WO2009096522A1 - Microscope and aberration correction controlling device - Google Patents

Microscope and aberration correction controlling device Download PDF

Info

Publication number
WO2009096522A1
WO2009096522A1 PCT/JP2009/051580 JP2009051580W WO2009096522A1 WO 2009096522 A1 WO2009096522 A1 WO 2009096522A1 JP 2009051580 W JP2009051580 W JP 2009051580W WO 2009096522 A1 WO2009096522 A1 WO 2009096522A1
Authority
WO
WIPO (PCT)
Prior art keywords
aberration correction
temperature
cover glass
aberration
thickness
Prior art date
Application number
PCT/JP2009/051580
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Kawahito
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to JP2009551599A priority Critical patent/JP5212382B2/en
Publication of WO2009096522A1 publication Critical patent/WO2009096522A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/33Immersion oils, or microscope systems or objectives for use with immersion fluids
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/02Objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • G02B27/0068Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration having means for controlling the degree of correction, e.g. using phase modulators, movable elements

Definitions

  • the present invention relates to a microscope and an aberration correction control device, and more particularly to a microscope and an aberration correction control device suitable for use in automatically performing aberration correction.
  • the refractive index of a liquid (hereinafter referred to as an immersion medium) filled between the immersion objective lens and the cover glass changes due to a temperature change, and the refractive index The generated aberration changes due to the change.
  • an immersion medium having a large refractive index used for an immersion objective lens having a large numerical aperture has a large change in refractive index due to a change in temperature, and a large change in generated aberration.
  • the invention described in Patent Document 1 does not consider correcting the change in aberration due to the temperature change of the immersion medium.
  • the present invention has been made in view of such a situation, and makes it possible to perform aberration correction more appropriately.
  • the microscope according to the first aspect of the present invention is a microscope including an immersion objective lens having an aberration correction lens, and the temperature of the immersion liquid filled between the immersion objective lens and the cover glass.
  • Temperature measurement means for measuring the liquid, based on adjustment value data representing an adjustment value of the position of the aberration correction lens for appropriately correcting aberration in a combination of the temperature of the liquid and the thickness of the cover glass.
  • Aberration correction means for adjusting the position of the aberration correction lens according to the temperature change.
  • An aberration correction control apparatus is an aberration correction control apparatus that controls aberration correction of a microscope including an immersion objective lens including an aberration correction lens, the immersion objective lens and a cover glass.
  • a temperature measuring means for measuring the temperature of the immersion liquid filled in between, and a combination of the temperature of the liquid and the thickness of the cover glass of the aberration correction lens for appropriately correcting aberrations
  • aberration correction means for adjusting the position of the aberration correction lens in accordance with a change in the temperature of the liquid based on adjustment value data representing a position adjustment value.
  • the temperature of the liquid for immersion filled between the immersion objective lens and the cover glass is measured, and according to the change in the temperature of the liquid.
  • the position of the aberration correction lens is adjusted.
  • aberration correction can be performed more appropriately.
  • FIG. 1 is a diagram showing an embodiment of a microscope to which the present invention is applied.
  • the main body 11 of the inverted microscope 1 is provided with a transmission illumination device 12 and an epi-illumination device 13, and the specimen in the Petri dish 2 on the stage 21 is observed using transmission illumination or epi-illumination. Can do.
  • a CCD (Charge Coupled Devices) camera 14 is attached to the main body 11 of the microscope 1, and it is possible to take an image of a specimen by transmitted illumination or epi-illumination.
  • CCD Charge Coupled Devices
  • a focusing unit 25 is provided on the lower surface of the stage 21.
  • the focusing unit 25 moves the focusing movable unit 24 up and down to support the revolver 23 on which a plurality of objective lenses (in FIG. 1, only two objective lenses 22A and 22B are shown) are mounted. Supports to move in the direction.
  • the objective lenses 22A and 22B are simply referred to as the objective lens 22 when it is not necessary to distinguish them.
  • a plurality of filter blocks each including a combination of two types of filters and a dichroic mirror are provided below the focusing movable unit 24 (in FIG. 1, two filter blocks 16A and 16B are illustrated. )
  • a filter turret 15 is provided.
  • the filter blocks 16A and 16B are simply referred to as the filter block 16 when it is not necessary to distinguish them.
  • the transmission illumination light emitted from the light source 31 of the transmission illumination device 12 is transmitted through the collector lens 32 and then reflected toward the condenser lens 34 by the reflection mirror 33. Then, the sample in the Petri dish 2 is irradiated through the condenser lens 34.
  • the optical path switching prism 52 is removed from the optical path, the transmitted illumination light that has passed through the specimen passes through the objective lens 22, the filter block 16, and the second objective lens 52, and is imaged by the CCD camera 14 with the transmitted illumination light. Is filmed.
  • the optical path switching prism 52 When the optical path switching prism 52 is inserted in the optical path, the transmitted illumination light transmitted through the sample is transmitted through the objective lens 22, the filter block 16, and the second objective lens 51, and the direction of the prism 53 is transmitted by the optical path switching prism 52. Is reflected in the direction of the eyepiece lens 55 by the prism 53 and the reflecting mirror 54, and the user observes the image of the specimen by the transmitted illumination light through the eyepiece lens 55.
  • the epi-illumination light emitted from the light source 41 of the epi-illumination device 13 passes through the relay lenses 42 and 43 and is then transmitted to a predetermined wavelength by the filter block 16. Only is transmitted, is reflected in the direction of the objective lens 22, and is irradiated to the specimen in the Petri dish 2 through the objective lens 22.
  • the optical path switching prism 52 is removed from the optical path, the fluorescence emitted from the specimen by irradiating the epi-illumination light passes through the objective lens 22, and then only a predetermined wavelength is extracted by the filter block 16, and the CCD camera 14 An image of the fluorescence emitted from the specimen is taken.
  • the optical path switching prism 52 when the optical path switching prism 52 is placed in the optical path, the fluorescence emitted from the specimen by irradiating the epi-illumination light is transmitted through the objective lens 22, and then only a predetermined wavelength is extracted by the filter block 16, and the optical path Reflected in the direction of the prism 53 by the switching prism 52 and reflected in the direction of the eyepiece lens 55 by the prism 53 and the reflecting mirror 54, the user observes an image of fluorescence emitted from the specimen through the eyepiece lens 55. .
  • FIG. 2 is a diagram showing in detail the configuration around the stage 21 and the objective lens 22 of the microscope 1 in FIG.
  • FIG. 2 shows an example in which the culture medium 102 is filled in the Petri dish 2 and the specimen 101 which is a cell to be observed is placed on the cover glass 2A constituting the bottom of the Petri dish 2. ing.
  • the temperature of the culture solution 102 can be kept almost constant (for example, 37 ° C.) by the heat plate 83 on the stage 21, and the specimen 101 can be observed while alive.
  • Oil immersion oil 71 is filled between the objective lens 22A for oil immersion and the cover glass 2A in order to increase the numerical aperture of the optical system and realize high resolution and brightness.
  • the objective lens 22A also includes an aberration correction lens 72 that is used to appropriately correct aberrations that change due to an error in the thickness of the cover glass 2A or a change in refractive index that accompanies a temperature change in the oil immersion oil 71. Yes.
  • the aberration correction lens 72 is fixed by a lens frame 73 connected to the cam groove of the correction ring 75 via a pin 74. Therefore, by rotating the correction ring 75 about the axis of the pin 74, the aberration correction lens 72 moves in the optical axis direction together with the lens frame 73, and the position of the aberration correction lens 72 in the optical axis direction can be adjusted.
  • a correction ring worm gear 76 is provided on the outer periphery of the correction ring 75, and a motor 77 with a rotary encoder is driven under the control of the control unit 92, and the correction ring worm gear 76 is corrected.
  • the control unit 92 detects the rotation angle of the correction ring 75 with reference to the reference position defined by the limit sensor 79 and the limit plate 78 based on the pulse output from the motor 77.
  • the focusing unit 25 is provided with a stepping motor 80, and the stepping motor 80 is driven under the control of the control unit 92, and the rack teeth 81 attached to the focusing movable unit 24 are moved in the vertical direction.
  • the focusing movable unit 24 can be moved in the vertical direction.
  • the revolver 23 and the objective lens 22 attached to the focusing movable unit 24 move in the vertical direction, and the position of the objective lens 22 used for observation (the objective lens 22A in FIG. 2) in the optical axis direction is electrically driven.
  • the control unit 92 detects the position of the objective lens 22 in the optical axis direction based on the position of the rack tooth 81 detected by the linear scale 82.
  • the heat plate 83 repeats heating and cooling in order to keep the temperature of the culture solution 102 substantially constant and keep the specimen 101 in a good state.
  • the temperature of the Petri dish 2 including the cover glass 2A varies, and the temperature of the oil immersion oil 71 filled at the tip of the objective lens 22A also varies due to heat conduction.
  • the controller 92 measures the temperature of the oil immersion oil 71 based on a signal from the temperature sensor 84 installed at the tip of the objective lens 22A, and stores it in the storage unit 93 together with the measurement time.
  • the input unit 91 includes, for example, various keys and switches, and is used to input various commands and information to the control unit 92.
  • the control unit 92 includes, for example, a processor such as a CPU (Central Processing Unit), and controls aberration correction of the microscope 1 as described later with reference to FIGS.
  • the control unit 92 is connected to the CCD camera 14 and acquires data indicating the contrast value of an image captured by the CCD camera 14.
  • the storage unit 93 includes, for example, various memories, and stores a correction amount table described later with reference to FIG.
  • the input unit 91, the control unit 92, and the storage unit 93 can be provided in the microscope 1, or configured by a dedicated external device or computer other than the microscope 1. It is also possible to do.
  • FIG. 3 is a block diagram illustrating an example of a functional configuration realized by the control unit 92 of FIG. 2 executing a predetermined program.
  • the temperature measuring unit 151 measures the temperature of the oil 71 for oil immersion based on a signal from the temperature sensor 84.
  • the temperature measurement unit 151 notifies the measured temperature of the oil 71 for oil immersion to the correction amount table generation unit 153, the cover glass thickness detection unit 154, and the aberration correction unit 155 as necessary, or together with the measurement time. Or stored in the storage unit 93.
  • the rotation angle detector 152 detects the rotation angle of the correction ring 75 with reference to the reference position defined by the limit sensor 79 and the limit plate 78 based on the pulse output from the motor 77, and if necessary, The correction amount table generation unit 153 and the aberration correction unit 155 are notified.
  • the correction amount table generation unit 153 is a combination of the temperature of the oil for oil 71 and the thickness of the cover glass 2 ⁇ / b> A input through the input unit 91.
  • a correction amount table which is data indicating an adjustment value (rotation angle of the correction ring 75) of the position of the aberration correction lens 72 for appropriately correcting the aberration, is generated and stored in the storage unit 93.
  • the cover glass thickness detection unit 154 is notified of the temperature of the oil 71 for oil immersion, the rotation angle of the correction ring 75 notified from the aberration correction unit 155, and the focus control unit 156.
  • the thickness of the cover glass 2A is detected based on the contrast value of the image photographed by the CCD camera 14 and a correction amount table described later with reference to FIG.
  • the cover glass thickness detection unit 154 notifies the aberration correction unit 155 of the detected thickness of the cover glass 2A. Further, the cover glass thickness detection unit 154 notifies the aberration correction unit 155 of an assumed value of the thickness of the cover glass 2A that is set when detecting the thickness of the cover glass 2A.
  • the aberration correction unit 155 determines the thickness of the cover glass 2 ⁇ / b> A or the assumed value of the thickness of the cover glass 2 ⁇ / b> A, the temperature of the oil 71 for oil immersion, and FIG. 5. Based on a correction amount table to be described later, a rotation angle of the correction ring 75 appropriate for correcting the aberration is obtained.
  • the aberration correction unit 155 controls the motor 77 while monitoring the rotation angle of the correction ring 75 detected by the rotation angle detection unit 152, rotates the correction ring 75 by the calculated rotation angle, and the aberration is appropriately corrected.
  • the position of the aberration correction lens 72 in the optical axis direction is adjusted.
  • the aberration correction unit 155 notifies the focus control unit 156 that the adjustment of the position of the aberration correction lens 72 is completed.
  • the focus control unit 156 detects the position of the rack tooth 81 based on the signal from the linear scale 82, and the contrast value of the image supplied from the CCD camera 14, that is, the sample observed through the objective lens 22.
  • the focus control of the objective lens 22 is performed by controlling the stepping motor 80 so as to maximize the contrast value of the image and adjusting the position of the objective lens 22 in the optical axis direction.
