WO2009097669A1 - Process for synthetising nanostructured hybrid systems: carbon nanotubes-metal nanoparticles - Google Patents

Process for synthetising nanostructured hybrid systems: carbon nanotubes-metal nanoparticles Download PDF

Info

Publication number
WO2009097669A1
WO2009097669A1 PCT/BR2009/000013 BR2009000013W WO2009097669A1 WO 2009097669 A1 WO2009097669 A1 WO 2009097669A1 BR 2009000013 W BR2009000013 W BR 2009000013W WO 2009097669 A1 WO2009097669 A1 WO 2009097669A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotubes
metal nanoparticles
nanoparticles
metal
nanotubes according
Prior art date
Application number
PCT/BR2009/000013
Other languages
French (fr)
Portuguese (pt)
Inventor
Luiz Orlando Ladeira
Rodrigo Gribel Lacerda
André Santarosa FERLAUTO
Eudes LORENÇON
Sergio De Oliveira
Edelma Eleto Da Silva
Original Assignee
Universidade Federal De Minas Gerais-Ufmg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidade Federal De Minas Gerais-Ufmg filed Critical Universidade Federal De Minas Gerais-Ufmg
Publication of WO2009097669A1 publication Critical patent/WO2009097669A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • C23C18/44Coating with noble metals using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive

Definitions

  • the present invention relates to a process of decorating the outer surfaces of carbon nanotubes with metallic nanoparticles resulting in hybrid nanostructured systems formed by carbon nanotubes and metallic nanoparticles.
  • nanotechnology In recent decades, scientific and technological advances such as the recent discovery of carbon nanotubes and fullerenes as well as the development of nanoscopic matter observation systems have allowed the rapid development of nanoscale science and technology, known as nanotechnology.
  • Carbon nanotubes are fibrillary and tubular structures consisting of carbon-carbon sp 2 hybridization bonds with a diameter ranging from 0.7 - 80 nm in diameter and length from 10 to 80,000 nm. Carbon nanotubes due to this large aspect ratio and their exceptional mechanical and electronic structural properties have become of great importance to science [Popov, Materials Science & Engineering R-Reports, 2004, 43, 61].
  • Carbon nanotubes can be synthesized in two forms, namely single-walled carbon nanotubes (NTCPS), formed by a single layer of carbon atoms, and multi-walled carbon nanotubes (NTCMP), consisting of several concentric carbon tubes. .
  • NCPS single-walled carbon nanotubes
  • NTCMP multi-walled carbon nanotubes
  • its properties such as chemical inertia, high aspect ratio and high specific area place this material in a strategic position for the development of nanotechnology mesoscopic systems in which interfacial interactions are preponderant.
  • Hybrid systems that combine carbon nanotubes and other nanostructures such as additional molecular bonds to their wall or miscellaneous nanoparticles allow the creation of new nanoscopic systems with definite function and diverse applications in the areas of new materials and their use in devices such as: hydrogen storage [Zuttel et al., International Journal of Hydrogen Energy, 2002, 27, 203] as catalytic supports [Dicks, Journal of Power Sources, 2006, 156, 128], in the creation of new electronic devices such as single electron transistors, molecular diodes, memory elements.
  • NTC / NPM carbon nanotubes with metal nanoparticles
  • NTC / NPM hybrid systems can be used for heterogeneous catalysis in various chemical, petrochemical and pharmaceutical industry procedures as well as energy applications such as electrodes and catalytic reforming of methanol in PEM (Proton Exchange Membrane) fuel cells [Liang et al., Carbon, 2005, 43, 3144], high performance batteries [Qiu et al., New Journal of Chemistry, 2004, 28, 1056], supercapacitors [Kim et al., Journal of Materials Chemistry, 2005, 15 , 4914], photovoltaic power generation [Camacho et al., Jom, 2007, 59, 39] and nanobiotechnology [Wang et al., Electrochemistry Communications, 2003, 5, 800].
  • PEM Proton Exchange Membrane
  • nanoparticles may be preformed and covalently connected to nanotubes through organic fragments. Chen and colleagues report that first oxidation of NTCPS occurs and subsequently reaction with aliphatic aminothiols that lead to the formation of thiol-terminated nanotubes, which act as connections for the deposition of Au (gold) nanoparticles. [Chen et al., Science, 1998, 282, 95].
  • carbon nanotubes can form polyelectrolyte salts that are soluble in polar organic solvents without the need for functionalization or sonification processes, thus forming a thermodynamically stable solution of isolated nanotubes.
  • Dissolution consists of chemically reducing nanotubes with alkali metals, leading to the formation of polyelectrolyte salts that can carry a charge every 10 carbon atoms.
  • the reducing metal when oxidized, acts as a counter ion compensating for the negative charges acquired by the tube.
  • nanotube reduction can be performed in a system containing a mixture of carbon nanotubes (NTC) and metallic sodium in tetrahydrofuran (THF) in the presence of organic molecules such as naphthalene, anthraquinone and fluorenone under inert atmosphere.
  • NTC carbon nanotubes
  • THF tetrahydrofuran
  • the donation of alkaline metal electrons to the nanotube is through the organic molecules, because they have the property of being directly reduced. by the metal, resulting in an anionic radical that cyclically yields electrons to the nanotube.
  • the nanotube is saturated with charges the organic molecules become permanently charged. This last step can be easily checked by varying the color of the solution that presents the characteristics of the absorption spectrum of the anionic radical.
  • the present invention has great advantages over the existing technological framework on the subject, since the method here
  • the proposed approach describes a rapid process of decoration of NTC with a wide range of binary and ternary metallic NP or alloys and nanoparticles are generated in situ by reducing their ions directly by the NTC, ensuring good adhesion. Also no initial steps of nanotube functionalization are required.
  • the present process proposes the use of carbon nanostructure itself as a reducing agent, whose electrochemical potential in thermodynamic equilibrium is equal to that of Na (sodium) in metallic form.
  • carbon nanostructures become very strong reducing agents thus serving to reduce numerous metal cations in addition to Au, Ag, Pt and Pd cations.
  • the reduction of metal ions will be induced directly on the surface of the NTC, with no free nanoparticles forming in solution.
  • Another advantage is that the new technique does not require any prior NTC functionalization process since the reduced form nanotubes are formed by well dispersed and isolated polyelectrolyte salts.
  • the present invention proposes a process using carbon nanotubes themselves in the form of polyelectrolyte salts as reducing agents of metal salt solutions for the formation of metal nanoparticles and alloys of metal nanoparticles on their outer surface.
