WO2009096398A1 - Removal of paralytic shellfish poison component - Google Patents
Removal of paralytic shellfish poison component Download PDFInfo
- Publication number
- WO2009096398A1 WO2009096398A1 PCT/JP2009/051303 JP2009051303W WO2009096398A1 WO 2009096398 A1 WO2009096398 A1 WO 2009096398A1 JP 2009051303 W JP2009051303 W JP 2009051303W WO 2009096398 A1 WO2009096398 A1 WO 2009096398A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- goniotoxin
- shellfish
- polyphenol
- decarbamoyl
- stx
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23K—FODDER
- A23K50/00—Feeding-stuffs specially adapted for particular animals
- A23K50/80—Feeding-stuffs specially adapted for particular animals for aquatic animals, e.g. fish, crustaceans or molluscs
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23K—FODDER
- A23K10/00—Animal feeding-stuffs
- A23K10/20—Animal feeding-stuffs from material of animal origin
- A23K10/22—Animal feeding-stuffs from material of animal origin from fish
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23K—FODDER
- A23K10/00—Animal feeding-stuffs
- A23K10/20—Animal feeding-stuffs from material of animal origin
- A23K10/26—Animal feeding-stuffs from material of animal origin from waste material, e.g. feathers, bones or skin
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23K—FODDER
- A23K20/00—Accessory food factors for animal feeding-stuffs
- A23K20/10—Organic substances
- A23K20/142—Amino acids; Derivatives thereof
- A23K20/147—Polymeric derivatives, e.g. peptides or proteins
Definitions
- the present invention relates to a method for removing paralytic shellfish poison components from shellfish, a feed additive and a feed used therefor. More specifically, a method for detoxifying fresh shellfish containing a paralytic shellfish poison component having a sulfate ester group at the 11th position such as the goniotoxin group, a feed additive and feed used therefor, and a sulfate at the 11th position such as the saxitoxin group
- the present invention relates to a method for decomposing a paralytic shellfish poison component having no ester group.
- Shellfish is an excellent food resource that is high in protein, low in fat, and rich in trace elements such as zinc, which tends to be lacking in modern people.
- Filter feeders such as bivalves take phytoplankton directly as feed, but some phytoplankton produce natural poisons such as paralytic shellfish poisons.
- Paralytic shellfish poison (Paralytic) shellfishpoisons; PSP) is a highly lethal neurotoxin possessed by dinoflagellates such as Alexandrium tamarense.
- PSP Paralytic shellfish poison
- filtered food aquatic organisms such as bivalves become highly poisonous and accumulate PSP that causes human food poisoning.
- the sea area where PSP occurs is expanding globally, and in countries where bivalves are edible, the toxicity of shellfish is regularly monitored to prevent the outflow of poisoned shellfish to the market. In Japan, this shellfish poison monitoring works effectively, and it can be said that there is almost no poisoning caused by shellfish on the market.
- bivalves often remain highly toxic, and the damage to the fishery economy due to shipping restrictions has become serious.
- the first is to eliminate or control the toxic plankton that is the causative algae.
- it is currently difficult to control the occurrence of causal algae, which is a natural phenomenon, while preventing negative effects on the ecosystem.
- Second it controls the generation of causal algae.
- a variety of researches have been conducted on the diffusion of artificial causal algae due to ballast water used for balancing cargo ships and the transplantation of cultured bivalve larvae.
- the third is to prevent the poisoning of shellfish by predicting the occurrence of causative plankton.
- the fourth is to develop a method that can detect PSP easily and quickly.
- the mouse test method currently used is a simple and reliable method for detecting PSP, but has low detection sensitivity and has various problems associated with animal tests.
- various research groups are developing a simple analysis method for PSP that replaces the mouse test method.
- Non-Patent Document 1 reports that the PSP of shellfish is reduced by breeding poisoned bivalves in seawater blown with ozone.
- An object of the present invention is to provide a safe and effective method for removing paralytic shellfish poisons from aquatic organisms as food and feed materials.
- the present inventor is a mechanism that PSP component such as goniotoxin (GTX) group having sulfate ester group at the 11-position reacts with thiol compounds such as glutathione (GSH) and mercaptoethanol (ME) and is reduced to STX group
- PSP component such as goniotoxin (GTX) group having sulfate ester group at the 11-position reacts with thiol compounds such as glutathione (GSH) and mercaptoethanol (ME) and is reduced to STX group
- GSH glutathione
- ME mercaptoethanol
- cysteine is relatively stable and hardly soluble in water, and can be easily taken into shellfish as food. Cystine is quickly reduced to cysteine in the body, and is expected to degrade the GTX group. It was. However, administration of cystine often causes moribund shellfish and is not appropriate as a detoxification method for marine products where freshness is important.
- GTX ⁇ ⁇ ⁇ group and C-toxin group having sulfate ester at the 11th position are the main PSP components found in Alexandrium genus dinoflagellate occurring in the coastal area of the North Pacific and shellfish poisoned with its occurrence, Depending on the shellfish type and tissue, it may contain many saxitoxin (STX) cocoons that are reduced at the 11th position.
- the STX group is the main PSP component of the dinoflagellate Pyrodinium bahamense var. Compressum that occurs in tropical and subtropical waters, and in these waters shellfish poison the STX group as the main component reflecting the poisonous composition of the causative algae To do. Since STX group does not react with thiol, it cannot be removed by using this method.
- a paralytic shellfish poison having a sulfate ester group at the 11-position feeds shellfish with a feed containing a protein or peptide containing cysteine or cystine as a constituent amino acid. It has been found that it can be remarkably detoxified, and that this method does not cause shellfish mortality. Furthermore, the present inventors have found that the paralytic shellfish poisons of the saxitoxin (STX®) group having no sulfate ester group at the 11-position can be decomposed by polyphenol, thereby completing the present invention.
- STX® saxitoxin
- the present invention is as follows.
- the method of detoxification comprising decomposing and removing the shellfish poison components in fresh shellfish using a protein or peptide of 5 to 40% by weight.
- a method for decomposing a paralytic shellfish poison component having no sulfate ester group at the 11th position comprising decomposing a paralytic shellfish toxin component not having a sulfate ester group at the 11th position in a polyphenol solution.
- the paralytic shellfish venom component having no sulfate ester group at the 11-position is any of saxitoxin, decarbamoyl saxitoxin, neosaxitoxin, decarbamoyl neosaxitoxin, goniotoxin 5 (B1), or goniotoxin 6 (B2) The method according to (13) above, which is one or more.
- the polyphenol solution is a solution containing one or more polyphenol compounds, or a polyphenol-containing food.
- the polyphenol compound contained in the solution is tannic acid, ellagic acid, chlorogenic acid, coumarin, catechin, gallic acid, propyl gallate or pyrogallol.
- the polyphenol-containing food is apple, tomato, tea, wine or grape juice.
- goniotoxins and C-toxins which are shellfish poisons caused by dinoflagellates in the North Pacific coastal waters
- proteins or peptides rich in cysteine or cystine as constituent amino acids are added to the feed, or as feed
- 11- reduced shellfish poisons such as saxitoxin groups caused by dinoflagellates mainly in tropical and subtropical waters can be eliminated by polyphenols contained in plants, and removed during shellfish processing. It enables the development of effective treatments for shellfish poisoning that had no clues.
- the paralytic shellfish poisons targeted by the present invention include an 11-position sulfate ester type having a sulfate ester group at the 11-position, and an 11-position reduced form having no sulfate ester group at the 11-position. is there.
- the 11th sulfate ester type includes goniotoxin 1 (GTX 1), goniotoxin 2 (GTX 2), goniotoxin 3 (GTX 3), goniotoxin 4 (GTX 4), decarbamoylgoniotoxin 1 (dcGTX 1), Goniotoxin (GTX) groups such as decarbamoylgoniotoxin 2 (dcGTX 2), decarbamoylgoniotoxin 3 (dcGTX 3), decarbamoylgoniotoxin 4 (dcGTX 4), and C such as C1, C2, C3, or C4 An example is a C-toxin group.
- These PSP s are the main components of PSP produced by Alexandrium genus dinoflagellates that occur in temperate and boreal waters.
- examples of the 11-position reduced form include saxitoxin, decarbamoyl saxitoxin, neosaxitoxin, decarbamoyl neosaxitoxin, goniotoxin 5 (B1), and goniotoxin 6 (B2). These components are the main PSP components of the dinoflagellate Pyrodinium bahamense var. Compressum that occurs in tropical and subtropical waters.
- a protein or peptide containing 1.5 to 40% by weight (as dry weight) of cysteine or cystine in total is used for detoxification of the 11-position sulfate type PSP.
- a protein or peptide can be used without particular limitation as long as it contains cysteine or cystine in a total amount of 1.5 to 40% by weight (as dry weight), but preferably cysteine or cystine is added in total.
- keratin containing about 8 to 20% by weight of cysteine and cystine is preferably used.
- keratin one purified from any raw material containing keratin can be used, but a material containing keratin protein as a main component may be used as it is.
- the feather meal which has keratin protein as a main component and is used as an inexpensive feed material can be used.
- Feather meal is a livestock feed that reuses chicken wings that are produced as waste when shipping chickens on poultry farms, and the main ingredient is keratin protein, which is rich in cysteine.
- the feather meal is taken into the shell, it is digested and cysteine is released, acting on the shellfish poison of the goniotoxin group and degrading.
- Feather meal is an extremely inexpensive feed ingredient, and is useful not only as a feed or additive for PSP ⁇ detoxification but also as a feed ingredient for filtered edible aquatic organisms such as bivalves.
- Other examples of proteins rich in cysteine or cystine include metallothionein.
- a protein or peptide containing cysteine or cystine as a constituent amino acid In order to administer a protein or peptide containing cysteine or cystine as a constituent amino acid to fresh shellfish, it is added to the feed or fed as a feed.
- the dose of the protein or peptide varies depending on the time of collecting the shellfish, the content of shellfish poison, and the ratio of cysteine or cystine contained in the protein or peptide.
- the amount of protein or peptide may be administered to the shellfish for about 1 mg to 100 mg per day, preferably 10 mg to 50 mg, preferably about 1 to 7 days, preferably 1 to 3 days.
- the amount of feather meal is about 0.04 to 4 g per day, preferably about 0.5 to 1.5 g for 1 to 6 days for shellfish with an edible portion weight of 100 tog. Preferably, it may be given for 1 to 3 days.
- polyphenols used for decomposing 11-position reduced PSP are tannic acid, ellagic acid, chlorogenic acid, coumarin, catechin, gallic acid, propyl gallate, pyrogallol, p-benzoquinone, p-hydroquinone, It may be a solution containing one or more polyphenol compounds such as o-benzoquinone and o-hydroquinone, or a food containing polyphenols such as apple, tomato, tea, wine and grape juice.
- the tea may be any kind such as green tea, brown rice tea, sayha, black tea, strawberry tea, oolong tea.
- Degradation of the STX cocoon venom is thought to be due to oxidative degradation of the STX cocoon group by polyphenol radicals, and polyphenols having a high redox potential and strong oxidizing power can be preferably used.
- the oxidation-reduction potential is 150 ⁇ mV or more, particularly 200 mV or more.
- STX group is the main PSP component of Pyrodinium bahamense ver. Compressum that occurs in tropical and subtropical regions. To date, in tropical and subtropical countries, there have been many cases of death from poisoning due to paralytic shellfish poisons caused by STX sharks. In these countries, cheap and nutritious shellfish soup is used as baby food, and infants can become seriously addicted even if they consume a very small amount of PSP compared to adults. It has become. However, there are currently no effective treatments for paralytic shellfish poisoning, and there are only symptomatic treatments such as gastric lavage and artificial respiration in medical institutions. The present invention not only improves the food safety of shellfish but also establishes an effective treatment method for food poisoning caused by paralytic shellfish poison.
- Feather meal was donated by Amatsutake headquarters (Ofunato, Iwate Prefecture), liquid nitrogen was added and pulverized in a mortar, and particles of 125 ⁇ m or less were collected and stored frozen at ⁇ 80 ° C. until use.
- DIC diet Dainippon Ink Chemical Co., Ltd.
- bivalve artificial sample was also stored at low temperatures until it was used for testing.
- Figs. 4 and 5 show the toxicity and toxic content of each scallop midgut gland (initial group) at the start of the test, the control group fed with DIC diet alone, and the test group given a mixture of DIC diet and cystine. Results are shown. When only DIC diet was fed, there was almost no change in the toxicity of the initial gut and midgut gland, whereas in the test plot fed cystine, there was a marked decrease in toxicity compared to the initial plot and the control plot. It was. In particular, it was confirmed that the poison component having a sulfate ester at the 11 ⁇ position (11 ⁇ -sulfo type component) was greatly reduced in the test section.
- 11 ⁇ -sulfo type toxic components such as C2, GTX4 and GTX3 are the main toxic components produced by the Alexandrium genus Dinoflagellate, which causes causative isomerization in neutral aqueous solution or shellfish, and C1
- 11 ⁇ -sulfo type poison components such as GTX1, GTX4, etc. are produced
- 11 ⁇ type: 11 ⁇ type is a balanced mixture of about 1: 3 in molar ratio.
- various thiol compounds react directly with 11 ⁇ -sulfo-type components to form a conjugate via the thiol sulfur atom at the 11-position.
- STX saxitoxin
- STX saxitoxin
- Examples and reagents STX is extracted from the midgut gland of the toxic scallops of Ofunato Bay with dilute hydrochloric acid and is subjected to conventional chromatography using activated carbon, Bio-Gel P-2 and Bio-Rex 70 column chromatography (Shimizu, 2000, Chemistry and mechanism of action, in: Seafood and Freshwater Toxins, Botana, LM ed., Marcel Decker, NY, pp. 151-172).
- STX was added to a final concentration of 10 ⁇ M and warmed in a boiling bath for 5 minutes. Thereafter, STX in the filtrate obtained by treatment with an ultracentrifugation kit (Ultrafree-MC, NMWL5,000, Millipore) was analyzed by HPLC fluorescence method (Oshima, mentioned above). A mixture prepared by adding STX to 50 mM sodium phosphate buffer (pH 7.4) so as to have a final concentration of 10 ⁇ M was used as an initial, which was boiled in a boiling bath for 5 minutes in the same manner as a control and analyzed.
- FIG. 6 shows the results of heating STX in neutral aqueous solutions of various polyphenol preparations.
- Fig. 7 shows the results of heating STX in neutral solutions of various polyphenol-containing foods.
- STXST was heated in neutral solutions of red wine, grape juice, green tea, brown rice tea,nadoha, black tea, strawberry tea and oolong tea
- Thenadoha, black tea and oolong tea solutions were found to have a particularly high STX wiping effect.
- GTX 5 standard solution (56.9 ⁇ M)
- GTX 6 standard solution 38.6 ⁇ M
- STX standard solution (354 ⁇ M)
- neoSTX standard solution 100 ⁇ M
- DMSO / 0.01M sodium phosphate pH 7.4 was added and mixed. These mixtures were heated in a boiling bath for 5 minutes and cooled with ice, and the filtrate obtained by ultrafiltration was analyzed by HPLC fluorescence.
- STX, neoSTX, GTX 5 and GTX6 showed a marked decrease in the test group heated in a 0.01% tannic acid solution compared to the control. From the above results, it was revealed that the tannic acid solution has an effect of specifically eliminating STX, neoSTX, GTX 5 and GTX 6 ⁇ ⁇ in which the 11th position was reduced.
- GTX group an equilibrium mixture of GTX1 and GTX 4 and an equilibrium mixture of GTX2 and GTX 3
- 11- sulfo-type PSP component paralytic shellfish poison component having a sulfate ester at the 11th position
- STX Elimination of STX by polyphenol under physiological conditions
- STX purified and isolated in the same manner as in Example 2 was used. Spanish red wine (Olelia) was neutralized by adding 1 M sodium carbonate, and STX was added and mixed to a final concentration of 10 ⁇ M. Incubate this solution in a 37 ° C water bath, collect a portion of the solution over time (5, 10, 20, and 30 minutes after the start of the reaction), add an equal volume of 0.5M acetic acid and ultrafilter it. The filtrate was analyzed by HPLC fluorescence method (Oshima, 1995, mentioned above), and the remaining STX concentration was analyzed and quantified. A neutral aqueous solution containing 10 ⁇ M STX was similarly heated at 37 ° C., and analyzed and quantified over time in the same manner as a control.
- Example 2 As the purified poison for STX, one obtained in the same manner as in Example 2 was used.
- the reagents used are as follows.