  • correction amount table generation process executed by the microscope 1 will be described with reference to the flowchart of FIG. This process is started, for example, when the user inputs a correction amount table generation instruction via the input unit 91.
  • step S ⁇ b> 1 the temperature measuring unit 151 starts measuring the temperature of the oil 71 for oil immersion based on the signal from the temperature sensor 84.
  • the temperature measurement unit 151 notifies the correction amount table generation unit 153 of the measured temperature of the oil 71 for immersion.
  • the correction amount table generation unit 153 acquires the thickness of the cover glass.
  • the thickness of the cover glass is allowed to have a manufacturing error within a predetermined range with respect to the standard reference value. For example, an error within the range of 0.15 mm to 0.18 mm is allowed with respect to the standard standard value of 0.17 mm. ing.
  • the user can create a cover glass having a plurality of known thicknesses within a tolerance range (for example, four types of cover glasses having thicknesses of 0.15 mm, 0.16 mm, 0.17 mm, and 0.18 mm). ).
  • the user installs one of the prepared cover glasses on the stage 21 of the microscope 1 and inputs the thickness of the installed cover glass via the input unit 91.
  • the correction amount table generation unit 153 acquires data indicating the thickness of the cover glass input by the user.
  • step S ⁇ b> 3 the correction amount table generation unit 153 determines whether storage of the rotation angle of the correction ring 75 has been commanded. Specifically, the user adjusts the temperature of the heat plate 83 so that the temperature of the oil 71 for oil immersion becomes a desired temperature. When the temperature of the oil immersion oil 71 reaches a desired temperature, the user uses the correction ring 75 to adjust the position of the aberration correction lens 72 in the optical axis direction or adjust the position of the focusing movable unit 24. The focus of the objective lens 22 is adjusted by adjusting the position of the objective lens 22 in the optical axis direction.
  • a command for storing the rotation angle of the correction ring 75 at that time is input via the input unit 91.
  • the correction amount table generation unit 153 obtains the command, the correction amount table generation unit 153 determines that the storage of the rotation angle of the correction ring 75 has been commanded, and the process proceeds to step S4.
  • step S4 the correction amount table generating unit 153 sets the rotation angle of the correction ring 75 for the combination of the current cover glass thickness and the temperature of the oil for oil 71 to the correction amount table.
  • FIG. 5 shows an example of the correction amount table.
  • the correction amount table lists rotation amounts ⁇ mn of the correction ring 75 for appropriately correcting aberrations in each combination of the temperature of the oil 71 for immersion and the thickness of the cover glass.
  • the temperature of 16 kinds of oil 71 for oil immersion at intervals of 1 ° C. within a range from 23 ° C. to 39 ° C. and 4 at intervals of 0.01 mm within a range from 0.15 m to 0.18 mm.
  • the correction amount table generation unit 153 acquires data indicating the current rotation angle of the correction ring 75 from the rotation angle detection unit 152, and uses the acquired rotation angle of the correction ring 75 as the current cover glass thickness and oil immersion oil. It is set in the column of the correction amount table corresponding to the temperature combination of 71.
  • step S3 determines that the storage of the rotation angle of the correction ring 75 is not instructed. If it is determined in step S3 that the storage of the rotation angle of the correction ring 75 is not instructed, the process of step S4 is skipped, and the process proceeds to step S5.
  • step S5 the correction amount table generation unit 153 determines whether the cover glass has been replaced. If it is determined that the cover glass has not been replaced, the process proceeds to step S6.
  • step S6 the correction amount table generation unit 153 determines whether the end of the process is instructed. If it is determined that the end of the process has not been commanded, the process returns to step S3, and it is determined in step S5 that the cover glass has been replaced, or in step S6, it is determined that the end of the process has been commanded. Until then, the processes of steps S3 to S6 are repeated.
  • the user adjusts the temperature of the heat plate 83 and changes the temperature of the oil immersion oil 71 in units of 1 ° C. from 23 ° C. to 39 ° C.
  • the focus of the objective lens 22 is adjusted at each temperature, and the rotation angle of the correction ring 75 when the focus is most appropriately adjusted is set in the correction amount table.
  • the user installs the cover glass having the next thickness (for example, 0.16 mm) on the stage 21 and installs it through the input unit 91. Enter the thickness of the cover glass.
  • the correction amount table generation unit 153 acquires data indicating the thickness of the cover glass input by the user, the correction amount table generation unit 153 determines in step S5 that the cover glass has been replaced, and the process returns to step S2, and the above-described step S2 and subsequent steps. Is performed.
  • the user changes the temperature of all the oil immersion oils 71 in the correction amount table and the thickness of the cover glass while changing the temperature of the oil immersion oil 71 or replacing the cover glass.
  • the rotation angle of the correction ring 75 for the combination is set.
  • the user inputs an instruction to end generation of the correction amount table via the input unit 91.
  • the correction amount table generation unit 153 obtains the instruction, it determines that the end of the process is instructed in step S6, and the correction amount table generation process ends.
  • a correction amount table for each combination of a microscope and an objective lens is generated by a manufacturer or the like, and the correction amount table is generated. You may make it provide to a user.
  • the cover glass thickness detector 154 sets an assumed value of the thickness of the cover glass 2A. Specifically, the cover glass thickness detection unit 154 selects one unprocessed thickness among the cover glass thicknesses defined in the correction amount table, and sets the unprocessed thickness to an assumed value of the cover glass 2A. The cover glass thickness detection unit 154 notifies the aberration correction unit 155 of the assumed thickness value of the set cover glass 2A.
  • step S ⁇ b> 22 the temperature measurement unit 151 measures the temperature of the oil for oil immersion 71 based on the signal from the temperature sensor 84.
  • the temperature measuring unit 151 notifies the measured temperature of the oil immersion oil 71 to the cover glass thickness detecting unit 154 and the aberration correcting unit 155.
  • step S ⁇ b> 23 the aberration correction unit 155 moves the aberration correction lens 72 to an appropriate position with respect to the assumed value of the thickness of the cover glass 2 ⁇ / b> A and the temperature of the oil for oil 71. Specifically, the aberration correction unit 155 determines the rotation angle of the correction ring 75 with respect to the combination of the current estimated value of the thickness of the cover glass 2A and the temperature of the oil immersion oil 71 based on the correction amount table. In addition, when the column corresponding to the combination of the current estimated value of the cover glass 2A and the temperature of the oil 71 for oil immersion does not exist in the correction amount table, the aberration correction unit 155 uses the values in the other columns to calculate a straight line. The rotation angle of the correction ring 75 is calculated by interpolation.
  • the aberration correction unit 155 controls the motor 77 while monitoring the rotation angle of the correction ring 75 detected by the rotation angle detection unit 152 and rotates the correction ring 75 by the calculated rotation angle. Thereby, the position of the aberration correction lens 72 in the optical axis direction is adjusted to an appropriate position with respect to the combination of the current assumed value of the thickness of the cover glass 2A and the temperature of the oil 71 for oil immersion.
  • the aberration correction unit 155 notifies the cover glass thickness detection unit 154 of the set rotation angle of the correction ring 75.
  • the aberration correction unit 155 notifies the focus control unit 156 that the adjustment of the position of the aberration correction lens 72 is completed.
  • step S24 the focus control unit 156 performs focus control. Specifically, the focus control unit 156 adjusts the position of the objective lens 22A in the optical axis direction by controlling the stepping motor 80 so that the contrast value of the image supplied from the CCD camera 14 is maximized. After adjusting the position of the objective lens 22A in the optical axis direction, the focus control unit 156 notifies the cover glass thickness detection unit 154 of the maximum contrast value.
  • step S25 the cover glass thickness detection unit 154 stores the acquired temperature of the oil immersion oil 71, the rotation angle of the correction ring 75, and the maximum value of the contrast value of the image in the storage unit 93 in association with each other.
  • step S26 the cover glass thickness detection unit 154 determines whether or not the assumed values of the thicknesses of all the cover glasses 2A have been processed. If it is determined that the assumed values of the thicknesses of all the cover glasses 2A have not been processed yet, the process returns to step S21, and in step S26, it is determined that the assumed values of the thicknesses of all the cover glasses 2A have been processed. Steps S21 to S26 are repeatedly executed until Thereby, the thicknesses of all the cover glasses defined in the correction amount table are sequentially set as the assumed values of the thickness of the cover glass 2A, and as described above, the temperature of the oil immersion oil 71 at each assumed value, The rotation angle of the correction ring 75 and the maximum contrast value of the image are measured and stored.
  • step S26 determines whether processing has been performed for the assumed thickness values of all the cover glasses 2A. If it is determined in step S26 that processing has been performed for the assumed thickness values of all the cover glasses 2A, the processing proceeds to step S27.
  • the cover glass thickness detector 154 determines the thickness of the cover glass 2A. Specifically, the cover glass thickness detection unit 154 has a maximum contrast value among combinations of the stored temperature of the oil immersion oil 71, the rotation angle of the correction ring 75, and the maximum value of the contrast value of the image. The combination with the maximum value is extracted. The cover glass thickness detection unit 154 obtains the thickness of the cover glass 2A based on the temperature of the oil immersion oil 71 in the extracted combination, the rotation angle of the correction ring 75, and the correction amount table. More specifically, the cover glass thickness detection unit 154 calculates the cover glass thickness corresponding to the temperature of the oil for oil 71 and the rotation angle of the correction ring 75 in the extracted combination based on the correction amount table. Obtained as a thickness of 2A. The cover glass thickness detection unit 154 notifies the aberration correction unit 155 of the obtained thickness of the cover glass 2A.
  • step S28 the temperature measuring unit 151 measures the temperature of the oil 71 for oil immersion based on the signal from the temperature sensor 84.
  • the temperature measurement unit 151 notifies the aberration correction unit 155 of the measured temperature of the oil immersion oil 71 and stores it in the storage unit 93 together with the measurement time.
  • step S29 the aberration correction unit 155 determines whether it is time to perform aberration correction. If it is determined that it is time to perform aberration correction, the process proceeds to step S30.
  • the timing for performing the aberration correction is, for example, when a predetermined time has elapsed since the previous aberration correction, or when the temperature of the oil immersion oil 71 has changed by a predetermined value or more after the previous aberration correction, Alternatively, a case where the specimen 101 is photographed by the CCD camera 14 can be considered.
  • step S30 the aberration correction unit 155 adjusts the position of the aberration correction lens 72 according to the temperature of the oil 71 for oil immersion. Specifically, the aberration correction unit 155 performs the rotation angle of the correction ring 75 with respect to the current combination of the temperature of the oil for oil 71 and the thickness of the cover glass 2A based on the correction amount table by the same processing as in step S23. And the correction ring 75 is rotated by the determined rotation angle. Thereby, the position of the aberration correction lens 72 in the optical axis direction is adjusted to an appropriate position with respect to the current combination of the thickness of the cover glass 2A and the temperature of the oil 71 for oil immersion, and the aberration is appropriately corrected. The aberration correction unit 155 notifies the focus control unit 156 that the adjustment of the position of the aberration correction lens 72 is completed.
  • step S31 the focus control unit 156 performs focus control similarly to the process in step S24. Thereafter, the process proceeds to step S32.
  • step S29 determines whether it is the timing to correct the aberration. If it is determined in step S29 that it is not the timing to correct the aberration, the processes in steps S29 and S30 are skipped, and the process proceeds to step S32.
  • step S32 the control unit 92 determines whether to end the process. If it is determined not to end the process, the process returns to step S28, and the processes in steps S28 to S32 are repeatedly executed until it is determined in step S32 that the process is to be ended.
  • step S 32 for example, in order to replace the objective lens 22, replace the specimen 101, or end the observation, the user instructs the end of the automatic aberration correction process via the input unit 91. Is input, the control unit 92 determines that the process is to be terminated, and the automatic aberration correction process is terminated.
  • the thickness of the cover glass 2A can be accurately detected, and appropriate aberration correction can be automatically performed according to the thickness of the cover glass 2A and the temperature of the oil 71 for oil immersion.
  • aberration correction can be automatically performed following the change in the temperature of the oil 71 for immersion.
  • the thickness of the cover glass 2A can be input to the control unit 92, and the processing of steps S1 to S7 can be omitted.
  • the series of processes described above can be executed by hardware or can be executed by software.
  • a program constituting the software executes various functions by installing a computer incorporated in dedicated hardware or various programs. For example, it is installed from a program recording medium in a general-purpose personal computer or the like.
  • the program executed by the computer may be a program that is processed in time series in the order described in this specification, or in parallel or at a necessary timing such as when a call is made. It may be a program for processing.

