WO2009096404A1 - Rubber spring and input device employing the same - Google Patents

Rubber spring and input device employing the same Download PDF

Info

Publication number
WO2009096404A1
WO2009096404A1 PCT/JP2009/051317 JP2009051317W WO2009096404A1 WO 2009096404 A1 WO2009096404 A1 WO 2009096404A1 JP 2009051317 W JP2009051317 W JP 2009051317W WO 2009096404 A1 WO2009096404 A1 WO 2009096404A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
rubber spring
comparative example
spring
fluororubber
Prior art date
Application number
PCT/JP2009/051317
Other languages
French (fr)
Japanese (ja)
Inventor
Shunetsu Sato
Yoshiro Yoshida
Original Assignee
Alps Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co., Ltd. filed Critical Alps Electric Co., Ltd.
Priority to JP2009551525A priority Critical patent/JPWO2009096404A1/en
Publication of WO2009096404A1 publication Critical patent/WO2009096404A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H13/00Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch
    • H01H13/02Details
    • H01H13/26Snap-action arrangements depending upon deformation of elastic members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H13/00Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch
    • H01H13/02Details
    • H01H13/26Snap-action arrangements depending upon deformation of elastic members
    • H01H13/48Snap-action arrangements depending upon deformation of elastic members using buckling of disc springs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H13/00Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch
    • H01H13/50Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a single operating member
    • H01H13/52Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a single operating member the contact returning to its original state immediately upon removal of operating force, e.g. bell-push switch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H13/00Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch
    • H01H13/70Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard
    • H01H13/84Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard characterised by ergonomic functions, e.g. for miniature keyboards; characterised by operational sensory functions, e.g. sound feedback
    • H01H13/85Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard characterised by ergonomic functions, e.g. for miniature keyboards; characterised by operational sensory functions, e.g. sound feedback characterised by tactile feedback features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2209/00Layers
    • H01H2209/002Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2215/00Tactile feedback
    • H01H2215/004Collapsible dome or bubble
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2227/00Dimensions; Characteristics
    • H01H2227/022Collapsable dome
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2227/00Dimensions; Characteristics
    • H01H2227/03Hardness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H5/00Snap-action arrangements, i.e. in which during a single opening operation or a single closing operation energy is first stored and then released to produce or assist the contact movement
    • H01H5/04Energy stored by deformation of elastic members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H5/00Snap-action arrangements, i.e. in which during a single opening operation or a single closing operation energy is first stored and then released to produce or assist the contact movement
    • H01H5/04Energy stored by deformation of elastic members
    • H01H5/30Energy stored by deformation of elastic members by buckling of disc springs

