 521 includes:
累加子单元 523 , 对先前时刻的判决状态值进行累加, 这里, 判决状态值通 过比较根据先前时刻的全局判决结果和所述获取模块得到的量化结果产生。  The accumulation sub-unit 523 accumulates the decision status values of the previous time, where the decision status value is generated by comparing the global decision result according to the previous time with the quantization result obtained by the acquisition module.
选择子单元 524, 从累加子单元 523的累加结果中, 选择出各个判决状态值 的加权值, 利用所述各个判决状态值的加权值, 计算得到本地节点的先验概率 和似然比的估计值。  The selecting sub-unit 524 selects the weighting value of each decision state value from the accumulated result of the accumulating sub-unit 523, and calculates the prior probability and the likelihood ratio estimation of the local node by using the weighting values of the respective decision state values. value.
为了更好体现算法的性能,假设 CR系统处在 4艮困难的检测环境中。如果算 法能在极端困难的情况下取得好的表现, 自然也会在较好的检测环境下达到令 人满意的效果。 检测环境的困难性体现在两个方面: 首先, 本地检测算法的性 能有限, 假设本地节点采用能量检测, 且检测时间只有 10000 个采样的持续时 间, 在主用户是 DVB-T数字电视信号时, 对应的时间大约为 lms。 其次, 所有 的本地节点处的信号都处在深度衰落中, 它们的 SNR分布在 -21dB到 -19dB之 间, 这个 SNR范围大约系统所要求的最低信噪比。  In order to better reflect the performance of the algorithm, it is assumed that the CR system is in a difficult detection environment. If the algorithm can achieve good performance under extremely difficult conditions, it will naturally achieve satisfactory results in a better test environment. The difficulty of detecting the environment is reflected in two aspects: First, the performance of the local detection algorithm is limited, assuming that the local node uses energy detection, and the detection time is only 10,000 samples of duration, when the primary user is a DVB-T digital television signal, The corresponding time is about lms. Second, the signals at all local nodes are in deep fading, and their SNR is distributed between -21dB and -19dB. This SNR range is about the minimum signal-to-noise ratio required by the system.
用全局判决的错误概率 Pe来衡量算法的性能, 可以表示为: 其中, /^!^和/^!!。)表示主用户待检测信号为有效信号和不存在条件下的先 验概率, 在仿真中我们令它们均为 0.5。 ΡσΜ和 PGF分布表示全局漏检概率和全局 虛警概率。 The performance of the algorithm is measured by the error probability P e of the global decision, which can be expressed as: where /^! ^ and /^!!. ) indicates that the primary user's pending detection signal is a valid signal and the prior probability in the absence condition, we make them both 0.5 in the simulation. The Ρ σΜ and P GF distributions represent the global missed detection probability and the global false alarm probability.
在上述假设条件下运行仿真, 得到错误概率和本地检测节点的数量的关系 曲线如图 6和图 7所示。 图 6中的 " LOQ-x Bit" 表示采用局部最优量化器, 图 7中的 "LOQ-x Bit" 基于动态范围的均匀量化器将本地检测数据量化为 X个比 特的情况。 "Raw Data" 表示将全部检测数据传送至中心节点, 中心节点采用最 小错误准则进行数据融合的情况。 对于 1比特的检测统计量使用 "或" 和 "与" 准则与本实施例二中使用的数据融合方法进行比较, 通过在图 6和图 7 中的仿 真比较, 可以看出, 不管采用哪种量化方法, 本发明实施例二中使用的协同感 知方法都比 "或" 和 "与" 准则的性能好 4艮多。 即使只将本地检测结果量化为 1 个比特, 也只需要不到 50个本地检测节点, 全局错误概率就可以控制在一个较 低的水平, 大约为 0.1。 而采用 "或" 和 "与" 融合准则的协同感知方法, 随着 节点数量的增加, 其错误概率虽有减小, 但变化十分緩慢, 甚至当节点数增加 到 1000个的时候, 错误概率仍然处在一个较高的水平, 大约为 0.15。 这说明当 检测环境很差时, 由于检测统计量的信息有限, 因而 "或" 和 "与" 准则能提 供的协同增益也有限, 即使大量增加检测节点, 也不能明显改善检测性能。 而 本发明实施例中的协同感知方法, 由于从本地节点能够获得更多的检测统计量 信息, 因而通过适当增加本地检测节点的数量, 能够满足系统对检测性能的要 求。 