  • a donor material such as: Na (sodium), K (potassium) or Li (lithium) in unrestricted elemental form and dispersed or non-functionalized NTCPS or NTCPM carbon nanotubes in aprotic polar organic solvents.
  • This charge transfer is mediated by molecular compounds with high anionic radical formation capacity.
  • the process of decoration of nanostructured materials with metal nanoparticles occurs through the process of chemical reduction of the metal nanoparticle ions present in liquid medium in solid nanoparticles attached to the surface of the solid support, which are carbon nanostructures (NEC) such as: carbon nanotubes single or multiple walls, functionalized or not dispersed in liquid medium.
  • NEC carbon nanostructures
  • the proposed new process involves, in a first step, the electronic transfer of solid Na (sodium) to carbon nanotubes, dispersed in liquid medium through a polar aprotic solvent, such as tetrahydrofuran. Electron transfer by means of some organic compound with a large amount of conjugated double bonds, which have the ability to form anionic radicals such as naphthalene, benzophenone, anthraquinone or unconstrained conjugated organic polymers, used for conducting electrons of the alkali metal to the carbon nanotube (NTC) thus creates a CNT n " polyelectrolyte salt (negatively charged carbon nanotubes) under an inert atmosphere.
  • a polar aprotic solvent such as tetrahydrofuran.
  • Carbon nanotubes are dispersed in an anhydrous polar aprotic solvent such as tetrahydrofuran (THF), not restricted.
  • anhydrous polar aprotic solvent such as tetrahydrofuran (THF)
  • Carbon nanotubes may be single or multi-walled (NTCPSs or NTCMPs) functionalized or not with other molecular compounds, at varying mixing ratios depending on the type of NTC and other molecular groups attached or not to its outer wall.
  • naphthalene is an organic molecule capable of reacting with alkali metal to form an anionic species which has the alkali metal cation as a counterion.
  • naphthalene There are other substances that play the same role and can be used at this stage in place of naphthalene such as: anthraquinone or benzophenone, not restricted.
  • the amount of naphthalene present in the mixture is only limited by its solubility.
  • An amount of finely divided metallic sodium is added to the mixture from the previous step.
  • Metallic sodium can also be replaced by other alkaline metals such as lithium and unrestricted potassium.
  • the amount of sodium required is on the order of milligrams per gram of nanotube (0.1-1000 mg / g NTC). Using a larger quantity does not change the end result of the process.
  • solution A a well dispersed solution of carbon nanotubes in the form of polyelectrolytes is obtained.
  • the formation of polyelectrolytes is usually accompanied by a change in coloration of this solution due to the permanent formation of anionic radicals.
  • the formed anionic radicals interact with carbon nanotubes by solvation process, further increasing the colloidal dispersion of the NTC and avoiding their agglomeration. In this step this solution is called solution A.
  • a suitable amount of salt containing the metal ion of interest is dissolved in an unreacted polar anhydrous solvent such as THF, not restricted. This solution is prepared under ultrasonification or mechanical stirring until completely dissolved.
  • the precursor compounds of these elements are simultaneously dissolved in this non-reactive anhydrous polar solvent in the desired ratio for the formation of the corresponding alloy or for the formation of two or more types of metal nanoparticles. .
  • the most commonly used metal precursor compounds are chlorides, sulphates, oxalates and organometallic compounds of metals such as Fe, Ni, Co, Cu, Zn, Cd, Sn, Rh, Ru, Pd, HAuCU, H 2 PtCL 6l AgNO 3 , unrestricted, and their binary or ternary solutions.
  • the solution prepared in this step is called solution B.
  • Solution B is now slowly mixed with solution A without oxygen, i.e. in an inert atmosphere, by injection through the rubber stopper of the vial containing solution A under vigorous stirring. Because the reaction is very fast, long stirring times are unnecessary and do not alter the outcome of the final product. At this stage, the metal ions receive electrons from carbon nanotubes, thus being reduced into metal nanoparticles on the outer walls of the NTC. This final mixture is called solution C.
  • NTC decorated with metallic nanoparticles can be performed by ultrafiltration or ultra centrifugation processes.
  • NPMs metallic nanoparticles
  • vacuum assisted pore size 0.45 ⁇ m filters are used for separation of NTCs decorated with NPMs by filtration. In this way, after the passage of the mixture through the filter, the NTCs are retained in the filter and, by successive passages of ethanol through the filtration membrane, the NTCs are purified by eliminating solvent residues and other undesirable components.
  • NPM decorated NTC Another more efficient and faster way of purifying NPM decorated NTC is through ultra centrifugation processes.
  • Solution C is centrifuged at 5000rpm for 5 minutes, which causes NPM-decorated NTCs to precipitate and concentrate to the bottom of the centrifuge vessel.
  • the suspension is then discarded and ethanol is added to the centrifuge vessel.
  • the NTCs are then resuspended and centrifuged again at 5000rpm for 5 minutes. This process is repeated 3 to 5 times and finally the NTC are resuspended in ethanol and transferred to Petri dishes and oven dried at 100 ° C for 4 to 12 hours.
  • Example 1 Deposition of Au (gold) nanoparticles on the surface of single walled carbon nanotubes.
  • the sodium contained in the mixture is removed and the supernatant is filtered through a porous membrane filter (pores 0.45 ⁇ m in diameter), washed four times with ethanol and vacuum dried for 2 hours at 100 ° C to obtain nanotubes. carbon with gold nanoparticles on its surface.
  • Example 2 Deposition of Cu (copper) nanoparticles on the surface of single walled carbon nanotubes.
  • the sodium contained in the mixture is removed and the supernatant is filtered through a porous membrane filter (0.45 ⁇ m pore diameter), washed four times. with ethanol and vacuum dried for 2 hours at 100 ° C to obtain carbon nanotubes with copper nanoparticles on their surface.
  • Example 3 Deposition of Rh (rhodium) nanoparticles on the surface of single walled carbon nanotubes.
  • the sodium contained in the mixture is removed and the supernatant is filtered through a porous membrane filter (0.45 ⁇ m pore diameter), washed four times. with ethanol and vacuum dried for 2 hours at 100 ° C to obtain carbon nanotubes with rhodium nanoparticles on their surface.
  • Example 4 Deposition of Au (gold) nanoparticles on the surface of multiwall carbon nanotubes.
  • the sodium contained in the mixture is removed and the supernatant is filtered through a porous membrane filter (pores 0.45 ⁇ m in diameter), washed four times with ethanol and vacuum dried for 2 hours at 100 ° C to obtain multi-walled carbon nanotubes with gold nanoparticles on their surface.
  • a porous membrane filter pores 0.45 ⁇ m in diameter