Definitions

  • the present invention relates to a rubber spring which can effectively suppress the generation of a siloxane gas and which is less likely to break compared to a silicone rubber, and an input device using the same.
  • silicone rubber is used as a rubber spring used for the push button switch as shown in the following patent documents.
  • the present invention is intended to solve the above-mentioned conventional problems, and in particular, it is possible to effectively suppress the generation of siloxane gas, and to use a high load rubber spring which is less likely to break compared to silicone rubber.
  • the present invention relates to a rubber spring including a pressing portion and a leg portion which can be bent when the pressing portion is pressed. At least the leg portion is formed of fluororubber.
  • the rubber spring which can suppress generation
  • the fluororubber is preferably formed of a structure having a fluorinated polyether skeleton and a silicone crosslinking reactive group at the end.
  • the whole of the pressing portion and the leg portion is made of the fluororubber, and furthermore, the generation of the siloxane gas can be more effectively suppressed.
  • the rubber hardness of the fluororubber is preferably 70 ° to 90 °. As a result, a high load rubber spring can be more effectively provided.
  • the formation region of the fluorine rubber is formed by heat pressing the fluorine rubber before crosslinking.
  • the input device is provided below the rubber spring described in any of the above, on a movable contact formed of metal pressed downward by the pressing portion, and on the lower side of the movable contact. And a switch unit including the fixed contact.
  • fluorine rubber for the rubber spring, generation of siloxane gas can be effectively suppressed, and stability and long life of input characteristics can be obtained.
  • the leg can be made more difficult to break compared to the prior art.
  • a high load compatible input device that is more resistant to breakage can be realized than when silicone rubber is used.
  • the rubber spring which can suppress generation
  • FIG. 1 is a partial cross-sectional view showing a cut surface of the push button switch (input device) according to the present embodiment cut in the height direction
  • FIG. 2 is a downward direction of a pressing portion of a rubber spring constituting the push button switch shown in FIG. It is a fragmentary sectional view when pressing it.
  • the push button switch 1 in the present embodiment includes a rubber spring 2 and a switch portion 3.
  • the rubber spring 2 includes the pressing portion 4 and a leg portion 5 integrally formed with the pressing portion 4.
  • the upper surface 4a of the pressing portion 4 is a pressing surface formed of a flat surface.
  • the lower surface of the pressing portion 4 is formed with a protruding portion 4 b that protrudes downward.
  • the leg portion 5 is formed in a skirt shape which is formed to extend obliquely downward from the outer periphery of the pressing portion 4, and the lower side of the protruding portion 4 b is hollow.
  • the legs 5 are formed to have an average thickness H1 (about 300 to 400 ⁇ m).
  • the lower edge 5b of the leg 5 is in contact with the substrate 6 as a support.
  • the outer peripheral shape of the rubber spring 2 is substantially frusto-conical.
  • the leg portion 5 is a portion which can be bent when the pressing portion 4 is pressed downward as shown in FIG.
  • the switch unit 3 includes a conductive fixed contact 7 formed on the substrate 6 and a dome-shaped (or convex) movable contact 8 provided so as to cover the upper side of the fixed contact 7.
  • the movable contact 8 is formed of a thin metal plate, and the lower surface 8 a of the movable contact 8 opposed to the fixed contact 7 is a contact portion.
  • the outer peripheral portion 8 b of the movable contact 8 is fixed on the substrate 6.
  • a conductive pattern wired on the substrate 6 is connected to the outer peripheral portion 8b of the movable contact 8 (not shown), and a conductive pattern wired on the lower surface side of the substrate 6 is a through hole in the fixed contact 7 Connected via (not shown).
  • a characteristic part of the rubber spring 2 in the present embodiment is that at least the legs 5 constituting the rubber spring 2 are formed of fluororubber.
  • the fluororubber is formed of a composite of a so-called silicone elastomer and a fluoroelastomer having a fluorinated polyether skeleton and a silicone crosslinking reaction group at the end.
  • the structural formula is shown below.
  • the fluororubber provided with the above structural formula can present, for example, a fluororubber SIFEL 9700 manufactured by Shin-Etsu Chemical.
  • the fluorine rubber having the above structural formula hardly generates siloxane gas due to the structure of the polymer. Moreover, it is superior in chemical resistance to silicone rubber.
  • the whole rubber spring 2 including the pressing portion 4 as well as the leg portion 5 is formed of the above-described fluororubber in the manufacturing process, and that generation of siloxane gas can be more effectively suppressed. .
  • the rubber hardness of the fluororubber is preferably 70 ° to 90 °.
  • the hardness of silicone rubber was measured using a durometer (spring-type rubber hardness meter: CL-150LW type, manufactured by Polymer Measurement Co., Ltd.).
  • a spring-type rubber hardness tester is a measuring device that presses a pressing needle against the surface of a sample with the force of a spring to give deformation, and digitizes the hardness from the “push-in depth” at that time.
  • the rubber spring 2 formed of fluorine rubber for example, draws the fluorine rubber before crosslinking with a roll, draws it out in a shape that can be easily heat-pressed, places the drawn fluorine rubber in a heated mold, and heat presses it. Molded.
  • the generation of siloxane gas can be effectively suppressed as compared with the case where silicone rubber is used as in the prior art.
  • the leg 5 is broken compared to the prior art. It can be difficult. Therefore, in the present embodiment, it is possible to realize the pressing switch 1 (input device) corresponding to a high load that is resistant to breakage, as compared to the case where silicone rubber is used.
  • the fluororubber 11 preferably has a film structure in which a large number of reinforcing materials 21 are dispersed in a polymer 20.
  • the reinforcing material 21 is carbon black or silica (SiO 2 ) particles or the like.
  • the hardness of the fluoro rubber 11 can be increased by increasing the content of the reinforcing material 21 or adjusting the particle size. Therefore, by adjusting the content and particle size of the reinforcing material 21, it is possible to easily and appropriately manufacture the rubber spring 1 capable of coping with a high load.
  • the fluororubber SIFEL 9700 manufactured by Shin-Etsu Chemical Co., Ltd.
  • the stretched fluororubber was cut out into a shape that can be easily heat-pressed, placed in a mold heated to about 175 ° C., and heat-pressed at a pressure of 200 kg / cm 2 for 4 minutes.
  • a notch was formed at the end of the rubber spring sheet by a tearing test cutout cutter (JIS-K-6301A type).
  • the length of the notch was 1 mm.
  • a rubber test piece (comparative example 1) shown in FIG. 4 was formed from a test piece of silicone rubber (12 cm ⁇ 12 cm and a thickness of about 0.3 mm) using a punching cutter (JIS-K-6301A type) for tearing test.
  • the rubber test pieces were prepared for rubber hardness of 50 °, 60 °, 70 °, 75 ° and 80 °, respectively.
  • Tear test As a measuring instrument, Tensilon Universal Testing Instrument (Orientech RTC-1150A) was used. The tear test was performed using this universal testing machine, and the load and displacement (elongation at break) when each test piece of Example and Comparative Example broke were measured. The tear strength of the sample was calculated from the following equation. The speed at which the test piece was pulled was 5 mm / min. In addition, the distance between the clamps on which the test piece was placed was about 50 mm.
  • FIG. 6 is a graph showing the relationship between the thickness and the tear strength of each test piece of Example and Comparative Examples 1 and 2.
  • FIG. 7 is the thickness of each test piece of Example and Comparative Examples 1 and 2. It is a graph which shows the relationship between and the elongation rate to a fracture
  • the rubber hardness of Comparative Example 1 shown in FIG. 6 and FIG. 7 is 70 °, and all of the Example, Comparative Example 1 and Comparative Example 2 have the same rubber hardness of 70 °.
  • FIG. 8 is a graph showing the relationship between the tear strength and the elongation to break of the test pieces of Example and Comparative Examples 1 and 2.
  • the example using the fluororubber was less likely to be broken as compared with the comparative example using the silicone rubber.
  • the example has about twice the tear strength compared to the comparative example 2, The elongation at tearing was about 3 times greater.
  • the example (rubber hardness 70 °) corresponds to the tear strength and the elongation rate of the comparative example 1 having a rubber hardness of 50 °.
  • each test piece is different as shown in FIG. 6 and FIG. 7, comparison can not be made simply, but the example formed of fluororubber is far less likely to break compared to the comparative example formed of silicone rubber. It has been found that the example can realize a high load rubber spring which is more resistant to breakage than the comparative example.
  • the reflow conditions were such that the temperature was gradually raised from 150 degrees to a peak temperature of about 260 degrees, and the reflow completion time was about 3 minutes.
  • the working force of the rubber spring was measured. Moreover, the operating force change rate (%) when the operating force before reflow was made into the reference value was also investigated. As the operating force of the rubber spring, both the operating force without pre-pressing and the operating force after 20 pre-pressings were measured.
  • FIG. 9 shows experimental results of measuring the reflow number dependency of the operating force without pre-pressing for the example and the comparative example 2.
  • FIG. 10 is an experimental result of measuring the reflow number dependency of the rate of change of the operating force without prepressing the example and the comparative example 2.
  • FIG. 11 shows experimental results of measuring the reflow number dependency of the operating force by performing preliminary pressing 20 times for the example and the comparative example 2.
  • FIG. 12 shows experimental results of measuring the reflow frequency dependency of the rate of change of working force by performing preliminary pressing 20 times for the example and the comparative example 2.
  • the operating force is less likely to be reduced by the heat of the rubber spring formed of fluorine rubber, compared to the rubber spring formed of silicone rubber.

