WO2009097732A1 - 高速下行分组接入的调制方式的指示方法及判断方法 - Google Patents

高速下行分组接入的调制方式的指示方法及判断方法 Download PDF

Info

Publication number
WO2009097732A1
WO2009097732A1 PCT/CN2008/073768 CN2008073768W WO2009097732A1 WO 2009097732 A1 WO2009097732 A1 WO 2009097732A1 CN 2008073768 W CN2008073768 W CN 2008073768W WO 2009097732 A1 WO2009097732 A1 WO 2009097732A1
Authority
WO
WIPO (PCT)
Prior art keywords
modulation mode
terminal
modulation
information
64qam
Prior art date
Application number
PCT/CN2008/073768
Other languages
English (en)
French (fr)
Inventor
Jing Zhao
Hui Chen
Zhifeng Ma
He Huang
Guan Chen
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Priority to CN200880125336.3A priority Critical patent/CN101926117B/zh
Publication of WO2009097732A1 publication Critical patent/WO2009097732A1/zh
Priority to HK11101025.4A priority patent/HK1146991A1/xx

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a method and a method for determining a modulation mode of a high-speed downlink packet access.
  • BACKGROUND OF THE INVENTION An important feature of the third generation mobile communication system is the imbalance of traffic on the service/downlink, and the traffic of the downlink will generally be larger than the traffic of the uplink.
  • 3GPP 3rd Generation Partnership Project
  • HSDPA High Speed Downlink Packet Access
  • the newly introduced physical channels include: a High Speed Physical Downlink Shared Channel (HS-PDSCH for short), and a Shared Control Channel for HS-DSCH. , referred to as HS-SCCH for short) and a shared information channel for HS-SICH (HS-SICH for short), the above-mentioned physical channel resources in a cell are in the form of resource pools, and are multiple users in the cell. Shared by time or code.
  • AMC Adaptive Modulation and Coding
  • HARQ Hybrid Automatic Retransmission Request
  • the HS-PDSCH is used to carry the service data of the user, and the information of the HS-PDSCH code resource, the transport block size, and the modulation mode used by each user in different transmission time intervals (TTIs) is used by the Node. B (Node B) is indicated on the HS-SCCH.
  • the HS-SCCH contains the following information: Spreading code set information (8 bits): ccs, l , xccs, 2, xccs, 8; time slot information (5 bits): xts, l, xts, 2, xts, 5 Modulation mode information (1 bit): xms, l , where 0 is Quadrature Phase Shift Keying (QPSK), 1 is 16 Quadrature Amplitude Modulation (QAM) ; Transport block size information (6 bits): xtbs, l, xtbs, 2, xtbs, 6, indicating the index of the corresponding transport block in the HSDPA transport block size index table corresponding to the capability level of the user equipment (User Equipment, UE for short).
  • QPSK Quadrature Phase Shift Keying
  • QAM Quadrature Amplitude Modulation
  • Transport block size information (6 bits): xtbs, l, xtbs, 2, xtbs, 6,
  • Each capability level can find a corresponding transport block size index table, where the transport block size index table includes 64 transport block sizes supported by the UE of the capability level; after receiving the HS-SCCH information, the UE According to the modulation mode and the transport block size, the subsequent HS-PDSCH information is received on the designated code channel; the hybrid automatic repeat request process information (3 bits): xhap, 1 , xhap, 2, ..., xhap, 3; redundancy version information (3 bits): rv,l, xrv,2,xrv,3; new data indication (1 bit): xnd,l ; HS-SCCH loop sequence number (3 bits): xhcsn,l, Xhcsn, 2, xhcsn, 3;
  • UE identification number (16 bits): ue,l, xue,2, xue,16 radical
  • 64QAM can be used in HSDPA, but since the modulation mode information can only be represented by one bit, it can only represent Two modulation modes are provided, which makes it impossible to represent 64QAM according to the current structure. If the frame structure of the HS-SCCH is changed, compatibility problems will occur. Therefore, the UE dynamically transmits the block size under the premise of ensuring compatibility.
  • the modulation mode is planned to realize that 64QAM is an urgent problem to be solved without changing the HS-SCCH frame structure.
  • the present invention has been made in view of the above problem that the current HS-SCCH frame structure cannot represent 64QAM, and the present invention is The present invention aims to provide a method and a method for determining a modulation mode of high-speed downlink packet access to solve the above problems.
  • a modulation of high-speed downlink packet access is provided.
  • the method for indicating the mode of the high-speed downlink packet access is provided by the present invention.
  • the Node B is in the following manner.
  • the terminal UE supporting the 64QAM capability indicates the modulation mode information: if the modulation mode determined by the Node B is 64QAM or QPSK, the modulation mode information of the high speed shared control channel is set to 0; if the determined modulation mode is 16QAM, the high speed sharing control is performed. The modulation mode information of the channel is set to 1. If the Node B determines that the terminal does not support the 64QAM modulation mode, the modulation mode information of the high-speed shared control channel is configured according to the modulation mode determined according to the terminal capability information. If the modulation mode is QPSK, the modulation mode information is 0, if the modulation mode is 16QAM, the modulation mode information is set to 1 and sent to the terminal.