Abstract

The present invention relates to a process for the decoration of the external surfaces of carbon nanotubes with metal nanoparticles, resulting in nanostructured hybrid systems formed by carbon nanotubes and metal nanoparticles.

Description

"Processo de Síntese de Sistemas Nanoestruturados Híbridos: Nanotubos de Carbono-Nanopartículas Metálicas"  "Synthesis Process of Hybrid Nanostructured Systems: Carbon Nanotubes-Metallic Nanoparticles"
A presente invenção refere-se a um processo de decoração das superfícies externas de nanotubos de carbono com nanopartículas metálicas resultando em sistemas nanoestruturados híbridos formados por nanotubos de carbono e nanopartículas metálicas.  The present invention relates to a process of decorating the outer surfaces of carbon nanotubes with metallic nanoparticles resulting in hybrid nanostructured systems formed by carbon nanotubes and metallic nanoparticles.
Nas últimas décadas, avanços científicos e tecnológicos tais como a recente descoberta dos nanotubos de carbono e fulerenos bem como o desenvolvimento de sistemas de observação da matéria em escala nanoscópica permitiram o desenvolvimento rápido da ciência e tecnologia na escala nanométrica, conhecida pelo nome de nanotecnologia.  In recent decades, scientific and technological advances such as the recent discovery of carbon nanotubes and fullerenes as well as the development of nanoscopic matter observation systems have allowed the rapid development of nanoscale science and technology, known as nanotechnology.
Os nanotubos de carbono são estruturas fibrilares e tubulares constituídas de ligações carbono-carbono em hibridização sp2 com diâmetro variando de 0,7 - 80 nm de diâmetro e comprimento de 10 a 80.000 nm. Os nanotubos de carbono devido a essa grande razão de aparência e às suas excepcionais propriedades estruturais mecânicas e eletrônicas tornaram-se de grande importância para a ciência [Popov, Materials Science & Engineering R- Reports, 2004, 43, 61]. Carbon nanotubes are fibrillary and tubular structures consisting of carbon-carbon sp 2 hybridization bonds with a diameter ranging from 0.7 - 80 nm in diameter and length from 10 to 80,000 nm. Carbon nanotubes due to this large aspect ratio and their exceptional mechanical and electronic structural properties have become of great importance to science [Popov, Materials Science & Engineering R-Reports, 2004, 43, 61].
Os nanotubos de carbono podem ser sintetizados em duas formas, a saber, nanotubos de carbono de parede simples (NTCPS), formados por uma única camada de átomos de carbono, e os de múltiplas paredes (NTCMP), constituídos de vários tubos concêntricos de carbono. Em particular, suas propriedades como inércia química, alta razão de aparência e alta área especifica colocam este material numa posição estratégica para o desenvolvimento de sistemas mesoscópicos em nanotecnologia nos quais interações interfaciais são preponderantes. Sistemas híbridos que conjugam os nanotubos de carbono e outras nanoestruturas tais como ligações moleculares adicionais a sua parede ou nanopartículas diversas permitem a criação de novos sistemas na escala nanoscópica com função definida e aplicações diversas nas áreas de novos materiais e seu uso em dispositivos tais como: armazenamento de hidrogénio [Zuttel et al., International Journal of Hydrogen Energy, 2002, 27, 203], como suportes catalíticos [Dicks, Journal of Power Sources, 2006, 156, 128], na criação de novos dispositivos eletrônicos como transistores de elétron único, diodos moleculares, elementos de memória. Carbon nanotubes can be synthesized in two forms, namely single-walled carbon nanotubes (NTCPS), formed by a single layer of carbon atoms, and multi-walled carbon nanotubes (NTCMP), consisting of several concentric carbon tubes. . In particular, its properties such as chemical inertia, high aspect ratio and high specific area place this material in a strategic position for the development of nanotechnology mesoscopic systems in which interfacial interactions are preponderant. Hybrid systems that combine carbon nanotubes and other nanostructures such as additional molecular bonds to their wall or miscellaneous nanoparticles allow the creation of new nanoscopic systems with definite function and diverse applications in the areas of new materials and their use in devices such as: hydrogen storage [Zuttel et al., International Journal of Hydrogen Energy, 2002, 27, 203] as catalytic supports [Dicks, Journal of Power Sources, 2006, 156, 128], in the creation of new electronic devices such as single electron transistors, molecular diodes, memory elements.
[Ishibashi et al., Microelectronic Engineering, 2003, 67, 749; Roth et al., Current Opinion in Solid State & Materials Science, 1998, 3 , 209; Meunier et al., Physical Review Letters, 2007, 98, 56401 ]. [Ishibashi et al., Microelectronic Engineering, 2003, 67, 749; Roth et al., Current Opinion in Solid State & Materials Science, 1998, 3, 209; Meunier et al., Physical Review Letters, 2007, 98, 56401].
O processo de ancoramento de nanopartículas a um substrato é denominado decoração. A decoração de nanotubos de carbono com nanopartículas metálicas (NTC/NPM) é de grande interesse, visto que gera uma nova classe de nanomateriais híbridos do tipo nanopartículas/nanotubo que recebem diversas aplicações [Sun et al., Journal of Colloid and Interface Science, 2006, 304, 323].  The process of anchoring nanoparticles to a substrate is called decoration. The decoration of carbon nanotubes with metal nanoparticles (NTC / NPM) is of great interest as it generates a new class of nanoparticle / nanotube hybrid nanomaterials that receive various applications [Sun et al., Journal of Colloid and Interface Science, 2006, 304, 323].
Sistemas híbridos do tipo NTC/NPM podem ser usados para catálise heterogénea em vários procedimentos de indústrias químicas, petroquímicas e farmacêuticas além de aplicações na área de energia como eletrodos e reforma catalítica de metanol em células de combustível tipo PEM (Proton Exchange Membrane) [Liang et al., Carbon, 2005, 43, 3144], baterias de alta performance [Qiu et al., New Journal of Chemistry, 2004, 28, 1056], supercapacitores [Kim et al., Journal of Materials Chemistry, 2005, 15, 4914], geração fotovoltaica de energia[Camacho et al., Jom, 2007, 59, 39] e nanobiotecnologia[Wang et al., Electrochemistry Communications, 2003, 5, 800].  NTC / NPM hybrid systems can be used for heterogeneous catalysis in various chemical, petrochemical and pharmaceutical industry procedures as well as energy applications such as electrodes and catalytic reforming of methanol in PEM (Proton Exchange Membrane) fuel cells [Liang et al., Carbon, 2005, 43, 3144], high performance batteries [Qiu et al., New Journal of Chemistry, 2004, 28, 1056], supercapacitors [Kim et al., Journal of Materials Chemistry, 2005, 15 , 4914], photovoltaic power generation [Camacho et al., Jom, 2007, 59, 39] and nanobiotechnology [Wang et al., Electrochemistry Communications, 2003, 5, 800].
Diversas rotas de síntese química de sistemas híbridos NTC/NPM foram desenvolvidas e, em sua grande maioria, consistindo de uma solução bem dispersa de nanotubos de carbono pré-tratado contendo algum tipo de funcionalização para a sua dispersão em meio aquoso. Esta solução dispersa é então misturada a uma solução iônica do metal a ser reduzido e em seguida, um agente redutor é adicionado a esta mistura de modo a reduzir e formar nanopartículas na superfície dos nanotubos de carbono. Alguns trabalhos descrevem funcionalizações moleculares específicas na parede dos nanotubos de carbono de modo a ligar fortemente estas nanopartículas à parede dos NTC. Abaixo, apresentamos várias referências da literatura que mostram o estado da arte em processos e rotas de decoração de nanoestruturas de carbono com nanopartículas metálicas. Several chemical synthesis routes of hybrid NTC / NPM systems have been developed and mostly consisting of a well-dispersed pretreated carbon nanotube solution containing some functionalization for its dispersion in aqueous medium. This dispersed solution is then mixed with an ionic solution of the metal to be reduced and then a reducing agent is added to this mixture to reduce and form nanoparticles on the surface of the carbon nanotubes. Some works describe specific molecular functionalizations in the carbon nanotube wall in order to strongly bond these nanoparticles to the NTC wall. Below we present several literature references that show the state of the art in processes and decoration routes of carbon nanostructures with metallic nanoparticles.
Como exemplo, Lordi e co-autores tratam NTCPS com ácido nítrico diluído para criar funcionalizações oxigenadas nas paredes dos nanotubos. A superfície apresenta principalmente grupos carboxila que podem atuar como âncoras na formação e deposição de nanopartículas de Pt. Etilenoglicol que é usado como agente redutor. O material final contém cerca de 10 % nanopartículas de platina com um diâmetro na faixa de 1-2 nm. [Lordi et al., Chem. Mater, 200 , 13, 733].  As an example, Lordi and coauthors treat NTCPS with diluted nitric acid to create oxygenated functionalizations on nanotube walls. The surface mainly has carboxyl groups that can act as anchors in the formation and deposition of Pt. Ethylene Glycol nanoparticles which is used as a reducing agent. The final material contains about 10% platinum nanoparticles with a diameter in the range of 1-2 nm. [Lordi et al., Chem. Mater, 200, 13, 733].