Abstract

A rubber spring is provided which is especially effective in inhibiting the generation of a siloxane gas and which is highly less apt to break and withstands high loads. Also provided is an input device employing the spring. The rubber spring (2) comprises a pressing part (4) and a leg part (5) which can bend when the pressing part (4) is pressed. At least the leg part (5) is made of a fluororubber. The fluororubber preferably is one formed from a structure comprising a fluorinated polyether skeleton and a crosslinkable reactive silicone group at an end.

Description

ラバースプリング及びそれを用いた入力装置Rubber spring and input device using the same
 本発明は、シロキサンガスの発生を効果的に抑制でき、しかも、シリコーンゴムと比較して破断しにくいラバースプリング及びそれを用いた入力装置に関する。 The present invention relates to a rubber spring which can effectively suppress the generation of a siloxane gas and which is less likely to break compared to a silicone rubber, and an input device using the same.
 押釦スイッチに用いられるラバースプリングには、例えば下記特許文献に示すようにシリコーンゴムを用いていた。 For example, silicone rubber is used as a rubber spring used for the push button switch as shown in the following patent documents.
 しかしながら、シリコーンゴムを用いたラバースプリングではシロキサンガスの発生による接点障害やリフロー後の作動力低下の問題があった。 However, in the case of a rubber spring using silicone rubber, there have been problems of contact failure due to the generation of siloxane gas and a decrease in operating force after reflow.
 また、押圧したときに適切なクリック感と作動力を出すためラバースプリングに高硬度領域のシリコーンゴムを用いると、屈曲可能なラバースプリングの脚部に傷が付いたとき、そこから容易に破断するといった問題があった。
特開2005-093347号公報 特開2004-235006号公報
In addition, if silicone rubber with high hardness is used for rubber spring to give an appropriate click feeling and actuating force when pressed, the leg of bendable rubber spring is easily broken from it when scratched. There was such a problem.
JP 2005-093347 A JP 2004-235006 A
 そこで本発明は上記従来課題を解決するためのものであり、特に、シロキサンガスの発生を効果的に抑制でき、しかも、シリコーンゴムと比較して破断しにくい高荷重対応のラバースプリング及びそれを用いた入力装置を提供することを目的とする。 Therefore, the present invention is intended to solve the above-mentioned conventional problems, and in particular, it is possible to effectively suppress the generation of siloxane gas, and to use a high load rubber spring which is less likely to break compared to silicone rubber. To provide an input device that
 本発明は、押圧部と、前記押圧部が押圧されたときに屈曲可能な脚部とを備えるラバースプリングにおいて、
 少なくとも前記脚部は、フッ素ゴムで形成されていることを特徴とするものである。これにより、シロキサンガスの発生を効果的に抑制できるラバースプリングを提供できる。また従来のようにシリコーンゴムを用いた場合に比べて破断しにくくでき、したがって本発明では、破断に強い高荷重対応のラバースプリングを実現できる。
The present invention relates to a rubber spring including a pressing portion and a leg portion which can be bent when the pressing portion is pressed.
At least the leg portion is formed of fluororubber. Thereby, the rubber spring which can suppress generation | occurrence | production of siloxane gas effectively can be provided. Further, fracture can be made more difficult than when silicone rubber is used as in the prior art, and accordingly, in the present invention, a high load rubber spring that is resistant to breakage can be realized.
 本発明では、前記フッ素ゴムは、フッ素化ポリエーテル骨格と末端にシリコーン架橋反応基を有する構造で形成されていることが好ましい。これにより、後述する実験で示すように、シリコーンゴムに比べて引き裂き強さ及び引き裂きによって破断に至るまでの伸び率を数段大きくでき、さらに熱によって作動力が低下しにくいことが確認された。またポリマーの構造上、シロキサンガスはほとんど発生せず、さらにシリコーンゴムに比べて耐溶剤性にも優れる。 In the present invention, the fluororubber is preferably formed of a structure having a fluorinated polyether skeleton and a silicone crosslinking reactive group at the end. Thereby, as shown in the experiment described later, it was confirmed that the tear strength and the elongation rate to rupture due to tearing can be increased by several steps as compared with silicone rubber, and that the operating force is less likely to be reduced by heat. Further, due to the structure of the polymer, almost no siloxane gas is generated, and furthermore, the solvent resistance is excellent as compared with silicone rubber.
 本発明では、前記押圧部及び前記脚部の全体が前記フッ素ゴムで形成されていることが、製造工程上好ましく、さらに、シロキサンガスの発生をより効果的に抑制できる。 In the present invention, it is preferable in the manufacturing process that the whole of the pressing portion and the leg portion is made of the fluororubber, and furthermore, the generation of the siloxane gas can be more effectively suppressed.
 また本発明では、前記フッ素ゴムのゴム硬度は、70°~90°であることが好ましい。これにより、より効果的に、高荷重対応のラバースプリングにできる。 Further, in the present invention, the rubber hardness of the fluororubber is preferably 70 ° to 90 °. As a result, a high load rubber spring can be more effectively provided.
 本発明では、前記フッ素ゴムでの形成領域は、架橋前のフッ素ゴムを熱プレスして成形されたものであることが好ましい。 In the present invention, it is preferable that the formation region of the fluorine rubber is formed by heat pressing the fluorine rubber before crosslinking.
 本発明における入力装置は、上記のいずれかに記載された前記ラバースプリングの下方には、前記押圧部により下方向に押圧される金属で形成された可動接点と、前記可動接点の下側に設けられた固定接点とを備えるスイッチ部が設けられていることを特徴とするものである。ラバースプリングにフッ素ゴムを使用することにより、シロキサンガスの発生を効果的に抑制でき、入力特性の安定性及び長寿命化を得ることが出来る。さらにラバースプリングの押圧部を下方向に押圧したときの脚部の屈曲部分に、可動接点に生じたばりにより傷が付けられても、脚部を従来に比べて破断しにくく出来、したがって本発明では、シリコーンゴムを用いた場合よりも、破断に強い高荷重対応の入力装置を実現できる。 The input device according to the present invention is provided below the rubber spring described in any of the above, on a movable contact formed of metal pressed downward by the pressing portion, and on the lower side of the movable contact. And a switch unit including the fixed contact. By using fluorine rubber for the rubber spring, generation of siloxane gas can be effectively suppressed, and stability and long life of input characteristics can be obtained. Furthermore, even if the bent portion of the leg when the pressing portion of the rubber spring is pressed downward is damaged by the burr produced on the movable contact, the leg can be made more difficult to break compared to the prior art. Thus, a high load compatible input device that is more resistant to breakage can be realized than when silicone rubber is used.
 本発明によれば、シロキサンガスの発生を効果的に抑制できるラバースプリングを提供できる。さらに、従来のようにシリコーンゴムを用いた場合に比べて破断しにくくでき、したがって、破断に強い高荷重対応のラバースプリングを実現できる。 ADVANTAGE OF THE INVENTION According to this invention, the rubber spring which can suppress generation | occurrence | production of siloxane gas effectively can be provided. Furthermore, fracture can be made more difficult than when silicone rubber is used as in the prior art, and therefore, a high load rubber spring that is resistant to fracture can be realized.