  • the method further includes the terminal reporting the capability information of the terminal to the NodeB, at least including whether the terminal supports the capability information of the 64QAM high-order modulation. According to another aspect of the present invention, a method for determining a modulation mode of high speed downlink packet access is provided.
  • the method for judging the modulation mode of the high-speed downlink packet access includes: after receiving the high-speed shared control channel, the terminal supporting the 64QAM reads the modulation mode information bit, and if it is 1, the 16QAM is used as the terminal demodulation mode. If the modulation mode information is 0, the modulation mode is QPSK or 64QAM, and the terminal calculates and determines the specific modulation mode according to one of the following methods: The terminal calculates the air interface according to the information in the high-speed shared control channel according to the QPSK or 64QAM modulation mode.
  • the 64QAM is used as the terminal demodulation mode, otherwise the QPSK is used as the terminal demodulation.
  • the terminal calculates the actual bearer capacity of the physical layer of the air interface and the physical bearer requirement of the transport block according to the information in the high-speed shared control channel according to the QPSK or 64QAM modulation mode. If the actual bearer capacity of the physical layer of the air interface is multiplied by the coefficient R is less than or equal to the transmission The physical bearer requirement of the block is 64QAM as the terminal demodulation side.
  • QPSK is used as the terminal demodulation mode; the above-mentioned coefficient R ranges from (0, 1).
  • the above coefficient R is determined by high-level configuration or protocol convention, and both the transmitting end Node B and the receiving end UE adopt the same R as
  • the value of R is 0.9.
  • the value of R is 0.3.
  • the physical bearer requirement of the foregoing transport block refers to a transport block length determined according to a transport format indication field and a UE capability on a high speed shared control channel in an HS-DSCH transmission time interval.
  • FIG. 1 is a flowchart of signaling interaction between an HSDPA service terminal and a network side according to an embodiment of the present invention.
  • the modulation mode determined by the Node B is represented by setting a modulation mode information bit of the high speed shared control channel, that is, if the modulation mode determined by the Node B is 64QAM or QPSK. Then, the modulation mode information of the high-speed shared control channel is set to 0; if the determined modulation mode is 16QAM, the modulation mode information of the high-speed shared control channel is set to 1.
  • the UE device supporting and supporting 64Q AM and high-order modulation is compatible, and the function support of the modulation mode of 64QAM is realized.
  • HSDPA is used as a high-speed downlink packet service
  • the modulation mode, physical time slot, code channel resource and transport block size information used by the UE are configured by the network side through the HS-SCCH.
  • the configured physical time slot and code channel resources may determine the actual bearer capability of the air interface physical layer; and calculate the physical bearer requirement of the transport block according to the configured transport block size.
  • the actual physical layer carrying capacity must meet the physical load requirements of the transport block.
  • the physical bearer requirement of the transport block means that, in an HS-DSCH transmission time interval, the transport format indication on the HS-SCCH is indicated.
  • the transport block length determined by the field and UE capabilities.
  • the process of indicating the modulation mode by using the HS-SCCH in the TD-SCDMA system includes the following steps (step 11 - step 22): Step 11: The Node B according to the Channel Quality Indication (CQI) of the UE. After the information is selected, such as the transport block size, the modulation mode, and the code channel resource, the HS-SCCH is filled out and sent to the UE. In this step 11, the Node B still uses the original modulation mode representation method for the UE that does not support 64QAM, that is, the modulation mode information bit value is 0 or 1 (where 0 is QPSK and 1 is 16QAM). ) to indicate whether the modulation method is QPSK or 16QAM.
  • CQI Channel Quality Indication
  • the Node B adopts a representation mode of the modulation mode provided by the embodiment of the present invention for the UE supporting the 64QAM, that is, the modulation is made by flexible configuration, while maintaining the modulation mode information to be 1 bit size unchanged.
  • the mode information can indicate QPSK/16QAM/64QAM.
  • the modulation mode information (1 bit) in the HS-SCCH information is still reserved, wherein the definition of the modulation mode information bit value of 1 still indicates 16QAM, and the modulation mode information bit value of 0 may indicate QPSK or 64QAM.