Alternativamente, nanopartículas podem ser pré-formadas e conectadas covalentemente aos nanotubos através de fragmentos orgânicos. Chen e colaboradores reportam que primeiro ocorre a oxidação dos NTCPS e, subsequentemente, a reação com aminotióis alifáticos que levam à formação de nanotubos com terminações tiol, os quais atuam como conexões para o deposição nanopartículas de Au (ouro). [ Chen et al., Science, 1998, 282, 95].  Alternatively, nanoparticles may be preformed and covalently connected to nanotubes through organic fragments. Chen and colleagues report that first oxidation of NTCPS occurs and subsequently reaction with aliphatic aminothiols that lead to the formation of thiol-terminated nanotubes, which act as connections for the deposition of Au (gold) nanoparticles. [Chen et al., Science, 1998, 282, 95].
Sobre a redução de metais alcalinos, é conhecido que os nanotubos de carbono podem formar sais polieletrólitos que são solúveis em solventes orgânicos polares sem necessitar de processos de funcionalização ou sonificação, formando assim uma solução termodinamicamente estável de nanotubos isolados.  On the reduction of alkali metals, it is known that carbon nanotubes can form polyelectrolyte salts that are soluble in polar organic solvents without the need for functionalization or sonification processes, thus forming a thermodynamically stable solution of isolated nanotubes.
A dissolução consiste em reduzir quimicamente os nanotubos com metais alcalinos, levando à formação sais polieletrólitos que podem apresentar uma carga a cada 10 átomos de carbono. O metal redutor, quando oxidado, atua como contra-íon compensando as cargas negativas adquiridas pelo tubo.  Dissolution consists of chemically reducing nanotubes with alkali metals, leading to the formation of polyelectrolyte salts that can carry a charge every 10 carbon atoms. The reducing metal, when oxidized, acts as a counter ion compensating for the negative charges acquired by the tube.
De acordo com Penicaud et al. [Penicaud et al., Journal of the American Chemical Society, 2005, 127, 8], a redução dos nanotubos pode ser efetuada em um sistema contendo uma mistura de nanotubos de carbono (NTC) e sódio metálico em tetrahidrofurano (THF) na presença de moléculas orgânicas como o naftaleno, antraquinona e a fluorenona sob atmosfera inerte. A doação de elétrons do metal alcalino para o nanotubo é feita por intermédio das moléculas orgânicas, pois estas possuem a propriedade de serem diretamente reduzidas pelo metal, resultando em um radical aniônico que cede ciclicamente elétrons ao nanotubo. Quando o nanotubo se apresenta saturado de cargas as moléculas orgânicas tornam-se permanentemente carregadas. Esta última etapa pode ser facilmente checada pela variação da coloração da solução que apresenta as características do espectro de absorção do radical aniônico. According to Penicaud et al. [Penicaud et al., Journal of the American Chemical Society, 2005, 127, 8], nanotube reduction can be performed in a system containing a mixture of carbon nanotubes (NTC) and metallic sodium in tetrahydrofuran (THF) in the presence of organic molecules such as naphthalene, anthraquinone and fluorenone under inert atmosphere. The donation of alkaline metal electrons to the nanotube is through the organic molecules, because they have the property of being directly reduced. by the metal, resulting in an anionic radical that cyclically yields electrons to the nanotube. When the nanotube is saturated with charges the organic molecules become permanently charged. This last step can be easily checked by varying the color of the solution that presents the characteristics of the absorption spectrum of the anionic radical.
Petit et al. [Petit et al., Chemical Physics Letters, 1999, 305, 370], mostram que os nanotubos na forma de sais polieletrólitos apresentam um potencial de redução muito mais elevado do que o potencial de redução de nanotubos dispersos não reduzidos, onde a molécula orgânica é capaz de encher as bandas de condução dos nanotubos com elétrons até que seu potencial de redução seja igualado ao potencial do radical aniônico orgânico.  Petit et al. [Petit et al., Chemical Physics Letters, 1999, 305, 370], show that nanotubes in the form of polyelectrolyte salts have a much higher reduction potential than the reduction potential of unreduced dispersed nanotubes, where the organic molecule It is able to fill the conduction bands of nanotubes with electrons until their reduction potential equals the potential of the organic anionic radical.
Pekker et al. [Pekker et al., Journal of Physical Chemistry B, 2001 , 105, 7938], mostram que os nanotubos de carbono podem formar sais polieletrólitos solúveis através de sua reação direta com amónia líquida na presença de lítio metálico. Neste sistema a amónia é capaz produzir elétrons solvatados que, por sua vez, enchem os níveis eletrônicos desocupados dos nanotubos até que seja atingido o equilíbrio químico. Esta referência também mostra que é possível utilizar o excesso de elétrons livres nos nanotubos para promover funcionalizações como hidrogenação e alquilação.  Pekker et al. [Pekker et al., Journal of Physical Chemistry B, 2001, 105, 7938], show that carbon nanotubes can form soluble polyelectrolyte salts through their direct reaction with liquid ammonia in the presence of metallic lithium. In this system ammonia is capable of producing solvated electrons, which in turn fill the unoccupied electronic levels of nanotubes until chemical equilibrium is reached. This reference also shows that it is possible to use excess free electrons in nanotubes to promote functionalizations such as hydrogenation and alkylation.
Nos processos clássicos de decoração de nanoestruturas com nanopartículas metálicas descritos na literatura utilizam, no processo de redução das espécies iónicas para a sua forma elementar, redutores químicos tais como exemplo: NaBH4 (borohidreto de sódio), N2H4 (hidrazina) acido ascórbico, tânico ou cítrico. In the classical processes of decorating nanoparticles with metallic nanoparticles described in the literature they use, in the process of reducing ionic species to their elemental form, chemical reducing agents such as: NaBH 4 (sodium borohydride), N 2 H 4 (hydrazine) acid ascorbic, tannic or citrus.
Além das referências citadas, existem algumas patentes, que utilizam processos diferentes sobre o mesmo tema.  In addition to the references cited, there are some patents that use different processes on the same subject.
Na patente americana n° 6987302, de Yingjian Chen; Xiaozhong Dang, intitulada "Método de decoração de NTC com nanopartículas magnéticas" os NTC são tratados com solução de H2SO4/HNO3 a fim de promover carboxilação em suas paredes, e subsequente tratamento com polímeros catiônicos resultando em um compósito que é capaz de atrair por interações eletrostáticas colóides de nanopartículas negativamente carregadas. Neste método não ocorre adesão direta das nanopartículas aos NTC limitando, assim, as aplicações, como em catálise eletroquímica, Além disso, o método indicado nessa tecnologia é demorado, o que diminui as suas aplicações industriais. U.S. Patent No. 6,987,302 to Yingjian Chen; Xiaozhong Dang, entitled "Method of Decorating NTC with Magnetic Nanoparticles" NTC are treated with H2SO4 / HNO3 solution to promote carboxylation on their walls, and subsequent treatment with cationic polymers resulting in a composite that is able to attract by interactions. negatively charged colloidal electrostatic nanoparticles. In this method no Direct adhesion of nanoparticles to NTC occurs, thus limiting applications, as in electrochemical catalysis. Moreover, the method indicated in this technology is time consuming, which reduces its industrial applications.
Outra patente é a Patente US n° 7250188, de Jean Pol Dodelet; et. al. cujo o invento baseia-se em um processo de decoração onde se prepara uma solução de silano do sal do metal que se deseja decorar e, subsequentemente, um eletrodo contendo nanotubos de carbono é imerso na solução de silano na qual os cátions metálicos são reduzidos sobre as paredes dos NTC através da aplicação de uma diferença de potencial entre o eletrodo contendo NTC e um contra-eletrodo. No método proposto na invenção o primeiro passo é mais complexo e gasta muito tempo, além de ser restrito a poucos metais, o que também limita a sua utilização em escala industrial.  Another patent is US Patent No. 7250188 to Jean Pol Dodelet; et. al. whose invention is based on a decoration process in which a silane solution of the metal salt to be decorated is prepared and subsequently an electrode containing carbon nanotubes is immersed in the silane solution in which the metal cations are reduced over the walls of the NTC by applying a potential difference between the NTC containing electrode and a counter electrode. In the method proposed in the invention the first step is more complex and time consuming and restricted to few metals, which also limits its use on an industrial scale.
Já a tecnologia apresentada na Patente US n° 6975063, de Dongsheng Mao et. al. fundamenta-se na redução eletrólitica de um metal sobre um eletrodo de nanotubos de carbono, promovendo a total metalização dos nanotubos de carbono em soluções aquosas tamponadas (com pH fixo). Este método leva à formação de filmes de metais bastante espessos que cobrem completamente os NTC, implicando em pouco aproveitamento dos metais.  The technology disclosed in US Patent No. 6975063 to Dongsheng Mao et. al. It is based on the electrolytic reduction of a metal on a carbon nanotube electrode, promoting the total metallization of carbon nanotubes in buffered aqueous solutions (with fixed pH). This method leads to the formation of very thick metal films that completely cover the NTC, resulting in little metal utilization.