 図1は本実施形態における押釦スイッチ(入力装置)を高さ方向から切断した切断面を示した部分断面図、図2は、図1に示す押釦スイッチを構成するラバースプリングの押圧部を下方向に押圧したときの部分断面図、である。 FIG. 1 is a partial cross-sectional view showing a cut surface of the push button switch (input device) according to the present embodiment cut in the height direction, and FIG. 2 is a downward direction of a pressing portion of a rubber spring constituting the push button switch shown in FIG. It is a fragmentary sectional view when pressing it.
 本実施形態における押釦スイッチ1は、ラバースプリング2とスイッチ部3とを備える。 The push button switch 1 in the present embodiment includes a rubber spring 2 and a switch portion 3.
 ラバースプリング2は、押圧部4と押圧部4と一体に形成された脚部5とを備える。押圧部4の上面4aは平坦面で形成された押圧面である。押圧部4の下面には下方向に突出する突出部4bが形成されている。 The rubber spring 2 includes the pressing portion 4 and a leg portion 5 integrally formed with the pressing portion 4. The upper surface 4a of the pressing portion 4 is a pressing surface formed of a flat surface. The lower surface of the pressing portion 4 is formed with a protruding portion 4 b that protrudes downward.
 脚部5は押圧部4の外周から斜め下方向に延びて形成されたスカート形状で形成され、突出部4bの下側は空洞になっている。脚部5は平均厚さH1(300~400μm程度)で形成されている。脚部5の下縁部5bは支持部として基板6上に接触されている。ラバースプリング2の外周形状は略截頭円錐形状となっている。 The leg portion 5 is formed in a skirt shape which is formed to extend obliquely downward from the outer periphery of the pressing portion 4, and the lower side of the protruding portion 4 b is hollow. The legs 5 are formed to have an average thickness H1 (about 300 to 400 μm). The lower edge 5b of the leg 5 is in contact with the substrate 6 as a support. The outer peripheral shape of the rubber spring 2 is substantially frusto-conical.
 脚部5は、図2に示すように押圧部4を下方向に押圧したときに屈曲可能な部分である。 The leg portion 5 is a portion which can be bent when the pressing portion 4 is pressed downward as shown in FIG.
 スイッチ部3は、基板6上に形成された導電性の固定接点7と、固定接点7の上方を覆うように設けられたドーム状(あるいは凸状)の可動接点8とを備える。可動接点8は薄い金属板で形成されており、固定接点7に対向する可動接点8の下面8aは接触部となっている。また、可動接点8の外周部8bは、基板6上に固定されている。可動接点8の外周部8bには基板6上に配線された導電パターンが接続されており(図示せず)、また固定接点7には基板6の下面側に配線された導電パターンがスルーホールを介して接続されている(図示せず)。 The switch unit 3 includes a conductive fixed contact 7 formed on the substrate 6 and a dome-shaped (or convex) movable contact 8 provided so as to cover the upper side of the fixed contact 7. The movable contact 8 is formed of a thin metal plate, and the lower surface 8 a of the movable contact 8 opposed to the fixed contact 7 is a contact portion. The outer peripheral portion 8 b of the movable contact 8 is fixed on the substrate 6. A conductive pattern wired on the substrate 6 is connected to the outer peripheral portion 8b of the movable contact 8 (not shown), and a conductive pattern wired on the lower surface side of the substrate 6 is a through hole in the fixed contact 7 Connected via (not shown).
 図2に示すように可動接点8の上面に下方向の加重を加えると、可動接点8が反転し、可動接点8の下面(接触部)8aの一部が固定接点7に接触し、これにより、スイッチ入力を行うことが出来る。 When downward load is applied to the upper surface of the movable contact 8 as shown in FIG. 2, the movable contact 8 is reversed, and a part of the lower surface (contact portion) 8a of the movable contact 8 contacts the fixed contact 7, thereby , Switch input can be performed.
 本実施形態におけるラバースプリング2の特徴的部分は、ラバースプリング2を構成する少なくとも脚部5が、フッ素ゴムで形成されている点にある。 A characteristic part of the rubber spring 2 in the present embodiment is that at least the legs 5 constituting the rubber spring 2 are formed of fluororubber.
 フッ素ゴムは、フッ素化ポリエーテル骨格と末端にシリコーン架橋反応基を有する、いわゆるシリコーンエラストマーとフッ素エラストマーを複合化した構造で形成されていることがより好適である。構造式を下記に示す。 More preferably, the fluororubber is formed of a composite of a so-called silicone elastomer and a fluoroelastomer having a fluorinated polyether skeleton and a silicone crosslinking reaction group at the end. The structural formula is shown below.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
上記構造式を備えるフッ素ゴムは、例えば信越化学工業製のフッ素ゴムSIFEL9700を提示できる。 The fluororubber provided with the above structural formula can present, for example, a fluororubber SIFEL 9700 manufactured by Shin-Etsu Chemical.
 上記構造式を備えるフッ素ゴムは、ポリマーの構造上、シロキサンガスをほとんど発生しない。しかもシリコーンゴムに比べて耐薬品性にも優れている。 The fluorine rubber having the above structural formula hardly generates siloxane gas due to the structure of the polymer. Moreover, it is superior in chemical resistance to silicone rubber.
 また脚部5のみならず押圧部4を含めたラバースプリング2全体が、上記したフッ素ゴムで形成されていることが製造工程上、好適であり、またシロキサンガスの発生をより効果的に抑制できる。 Further, it is preferable that the whole rubber spring 2 including the pressing portion 4 as well as the leg portion 5 is formed of the above-described fluororubber in the manufacturing process, and that generation of siloxane gas can be more effectively suppressed. .
 次に、フッ素ゴムのゴム硬度は、70°~90°であることが好適である。基本的にシリコーンゴムの硬度はデュロメーター(スプリング式ゴム硬度計:高分子計測株式会社CL-150LW型)を用いて測定した。スプリング式ゴム硬度計は、押し針をスプリングの力で試料の表面に押し付けて変形を与え、そのときの「押し込み深さ」から硬さを数値化する測定器である。 Next, the rubber hardness of the fluororubber is preferably 70 ° to 90 °. Basically, the hardness of silicone rubber was measured using a durometer (spring-type rubber hardness meter: CL-150LW type, manufactured by Polymer Measurement Co., Ltd.). A spring-type rubber hardness tester is a measuring device that presses a pressing needle against the surface of a sample with the force of a spring to give deformation, and digitizes the hardness from the “push-in depth” at that time.
 フッ素ゴムで形成されるラバースプリング2は、例えば、架橋前のフッ素ゴムをロールで引き延ばし、熱プレス成形しやすい形状に引き出し、この引き出したフッ素ゴムを加熱した金型に設置した後、熱プレスして成形される。 The rubber spring 2 formed of fluorine rubber, for example, draws the fluorine rubber before crosslinking with a roll, draws it out in a shape that can be easily heat-pressed, places the drawn fluorine rubber in a heated mold, and heat presses it. Molded.
 以上のように本実施形態では、フッ素ゴムを用いてラバースプリング2を形成することで、従来のように、シリコーンゴムを用いた場合に比べて、シロキサンガスの発生を効果的に抑制できる。その結果、従来のようにシロキサンによる接点障害等を防止でき、入力特性の安定性及び長寿命化を得ることが出来る。 As described above, in the present embodiment, by forming the rubber spring 2 using fluorine rubber, the generation of siloxane gas can be effectively suppressed as compared with the case where silicone rubber is used as in the prior art. As a result, it is possible to prevent contact failure and the like due to siloxane as in the prior art, and it is possible to obtain stability and long life of input characteristics.