  • the modulation mode information bit value is 0, it indicates whether QPSK or 64QAM, and the UE determines the relationship between the physical layer carrying capacity and the physical bearer requirement calculated according to the calculated physical layer.
  • the Node B selects a transport block size, a modulation scheme, and an HS-PDSCH code channel resource to be used according to information such as CQI reported by the UE and the amount of data to be transmitted.
  • Step 22 After receiving the HS-SCCH, the UE determines the modulation mode adopted by the Node B by using the code channel resource information and the transport block size information in the HS-SCCH.
  • the UE supporting the 64QAM adopts the modulation mode determining method described in this embodiment, and determines the modulation by simple discriminating on the basis that the modulation mode information is kept constant by 1 bit.
  • the method is 16QAM, 64QAM or QPSK.
  • the discriminating process is as follows: The UE supporting 64QAM reads the modulation side in the HS-SCCH after receiving the HS-SCCH. If the information bit value is 1, it indicates that the demodulation mode of the UE is 16QAM; if the information bit value is 0, it indicates that the modulation mode of the UE is QPSK or 64QAM, and the UE further determines the terminal by the following two methods.
  • the modulation mode is QPSK or 64QAM:
  • Method 1 The terminal according to the QPSK or 64QAM modulation mode, according to the information in the HS-SCCH, calculate the actual load capacity of the physical layer of the air interface and the physical load requirement of the transport block, if the physical layer of the air interface If the actual carrying capacity multiplied by the coefficient R is smaller than the physical bearer requirement of the transport block, 64QAM is used as the demodulation mode of the terminal. Otherwise, QPSK is used as the demodulation mode of the terminal.
  • Method 2 The terminal according to the QPSK or 64QAM modulation mode The information in the HS-SCCH calculates the actual bearer capacity of the physical layer of the air interface and the physical bearer requirement of the transport block.
  • the terminal If the actual bearer capacity of the physical layer of the air interface is multiplied by the coefficient R is less than or equal to the physical bearer requirement of the transport block, 64QAM is used as the terminal. Demodulation mode, otherwise, QPSK is used as the demodulation mode of the terminal.
  • the range of the coefficient R is (0, 1), and the coefficient R can be determined by a high-level configuration or a protocol agreement, and both the Node B at the transmitting end and the UE at the receiving end use the same system R as a decision condition.
  • the terminal calculates the modulation mode by QPSK, the value of R is 0.9; when the terminal calculates the modulation mode by 64QAM, the value of R is 0.3.
  • step 22 After the UE that does not support 64QAM receives the HS-SCCH, The modulation mode information is still understood in the original manner, that is, when the modulation mode information bit value is 0, it indicates that the UE demodulation mode is QPSK; when the modulation mode information bit value is 1, it indicates that the UE demodulation mode is 16QAM.
  • the present invention is further described by taking the HSDPA service terminal and the network side signaling interaction in the TD-SCDMA system as an example.
  • Figure 1 is a flow chart of signaling interaction between the HSDPA service terminal and the network side according to an embodiment of the present invention. As shown in Figure 1, the signaling interaction process of the HSDPA service includes (step 301 - step 302).
  • the UE can process the terminal through the existing UE capability information reporting process and link establishment process.
  • the information is provided to the Node B, where the capability information includes whether the UE supports the information of the 64Q AM. Both the network side and the terminal side need to follow the capability constraint conditions for correctly transmitting and receiving data, that is, the code channel resources determined by the Node B are selected.
  • the modulation mode can meet the requirement of carrying the specified transport block size.
  • the Node B fills in the HS-SCCH with the code channel resource information, the transport block size, and the modulation mode information. If the modulation mode determined by the Node B according to the current channel quality is 16QAM, the modulation mode is set. The information bit value is 1; if the Node B determines to adopt 64QAM or QPSK through the decision in the above step 22, the modulation mode information bit value is set to 0.
  • Step 302 After receiving the HS-SCCH, the UE calculates a modulation mode to be used by the UE by using the allocated transport block information, code channel information, and modulation mode information. Specifically, after the UE receives the HS-SCCH information, the modulation mode information bit is read.
  • 64QAM is used as the demodulation mode of the UE. Otherwise, QPSK is used as the demodulation mode of the UE.
  • the UE can obtain modulation mode information without changing the HS-SCCH frame structure to determine the demodulation mode of the UE.
  • the invention is not limited to any specific combination of hardware and software.
  • the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Description