Abstract

Disclosed are a microscope and an aberration correction controlling device which enable more appropriate aberration correction. A control unit (92) measures the temperature of oil (71) for oil immersion filled between an objective lens (22A) and a cover glass (2A) on the basis of a signal from a temperature sensor (84) placed at the end of the objective lens (22A). The control unit (92) obtains the rotational angle of a correction ring (75) with respect to a combination of the current temperature of the oil (71) for oil immersion and thickness of the cover glass (2A) from a correction amount table in which the rotational angle of the correction ring (75) to appropriately correct aberration is set for each of combinations of temperatures of the oil (71) for oil immersion and thicknesses of the cover glass and controls a motor (77) to rotate the correction ring (75) by the obtained rotational angle. The present invention is applicable, for example, to a microscope including an immersion objective lens.

Description

顕微鏡および収差補正制御装置Microscope and aberration correction control device
 本発明は、顕微鏡および収差補正制御装置に関し、特に、収差補正を自動で行う場合に用いて好適な顕微鏡および収差補正制御装置に関する。 The present invention relates to a microscope and an aberration correction control device, and more particularly to a microscope and an aberration correction control device suitable for use in automatically performing aberration correction.
 従来、試料と顕微鏡の有する対物レンズとの間の距離に基づいて、試料を保護するカバーガラスの厚み、または、試料を保持する透過性を有する保持部材の厚みに起因する光学的な収差に対する補正量を決定し、決定された補正量に基づいた制御信号に従って、対物レンズの補正環の回転角度を変化させ、収差を補正することが提案されている(例えば、特許文献1参照)。 Conventionally, based on the distance between the sample and the objective lens of the microscope, correction for optical aberration caused by the thickness of the cover glass that protects the sample or the thickness of the holding member that holds the sample and has transparency It has been proposed to correct the aberration by determining the amount and changing the rotation angle of the correction ring of the objective lens in accordance with the control signal based on the determined correction amount (see, for example, Patent Document 1).
特開2005-31507号公報JP 2005-31507 A
 ところで、液浸対物レンズを観察に用いる場合、液浸対物レンズとカバーガラスとの間に満たされる液体(以下、液浸媒質と称する)は、温度変化により屈折率が変化し、その屈折率の変化により、発生する収差が変化する。特に、開口数が大きい液浸対物レンズに用いられる屈折率の大きな液浸媒質は、温度変化に伴う屈折率の変化が大きく、発生する収差の変化も大きくなる。しかしながら、特許文献1に記載の発明では、液浸媒質の温度変化による収差の変化を補正することは考慮されていない。 By the way, when the immersion objective lens is used for observation, the refractive index of a liquid (hereinafter referred to as an immersion medium) filled between the immersion objective lens and the cover glass changes due to a temperature change, and the refractive index The generated aberration changes due to the change. In particular, an immersion medium having a large refractive index used for an immersion objective lens having a large numerical aperture has a large change in refractive index due to a change in temperature, and a large change in generated aberration. However, the invention described in Patent Document 1 does not consider correcting the change in aberration due to the temperature change of the immersion medium.
 本発明は、このような状況を鑑みてなされたものであり、より適切に収差補正を行うことができるようにするものである。 The present invention has been made in view of such a situation, and makes it possible to perform aberration correction more appropriately.
 本発明の第1の側面の顕微鏡は、収差補正レンズを有する液浸対物レンズを備える顕微鏡であって、前記液浸対物レンズとカバーガラスとの間に満たされている液浸用の液体の温度を計測する温度計測手段と、前記液体の温度と前記カバーガラスの厚みの組み合わせにおいて、収差の適切に補正するための前記収差補正レンズの位置の調整値を表す調整値データに基づいて、前記液体の温度の変化に応じて前記収差補正レンズの位置を調整する収差補正手段とを備える。 The microscope according to the first aspect of the present invention is a microscope including an immersion objective lens having an aberration correction lens, and the temperature of the immersion liquid filled between the immersion objective lens and the cover glass. Temperature measurement means for measuring the liquid, based on adjustment value data representing an adjustment value of the position of the aberration correction lens for appropriately correcting aberration in a combination of the temperature of the liquid and the thickness of the cover glass. Aberration correction means for adjusting the position of the aberration correction lens according to the temperature change.
 本発明の第2の側面の収差補正制御装置は、収差補正レンズを備えた液浸対物レンズを備える顕微鏡の収差補正の制御を行う収差補正制御装置であって、前記液浸対物レンズとカバーガラスとの間に満たされている液浸用の液体の温度を計測する温度計測手段と、前記液体の温度と前記カバーガラスの厚みの組み合わせにおいて、収差の適切に補正するための前記収差補正レンズの位置の調整値を表す調整値データに基づいて、前記液体の温度の変化に応じて前記収差補正レンズの位置を調整する収差補正手段とを備える。 An aberration correction control apparatus according to a second aspect of the present invention is an aberration correction control apparatus that controls aberration correction of a microscope including an immersion objective lens including an aberration correction lens, the immersion objective lens and a cover glass. A temperature measuring means for measuring the temperature of the immersion liquid filled in between, and a combination of the temperature of the liquid and the thickness of the cover glass of the aberration correction lens for appropriately correcting aberrations And aberration correction means for adjusting the position of the aberration correction lens in accordance with a change in the temperature of the liquid based on adjustment value data representing a position adjustment value.
 本発明の第1の側面または第2の側面においては、液浸対物レンズとカバーガラスとの間に満たされている液浸用の液体の温度が計測され、前記液体の温度の変化に応じて前記収差補正レンズの位置が調整される。 In the first aspect or the second aspect of the present invention, the temperature of the liquid for immersion filled between the immersion objective lens and the cover glass is measured, and according to the change in the temperature of the liquid. The position of the aberration correction lens is adjusted.
 本発明の第1の側面または第2の側面によれば、より適切に収差補正を行うことができる。 According to the first aspect or the second aspect of the present invention, aberration correction can be performed more appropriately.
本発明を適用した顕微鏡の一実施の形態を示す図である。It is a figure which shows one Embodiment of the microscope to which this invention is applied. 顕微鏡のステージおよび対物レンズの周辺の構成を詳細に示した図である。It is the figure which showed the structure around the microscope stage and objective lens in detail. 制御部により実現される機能の構成の例を示すブロック図である。It is a block diagram which shows the example of a structure of the function implement | achieved by the control part. 補正量テーブル生成処理を説明するためのフローチャートである。It is a flowchart for demonstrating a correction amount table production | generation process. 補正量テーブルの例を示す図である。It is a figure which shows the example of a correction amount table. 自動収差補正処理を説明するためのフローチャートである。It is a flowchart for demonstrating an automatic aberration correction process.
符号の説明Explanation of symbols
 1 顕微鏡, 2 ペトリディッシュ, 2A カバーガラス, 14 CCDカメラ, 21 ステージ, 22A,22B 対物レンズ, 24 焦準可動部, 25 焦準部, 71 油浸用オイル, 72 収差補正レンズ, 75 補正環, 76 補正環用ウォーム歯車, 77 モータ, 78 リミット板, 79 リミットセンサ, 80 ステッピングモータ, 81 ラック歯, 82 リニアスケール, 83 ヒートプレート, 84 温度センサ, 92 制御部, 93 記憶部, 101 標本, 151 温度計測部, 152 回転角検出部, 153 補正量テーブル生成部, 154 カバーガラス厚み検出部, 155 収差補正部, 156 フォーカス制御部 1 microscope, 2 petri dishes, 2A cover glass, 14 CCD camera, 21 stage, 22A, 22B objective lens, 24 focusing unit, 25 focusing unit, 71 oil for oil immersion, 72 aberration correction lens, 75 correction ring, 76 worm gear for correction ring, 77 motor, 78 limit plate, 79 limit sensor, 80 stepping motor, 81 rack teeth, 82 linear scale, 83 heat plate, 84 temperature sensor, 92 control unit, 93 storage unit, 101 sample, 151 Temperature measurement unit, 152 rotation angle detection unit, 153 correction amount table generation unit, 154 cover glass thickness detection unit, 155 aberration correction unit, 156 focus control unit
 以下、図面を参照して本発明を適用した実施の形態について説明する。 Embodiments to which the present invention is applied will be described below with reference to the drawings.
 図1は、本発明を適用した顕微鏡の一実施の形態を示す図である。倒立型の顕微鏡1の本体部11には、透過照明装置12および落射照明装置13が設けられており、ステージ21上のペトリディッシュ2内の標本を、透過照明または落射照明を用いて観察することができる。また、顕微鏡1の本体部11には、CCD(Charge Coupled Devices)カメラ14が装着されており、透過照明または落射照明による標本の像を撮影することが可能である。 FIG. 1 is a diagram showing an embodiment of a microscope to which the present invention is applied. The main body 11 of the inverted microscope 1 is provided with a transmission illumination device 12 and an epi-illumination device 13, and the specimen in the Petri dish 2 on the stage 21 is observed using transmission illumination or epi-illumination. Can do. In addition, a CCD (Charge Coupled Devices) camera 14 is attached to the main body 11 of the microscope 1, and it is possible to take an image of a specimen by transmitted illumination or epi-illumination.
 ステージ21の下面には、焦準部25が設けられている。焦準部25は、複数の対物レンズ(図1では、対物レンズ22Aおよび22Bの2つの対物レンズのみを図示されている)が装着されているレボルバ23を支持する焦準可動部24を、上下方向に移動できるように支持している。なお、以下、対物レンズ22Aおよび22Bを特に区別する必要がない場合、単に対物レンズ22と称する。 A focusing unit 25 is provided on the lower surface of the stage 21. The focusing unit 25 moves the focusing movable unit 24 up and down to support the revolver 23 on which a plurality of objective lenses (in FIG. 1, only two objective lenses 22A and 22B are shown) are mounted. Supports to move in the direction. Hereinafter, the objective lenses 22A and 22B are simply referred to as the objective lens 22 when it is not necessary to distinguish them.
 また、焦準可動部24の下方には、2種類のフィルタとダイクロイックミラーとの組み合わせからなるフィルタブロックを複数備えた(図1では、フィルタブロック16Aおよび16Bの2つのフィルタブロックが図示されている)フィルタターレット15が設けられている。なお、以下、フィルタブロック16Aおよび16Bを特に区別する必要がない場合、単にフィルタブロック16と称する。 In addition, a plurality of filter blocks each including a combination of two types of filters and a dichroic mirror are provided below the focusing movable unit 24 (in FIG. 1, two filter blocks 16A and 16B are illustrated. ) A filter turret 15 is provided. Hereinafter, the filter blocks 16A and 16B are simply referred to as the filter block 16 when it is not necessary to distinguish them.
 顕微鏡1により透過照明を用いて標本の観察を行う場合、透過照明装置12の光源31から発せられた透過照明光は、コレクタレンズ32を透過した後、反射鏡33によりコンデンサレンズ34の方向に反射され、コンデンサレンズ34を介して、ペトリディッシュ2内の標本に照射される。光路切換プリズム52を光路から外した場合、標本を透過した透過照明光は、対物レンズ22、フィルタブロック16、および、第2対物レンズ52を透過し、CCDカメラ14により透過照明光による標本の像が撮影される。また、光路切換プリズム52を光路に入れた場合、標本を透過した透過照明光は、対物レンズ22、フィルタブロック16、および、第2対物レンズ51を透過し、光路切換プリズム52によりプリズム53の方向に反射され、プリズム53および反射鏡54により、接眼レンズ55の方向に反射され、ユーザは、接眼レンズ55を介して、透過照明光による標本の像を観察する。 When the specimen is observed with the microscope 1 using the transmission illumination, the transmission illumination light emitted from the light source 31 of the transmission illumination device 12 is transmitted through the collector lens 32 and then reflected toward the condenser lens 34 by the reflection mirror 33. Then, the sample in the Petri dish 2 is irradiated through the condenser lens 34. When the optical path switching prism 52 is removed from the optical path, the transmitted illumination light that has passed through the specimen passes through the objective lens 22, the filter block 16, and the second objective lens 52, and is imaged by the CCD camera 14 with the transmitted illumination light. Is filmed. When the optical path switching prism 52 is inserted in the optical path, the transmitted illumination light transmitted through the sample is transmitted through the objective lens 22, the filter block 16, and the second objective lens 51, and the direction of the prism 53 is transmitted by the optical path switching prism 52. Is reflected in the direction of the eyepiece lens 55 by the prism 53 and the reflecting mirror 54, and the user observes the image of the specimen by the transmitted illumination light through the eyepiece lens 55.