- Polyphenol tannic acid Wako, for chemical use, 203-06331 Bioreducing agent Aspartic acid: Wako, reagent grade, 013-04832 Glutamic acid: Wako, reagent grade, 070-00502 Glutathione: Wako, Wako Special, 071-02014 Cysteine hydrochloride: Wako, reagent grade, 033-05272 Ascorbic acid: Wako, reagent grade, 016-04805 (Method) 0.1% tannic acid was added to 0.1 phosphate buffer (pH 7.4) containing 1, 3 or 10 mM aspartic acid. In addition, STX was added to these solutions to a final concentration of 10 ⁇ M.
- the ORP values of the catechin, tannic acid, coumarin, ellagic acid, and chlorogenic acid solutions were 261 mV, 258 mV, 237 mV, 207 mV, and 204 mV, respectively.
- the ORP values of catechin, tannic acid, etc. which have a remarkable STX soot elimination action, were all 200 mV or more. While the ORP value of the neutral aqueous solution of ascorbic acid was 135 mV, the ORP value of the mixed solution of tannic acid and ascorbic acid was 95 mV, which was lower than either one of the solutions. The above results indicate that the scavenging action of STX by polyphenol depends on its redox potential.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Animal Husbandry (AREA)
- Zoology (AREA)
- Biomedical Technology (AREA)
- Marine Sciences & Fisheries (AREA)
- Health & Medical Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- Physiology (AREA)
- Insects & Arthropods (AREA)
- Birds (AREA)
- Fodder In General (AREA)
- Farming Of Fish And Shellfish (AREA)
- Feed For Specific Animals (AREA)
Abstract
Disclosed is a safe and effective method for removing a paralytic shellfish poison component from an aquatic organism (particularly a filter-feeding aquatic organism such as a bivalve) that is used as a raw material for a food or a feed. A paralytic shellfish poison component having a sulfuric acid ester group at position-11 can be removed from a fresh shellfish by feeding a feed containing a protein or peptide which contains cysteine or cystine as constituent amino acids in the total amount of 1.5 to 40 wt% (dried weight) (preferably a feather meal mainly composed of keratin) to the fresh shellfish. A paralytic shellfish poison component which does not have a sulfuric acid ester at position-11 can be removed by decomposing the paralytic shellfish poison component with a polyphenol solution preferably containing tannic acid, ellagic acid, chlorogenic acid, coumarin, catechin, gallic acid, propyl gallate or pyrogallol or a polyphenol-containing food such as an apple, a tomato, a tea, a wine or a grape juice.
Description
本発明は、貝類からの麻痺性貝毒成分の除去方法、それに用いる飼料添加剤および飼料に関する。より詳しくは、ゴニオトキシン群などの11位に硫酸エステル基をもつ麻痺性貝毒成分を含有する生鮮貝類を除毒する方法、それに用いる飼料添加剤および飼料、並びにサキシトキシン群などの11位に硫酸エステル基をもたない麻痺性貝毒成分の分解方法に関する。
The present invention relates to a method for removing paralytic shellfish poison components from shellfish, a feed additive and a feed used therefor. More specifically, a method for detoxifying fresh shellfish containing a paralytic shellfish poison component having a sulfate ester group at the 11th position such as the goniotoxin group, a feed additive and feed used therefor, and a sulfate at the 11th position such as the saxitoxin group The present invention relates to a method for decomposing a paralytic shellfish poison component having no ester group.
貝類は高タンパク、低脂肪であり、かつ現代人に不足しがちな亜鉛などの微量元素を豊富に含む優れた食料資源である。二枚貝などの濾過食性水生生物(filter feeder)は植物プランクトンを直接餌として取り込むが、植物プランクトンの中には麻痺性貝毒などの自然毒を生産するものがいる。
Shellfish is an excellent food resource that is high in protein, low in fat, and rich in trace elements such as zinc, which tends to be lacking in modern people. Filter feeders such as bivalves take phytoplankton directly as feed, but some phytoplankton produce natural poisons such as paralytic shellfish poisons.
麻痺性貝毒(Paralytic shellfish poisons; PSP)は、Alexandrium tamarense などの渦鞭毛藻が持つ致死性の高い強力な神経毒である。海洋にPSP の原因藻が発生すると二枚貝などの濾過食性水生生物は高度に毒化し、ヒトの食中毒を引き起こすPSP を蓄積する。PSP の発生海域は世界的に拡大傾向にあり、二枚貝を食用とする各国では貝類の毒性を定期的に監視し、毒化貝の市場への流出を防いでいる。日本ではこの貝毒モニタリングが有効に機能し、市場に出回る貝類による中毒はほとんど皆無と言ってよい。しかし原因藻の消失後もかなりの長期間、二枚貝はしばしば高い毒性を保持し続けるので、出荷規制による水産経済への被害は深刻なものとなっている。
Paralytic shellfish poison (Paralytic) shellfishpoisons; PSP) is a highly lethal neurotoxin possessed by dinoflagellates such as Alexandrium tamarense. When caustic algae of PSP occur in the ocean, filtered food aquatic organisms such as bivalves become highly poisonous and accumulate PSP that causes human food poisoning. The sea area where PSP occurs is expanding globally, and in countries where bivalves are edible, the toxicity of shellfish is regularly monitored to prevent the outflow of poisoned shellfish to the market. In Japan, this shellfish poison monitoring works effectively, and it can be said that there is almost no poisoning caused by shellfish on the market. However, for a long time after the disappearance of the causal algae, bivalves often remain highly toxic, and the damage to the fishery economy due to shipping restrictions has become serious.
PSP の原因藻の分類学ならびに生理生態学やPSP の原因成分の化学および薬理学的性状に関しては、古くから多くの研究が行われている。現在までに20を超えるPSP 成分が分離され、その構造が確認されている (図1参照) 。これらはいずれも特徴的な還元型プリンのトリサイクリック骨格上に2つのグアニジウム基と抱水ケトンを有するサキシトキシン(STX) の誘導体であり、毒化貝や原因藻には通常これらのうちの複数の成分が含まれる。これらのPSP 成分は通常の調理では毒性をほとんど失わず、成分によっては加熱するとより毒性の強い成分に変化するものもある。このことは、食品加工の過程で貝類からPSP を除去することが困難であることを意味する。
Much research has been conducted on the taxonomy of causative algae of PSP, physiological ecology, and the chemical and pharmacological properties of the causative components of PSP. To date, over 20 PSP soot components have been separated and their structure has been confirmed (see Fig. 1). These are derivatives of saxitoxin (STX), which has two guanidinium groups and a hydrated ketone on the tricyclic skeleton of the characteristic reduced purine. Ingredients included. These PSP ingredients lose little toxicity in normal cooking, and some ingredients change to more toxic ingredients when heated. This means that it is difficult to remove PSP sputum from shellfish during food processing.
これまで、PSP の問題解決を目的として以下のような研究が進められてきた。第一に、原因藻となる有毒プランクトンを撲滅もしくは発生を制御することである。しかし自然現象である原因藻の発生を生態系へのネガティブな影響を防ぎつつ、制御することは現状では困難である。第二に、原因藻の発生をコントロールすることである。貨物船などがバランスを取る際に用いるバラスト水や、養殖二枚貝の稚貝の移植などによる人為的な原因藻の拡散が問題となっており、様々な研究が行われている。第三に、原因プランクトンの発生を予知することにより、貝の毒化を未然に防ぐことである。第四にPSP を簡便かつ迅速に検出出来る方法を開発することである。現在用いられているマウス試験法は簡便かつ信頼性の高いPSP の検出法であるが、検出感度が低く、動物試験に伴う種々の問題点も抱えている。この問題の解決のために、様々な研究グループがマウス試験法に替わるPSP の簡易分析法の開発を進めている。そして、第五に、毒化貝を効果的に除毒する方法の開発である。
So far, the following research has been carried out for the purpose of solving PSP problems. The first is to eliminate or control the toxic plankton that is the causative algae. However, it is currently difficult to control the occurrence of causal algae, which is a natural phenomenon, while preventing negative effects on the ecosystem. Second, it controls the generation of causal algae. A variety of researches have been conducted on the diffusion of artificial causal algae due to ballast water used for balancing cargo ships and the transplantation of cultured bivalve larvae. The third is to prevent the poisoning of shellfish by predicting the occurrence of causative plankton. The fourth is to develop a method that can detect PSP easily and quickly. The mouse test method currently used is a simple and reliable method for detecting PSP, but has low detection sensitivity and has various problems associated with animal tests. In order to solve this problem, various research groups are developing a simple analysis method for PSP that replaces the mouse test method. And fifth, the development of a method for effectively detoxifying poisoned shellfish.
貝類の安全かつ効果的な早期除毒法の開発は、問題解決のための最も有効な手段である。先に述べたように、PSP は調理加工による除去が困難である。しかし二枚貝は、富栄養化に伴って発生した植物プランクトンを良質のタンパク質源として回収することができるため、食料資源としての価値は非常に高く、また国によっては生鮮貝に対する消費者のニーズも高い。さらに二枚貝はしばしば、同一海域で同じ時期に採取した同種の貝であっても、その毒性には大きなばらつきが認められる。非特許文献1には、オゾンを吹き込んだ海水中で毒化した二枚貝を飼育することにより、貝のPSP が減少することが報告されている。この方法は、多くの研究者により追試されているが、除毒までかなりの長期間を要すること、あるいは顕著な効果が認められないことなど問題点が多く、現在はほとんど行われていない。このような技術の開発には、貝などの生体内でのPSP 代謝機構の解明が不可欠である。しかしこのような研究は少なく、現在、貝の除毒の試みはまったくの手詰まり状況となっている。
Blogoslawski M.E., Stewart W.J., 1979: Ozone detoxification of paralytic shellfish poison in the softshell clam (Mya Arenaria),Toxicon,17, 650-654 The development of safe and effective early detoxification methods for shellfish is the most effective means for solving problems. As mentioned earlier, PSP is difficult to remove by cooking. However, bivalves can recover phytoplankton generated as a result of eutrophication as a high-quality protein source, so they are extremely valuable as food resources, and in some countries, consumer needs for fresh shellfish are also high. . In addition, bivalves often have large variations in toxicity even if they are of the same species collected at the same time in the same sea area. Non-PatentDocument 1 reports that the PSP of shellfish is reduced by breeding poisoned bivalves in seawater blown with ozone. This method has been reexamined by many researchers, but there are many problems such as the fact that it takes a considerably long time until detoxification or a remarkable effect is not recognized, and it has hardly been carried out at present. For the development of such technology, it is indispensable to elucidate the mechanism of PSP metabolism in the living body such as shellfish. However, there are few such studies, and now the attempt to decontaminate shellfish is completely clogged.
Blogoslawski ME, Stewart WJ, 1979: Ozone detoxification of paralytic shellfish poison in the softshell clam (Mya Arenaria), Toxicon, 17, 650-654
Blogoslawski M.E., Stewart W.J., 1979: Ozone detoxification of paralytic shellfish poison in the softshell clam (Mya Arenaria),Toxicon,17, 650-654 The development of safe and effective early detoxification methods for shellfish is the most effective means for solving problems. As mentioned earlier, PSP is difficult to remove by cooking. However, bivalves can recover phytoplankton generated as a result of eutrophication as a high-quality protein source, so they are extremely valuable as food resources, and in some countries, consumer needs for fresh shellfish are also high. . In addition, bivalves often have large variations in toxicity even if they are of the same species collected at the same time in the same sea area. Non-Patent
Blogoslawski ME, Stewart WJ, 1979: Ozone detoxification of paralytic shellfish poison in the softshell clam (Mya Arenaria), Toxicon, 17, 650-654
本発明の目的は、食品や飼料原料としての水生生物からの麻痺性貝毒の安全で効果的な除去方法を提供することである。
An object of the present invention is to provide a safe and effective method for removing paralytic shellfish poisons from aquatic organisms as food and feed materials.
本発明者は、11位に硫酸エステル基を持つゴニオトキシン(GTX) 群等のPSP 成分がグルタチオン(GSH) やメルカプトエタノール(ME)などのチオール化合物と反応して、STX 群へ還元される機構を明らかにし、さらに、毒化貝にシステイン、およびシステインの酸化重合体であるシスチンを用いることにより毒化ホタテガイからのGTX 群を除毒することを試みた。システインは水に溶けやすいため、濾過食性の貝類にこれを餌として取り込ませることは困難である。前述のように二枚貝などの濾過食性生物は、有毒プランクトンを餌として取り込むため、一般に中腸腺、即ち肝膵臓に毒の大部分が集中する。システインを貝に注入する方法は、貝の生理状態に大きな影響を与えると考えられるだけでなく、著しく手間がかかり、かつ毒の集中する中腸腺からの顕著な除毒効果を期待することはできない。これに対し、シスチンは比較的安定で水に溶けにくく、貝に餌として取り込ませるのが容易であり、また、シスチンは生体内ですみやかにシステインに還元され、GTX 群を分解することが期待された。しかし、シスチンの投与はしばしば貝の斃死を引き起こすので、鮮度が重視される海産物の除毒法としては適当でない。
The present inventor is a mechanism that PSP component such as goniotoxin (GTX) group having sulfate ester group at the 11-position reacts with thiol compounds such as glutathione (GSH) and mercaptoethanol (ME) and is reduced to STX group In addition, we tried to detoxify GTX spiders from poisoned scallops by using cysteine and cystine, an oxidative polymer of cysteine, in the poisoned shellfish. Since cysteine is easily soluble in water, it is difficult to incorporate it as a bait in filter-feeding shellfish. As described above, filter edible organisms such as bivalves take up toxic plankton as food, and therefore, most of the poison is generally concentrated in the midgut gland, that is, the liver pancreas. The method of injecting cysteine into shellfish is not only considered to have a significant effect on the physiological state of shellfish, but it is also time consuming and expects a significant detoxification effect from the midgut gland where the poison is concentrated Can not. In contrast, cystine is relatively stable and hardly soluble in water, and can be easily taken into shellfish as food. Cystine is quickly reduced to cysteine in the body, and is expected to degrade the GTX group. It was. However, administration of cystine often causes moribund shellfish and is not appropriate as a detoxification method for marine products where freshness is important.
また、11位に硫酸エステルを持つGTX 群ならびにC-トキシン群は北大平洋沿岸海域で発生するAlexandrium 属渦鞭毛藻ならびにその発生に伴って毒化する貝類に認められる主要なPSP 成分であるが、貝の種類や組織によっては11位が還元されたサキシトキシン(STX) 群を多く含むことがある。また、STX 群は熱帯・亜熱帯海域で発生する渦鞭毛藻Pyrodinium bahamense var. compressumの主要なPSP 成分であり、これらの海域では貝類は原因藻の毒組成を反映してSTX 群を主要成分として毒化する。STX 群はチオールとは反応しないのでこれを用いる方法で除去することはできない。
In addition, GTX を 持 つ group and C-toxin group having sulfate ester at the 11th position are the main PSP components found in Alexandrium genus dinoflagellate occurring in the coastal area of the North Pacific and shellfish poisoned with its occurrence, Depending on the shellfish type and tissue, it may contain many saxitoxin (STX) cocoons that are reduced at the 11th position. The STX group is the main PSP component of the dinoflagellate Pyrodinium bahamense var. Compressum that occurs in tropical and subtropical waters, and in these waters shellfish poison the STX group as the main component reflecting the poisonous composition of the causative algae To do. Since STX group does not react with thiol, it cannot be removed by using this method.
そこで検討を進めた結果、本発明者は、11位に硫酸エステル基をもつ麻痺性貝毒が、システインまたはシスチンを構成アミノ酸として豊富に含有するタンパク質またはペプチドを含む飼料を貝類に給餌することにより顕著に除毒できること、この方法によれば貝の斃死を引き起こすことがないことを見出した。さらに、11位に硫酸エステル基をもたないサキシトキシン(STX )群の麻痺性貝毒がポリフェノールにより分解することも見出し、本発明を完成した。
As a result of investigations, the present inventor found that a paralytic shellfish poison having a sulfate ester group at the 11-position feeds shellfish with a feed containing a protein or peptide containing cysteine or cystine as a constituent amino acid. It has been found that it can be remarkably detoxified, and that this method does not cause shellfish mortality. Furthermore, the present inventors have found that the paralytic shellfish poisons of the saxitoxin (STX®) group having no sulfate ester group at the 11-position can be decomposed by polyphenol, thereby completing the present invention.