高速下行分组接入的调制方式的指示方法及判断方法 技术领域 本发明涉及无线通信领域,尤其涉及一种高速下行分组接入的调制方式 的指示方法及判断方法。 背景技术 第三代移动通信系统的一个重要特点是业务上 /下行链路的业务量的不 平衡性, 下行链路的业务量将普遍大于上行链路的业务量。 针对这个需求特 点, 第三^ ^合作伙伴计划 ( 3rd Generation Partnership Project, 简称为 3GPP ) 在 3G规范中引入了高速下行分组接入 ( High Speed Downlink Packet Access , 简称为 HSDPA )特性。在 HSDPA特性中,通过引入自适应编码调制( Adaptive Modulation and Coding, 简称为 AMC ).混合自动重传请求 ( Hybrid Automatic Retransmission Request , 简称为 HARQ ) 技术以及相关的减小网络处理时延 的技术, 来提供更高的下行分组业务速率, 以提高频谱利用效率。 在 TD-SCDMA系统的 HSDPA技术中, 新引入的物理信道包括: 高速 物理下行共享物理信道 ( High Speed Physical Downlink Shared Channel , 简称 为 HS-PDSCH )、 高速共享控制信道( Shared Control Channel for HS-DSCH , 简称为 HS-SCCH ) 和高速共享信息信道 ( Shared Information Channel for HS-DSCH , 简称为 HS-SICH ), —个小区中的上述物理信道资源是以资源池 的方式,为小区内多个用户以时分或者码分的方式共享的。其中, HS-PDSCH 用来承载用户的业务数据, 每个用户在不同的传输时间间隔 (Transmission Time interval, 简称为 TTI ) 所使用的 HS-PDSCH码资源、 传输块大小、 调 制方式等信息由 Node B (节点 B )在 HS-SCCH上进行指示。其中, HS-SCCH 包含以下信息: 扩频码集信息 ( 8比特 ): ccs,l , xccs,2, xccs,8; 时隙信息 ( 5比特 ): xts, l, xts,2, xts,5 ; 调制方式信息( 1比特): xms, l ,其中, 0表示正交相移键控 ( Quadrature Phase Shift Keying , 简称为 QPSK ), 1 表示 16正交幅度调制 (Quadrature Amplitude Modulation, 简称为 QAM ); 传输块大小信息(6比特): xtbs,l, xtbs,2, xtbs,6,表示用户设备(User Equipment , 简称为 UE ) 所属能力等级对应的 HSDPA传输块大小索引表中 相应传输块的索引, 每个能力等级都能找到各自对应的传输块大小索引表, 其中,传输块大小索引表中包含该能力等级的 UE所支持的 64种传输块大小; 在接收到 HS-SCCH的信息后, UE根据其中的调制模式、 传输块大小, 在其 指定的码道上接收随后的 HS-PDSCH信息; 混合自动重传请求进程信息 ( 3比特): xhap, 1 , xhap,2,... , xhap,3; 冗余版本信息 ( 3比特): rv,l, xrv,2,xrv,3; 新数据指示 ( 1比特): xnd,l ; HS-SCCH循环序列号 ( 3比特): xhcsn,l, xhcsn,2, xhcsn,3;
UE 标识号 ( 16比特): ue,l, xue,2, xue,16„ 随着技术的进步, 在 HSDPA中可以使用 64QAM, 但是由于调制方式 信息只能用一个 lbit表示, 因此, 只能表示出两种调制模式, 这就使得根据 目前的结构无法表示 64QAM。 如果改变 HS-SCCH的帧结构, 又会引起兼容 性问题。 因而, 在保证兼容性的前提下, UE 通过传输块大小动态的计划调 制模式, 实现在不改变 HS-SCCH帧结构的基础上表示 64QAM成为亟待解 决的问题。 发明内容 针对上述目前的 HS-SCCH帧结构无法表示 64QAM的问题而提出本发 明, 为此, 本发明旨在提出一种高速下行分组接入的调制方式的指示方法及 判断方法, 以解决上述问题。 为了实现上述目的, 才艮据本发明的一方面, 提供了一种高速下行分组接 入的调制方式的指示方法。 本发明提供的一种高速下行分组接入的调制方式的指示方法, Node B 按照下面的方式向支持 64QAM能力的终端 UE指示调制方式信息:如果 Node B确定的调制方式为 64QAM或者 QPSK, 则将高速共享控制信道的调制方 式信息置为 0; 如果确定的调制方式为 16QAM, 则将高速共享控制信道的调 制方式信息置为 1。 若 Node B判断该终端不支持 64QAM调制方式, 则按照根据终端能力 信息确定的调制方式配置高速共享控制信道的调制方式信息, 若调制方式为 QPSK, 则将调制方式信息为 0 , 若调制方式为 16QAM, 则将调制方式信息 置为 1 , 并发送至终端。 不支持 64QAM的终端接收高速共享控制信道后, 若读取的调制方式信息为 0, 则以 QPSK调制方式为终端调制方式, 若读取 的调制方式信息为 1 , 则以 16Q AM调制方式作为终端调制方式。 上述方法还包括终端向 NodeB上报终端的能力信息, 至少包括该终端 是否支持 64QAM高阶调制的能力信息。 