 また、顕微鏡1により落射照明を用いて標本の観察を行う場合、落射照明装置13の光源41から発せられた落射照明光は、リレーレンズ42および43を透過した後、フィルタブロック16により所定の波長のみが透過されるとともに、対物レンズ22の方向に反射され、対物レンズ22を介して、ペトリディッシュ2内の標本に照射される。光路切換プリズム52を光路から外した場合、落射照明光を照射することにより標本から発せられた蛍光は、対物レンズ22を透過した後、フィルタブロック16により所定の波長のみが抽出され、CCDカメラ14により標本から発せられた蛍光の像が撮影される。また、光路切換プリズム52を光路に入れた場合、落射照明光を照射することにより標本から発せられた蛍光は、対物レンズ22を透過した後、フィルタブロック16により所定の波長のみが抽出され、光路切換プリズム52によりプリズム53の方向に反射され、プリズム53および反射鏡54により、接眼レンズ55の方向に反射され、ユーザは、接眼レンズ55を介して、標本から発せられた蛍光の像を観察する。 Further, when the specimen is observed using the epi-illumination by the microscope 1, the epi-illumination light emitted from the light source 41 of the epi-illumination device 13 passes through the relay lenses 42 and 43 and is then transmitted to a predetermined wavelength by the filter block 16. Only is transmitted, is reflected in the direction of the objective lens 22, and is irradiated to the specimen in the Petri dish 2 through the objective lens 22. When the optical path switching prism 52 is removed from the optical path, the fluorescence emitted from the specimen by irradiating the epi-illumination light passes through the objective lens 22, and then only a predetermined wavelength is extracted by the filter block 16, and the CCD camera 14 An image of the fluorescence emitted from the specimen is taken. Further, when the optical path switching prism 52 is placed in the optical path, the fluorescence emitted from the specimen by irradiating the epi-illumination light is transmitted through the objective lens 22, and then only a predetermined wavelength is extracted by the filter block 16, and the optical path Reflected in the direction of the prism 53 by the switching prism 52 and reflected in the direction of the eyepiece lens 55 by the prism 53 and the reflecting mirror 54, the user observes an image of fluorescence emitted from the specimen through the eyepiece lens 55. .
 図2は、図1の顕微鏡1のステージ21および対物レンズ22の周辺の構成を詳細に示した図である。なお、図2には、ペトリディッシュ2内に培養液102が満たされ、ペトリディッシュ2の底を構成するカバーガラス2A上に、観察対象の細胞である標本101が置かれている例が示されている。顕微鏡1では、ステージ21上のヒートプレート83により培養液102の温度をほぼ一定(例えば、37℃)に保つことができ、標本101を生きたまま観察することが可能である。 FIG. 2 is a diagram showing in detail the configuration around the stage 21 and the objective lens 22 of the microscope 1 in FIG. FIG. 2 shows an example in which the culture medium 102 is filled in the Petri dish 2 and the specimen 101 which is a cell to be observed is placed on the cover glass 2A constituting the bottom of the Petri dish 2. ing. In the microscope 1, the temperature of the culture solution 102 can be kept almost constant (for example, 37 ° C.) by the heat plate 83 on the stage 21, and the specimen 101 can be observed while alive.
 油浸用の対物レンズ22Aとカバーガラス2Aとの間には、光学系の開口数を高め、高分解能と輝度の向上を実現するために、油浸用オイル71が満たされている。また、対物レンズ22Aは、カバーガラス2Aの厚みの誤差や油浸用オイル71の温度変化に伴う屈折率の変化などにより変化する収差を適切に補正するために用いられる収差補正レンズ72を備えている。 Oil immersion oil 71 is filled between the objective lens 22A for oil immersion and the cover glass 2A in order to increase the numerical aperture of the optical system and realize high resolution and brightness. The objective lens 22A also includes an aberration correction lens 72 that is used to appropriately correct aberrations that change due to an error in the thickness of the cover glass 2A or a change in refractive index that accompanies a temperature change in the oil immersion oil 71. Yes.
 収差補正レンズ72は、ピン74を介して補正環75のカム溝に連結されているレンズ枠73により固定されている。従って、補正環75をピン74の軸回りに回転させることにより、レンズ枠73とともに収差補正レンズ72が光軸方向に移動し、収差補正レンズ72の光軸方向の位置を調整することができる。また、補正環75の外周には補正環用ウォーム歯車76が設けられており、制御部92の制御の基に、ロータリエンコーダ付きのモータ77を駆動し、補正環用ウォーム歯車76を介して補正環75を回転させることにより、収差補正レンズ72を電動で光軸方向に移動させることが可能である。制御部92は、モータ77から出力されるパルスに基づいて、リミットセンサ79およびリミット板78により規定される基準位置を基準とする補正環75の回転角を検出する。 The aberration correction lens 72 is fixed by a lens frame 73 connected to the cam groove of the correction ring 75 via a pin 74. Therefore, by rotating the correction ring 75 about the axis of the pin 74, the aberration correction lens 72 moves in the optical axis direction together with the lens frame 73, and the position of the aberration correction lens 72 in the optical axis direction can be adjusted. A correction ring worm gear 76 is provided on the outer periphery of the correction ring 75, and a motor 77 with a rotary encoder is driven under the control of the control unit 92, and the correction ring worm gear 76 is corrected. By rotating the ring 75, the aberration correction lens 72 can be electrically moved in the optical axis direction. The control unit 92 detects the rotation angle of the correction ring 75 with reference to the reference position defined by the limit sensor 79 and the limit plate 78 based on the pulse output from the motor 77.
 また、焦準部25にはステッピングモータ80が設けられており、制御部92の制御の基に、ステッピングモータ80を駆動し、焦準可動部24に取り付けられているラック歯81を上下方向に移動させることにより、焦準可動部24を上下方向に移動させることができる。これにより、焦準可動部24に取り付けられているレボルバ23および対物レンズ22が上下方向に移動し、観察に用いる対物レンズ22(図2においては、対物レンズ22A)の光軸方向の位置を電動で調整することができる。制御部92は、リニアスケール82により検出されるラック歯81の位置に基づいて、対物レンズ22の光軸方向の位置を検出する。 Further, the focusing unit 25 is provided with a stepping motor 80, and the stepping motor 80 is driven under the control of the control unit 92, and the rack teeth 81 attached to the focusing movable unit 24 are moved in the vertical direction. By moving, the focusing movable unit 24 can be moved in the vertical direction. As a result, the revolver 23 and the objective lens 22 attached to the focusing movable unit 24 move in the vertical direction, and the position of the objective lens 22 used for observation (the objective lens 22A in FIG. 2) in the optical axis direction is electrically driven. Can be adjusted. The control unit 92 detects the position of the objective lens 22 in the optical axis direction based on the position of the rack tooth 81 detected by the linear scale 82.
 ところで、上述したように、ヒートプレート83は、培養液102の温度をほぼ一定に保ち、標本101を良好な状態に保つため、加熱と冷却を繰り返す。これに伴い、カバーガラス2Aを含むペトリディッシュ2の温度が変動し、熱伝導により対物レンズ22Aの先端に満たされた油浸用オイル71の温度も変動する。制御部92は、対物レンズ22Aの先端に設置されている温度センサ84からの信号に基づいて、油浸用オイル71の温度を測定し、測定時刻とともに記憶部93に記憶させる。 By the way, as described above, the heat plate 83 repeats heating and cooling in order to keep the temperature of the culture solution 102 substantially constant and keep the specimen 101 in a good state. Along with this, the temperature of the Petri dish 2 including the cover glass 2A varies, and the temperature of the oil immersion oil 71 filled at the tip of the objective lens 22A also varies due to heat conduction. The controller 92 measures the temperature of the oil immersion oil 71 based on a signal from the temperature sensor 84 installed at the tip of the objective lens 22A, and stores it in the storage unit 93 together with the measurement time.
 入力部91は、例えば、各種のキーやスイッチなどにより構成され、制御部92に各種の指令や情報を入力するために用いられる。制御部92は、例えば、CPU(Central Processing Unit)などのプロセッサにより構成され、図4乃至図6を参照して後述するように、顕微鏡1の収差補正の制御を行う。また、制御部92は、CCDカメラ14に接続され、CCDカメラ14が撮影した画像のコントラスト値を示すデータを取得する。記憶部93は、例えば、各種のメモリにより構成され、図5を参照して後述する補正量テーブルを記憶する。 The input unit 91 includes, for example, various keys and switches, and is used to input various commands and information to the control unit 92. The control unit 92 includes, for example, a processor such as a CPU (Central Processing Unit), and controls aberration correction of the microscope 1 as described later with reference to FIGS. The control unit 92 is connected to the CCD camera 14 and acquires data indicating the contrast value of an image captured by the CCD camera 14. The storage unit 93 includes, for example, various memories, and stores a correction amount table described later with reference to FIG.
 なお、入力部91、制御部92、および、記憶部93は、顕微鏡1内に設けるようにすることも可能であるし、顕微鏡1とは別の専用の外部装置やコンピュータなどにより構成するようにすることも可能である。 The input unit 91, the control unit 92, and the storage unit 93 can be provided in the microscope 1, or configured by a dedicated external device or computer other than the microscope 1. It is also possible to do.
 図3は、図2の制御部92が所定のプログラムを実行することにより実現される機能の構成の例を示すブロック図である。 FIG. 3 is a block diagram illustrating an example of a functional configuration realized by the control unit 92 of FIG. 2 executing a predetermined program.
 温度計測部151は、温度センサ84からの信号に基づいて、油浸用オイル71の温度を計測する。温度計測部151は、計測した油浸用オイル71の温度を、必要に応じて、補正量テーブル生成部153、カバーガラス厚み検出部154、および、収差補正部155に通知したり、計測時刻とともに記憶部93に記憶させたりする。 The temperature measuring unit 151 measures the temperature of the oil 71 for oil immersion based on a signal from the temperature sensor 84. The temperature measurement unit 151 notifies the measured temperature of the oil 71 for oil immersion to the correction amount table generation unit 153, the cover glass thickness detection unit 154, and the aberration correction unit 155 as necessary, or together with the measurement time. Or stored in the storage unit 93.
 回転角検出部152は、モータ77から出力されるパルスに基づいて、リミットセンサ79およびリミット板78により規定される基準位置を基準とする補正環75の回転角を検出し、必要に応じて、補正量テーブル生成部153および収差補正部155に通知する。 The rotation angle detector 152 detects the rotation angle of the correction ring 75 with reference to the reference position defined by the limit sensor 79 and the limit plate 78 based on the pulse output from the motor 77, and if necessary, The correction amount table generation unit 153 and the aberration correction unit 155 are notified.
 補正量テーブル生成部153は、図4および図5を参照して後述するように、油浸用オイル71の温度、および、入力部91を介して入力されるカバーガラス2Aの厚みの組み合わせにおいて、収差を適切に補正するための収差補正レンズ72の位置の調整値(補正環75の回転角)を表すデータである補正量テーブルを生成し、記憶部93に記憶させる。 As will be described later with reference to FIGS. 4 and 5, the correction amount table generation unit 153 is a combination of the temperature of the oil for oil 71 and the thickness of the cover glass 2 </ b> A input through the input unit 91. A correction amount table, which is data indicating an adjustment value (rotation angle of the correction ring 75) of the position of the aberration correction lens 72 for appropriately correcting the aberration, is generated and stored in the storage unit 93.
 カバーガラス厚み検出部154は、図6を参照して後述するように、油浸用オイル71の温度、収差補正部155から通知される補正環75の回転角、フォーカス制御部156から通知されるCCDカメラ14により撮影された画像のコントラスト値、および、図5を参照して後述する補正量テーブルに基づいて、カバーガラス2Aの厚みを検出する。カバーガラス厚み検出部154は、検出したカバーガラス2Aの厚みを収差補正部155に通知する。また、カバーガラス厚み検出部154は、カバーガラス2Aの厚みを検出する場合に設定するカバーガラス2Aの厚みの想定値を収差補正部155に通知する。 As will be described later with reference to FIG. 6, the cover glass thickness detection unit 154 is notified of the temperature of the oil 71 for oil immersion, the rotation angle of the correction ring 75 notified from the aberration correction unit 155, and the focus control unit 156. The thickness of the cover glass 2A is detected based on the contrast value of the image photographed by the CCD camera 14 and a correction amount table described later with reference to FIG. The cover glass thickness detection unit 154 notifies the aberration correction unit 155 of the detected thickness of the cover glass 2A. Further, the cover glass thickness detection unit 154 notifies the aberration correction unit 155 of an assumed value of the thickness of the cover glass 2A that is set when detecting the thickness of the cover glass 2A.
 収差補正部155は、図6を参照して後述するように、カバーガラス2Aの厚み、もしくは、カバーガラス2Aの厚みの想定値、油浸用オイル71の温度、および、図5を参照して後述する補正量テーブルに基づいて、収差の補正に適切な補正環75の回転角を求める。収差補正部155は、回転角検出部152により検出される補正環75の回転角をモニタしながら、モータ77を制御し、求めた回転角だけ補正環75を回転させ、収差が適切に補正されるように収差補正レンズ72の光軸方向の位置を調整する。収差補正部155は、収差補正レンズ72の位置の調整が終了したとき、収差補正レンズ72の位置の調整が終了したことをフォーカス制御部156に通知する。 As will be described later with reference to FIG. 6, the aberration correction unit 155 determines the thickness of the cover glass 2 </ b> A or the assumed value of the thickness of the cover glass 2 </ b> A, the temperature of the oil 71 for oil immersion, and FIG. 5. Based on a correction amount table to be described later, a rotation angle of the correction ring 75 appropriate for correcting the aberration is obtained. The aberration correction unit 155 controls the motor 77 while monitoring the rotation angle of the correction ring 75 detected by the rotation angle detection unit 152, rotates the correction ring 75 by the calculated rotation angle, and the aberration is appropriately corrected. Thus, the position of the aberration correction lens 72 in the optical axis direction is adjusted. When the adjustment of the position of the aberration correction lens 72 is completed, the aberration correction unit 155 notifies the focus control unit 156 that the adjustment of the position of the aberration correction lens 72 is completed.
 フォーカス制御部156は、リニアスケール82からの信号に基づいてラック歯81の位置を検出しながら、CCDカメラ14から供給される画像のコントラス値、すなわち、対物レンズ22を介して観察される標本の画像のコントラスト値が最大になるように、ステッピングモータ80を制御し、対物レンズ22の光軸方向の位置を調整することにより、対物レンズ22のフォーカス制御を行う。 The focus control unit 156 detects the position of the rack tooth 81 based on the signal from the linear scale 82, and the contrast value of the image supplied from the CCD camera 14, that is, the sample observed through the objective lens 22. The focus control of the objective lens 22 is performed by controlling the stepping motor 80 so as to maximize the contrast value of the image and adjusting the position of the objective lens 22 in the optical axis direction.