Diante das tecnologias já desenvolvidas sobre o assunto, a capacidade de redução eletroquímica de tais compostos é suficiente apenas para reduzir, à forma elementar, metais com potenciais de redução mais elevados, tais como: Au, Ag, Pt e Pd. Estes redutores geram, inevitavelmente, grandes quantidades de nanopartículas metálicas não ligadas aos nanotubos, acarretando em um desperdício de material e pouco controle sobre a estequiometria do processo. Outro problema existente nos processos de decoração atualmente desenvolvidos é a necessidade de obter suspensões bem dispersas de nanotubos de carbono. Para obter soluções bem dispersas de NTC, a maioria dos métodos utilizados consistem em processos complexos e muito demorados de funcionalização e, muitas vezes, longos períodos de sonificação, o que acaba tornando o processo muito lento e mais custoso.  Given the technologies already developed on the subject, the electrochemical reduction capacity of such compounds is sufficient only to reduce, to the elemental form, metals with higher reduction potentials, such as: Au, Ag, Pt and Pd. These reducers inevitably generate large quantities of non-nanotube bonded metal nanoparticles, resulting in a waste of material and little control over the process stoichiometry. Another problem with presently developed decoration processes is the need to obtain well-dispersed suspensions of carbon nanotubes. For well-dispersed NTC solutions, most of the methods used consist of complex and time-consuming processes of functionalization and often long periods of sonification, which makes the process very slow and more costly.
A presente invenção apresenta grandes vantagens em relação ao arcabouço tecnológico existente sobre o assunto, uma vez que o método aqui proposto descreve um rápido processo de decoração de NTC com uma vasta gama de NP metálicas ou ligas binárias e ternárias e as nanopartículas são geradas "in-situ" pela redução de seus íons diretamente pelos NTC, garantindo boa adesão. Também não são necessários passos iniciais de funcionalização dos nanotubos. The present invention has great advantages over the existing technological framework on the subject, since the method here The proposed approach describes a rapid process of decoration of NTC with a wide range of binary and ternary metallic NP or alloys and nanoparticles are generated in situ by reducing their ions directly by the NTC, ensuring good adhesion. Also no initial steps of nanotube functionalization are required.
O processo descrito nesta patente, pelo fato de transferir cargas elétricas ao NTC, promove uma repulsão eletrostática entre elas facilitando enormemente a sua dispersão em meio líquido. Dessa forma, soluciona dois problemas simultaneamente: dispersão e decoração dos NTC.  The process described in this patent, by transferring electrical charges to the NTC, promotes an electrostatic repulsion between them greatly facilitating their dispersion in liquid medium. This solves two problems simultaneously: dispersion and decoration of the NTC.
Portanto, para solucionar os problemas apresentados, o presente processo propõe a utilização da própria nanoestrutura de carbono como agente redutor, cujo potencial eletroquímico no equilíbrio termodinâmico se iguala ao do Na (sódio) em forma metálica. Desse modo, tais nanoestruturas de carbono se tornam agentes redutores muito fortes servindo, assim, para a redução de inúmeros cátions metálicos além dos cátions de Au, Ag, Pt e Pd. Além disso, a redução dos íons metálicos será induzida diretamente na superfície dos NTC, não havendo formação de nanopartículas livres em solução. Outra vantagem é que a nova técnica não necessita de nenhum processo prévio de funcionalização dos NTC visto que os nanotubos na forma reduzida são formados por sais polieletrólitos bem dispersos e isolados.  Therefore, to solve the problems presented, the present process proposes the use of carbon nanostructure itself as a reducing agent, whose electrochemical potential in thermodynamic equilibrium is equal to that of Na (sodium) in metallic form. Thus, such carbon nanostructures become very strong reducing agents thus serving to reduce numerous metal cations in addition to Au, Ag, Pt and Pd cations. In addition, the reduction of metal ions will be induced directly on the surface of the NTC, with no free nanoparticles forming in solution. Another advantage is that the new technique does not require any prior NTC functionalization process since the reduced form nanotubes are formed by well dispersed and isolated polyelectrolyte salts.
Assim, a presente invenção propõe um processo que utiliza os próprios nanotubos de carbono, na forma de sais polieletrólitos, como agentes redutores de soluções de sais metálicos para a formação de nanopartículas metálicas e ligas de nanopartículas metálicas em sua superfície externa. Descreve-se, assim, um processo "in-situ" de redução de íons metálicos de diversos metais sobre a superfície externa de nanotubos de carbono através de um processo de transferência eletrônica entre um material tipo doador tal como: Na (sódio), K (potássio) ou Li (lítio) em forma elementar, não restrito, e nanotubos de carbono dispersos tipo NTCPS ou NTCPM funcionalizados ou não, em solventes orgânicos polares apróticos. Esta transferência de carga é mediada por compostos moleculares com grande capacidade de formação de radicais aniônicos. O processo de decoração de materiais nanoestruturados com nanopartículas metálicas ocorre através do processo da redução química dos íons das nanopartículas metálicas presentes em meio líquido em nanopartículas sólidas ligadas à superfície do suporte sólido, que são nanoestruturas de carbono (NEC) tais como: nanotubos de carbono de parede simples ou múltiplas, funcionalizados ou não dispersas em meio líquido. Thus, the present invention proposes a process using carbon nanotubes themselves in the form of polyelectrolyte salts as reducing agents of metal salt solutions for the formation of metal nanoparticles and alloys of metal nanoparticles on their outer surface. Thus, an in situ process of reducing metal ions of various metals on the outer surface of carbon nanotubes is described by an electronic transfer process between a donor material such as: Na (sodium), K (potassium) or Li (lithium) in unrestricted elemental form and dispersed or non-functionalized NTCPS or NTCPM carbon nanotubes in aprotic polar organic solvents. This charge transfer is mediated by molecular compounds with high anionic radical formation capacity. The process of decoration of nanostructured materials with metal nanoparticles occurs through the process of chemical reduction of the metal nanoparticle ions present in liquid medium in solid nanoparticles attached to the surface of the solid support, which are carbon nanostructures (NEC) such as: carbon nanotubes single or multiple walls, functionalized or not dispersed in liquid medium.
O novo processo proposto envolve, numa primeira etapa, a transferência eletrônica do Na (sódio) sólido para os nanotubos de carbono, dispersos em meio líquido através de um solvente polar aprótico, tal como tetrahidrofurano. A transferência eletrônica feita por intermédio de algum composto orgânico com grande quantidade de duplas ligações conjugadas, as quais possuem a capacidade de formar radicais aniônicos tais como: naftaleno, benzofenona, antraquinona ou polímeros orgânicos conjugados, não restrito, utilizado para a condução de elétrons do metal alcalino para o nanotubo de carbono (NTC) cria assim, um sal polieletrólito CNTn" (nanotubos de carbono carregados negativamente) sob atmosfera inerte. Já numa segunda etapa, o excesso de elétrons do nanotubo de carbono são doados aos íons metálicos presentes em solução levando à sua redução na forma elementar sobre as paredes dos NTC. Este processo de decoração de nanoestruturas de carbono com nanopartículas metálicas é um processo químico que envolve duas etapas, sendo a primeira etapa, mais lenta, e dependente da concentração da espécie molecular responsável pela transferência de carga elétrica entre o Na (sódio) e o NTC. O processo de decoração termina quando este sistema atinge o equilíbrio eletroquímico, ou seja, quando os NTC apresentam-se na sua forma não iônica inicial. The proposed new process involves, in a first step, the electronic transfer of solid Na (sodium) to carbon nanotubes, dispersed in liquid medium through a polar aprotic solvent, such as tetrahydrofuran. Electron transfer by means of some organic compound with a large amount of conjugated double bonds, which have the ability to form anionic radicals such as naphthalene, benzophenone, anthraquinone or unconstrained conjugated organic polymers, used for conducting electrons of the alkali metal to the carbon nanotube (NTC) thus creates a CNT n " polyelectrolyte salt (negatively charged carbon nanotubes) under an inert atmosphere. In a second step, excess electrons from the carbon nanotube are donated to the metal ions present in solution leading to its reduction in the elemental form on the NTC walls This process of decorating carbon nanostructures with metallic nanoparticles is a two-step chemical process, the first one being slower and dependent on the concentration of the molecular species responsible. by the electrical charge transfer between Na (sodium) and NTC The decoration process ends when this system reaches the electrochemical equilibrium, that is, when the NTCs are in their initial nonionic form.
A descrição detalhada do processo de decoração de nanotubos de carbono com nanopartículas metálicas à sua superfície externa, objetivo da presente invenção, será feita de acordo com as seguintes etapas:  The detailed description of the process of decorating carbon nanotubes with metallic nanoparticles to their outer surface, object of the present invention, will be made according to the following steps:
1 -Preparação de uma mistura de nanotubos de carbono em um solvente polar aprótico  1- Preparation of a carbon nanotube mixture in a polar aprotic solvent