才艮据本发明的另一方面,提供了一种高速下行分组接入的调制方式的判 断方法。 本发明提供的一种高速下行分组接入的调制方式的判断方法, 包括: 支 持 64QAM的终端接收高速共享控制信道后, 读取调制方式信息位, 如果为 1 , 则以 16QAM作为终端解调方式; 若读取的调制方式信息为 0 , 则调制方 式为 QPSK或 64QAM, 终端按如下方法之一计算确定具体的调制方式: 终端按照 QPSK或 64QAM调制方式,根据高速共享控制信道中的信息 计算空口物理层的实际承载能力和传输块的物理承载需求, 如果空口物理层 的实际承载能力乘以系数 R小于传输块的物理承载需求, 则以 64QAM作为 终端解调方式, 否则以 QPSK作为终端解调方式; 或者 终端按照 QPSK或 64QAM调制方式,根据高速共享控制信道中的信息 计算空口物理层的实际承载能力和传输块的物理承载需求, 如果空口物理层 的实际承载能力乘以系数 R小于等于传输块的物理承载需求, 则以 64QAM 作为终端解调方式, 否则以 QPSK作为终端解调方式; 上述的系数 R的范围为 (0, 1]。 上述系数 R通过高层配置或协议约定来确定, 并且发送端 Node B和接 收端 UE都采用相同 R作为判决条件。 当终端以 QPSK计算具体的调制方式 时, R的取值为 0.9; 当终端以 64QAM计算具体的调制方式时, R取值为 0.3。 上述空口物理层的实际承载能力是指, 在给定调制方式下, 在一个高速 下行共享信道 HS-DSCH传输时间间隔中, 用高速共享控制信道上 4受权的物 理资源计算获得的物理信道比特数, 即, 物理信道比特数 =授权时隙数 *每 个时隙授权码道个数 *授权资源所确定的时隙格式中能承载的比特数。 上述传输块的物理承载需求是指, 在一个 HS-DSCH传输时间间隔中, 根据高速共享控制信道上的传输格式指示字段和 UE能力共同确定的传输块 长度。 借助于上述技术问题至少之一,通过设置高速共享控制信道的调制方式 信息位,使得相应的调制方式信息位的值对应不同的调制方式,通过本发明, 无需更改现有的 HS-SCCH帧结构, 可以兼容支持和不支持 64QAM, 高阶调 制的 UE设备, 实现了对 64Q AM的调制方式的功能支持。 附图说明 图 1是根据本发明实施例的 HSDPA业务终端和网络侧的信令交互的流 程图。 具体实施方式 功能相克述 在本发明实施例提供的技术方案中,通过设置高速共享控制信道的调制 方式信息位来表示 Node B确定的调制方式, 即, 如果 Node B确定的调制方 式为 64QAM或者 QPSK, 则将高速共享控制信道的调制方式信息位置为 0; 如果确定的调制方式为 16QAM, 则将高速共享控制信道的调制方式信息位 置为 1。 相比于现有技术, 可以在现有的 HS-SCCH帧结构下, 兼容支持和不 支持 64Q AM、 高阶调制的 UE设备, 实现了对 64QAM的调制方式的功能支 持。 下面结合附图对本发明的具体实现进行进一步的详细说明。需要说明的 是, 如果不沖突, 本申请中的实施例以及实施例中的特征可以相互组合。 从背景技术中可以看到, HSDPA作为一种高速下行分组业务, 由网络 侧通过 HS-SCCH来配置 UE使用的调制方式、 物理时隙、 码道资源和传输 块大小信息。 在调制方式确定的情况下, 所配置的物理时隙和码道资源可以 决定空口物理层实际的承载能力; 根据所配置的传输块大小计算出传输块的 物理承载需求。 实际的物理层承载能力必须满足传输块的物理承载需求。 其中, 上述空口物理层的实际承载能力是指, 在给定调制方式下, 在一 个高速下行共享信道( HS-DSCH )传输时间间隔中, 使用 HS-SCCH上授权 的物理资源, 计算获得的物理信道比特数, 即, 物理信道比特数 =授权时 隙数 *每个时隙授权码道个数 *授权资源所确定的时隙格式中能承载的比特 数; 传输块的物理承载需求是指, 在一个 HS-DSCH传输时间间隔中, 才艮据 HS-SCCH上的传输格式指示字段和 UE能力共同确定的传输块长度。 在 TD-SCDMA系统下通过 HS-SCCH指示调制方式的流程, 包括如下 步骤(步骤 11一步骤 22 ): 步骤 11 : Node B 根据 UE 上 4艮的信道质量指示 (Channel Quality Indication, 简称为 CQI ) 等信息选择传输块大小、 调制模式、 码道资源等信 息后, 填写 HS-SCCH并发送给 UE。 在该步骤 11中, Node B对于不支持 64QAM的 UE , Node B仍采用原 有的调制模式的表示方法, 即, 配置调制方式信息位值为 0 或 1 (其中, 0 表示 QPSK, 1表示 16QAM ) 来指示调制方式为 QPSK还是 16QAM。 在上述步骤 11中, Node B对于支持 64QAM的 UE采用本发明实施例 提供的调制模式的表示方法, 即, 在保持调制方式信息为 1比特大小不变的 基础 上 , 通过灵活 配置 , 使得该调 制 方 式信 息可 以 指 示 QPSK/16QAM/64QAM。 具体地, HS-SCCH信息中的调制方式信息( 1比特) 仍然保留, 其中, 定义调制方式信息位值为 1 仍然表示 16QAM, 而调制方 式信息位值为 0可以表示 QPSK或者 64QAM。 在具体实施过程中, 调制方 式信息位值为 0是表示 QPSK还是 64QAM, 由 UE才艮据计算出的物理层实 际承载能力和物理承载需求的关系来确定。 其中, Node B根据 UE上报的 CQI等信息以及需要传输的数据量选择 传输块大小、 调制方式、 以及所使用的 HS-PDSCH码道资源。 