 次に、図4乃至図6を参照して、顕微鏡1の処理について説明する。 Next, processing of the microscope 1 will be described with reference to FIGS.
 まず、図4のフローチャートを参照して、顕微鏡1により実行される補正量テーブル生成処理について説明する。なお、この処理は、例えば、ユーザが、入力部91を介して、補正量テーブルの生成の指令を入力したとき開始される。 First, the correction amount table generation process executed by the microscope 1 will be described with reference to the flowchart of FIG. This process is started, for example, when the user inputs a correction amount table generation instruction via the input unit 91.
 ステップS1において、温度計測部151は、温度センサ84からの信号に基づいて、油浸用オイル71の温度の計測を開始する。温度計測部151は、計測した油浸用オイル71の温度を補正量テーブル生成部153に通知する。 In step S <b> 1, the temperature measuring unit 151 starts measuring the temperature of the oil 71 for oil immersion based on the signal from the temperature sensor 84. The temperature measurement unit 151 notifies the correction amount table generation unit 153 of the measured temperature of the oil 71 for immersion.
 ステップS2において、補正量テーブル生成部153は、カバーガラスの厚みを取得する。ところで、カバーガラスの厚みは規格基準値に対して所定の範囲の製作誤差が許容されており、例えば、0.17mmの規格基準値に対して、0.15mmから0.18mmまでの範囲の誤差が許容されている。ユーザは、補正量テーブルの生成を行うにあたり、許容誤差の範囲内で、複数の厚みが既知であるカバーガラス(例えば、厚みが0.15mm、0.16mm、0.17mm、0.18mmの4種類のカバーガラス)を用意する。そして、ユーザは、用意したカバーガラスのうちの1つを顕微鏡1のステージ21に設置し、入力部91を介して、設置したカバーガラスの厚みを入力する。補正量テーブル生成部153は、ユーザにより入力されたカバーガラスの厚みを示すデータを取得する。 In step S2, the correction amount table generation unit 153 acquires the thickness of the cover glass. By the way, the thickness of the cover glass is allowed to have a manufacturing error within a predetermined range with respect to the standard reference value. For example, an error within the range of 0.15 mm to 0.18 mm is allowed with respect to the standard standard value of 0.17 mm. ing. When generating the correction amount table, the user can create a cover glass having a plurality of known thicknesses within a tolerance range (for example, four types of cover glasses having thicknesses of 0.15 mm, 0.16 mm, 0.17 mm, and 0.18 mm). ). Then, the user installs one of the prepared cover glasses on the stage 21 of the microscope 1 and inputs the thickness of the installed cover glass via the input unit 91. The correction amount table generation unit 153 acquires data indicating the thickness of the cover glass input by the user.
 ステップS3において、補正量テーブル生成部153は、補正環75の回転角の記憶が指令されたかを判定する。具体的には、ユーザは、油浸用オイル71の温度が所望の温度になるように、ヒートプレート83の温度を調整する。油浸用オイル71の温度が所望の温度になると、ユーザは、補正環75を用いて収差補正レンズ72の光軸方向の位置を調整したり、焦準可動部24の位置を調整することにより対物レンズ22の光軸方向の位置を調整して、対物レンズ22のピントの調整を行う。そして、対物レンズ22のピントが最も適切に調整されたと判断したとき、入力部91を介して、そのときの補正環75の回転角を記憶させるための指令を入力する。補正量テーブル生成部153は、その指令を取得したとき、補正環75の回転角の記憶が指令されたと判定し、処理はステップS4に進む。 In step S <b> 3, the correction amount table generation unit 153 determines whether storage of the rotation angle of the correction ring 75 has been commanded. Specifically, the user adjusts the temperature of the heat plate 83 so that the temperature of the oil 71 for oil immersion becomes a desired temperature. When the temperature of the oil immersion oil 71 reaches a desired temperature, the user uses the correction ring 75 to adjust the position of the aberration correction lens 72 in the optical axis direction or adjust the position of the focusing movable unit 24. The focus of the objective lens 22 is adjusted by adjusting the position of the objective lens 22 in the optical axis direction. When it is determined that the focus of the objective lens 22 has been adjusted most appropriately, a command for storing the rotation angle of the correction ring 75 at that time is input via the input unit 91. When the correction amount table generation unit 153 obtains the command, the correction amount table generation unit 153 determines that the storage of the rotation angle of the correction ring 75 has been commanded, and the process proceeds to step S4.
 ステップS4において、補正量テーブル生成部153は、現在のカバーガラスの厚みおよび油浸用オイル71の温度の組み合わせに対する補正環75の回転角を補正量テーブルに設定する。 In step S4, the correction amount table generating unit 153 sets the rotation angle of the correction ring 75 for the combination of the current cover glass thickness and the temperature of the oil for oil 71 to the correction amount table.
 図5は、補正量テーブルの例を示している。補正量テーブルは、油浸用オイル71の温度とカバーガラスの厚みの各組み合わせにおいて、収差を適切に補正するための補正環75の回転量θmnを一覧にしたものである。図5の補正量テーブルにおいては、23℃から39℃までの範囲内の1℃間隔の16種類の油浸用オイル71の温度と、0.15mから0.18mmまでの範囲内の0.01mm間隔の4種類のカバーガラスの厚みとの各組み合わせに対する補正環75の回転量θmn(m=1~16,n=1~4)が設定されている。例えば、図5において、油浸用オイル71の温度が23℃、かつ、カバーガラスの厚みが0.15mmの場合の回転量はθ11、油浸用オイル71の温度が39℃、かつ、カバーガラスの厚みが0.18mmの場合の回転量はθ164である。 FIG. 5 shows an example of the correction amount table. The correction amount table lists rotation amounts θmn of the correction ring 75 for appropriately correcting aberrations in each combination of the temperature of the oil 71 for immersion and the thickness of the cover glass. In the correction amount table of FIG. 5, the temperature of 16 kinds of oil 71 for oil immersion at intervals of 1 ° C. within a range from 23 ° C. to 39 ° C. and 4 at intervals of 0.01 mm within a range from 0.15 m to 0.18 mm. The rotation amount θmn (m = 1 to 16, n = 1 to 4) of the correction ring 75 is set for each combination with the type of cover glass thickness. For example, in FIG. 5, when the temperature of the oil immersion oil 71 is 23 ° C. and the thickness of the cover glass is 0.15 mm, the rotation amount is θ 11 , the temperature of the oil immersion oil 71 is 39 ° C., and the cover glass. rotation amount when the thickness of 0.18mm is theta 164.
 補正量テーブル生成部153は、回転角検出部152から現在の補正環75の回転角を示すデータを取得し、取得した補正環75の回転角を、現在のカバーガラスの厚みと油浸用オイル71の温度の組み合わせに対応する補正量テーブルの欄に設定する。 The correction amount table generation unit 153 acquires data indicating the current rotation angle of the correction ring 75 from the rotation angle detection unit 152, and uses the acquired rotation angle of the correction ring 75 as the current cover glass thickness and oil immersion oil. It is set in the column of the correction amount table corresponding to the temperature combination of 71.
 一方、ステップS3において、補正環75の回転角の記憶が指令されていないと判定された場合、ステップS4の処理はスキップされ、処理はステップS5に進む。 On the other hand, if it is determined in step S3 that the storage of the rotation angle of the correction ring 75 is not instructed, the process of step S4 is skipped, and the process proceeds to step S5.
 ステップS5において、補正量テーブル生成部153は、カバーガラスが交換されたかを判定する。カバーガラスが交換されていないと判定された場合、処理はステップS6に進む。 In step S5, the correction amount table generation unit 153 determines whether the cover glass has been replaced. If it is determined that the cover glass has not been replaced, the process proceeds to step S6.
 ステップS6において、補正量テーブル生成部153は、処理の終了が指令されたかを判定する。処理の終了が指令されていないと判定された場合、処理はステップS3に戻り、ステップS5において、カバーガラスが交換されたと判定されるか、ステップS6において、処理の終了が指令されたと判定されるまで、ステップS3乃至S6の処理が繰り返し実行される。 In step S6, the correction amount table generation unit 153 determines whether the end of the process is instructed. If it is determined that the end of the process has not been commanded, the process returns to step S3, and it is determined in step S5 that the cover glass has been replaced, or in step S6, it is determined that the end of the process has been commanded. Until then, the processes of steps S3 to S6 are repeated.
 例えば、ユーザは、現在設置しているカバーガラスの厚みが0.15mmである場合、ヒートプレート83の温度を調整し、油浸用オイル71の温度を23℃から39℃まで1℃単位で変化させながら、各温度において、上述したように、対物レンズ22のピントの調整を行い、ピントが最も適切に調整されたときの補正環75の回転角を補正量テーブルに設定する。そして、全ての温度における補正環75の回転角の設定が終了した後、ユーザは、次の厚み(例えば、0.16mm)のカバーガラスをステージ21に設置し、入力部91を介して、設置したカバーガラスの厚みを入力する。補正量テーブル生成部153は、ユーザにより入力されたカバーガラスの厚みを示すデータを取得したとき、ステップS5において、カバーガラスが交換されたと判定し、処理はステップS2に戻り、上述したステップS2以降の処理が行われる。 For example, when the thickness of the currently installed cover glass is 0.15 mm, the user adjusts the temperature of the heat plate 83 and changes the temperature of the oil immersion oil 71 in units of 1 ° C. from 23 ° C. to 39 ° C. However, as described above, the focus of the objective lens 22 is adjusted at each temperature, and the rotation angle of the correction ring 75 when the focus is most appropriately adjusted is set in the correction amount table. Then, after the setting of the rotation angle of the correction ring 75 at all temperatures is completed, the user installs the cover glass having the next thickness (for example, 0.16 mm) on the stage 21 and installs it through the input unit 91. Enter the thickness of the cover glass. When the correction amount table generation unit 153 acquires data indicating the thickness of the cover glass input by the user, the correction amount table generation unit 153 determines in step S5 that the cover glass has been replaced, and the process returns to step S2, and the above-described step S2 and subsequent steps. Is performed.
 その後、ユーザは、上述したように、油浸用オイル71の温度を変化させたり、カバーガラスを交換したりしながら、補正量テーブルの全ての油浸用オイル71の温度とカバーガラスの厚みの組み合わせに対する補正環75の回転角を設定する。その後、ユーザは、入力部91を介して、補正量テーブルの生成の終了の指令を入力する。補正量テーブル生成部153は、その指令を取得したとき、ステップS6において、処理の終了が指令されたと判定し、補正量テーブル生成処理は終了する。 Thereafter, as described above, the user changes the temperature of all the oil immersion oils 71 in the correction amount table and the thickness of the cover glass while changing the temperature of the oil immersion oil 71 or replacing the cover glass. The rotation angle of the correction ring 75 for the combination is set. Thereafter, the user inputs an instruction to end generation of the correction amount table via the input unit 91. When the correction amount table generation unit 153 obtains the instruction, it determines that the end of the process is instructed in step S6, and the correction amount table generation process ends.
 なお、収差補正レンズを有する油浸用の対物レンズが複数ある場合、各対物レンズに対して上述した処理を行い、各対物レンズ用の補正量テーブルが生成される。 When there are a plurality of oil immersion objective lenses having aberration correction lenses, the above-described processing is performed on each objective lens, and a correction amount table for each objective lens is generated.
 また、必ずしも全ての顕微鏡において、補正量テーブル生成処理を行う必要はなく、例えば、メーカーなどで、上述した処理により、各顕微鏡と対物レンズの組み合わせに対する補正量テーブルを生成し、その補正量テーブルをユーザに提供するようにしてもよい。 In addition, it is not always necessary to perform the correction amount table generation process in all microscopes. For example, a correction amount table for each combination of a microscope and an objective lens is generated by a manufacturer or the like, and the correction amount table is generated. You may make it provide to a user.
 次に、図6のフローチャートを参照して、顕微鏡1により実行される自動収差補正処理について説明する。この処理は、例えば、ユーザが、入力部91を介して、ユーザにより自動収差補正処理の指令を入力したとき開始される。 Next, the automatic aberration correction process executed by the microscope 1 will be described with reference to the flowchart of FIG. This process is started, for example, when the user inputs a command for automatic aberration correction processing via the input unit 91 by the user.
 ステップS21において、カバーガラス厚み検出部154は、カバーガラス2Aの厚みの想定値を設定する。具体的には、カバーガラス厚み検出部154は、補正量テーブルに定義されているカバーガラスの厚みのうち、未処理の厚みを1つ選択し、カバーガラス2Aの厚みの想定値に設定する。カバーガラス厚み検出部154は、設定したカバーガラス2Aの厚みの想定値を収差補正部155に通知する。 In step S21, the cover glass thickness detector 154 sets an assumed value of the thickness of the cover glass 2A. Specifically, the cover glass thickness detection unit 154 selects one unprocessed thickness among the cover glass thicknesses defined in the correction amount table, and sets the unprocessed thickness to an assumed value of the cover glass 2A. The cover glass thickness detection unit 154 notifies the aberration correction unit 155 of the assumed thickness value of the set cover glass 2A.
 ステップS22において、温度計測部151は、温度センサ84からの信号に基づいて、油浸用オイル71の温度を計測する。温度計測部151は、計測した油浸用オイル71の温度をカバーガラス厚み検出部154および収差補正部155に通知する。 In step S <b> 22, the temperature measurement unit 151 measures the temperature of the oil for oil immersion 71 based on the signal from the temperature sensor 84. The temperature measuring unit 151 notifies the measured temperature of the oil immersion oil 71 to the cover glass thickness detecting unit 154 and the aberration correcting unit 155.
 ステップS23において、収差補正部155は、カバーガラス2Aの厚みの想定値、および、油浸用オイル71の温度に対して適切な位置に収差補正レンズ72を移動させる。
具体的には、収差補正部155は、補正量テーブルに基づいて、現在のカバーガラス2Aの厚みの想定値および油浸用オイル71の温度の組み合わせに対する補正環75の回転角を求める。なお、現在のカバーガラス2Aの厚みの想定値および油浸用オイル71の温度の組み合わせに対応する欄が補正量テーブルにない場合、収差補正部155は、他の欄の値を用いて、直線補間により補正環75の回転角を算出する。