 しかもラバースプリング2の押圧部4を下方向に押圧したときの脚部5の屈曲部分5aに、可動接点8に生じたばりにより傷が付けられても、脚部5を従来に比べて破断しにくく出来る。したがって本実施形態では、シリコーンゴムを用いた場合よりも、破断に強い高荷重対応の押圧スイッチ1(入力装置)を実現できる。 Moreover, even if the bent portion 5a of the leg 5 when the pressing portion 4 of the rubber spring 2 is pressed downward is damaged by burrs produced on the movable contact 8, the leg 5 is broken compared to the prior art. It can be difficult. Therefore, in the present embodiment, it is possible to realize the pressing switch 1 (input device) corresponding to a high load that is resistant to breakage, as compared to the case where silicone rubber is used.
 特に、フッ素化ポリエーテル骨格と末端にシリコーン架橋反応基を有する、いわゆるシリコーンエラストマーとフッ素エラストマーを複合化した構造のフッ素ゴムを用いることで、後述する実験結果に示すように、シリコーンゴムに比べて数段、引き裂き強さや破断に至るまでの伸び率を大きくすることができた。よってフッ素ゴムのゴム硬度を高くしてもシリコーンゴムを用いた場合に比べて破断しにくい特性を得ることができ、したがって、破断に強い高荷重対応のラバースプリング2を簡単且つ適切に実現できる。また、熱によって作動力が低下しにくいことが確認できた。さらにポリマーの構造上、シロキサンガスはほとんど発生せず、さらにシリコーンゴムに比べて耐溶剤性にも優れている。 In particular, by using a fluororubber having a structure in which a so-called silicone elastomer and a fluoroelastomer having a fluorinated polyether skeleton and a silicone crosslinking reaction group at the end are complexed, as shown in the experimental results described later, compared to silicone rubber. Several steps were able to increase the tear strength and the elongation to failure. Therefore, even if the rubber hardness of the fluorocarbon rubber is increased, it is possible to obtain the property of being less likely to break compared to the case where silicone rubber is used. Therefore, a high load rubber spring 2 resistant to breakage can be realized simply and appropriately. Moreover, it has been confirmed that the operating force is less likely to be reduced by heat. Furthermore, due to the structure of the polymer, almost no siloxane gas is generated, and furthermore, the solvent resistance is superior to silicone rubber.
 図3に示すように、フッ素ゴム11は、ポリマー20中に多数の補強材21が分散した膜構造であることが好適である。補強材21は、カーボンブラックあるいはシリカ(SiO2)粒子等である。補強材21の含有量を多くするか、あるいは粒径を調整すれば、フッ素ゴム11の硬度を大きくすることができる。よって補強材21の含有量や粒径を調整することで高荷重に対応可能なラバースプリング1を簡単且つ適切に製造することができる。 As shown in FIG. 3, the fluororubber 11 preferably has a film structure in which a large number of reinforcing materials 21 are dispersed in a polymer 20. The reinforcing material 21 is carbon black or silica (SiO 2 ) particles or the like. The hardness of the fluoro rubber 11 can be increased by increasing the content of the reinforcing material 21 or adjusting the particle size. Therefore, by adjusting the content and particle size of the reinforcing material 21, it is possible to easily and appropriately manufacture the rubber spring 1 capable of coping with a high load.
 (フッ素ゴムによるラバースプリングシート(実施例)の作製)
 架橋前のフッ素ゴムSIFEL9700(信越化学工業製)を熱プレスしやすい形状にロールで引き延ばした。引き延ばしたフッ素ゴムを熱プレスしやすい形状に切り出し、約175℃に加熱した金型に設置して、200kg/cm2の圧力で4分間熱プレスした。
(Production of a rubber spring seat (example) using fluorine rubber)
The fluororubber SIFEL 9700 (manufactured by Shin-Etsu Chemical Co., Ltd.) before crosslinking was stretched with a roll into a shape that can be easily heat-pressed. The stretched fluororubber was cut out into a shape that can be easily heat-pressed, placed in a mold heated to about 175 ° C., and heat-pressed at a pressure of 200 kg / cm 2 for 4 minutes.
 次に200℃で4時間、ポストキュアを行ってラバースプリングシートを完成させた。フッ素ゴムのゴム硬度は70°であった。 Next, post curing was performed at 200 ° C. for 4 hours to complete a rubber spring sheet. The rubber hardness of the fluorine rubber was 70 °.
 またこのラバースプリングシートの端に図5のように引き裂き試験用切り抜きカッター(JIS-K-6301A型)で切り欠きを形成した。切り欠きの長さは1mmであった。 Further, as shown in FIG. 5, a notch was formed at the end of the rubber spring sheet by a tearing test cutout cutter (JIS-K-6301A type). The length of the notch was 1 mm.
 (シリコーンゴムによる比較例の作製)
 シリコーンゴムのテストピース(12cm×12cm 厚さ約0.3mm)から引き裂き試験用打ち抜きカッター(JIS-K-6301A型)を用いて図4に示すゴム試験片(比較例1)を形成した。このゴム試験片は、ゴム硬度50°、60°、70°、75°及び80°の夫々について作製した。
(Preparation of Comparative Example Using Silicone Rubber)
A rubber test piece (comparative example 1) shown in FIG. 4 was formed from a test piece of silicone rubber (12 cm × 12 cm and a thickness of about 0.3 mm) using a punching cutter (JIS-K-6301A type) for tearing test. The rubber test pieces were prepared for rubber hardness of 50 °, 60 °, 70 °, 75 ° and 80 °, respectively.
 また、同じ打ち抜きカッター(JIS-K-6301A型)を用いて、シリコーンゴム(ゴム硬度70°)からなるラバースプリングシート(比較例2)の端に図5のように切り欠きを形成した。 Further, using the same punching cutter (JIS-K-6301A type), notches were formed as shown in FIG. 5 at the end of a rubber spring sheet (comparative example 2) made of silicone rubber (rubber hardness 70 °).
(引き裂き試験)
 測定機には、テンシロン万能試験機((株)オリエンテック RTC-1150A)を用いた。この万能試験機を用いて引き裂き試験を行い、実施例及び比較例の各試験片が破断したときの荷重と変位量(破断したときの伸び)を測定した。試料の引き裂き強さは以下の式から算出した。試験片を引っ張るときの速度は5mm/minとした。また試験片を設置するつかみ具の間隔は約50mmとした。
(Tear test)
As a measuring instrument, Tensilon Universal Testing Instrument (Orientech RTC-1150A) was used. The tear test was performed using this universal testing machine, and the load and displacement (elongation at break) when each test piece of Example and Comparative Example broke were measured. The tear strength of the sample was calculated from the following equation. The speed at which the test piece was pulled was 5 mm / min. In addition, the distance between the clamps on which the test piece was placed was about 50 mm.
 引き裂き強さ(kgf/cm)=引き裂きが発生したときの最大荷重(kgf)/試験片の厚さ(cm) Tearing strength (kgf / cm) = maximum load when tearing occurred (kgf) / thickness of test piece (cm)
 図6は、実施例、比較例1及び比較例2の各試験片の厚みと引き裂き強さとの関係を示すグラフ、図7は、実施例、比較例1及び比較例2の各試験片の厚みと破断までの伸び率との関係を示すグラフである。なお図6、図7に示す比較例1のゴム硬度は70°であり、実施例、比較例1及び比較例2を全てゴム硬度70°で統一している。 FIG. 6 is a graph showing the relationship between the thickness and the tear strength of each test piece of Example and Comparative Examples 1 and 2. FIG. 7 is the thickness of each test piece of Example and Comparative Examples 1 and 2. It is a graph which shows the relationship between and the elongation rate to a fracture | rupture. The rubber hardness of Comparative Example 1 shown in FIG. 6 and FIG. 7 is 70 °, and all of the Example, Comparative Example 1 and Comparative Example 2 have the same rubber hardness of 70 °.
 図8は、実施例、比較例1及び比較例2の各試験片の引き裂き強さと破断までの伸び率との関係を示すグラフである。 FIG. 8 is a graph showing the relationship between the tear strength and the elongation to break of the test pieces of Example and Comparative Examples 1 and 2.
 図6ないし図8に示すように、フッ素ゴムを用いた実施例は、シリコーンゴムを用いた比較例に比べて破断しにくいことがわかった。例えば図8に示すように、実施例(ゴム硬度70°)と比較例2(ゴム硬度70°)の実験結果を見ると、実施例は比較例2に比べて引き裂き強さが約2倍、引き裂き破断時の伸び率が約3倍大きくなった。 As shown in FIG. 6 to FIG. 8, it was found that the example using the fluororubber was less likely to be broken as compared with the comparative example using the silicone rubber. For example, as shown in FIG. 8, when looking at the experimental results of the example (rubber hardness 70 °) and the comparative example 2 (rubber hardness 70 °), the example has about twice the tear strength compared to the comparative example 2, The elongation at tearing was about 3 times greater.