The simulation is run under the above assumptions, and the relationship between the error probability and the number of local detection nodes is shown in Fig. 6 and Fig. 7. The "LOQ-x Bit" in Fig. 6 indicates the case where the local optimum quantizer is used, and the "LOQ-x Bit" based on the dynamic range in Fig. 7 quantizes the local detected data into X bits. "Raw Data" means that all the detected data is transmitted to the central node, and the central node uses the minimum error criterion for data fusion. Use "or" and "and" for 1-bit detection statistics The criterion is compared with the data fusion method used in the second embodiment. By comparing the simulations in FIG. 6 and FIG. 7, it can be seen that the cooperative sensing method used in the second embodiment of the present invention is adopted regardless of the quantization method. It is 4 times better than the "or" and "and" criteria. Even if only the local detection result is quantized to 1 bit, only less than 50 local detection nodes are needed, and the global error probability can be controlled to a lower level, which is about 0.1. The cooperative sensing method adopting the "or" and "and" fusion criteria, although the number of nodes increases, its error probability decreases, but the change is very slow, even when the number of nodes increases to 1000, the error probability is still At a high level, about 0.15. This shows that when the detection environment is very poor, because the information of the detection statistics is limited, the synergy gain that the "or" and "and" criteria can provide is also limited, and even if the detection nodes are greatly increased, the detection performance cannot be significantly improved. In the cooperative sensing method in the embodiment of the present invention, since more detection statistic information can be obtained from the local node, the system can meet the detection performance requirement by appropriately increasing the number of local detection nodes.
本领域技术人员可以理解附图只是一个优选实施例的示意图, 附图中的模 块或步骤并不一定是实施本发明所必须的。  Those skilled in the art will appreciate that the drawings are only a schematic representation of a preferred embodiment, and that the modules or steps in the drawings are not necessarily required to practice the invention.
上述实施例 "步驟,, 一词不代表实施例流程处理存在先后顺序, 本发明实 施例序号也仅仅为了描述, 不代表实施例的优劣。  The above-mentioned embodiment "steps" does not mean that the process flow of the embodiment has a sequence, and the serial number of the embodiment of the present invention is merely for the description, and does not represent the advantages and disadvantages of the embodiment.
权利要求的内容记载的方案也是本发明实施例的保护范围。  The solution described in the claims is also the scope of protection of the embodiments of the present invention.
本领域普通技术人员可以理解上述实施例方法中的全部或部分处理是可以 通过程序来指令相关的硬件完成, 所述的程序可以存储于一种计算机可读存储 介质中。  One of ordinary skill in the art will appreciate that all or part of the processing of the above-described embodiments can be accomplished by a program that instructs related hardware, which can be stored in a computer readable storage medium.
以上所述仅为本发明的较佳实施例而已, 并非用于限定本发明的保护范围。 凡在本发明的精神和原则之内所作的任何修改、 等同替换、 改进等, 均应包含 在本发明的保护范围之内。  The above is only the preferred embodiment of the present invention and is not intended to limit the scope of the present invention. Any modifications, equivalents, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.