In step S <b> 23, the aberration correction unit 155 moves the aberration correction lens 72 to an appropriate position with respect to the assumed value of the thickness of the cover glass 2 </ b> A and the temperature of the oil for oil 71.
Specifically, the aberration correction unit 155 determines the rotation angle of the correction ring 75 with respect to the combination of the current estimated value of the thickness of the cover glass 2A and the temperature of the oil immersion oil 71 based on the correction amount table. In addition, when the column corresponding to the combination of the current estimated value of the cover glass 2A and the temperature of the oil 71 for oil immersion does not exist in the correction amount table, the aberration correction unit 155 uses the values in the other columns to calculate a straight line. The rotation angle of the correction ring 75 is calculated by interpolation.
 収差補正部155は、回転角検出部152により検出される補正環75の回転角をモニタしながら、モータ77を制御して、求めた回転角だけ補正環75を回転させる。これにより、現在のカバーガラス2Aの厚みの想定値および油浸用オイル71の温度の組み合わせに対して適切な位置に収差補正レンズ72の光軸方向の位置が調整される。収差補正部155は、設定した補正環75の回転角をカバーガラス厚み検出部154に通知する。そして、収差補正部155は、収差補正レンズ72の位置の調整が終了したことをフォーカス制御部156に通知する。 The aberration correction unit 155 controls the motor 77 while monitoring the rotation angle of the correction ring 75 detected by the rotation angle detection unit 152 and rotates the correction ring 75 by the calculated rotation angle. Thereby, the position of the aberration correction lens 72 in the optical axis direction is adjusted to an appropriate position with respect to the combination of the current assumed value of the thickness of the cover glass 2A and the temperature of the oil 71 for oil immersion. The aberration correction unit 155 notifies the cover glass thickness detection unit 154 of the set rotation angle of the correction ring 75. The aberration correction unit 155 notifies the focus control unit 156 that the adjustment of the position of the aberration correction lens 72 is completed.
 ステップS24において、フォーカス制御部156は、フォーカス制御を行う。具体的には、フォーカス制御部156は、CCDカメラ14から供給される画像のコントラス値が最大になるように、ステッピングモータ80を制御して、対物レンズ22Aの光軸方向の位置を調整する。フォーカス制御部156は、対物レンズ22Aの光軸方向の位置を調整した後、コントラスト値の最大値をカバーガラス厚み検出部154に通知する。 In step S24, the focus control unit 156 performs focus control. Specifically, the focus control unit 156 adjusts the position of the objective lens 22A in the optical axis direction by controlling the stepping motor 80 so that the contrast value of the image supplied from the CCD camera 14 is maximized. After adjusting the position of the objective lens 22A in the optical axis direction, the focus control unit 156 notifies the cover glass thickness detection unit 154 of the maximum contrast value.
 ステップS25において、カバーガラス厚み検出部154は、取得した油浸用オイル71の温度、補正環75の回転角、および、画像のコントラスト値の最大値を対応づけて記憶部93に記憶させる。 In step S25, the cover glass thickness detection unit 154 stores the acquired temperature of the oil immersion oil 71, the rotation angle of the correction ring 75, and the maximum value of the contrast value of the image in the storage unit 93 in association with each other.
 ステップS26において、カバーガラス厚み検出部154は、全てのカバーガラス2Aの厚みの想定値について処理したかを判定する。まだ、全てのカバーガラス2Aの厚みの想定値について処理していないと判定された場合、処理はステップS21に戻り、ステップS26において、全てのカバーガラス2Aの厚みの想定値について処理したと判定されるまで、ステップS21乃至S26の処理が繰り返し実行される。これにより、補正量テーブルに定義されている全てのカバーガラスの厚みが、カバーガラス2Aの厚みの想定値として順番に設定され、上述したように、各想定値における油浸用オイル71の温度、補正環75の回転角、および、画像のコントラスト値の最大値が計測され、記憶される。 In step S26, the cover glass thickness detection unit 154 determines whether or not the assumed values of the thicknesses of all the cover glasses 2A have been processed. If it is determined that the assumed values of the thicknesses of all the cover glasses 2A have not been processed yet, the process returns to step S21, and in step S26, it is determined that the assumed values of the thicknesses of all the cover glasses 2A have been processed. Steps S21 to S26 are repeatedly executed until Thereby, the thicknesses of all the cover glasses defined in the correction amount table are sequentially set as the assumed values of the thickness of the cover glass 2A, and as described above, the temperature of the oil immersion oil 71 at each assumed value, The rotation angle of the correction ring 75 and the maximum contrast value of the image are measured and stored.
 一方、ステップS26において、全てのカバーガラス2Aの厚みの想定値について処理したと判定された場合、処理はステップS27に進む。 On the other hand, if it is determined in step S26 that processing has been performed for the assumed thickness values of all the cover glasses 2A, the processing proceeds to step S27.
 ステップS27において、カバーガラス厚み検出部154は、カバーガラス2Aの厚みを求める。具体的には、カバーガラス厚み検出部154は、記憶されている油浸用オイル71の温度、補正環75の回転角、および、画像のコントラスト値の最大値の組み合わせのうち、コントラスト値の最大値が最大となる組み合わせを抽出する。カバーガラス厚み検出部154は、抽出した組み合わせにおける油浸用オイル71の温度および補正環75の回転角、並びに、補正量テーブルに基づいて、カバーガラス2Aの厚みを求める。より具体的には、カバーガラス厚み検出部154は、補正量テーブルに基づいて、抽出した組み合わせにおける油浸用オイル71の温度および補正環75の回転角に対応するカバーガラスの厚みを、カバーガラス2Aの厚みとして求める。カバーガラス厚み検出部154は、求めたカバーガラス2Aの厚みを収差補正部155に通知する。 In step S27, the cover glass thickness detector 154 determines the thickness of the cover glass 2A. Specifically, the cover glass thickness detection unit 154 has a maximum contrast value among combinations of the stored temperature of the oil immersion oil 71, the rotation angle of the correction ring 75, and the maximum value of the contrast value of the image. The combination with the maximum value is extracted. The cover glass thickness detection unit 154 obtains the thickness of the cover glass 2A based on the temperature of the oil immersion oil 71 in the extracted combination, the rotation angle of the correction ring 75, and the correction amount table. More specifically, the cover glass thickness detection unit 154 calculates the cover glass thickness corresponding to the temperature of the oil for oil 71 and the rotation angle of the correction ring 75 in the extracted combination based on the correction amount table. Obtained as a thickness of 2A. The cover glass thickness detection unit 154 notifies the aberration correction unit 155 of the obtained thickness of the cover glass 2A.
 ステップS28において、温度計測部151は、温度センサ84からの信号に基づいて、油浸用オイル71の温度を計測する。温度計測部151は、計測した油浸用オイル71の温度を、収差補正部155に通知するとともに、測定時刻とともに記憶部93に記憶させる。 In step S28, the temperature measuring unit 151 measures the temperature of the oil 71 for oil immersion based on the signal from the temperature sensor 84. The temperature measurement unit 151 notifies the aberration correction unit 155 of the measured temperature of the oil immersion oil 71 and stores it in the storage unit 93 together with the measurement time.
 ステップS29において、収差補正部155は、収差補正を行うタイミングであるかを判定する。収差補正を行うタイミングであると判定された場合、処理はステップS30に進む。なお、収差補正を行うタイミングとしては、例えば、前回収差補正を行ってから所定の時間が経過したとき、前回収差補正を行ってから油浸用オイル71の温度が所定の値以上変化したとき、あるいは、CCDカメラ14により標本101を撮影するときなどが考えられる。 In step S29, the aberration correction unit 155 determines whether it is time to perform aberration correction. If it is determined that it is time to perform aberration correction, the process proceeds to step S30. The timing for performing the aberration correction is, for example, when a predetermined time has elapsed since the previous aberration correction, or when the temperature of the oil immersion oil 71 has changed by a predetermined value or more after the previous aberration correction, Alternatively, a case where the specimen 101 is photographed by the CCD camera 14 can be considered.
 ステップS30において、収差補正部155は、油浸用オイル71の温度に応じて収差補正レンズ72の位置を調整する。具体的には、収差補正部155は、ステップS23と同様の処理により、補正量テーブルに基づいて、現在の油浸用オイル71の温度およびカバーガラス2Aの厚みの組み合わせに対する補正環75の回転角を求め、求めた回転角だけ補正環75を回転させる。これにより、現在のカバーガラス2Aの厚みおよび油浸用オイル71の温度の組み合わせに対して適切な位置に収差補正レンズ72の光軸方向の位置が調整され、収差が適切に補正される。そして、収差補正部155は、収差補正レンズ72の位置の調整が終了したことをフォーカス制御部156に通知する。 In step S30, the aberration correction unit 155 adjusts the position of the aberration correction lens 72 according to the temperature of the oil 71 for oil immersion. Specifically, the aberration correction unit 155 performs the rotation angle of the correction ring 75 with respect to the current combination of the temperature of the oil for oil 71 and the thickness of the cover glass 2A based on the correction amount table by the same processing as in step S23. And the correction ring 75 is rotated by the determined rotation angle. Thereby, the position of the aberration correction lens 72 in the optical axis direction is adjusted to an appropriate position with respect to the current combination of the thickness of the cover glass 2A and the temperature of the oil 71 for oil immersion, and the aberration is appropriately corrected. The aberration correction unit 155 notifies the focus control unit 156 that the adjustment of the position of the aberration correction lens 72 is completed.
 ステップS31において、フォーカス制御部156は、ステップS24の処理と同様に、フォーカス制御を行う。その後、処理はステップS32に進む。 In step S31, the focus control unit 156 performs focus control similarly to the process in step S24. Thereafter, the process proceeds to step S32.
 一方、ステップS29において、収差補正を行うタイミングでないと判定された場合、ステップS29およびS30の処理はスキップされ、処理はステップS32に進む。 On the other hand, if it is determined in step S29 that it is not the timing to correct the aberration, the processes in steps S29 and S30 are skipped, and the process proceeds to step S32.
 ステップS32において、制御部92は、処理を終了するかを判定する。処理を終了しないと判定された場合、処理はステップS28に戻り、ステップS32において、処理を終了すると判定されるまで、ステップS28乃至S32の処理が繰り返し実行される。 In step S32, the control unit 92 determines whether to end the process. If it is determined not to end the process, the process returns to step S28, and the processes in steps S28 to S32 are repeatedly executed until it is determined in step S32 that the process is to be ended.
 一方、ステップS32において、例えば、対物レンズ22を交換したり、標本101を交換したり、観察を終了したりするために、ユーザが、入力部91を介して、自動収差補正処理の終了の指令を入力したとき、制御部92は、処理を終了すると判定し、自動収差補正処理は終了する。 On the other hand, in step S 32, for example, in order to replace the objective lens 22, replace the specimen 101, or end the observation, the user instructs the end of the automatic aberration correction process via the input unit 91. Is input, the control unit 92 determines that the process is to be terminated, and the automatic aberration correction process is terminated.
 このようにして、カバーガラス2Aの厚みを正確に検出できるともに、カバーガラス2Aの厚み、および、油浸用オイル71の温度に応じて、適切な収差補正を自動で行うことができる。また、油浸用オイル71の温度の変化に追従して、自動で収差補正を行うことができる。 Thus, the thickness of the cover glass 2A can be accurately detected, and appropriate aberration correction can be automatically performed according to the thickness of the cover glass 2A and the temperature of the oil 71 for oil immersion. In addition, aberration correction can be automatically performed following the change in the temperature of the oil 71 for immersion.
 なお、あらかじめカバーガラス2Aの正確な厚みが分かっている場合、その厚みを制御部92に入力するようにして、ステップS1乃至S7の処理を省略することも可能である。 In addition, when the exact thickness of the cover glass 2A is known in advance, the thickness of the cover glass 2A can be input to the control unit 92, and the processing of steps S1 to S7 can be omitted.
 また、以上の説明では、油浸用の対物レンズを用いる例を示したが、水浸用の対物レンズを用いる場合にも、同じ処理により、収差補正を行うことが可能である。 In the above description, an example in which an oil immersion objective lens is used has been described. However, even when a water immersion objective lens is used, aberration correction can be performed by the same process.
 なお、上述した一連の処理は、ハードウエアにより実行することもできるし、ソフトウエアにより実行することもできる。一連の処理をソフトウエアにより実行する場合には、そのソフトウエアを構成するプログラムが、専用のハードウエアに組み込まれているコンピュータ、または、各種のプログラムをインストールすることで、各種の機能を実行することが可能な、例えば汎用のパーソナルコンピュータなどに、プログラム記録媒体からインストールされる。 The series of processes described above can be executed by hardware or can be executed by software. When a series of processing is executed by software, a program constituting the software executes various functions by installing a computer incorporated in dedicated hardware or various programs. For example, it is installed from a program recording medium in a general-purpose personal computer or the like.
 なお、コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであっても良い。 The program executed by the computer may be a program that is processed in time series in the order described in this specification, or in parallel or at a necessary timing such as when a call is made. It may be a program for processing.
 さらに、本発明の実施の形態は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更が可能である。 Furthermore, the embodiments of the present invention are not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present invention.