 また実施例と比較例1とを比較してみると、実施例(ゴム硬度70°)は、ゴム硬度50°の比較例1の引き裂き強度及び伸び率に相当した。 Further, when the example and the comparative example 1 are compared, the example (rubber hardness 70 °) corresponds to the tear strength and the elongation rate of the comparative example 1 having a rubber hardness of 50 °.
 図6、図7に示すように各試験片の厚みが違うので単純に比較できないものの、フッ素ゴムで形成された実施例はシリコーンゴムで形成された比較例に比べて遥かに破断しにくく、実施例のほうが比較例に比べて破断に強い高荷重のラバースプリングを実現できることがわかった。 Since the thickness of each test piece is different as shown in FIG. 6 and FIG. 7, comparison can not be made simply, but the example formed of fluororubber is far less likely to break compared to the comparative example formed of silicone rubber. It has been found that the example can realize a high load rubber spring which is more resistant to breakage than the comparative example.
(ラバースプリング作動力のリフロー回数依存性試験)
 実施例及び比較例2の各ラバースプリングシート中央部に形成された60個のラバースプリングを対象に、リフロー前後における作動力を測定した。
(Reflow number dependency test of rubber spring operating force)
The operating force before and after the reflow was measured for the 60 rubber springs formed at the center of each rubber spring sheet in the example and the comparative example 2.
 リフロー条件は、温度を150度から徐々に上昇させてピーク温度を約260度とし、リフローが完了する時間を約3分とした。 The reflow conditions were such that the temperature was gradually raised from 150 degrees to a peak temperature of about 260 degrees, and the reflow completion time was about 3 minutes.
 上記条件のリフローを1~5回行った後、ラバースプリングの作動力を測定した。またリフロー前の作動力を基準値としたときの作動力変化率(%)も調べた。ラバースプリングの作動力として、予備押しなしの作動力と20回予備押しした後の作動力の両方を測定した。 After performing the reflow under the above conditions 1 to 5 times, the working force of the rubber spring was measured. Moreover, the operating force change rate (%) when the operating force before reflow was made into the reference value was also investigated. As the operating force of the rubber spring, both the operating force without pre-pressing and the operating force after 20 pre-pressings were measured.
 図9は、実施例及び比較例2に対して予備押しをせずに作動力のリフロー回数依存性を測定した実験結果である。図10は、実施例及び比較例2に対して予備押しをせずに作動力変化率のリフロー回数依存性を測定した実験結果である。図11は、実施例及び比較例2に対して20回予備押して作動力のリフロー回数依存性を測定した実験結果である。図12は、実施例及び比較例2に対して20回予備押しして作動力変化率のリフロー回数依存性を測定した実験結果である。 FIG. 9 shows experimental results of measuring the reflow number dependency of the operating force without pre-pressing for the example and the comparative example 2. FIG. 10 is an experimental result of measuring the reflow number dependency of the rate of change of the operating force without prepressing the example and the comparative example 2. FIG. 11 shows experimental results of measuring the reflow number dependency of the operating force by performing preliminary pressing 20 times for the example and the comparative example 2. FIG. 12 shows experimental results of measuring the reflow frequency dependency of the rate of change of working force by performing preliminary pressing 20 times for the example and the comparative example 2.
 図9ないし図12に示すように実施例の作動力は5回リフローしてもほとんど変化なかった。 As shown in FIG. 9 to FIG. 12, the working force of the embodiment hardly changed even after the five reflows.
 一方、比較例2の作動力変化率は図10に示すように予備押しなしでは約4%低下し、また図12に示すように20回予備押しすると約6.5%まで低下した。 On the other hand, the rate of change in working force of Comparative Example 2 decreased by about 4% without prepress as shown in FIG. 10, and dropped to about 6.5% by 20 prepresses as shown in FIG.
 したがって、フッ素ゴムで形成されたラバースプリングのほうが、シリコーンゴムで形成されたラバースプリングに比べて、熱によって作動力が低下しにくいことがわかった。 Therefore, it has been found that the operating force is less likely to be reduced by the heat of the rubber spring formed of fluorine rubber, compared to the rubber spring formed of silicone rubber.
本実施形態における押釦スイッチ(入力装置)を高さ方向から切断した切断面を示した部分断面図、A partial cross-sectional view showing a cut surface obtained by cutting the push button switch (input device) in the present embodiment from the height direction; 図1に示す押釦スイッチを構成するラバースプリングの押圧部を下方向に押圧したときの部分断面図、1. Partial cross-sectional view when pressing the pressing portion of the rubber spring constituting the push button switch shown in FIG. 1 downward, フッ素ゴムの膜構造を示す模式図、Schematic diagram showing the film structure of fluoro rubber, ゴム試験片(比較例1)の形態を示す模式図、A schematic view showing a form of a rubber test piece (comparative example 1), ラバースプリングシートの模式図、Diagram of rubber spring seat, 実施例、比較例1及び比較例2(全てゴム硬度は70°)各試験片の厚みと引き裂き強度との関係を示すグラフ、Example, Comparative Example 1 and Comparative Example 2 (all rubber hardness is 70 °) A graph showing the relationship between the thickness of each test piece and the tear strength. 実施例、比較例1及び比較例2(全てゴム硬度は70°)の各試験片の厚みと破断までの伸び率との関係を示すグラフ、Graph showing the relationship between the thickness of each test piece of Example, Comparative Example 1 and Comparative Example 2 (all rubber hardness is 70 °) and the elongation to break. 実施例、比較例1及び比較例2の各試験片の引き裂き強度と破断までの伸び率との関係を示すグラフ、Graph showing the relationship between tear strength and elongation to break of each test piece of Example, Comparative Example 1 and Comparative Example 2. 実施例及び比較例2のリフロー回数と作動力との関係を示すグラフ(予備押しなし)、Graph showing the relationship between the number of reflows and the actuating force in Example and Comparative Example 2 (without pre-press), 実施例及び比較例2のリフロー回数と作動力変化率との関係を示すグラフ(予備押しなし)、Graph showing the relationship between the number of reflows and the rate of change in working force of the example and the comparative example 2 (without pre-press), 実施例及び比較例2のリフロー回数と作動力との関係を示すグラフ(予備押し20回)、Graph showing the relationship between the number of reflows and the actuating force in the example and the comparative example 2 (20 preliminary presses), 実施例及び比較例2のリフロー回数と作動力変化率との関係を示すグラフ(予備押し20回)、Graph showing the relationship between the number of reflows and the rate of change in operating force of the example and the comparative example 2 (20 preliminary presses),
符号の説明Explanation of sign
 1 押釦スイッチ
 2 ラバースプリング
 3 スイッチ部
 4 押圧部
 5 脚部
 6 基板
 7 固定接点
 8 可動接点
 20 ポリマー
 21 補強材
Reference Signs List 1 push button switch 2 rubber spring 3 switch portion 4 pressing portion 5 leg portion 6 base plate 7 fixed contact 8 movable contact 20 polymer 21 reinforcing material