Nessa etapa inicial, os nanotubos de carbono são dispersos em um solvente polar aprótico e em estado anidro tal como tetrahidrofurano (THF), não restrito. Os nanotubos de carbono podem ser de paredes simples ou múltiplas (NTCPSs ou NTCMPs) funcionalizados ou não com outros compostos moleculares, à razão de mistura variável dependendo do tipo de NTC e de outros grupos moleculares ligados ou não à sua parede externa. At this early stage, carbon nanotubes are dispersed in an anhydrous polar aprotic solvent such as tetrahydrofuran (THF), not restricted. Carbon nanotubes may be single or multi-walled (NTCPSs or NTCMPs) functionalized or not with other molecular compounds, at varying mixing ratios depending on the type of NTC and other molecular groups attached or not to its outer wall.
2-Adição de espécie orgânica molecular com capacidade de formar radicais aniônicos à mistura de NTC.  2-Addition of molecular organic species capable of forming anionic radicals to the NTC mixture.
Certa quantidade de Naftaleno é adicionada à mistura acima e agitada até sua completa solubilização. O Naftaleno é uma molécula orgânica capaz de reagir com o metal alcalino formando uma espécie aniônica que apresenta como contra-íon o cátion do metal alcalino. Existem outras substâncias que desempenham o mesmo papel e podem ser utilizadas nesta etapa em substituição ao Naftaleno tais como: a Antraquinona ou Benzofenona, não restrito. A quantidade de Naftaleno presente na mistura é apenas limitada pela sua solubilidade.  A certain amount of naphthalene is added to the above mixture and stirred until complete solubilization. Naphthalene is an organic molecule capable of reacting with alkali metal to form an anionic species which has the alkali metal cation as a counterion. There are other substances that play the same role and can be used at this stage in place of naphthalene such as: anthraquinone or benzophenone, not restricted. The amount of naphthalene present in the mixture is only limited by its solubility.
3-Adição de um metal alcalino finamente dividido.  3-Addition of a finely divided alkali metal.
Uma quantidade de sódio metálico finamente dividido é adicionada à mistura da etapa anterior. O sódio metálico pode também ser substituído por outros metais alcalinos como lítio e potássio, não restrito. A quantidade de sódio requerida é da ordem de miligramas por grama de nanotubo (0,1-1000 mg/g NTC). A utilização de uma quantidade superior não altera o resultado final do processo.  An amount of finely divided metallic sodium is added to the mixture from the previous step. Metallic sodium can also be replaced by other alkaline metals such as lithium and unrestricted potassium. The amount of sodium required is on the order of milligrams per gram of nanotube (0.1-1000 mg / g NTC). Using a larger quantity does not change the end result of the process.
A mistura é então colocada em atmosfera inerte e constantemente agitada até que se obtenha uma solução bem dispersa de nanotubos de carbono na forma de polieletrólitos. A formação de polieletrólitos normalmente é acompanhada por uma mudança de coloração desta solução pelo fato de ocorrer à formação permanente de radicais aniônicos. Além disso, os radicais aniônicos formados, interagem com os nanotubos de carbono por processo de solvatação aumentando ainda mais a dispersão coloidal dos NTC e evitando a aglomeração dos mesmos. Nesta etapa esta solução é denominada solução A.  The mixture is then placed in an inert atmosphere and constantly stirred until a well dispersed solution of carbon nanotubes in the form of polyelectrolytes is obtained. The formation of polyelectrolytes is usually accompanied by a change in coloration of this solution due to the permanent formation of anionic radicals. In addition, the formed anionic radicals interact with carbon nanotubes by solvation process, further increasing the colloidal dispersion of the NTC and avoiding their agglomeration. In this step this solution is called solution A.
4-Preparação da solução do precursor metálico.  4-Preparation of the metal precursor solution.
Uma quantidade adequada de sal, que contenha o íon do metal de interesse, é dissolvida em solvente polar anidro não reativo, tal como THF, não restrito. Esta solução é preparada sob ultrasonificação ou agitação mecânica até sua completa dissolução. No caso de decoração de nanotubos de carbono com ligas binárias ou ternárias metálicas, os compostos precursores destes elementos são dissolvidos simultaneamente neste solvente polar anidro não reativo na proporção desejada para a formação da liga correspondente ou para a formação de dois ou mais tipos de nanopartículas metálicas. Os compostos precursores metálicos mais comumente usados são, os cloretos, sulfatos, oxalatos e compostos organometálicos de metais como Fe, Ni, Co, Cu, Zn, Cd, Sn, Rh, Ru, Pd, HAuCU, H2PtCL6l AgNO3, não restrito, e suas soluções binárias ou ternárias. A solução preparada nesta etapa é denominada solução B. A suitable amount of salt containing the metal ion of interest is dissolved in an unreacted polar anhydrous solvent such as THF, not restricted. This solution is prepared under ultrasonification or mechanical stirring until completely dissolved. When decorating carbon nanotubes with binary or ternary alloys, the precursor compounds of these elements are simultaneously dissolved in this non-reactive anhydrous polar solvent in the desired ratio for the formation of the corresponding alloy or for the formation of two or more types of metal nanoparticles. . The most commonly used metal precursor compounds are chlorides, sulphates, oxalates and organometallic compounds of metals such as Fe, Ni, Co, Cu, Zn, Cd, Sn, Rh, Ru, Pd, HAuCU, H 2 PtCL 6l AgNO 3 , unrestricted, and their binary or ternary solutions. The solution prepared in this step is called solution B.
5- Redução e decoração dos nanotubos de carbono a partir dos precursores metálicos  5- Reduction and decoration of carbon nanotubes from metal precursors
A solução B é agora lentamente misturada à solução A sem presença de oxigénio, ou seja, em atmosfera inerte, por meio de uma injeção através da tampa de borracha do frasco que contém a solução A, sob vigorosa agitação. Pelo fato da reação ser muito rápida, longos tempos de agitação são desnecessários e não alteram o resultado do produto final. Nesta etapa, os íons metálicos recebem elétrons dos nanotubos de carbono, sendo assim reduzidos em forma de nanopartículas metálicas sobre as paredes externas dos NTC. Esta mistura final é denominada solução C.  Solution B is now slowly mixed with solution A without oxygen, i.e. in an inert atmosphere, by injection through the rubber stopper of the vial containing solution A under vigorous stirring. Because the reaction is very fast, long stirring times are unnecessary and do not alter the outcome of the final product. At this stage, the metal ions receive electrons from carbon nanotubes, thus being reduced into metal nanoparticles on the outer walls of the NTC. This final mixture is called solution C.
6- Sepa ração purificação e armazenagem do produto final.  6- Separation purification and storage of the final product.
A separação dos NTC decorados com nanopartículas metálicas (NPMs) pode ser realizada por processos de ultrafiltração ou por ultra centrifugação. Para a separação dos NTC decorados com NPMs por filtração utilizam-se filtros com tamanho de poros de 0,45 pm assistido por vácuo. Desta maneira, após a passagem da mistura através do filtro, os NTC ficam retidos no filtro e, por meio de passagens sucessivas de etanol pela membrana de filtração, os NTC são purificados pela eliminação de resíduos de solventes e outros componentes indesejáveis.  The separation of NTC decorated with metallic nanoparticles (NPMs) can be performed by ultrafiltration or ultra centrifugation processes. For separation of NTCs decorated with NPMs by filtration, vacuum assisted pore size 0.45 µm filters are used. In this way, after the passage of the mixture through the filter, the NTCs are retained in the filter and, by successive passages of ethanol through the filtration membrane, the NTCs are purified by eliminating solvent residues and other undesirable components.
Outra forma mais eficiente e rápida de purificação dos NTC decorados com NPMs é através de processos de ultra centrifugação. Nesse processo, a solução C é centrifugada a 5000rpm por 5 minutos, o que faz com que os NTC decorados com NPMs precipitem e concentrem-se no fundo do recipiente de centrifugação. A suspensão é então descartada e etanol é adicionado ao recipiente de centrifugação. Os NTC são então novamente resuspensos e novamente submetidos à centrifugação a 5000rpm por 5 minutos. Este processo é repetido por 3 a 5 vezes e, por último, os NTC são resuspensos em etanol e transferidos para placas de Petri e levados para secar em estufa a 100 °C durante 4 a 12 horas. Another more efficient and faster way of purifying NPM decorated NTC is through ultra centrifugation processes. In this process, Solution C is centrifuged at 5000rpm for 5 minutes, which causes NPM-decorated NTCs to precipitate and concentrate to the bottom of the centrifuge vessel. The suspension is then discarded and ethanol is added to the centrifuge vessel. The NTCs are then resuspended and centrifuged again at 5000rpm for 5 minutes. This process is repeated 3 to 5 times and finally the NTC are resuspended in ethanol and transferred to Petri dishes and oven dried at 100 ° C for 4 to 12 hours.