步骤 22: UE接收到 HS-SCCH后, 通过该 HS-SCCH中的码道资源信 息和传输块大小信息来判断 Node B采用的调制方式。 具体地, 支持 64QAM的 UE在接收到 HS-SCCH后, UE采用本实施例 中描述的调制方式判断方法, 在保持调制方式信息为 1比特大小不变的基 上, 通过简单的判别来决定调制方式为 16QAM、 64QAM或者为 QPSK, 该 判别过程如下所示: 支持 64QAM的 UE在接收 HS-SCCH后, 读取 HS-SCCH中的调制方 式信息位, 如果该信息位值为 1 , 则表示 UE的解调方式为 16QAM; 如果该 信息位值为 0, 则表示 UE的调制方式为 QPSK或 64QAM, UE再 居以下 两种方法确定终端的调制方式为 QPSK或 64QAM: 方法一: 终端按照 QPSK或 64QAM调制方式, 才艮据 HS-SCCH中的信 息, 计算空口物理层的实际 载能力和传输块的物理 载需求, 如果空口物 理层的实际承载能力乘以系数 R小于传输块的物理承载需求, 则以 64QAM 作为终端的解调方式, 否则, 以 QPSK作为终端的解调方式; 方法二: 终端按照 QPSK或 64QAM调制方式, 才艮据 HS-SCCH中的信 息, 计算空口物理层的实际承载能力和传输块的物理承载需求, 如果空口物 理层的实际承载能力乘以系数 R 小于等于传输块的物理承载需求, 则以 64QAM作为终端的解调方式, 否则, 以 QPSK作为终端的解调方式。 其中, 上述系数 R的范围为(0, 1] , 系数 R可以通过高层配置或协议约 定来确定, 发送端的 Node B和接收端的 UE都采用相同的系统 R作为判决 条件。 在具体实施过程中, 当终端以 QPSK计算调制方式时, R的取值为 0.9; 当终端以 64QAM计算调制方式时, R取值为 0.3。 在上述步骤 22中: 当不支持 64QAM的 UE接收到 HS-SCCH后, 仍然 按照原有方式理解调制方式信息, 即, 当调制方式信息位值为 0时, 表示 UE 的解调方式为 QPSK; 当调制方式信息位值为 1 时, 表示 UE的解调方式为 16QAM。 下面以 TD-SCDMA系统中的 HSDPA业务终端和网络侧的信令交互 ¾ϊ 程为例, 对本发明进一步说明。 图 1是根据本发明实施例的 HSDPA业务终端和网络侧的信令交互的流 程图,如图 1所示, HSDPA业务的信令交互流程包括(步骤 301—步骤 302 )。 首先, UE可以通过现有的 UE能力信息上报流程及链路建立流程, 将 终端能力信息上 ·ί艮给 Node B , 其中, 能力信息包括 UE是否支持 64Q AM的 信息。 网络侧和终端侧都需要遵循正确收发数据的能力约束条件, 即, Node B 确定的码道资源在选择的调制模式下能够达到承载指定传输块大小的要 求。 以下进行到步骤 301。 步骤 301 : Node B向 UE发送 HS-SCCH, 用于指示码道资源、 传输块 大小以及调制方式等相关信息。 具体地, Node B在分配资源时, 在 HS-SCCH中填写码道资源信息、 传 输块大小以及调制方式信息, 其中, 若 Node B根据当前的信道质量确定的 调制方式为 16QAM, 则设置调制方式信息位值为 1 ; 若 Node B通过上述步 骤 22的判决, 确定采用 64QAM或者 QPSK, 则设置调制方式信息位值为 0。 步骤 302: UE接收到 HS-SCCH后, 通过分配的传输块信息、 码道信息 以及调制模式信息, 计算得出 UE将要使用的调制方式。 具体地, UE接收到 HS-SCCH信息后, 读取的调制方式信息位, 如果 调制方式信息位值为 1 , 则以 16QAM作为 UE的解调方式, 如果调制方式信 息位值为 0 , 则首先按照 QPSK调制方式, 并 居 HS-SCCH中分配的时隙、 码道资源信息, 计算出空口物理层的实际 载能力, 才艮据 HS-SCCH 中指示 的传输块大小,按照最低的打孔极限 40 %和编码方式计算出业务的物理承载 需求, 如果计算出的物理层实际承载能力乘以系数 0.9 (即, R = 0.9 ) 小于 业务的物理承载需求, 并且, 实际物理层所能承载的传输速率小于业务的传 输速率, 则以 64QAM作为 UE的解调方式, 否则, 以 QPSK作为 UE的解 调方式。 由以上描述可以看出, 在使用 64QAM 的情况下, UE 可以在不改变 HS-SCCH帧结构的情况下获得调制模式信息, 以确定 UE的解调方式。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可 以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布 在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程 序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 或 者将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制 作成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软 件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。