即ち、本発明は以下の通りである。
(1)11 位に硫酸エステル基をもつ麻痺性貝毒成分を含有する生鮮貝類を除毒する方法であり、システインまたはシスチンを構成アミノ酸として含有し、システインおよびシスチンの合計量が乾燥重量で1. 5~40重量%であるタンパク質またはペプチドを用いて、生鮮貝類中の該貝毒成分を分解させ除去することを含む、前記除毒方法。
(2) 生鮮貝類に前記タンパク質またはペプチドを投与することにより行う、上記(1) 記載の方法。
(3) 生鮮貝類に前記タンパク質またはペプチドを含む飼料を給餌することにより行う、上記(2) 記載の方法。
(4) 前記タンパク質がケラチンである、上記(1) ~(3) のいずれかに記載の方法。
(5) 前記タンパク質またはペプチドを含む飼料がフェザーミールである、上記(3) 記載の方法。
(6) 11位に硫酸エステル基をもつ麻痺性貝毒成分が、ゴニオトキシン1、ゴニオトキシン2、ゴニオトキシン3、ゴニオトキシン4、デカルバモイルゴニオトキシン1、デカルバモイルゴニオトキシン2、デカルバモイルゴニオトキシン3、デカルバモイルゴニオトキシン4、C1、C2、C3、またはC4のいずれか1種または2種以上である、上記(1) ~(5) のいずれかに記載の方法。
(7) 生鮮貝類が濾過食性の水生生物である、上記(1) ~(6) のいずれかに記載の方法。
(8) システインまたはシスチンを構成アミノ酸として含有し、システインおよびシスチンの合計量が乾燥重量で1.5 ~40重量%であるタンパク質またはペプチドを含むことを特徴とする、11位に硫酸エステル基をもつ麻痺性貝毒成分の除毒のための生鮮貝類用の飼料添加剤。
(9) システインまたはシスチンを構成アミノ酸として含有し、システインおよびシスチンの合計量が乾燥重量で1.5 ~40重量%であるタンパク質またはペプチドを含むことを特徴とする、11位に硫酸エステル基をもつ麻痺性貝毒成分の除毒のための生鮮貝類用飼料。
(10)フェザーミールである上記(9) 記載の飼料。
(11)11位に硫酸エステル基をもつ麻痺性貝毒成分が、ゴニオトキシン1、ゴニオトキシン2、ゴニオトキシン3、ゴニオトキシン4、デカルバモイルゴニオトキシン1、デカルバモイルゴニオトキシン2、デカルバモイルゴニオトキシン3、デカルバモイルゴニオトキシン4、C1、C2、C3、またはC4のいずれか1種または2種以上である、上記(9) または(10)記載の飼料。
(12)生鮮貝類が濾過食性の水生生物である、上記(9) ~(11)のいずれかに記載の飼料。
(13)11位に硫酸エステル基をもたない麻痺性貝毒成分をポリフェノール溶液中で分解させることを含む、11位に硫酸エステル基をもたない麻痺性貝毒成分の分解方法。
(14)11位に硫酸エステル基をもたない麻痺性貝毒成分が、サキシトキシン、デカルバモイルサキシトキシン、ネオサキシトキシン、デカルバモイルネオサキシトキシン、ゴニオトキシン5(B1)、またはゴニオトキシン6(B2)のいずれか1種または2種以上である、上記(13)記載の方法。
(15)ポリフェノール溶液が、ポリフェノール化合物を1種もしくは2種以上含む溶液、またはポリフェノール含有食品である、上記(13)または(14)記載の方法。
(16)溶液中に含まれるポリフェノール化合物が、タンニン酸、エラグ酸、クロロゲン酸、クマリン、カテキン、没食子酸、没食子酸プロピルまたはピロガロールである、上記(15)記載の方法。
(17)ポリフェノール含有食品が、リンゴ、トマト、茶、ワインまたはブドウジュースである、上記(15)記載の方法。 That is, the present invention is as follows.
(1) A method for detoxifying fresh shellfish containing a paralytic shellfish poison component having a sulfate ester group at the 11th position, containing cysteine or cystine as a constituent amino acid, and the total amount of cysteine and cystine is 1 by dry weight. The method of detoxification comprising decomposing and removing the shellfish poison components in fresh shellfish using a protein or peptide of 5 to 40% by weight.
(2) The method according to (1) above, which is carried out by administering the protein or peptide to fresh shellfish.
(3) The method according to (2) above, which is performed by feeding fresh shellfish with a feed containing the protein or peptide.
(4) The method according to any one of (1) to (3) above, wherein the protein is keratin.
(5) The method according to (3) above, wherein the feed containing the protein or peptide is feather meal.
(6) Paralytic shellfish poison component having sulfate ester group atposition 11 is goniotoxin 1, goniotoxin 2, goniotoxin 3, goniotoxin 4, decarbamoyl goniotoxin 1, decarbamoyl goniotoxin 2, decarbamoyl goniotoxin 3. The method according to any one of (1) to (5) above, which is one or more of decarbamoylgoniotoxin 4, C1, C2, C3, or C4.
(7) The method according to any one of (1) to (6) above, wherein the fresh shellfish is a filter-feeding aquatic organism.
(8) Paralysis with a sulfate group atposition 11 characterized by containing a protein or peptide containing cysteine or cystine as a constituent amino acid and the total amount of cysteine and cystine being 1.5 to 40% by weight in dry weight A feed additive for fresh shellfish for the detoxification of sex shellfish poison components.
(9) Paralysis with a sulfate group at the 11th position, characterized by containing a protein or peptide containing cysteine or cystine as a constituent amino acid and the total amount of cysteine and cystine being 1.5 to 40% by weight in dry weight Fresh shellfish feed for detoxification of sexual shellfish poison components.
(10) The feed according to (9) above, which is a feather meal.
(11) Paralytic shellfish poison component having sulfate ester group atposition 11 is goniotoxin 1, goniotoxin 2, goniotoxin 3, goniotoxin 4, decarbamoyl goniotoxin 1, decarbamoyl goniotoxin 2, decarbamoyl goniotoxin 3. The feed according to (9) or (10) above, which is one or more of decarbamoylgoniotoxin 4, C1, C2, C3, or C4.
(12) The feed according to any one of (9) to (11) above, wherein the fresh shellfish are filtered food aquatic organisms.
(13) A method for decomposing a paralytic shellfish poison component having no sulfate ester group at the 11th position, comprising decomposing a paralytic shellfish toxin component not having a sulfate ester group at the 11th position in a polyphenol solution.
(14) The paralytic shellfish venom component having no sulfate ester group at the 11-position is any of saxitoxin, decarbamoyl saxitoxin, neosaxitoxin, decarbamoyl neosaxitoxin, goniotoxin 5 (B1), or goniotoxin 6 (B2) The method according to (13) above, which is one or more.
(15) The method according to (13) or (14) above, wherein the polyphenol solution is a solution containing one or more polyphenol compounds, or a polyphenol-containing food.
(16) The method according to (15) above, wherein the polyphenol compound contained in the solution is tannic acid, ellagic acid, chlorogenic acid, coumarin, catechin, gallic acid, propyl gallate or pyrogallol.
(17) The method according to (15) above, wherein the polyphenol-containing food is apple, tomato, tea, wine or grape juice.
(1)11 位に硫酸エステル基をもつ麻痺性貝毒成分を含有する生鮮貝類を除毒する方法であり、システインまたはシスチンを構成アミノ酸として含有し、システインおよびシスチンの合計量が乾燥重量で1. 5~40重量%であるタンパク質またはペプチドを用いて、生鮮貝類中の該貝毒成分を分解させ除去することを含む、前記除毒方法。
(2) 生鮮貝類に前記タンパク質またはペプチドを投与することにより行う、上記(1) 記載の方法。
(3) 生鮮貝類に前記タンパク質またはペプチドを含む飼料を給餌することにより行う、上記(2) 記載の方法。
(4) 前記タンパク質がケラチンである、上記(1) ~(3) のいずれかに記載の方法。
(5) 前記タンパク質またはペプチドを含む飼料がフェザーミールである、上記(3) 記載の方法。
(6) 11位に硫酸エステル基をもつ麻痺性貝毒成分が、ゴニオトキシン1、ゴニオトキシン2、ゴニオトキシン3、ゴニオトキシン4、デカルバモイルゴニオトキシン1、デカルバモイルゴニオトキシン2、デカルバモイルゴニオトキシン3、デカルバモイルゴニオトキシン4、C1、C2、C3、またはC4のいずれか1種または2種以上である、上記(1) ~(5) のいずれかに記載の方法。
(7) 生鮮貝類が濾過食性の水生生物である、上記(1) ~(6) のいずれかに記載の方法。
(8) システインまたはシスチンを構成アミノ酸として含有し、システインおよびシスチンの合計量が乾燥重量で1.5 ~40重量%であるタンパク質またはペプチドを含むことを特徴とする、11位に硫酸エステル基をもつ麻痺性貝毒成分の除毒のための生鮮貝類用の飼料添加剤。
(9) システインまたはシスチンを構成アミノ酸として含有し、システインおよびシスチンの合計量が乾燥重量で1.5 ~40重量%であるタンパク質またはペプチドを含むことを特徴とする、11位に硫酸エステル基をもつ麻痺性貝毒成分の除毒のための生鮮貝類用飼料。
(10)フェザーミールである上記(9) 記載の飼料。
(11)11位に硫酸エステル基をもつ麻痺性貝毒成分が、ゴニオトキシン1、ゴニオトキシン2、ゴニオトキシン3、ゴニオトキシン4、デカルバモイルゴニオトキシン1、デカルバモイルゴニオトキシン2、デカルバモイルゴニオトキシン3、デカルバモイルゴニオトキシン4、C1、C2、C3、またはC4のいずれか1種または2種以上である、上記(9) または(10)記載の飼料。
(12)生鮮貝類が濾過食性の水生生物である、上記(9) ~(11)のいずれかに記載の飼料。
(13)11位に硫酸エステル基をもたない麻痺性貝毒成分をポリフェノール溶液中で分解させることを含む、11位に硫酸エステル基をもたない麻痺性貝毒成分の分解方法。
(14)11位に硫酸エステル基をもたない麻痺性貝毒成分が、サキシトキシン、デカルバモイルサキシトキシン、ネオサキシトキシン、デカルバモイルネオサキシトキシン、ゴニオトキシン5(B1)、またはゴニオトキシン6(B2)のいずれか1種または2種以上である、上記(13)記載の方法。
(15)ポリフェノール溶液が、ポリフェノール化合物を1種もしくは2種以上含む溶液、またはポリフェノール含有食品である、上記(13)または(14)記載の方法。
(16)溶液中に含まれるポリフェノール化合物が、タンニン酸、エラグ酸、クロロゲン酸、クマリン、カテキン、没食子酸、没食子酸プロピルまたはピロガロールである、上記(15)記載の方法。
(17)ポリフェノール含有食品が、リンゴ、トマト、茶、ワインまたはブドウジュースである、上記(15)記載の方法。 That is, the present invention is as follows.
(1) A method for detoxifying fresh shellfish containing a paralytic shellfish poison component having a sulfate ester group at the 11th position, containing cysteine or cystine as a constituent amino acid, and the total amount of cysteine and cystine is 1 by dry weight. The method of detoxification comprising decomposing and removing the shellfish poison components in fresh shellfish using a protein or peptide of 5 to 40% by weight.
(2) The method according to (1) above, which is carried out by administering the protein or peptide to fresh shellfish.
(3) The method according to (2) above, which is performed by feeding fresh shellfish with a feed containing the protein or peptide.
(4) The method according to any one of (1) to (3) above, wherein the protein is keratin.
(5) The method according to (3) above, wherein the feed containing the protein or peptide is feather meal.
(6) Paralytic shellfish poison component having sulfate ester group at
(7) The method according to any one of (1) to (6) above, wherein the fresh shellfish is a filter-feeding aquatic organism.
(8) Paralysis with a sulfate group at
(9) Paralysis with a sulfate group at the 11th position, characterized by containing a protein or peptide containing cysteine or cystine as a constituent amino acid and the total amount of cysteine and cystine being 1.5 to 40% by weight in dry weight Fresh shellfish feed for detoxification of sexual shellfish poison components.
(10) The feed according to (9) above, which is a feather meal.
(11) Paralytic shellfish poison component having sulfate ester group at
(12) The feed according to any one of (9) to (11) above, wherein the fresh shellfish are filtered food aquatic organisms.
(13) A method for decomposing a paralytic shellfish poison component having no sulfate ester group at the 11th position, comprising decomposing a paralytic shellfish toxin component not having a sulfate ester group at the 11th position in a polyphenol solution.
(14) The paralytic shellfish venom component having no sulfate ester group at the 11-position is any of saxitoxin, decarbamoyl saxitoxin, neosaxitoxin, decarbamoyl neosaxitoxin, goniotoxin 5 (B1), or goniotoxin 6 (B2) The method according to (13) above, which is one or more.
(15) The method according to (13) or (14) above, wherein the polyphenol solution is a solution containing one or more polyphenol compounds, or a polyphenol-containing food.
(16) The method according to (15) above, wherein the polyphenol compound contained in the solution is tannic acid, ellagic acid, chlorogenic acid, coumarin, catechin, gallic acid, propyl gallate or pyrogallol.
(17) The method according to (15) above, wherein the polyphenol-containing food is apple, tomato, tea, wine or grape juice.
本発明により、これまで有効な除去方法がなかった麻痺性貝毒を、安全で効果的に除去することができる。北太平洋沿岸海域で発生する渦鞭毛藻による貝毒であるゴニオトキシン群およびC-トキシン群については、システインまたはシスチンを構成アミノ酸として豊富に含有するタンパク質またはペプチドを飼料に添加して、あるいは飼料として生鮮貝類に給餌することにより、貝の鮮度を保ちながら除毒することが可能である。従って、貝毒による中毒をなくすと共に、貝毒の発生で出荷規制が行われることによる水産経済への被害を減らすことができる。また、主に熱帯・亜熱帯海域で発生する渦鞭毛藻によるサキシトキシン群などの11- 還元型の貝毒は、植物に含まれるポリフェノールにより消去することができ、貝類の加工過程での除去、およびこれまで全く手がかりのなかった貝毒中毒の効果的な治療薬の開発を可能にする。
According to the present invention, it is possible to safely and effectively remove a paralytic shellfish poison that has not had an effective removal method so far. For goniotoxins and C-toxins, which are shellfish poisons caused by dinoflagellates in the North Pacific coastal waters, proteins or peptides rich in cysteine or cystine as constituent amino acids are added to the feed, or as feed By feeding fresh shellfish, it is possible to detoxify while keeping the freshness of the shellfish. Therefore, poisoning due to shellfish poison can be eliminated, and damage to the fisheries economy due to shipping restrictions caused by the generation of shellfish poison can be reduced. In addition, 11- reduced shellfish poisons such as saxitoxin groups caused by dinoflagellates mainly in tropical and subtropical waters can be eliminated by polyphenols contained in plants, and removed during shellfish processing. It enables the development of effective treatments for shellfish poisoning that had no clues.
本発明で対象とする麻痺性貝毒には、図1に示すように、11位に硫酸エステル基を有する11位硫酸エステル型、および11位に硫酸エステル基をもたない11位還元型がある。11位硫酸エステル型としては、ゴニオトキシン1 (GTX 1)、ゴニオトキシン2(GTX 2)、ゴニオトキシン3(GTX 3)、ゴニオトキシン4(GTX 4)、デカルバモイルゴニオトキシン1(dcGTX 1)、デカルバモイルゴニオトキシン2(dcGTX 2)、デカルバモイルゴニオトキシン3(dcGTX 3)、デカルバモイルゴニオトキシン4(dcGTX 4)などのゴニオトキシン(GTX )群、およびC1、C2、C3、またはC4などのCトキシン(C-toxin)群が例示できる。これらのPSP は、温帯から寒帯海域で発生するAlexandrium 属渦鞭毛藻が生産するPSP の主要成分である。
As shown in FIG. 1, the paralytic shellfish poisons targeted by the present invention include an 11-position sulfate ester type having a sulfate ester group at the 11-position, and an 11-position reduced form having no sulfate ester group at the 11-position. is there. The 11th sulfate ester type includes goniotoxin 1 (GTX 1), goniotoxin 2 (GTX 2), goniotoxin 3 (GTX 3), goniotoxin 4 (GTX 4), decarbamoylgoniotoxin 1 (dcGTX 1), Goniotoxin (GTX) groups such as decarbamoylgoniotoxin 2 (dcGTX 2), decarbamoylgoniotoxin 3 (dcGTX 3), decarbamoylgoniotoxin 4 (dcGTX 4), and C such as C1, C2, C3, or C4 An example is a C-toxin group. These PSP s are the main components of PSP produced by Alexandrium genus dinoflagellates that occur in temperate and boreal waters.