Claims (6)

  1.  押圧部と、前記押圧部が押圧されたときに屈曲可能な脚部とを備えるラバースプリングにおいて、
     少なくとも前記脚部は、フッ素ゴムで形成されていることを特徴とするラバースプリング。
    A rubber spring comprising: a pressing portion; and a leg portion which is bendable when the pressing portion is pressed,
    A rubber spring characterized in that at least the leg portion is formed of fluorine rubber.
  2.  前記フッ素ゴムは、フッ素化ポリエーテル骨格と末端にシリコーン架橋反応基を有する構造で形成されている請求項1記載のラバースプリング。 The rubber spring according to claim 1, wherein the fluororubber is formed of a structure having a fluorinated polyether skeleton and a silicone crosslinking reaction group at the end.
  3.  前記押圧部及び前記脚部の全体が前記フッ素ゴムで形成されている請求項2に記載のラバースプリング。 The rubber spring according to claim 2, wherein the entire pressing portion and the leg portion are formed of the fluorine rubber.
  4.  前記フッ素ゴムのゴム硬度は、70°~90°である請求項2に記載のラバースプリング。 The rubber spring according to claim 2, wherein the rubber hardness of the fluorine rubber is 70 ° to 90 °.
  5.  前記フッ素ゴムでの形成領域は、架橋前のフッ素ゴムを熱プレスして成形されたものである請求項2に記載のラバースプリング。 The rubber spring according to claim 2, wherein the region formed with the fluorine rubber is formed by heat pressing the fluorine rubber before crosslinking.
  6.  請求項2に記載された前記ラバースプリングの下方には、前記押圧部により下方向に押圧される金属で形成された可動接点と、前記可動接点の下側に設けられた固定接点とを備えるスイッチ部が設けられていることを特徴とする入力装置。 A switch comprising a movable contact made of metal pressed downward by the pressing portion and a fixed contact provided on the lower side of the movable contact under the rubber spring described in claim 2 An input device characterized in that a part is provided.
PCT/JP2009/051317 2008-01-29 2009-01-28 Rubber spring and input device employing the same WO2009096404A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009551525A JPWO2009096404A1 (en) 2008-01-29 2009-01-28 Rubber spring and input device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008018196 2008-01-29
JP2008-018196 2008-01-29