Em algumas decorações é possível observar, por espectroscopia de fotoelétrons excitados por raios-X (XPS), energias de excitação correspondentes ao naftaleno, o que significa que o processo de remoção de solventes na etapa de purificação por filtração ou ultracentrifugação não foi eficaz. Nesta situação, dois processos são de grande eficiência para a purificação final. O primeiro é a lavagem dos NTC por filtração em filtro de 0,45 pm com um solvente no qual o naftaleno tenha maior solubilidade como, por exemplo, hexano. O segundo processo é por tratamento térmico dos NTC a 200°C sob alto vácuo (105 mbar) durante 1 hora. A escolha do processo final de purificação depende muito da quantidade de material obtida na síntese sendo preferível o segundo processo quando se obtiver grandes quantidades de produto após a síntese. In some decorations it is possible to observe, by X-ray photoelectron spectroscopy (XPS), excitation energies corresponding to naphthalene, which means that the solvent removal process in the filtration or ultracentrifugation purification step was not effective. In this situation, two processes are very efficient for final purification. The first is to wash the NTC by 0.45 µm filter filtration with a solvent in which naphthalene has greater solubility such as hexane. The second process is by heat treatment of the NTC at 200 ° C under high vacuum (10 5 mbar) for 1 hour. The choice of the final purification process depends greatly on the amount of material obtained in the synthesis and the second process is preferable when large amounts of product are obtained after synthesis.
O produto final deve ser armazenado a seco sob atmosfera inerte ou em solução de tolueno em N2 líquido, dependendo da reatividade química da nanopartícula usada na decoração. Em geral, quanto maior a reatividade, maior deve ser o controle e os cuidados de armazenagem. Exemplo 1: Deposição de nanopartículas de Au (ouro) na superfície de nanotubos de carbono de paredes simples. The final product should be stored dry under inert atmosphere or in liquid N 2 toluene solution, depending on the chemical reactivity of the nanoparticle used in the decoration. In general, the higher the reactivity, the greater the storage control and care should be. Example 1: Deposition of Au (gold) nanoparticles on the surface of single walled carbon nanotubes.
25mg de NTCPS de alta pureza são adicionados em um recipiente "X" contento 25ml de THF. 1mmol de naftaleno é adicionado ao recipiente sob agitação até a sua completa dissolução. 1g de sódio metálico finamente dividido é adicionado ao recipiente. O recipiente "X" é colocado em atmosfera inerte sob constante agitação até que se observe a completa dispersão dos nanotubos de carbono, esse evento é indicado pelo aparecimento de uma coloração amarelo-esverdeado na mistura. Uma solução "Y" é preparada dissolvendo-se 5mg de HAuCI4 em 10 ml de THF. A solução "Y" é adicionada rapidamente à solução "X" sob constante agitação. Após 15 minutos, o sódio contido na mistura é retirado e o sobrenadante é filtrado em filtro de membrana porosa (poros com diâmetro de 0,45pm), lavado quatro vezes com etanol e seco a vácuo por 2 horas a 100°C para obter nanotubos de carbono com nanopartículas de ouro em sua superfície. 25mg of high purity NTCPS is added in an "X" container containing 25ml of THF. 1mmol naphthalene is added to the stirred vessel until completely dissolved. 1g finely divided metallic sodium is added to the container. The container "X" is placed in an inert atmosphere under constant agitation until complete dispersion of the carbon nanotubes is observed, this event is indicated by the appearance of a greenish-yellow coloration in the mixture. A "Y" solution is prepared by dissolving 5mg HAuCl 4 in 10 ml THF. Solution "Y" is rapidly added to solution "X" under constant stirring. After 15 minutes, the sodium contained in the mixture is removed and the supernatant is filtered through a porous membrane filter (pores 0.45 µm in diameter), washed four times with ethanol and vacuum dried for 2 hours at 100 ° C to obtain nanotubes. carbon with gold nanoparticles on its surface.
Exemplo 2: Deposição de nanopartículas de Cu (cobre) na superfície de nanotubos de carbono de paredes simples. Example 2: Deposition of Cu (copper) nanoparticles on the surface of single walled carbon nanotubes.
25mg de NTCPS de alta pureza são adicionados em um recipiente "X" contento 25ml de THF. 1mmol de naftaleno é adicionado ao recipiente sob agitação até a sua completa dissolução. 1g de sódio metálico finamente dividido é adicionado ao recipiente. O recipiente "X" é colocado em atmosfera inerte sob constante agitação até que se observe a completa dispersão dos nanotubos de carbono, esse evento é indicado pelo aparecimento de uma coloração amarelo-esverdeado na mistura. Uma solução "Y" é preparada dissolvendo-se 5mg de CuCl2.2H20 em 10ml de THF. A solução Ύ" é adicionada rapidamente à solução "X" sob constante agitação. Após 15 minutos, o sódio contido na mistura é retirado e o sobrenadante é filtrado em filtro de membrana porosa (poros com diâmetro de 0,45pm), lavado quatro vezes com etanol e seco a vácuo por 2 horas a 100°C para obter nanotubos de carbono com nanopartículas de cobre em sua superfície. 25mg of high purity NTCPS is added in an "X" container containing 25ml of THF. 1mmol naphthalene is added to the stirred vessel until completely dissolved. 1g finely divided metallic sodium is added to the container. The container "X" is placed in an inert atmosphere under constant agitation until complete dispersion of the carbon nanotubes is observed. This event is indicated by the appearance of a greenish-yellow color in the mixture. A "Y" solution is prepared by dissolving 5mg CuCl2.2H 20 in 10ml THF. Solution Ύ "is rapidly added to solution" X "under constant stirring. After 15 minutes, the sodium contained in the mixture is removed and the supernatant is filtered through a porous membrane filter (0.45 µm pore diameter), washed four times. with ethanol and vacuum dried for 2 hours at 100 ° C to obtain carbon nanotubes with copper nanoparticles on their surface.
Exemplo 3: Deposição de nanopartículas de Rh (ródio) na superfície de nanotubos de carbono de paredes simples. Example 3: Deposition of Rh (rhodium) nanoparticles on the surface of single walled carbon nanotubes.
25mg de NTCPS de alta pureza são adicionados em um recipiente "X" contento 25ml de THF. 1 mmol de Naftaleno é adicionado ao recipiente sob agitação mecânica até a sua completa dissolução. 1g de sódio metálico finamente dividido é adicionado ao recipiente. O recipiente "X" é colocado em atmosfera inerte sob constante agitação até que se observe a completa dispersão dos nanotubos de carbono, esse evento é indicado pelo aparecimento de uma coloração amarelo-esverdeado na mistura. Uma solução "Y" é preparada dissolvendo-se 5mg de RhCI3 em 10ml de THF. A solução Ύ" é adicionada rapidamente à solução "X" sob constante agitação. Após 15 minutos, o sódio contido na mistura é retirado e o sobrenadante é filtrado em filtro de membrana porosa (poros com diâmetro de 0,45pm), lavado quatro vezes com etanol e seco a vácuo por 2 horas a 100°C para obter nanotubos de carbono com nanopartículas de ródio em sua superfície. 25mg of high purity NTCPS is added in an "X" container containing 25ml of THF. 1 mmol Naphthalene is added to the vessel under mechanical stirring until complete dissolution. 1g finely divided metallic sodium is added to the container. The container "X" is placed in an inert atmosphere under constant agitation until complete dispersion of the carbon nanotubes is observed. This event is indicated by the appearance of a greenish-yellow color in the mixture. A solution "Y" is prepared by dissolving 5mg RhCl 3 in 10ml THF. Solution Ύ "is rapidly added to solution" X "under constant stirring. After 15 minutes, the sodium contained in the mixture is removed and the supernatant is filtered through a porous membrane filter (0.45 µm pore diameter), washed four times. with ethanol and vacuum dried for 2 hours at 100 ° C to obtain carbon nanotubes with rhodium nanoparticles on their surface.
Exemplo 4: Deposição de nanopartículas de Au (ouro) na superfície de nanotubos de carbono de paredes múltiplas. Example 4: Deposition of Au (gold) nanoparticles on the surface of multiwall carbon nanotubes.
50mg de NTCMP de alta pureza são adicionados em um recipiente "X" contento 25ml de THF. 1mmol de naftaleno é adicionado ao recipiente sob agitação até a sua completa dissolução. 1g de sódio metálico finamente dividido é adicionado ao recipiente. O recipiente "X" é colocado em atmosfera inerte sob constante agitação até que se observe a completa dispersão dos nanotubos de carbono, esse evento é indicado pelo aparecimento de uma coloração amarelo-esverdeado na mistura. Uma solução "Y" é preparada dissolvendo-se 10mg de HAuCU em 10ml de THF. A solução "Y" é adicionada rapidamente à solução "X" sob constante agitação. Após 15 minutos, o sódio contido na mistura é retirado e o sobrenadante é filtrado em filtro de membrana porosa (poros com diâmetro de 0,45 pm), lavado quatro vezes com etanol e seco a vácuo por 2 horas a 100°C para obter nanotubos de carbono de paredes múltiplas com nanopartículas de ouro em sua superfície.  50mg of high purity NTCMP is added in a "X" container containing 25ml of THF. 1mmol naphthalene is added to the stirred vessel until completely dissolved. 1g finely divided metallic sodium is added to the container. The container "X" is placed in an inert atmosphere under constant agitation until complete dispersion of the carbon nanotubes is observed. This event is indicated by the appearance of a greenish-yellow color in the mixture. A "Y" solution is prepared by dissolving 10mg HAuCU in 10ml THF. Solution "Y" is rapidly added to solution "X" under constant stirring. After 15 minutes, the sodium contained in the mixture is removed and the supernatant is filtered through a porous membrane filter (pores 0.45 µm in diameter), washed four times with ethanol and vacuum dried for 2 hours at 100 ° C to obtain multi-walled carbon nanotubes with gold nanoparticles on their surface.