また、11位還元型としては、サキシトキシン、デカルバモイルサキシトキシン、ネオサキシトキシン、デカルバモイルネオサキシトキシン、ゴニオトキシン5(B1)、またはゴニオトキシン6(B2)が挙げられる。これらの成分は、熱帯・亜熱帯海域で発生する渦鞭毛藻Pyrodinium bahamense var. compressumの主要なPSP 成分である。
In addition, examples of the 11-position reduced form include saxitoxin, decarbamoyl saxitoxin, neosaxitoxin, decarbamoyl neosaxitoxin, goniotoxin 5 (B1), and goniotoxin 6 (B2). These components are the main PSP components of the dinoflagellate Pyrodinium bahamense var. Compressum that occurs in tropical and subtropical waters.
本発明において11位硫酸エステル型のPSP の除毒に使用するのは、システインまたはシスチンを、これらの合計で1.5 ~40重量% (乾燥重量として) 含有するタンパク質またはペプチドである。このようなタンパク質またはペプチドとしては、システインまたはシスチンを、合計で1.5 ~40重量% (乾燥重量として) 含有するものであれば特に限定されることなく使用できるが、好ましくはシステインまたはシスチンを、合計で2~40重量%、特に好ましくは2~30重量%含有するものを使用する。中でも、システインおよびシスチンを8~20重量%程度含有するケラチンを用いるのが好ましい。ケラチンとしては、ケラチンを含む任意の原料より精製したものを使用することができるが、ケラチンタンパク質を主成分とする材料をそのまま使用してもよい。例えば、ケラチンタンパク質を主成分とし、安価な飼料原料として使用されているフェザーミールを用いることができる。フェザーミールは、養鶏場で鶏を出荷する際に廃棄物として出る鶏の羽を再利用した家畜用飼料であり、主成分はシステインを豊富に含むケラチンタンパク質である。フェザーミールが貝体内に取り込まれると、消化されてシステインが遊離し、ゴニオトキシン群の貝毒に作用し分解すると考えられる。フェザーミールは極めて安価な飼料原料であり、PSP 除毒用の飼料または添加剤だけでなく、二枚貝などの濾過食性水生生物の飼料原料としても有用である。システインまたはシスチンを豊富に含有するタンパク質としては他に、メタロチオネインなどが挙げられる。
In the present invention, a protein or peptide containing 1.5 to 40% by weight (as dry weight) of cysteine or cystine in total is used for detoxification of the 11-position sulfate type PSP. Such a protein or peptide can be used without particular limitation as long as it contains cysteine or cystine in a total amount of 1.5 to 40% by weight (as dry weight), but preferably cysteine or cystine is added in total. And containing 2 to 40% by weight, particularly preferably 2 to 30% by weight. Of these, keratin containing about 8 to 20% by weight of cysteine and cystine is preferably used. As keratin, one purified from any raw material containing keratin can be used, but a material containing keratin protein as a main component may be used as it is. For example, the feather meal which has keratin protein as a main component and is used as an inexpensive feed material can be used. Feather meal is a livestock feed that reuses chicken wings that are produced as waste when shipping chickens on poultry farms, and the main ingredient is keratin protein, which is rich in cysteine. When the feather meal is taken into the shell, it is digested and cysteine is released, acting on the shellfish poison of the goniotoxin group and degrading. Feather meal is an extremely inexpensive feed ingredient, and is useful not only as a feed or additive for PSP 毒 detoxification but also as a feed ingredient for filtered edible aquatic organisms such as bivalves. Other examples of proteins rich in cysteine or cystine include metallothionein.
システインまたはシスチンを構成アミノ酸として含有するタンパク質またはペプチドを生鮮貝類に投与するには、飼料に添加して、あるいは飼料として給餌する。タンパク質またはペプチドの投与量は、貝を採取する時期、貝毒の含有量、このタンパク質またはペプチドに含まれるシステインまたはシスチンの割合により異なるが、システインまたはシスチンの量として、可食部重量100 gの貝に対して1日当たり1mg~100mg 程度、好ましくは10mg~50mgとなるような、タンパク質またはペプチドの量を1日~7日程度、好ましくは1日~3日投与すればよい。フェザーミールを除毒用飼料として用いる場合は、可食部重量100 gの貝に対してフェザーミールを1日当たり0.04g~4g程度、好ましくは0.5 g~1.5 gの量を1~6日程度、好ましくは1日~3日与えればよい。
In order to administer a protein or peptide containing cysteine or cystine as a constituent amino acid to fresh shellfish, it is added to the feed or fed as a feed. The dose of the protein or peptide varies depending on the time of collecting the shellfish, the content of shellfish poison, and the ratio of cysteine or cystine contained in the protein or peptide. The amount of protein or peptide may be administered to the shellfish for about 1 mg to 100 mg per day, preferably 10 mg to 50 mg, preferably about 1 to 7 days, preferably 1 to 3 days. When using feather meal as a feed for detoxification, the amount of feather meal is about 0.04 to 4 g per day, preferably about 0.5 to 1.5 g for 1 to 6 days for shellfish with an edible portion weight of 100 tog. Preferably, it may be given for 1 to 3 days.
本発明において11位還元型PSP (STX群) の分解に使用するポリフェノールは、タンニン酸、エラグ酸、クロロゲン酸、クマリン、カテキン、没食子酸、没食子酸プロピル、ピロガロール、p-ベンゾキノン、p-ヒドロキノン、o-ベンゾキノン、o-ヒドロキノンなどのポリフェノール化合物を1種または2種以上含む溶液でも、リンゴ、トマト、茶、ワイン、ブドウジュースなどのポリフェノールを含む食品でもよい。茶としては、緑茶、玄米茶、番茶、紅茶、甜茶、ウーロン茶などいずれの種類でもよい。STX 群の貝毒の分解は、ポリフェノールラジカルによるSTX 群の酸化分解によると考えられ、酸化還元電位が高く酸化力の強いポリフェノールが好ましく使用できる。特に、中性、25℃の条件下で水溶液中に重量比0.1 %の濃度で溶解した場合に、酸化還元電位が150 mV以上、特に200mV 以上を示すものが望ましい。
In the present invention, polyphenols used for decomposing 11-position reduced PSP (STX group) are tannic acid, ellagic acid, chlorogenic acid, coumarin, catechin, gallic acid, propyl gallate, pyrogallol, p-benzoquinone, p-hydroquinone, It may be a solution containing one or more polyphenol compounds such as o-benzoquinone and o-hydroquinone, or a food containing polyphenols such as apple, tomato, tea, wine and grape juice. The tea may be any kind such as green tea, brown rice tea, bancha, black tea, strawberry tea, oolong tea. Degradation of the STX cocoon venom is thought to be due to oxidative degradation of the STX cocoon group by polyphenol radicals, and polyphenols having a high redox potential and strong oxidizing power can be preferably used. In particular, it is desirable that when it is dissolved in an aqueous solution at a concentration of 0.1% by weight in a neutral, 25 ° C. condition, the oxidation-reduction potential is 150 μmV or more, particularly 200 mV or more.
ポリフェノールを用いてSTX 群の貝毒を分解するには、ポリフェノールの溶液を含む中性の水溶液中で加温もしくは煮沸するのが分解速度を上げる点で好ましいが、生理的条件下においても分解は可能である。本発明で使用する溶液中のポリフェノールの濃度は、含まれるSTX 群の濃度やその他の共存する成分とその濃度により大きく変化するが、溶液中の重量比で0.001 %~1%が好ましく、特に0.02%~0.2 %が好ましい。ポリフェノール溶液を用いるこの方法は、例えば、貝の加工過程での除毒に適用することが可能であり、また中毒の初期段階での対処法としても有効と考えられる。
In order to decompose the shellfish toxin of STX group using polyphenol, heating or boiling in a neutral aqueous solution containing a solution of polyphenol is preferable in terms of increasing the degradation rate, but degradation under physiological conditions is also possible. Is possible. The concentration of polyphenols in the solution used in the present invention varies greatly depending on the concentration of the STX soot group contained therein and other coexisting components and their concentrations, but is preferably 0.001% to 1% by weight in the solution, particularly 0.02. % To 0.2% is preferred. This method using a polyphenol solution can be applied, for example, to detoxification during the processing of shellfish, and is considered to be effective as a countermeasure in the early stage of poisoning.
STX 群は熱帯、亜熱帯地域で発生するPyrodinium bahamense ver. compressumの主要なPSP 成分である。現在まで、熱帯、亜熱帯域の国々ではSTX 群による麻痺性貝毒で中毒死する事例が多発している。これらの国々では離乳食として安価で栄養価の高い貝類のスープが使われており、乳幼児は成人に比べごく少量のPSP を摂取しただけでも重篤な中毒に陥ることから、その対策の確立が急務となっている。しかし、現在のところ麻痺性貝中毒に対する有効な治療法は皆無であり、医療機関における胃洗浄や人工呼吸などの対症療法があるにすぎない。本発明は貝類の食の安全の向上につながるだけでなく、麻痺性貝毒による食中毒の効果的な治療法の確立にも結びつくものである。
STX group is the main PSP component of Pyrodinium bahamense ver. Compressum that occurs in tropical and subtropical regions. To date, in tropical and subtropical countries, there have been many cases of death from poisoning due to paralytic shellfish poisons caused by STX sharks. In these countries, cheap and nutritious shellfish soup is used as baby food, and infants can become seriously addicted even if they consume a very small amount of PSP compared to adults. It has become. However, there are currently no effective treatments for paralytic shellfish poisoning, and there are only symptomatic treatments such as gastric lavage and artificial respiration in medical institutions. The present invention not only improves the food safety of shellfish but also establishes an effective treatment method for food poisoning caused by paralytic shellfish poison.
ホタテガイに対するフェザーミール給餌試験
(試料)
2006年10月10日に大船渡湾清水定点において採取した毒化ホタテガイ生貝75個体を、500L容のアクリル製試験水槽に25個体ずつそれぞれ収容し流水で1日予備飼育して馴化した後、下記の試験に供した。なお、使用したフェザーミール中のシステインおよびシスチンの合計含量は3重量%強であった。 Feather meal feeding test for scallops (sample)
The following tests were conducted after acclimatizing 75 toxic scallop shellfish collected at the Ofunato Bay Shimizu fixed point on October 10, 2006, in 25 liters each in a 500-liter acrylic test tank, preliminarily raised in running water for 1 day. It was used for. The total content of cysteine and cystine in the used feather meal was just over 3% by weight.
(試料)
2006年10月10日に大船渡湾清水定点において採取した毒化ホタテガイ生貝75個体を、500L容のアクリル製試験水槽に25個体ずつそれぞれ収容し流水で1日予備飼育して馴化した後、下記の試験に供した。なお、使用したフェザーミール中のシステインおよびシスチンの合計含量は3重量%強であった。 Feather meal feeding test for scallops (sample)
The following tests were conducted after acclimatizing 75 toxic scallop shellfish collected at the Ofunato Bay Shimizu fixed point on October 10, 2006, in 25 liters each in a 500-liter acrylic test tank, preliminarily raised in running water for 1 day. It was used for. The total content of cysteine and cystine in the used feather meal was just over 3% by weight.
(試薬類)
フェザーミールは株式会社アマタケ本社 (岩手県大船渡市) から供与されたものを、液体窒素を加えて乳鉢中で粉砕し、125 μm以下の粒子を集めて使用まで-80℃で凍結保存した。市販の二枚貝用人工試料であるDIC diet (大日本インキ化学工業) も試験に供するまで低温中で保存した。 (Reagents)
Feather meal was donated by Amatsutake headquarters (Ofunato, Iwate Prefecture), liquid nitrogen was added and pulverized in a mortar, and particles of 125 μm or less were collected and stored frozen at −80 ° C. until use. DIC diet (Dainippon Ink Chemical Co., Ltd.), a commercially available bivalve artificial sample, was also stored at low temperatures until it was used for testing.
フェザーミールは株式会社アマタケ本社 (岩手県大船渡市) から供与されたものを、液体窒素を加えて乳鉢中で粉砕し、125 μm以下の粒子を集めて使用まで-80℃で凍結保存した。市販の二枚貝用人工試料であるDIC diet (大日本インキ化学工業) も試験に供するまで低温中で保存した。 (Reagents)
Feather meal was donated by Amatsutake headquarters (Ofunato, Iwate Prefecture), liquid nitrogen was added and pulverized in a mortar, and particles of 125 μm or less were collected and stored frozen at −80 ° C. until use. DIC diet (Dainippon Ink Chemical Co., Ltd.), a commercially available bivalve artificial sample, was also stored at low temperatures until it was used for testing.
(ホタテガイへのフェザーミールの投与)
0.5 μmのフィルターで濾過した海水500Lを上記アクリル水槽に入れ、これにフェザーミール25gを懸濁し、エアレーションにより攪拌しつつ水温および濁度を測定した。この水槽に上記のホタテガイ生貝25個体を収容した座布団籠を吊るし、24時間エアレーションしながら止水で飼育した。その後、同水槽を流海水に切り替え、さらに2日間無給餌で飼育した。計3日間の飼育後、個体ごとに殻高、殻長、全重量、剥き身重量を測定した。 (Feather meal administration to scallops)
500 L of seawater filtered through a 0.5 μm filter was placed in the acrylic water tank, and 25 g of feather meal was suspended therein, and the water temperature and turbidity were measured while stirring by aeration. A cushion cushion containing the above 25 scallop raw shellfish was hung in this aquarium and bred in a still water while being aerated for 24 hours. Thereafter, the water tank was switched to running seawater, and further bred for 2 days without feeding. After breeding for a total of 3 days, the shell height, shell length, total weight, and stripped weight were measured for each individual.
0.5 μmのフィルターで濾過した海水500Lを上記アクリル水槽に入れ、これにフェザーミール25gを懸濁し、エアレーションにより攪拌しつつ水温および濁度を測定した。この水槽に上記のホタテガイ生貝25個体を収容した座布団籠を吊るし、24時間エアレーションしながら止水で飼育した。その後、同水槽を流海水に切り替え、さらに2日間無給餌で飼育した。計3日間の飼育後、個体ごとに殻高、殻長、全重量、剥き身重量を測定した。 (Feather meal administration to scallops)
500 L of seawater filtered through a 0.5 μm filter was placed in the acrylic water tank, and 25 g of feather meal was suspended therein, and the water temperature and turbidity were measured while stirring by aeration. A cushion cushion containing the above 25 scallop raw shellfish was hung in this aquarium and bred in a still water while being aerated for 24 hours. Thereafter, the water tank was switched to running seawater, and further bred for 2 days without feeding. After breeding for a total of 3 days, the shell height, shell length, total weight, and stripped weight were measured for each individual.
上記試験に加えて、別に上記のホタテガイ生貝25個体にはフェザーミールにかえてDIC diet25gを給餌し同様に飼育して対照区 (コントロール) とした。予備飼育した別の25個体は、そのまま取り上げ個体ごとにに殻高、殻長、全重量、剥き身重量を測定し、イニシャル区とした。試験区、対照区およびイニシャル区の剥き身は個体別に凍結し、抽出するまで-80 ℃のフリーザー中に保存した。
加 え In addition to the above test, 25 scallop mussels were fed with DIC diet 25g instead of the feather meal and reared in the same manner as control rods. Another 25 individuals that had been preliminarily raised were taken as they were, and the shell height, shell length, total weight, and stripped weight were measured for each individual and designated as the initial group. The strips of the test group, the control group, and the initial group were frozen individually and stored in a freezer at -80 ° C. until extraction.