Claims

权 利 要 求 书
1. 一种高速下行分组接入的调制方式的指示方法,其特征在于,节点 BNode B按照以下方式向支持 64QAM的终端 UE指示调制方式信息:
如果 Node B确定的调制方式为 64QAM或者 QPSK, 则将高速共 享控制信道的调制方式信息置为 0; 如果确定的调制方式为 16QAM, 则 将高速共享控制信道的调制方式信息置为 1。
2. 才艮据权利要求 1所述的方法, 其特征在于, 所述方法进一步包括:
若 Node B判断该终端不支持 64QAM调制方式, 则按照根据终端 能力信息确定的调制方式配置高速共享控制信道的调制方式信息, 若调 制方式为 QPSK,则将所述调制方式信息置为 0,若调制方式为 16QAM, 则将所述调制方式信息置为 1 , 并发送至终端。
3. 才艮据权利要求 1或 2所述的方法, 其特征在于, 所述方法进一步包括: 不支持 64QAM的终端接收高速共享控制信道后, 若读取的调制方 式信息为 0 , 则以 QPSK调制方式为终端的调制方式, 若读取的调制方 式信息为 1 , 则以 16Q AM调制方式作为终端的调制方式。
4. 根据权利要求 1所述的方法, 其特征在于, 所述方法还包括:
所述终端向 Node B上 4艮终端的能力信息, 其中, 所述能力信息包 括该终端是否支持 64QAM高阶调制的信息。
5. 一种高速下行分组接入的调制方式的判断方法, 其特征在于, 包括: 支持 64QAM的终端接收高速共享控制信道后, 读取调制方式信息 位, 如果所述调制方式信息位的值为 1 , 则以 16QAM作为终端的解调 方式; 如果所述调制方式信息位的值为 0 , 则调制方式为 QPSK 或 64QAM , 所述终端按如下方法之一确定调制方式:
终端按照 QPSK或 64Q AM调制方式,根据高速共享控制信道中的 信息, 计算空口物理层的实际承载能力和传输块的物理承载需求, 如果 所述空口物理层的实际承载能力乘以系数 R 小于传输块的物理承载需 求, 则以 64QAM作为终端的解调方式, 否则, 以 QPSK作为终端的解 调方式; 或者终端按照 QPSK或 64QAM调制方式, 艮据高速共享控制信道 中的信息计算空口物理层的实际承载能力和传输块的物理承载需求, 如 果所述空口物理层的实际承载能力乘以系数 R小于等于传输块的物理承 载需求, 则以 64Q AM作为终端的解调方式, 否则, 以 QPSK作为终端 的解调方式;
其中, 所述系数 R的范围为(0, 1]。
6. 根据权利要求 5所述的方法, 其特征在于, 所述系数 R通过高层配置或 协议约定来确定, 并且, 发送端的 Node B和接收端的 UE都采用相同的 R作为判决条件。
7. 根据权利要求 5或 6所述的方法, 其特征在于, 当所述终端以 QPSK计 算调制方式时, R的取值为 0.9; 当所述终端以 64QAM计算调制方式时, R取值为 0.3。
8. 根据权利要求 5所述的方法, 其特征在于, 所述空口物理层的实际承载 能力是指, 在给定调制方式下, 在一个高速下行共享信道 HS-DSCH传 输时间间隔中, 用高速共享控制信道上 4受权的物理资源计算获得的物理 信道比特数, 所述物理信道比特数 =授权时隙数 *每个时隙授权码道个 数 *授权资源所确定的时隙格式中能承载的比特数。
9. 根据权利要求 5所述的方法, 其特征在于, 所述传输块的物理承载需求 是指, 在一个 HS-DSCH传输时间间隔中, 才艮据高速共享控制信道上的 传输格式指示字段和 UE能力共同确定的传输块长度。
PCT/CN2008/073768 2008-02-06 2008-12-26 高速下行分组接入的调制方式的指示方法及判断方法 WO2009097732A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200880125336.3A CN101926117B (zh) 2008-02-06 2008-12-26 高速下行分组接入指示调制方式及终端判断调制方式方法
HK11101025.4A HK1146991A1 (en) 2008-02-06 2011-01-31 Method for indication of modulation mode and method or judgment of modulation mode by a terminal in high-speed downlink packet access

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810009802.3 2008-02-06
CN2008100098023A CN101505506B (zh) 2008-02-06 2008-02-06 高速下行分组接入指示调制方式及终端判断调制方式方法

Publications (1)

Publication Number Publication Date
WO2009097732A1 true WO2009097732A1 (zh) 2009-08-13

Family

ID=40951770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/073768 WO2009097732A1 (zh) 2008-02-06 2008-12-26 高速下行分组接入的调制方式的指示方法及判断方法

Country Status (3)