Claims

权 利 要 求 Rights request
1、 一种本地检测信号的方法, 其特征在于, 该方法包括: A method for locally detecting a signal, the method comprising:
根据确定的本地节点对应的量化阈值, 对待检测信号对应的检测统计量进 行量化, 得到量化结果, 所述量化结果用于判决所述待检测信号是否为有效信 号。  And determining, according to the determined quantization threshold corresponding to the local node, the detection statistic corresponding to the detection signal, to obtain a quantization result, where the quantization result is used to determine whether the to-be-detected signal is a valid signal.
2、 根据权利要求 1所述的方法, 其特征在于, 所述确定本地节点对应的量 化阈值, 包括:  The method according to claim 1, wherein the determining the quantization threshold corresponding to the local node comprises:
根据所述本地节点与中心节点间的传输开销要求, 确定量化电平数; 根据所述本地节点的量化电平数, 确定所述本地节点对应的量化阈值。 Determining a quantization level according to a transmission overhead requirement between the local node and the central node; determining a quantization threshold corresponding to the local node according to the number of quantization levels of the local node.
3、 根据权利要求 2所述的方法, 其特征在于, 设 ¾表示所述待检测信号 为有效信号, 表示所述待检测信号不是有效信号, 所述确定本地节点对应的 量化阈值包括: The method according to claim 2, wherein the determining that the signal to be detected is a valid signal indicates that the signal to be detected is not a valid signal, and determining the quantization threshold corresponding to the local node includes:
根据所述检测统计量的分布函数、 均值或方差, 确定使所述检测统计量在 H0和 之间偏差最大的量化间隔; Determining, according to a distribution function, a mean value, or a variance of the detection statistic, a quantization interval that maximizes a deviation between the detection statistic and H 0 ;
根据所述量化间隔, 确定所述本地节点对应的量化阈值。  Determining, according to the quantization interval, a quantization threshold corresponding to the local node.
4、 根据权利要求 2所述的方法, 其特征在于, 所述确定本地节点对应的量 化阈值包括:  The method according to claim 2, wherein the determining the quantization threshold corresponding to the local node comprises:
根据所述检测统计量的最大值和最小值, 确定所述检测统计量的动态范围; 将所述动态范围与所述量化电平数相除, 得到所述本地节点的量化间隔; 根据所述本地节点的量化间隔和所述检测统计量的最小值, 确定所述本地 节点对应的量化阈值。  Determining, according to the maximum value and the minimum value of the detection statistic, a dynamic range of the detection statistic; dividing the dynamic range by the number of the quantization levels to obtain a quantization interval of the local node; The quantization interval of the local node and the minimum value of the detection statistic determine a quantization threshold corresponding to the local node.
5、 一种中心检测信号的方法, 其特征在于, 该方法包括:  5. A method of detecting a signal at a center, the method comprising:
获取本地节点对检测统计量进行量化所得到的量化结杲; 根据所述量化结果, 得出表征待检测信号是否为有效信号的全局判决结果。Obtaining the quantized result obtained by quantifying the detection statistic by the local node; Based on the quantized result, a global decision result indicating whether the signal to be detected is a valid signal is obtained.
6、 根据权利要求 5所述的方法, 其特征在于, 所述根据所述量化结果, 得 出表征待检测信号是否为有效信号的全局判决结果, 包括: The method according to claim 5, wherein the determining, according to the quantized result, a global decision result indicating whether the signal to be detected is a valid signal comprises:
根据最小错误准则, 对所述量化结果进行数据融合, 得到全局判决结果的 估计值。  According to the minimum error criterion, data fusion is performed on the quantized result to obtain an estimated value of the global decision result.
7、 根据权利要求 6所述的方法, 其特征在于, 所述对所述量化结果进行数 据融合, 包括:  The method according to claim 6, wherein the performing data fusion on the quantized result comprises:
根据先前时刻的全局判决结果和所述本地节点的量化结果, 估计当前时刻 本地节点的先验概率和似然比;  Estimating the prior probability and the likelihood ratio of the local node at the current moment according to the global decision result of the previous moment and the quantization result of the local node;
根据估计出的所述当前时刻本地节点的先验概率和似然比, 得到全局判决 结果。  A global decision result is obtained based on the estimated prior probability and likelihood ratio of the local node at the current time.
8、 根据权利要求 7所述的方法, 其特征在于, 所述估计当前时刻本地节点 的先验概率和似然比包括:  8. The method according to claim 7, wherein the estimating the prior probability and the likelihood ratio of the local node at the current moment comprises:
对先前时刻的判决状态值进行累加, 所述判决状态值通过比较所述本地节 点的量化结果和全局判决结果得到;  And accumulating the decision state values of the previous time, the decision state values being obtained by comparing the quantized result of the local node with the global decision result;
从累加结果中选择出各个判决状态值的加权值, 利用所述各个判决状态值 的加权值, 计算得到所述本地节点的先验概率和似然比的估计值。  The weighted values of the respective decision state values are selected from the accumulated results, and the estimated values of the prior nodes and the likelihood ratios of the local nodes are calculated by using the weighted values of the respective decision state values.
9、 根据权利要求 8所述的方法, 其特征在于, 所述对先前时刻的判决状态 值进行累加包括:  9. The method according to claim 8, wherein the accumulating the decision status values of the previous time comprises:
通过比较前一时刻所述量化结果和全局判决结果, 确定前一时刻本地节点 的判决状态值;  Determining the decision status value of the local node at the previous moment by comparing the quantized result and the global decision result at the previous moment;
根据所述前一时刻本地节点的判决状态值, 更新本地节点的判决状态的累 积值, 所述判决状态的累积值为先前时刻判决状态值的累加函数。 And accumulating the cumulative value of the decision state of the local node according to the decision state value of the local node at the previous moment, and the cumulative value of the decision state is an accumulation function of the previous state decision state value.
10、 根据权利要求 5-9任意一项所述的方法, 其特征在于, 所述本地节点为 一个或一个以上。 The method according to any one of claims 5-9, wherein the local node is one or more.
11、 一种本地检测装置, 其特征在于, 该本地检测装置包括:  11. A local detecting device, wherein the local detecting device comprises:
检测器, 用于检测得到本地节点中待检测信号对应的检测统计量; 量化器, 用于根据该本地检测装置对应的量化阈值, 对所述检测器得到的 所述检测统计量进行量化。  a detector, configured to detect a detection statistic corresponding to the signal to be detected in the local node, and a quantizer, configured to quantize the detection statistic obtained by the detector according to a quantization threshold corresponding to the local detection device.
12、 根据权利要求 11所述的本地检测装置, 其特征在于, 所述本地检测装 置进一步包括:  The local detecting device according to claim 11, wherein the local detecting device further comprises:
量化阈值确定器, 用于根据所述本地检测装置到中心节点间的传输开销要 求, 确定量化电平数; 根据所述检测器得到的检测统计量的统计规律, 确定该 本地检测装置对应的量化阈值。  a quantization threshold determiner, configured to determine a quantization level according to a transmission overhead requirement between the local detection device and the central node; and determine a quantization corresponding to the local detection device according to a statistical rule of the detection statistics obtained by the detector Threshold.
13、 根据权利要求 12所述的本地检测装置, 其特征在于, 设 H。表示所述 待检测信号为有效信号, 表示所述待检测信号不是有效信号, 所述量化阈值 确定器包括:  13. The local detecting device according to claim 12, wherein H is set. Representing that the to-be-detected signal is a valid signal, indicating that the to-be-detected signal is not a valid signal, and the quantization threshold determiner includes:
统计获取单元, 用于获取所述检测统计量的分布函数、 均值或方差; 第一量化阈值确定单元, 用于根据统计获取单元得到的所述检测统计量的 分布函数、均值或方差,确定使得所述检测统计量在 H。和 之间偏差最大的量 化间隔, 根据所述量化间隔, 确定所述本地检测装置对应的量化阈值。  a statistical acquisition unit, configured to obtain a distribution function, a mean value, or a variance of the detection statistic; the first quantization threshold determining unit is configured to determine, according to a distribution function, a mean value, or a variance of the detection statistic obtained by the statistical acquisition unit, The detection statistic is at H. And a quantization interval where the deviation is the largest, and the quantization threshold corresponding to the local detecting device is determined according to the quantization interval.
14、 根据权利要求 12所述的本地检测装置, 其特征在于, 所述量化阈值确 定器包括:  The local detecting device according to claim 12, wherein the quantization threshold determinator comprises:
动态范围确定单元, 用于根据所述检测统计量的最大值和最小值, 确定所 述检测统计量的动态范围;  a dynamic range determining unit, configured to determine a dynamic range of the detection statistic according to a maximum value and a minimum value of the detection statistic;