(ホタテガイのPSP 成分の分析)
試験区、対照区、イニシャル区、ともに5個体ずつ剥き身を合一してホモジナイズし、食品衛生検査指針 (2005) に記載の方法に従ってホモジネートを希塩酸で熱浸抽出し、得た抽出液の毒性をマウス試験法 (Sommer H., Meyer K.F., 1973: Paralytic shellfish poisoning,Arch.Pathol.,24, 560-598 ) で分析定量した。抽出液の一部は限外遠心キット(Ultrafree-MC NMWL5000, Millipore) で濾過し、濾液中のPSP 成分を、HPLC蛍光法(Oshima Y, Post-column derivatization HPLC methods for paralytic shellfish poisons. In: GM Hallegraeff, DM Anderson, SD Cambella, HO Enevodsen, eds. Manual on Harmful Marine Microlgae, Paris: UNESCO, pp.81-94, 1995)で分析定量した。 (Analysis of PSP components in scallops)
The test area, control area, and initial area were each homogenized by stripping 5 individuals, and the homogenate was heat-extracted with dilute hydrochloric acid according to the method described in the Food Sanitation Inspection Guidelines (2005). Analytical quantification was performed by the mouse test method (Sommer H., Meyer KF, 1973: Paralytic shellfish poisoning, Arch. Pathol., 24, 560-598). Part of the extract is filtered with an ultracentrifugation kit (Ultrafree-MC NMWL5000, Millipore), and PSP components in the filtrate are separated by HPLC fluorescence method (Oshima Y, Post-column derivatization HPLC methods for paralytic shellfish poisons. In: GM Hallegraeff, DM Anderson, SD Cambella, HO Enevodsen, eds. Manual on Harmful Marine Microlgae, Paris: UNESCO, pp. 81-94, 1995).
試験区、対照区、イニシャル区、ともに5個体ずつ剥き身を合一してホモジナイズし、食品衛生検査指針 (2005) に記載の方法に従ってホモジネートを希塩酸で熱浸抽出し、得た抽出液の毒性をマウス試験法 (Sommer H., Meyer K.F., 1973: Paralytic shellfish poisoning,Arch.Pathol.,24, 560-598 ) で分析定量した。抽出液の一部は限外遠心キット(Ultrafree-MC NMWL5000, Millipore) で濾過し、濾液中のPSP 成分を、HPLC蛍光法(Oshima Y, Post-column derivatization HPLC methods for paralytic shellfish poisons. In: GM Hallegraeff, DM Anderson, SD Cambella, HO Enevodsen, eds. Manual on Harmful Marine Microlgae, Paris: UNESCO, pp.81-94, 1995)で分析定量した。 (Analysis of PSP components in scallops)
The test area, control area, and initial area were each homogenized by stripping 5 individuals, and the homogenate was heat-extracted with dilute hydrochloric acid according to the method described in the Food Sanitation Inspection Guidelines (2005). Analytical quantification was performed by the mouse test method (Sommer H., Meyer KF, 1973: Paralytic shellfish poisoning, Arch. Pathol., 24, 560-598). Part of the extract is filtered with an ultracentrifugation kit (Ultrafree-MC NMWL5000, Millipore), and PSP components in the filtrate are separated by HPLC fluorescence method (Oshima Y, Post-column derivatization HPLC methods for paralytic shellfish poisons. In: GM Hallegraeff, DM Anderson, SD Cambella, HO Enevodsen, eds. Manual on Harmful Marine Microlgae, Paris: UNESCO, pp. 81-94, 1995).
(結果)
DIC dietを給餌した対照区では飼育3日目で2個体が斃死した。フェザーミールを給餌した試験区では斃死する個体は認められなかった。HPLCで算出したイニシャル区の毒性は 6.58 ±1.08MU/gと出荷規制値である4MU/g以上の高い値を示しており、対照区では4.94±1.44MU/g (n =5) でイニシャル区とほぼ変化がなかった。フェザーミールを給餌した試験区では、3.72±0.57MU/gと毒性が顕著に減少し、出荷規制値を下回る値となった (図2) 。マウス試験においても、試験区のみが出荷規制値を下回った。図3は各試験区の毒含量を11- スルホ型 (11-sulfo) と11- 還元型 (11-reduced) に分けて示したものである。イニシャル区に対し対照区では11- スルホ型のPSP 成分はあまり減少していないのに対して、フェザーミールを投与した試験区ではこれが大きく減少することが確認された。 以上の結果から、フェザーミールの投与により毒化ホタテガイ生貝中の11α- スルホ型のPSP 成分を顕著に除去できることが確認された。フェザーミールはホタテガイの体内で消化され、豊富に含まれるシステインが遊離して11- スルホ型の成分を分解すると考えられる。
[参考例1]
シスチンの給餌による毒化ホタテガイの除毒試験
大船渡湾清水定点の試験研究用筏よりホタテガイ11個体(可食部重量108.5 + 18.3 g) を採取し、水温6.5 ℃の濾過海水40L を入れた水槽2基に4個体ずつ入れた。片方の水槽にはDIC diet (大日本化学工業)を10g 、もう片方の水槽には10g のDIC dietと5gのL(-)- シスチン(和光純薬,031-05295)を混合して添加した。エアレーションしつつ2日間飼育後、海水を取り替えてさらに2日間、無給餌で飼育した。ホタテガイ各個体から中腸腺を取り出し、食品衛生検査指針(日本食品衛生協会、2005年度版、理化学編、pp.673-680) に記載の方法に準じ、個体ごとに中腸腺の希塩酸熱浸抽出液を調製し、HPLC蛍光法(Oshima, 1995)で含まれる麻痺性貝毒成分を分析・定量した。これとは別に、試験開始時に3個体から中腸腺を取り出し、同様に抽出して分析した。 (result)
In the control group fed with DIC diet, two individuals died on the third day of breeding. In the test plot fed with feather meal, no moribund individuals were found. The toxicity of the initial plot calculated by HPLC is 6.58 ± 1.08MU / g, which is higher than the shipping regulation value of 4MU / g, and the initial plot is 4.94 ± 1.44MU / g (n = 5) in the control plot. There was almost no change. In the test plot fed with feather meal, toxicity was markedly reduced to 3.72 ± 0.57 MU / g, which was below the regulation value for shipping (Figure 2). Also in the mouse test, only the test section was below the shipping regulation value. Fig. 3 shows the toxic content of each test section divided into 11-sulfo type (11-sulfo) and 11-reduced type (11-reduced). In contrast to the initial group, the 11-sulfo-type PSP component was not significantly reduced in the control group, whereas it was confirmed that this was greatly reduced in the test group administered with feather meal. From the above results, it was confirmed that the 11α-sulfo-type PSP component in the poisoned scallop raw shellfish can be remarkably removed by administration of feather meal. Feather meal is digested in the body of scallops, and it is thought that abundant cysteine is released and 11-sulfo type components are decomposed.
[Reference Example 1]
Detoxification test of poisoned scallops by feedingcystine 11 scallops (edible weight 108.5 + 18.3 g) were collected from the test tub of Ofunato Bay Shimizu fixed point, and two tanks containing 40L of filtered seawater with a water temperature of 6.5 ° C Four individuals were placed in each. 10g DIC diet (Dainippon Chemical Co., Ltd.) was added to one tank, and 10g DIC diet and 5g L (-)-cystine (Wako Pure Chemicals, 031-05295) were added to the other tank. . After raising for 2 days with aeration, the seawater was changed and the animals were raised for 2 days without feeding. Remove the midgut gland from each scallop and follow the method described in the Food Sanitation Inspection Guidelines (Japan Food Hygiene Association, 2005 edition, RIKEN, pp. 673-680). An extract was prepared, and the paralytic shellfish toxin components contained in the HPLC fluorescence method (Oshima, 1995) were analyzed and quantified. Separately, midgut glands were taken out from 3 individuals at the start of the test, extracted and analyzed in the same manner.
DIC dietを給餌した対照区では飼育3日目で2個体が斃死した。フェザーミールを給餌した試験区では斃死する個体は認められなかった。HPLCで算出したイニシャル区の毒性は 6.58 ±1.08MU/gと出荷規制値である4MU/g以上の高い値を示しており、対照区では4.94±1.44MU/g (n =5) でイニシャル区とほぼ変化がなかった。フェザーミールを給餌した試験区では、3.72±0.57MU/gと毒性が顕著に減少し、出荷規制値を下回る値となった (図2) 。マウス試験においても、試験区のみが出荷規制値を下回った。図3は各試験区の毒含量を11- スルホ型 (11-sulfo) と11- 還元型 (11-reduced) に分けて示したものである。イニシャル区に対し対照区では11- スルホ型のPSP 成分はあまり減少していないのに対して、フェザーミールを投与した試験区ではこれが大きく減少することが確認された。 以上の結果から、フェザーミールの投与により毒化ホタテガイ生貝中の11α- スルホ型のPSP 成分を顕著に除去できることが確認された。フェザーミールはホタテガイの体内で消化され、豊富に含まれるシステインが遊離して11- スルホ型の成分を分解すると考えられる。
[参考例1]
シスチンの給餌による毒化ホタテガイの除毒試験
大船渡湾清水定点の試験研究用筏よりホタテガイ11個体(可食部重量108.5 + 18.3 g) を採取し、水温6.5 ℃の濾過海水40L を入れた水槽2基に4個体ずつ入れた。片方の水槽にはDIC diet (大日本化学工業)を10g 、もう片方の水槽には10g のDIC dietと5gのL(-)- シスチン(和光純薬,031-05295)を混合して添加した。エアレーションしつつ2日間飼育後、海水を取り替えてさらに2日間、無給餌で飼育した。ホタテガイ各個体から中腸腺を取り出し、食品衛生検査指針(日本食品衛生協会、2005年度版、理化学編、pp.673-680) に記載の方法に準じ、個体ごとに中腸腺の希塩酸熱浸抽出液を調製し、HPLC蛍光法(Oshima, 1995)で含まれる麻痺性貝毒成分を分析・定量した。これとは別に、試験開始時に3個体から中腸腺を取り出し、同様に抽出して分析した。 (result)
In the control group fed with DIC diet, two individuals died on the third day of breeding. In the test plot fed with feather meal, no moribund individuals were found. The toxicity of the initial plot calculated by HPLC is 6.58 ± 1.08MU / g, which is higher than the shipping regulation value of 4MU / g, and the initial plot is 4.94 ± 1.44MU / g (n = 5) in the control plot. There was almost no change. In the test plot fed with feather meal, toxicity was markedly reduced to 3.72 ± 0.57 MU / g, which was below the regulation value for shipping (Figure 2). Also in the mouse test, only the test section was below the shipping regulation value. Fig. 3 shows the toxic content of each test section divided into 11-sulfo type (11-sulfo) and 11-reduced type (11-reduced). In contrast to the initial group, the 11-sulfo-type PSP component was not significantly reduced in the control group, whereas it was confirmed that this was greatly reduced in the test group administered with feather meal. From the above results, it was confirmed that the 11α-sulfo-type PSP component in the poisoned scallop raw shellfish can be remarkably removed by administration of feather meal. Feather meal is digested in the body of scallops, and it is thought that abundant cysteine is released and 11-sulfo type components are decomposed.
[Reference Example 1]
Detoxification test of poisoned scallops by feeding
図4、5に試験開始時のホタテガイ中腸腺(イニシャル区)、DIC dietのみを給餌した対照区、ならびにDIC dietとシスチンを混合して与えた試験区それぞれの毒性および組成別毒含量の分析結果を示した。DIC dietのみを給餌した場合は、イニシャル区とほとんど中腸腺の毒性に変化が認められなかったのに対し、シスチンを与えた試験区ではイニシャル区ならびに対照区に比べ顕著な毒性の低下が認められた。ことに11α位に硫酸エステルを持つ毒成分(11α-sulfo型成分)が試験区で大きく減少することが確認された。
Figs. 4 and 5 show the toxicity and toxic content of each scallop midgut gland (initial group) at the start of the test, the control group fed with DIC diet alone, and the test group given a mixture of DIC diet and cystine. Results are shown. When only DIC diet was fed, there was almost no change in the toxicity of the initial gut and midgut gland, whereas in the test plot fed cystine, there was a marked decrease in toxicity compared to the initial plot and the control plot. It was. In particular, it was confirmed that the poison component having a sulfate ester at the 11α position (11α-sulfo type component) was greatly reduced in the test section.
C2, GTX4, GTX3などの11β-sulfo型の毒成分は原因となるAlexandrium 属渦鞭毛藻の生産する主要な毒成分であるが、中性水溶液中もしくは貝の体内では徐々に異性化して、C1, GTX1, GTX4などの11α-sulfo型の毒成分を生じ、最終的にモル比で11β型:11α型がおよそ1:3 の平衡混合物となることが知られている。一方、種々のチオール化合物が11α-sulfo型の成分と直接反応し、11位でチオールの硫黄原子を介した結合体を形成することが明らかにされている。システインなど、SH基の近傍にアミノ基を有するチオール化合物もin vitroで11α-sulfo型の毒成分と反応するが、生じた結合体は著しく不安定で自発的に分解されることが確認されている。本試験の結果は、貝の体内でシスチンがシステインに還元され、これが中腸腺中に高濃度で含まれる11α-sulfo型の毒成分に作用し、これを分解していることによる、と考えられる。
11β-sulfo type toxic components such as C2, GTX4 and GTX3 are the main toxic components produced by the Alexandrium genus Dinoflagellate, which causes causative isomerization in neutral aqueous solution or shellfish, and C1 It is known that 11α-sulfo type poison components such as GTX1, GTX4, etc. are produced, and finally 11β type: 11α type is a balanced mixture of about 1: 3 in molar ratio. On the other hand, it has been clarified that various thiol compounds react directly with 11α-sulfo-type components to form a conjugate via the thiol sulfur atom at the 11-position. Thiol compounds that have an amino group in the vicinity of the SH group, such as cysteine, also react with 11α-sulfo-type poison components in vitro, but the resulting conjugate has been confirmed to be extremely unstable and spontaneously degraded. Yes. The result of this test is thought to be due to the fact that cystine is reduced to cysteine in the shell, which acts on the 11α-sulfo-type toxic component contained in the midgut gland in a high concentration and decomposes it. It is done.
ポリフェノールによるサキシトキシン群PSP の消去効果
この実験例では、11位が還元されたPSP 成分であるサキシトキシン(以下STX )がポリフェノールまたはポリフェノール含有食品で消去されることを示す。
(試料および試薬類)
STX は大船渡湾産毒化ホタテガイの中腸腺から希塩酸で熱浸抽出し、活性炭、Bio-Gel P-2 ならびにBio-Rex 70の各カラムクロマトグラフィーを用いる常法(Shimizu, 2000, Chemistry and mechanism of action, in: Seafood and Freshwater Toxins, Botana, L. M. ed., Marcel Decker, NY, pp.151-172)により精製・単離した。 Elimination effect of saxitoxin group PSP by polyphenol In this experimental example, it is shown that saxitoxin (hereinafter referred to as STX), which is a PSP component reduced at the 11th position, is eliminated by polyphenol or polyphenol-containing food.
(Samples and reagents)
STX is extracted from the midgut gland of the toxic scallops of Ofunato Bay with dilute hydrochloric acid and is subjected to conventional chromatography using activated carbon, Bio-Gel P-2 and Bio-Rex 70 column chromatography (Shimizu, 2000, Chemistry and mechanism of action, in: Seafood and Freshwater Toxins, Botana, LM ed., Marcel Decker, NY, pp. 151-172).
この実験例では、11位が還元されたPSP 成分であるサキシトキシン(以下STX )がポリフェノールまたはポリフェノール含有食品で消去されることを示す。
(試料および試薬類)
STX は大船渡湾産毒化ホタテガイの中腸腺から希塩酸で熱浸抽出し、活性炭、Bio-Gel P-2 ならびにBio-Rex 70の各カラムクロマトグラフィーを用いる常法(Shimizu, 2000, Chemistry and mechanism of action, in: Seafood and Freshwater Toxins, Botana, L. M. ed., Marcel Decker, NY, pp.151-172)により精製・単離した。 Elimination effect of saxitoxin group PSP by polyphenol In this experimental example, it is shown that saxitoxin (hereinafter referred to as STX), which is a PSP component reduced at the 11th position, is eliminated by polyphenol or polyphenol-containing food.
(Samples and reagents)
STX is extracted from the midgut gland of the toxic scallops of Ofunato Bay with dilute hydrochloric acid and is subjected to conventional chromatography using activated carbon, Bio-Gel P-2 and Bio-Rex 70 column chromatography (Shimizu, 2000, Chemistry and mechanism of action, in: Seafood and Freshwater Toxins, Botana, LM ed., Marcel Decker, NY, pp. 151-172).