Claims (5)

  1.  収差補正レンズを備えた液浸対物レンズを備える顕微鏡において、
     前記液浸対物レンズとカバーガラスとの間に満たされている液浸用の液体の温度を計測する温度計測手段と、
     前記液体の温度と前記カバーガラスの厚みの組み合わせにおいて収差を適切に補正するための前記収差補正レンズの位置の調整値を表す調整値データに基づいて、前記液体の温度の変化に応じて前記収差補正レンズの位置を調整する収差補正手段と
     を備えることを特徴とする顕微鏡。
    In a microscope equipped with an immersion objective lens equipped with an aberration correction lens,
    Temperature measuring means for measuring the temperature of the liquid for immersion filled between the immersion objective lens and the cover glass;
    Based on adjustment value data representing an adjustment value of the position of the aberration correction lens for appropriately correcting aberration in a combination of the temperature of the liquid and the thickness of the cover glass, the aberration according to a change in the temperature of the liquid A microscope comprising: an aberration correction unit that adjusts the position of the correction lens.
  2.  前記収差補正レンズが適切な位置に調整された後、前記液浸対物レンズを介して観察される標本の画像のコントラスト値が最大となるように前記液浸対物レンズの位置を調整するフォーカス制御手段を
     さらに備えることを特徴とする請求項1に記載の顕微鏡。
    A focus control unit that adjusts the position of the immersion objective lens so that the contrast value of the sample image observed through the immersion objective lens is maximized after the aberration correction lens is adjusted to an appropriate position. The microscope according to claim 1, further comprising:
  3.  前記カバーガラスの厚みが未知の状態において、前記収差補正レンズ位置調整手段および前記フォーカス制御手段により、前記標本の画像のコントラスト値が最大になるように前記収差補正レンズおよび前記液浸対物レンズの位置を調整したときの前記収差補正レンズの位置の調整値および前記液体の温度、並びに、前記調整値データに基づいて、前記カバーガラスの厚みを検出するカバーガラス厚み検出手段を
     さらに備えることを特徴とする請求項1に記載の顕微鏡。
    In a state where the thickness of the cover glass is unknown, the aberration correction lens and the immersion objective lens are positioned so that the contrast value of the sample image is maximized by the aberration correction lens position adjusting unit and the focus control unit. And a cover glass thickness detecting means for detecting the thickness of the cover glass based on the adjustment value of the position of the aberration correction lens when adjusting the temperature, the temperature of the liquid, and the adjustment value data. The microscope according to claim 1.
  4.  前記液体の温度と前記カバーガラスの厚みの複数の組み合わせのそれぞれにおいて前記収差補正レンズのピントが適切に調整されたときの前記収差補正レンズの位置の調整値を取得し、前記調整値データを生成する調整値データ生成手段を
     さらに備えることを特徴とする請求項1に記載の顕微鏡。
    Acquires an adjustment value of the position of the aberration correction lens when the focus of the aberration correction lens is appropriately adjusted in each of a plurality of combinations of the temperature of the liquid and the thickness of the cover glass, and generates the adjustment value data The microscope according to claim 1, further comprising adjustment value data generation means.
  5.  収差補正レンズを備えた液浸対物レンズを備える顕微鏡の収差補正の制御を行う収差補正制御装置において、
     前記液浸対物レンズとカバーガラスとの間に満たされている液浸用の液体の温度を計測する温度計測手段と、
     前記液体の温度と前記カバーガラスの厚みの組み合わせにおいて収差を適切に補正するための前記収差補正レンズの位置の調整値を表す調整値データに基づいて、前記液体の温度の変化に応じて前記収差補正レンズの位置を調整する収差補正手段と
     を備えることを特徴とする収差補正制御装置。
    In an aberration correction control apparatus that controls aberration correction of a microscope including an immersion objective lens including an aberration correction lens,
    Temperature measuring means for measuring the temperature of the liquid for immersion filled between the immersion objective lens and the cover glass;
    Based on adjustment value data representing an adjustment value of the position of the aberration correction lens for appropriately correcting aberration in a combination of the temperature of the liquid and the thickness of the cover glass, the aberration according to a change in the temperature of the liquid An aberration correction control device comprising: an aberration correction unit that adjusts the position of the correction lens.
PCT/JP2009/051580 2008-02-01 2009-01-30 Microscope and aberration correction controlling device WO2009096522A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009551599A JP5212382B2 (en) 2008-02-01 2009-01-30 Microscope and aberration correction control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008022412 2008-02-01
JP2008-022412 2008-09-01