第二量化阈值确定单元, 用于将所述动态范围确定单元得到的动态范围与 所述量化电平数相除, 得到所述本地检测装置的量化间隔, 根据所述本地检测 装置量化间隔和所述检测统计量的最小值, 确定该本地检测装置对应的量化阔 值。 a second quantization threshold determining unit, configured to use the dynamic range obtained by the dynamic range determining unit The quantization level is divided to obtain a quantization interval of the local detecting device, and the quantization threshold corresponding to the local detecting device is determined according to the local detecting device quantization interval and the minimum value of the detection statistic.
15、 一种中心检测装置, 其特征在于, 该中心检测装置包括:  15. A center detecting device, wherein the center detecting device comprises:
获取模块, 用于获取本地检测装置的量化结果, 所述量化结果为对待检测 信号对应的检测统计量进行量化后, 得到的量化结果;  An obtaining module, configured to obtain a quantized result of the local detecting device, where the quantized result is a quantized result obtained by quantifying a detection statistic corresponding to the signal to be detected;
执行模块, 根据所述获取模块得到的量化结果, 得出表征待检测信号是否 为有效信号的全局判决结果。  The execution module obtains, according to the quantized result obtained by the obtaining module, a global decision result indicating whether the signal to be detected is a valid signal.
16、 根据权利要求 15所述的中心检测装置, 其特征在于, 所述执行模块包 括:  The center detecting device according to claim 15, wherein the execution module comprises:
估计单元, 用于根据先前时刻的全局判决结果和所述获取模块得到的量化 结杲, 估计当前时刻的本地节点的先验概率和似然比;  An estimating unit, configured to estimate a prior probability and a likelihood ratio of the local node at the current moment according to the global decision result of the previous moment and the quantization result obtained by the acquiring module;
数据融合单元, 用于根据所述估计单元估计出的所述当前时刻的本地节点 的先验概率和似然比, 得到全局判决结果。  And a data fusion unit, configured to obtain a global decision result according to a prior probability and a likelihood ratio of the local node at the current moment estimated by the estimating unit.
17、 根据权利要求 16所述的中心检测装置, 其特征在于, 所述估计单元包 括:  The center detecting device according to claim 16, wherein the estimating unit comprises:
累加子单元, 用于对先前时刻的判决状态值进行累加, 所述判决状态值通 过比较先前时刻的全局判决结杲和所述获取模块得到的量化结果产生;  An accumulation subunit, configured to accumulate a decision state value of a previous time, the decision state value being generated by comparing a global decision balance of a previous time and a quantization result obtained by the obtaining module;
选择子单元, 用于从所述累加子单元的累加结果中, 选择出各个判决状态 值的加权值, 利用所述各个判决状态值的加权值, 计算得到所述本地节点的先 验概率和似然比的估计值。  a subunit, configured to select, from the accumulated result of the accumulating subunit, a weighting value of each of the judgment state values, and calculate, by using the weighting value of each of the judgment state values, a prior probability and a similarity of the local node The estimated value of the ratio.
18、 一种检测信号的系统, 其特征在于, 包括:  18. A system for detecting signals, comprising:
本地节点, 用于确定本地节点对应的量化阈值, 根据所述量化阀值对待检 测信号对应的检测统计量进行量化, 得到量化结果, 所述本地节点为至少一个; 中心节点, 用于获取本地节点对检测统计量进行量化所得到的量化结果, 并根据所述量化结果, 得出表征待检测信号是否为有效信号的全局判决结果。 a local node, configured to determine a quantization threshold corresponding to the local node, to be checked according to the quantization threshold The detection statistic corresponding to the measurement signal is quantized to obtain a quantization result, and the local node is at least one; the central node is configured to obtain a quantization result obtained by the local node to quantize the detection statistic, and according to the quantization result, A global decision result characterizing whether the signal to be detected is a valid signal.
PCT/CN2009/070075 2008-02-01 2009-01-08 A method and apparatus for locally detecting signal, a method and apparatus for detecting signal at center, and a system for detecting signal WO2009097755A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNA2008100060878A CN101499859A (en) 2008-02-01 2008-02-01 Method for local, central signal detection, apparatus for local central detection
CN200810006087.8 2008-02-01