ポリフェノール標品はいずれも和光純薬ならびにSigima製の化学・生化学用試薬を使用した。ポリフェノールを含む食品類すなわち緑茶、玄米茶、番茶、紅茶、甜茶ならびにウーロン茶、ワイン(赤ワイン4種)、ブドウジュース(3種)、ココア、トマトジュース、リンゴは、いずれも市販品を購入して使用した。
(ポリフェノール標品によるSTX 消去試験)
タンニン酸、エラグ酸、クロロゲン酸、クマリン、カテキン、没食子酸、没食子酸プロピルおよびピロガロールを10mgずつそれぞれ別の試験管に取り、これらに10mLの50mMリン酸ナトリウム緩衝液(pH7.4)を加え、溶解または懸濁させた。これらの溶液にSTX を終末濃度で10μM となるように添加して、沸騰浴中で5分間加温した。その後、限外遠心キット(Ultrafree-MC, NMWL5,000, Millipore) で処理して得たろ液中のSTX をHPLC蛍光法(Oshima、上述)で分析した。50mMリン酸ナトリウム緩衝液(pH7.4) にSTX を終末濃度10μM となるように添加混合したものをイニシャルとし、これを沸騰浴中で5分間煮沸したものをコントロールとして同様に処理し分析した。
(ポリフェノール含有食品によるSTX 消去試験)
緑茶、玄米茶、番茶、紅茶、甜茶ならびにウーロン茶の茶葉1g ならびにココア1g をそれぞれ別のビーカーに取り、これらに100mL の50mMリン酸ナトリウム緩衝液(pH7.4) を加えた。これを沸騰浴中で5分間加温し、ろ紙でろ過して中性の溶液を得た。4種の赤ワイン(赤ワイン-1,2,3,4) 、トマトジュースおよびブドウジュース(3種)はいずれも炭酸ナトリウムを添加してpHを7.4 に調整した。リンゴは皮ごと摺りおろし、炭酸ナトリウムを加えて中性とした上、等量の水を加えて懸濁物を作成した。それぞれの溶液または懸濁物中にSTX を終末濃度で10μM となるように添加して、沸騰浴中で5分間加温した。その後、限外遠心キット(Ultrafree-MC, NMWL5,000, Millipore) で処理して得たろ液中のSTX をHPLC蛍光法(Oshima、上述)で分析した。50mMリン酸ナトリウム緩衝液(pH7.4) にSTX を終末濃度10μM となるように添加混合したものをイニシャルとし、これを沸騰浴中で5分間煮沸したものをコントロールとして同様に処理し分析した。
(結果)
図6に種々のポリフェノール標品の中性水溶液中でSTX を加温した結果を示す。ポリフェノールを加えない溶液中では、イニシャルの10μM に対して煮沸後(図中のCTRL) では8.6 μM のSTX が残存した。これに対して、タンニン酸、エラグ酸、クロロゲン酸、クマリン、カテキン、没食子酸、没食子酸プロピルおよびピロガロールを加えた溶液中では、STX の顕著な減少が認められた。特に、茶葉の主要なポリフェノールであるカテキンやタンニン酸ならびにその構成成分である没食子酸とその誘導体である没食子酸プロピル、ピロガロールには特に高いSTX 消去作用が確認された。 All of the polyphenol preparations used Wako Pure Chemical and Sigima chemical and biochemical reagents. Foods containing polyphenols, ie, green tea, brown rice tea, bancha, black tea, strawberry tea, oolong tea, wine (4 types of red wine), grape juice (3 types), cocoa, tomato juice, and apples are all purchased on the market. did.
(STX elimination test with polyphenol preparation)
Take 10 mg each of tannic acid, ellagic acid, chlorogenic acid, coumarin, catechin, gallic acid, propyl gallate and pyrogallol in separate test tubes, add 10 mL of 50 mM sodium phosphate buffer (pH 7.4) to each, Dissolved or suspended. To these solutions, STX was added to a final concentration of 10 μM and warmed in a boiling bath for 5 minutes. Thereafter, STX in the filtrate obtained by treatment with an ultracentrifugation kit (Ultrafree-MC, NMWL5,000, Millipore) was analyzed by HPLC fluorescence method (Oshima, mentioned above). A mixture prepared by adding STX to 50 mM sodium phosphate buffer (pH 7.4) so as to have a final concentration of 10 μM was used as an initial, which was boiled in a boiling bath for 5 minutes in the same manner as a control and analyzed.
(STX elimination test with polyphenol-containing food)
1 g of green tea, brown rice tea, bancha, black tea, strawberry tea and oolong tea leaves and 1 g of cocoa were placed in separate beakers, and 100 mL of 50 mM sodium phosphate buffer (pH 7.4) was added thereto. This was heated in a boiling bath for 5 minutes and filtered through a filter paper to obtain a neutral solution. The four types of red wine (red wine-1,2,3,4), tomato juice and grape juice (3 types) were all adjusted to pH 7.4 by adding sodium carbonate. The apple was grated with the skin, neutralized with sodium carbonate, and an equal amount of water was added to make a suspension. STX was added to each solution or suspension to a final concentration of 10 μM and warmed in a boiling bath for 5 minutes. Thereafter, STX in the filtrate obtained by treatment with an ultracentrifugation kit (Ultrafree-MC, NMWL5,000, Millipore) was analyzed by HPLC fluorescence method (Oshima, mentioned above). A mixture prepared by adding STX to 50 mM sodium phosphate buffer (pH 7.4) so as to have a final concentration of 10 μM was used as an initial, which was boiled in a boiling bath for 5 minutes in the same manner as a control and analyzed.
(result)
FIG. 6 shows the results of heating STX in neutral aqueous solutions of various polyphenol preparations. In a solution to which no polyphenol was added, 8.6 μM STX remained after boiling (CTRL in the figure) with respect to the initial 10 μM. In contrast, STX was significantly reduced in the solution containing tannic acid, ellagic acid, chlorogenic acid, coumarin, catechin, gallic acid, propyl gallate and pyrogallol. In particular, catechin and tannic acid, which are the main polyphenols of tea leaves, and gallic acid and its constituents, propyl gallate and pyrogallol, which are constituents thereof, were confirmed to have particularly high STX scavenging action.
(ポリフェノール標品によるSTX 消去試験)
タンニン酸、エラグ酸、クロロゲン酸、クマリン、カテキン、没食子酸、没食子酸プロピルおよびピロガロールを10mgずつそれぞれ別の試験管に取り、これらに10mLの50mMリン酸ナトリウム緩衝液(pH7.4)を加え、溶解または懸濁させた。これらの溶液にSTX を終末濃度で10μM となるように添加して、沸騰浴中で5分間加温した。その後、限外遠心キット(Ultrafree-MC, NMWL5,000, Millipore) で処理して得たろ液中のSTX をHPLC蛍光法(Oshima、上述)で分析した。50mMリン酸ナトリウム緩衝液(pH7.4) にSTX を終末濃度10μM となるように添加混合したものをイニシャルとし、これを沸騰浴中で5分間煮沸したものをコントロールとして同様に処理し分析した。
(ポリフェノール含有食品によるSTX 消去試験)
緑茶、玄米茶、番茶、紅茶、甜茶ならびにウーロン茶の茶葉1g ならびにココア1g をそれぞれ別のビーカーに取り、これらに100mL の50mMリン酸ナトリウム緩衝液(pH7.4) を加えた。これを沸騰浴中で5分間加温し、ろ紙でろ過して中性の溶液を得た。4種の赤ワイン(赤ワイン-1,2,3,4) 、トマトジュースおよびブドウジュース(3種)はいずれも炭酸ナトリウムを添加してpHを7.4 に調整した。リンゴは皮ごと摺りおろし、炭酸ナトリウムを加えて中性とした上、等量の水を加えて懸濁物を作成した。それぞれの溶液または懸濁物中にSTX を終末濃度で10μM となるように添加して、沸騰浴中で5分間加温した。その後、限外遠心キット(Ultrafree-MC, NMWL5,000, Millipore) で処理して得たろ液中のSTX をHPLC蛍光法(Oshima、上述)で分析した。50mMリン酸ナトリウム緩衝液(pH7.4) にSTX を終末濃度10μM となるように添加混合したものをイニシャルとし、これを沸騰浴中で5分間煮沸したものをコントロールとして同様に処理し分析した。
(結果)
図6に種々のポリフェノール標品の中性水溶液中でSTX を加温した結果を示す。ポリフェノールを加えない溶液中では、イニシャルの10μM に対して煮沸後(図中のCTRL) では8.6 μM のSTX が残存した。これに対して、タンニン酸、エラグ酸、クロロゲン酸、クマリン、カテキン、没食子酸、没食子酸プロピルおよびピロガロールを加えた溶液中では、STX の顕著な減少が認められた。特に、茶葉の主要なポリフェノールであるカテキンやタンニン酸ならびにその構成成分である没食子酸とその誘導体である没食子酸プロピル、ピロガロールには特に高いSTX 消去作用が確認された。 All of the polyphenol preparations used Wako Pure Chemical and Sigima chemical and biochemical reagents. Foods containing polyphenols, ie, green tea, brown rice tea, bancha, black tea, strawberry tea, oolong tea, wine (4 types of red wine), grape juice (3 types), cocoa, tomato juice, and apples are all purchased on the market. did.
(STX elimination test with polyphenol preparation)
Take 10 mg each of tannic acid, ellagic acid, chlorogenic acid, coumarin, catechin, gallic acid, propyl gallate and pyrogallol in separate test tubes, add 10 mL of 50 mM sodium phosphate buffer (pH 7.4) to each, Dissolved or suspended. To these solutions, STX was added to a final concentration of 10 μM and warmed in a boiling bath for 5 minutes. Thereafter, STX in the filtrate obtained by treatment with an ultracentrifugation kit (Ultrafree-MC, NMWL5,000, Millipore) was analyzed by HPLC fluorescence method (Oshima, mentioned above). A mixture prepared by adding STX to 50 mM sodium phosphate buffer (pH 7.4) so as to have a final concentration of 10 μM was used as an initial, which was boiled in a boiling bath for 5 minutes in the same manner as a control and analyzed.
(STX elimination test with polyphenol-containing food)
1 g of green tea, brown rice tea, bancha, black tea, strawberry tea and oolong tea leaves and 1 g of cocoa were placed in separate beakers, and 100 mL of 50 mM sodium phosphate buffer (pH 7.4) was added thereto. This was heated in a boiling bath for 5 minutes and filtered through a filter paper to obtain a neutral solution. The four types of red wine (red wine-1,2,3,4), tomato juice and grape juice (3 types) were all adjusted to pH 7.4 by adding sodium carbonate. The apple was grated with the skin, neutralized with sodium carbonate, and an equal amount of water was added to make a suspension. STX was added to each solution or suspension to a final concentration of 10 μM and warmed in a boiling bath for 5 minutes. Thereafter, STX in the filtrate obtained by treatment with an ultracentrifugation kit (Ultrafree-MC, NMWL5,000, Millipore) was analyzed by HPLC fluorescence method (Oshima, mentioned above). A mixture prepared by adding STX to 50 mM sodium phosphate buffer (pH 7.4) so as to have a final concentration of 10 μM was used as an initial, which was boiled in a boiling bath for 5 minutes in the same manner as a control and analyzed.
(result)
FIG. 6 shows the results of heating STX in neutral aqueous solutions of various polyphenol preparations. In a solution to which no polyphenol was added, 8.6 μM STX remained after boiling (CTRL in the figure) with respect to the initial 10 μM. In contrast, STX was significantly reduced in the solution containing tannic acid, ellagic acid, chlorogenic acid, coumarin, catechin, gallic acid, propyl gallate and pyrogallol. In particular, catechin and tannic acid, which are the main polyphenols of tea leaves, and gallic acid and its constituents, propyl gallate and pyrogallol, which are constituents thereof, were confirmed to have particularly high STX scavenging action.
図7に種々のポリフェノール含有食品の中性溶液中でSTX を加温した結果を示す。中性リン酸ナトリウム緩衝液中で5分間加温した場合には、イニシャルの10μM に対して8.6 μM のSTX が残存した。これに対して、赤ワインやブドウジュース、緑茶、玄米茶、番茶、紅茶、甜茶ならびにウーロン茶の中性溶液中でSTX を加温した場合、STX の回収量は顕著に減少した。同様の効果はトマトジュース、ココア、リンゴにも認められた。番茶や紅茶、ウーロン茶の溶液には特に高いSTX 消去作用が確認された。
Fig. 7 shows the results of heating STX in neutral solutions of various polyphenol-containing foods. When heated in neutral sodium phosphate buffer for 5 minutes, 8.6 μM STX was retained for 10 μM initial. In contrast, when STXST was heated in neutral solutions of red wine, grape juice, green tea, brown rice tea, bancha, black tea, strawberry tea and oolong tea, the amount of STX recovered significantly decreased. Similar effects were observed in tomato juice, cocoa and apple. The bancha, black tea and oolong tea solutions were found to have a particularly high STX wiping effect.
実施例2と同様にして精製・単離したSTX 、neoSTX、GTX 5 (B1)及びGTX 6 (B2)を用いて、タンニン酸による分解実験を行った。
GTX 5 標準溶液(56.9 μM)、GTX 6 標準溶液(38.6 μM)、STX 標準溶液(354μM)、neoSTX標準溶液(100μM)に各PSP の終末濃度が1 μM となるように0.01% タンニン酸を含むDMSO/0.01M リン酸ナトリウム(pH7.4) に添加混合した。これらの混合液を沸騰浴中で5 分間加熱・氷冷し、限外ろ過して得たろ液をHPLC蛍光法で分析した。 Using STX, neoSTX, GTX 5 (B1) and GTX 6 (B2) purified and isolated in the same manner as in Example 2, a decomposition experiment with tannic acid was performed.
GTX 5 standard solution (56.9 μM), GTX 6 standard solution (38.6 μM), STX standard solution (354 μM), and neoSTX standard solution (100 μM) contain 0.01% tannic acid so that the final concentration of each PSP is 1 μM. DMSO / 0.01M sodium phosphate (pH 7.4) was added and mixed. These mixtures were heated in a boiling bath for 5 minutes and cooled with ice, and the filtrate obtained by ultrafiltration was analyzed by HPLC fluorescence.
GTX 5 標準溶液(56.9 μM)、GTX 6 標準溶液(38.6 μM)、STX 標準溶液(354μM)、neoSTX標準溶液(100μM)に各PSP の終末濃度が1 μM となるように0.01% タンニン酸を含むDMSO/0.01M リン酸ナトリウム(pH7.4) に添加混合した。これらの混合液を沸騰浴中で5 分間加熱・氷冷し、限外ろ過して得たろ液をHPLC蛍光法で分析した。 Using STX, neoSTX, GTX 5 (B1) and GTX 6 (B2) purified and isolated in the same manner as in Example 2, a decomposition experiment with tannic acid was performed.
イニシャルおよびコントロールとして、0.01 Mリン酸ナトリウム(pH 7.4)にGTX 5 、GTX 6 、STX 、neoSTXを1 μM の濃度に調製した溶液ならびにこれを沸騰浴中で5 分間加熱・室温まで氷冷した溶液それぞれを同様に調製し、HPLC蛍光法で分析した。
For initials and controls, 0.01M sodium phosphate (pH 7.4), GTX-5, GTX-6, STX, and neoSTX were adjusted to a concentration of 1 μM and heated in a boiling bath for 5 minutes and ice-cooled to room temperature. Each was prepared similarly and analyzed by HPLC fluorescence.
図8に示すように、STX 、neoSTX、GTX 5 、GTX6はコントロールに比べ0.01 %タンニン酸溶液中で加熱した試験区では顕著な減少が認められた。以上の結果から、タンニン酸溶液は、11位が還元されたSTX 、neoSTX、GTX 5 およびGTX 6 を特異的に消去する効果を有することが明かとなった。
As shown in FIG. 8, STX, neoSTX, GTX 5 and GTX6 showed a marked decrease in the test group heated in a 0.01% tannic acid solution compared to the control. From the above results, it was revealed that the tannic acid solution has an effect of specifically eliminating STX, neoSTX, GTX 5 and GTX 6 さ れ in which the 11th position was reduced.
これに対して、11- スルホ型PSP 成分(11位に硫酸エステルを持つ麻痺性貝毒成分)であるGTX 群(GTX1とGTX 4の平衡混合物およびGTX2とGTX 3の平衡混合物)を同様に0.01%のタンニン酸を含む中性溶液中で加温したところ、これらのPSP 成分には、加温前に比べ明確な減少は認められなかった。
On the other hand, GTX group (an equilibrium mixture of GTX1 and GTX 4 and an equilibrium mixture of GTX2 and GTX 3), which is an 11- sulfo-type PSP component (paralytic shellfish poison component having a sulfate ester at the 11th position), is similarly 0.01 When heated in a neutral solution containing 1% tannic acid, no clear decrease was observed in these PSP® ingredients compared to before warming.