Claims

REIVINDICAÇÕES
1. Método de deposição de nanopartículas metálicas na superfície de nanotubos de carbono caracterizado por compreender as seguintes etapas:  1. Method of depositing metallic nanoparticles on the surface of carbon nanotubes, comprising the following steps:
a) Preparação de uma mistura de nanotubos de carbono em um solvente polar aprótico;  a) Preparation of a mixture of carbon nanotubes in a polar aprotic solvent;
b) Adição de espécie orgânica molecular com capacidade de formar radicais an iónicos à mistura de NTC;  (b) Addition of molecular organic species capable of forming anionic radicals to the NTC mixture;
c) Adição de um metal alcalino finamente dividido;  c) Addition of a finely divided alkali metal;
d) Preparação da solução do precursor metálico;  d) Preparation of the metal precursor solution;
e) Redução e decoração dos nanotubos de carbono a partir dos precursores metálicos sob atmosfera inerte;  e) Reduction and decoration of carbon nanotubes from metallic precursors under inert atmosphere;
f) Separação e purificação realizada por processos de ultrafiltração ou por ultracentrifugação e armazenagem do produto final sob atmosfera inerte ou solução de tolueno em N2. (f) Separation and purification by ultrafiltration or ultracentrifugation and storage of the final product under an inert atmosphere or N 2 toluene solution.
2. Método de deposição de nanopartículas metálicas na superfície de nanotubos de carbono, de acordo com a reivindicação 1 , caracterizado pela etapa "a" compreender o uso de um solvente polar aprótico e em estado anidro.  Method of depositing metal nanoparticles on the surface of carbon nanotubes according to claim 1, characterized in that step "a" comprises the use of an aprotic polar solvent and anhydrous state.
3. Método de deposição de nanopartículas metálicas na superfície de nanotubos de carbono, de acordo com a reivindicação 1 e 2, caracterizado pela etapa "b" compreender espécies orgânicas tais como Naftaleno, Antraquinona ou Benzofenona, não limitantes.  Method of depositing metal nanoparticles on the surface of carbon nanotubes according to claims 1 and 2, characterized in that step "b" comprises non-limiting organic species such as naphthalene, anthraquinone or benzophenone.
4. Método de deposição de nanopartículas metálicas na superfície de nanotubos de carbono, de acordo com a reivindicação 1 a 3, caracterizado pela etapa "c" compreender um metal alcalino finamente dividido, tal como sódio metálico, potássio metálico ou lítio metálico, não restrito.  Method of depositing metal nanoparticles on the surface of carbon nanotubes according to claims 1 to 3, characterized in that step "c" comprises a finely divided alkali metal such as metallic sodium, metallic potassium or unrestricted lithium metal. .
5. Método de deposição de nanopartículas metálicas na superfície de nanotubos de carbono, de acordo com a reivindicação 1 a 4, caracterizado pela etapa "d" e "e" compreender precursores metálicos tais como os cloretos, sulfatos, oxalatos e compostos organometálicos de metais como Fe, Ni, Co, Cu, Zn, Cd, Sn, Rh, Ru, Pd, HAuCI4, H2PtCL6, AgN03, não restrito, e suas soluções binárias ou ternárias. Method of depositing metal nanoparticles on the surface of carbon nanotubes according to claims 1 to 4, characterized in that step "d" e "e" comprises metal precursors such as metal chlorides, sulphates, oxalates and organometallic compounds like Fe, Ni, Co, Cu, Zn, Cd, Sn, Rh, Ru, Pd, HAuCI 4 , H 2 PtCL 6 , AgN0 3 , unrestricted, and their binary or ternary solutions.
6. Método de deposição de nanopartículas metálicas na superfície de nanotubos de carbono, de acordo com a reivindicação 1 a 5, caracterizado por apresentar nanotubos de carbono de paredes simples na forma de sais polieletrólitos.  Method of depositing metal nanoparticles on the surface of carbon nanotubes according to claims 1 to 5, characterized in that it has single walled carbon nanotubes in the form of polyelectrolyte salts.
7. Método de deposição de nanopartículas metálicas na superfície de nanotubos de carbono, de acordo com a reivindicação 1 a 5, caracterizado por apresentar nanotubos de carbono de paredes múltiplas na forma de sais polieletrólitos.  Method of depositing metal nanoparticles on the surface of carbon nanotubes according to any one of claims 1 to 5, characterized in that it has multiwall carbon nanotubes in the form of polyelectrolyte salts.
8. Método de deposição de nanopartículas metálicas na superfície de nanotubos de carbono, de acordo com a reivindicação 1 a 7, caracterizado por apresentar ao menos um sal de metal como platina, ouro, irídio, prata, paládio, ródio, rutênio, cádmio, ferro, cobalto, cobre, zinco, estanho, bismuto, índio, ou mistura de vários destes materiais.  Method of depositing metal nanoparticles on the surface of carbon nanotubes according to claims 1 to 7, characterized in that it has at least one metal salt such as platinum, gold, iridium, silver, palladium, rhodium, ruthenium, cadmium, iron, cobalt, copper, zinc, tin, bismuth, indium, or a mixture of several of these materials.
9. Método de deposição de nanopartículas metálicas na superfície de nanotubos de carbono, de acordo com a reivindicação 1 a 8, caracterizado por apresentar uma concentração entre 0,1-1000 mg/g de sais de nanotubos na forma de polieletrólitos em solvente inerte.  Method of depositing metal nanoparticles on the surface of carbon nanotubes according to claims 1 to 8, characterized in that it has a concentration of 0.1-1000 mg / g of nanotube salts in the form of polyelectrolytes in an inert solvent.
10. Método de deposição de nanopartículas metálicas na superfície de nanotubos de carbono, de acordo com a reivindicação 1 a 9, caracterizado por apresentar percentagens de sais de metal entre 0,01 a 200 % em relação à massa de nanotubos na forma de sais polieletrólitos adicionada.  Method of depositing metal nanoparticles on the surface of carbon nanotubes according to claims 1 to 9, characterized in that it has percentages of metal salts between 0.01 to 200% relative to the mass of nanotubes in the form of polyelectrolyte salts. added.
PCT/BR2009/000013 2008-01-15 2009-01-15 Process for synthetising nanostructured hybrid systems: carbon nanotubes-metal nanoparticles WO2009097669A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRPI0800605A BRPI0800605B1 (en) 2008-01-15 2008-01-15 synthesis process of hybrid nanostructured systems: carbon nanotubes-metallic nanoparticles
BRPI0800605-9 2008-01-15

Publications (1)

Publication Number Publication Date
WO2009097669A1 true WO2009097669A1 (en) 2009-08-13

Family

ID=40951751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2009/000013 WO2009097669A1 (en) 2008-01-15 2009-01-15 Process for synthetising nanostructured hybrid systems: carbon nanotubes-metal nanoparticles

Country Status (2)

Country Link
BR (1) BRPI0800605B1 (en)
WO (1) WO2009097669A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012143658A1 (en) 2011-04-19 2012-10-26 Snecma Propulsion Solide Process for preparing a monolithic catalysis element comprising a fibrous support and said monolithic catalysis element
RU2475445C2 (en) * 2010-12-20 2013-02-20 Государственное образовательное учреждение высшего профессионального образования "Тамбовский государственный университет имени Г.Р. Державина" Method for obtaining volume nanostructured material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6346136B1 (en) * 2000-03-31 2002-02-12 Ping Chen Process for forming metal nanoparticles and fibers
US6875274B2 (en) * 2003-01-13 2005-04-05 The Research Foundation Of State University Of New York Carbon nanotube-nanocrystal heterostructures and methods of making the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6346136B1 (en) * 2000-03-31 2002-02-12 Ping Chen Process for forming metal nanoparticles and fibers
US6875274B2 (en) * 2003-01-13 2005-04-05 The Research Foundation Of State University Of New York Carbon nanotube-nanocrystal heterostructures and methods of making the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHOI HEE CHEUL ET AL.: "Spontaneous Reduction of Metal Ions on the Sidewalls of Carbon Nanotubes", J.AM.CHEM.SOC., vol. 124, 2002, pages 9058 - 9059 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2475445C2 (en) * 2010-12-20 2013-02-20 Государственное образовательное учреждение высшего профессионального образования "Тамбовский государственный университет имени Г.Р. Державина" Method for obtaining volume nanostructured material
WO2012143658A1 (en) 2011-04-19 2012-10-26 Snecma Propulsion Solide Process for preparing a monolithic catalysis element comprising a fibrous support and said monolithic catalysis element

Also Published As

Publication number Publication date
BRPI0800605B1 (en) 2018-09-04
BRPI0800605A2 (en) 2010-12-28

Similar Documents

Publication Publication Date Title
Han et al. Structural diversity of graphene materials and their multifarious roles in heterogeneous photocatalysis
Yuan et al. Two-Dimensional Amorphous SnO x from Liquid Metal: Mass Production, Phase Transfer, and Electrocatalytic CO2 Reduction toward Formic Acid
Hu et al. Ultrathin nanostructures: smaller size with new phenomena
Li et al. Noncovalent assembly of carbon nanotube-inorganic hybrids
WO2013137018A1 (en) Metal nanonetwork and method for producing same, and conductive film and conductive substrate using metal nanonetwork
Ahn et al. Multidimensional thin film hybrid electrodes with MoS2 multilayer for electrocatalytic hydrogen evolution reaction
Yu et al. Facile synthesis of uniform AuPd@ Pd nanocrystals supported on three-dimensional porous N-doped reduced graphene oxide hydrogels as highly active catalyst for methanol oxidation reaction
Chen et al. Electroless deposition of Ni nanoparticles on carbon nanotubes with the aid of supercritical CO2 fluid and a synergistic hydrogen storage property of the composite
JP2004034228A (en) Precious metal nanotube, and method for manufacturing the same
EP3163640B1 (en) Method for producing nanomaterial-dopant composition composite and nanomaterial-dopant composition composite
FR2919856A1 (en) Solubilizing graphite, to prepare reduced graphene useful e.g. to prepare capacitor, comprises reducing graphite by metal to obtain graphite intercalation compound, and exposing the compound to solvent to give reduced graphene solution
WO2006093317A1 (en) Single crystalline noble metal ultrathin film nanoparticles formed using, as reaction field, adsorbed micell film formed at solid/liquid interface and process for producing the same
Calandra et al. Metal nanoparticles and carbon-based nanostructures as advanced materials for cathode application in dye-sensitized solar cells
WO2012012927A1 (en) Methods for synthesizing noble metal ultrathin nanowires in aqueous phase and organizing noble metal nanoporous films by self-sedimentation
Huang et al. Well-dispersive Pt nanoparticles grown on 3D nitrogen-and sulfur-codoped graphene nanoribbon architectures: highly active electrocatalysts for methanol oxidation
CN102674337A (en) Self-extension graphene and preparation method thereof
JP5190420B2 (en) Silver fine particles and method for producing the same
Wang et al. Recycling valuable elements from the chemical synthesis process of nanomaterials: a sustainable view
Pan et al. Coordination‐Driven Hierarchical Assembly of Hybrid Nanostructures Based on 2D Materials
El Attar et al. Designing new material based on functionalized multi-walled carbon nanotubes and Cu (OH) 2–Cu2O/polypyrrole catalyst for ethanol oxidation in alkaline medium
Wang et al. 0D/1D heterostructure for efficient electrocatalytic CO2-to-C1 conversion by ultra-small cluster-based multi-metallic sulfide nanoparticles and MWCNTs
WO2009097669A1 (en) Process for synthetising nanostructured hybrid systems: carbon nanotubes-metal nanoparticles
Ko et al. Highly conductive, transparent flexible films based on metal nanoparticle-carbon nanotube composites
JP2019526448A (en) Method for synthesizing particles in the presence of a solid phase
KR20110033652A (en) Manufacturing method of highly electrically conductive carbon nanotube-metal composite

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09708579

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09708579

Country of ref document: EP

Kind code of ref document: A1