Publications (1)

Publication Number Publication Date
WO2009096404A1 true WO2009096404A1 (en) 2009-08-06

Family

ID=40912756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051317 WO2009096404A1 (en) 2008-01-29 2009-01-28 Rubber spring and input device employing the same

Country Status (2)

Country Link
JP (1) JPWO2009096404A1 (en)
WO (1) WO2009096404A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019230100A1 (en) 2018-05-29 2019-12-05 アルプスアルパイン株式会社 Push switch

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004235006A (en) * 2003-01-30 2004-08-19 Matsushita Electric Ind Co Ltd Push switch
JP2005197109A (en) * 2004-01-08 2005-07-21 Shin Etsu Polymer Co Ltd Keytop structural body
JP2007063430A (en) * 2005-08-31 2007-03-15 Nichias Corp Dimethyl ether-resistant rubber member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004235006A (en) * 2003-01-30 2004-08-19 Matsushita Electric Ind Co Ltd Push switch
JP2005197109A (en) * 2004-01-08 2005-07-21 Shin Etsu Polymer Co Ltd Keytop structural body
JP2007063430A (en) * 2005-08-31 2007-03-15 Nichias Corp Dimethyl ether-resistant rubber member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019230100A1 (en) 2018-05-29 2019-12-05 アルプスアルパイン株式会社 Push switch
US11309143B2 (en) 2018-05-29 2022-04-19 Alps Alpine Co., Ltd. Push switch

Also Published As

Publication number Publication date
JPWO2009096404A1 (en) 2011-05-26

Similar Documents

Publication Publication Date Title
JP4634649B2 (en) Membrane switch and pressure sensor
US7094984B2 (en) Key switch and keyboard input device using the same
TWI467601B (en) Micro-deformable piezo-resistive material and manufacturing method thereof
CN1249750C (en) Push-button switch
US10482861B2 (en) Reaction force generator and keyboard device of electronic musical instrument
CN101473394B (en) Switch responsive to see-saw key
US20180277318A1 (en) Keyboard structure
WO2009096404A1 (en) Rubber spring and input device employing the same
JP2010251101A (en) Input device
JP2012185956A (en) Conductive member for push-button switch and method for manufacturing the same
TWM407428U (en) Keyswitch and keyboard with plate-type keycap assembly
JP2009117073A (en) Rubber spring, and input device using the same
JP5590745B2 (en) Long stroke dome type movable contact
JP4301087B2 (en) Flat touch panel
JP2010140850A (en) Rotary electrical component having push switch
JP6657053B2 (en) Push button switch and method of manufacturing the same
WO2023037653A1 (en) Push-button switch member
JP2003123586A (en) Dome type metal spring
TWM537298U (en) Improved structure of switch-type key
JP2006261051A (en) Dome-like metal spring and switch using it
JP2005026006A (en) Switch sheet and switch
JP2010251100A (en) Input device
JP2010186580A (en) Operation switch
JP2008052990A (en) Push-button switch member and its manufacturing method
JPWO2014132862A1 (en) Method for producing activated carbon sheet and method for improving impregnation of electrolyte solution into activated carbon sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09706008

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009551525

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09706008

Country of ref document: EP

Kind code of ref document: A1