生理的条件下におけるポリフェノールによるSTX の消去効果
本実施例では実施例2と同様にして精製・単離したSTX を使用した。スペイン産赤ワイン(オレリア)に1M の炭酸ナトリウムを加えて中和し、終末濃度が10μM となるようにSTX を添加混合した。この溶液を37℃の湯浴中でインキュベートし、経時的に(反応開始5, 10, 20, 30 分後に)溶液を一部採取し、等量の0.5M酢酸を加え限外ろ過して得たろ液をHPLC蛍光法(Oshima, 1995, 上述)で分析し、残存するSTX の濃度を分析定量した。10μM のSTX を含む中性水溶液を同様に37℃で加温し、コントロールとして同様に経時的に分析定量した。 Elimination of STX by polyphenol under physiological conditions In this example, STX purified and isolated in the same manner as in Example 2 was used. Spanish red wine (Olelia) was neutralized by adding 1 M sodium carbonate, and STX was added and mixed to a final concentration of 10 μM. Incubate this solution in a 37 ° C water bath, collect a portion of the solution over time (5, 10, 20, and 30 minutes after the start of the reaction), add an equal volume of 0.5M acetic acid and ultrafilter it. The filtrate was analyzed by HPLC fluorescence method (Oshima, 1995, mentioned above), and the remaining STX concentration was analyzed and quantified. A neutral aqueous solution containing 10 μM STX was similarly heated at 37 ° C., and analyzed and quantified over time in the same manner as a control.
本実施例では実施例2と同様にして精製・単離したSTX を使用した。スペイン産赤ワイン(オレリア)に1M の炭酸ナトリウムを加えて中和し、終末濃度が10μM となるようにSTX を添加混合した。この溶液を37℃の湯浴中でインキュベートし、経時的に(反応開始5, 10, 20, 30 分後に)溶液を一部採取し、等量の0.5M酢酸を加え限外ろ過して得たろ液をHPLC蛍光法(Oshima, 1995, 上述)で分析し、残存するSTX の濃度を分析定量した。10μM のSTX を含む中性水溶液を同様に37℃で加温し、コントロールとして同様に経時的に分析定量した。 Elimination of STX by polyphenol under physiological conditions In this example, STX purified and isolated in the same manner as in Example 2 was used. Spanish red wine (Olelia) was neutralized by adding 1 M sodium carbonate, and STX was added and mixed to a final concentration of 10 μM. Incubate this solution in a 37 ° C water bath, collect a portion of the solution over time (5, 10, 20, and 30 minutes after the start of the reaction), add an equal volume of 0.5M acetic acid and ultrafilter it. The filtrate was analyzed by HPLC fluorescence method (Oshima, 1995, mentioned above), and the remaining STX concentration was analyzed and quantified. A neutral aqueous solution containing 10 μM STX was similarly heated at 37 ° C., and analyzed and quantified over time in the same manner as a control.
タンニン酸、没食子酸、没食子酸プロピルまたはピロガロールをそれぞれ0.1 重量%含む中性水溶液を別々に作成し、それぞれにSTX を終末濃度で10μM となるように添加混合して37℃でインキュベートし、上記の赤ワインの場合と同様に残存するSTX の濃度を分析定量した。
(結果)
図9に示すように、中和した赤ワイン中でSTX を37℃でインキュベートしたところ、5分後にはSTX 濃度がイニシャルの約30%に低下した。同様の結果はタンニン酸や没食子酸、没食子酸プロピルを含む中性溶液中でSTX をインキュベートした場合にも認められた(図10)。これに対しピロガロールを添加した溶液のSTX 消去作用はやや劣り、赤ワインやポリフェノールを含まないコントロールではSTX の顕著な減少は確認されなかった。 Prepare neutral aqueous solutions containing 0.1% by weight of tannic acid, gallic acid, propyl gallate or pyrogallol separately, add STX to the final concentration of 10 μM, mix and incubate at 37 ° C. As in the case of red wine, the remaining STX concentration was analyzed and quantified.
(result)
As shown in FIG. 9, when STX was incubated at 37 ° C. in neutralized red wine, the STX concentration decreased to about 30% of the initial after 5 minutes. Similar results were observed when STX was incubated in a neutral solution containing tannic acid, gallic acid, or propyl gallate (Figure 10). On the other hand, the STX erasing action of the solution added with pyrogallol was slightly inferior, and in the control without red wine or polyphenol, no significant decrease in STX was confirmed.
(結果)
図9に示すように、中和した赤ワイン中でSTX を37℃でインキュベートしたところ、5分後にはSTX 濃度がイニシャルの約30%に低下した。同様の結果はタンニン酸や没食子酸、没食子酸プロピルを含む中性溶液中でSTX をインキュベートした場合にも認められた(図10)。これに対しピロガロールを添加した溶液のSTX 消去作用はやや劣り、赤ワインやポリフェノールを含まないコントロールではSTX の顕著な減少は確認されなかった。 Prepare neutral aqueous solutions containing 0.1% by weight of tannic acid, gallic acid, propyl gallate or pyrogallol separately, add STX to the final concentration of 10 μM, mix and incubate at 37 ° C. As in the case of red wine, the remaining STX concentration was analyzed and quantified.
(result)
As shown in FIG. 9, when STX was incubated at 37 ° C. in neutralized red wine, the STX concentration decreased to about 30% of the initial after 5 minutes. Similar results were observed when STX was incubated in a neutral solution containing tannic acid, gallic acid, or propyl gallate (Figure 10). On the other hand, the STX erasing action of the solution added with pyrogallol was slightly inferior, and in the control without red wine or polyphenol, no significant decrease in STX was confirmed.
本実施例で用いた10μM のSTX 溶液を成人が摂取した場合、コップ1杯程度の量で重篤な中毒を引き起こす。麻痺性貝毒による食中毒に対しては、現在のところ効果的な治療法が確立されておらず、胃洗浄や人工呼吸などの対症療法が施されているにすぎない。本実施例から、少なくとも胃内に未吸収の毒の大半が残っている中毒初期の段階では、中和した赤ワインや没食子酸溶液の投与により、STX 群による食中毒症状を大幅に軽減できる可能性が高いものと考えられる。また本実施例の結果は、これらポリフェノールもしくはポリフェノール含有食品を使用することにより、調理・加工段階においてSTX 群を貝類もしくはそのスープから効果的に除去できることを示唆するものである。
¡When an adult ingests the 10μM STX solution used in this example, it causes serious poisoning in the amount of about 1 cup. For food poisoning due to paralytic shellfish poisons, no effective treatment has been established at present, and only symptomatic treatment such as gastric lavage and artificial respiration has been provided. From this example, at least in the early stage of poisoning where most of the unabsorbed poison remains in the stomach, the administration of neutralized red wine or gallic acid solution may significantly reduce the symptoms of food poisoning caused by the STX group. It is considered expensive. In addition, the results of this example suggest that the use of these polyphenols or polyphenol-containing foods can effectively remove the STX cocoons from shellfish or their soup at the cooking / processing stage.
ポリフェノールによるSTX 除去効果への生体内還元剤の影響
上記実施例2~4において、ポリフェノール溶液中でインキュベートするとSTX は消去されることが確認された。STX をはじめとする麻痺性貝毒は中性条件下で活性炭やSephadex, Bio-Gel P-2 などのゲル濾過樹脂などによく吸着する。このような担体と同様に、ポリフェノールにSTX が強固に吸着されているとすれば、HPLC分析では検出できないことになる。一方、ポリフェノールは光合成植物の体内で生じる酸素ラジカル(活性酸素)のクエンチャーとして機能することが知られている。従って、このような反応でポリフェノール上に生じたラジカルがSTX を直接分解することも考えられる。本実施例ではポリフェノールによるSTX 消去機構の解明を目的として、ポリフェノールによるSTX 除去効果への生体内還元剤の影響を調べた。 Influence of in vivo reducing agent on STX removal effect by polyphenol In Examples 2 to 4 above, it was confirmed that STX was erased when incubated in a polyphenol solution. Paralytic shellfish poisons such as STX are well adsorbed on activated carbon and gel filtration resins such as Sephadex and Bio-Gel P-2 under neutral conditions. Similar to such a carrier, if STX is strongly adsorbed to polyphenol, it cannot be detected by HPLC analysis. On the other hand, polyphenols are known to function as quenchers for oxygen radicals (active oxygen) generated in the body of photosynthetic plants. Therefore, it is conceivable that the radical generated on the polyphenol by such a reaction directly decomposes STX. In this example, for the purpose of elucidating the STX elimination mechanism by polyphenol, the influence of an in vivo reducing agent on the STX removal effect by polyphenol was examined.
上記実施例2~4において、ポリフェノール溶液中でインキュベートするとSTX は消去されることが確認された。STX をはじめとする麻痺性貝毒は中性条件下で活性炭やSephadex, Bio-Gel P-2 などのゲル濾過樹脂などによく吸着する。このような担体と同様に、ポリフェノールにSTX が強固に吸着されているとすれば、HPLC分析では検出できないことになる。一方、ポリフェノールは光合成植物の体内で生じる酸素ラジカル(活性酸素)のクエンチャーとして機能することが知られている。従って、このような反応でポリフェノール上に生じたラジカルがSTX を直接分解することも考えられる。本実施例ではポリフェノールによるSTX 消去機構の解明を目的として、ポリフェノールによるSTX 除去効果への生体内還元剤の影響を調べた。 Influence of in vivo reducing agent on STX removal effect by polyphenol In Examples 2 to 4 above, it was confirmed that STX was erased when incubated in a polyphenol solution. Paralytic shellfish poisons such as STX are well adsorbed on activated carbon and gel filtration resins such as Sephadex and Bio-Gel P-2 under neutral conditions. Similar to such a carrier, if STX is strongly adsorbed to polyphenol, it cannot be detected by HPLC analysis. On the other hand, polyphenols are known to function as quenchers for oxygen radicals (active oxygen) generated in the body of photosynthetic plants. Therefore, it is conceivable that the radical generated on the polyphenol by such a reaction directly decomposes STX. In this example, for the purpose of elucidating the STX elimination mechanism by polyphenol, the influence of an in vivo reducing agent on the STX removal effect by polyphenol was examined.
(試料および試薬類)
STX の精製毒としては実施例2と同様にして得たものを使用した。使用した試薬類は以下の通りである。 (Samples and reagents)
As the purified poison for STX, one obtained in the same manner as in Example 2 was used. The reagents used are as follows.
STX の精製毒としては実施例2と同様にして得たものを使用した。使用した試薬類は以下の通りである。 (Samples and reagents)
As the purified poison for STX, one obtained in the same manner as in Example 2 was used. The reagents used are as follows.
ポリフェノール
タンニン酸: Wako, 化学用, 203-06331
生体内還元剤
アスパラギン酸: Wako, 試薬特級, 013-04832
グルタミン酸: Wako, 試薬特級, 070-00502
グルタチオン: Wako, 和光特級, 071-02014
システイン塩酸塩:Wako, 試薬特級, 033-05272
アスコルビン酸: Wako, 試薬特級, 016-04805
(方法)
アスパラギン酸1、3または10mMを含む0.1 リン酸緩衝液(pH7.4)に対しそれぞれに0.1 %のタンニン酸を添加した。これらの溶液にさらに、STX を終末濃度10μM となるように添加した。これらの混合液を沸騰浴中で5分間煮沸後、限外遠心キット(Ultrafree-MC NMWL5000, Millipore) で限外濾過をして得た濾液をHPLC蛍光法(Oshima, 上述) で分析した。また、アスパラギン酸に代えてグルタミン酸、グルタチオン、システインを用い同様の操作を行い、HPLC蛍光法で分析した。アスコルビン酸については0.1 、0.3 、0.5 、1、3および10mMの濃度の溶液を作製し、同様の実験を行った。これらに加え、0.1 Mリン酸緩衝液 (pH7.4)に終末濃度10μM STX のみを添加したものをイニシャルとし、これに0.1 %の濃度になるようにタンニン酸を加え沸騰浴中で5分間煮沸したものをコントロールとした。上記の各溶液をHPLC蛍光法で分析した。 Polyphenol tannic acid: Wako, for chemical use, 203-06331
Bioreducing agent Aspartic acid: Wako, reagent grade, 013-04832
Glutamic acid: Wako, reagent grade, 070-00502
Glutathione: Wako, Wako Special, 071-02014
Cysteine hydrochloride: Wako, reagent grade, 033-05272
Ascorbic acid: Wako, reagent grade, 016-04805
(Method)
0.1% tannic acid was added to 0.1 phosphate buffer (pH 7.4) containing 1, 3 or 10 mM aspartic acid. In addition, STX was added to these solutions to a final concentration of 10 μM. These mixed liquids were boiled in a boiling bath for 5 minutes, and filtrates obtained by ultrafiltration using an ultracentrifugation kit (Ultrafree-MC NMWL5000, Millipore) were analyzed by HPLC fluorescence method (Oshima, supra). Moreover, it replaced with aspartic acid, performed the same operation using glutamic acid, glutathione, and cysteine, and analyzed by HPLC fluorescence method. For ascorbic acid, solutions having concentrations of 0.1, 0.3, 0.5, 1, 3, and 10 mM were prepared and the same experiment was performed. In addition to these, 0.1 M phosphate buffer (pH 7.4) with only a final concentration of 10 μM STX added to the initial, tannic acid added to a concentration of 0.1% and boiling in a boiling bath for 5 minutes This was used as a control. Each of the above solutions was analyzed by HPLC fluorescence method.
タンニン酸: Wako, 化学用, 203-06331
生体内還元剤
アスパラギン酸: Wako, 試薬特級, 013-04832
グルタミン酸: Wako, 試薬特級, 070-00502
グルタチオン: Wako, 和光特級, 071-02014
システイン塩酸塩:Wako, 試薬特級, 033-05272
アスコルビン酸: Wako, 試薬特級, 016-04805
(方法)
アスパラギン酸1、3または10mMを含む0.1 リン酸緩衝液(pH7.4)に対しそれぞれに0.1 %のタンニン酸を添加した。これらの溶液にさらに、STX を終末濃度10μM となるように添加した。これらの混合液を沸騰浴中で5分間煮沸後、限外遠心キット(Ultrafree-MC NMWL5000, Millipore) で限外濾過をして得た濾液をHPLC蛍光法(Oshima, 上述) で分析した。また、アスパラギン酸に代えてグルタミン酸、グルタチオン、システインを用い同様の操作を行い、HPLC蛍光法で分析した。アスコルビン酸については0.1 、0.3 、0.5 、1、3および10mMの濃度の溶液を作製し、同様の実験を行った。これらに加え、0.1 Mリン酸緩衝液 (pH7.4)に終末濃度10μM STX のみを添加したものをイニシャルとし、これに0.1 %の濃度になるようにタンニン酸を加え沸騰浴中で5分間煮沸したものをコントロールとした。上記の各溶液をHPLC蛍光法で分析した。 Polyphenol tannic acid: Wako, for chemical use, 203-06331
Bioreducing agent Aspartic acid: Wako, reagent grade, 013-04832
Glutamic acid: Wako, reagent grade, 070-00502
Glutathione: Wako, Wako Special, 071-02014
Cysteine hydrochloride: Wako, reagent grade, 033-05272
Ascorbic acid: Wako, reagent grade, 016-04805
(Method)
0.1% tannic acid was added to 0.1 phosphate buffer (pH 7.4) containing 1, 3 or 10 mM aspartic acid. In addition, STX was added to these solutions to a final concentration of 10 μM. These mixed liquids were boiled in a boiling bath for 5 minutes, and filtrates obtained by ultrafiltration using an ultracentrifugation kit (Ultrafree-MC NMWL5000, Millipore) were analyzed by HPLC fluorescence method (Oshima, supra). Moreover, it replaced with aspartic acid, performed the same operation using glutamic acid, glutathione, and cysteine, and analyzed by HPLC fluorescence method. For ascorbic acid, solutions having concentrations of 0.1, 0.3, 0.5, 1, 3, and 10 mM were prepared and the same experiment was performed. In addition to these, 0.1 M phosphate buffer (pH 7.4) with only a final concentration of 10 μM STX added to the initial, tannic acid added to a concentration of 0.1% and boiling in a boiling bath for 5 minutes This was used as a control. Each of the above solutions was analyzed by HPLC fluorescence method.