Publications (1)

Publication Number Publication Date
WO2009096522A1 true WO2009096522A1 (en) 2009-08-06

Family

ID=40912865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051580 WO2009096522A1 (en) 2008-02-01 2009-01-30 Microscope and aberration correction controlling device

Country Status (2)

Country Link
JP (1) JP5212382B2 (en)
WO (1) WO2009096522A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013020254A (en) * 2011-07-08 2013-01-31 Leica Microsystems Cms Gmbh Microscope objective
JP2014160213A (en) * 2013-02-20 2014-09-04 Olympus Corp Microscope system and program
WO2015121190A1 (en) * 2014-02-12 2015-08-20 Leica Microsystems Cms Gmbh Method and microscope for imaging a volume sample
JP2018173507A (en) * 2017-03-31 2018-11-08 株式会社ニコン Correction amount calculating device, microscope, correction amount calculation program, and correction amount calculation method
US10288877B2 (en) 2015-07-16 2019-05-14 Olympus Corporation Microscopy system, determination method, and recording medium
JP2019521385A (en) * 2016-07-01 2019-07-25 カール ツァイス マイクロスコピー ゲーエムベーハーCarl Zeiss Microscopy Gmbh Apparatus for microscopy and aberration correction
US10379329B2 (en) 2014-12-15 2019-08-13 Olympus Corporation Microscope system and setting value calculation method
WO2020240639A1 (en) * 2019-05-24 2020-12-03 株式会社ニコン Microscope device, method for controlling microscope device, and program for controlling microscope device
JP2021139958A (en) * 2020-03-02 2021-09-16 京セラSoc株式会社 Observation method using microscope device
US11300782B2 (en) 2017-03-20 2022-04-12 Carl Zeiss Microscopy Gmbh Microscopy method and microscope for imaging an object
WO2022269442A1 (en) * 2021-06-24 2022-12-29 Fei Deutschland Gmbh Systems and methods for motorized adjustment of objective lens correction collar

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017105928A1 (en) 2017-03-20 2018-09-20 Carl Zeiss Microscopy Gmbh Microscope and method for imaging an object

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005043624A (en) * 2003-07-28 2005-02-17 Nikon Corp Microscope control unit, microscope system, and microscope objective lens

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005043624A (en) * 2003-07-28 2005-02-17 Nikon Corp Microscope control unit, microscope system, and microscope objective lens

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013020254A (en) * 2011-07-08 2013-01-31 Leica Microsystems Cms Gmbh Microscope objective
JP2014160213A (en) * 2013-02-20 2014-09-04 Olympus Corp Microscope system and program
EP2770360A3 (en) * 2013-02-20 2018-01-03 Olympus Corporation Microscope system and program
US10365466B2 (en) 2014-02-12 2019-07-30 Leica Microsystems Cms Gmbh Method and microscope for imaging a volume sample
WO2015121190A1 (en) * 2014-02-12 2015-08-20 Leica Microsystems Cms Gmbh Method and microscope for imaging a volume sample
US10379329B2 (en) 2014-12-15 2019-08-13 Olympus Corporation Microscope system and setting value calculation method
US10288877B2 (en) 2015-07-16 2019-05-14 Olympus Corporation Microscopy system, determination method, and recording medium
JP2019521385A (en) * 2016-07-01 2019-07-25 カール ツァイス マイクロスコピー ゲーエムベーハーCarl Zeiss Microscopy Gmbh Apparatus for microscopy and aberration correction
JP7308033B2 (en) 2016-07-01 2023-07-13 カール ツァイス マイクロスコピー ゲーエムベーハー Equipment for Microscopy and Aberration Correction
US11300782B2 (en) 2017-03-20 2022-04-12 Carl Zeiss Microscopy Gmbh Microscopy method and microscope for imaging an object
JP2018173507A (en) * 2017-03-31 2018-11-08 株式会社ニコン Correction amount calculating device, microscope, correction amount calculation program, and correction amount calculation method
WO2020240639A1 (en) * 2019-05-24 2020-12-03 株式会社ニコン Microscope device, method for controlling microscope device, and program for controlling microscope device
JP2021139958A (en) * 2020-03-02 2021-09-16 京セラSoc株式会社 Observation method using microscope device
US11808933B2 (en) 2020-03-02 2023-11-07 Kyocera Soc Corporation Liquid immersion objective, microscope, and observation method
WO2022269442A1 (en) * 2021-06-24 2022-12-29 Fei Deutschland Gmbh Systems and methods for motorized adjustment of objective lens correction collar

Also Published As

Publication number Publication date
JP5212382B2 (en) 2013-06-19
JPWO2009096522A1 (en) 2011-05-26

Similar Documents

Publication Publication Date Title
JP5212382B2 (en) Microscope and aberration correction control method
JP4933706B2 (en) microscope
US10365466B2 (en) Method and microscope for imaging a volume sample
US20070122143A1 (en) Intermittent photo-taking device
US9411142B2 (en) Microscope system, method for correcting a spherical aberration, and storage medium
JP5621259B2 (en) Microscope equipment
US7071451B2 (en) Autofocus system and microscope
JP4097761B2 (en) Autofocus microscope and autofocus detection device
JP4021183B2 (en) Focus state signal output device
JP6173154B2 (en) Microscope system
US8659827B2 (en) Spherical aberration correction for an optical microscope using a moving infinity-conjugate relay
JP2013003333A (en) Microscope device
JP2006251209A (en) Microscope
JP2007333987A (en) Method for manufacturing camera module
JP5595169B2 (en) Imaging apparatus and lens drive control method
JP5959247B2 (en) microscope
JP4910382B2 (en) microscope
CA2944688C (en) Autofocus system
JP4563643B2 (en) Microscope focus detection apparatus and microscope equipped with the same
JP4792269B2 (en) Microscope focus maintaining device and microscope device
JPH09189849A (en) Focus detection device for microscope
JP5278489B2 (en) Microscope, microscope focus control method
JP2014073234A (en) Imaging apparatus and focal position adjustment method
US20190121111A1 (en) Microscope system, observation method, and computer-readable recording medium
JP2017003827A (en) Microscope device, control method, and control program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09705075

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009551599

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09705075

Country of ref document: EP

Kind code of ref document: A1