Country Link
CN (2) CN101505506B (zh)
HK (1) HK1146991A1 (zh)
WO (1) WO2009097732A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101505506B (zh) * 2008-02-06 2011-10-26 中兴通讯股份有限公司 高速下行分组接入指示调制方式及终端判断调制方式方法
CN102447668A (zh) * 2010-09-30 2012-05-09 华为技术有限公司 小区前向接入信道状态用户设备的高阶调制配置方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040028020A1 (en) * 2002-08-09 2004-02-12 Frank Frederiksen Method and system for transport block size signaling based on modulation type for HSDPA
CN1889406A (zh) * 2005-06-27 2007-01-03 上海原动力通信科技有限公司 提高高速下行分组接入系统传输速率的方法
CN1893335A (zh) * 2005-07-01 2007-01-10 上海原动力通信科技有限公司 控制高速下行分组接入系统支持多阶调制方式的方法
US20070019717A1 (en) * 2005-07-20 2007-01-25 Rajiv Laroia Methods and apparatus for implementing and using an in-band rate indicator
CN101340260A (zh) * 2007-07-03 2009-01-07 中兴通讯股份有限公司 高速下行分组接入中的高阶调制实现方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE369674T1 (de) * 2001-05-14 2007-08-15 Lg Electronics Inc Verfahren zum steuern der datenübertragung in einem funkkommunikationssystem
CN101494469B (zh) * 2008-01-23 2015-05-13 电信科学技术研究院 通讯系统的调制方式确定方法及装置
CN101505506B (zh) * 2008-02-06 2011-10-26 中兴通讯股份有限公司 高速下行分组接入指示调制方式及终端判断调制方式方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040028020A1 (en) * 2002-08-09 2004-02-12 Frank Frederiksen Method and system for transport block size signaling based on modulation type for HSDPA
CN1889406A (zh) * 2005-06-27 2007-01-03 上海原动力通信科技有限公司 提高高速下行分组接入系统传输速率的方法
CN1893335A (zh) * 2005-07-01 2007-01-10 上海原动力通信科技有限公司 控制高速下行分组接入系统支持多阶调制方式的方法
US20070019717A1 (en) * 2005-07-20 2007-01-25 Rajiv Laroia Methods and apparatus for implementing and using an in-band rate indicator
CN101340260A (zh) * 2007-07-03 2009-01-07 中兴通讯股份有限公司 高速下行分组接入中的高阶调制实现方法

Also Published As

Publication number Publication date
CN101505506B (zh) 2011-10-26
CN101505506A (zh) 2009-08-12
CN101926117A (zh) 2010-12-22
HK1146991A1 (en) 2011-07-22
CN101926117B (zh) 2013-03-27

Similar Documents

Publication Publication Date Title
EP1971066B1 (en) Method and apparatus for configuring a transport block size in a wireless communications system
WO2007056940A1 (fr) Procede de mise en oeuvre pour harq dans des cellules a points de frequences multiples
US20090116468A1 (en) Method for implementing hsdpa for td-scdma
WO2007000095A1 (en) A operating method of a user terminal supporting high speed downlink packet access
CN101547135B (zh) 用于无线通信系统的上行调度方法
AU2004269790A1 (en) Method and apparatus for providing uplink packet data service in asynchronous WCDMA system
US20100279634A1 (en) method of transmitting data block information in a cellular radio system
JP2005536942A (ja) 無線ローカルエリアネットワークにおける通信サービス品質を保証する方法及び装置
WO2007003134A1 (en) A device system and method for implementing the multi-carrier high speed downlink packet access service
TW200412083A (en) Method and data transmission system for transmitting data packets between a transmitter and a receiver
EP2016697A1 (en) Method and apparatus for dynamically configuring a hybrid automatic repeat request memory
WO2011026331A1 (zh) 增强专用信道传输格式集选择方法及装置
CN1870809A (zh) 移动通信系统中高速数据传输的调度方法
WO2008098524A1 (fr) Procédé et appareil pour obtenir un indicateur de qualité de canal (cqi) et procédé de mappage de rapport signal/interférence + bruit (sinr) en indicateur cqi
WO2012013152A1 (zh) 一种发送反馈信息的方法、系统和设备
KR100984835B1 (ko) 전송 형식 조합을 선택하기 위한 방법 및 장치
CN101471914B (zh) 一种高速下行分组接入中指示调制方式的方法
WO2010066171A1 (zh) 调度信息上报方法、装置及系统
US8270360B2 (en) Method for indicating modulation mode in high speed downlink packet accessing
CN101465666B (zh) Td-scdma系统hsdpa中引入高阶调制的方法
WO2009097732A1 (zh) 高速下行分组接入的调制方式的指示方法及判断方法
WO2012022191A1 (zh) 一种终端及其授权处理方法
CN101026574B (zh) 无线通信系统、固定台设备及信号发送方法
CN101383680B (zh) 一种增强专用信道的传输格式选择方法
CN101505197A (zh) 一种通过高速共享控制信道信息指示调制方式的方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880125336.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08872093

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08872093

Country of ref document: EP

Kind code of ref document: A1