Publications (1)

Publication Number Publication Date
WO2009097755A1 true WO2009097755A1 (en) 2009-08-13

Family

ID=40946754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/070075 WO2009097755A1 (en) 2008-02-01 2009-01-08 A method and apparatus for locally detecting signal, a method and apparatus for detecting signal at center, and a system for detecting signal

Country Status (2)

Country Link
CN (1) CN101499859A (en)
WO (1) WO2009097755A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116366411A (en) * 2023-03-28 2023-06-30 扬州宇安电子科技有限公司 Multi-bit signal quantization self-adaptive threshold generation and quantization method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101753232B (en) * 2009-12-16 2014-04-02 北京航空航天大学 Method and system for detecting cooperative frequency spectrum
CN102820955B (en) * 2012-08-31 2016-01-13 电子科技大学 Secondary user's node is to the non-uniform quantizing method of frequency spectrum perception information
CN104780006A (en) * 2015-01-14 2015-07-15 东南大学 Frequency spectrum detector soft fusion method based on minimum error probability rule
CN109347579B (en) * 2018-10-08 2020-07-07 清华大学 Weak signal detection method under uncertain wireless channel fading condition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1832613A (en) * 2006-04-26 2006-09-13 电子科技大学 Parallel frequency spectrum distribution method for preventing interference in cognitive radio system
CN1885741A (en) * 2006-06-26 2006-12-27 西安交通大学 Authorization user signal detecting method for cognitive radio system
WO2007056270A1 (en) * 2005-11-08 2007-05-18 Navcom Technology, Inc. Sampling threshold and gain for satellite navigation receiver
WO2007093653A1 (en) * 2006-02-13 2007-08-23 Vodafone Group Plc. Method and system for establishing a direct radio communication between two or more user devices in a cellular mobile communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007056270A1 (en) * 2005-11-08 2007-05-18 Navcom Technology, Inc. Sampling threshold and gain for satellite navigation receiver
WO2007093653A1 (en) * 2006-02-13 2007-08-23 Vodafone Group Plc. Method and system for establishing a direct radio communication between two or more user devices in a cellular mobile communication system
CN1832613A (en) * 2006-04-26 2006-09-13 电子科技大学 Parallel frequency spectrum distribution method for preventing interference in cognitive radio system
CN1885741A (en) * 2006-06-26 2006-12-27 西安交通大学 Authorization user signal detecting method for cognitive radio system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116366411A (en) * 2023-03-28 2023-06-30 扬州宇安电子科技有限公司 Multi-bit signal quantization self-adaptive threshold generation and quantization method
CN116366411B (en) * 2023-03-28 2024-03-08 扬州宇安电子科技有限公司 Multi-bit signal quantization self-adaptive threshold generation and quantization method

Also Published As

Publication number Publication date
CN101499859A (en) 2009-08-05

Similar Documents

Publication Publication Date Title
CN101521896B (en) Cooperative spectrum sensing method based on likelihood ratio in cognitive radio
WO2009097755A1 (en) A method and apparatus for locally detecting signal, a method and apparatus for detecting signal at center, and a system for detecting signal
US8929343B2 (en) Method, computer program, receiver, and apparatus for determining a channel quality index
WO2010078815A1 (en) Method and apparatus for spectrum access of secondary user in cognitive radio
EP2181512A1 (en) Supervision of faults in a receiver chain based on noise floor monitoring
WO2011112439A2 (en) Efficient channel search with energy detection
EP2163012A1 (en) Load estimation in receiver diversity telecommunication systems
CN103139835B (en) Calibration determining device, error correction decoder, receiving system and calibration defining method
EP2850889B1 (en) A method and a first network node for controlling load
KR20090046902A (en) Block codeword decoder with confidence indicator
CN112702133B (en) Channel state prediction method based on dynamic Bayesian hidden Markov model
CN110611626A (en) Channel estimation method, device and equipment
CN109219055A (en) A kind of primary user&#39;s duty rate estimation
CN114900817B (en) Distributed wireless sensor network information estimation method based on binary quantization
WO2017161933A1 (en) Snr estimation method and device, and storage medium
TW200522543A (en) Method and apparatus for network management using perceived signal to noise and interference indicator
WO2021114964A1 (en) Signal detection method and apparatus, communication device, and computer storage medium
Hassan et al. QoS enhancements in energy harvesting cognitive radio communications networks
WO2015109499A1 (en) Multi-target decision making method and apparatus
CN106685549B (en) Primary user spectrum sensing method and device
KR101788439B1 (en) Communication scheme in cognitive radio networks based on coorperative sensing
KR101347885B1 (en) Apparatus for cognitive radio and method thereof
US8958508B2 (en) Method and system for measuring background noise of machine
Sreedharan et al. Spectrum sensing using distributed sequential detection via noisy reporting mac
CN105207753B (en) A kind of error rate measurement method, error rate measurement system and power control system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09709075

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09709075

Country of ref document: EP

Kind code of ref document: A1