(結果)
結果を図11に示す。タンニン酸溶液にアスパラギン酸またはグルタミン酸を加えた溶液中でSTX を加温した場合、これらのアミノ酸を含まないタンニン酸溶液を用いるコントロールと同程度、ほとんどのSTX が消失した。一方、グルタチオンまたはシテスインを添加した場合は、これらチオールの濃度が高くなるにつれて、残存するSTX 濃度が上昇する傾向が認められた。アスコルビン酸では、より低濃度を添加した場合でも同様の現象が確認された。 (result)
The results are shown in FIG. When STX was heated in a solution obtained by adding aspartic acid or glutamic acid to a tannic acid solution, most STX disappeared to the same extent as the control using a tannic acid solution not containing these amino acids. On the other hand, when glutathione or cytosine was added, the remaining STX concentration tended to increase as the concentration of these thiols increased. With ascorbic acid, the same phenomenon was confirmed even when a lower concentration was added.
結果を図11に示す。タンニン酸溶液にアスパラギン酸またはグルタミン酸を加えた溶液中でSTX を加温した場合、これらのアミノ酸を含まないタンニン酸溶液を用いるコントロールと同程度、ほとんどのSTX が消失した。一方、グルタチオンまたはシテスインを添加した場合は、これらチオールの濃度が高くなるにつれて、残存するSTX 濃度が上昇する傾向が認められた。アスコルビン酸では、より低濃度を添加した場合でも同様の現象が確認された。 (result)
The results are shown in FIG. When STX was heated in a solution obtained by adding aspartic acid or glutamic acid to a tannic acid solution, most STX disappeared to the same extent as the control using a tannic acid solution not containing these amino acids. On the other hand, when glutathione or cytosine was added, the remaining STX concentration tended to increase as the concentration of these thiols increased. With ascorbic acid, the same phenomenon was confirmed even when a lower concentration was added.
以上の結果から、グルタミン酸およびアスパラギン酸はポリフェノール(タンニン酸)によるSTX 除去効果を抑制しないのに対し、SH基をもつグルタチオンおよびシステインはこの効果を抑制することが判明した。同様の効果はチオールと同様の抗酸化剤として生体内に分布するアスコルビン酸でも認められた。チオールやアスコルビン酸はポリフェノールの分子上に生じたラジカルを消去する。このことは、タンニン酸の分子上にラジカルが生じたときに限って、STX が消去されることを意味する。即ち、タンニン酸などのポリフェノールによるSTX の消去は、ポリフェノールが直接STX に作用して、これを酸化していると考えられる。
From the above results, it was found that glutamic acid and aspartic acid do not suppress the effect of removing STX soot by polyphenol (tannic acid), whereas glutathione and cysteine having an SH group suppress this effect. Similar effects were observed with ascorbic acid distributed in vivo as an antioxidant similar to thiol. Thiols and ascorbic acid eliminate radicals generated on polyphenol molecules. This means that STX is erased only when radicals are generated on the tannic acid molecule. That is, the elimination of STX soot by polyphenols such as tannic acid is considered to be due to the polyphenol acting directly on STX soot and oxidizing it.
ポリフェノール溶液中でのSTX の消去と酸化還元電位
種々のポリフェノールについて中性水溶液の酸化還元電位を測定し、STX 消去効果と合わせて比較検討した。 Elimination of STX and redox potential in polyphenol solution The oxidation-reduction potential of neutral aqueous solution was measured for various polyphenols and compared with the STX elimination effect.
種々のポリフェノールについて中性水溶液の酸化還元電位を測定し、STX 消去効果と合わせて比較検討した。 Elimination of STX and redox potential in polyphenol solution The oxidation-reduction potential of neutral aqueous solution was measured for various polyphenols and compared with the STX elimination effect.
(方法)
STX10 μM に12N塩酸を数滴加え、酸性にした溶液を凍結乾燥した。これを10mlの水に溶かし、Sep-Pak C-18に通した後、0.2 Mリン酸緩衝液 (pH7.4)で中和した。実施例2で使用したタンニン酸、カテキン、エラグ酸、クロロゲン酸、クマリンをそれぞれ別々のビーカーに取り、これらに1000倍量の0.1 Mリン酸緩衝液 (pH7.4)を加え、溶解または懸濁した。実施例3で使用したアスパラギン酸、グルタミン酸、グルタチオン、システイン、アスコルビン酸を1mM含む0.1 Mリン酸バッファー (pH7.4)溶液をそれぞれ作製した。さらに、上記のタンニン酸溶液とアスコルビン酸を合わせた混合液を作製した。これらの中性溶液を酸化還元電位測定器(Eutech Instruments)を使用してそれぞれの酸化還元電位 (ORP値)を測定した。
(結果)
図12に示すように、1mMの中性STX 水溶液の酸化還元電位 (ORP値)は150 mVである。これに対し、各種ポリフェノール標品の0.1 %中性水溶液のORP値は、いずれもSTX 溶液のそれよりも高かった。カテキン、タンニン酸、クマリン、エラグ酸、クロロゲン酸各溶液のORP値はそれぞれ261 mV、258 mV、237 mV、207 mV、204 mVであった。 (Method)
Several drops of 12N hydrochloric acid were added to 10 μM STX, and the acidified solution was lyophilized. This was dissolved in 10 ml of water, passed through Sep-Pak C-18, and neutralized with 0.2 M phosphate buffer (pH 7.4). Take tannic acid, catechin, ellagic acid, chlorogenic acid, and coumarin used in Example 2 in separate beakers, add 1000 volumes of 0.1 M phosphate buffer (pH 7.4), and dissolve or suspend. did. Each 0.1 M phosphate buffer (pH 7.4) solution containing 1 mM of aspartic acid, glutamic acid, glutathione, cysteine, and ascorbic acid used in Example 3 was prepared. Furthermore, the liquid mixture which combined said tannic acid solution and ascorbic acid was produced. These neutral solutions were measured for their respective redox potentials (ORP values) using a redox potential measuring device (Eutech Instruments).
(result)
As shown in FIG. 12, the redox potential (ORP value) of a 1 mM neutral STX aqueous solution is 150 mV. On the other hand, the ORP values of 0.1% neutral aqueous solutions of various polyphenol samples were all higher than that of the STX solution. The ORP values of the catechin, tannic acid, coumarin, ellagic acid, and chlorogenic acid solutions were 261 mV, 258 mV, 237 mV, 207 mV, and 204 mV, respectively.
STX10 μM に12N塩酸を数滴加え、酸性にした溶液を凍結乾燥した。これを10mlの水に溶かし、Sep-Pak C-18に通した後、0.2 Mリン酸緩衝液 (pH7.4)で中和した。実施例2で使用したタンニン酸、カテキン、エラグ酸、クロロゲン酸、クマリンをそれぞれ別々のビーカーに取り、これらに1000倍量の0.1 Mリン酸緩衝液 (pH7.4)を加え、溶解または懸濁した。実施例3で使用したアスパラギン酸、グルタミン酸、グルタチオン、システイン、アスコルビン酸を1mM含む0.1 Mリン酸バッファー (pH7.4)溶液をそれぞれ作製した。さらに、上記のタンニン酸溶液とアスコルビン酸を合わせた混合液を作製した。これらの中性溶液を酸化還元電位測定器(Eutech Instruments)を使用してそれぞれの酸化還元電位 (ORP値)を測定した。
(結果)
図12に示すように、1mMの中性STX 水溶液の酸化還元電位 (ORP値)は150 mVである。これに対し、各種ポリフェノール標品の0.1 %中性水溶液のORP値は、いずれもSTX 溶液のそれよりも高かった。カテキン、タンニン酸、クマリン、エラグ酸、クロロゲン酸各溶液のORP値はそれぞれ261 mV、258 mV、237 mV、207 mV、204 mVであった。 (Method)
Several drops of 12N hydrochloric acid were added to 10 μM STX, and the acidified solution was lyophilized. This was dissolved in 10 ml of water, passed through Sep-Pak C-18, and neutralized with 0.2 M phosphate buffer (pH 7.4). Take tannic acid, catechin, ellagic acid, chlorogenic acid, and coumarin used in Example 2 in separate beakers, add 1000 volumes of 0.1 M phosphate buffer (pH 7.4), and dissolve or suspend. did. Each 0.1 M phosphate buffer (pH 7.4) solution containing 1 mM of aspartic acid, glutamic acid, glutathione, cysteine, and ascorbic acid used in Example 3 was prepared. Furthermore, the liquid mixture which combined said tannic acid solution and ascorbic acid was produced. These neutral solutions were measured for their respective redox potentials (ORP values) using a redox potential measuring device (Eutech Instruments).
(result)
As shown in FIG. 12, the redox potential (ORP value) of a 1 mM neutral STX aqueous solution is 150 mV. On the other hand, the ORP values of 0.1% neutral aqueous solutions of various polyphenol samples were all higher than that of the STX solution. The ORP values of the catechin, tannic acid, coumarin, ellagic acid, and chlorogenic acid solutions were 261 mV, 258 mV, 237 mV, 207 mV, and 204 mV, respectively.
このように、顕著なSTX 消去作用を示すカテキンやタンニン酸などのORP値はいずれも200 mV以上であった。アスコルビン酸中性水溶液のORP値は135 mVであるのに対し、タンニン酸とアスコルビン酸の混合液のORP値は95mVと、いずれか一方のみの溶液よりも低い値を示した。以上の結果は、ポリフェノールによるSTX の消去作用がその酸化還元電位に依存することを示す。
Thus, the ORP values of catechin, tannic acid, etc., which have a remarkable STX soot elimination action, were all 200 mV or more. While the ORP value of the neutral aqueous solution of ascorbic acid was 135 mV, the ORP value of the mixed solution of tannic acid and ascorbic acid was 95 mV, which was lower than either one of the solutions. The above results indicate that the scavenging action of STX by polyphenol depends on its redox potential.
以上から、ポリフェノールによるSTX の消去は、ポリフェノール中に生じたラジカルまた酸化型が関与すること、即ちSTX の消失の際に酸化による分解反応が起きていることが明らかである。
From the above, it is clear that the elimination of STX soot by polyphenol involves the radical or oxidized form generated in polyphenol, that is, the degradation reaction due to oxidation occurs when STX soot disappears.
Claims (17)
11位に硫酸エステル基をもつ麻痺性貝毒成分を含有する生鮮貝類を除毒する方法であり、システインまたはシスチンを構成アミノ酸として含有し、システインおよびシスチンの合計量が乾燥重量で1. 5~40重量%であるタンパク質またはペプチドを用いて、生鮮貝類中の該貝毒成分を分解させ除去することを含む、前記除毒方法。
It is a method of detoxifying fresh shellfish containing a paralytic shellfish poison component having a sulfate ester group at the 11th position, containing cysteine or cystine as a constituent amino acid, and the total amount of cysteine and cystine is from 1. 5 to 5 The said detoxification method including decomposing | disassembling and removing this shellfish poison component in fresh shellfish using the protein or peptide which is 40 weight%.
生鮮貝類に前記タンパク質またはペプチドを投与することにより行う、請求項1記載の方法。
The method according to claim 1, wherein the protein or peptide is administered to fresh shellfish.
生鮮貝類に前記タンパク質またはペプチドを含む飼料を給餌することにより行う、請求項2記載の方法。
The method of Claim 2 performed by feeding the feed containing the said protein or peptide to fresh shellfish.
前記タンパク質がケラチンである、請求項1~3のいずれかの項記載の方法。
The method according to any one of claims 1 to 3, wherein the protein is keratin.
前記タンパク質またはペプチドを含む飼料がフェザーミールである、請求項3記載の方法。
The method according to claim 3, wherein the feed containing the protein or peptide is a feather meal.
11位に硫酸エステル基をもつ麻痺性貝毒成分が、ゴニオトキシン1、ゴニオトキシン2、ゴニオトキシン3、ゴニオトキシン4、デカルバモイルゴニオトキシン1、デカルバモイルゴニオトキシン2、デカルバモイルゴニオトキシン3、デカルバモイルゴニオトキシン4、C1、C2、C3、またはC4のいずれか1種または2種以上である、請求項1~5のいずれかの項記載の方法。
The paralytic shellfish poison component having sulfate ester group at the 11th position is goniotoxin 1, goniotoxin 2, goniotoxin 3, goniotoxin 4, decarbamoyl goniotoxin 1, decarbamoyl goniotoxin 2, decarbamoyl goniotoxin 3, decarbamoyl goniotoxin 3, The method according to any one of claims 1 to 5, wherein one or more of carbamoylgoniotoxin 4, C1, C2, C3, or C4 is used.
生鮮貝類が濾過食性の水生生物である、請求項1~6のいずれかの項記載の方法。
The method according to any one of claims 1 to 6, wherein the fresh shellfish is a filter-feeding aquatic organism.
システインまたはシスチンを構成アミノ酸として含有し、システインおよびシスチンの合計量が乾燥重量で1.5 ~40重量%であるタンパク質またはペプチドを含むことを特徴とする、11位に硫酸エステル基をもつ麻痺性貝毒成分の除毒のための生鮮貝類用の飼料添加剤。
Paralytic shellfish poison having a sulfate ester group at position 11, characterized in that it contains a protein or peptide containing cysteine or cystine as a constituent amino acid and the total amount of cysteine and cystine being 1.5 to 40% by weight in dry weight Feed additive for fresh shellfish for detoxification of ingredients.
システインまたはシスチンを構成アミノ酸として含有し、システインおよびシスチンの合計量が乾燥重量で1.5 ~40重量%であるタンパク質またはペプチドを含むことを特徴とする、11位に硫酸エステル基をもつ麻痺性貝毒成分の除毒のための生鮮貝類用飼料。
Paralytic shellfish poison having a sulfate ester group at position 11, characterized in that it contains a protein or peptide containing cysteine or cystine as a constituent amino acid and the total amount of cysteine and cystine being 1.5 to 40% by weight in dry weight Fresh shellfish feed for detoxification of ingredients.
フェザーミールである請求項9記載の飼料。
The feed according to claim 9, which is a feather meal.
11位に硫酸エステル基をもつ麻痺性貝毒成分が、ゴニオトキシン1、ゴニオトキシン2、ゴニオトキシン3、ゴニオトキシン4、デカルバモイルゴニオトキシン1、デカルバモイルゴニオトキシン2、デカルバモイルゴニオトキシン3、デカルバモイルゴニオトキシン4、C1、C2、C3、またはC4のいずれか1種または2種以上である、請求項9または10記載の飼料。
The paralytic shellfish poison component having sulfate ester group at the 11th position is goniotoxin 1, goniotoxin 2, goniotoxin 3, goniotoxin 4, decarbamoyl goniotoxin 1, decarbamoyl goniotoxin 2, decarbamoyl goniotoxin 3, decarbamoyl goniotoxin 3, The feed according to claim 9 or 10, which is one or more of carbamoylgoniotoxin 4, C1, C2, C3, or C4.
生鮮貝類が濾過食性の水生生物である、請求項9~11のいずれかの項記載の飼料。
The feed according to any one of claims 9 to 11, wherein the fresh shellfish is a filter-feeding aquatic organism.
11位に硫酸エステル基をもたない麻痺性貝毒成分をポリフェノール溶液中で分解させることを含む、11位に硫酸エステル基をもたない麻痺性貝毒成分の分解方法。
A method for decomposing a paralytic shellfish poison component having no sulfate ester group at the eleventh position, comprising decomposing a paralytic shellfish toxin component having no sulfate ester group at the eleventh position in a polyphenol solution.
11位に硫酸エステル基をもたない麻痺性貝毒成分が、サキシトキシン、デカルバモイルサキシトキシン、ネオサキシトキシン、デカルバモイルネオサキシトキシン、ゴニオトキシン5(B1)、またはゴニオトキシン6(B2)のいずれか1種または2種以上である、請求項13記載の方法。
The paralytic shellfish poison component which does not have a sulfate ester group at the 11th position is any one of saxitoxin, decarbamoyl saxitoxin, neosaxitoxin, decarbamoyl neosaxitoxin, goniotoxin 5 (B1), or goniotoxin 6 (B2) Or the method of Claim 13 which is 2 or more types.
ポリフェノール溶液が、ポリフェノール化合物を1種もしくは2種以上含む溶液、またはポリフェノール含有食品である、請求項13または14記載の方法。
The method according to claim 13 or 14, wherein the polyphenol solution is a solution containing one or more polyphenol compounds or a polyphenol-containing food.
溶液中に含まれるポリフェノール化合物が、タンニン酸、エラグ酸、クロロゲン酸、クマリン、カテキン、没食子酸、没食子酸プロピルまたはピロガロールである、請求項15記載の方法。
The method according to claim 15, wherein the polyphenol compound contained in the solution is tannic acid, ellagic acid, chlorogenic acid, coumarin, catechin, gallic acid, propyl gallate or pyrogallol.
ポリフェノール含有食品が、リンゴ、トマト、茶、ワインまたはブドウジュースである、請求項15記載の方法。
16. The method of claim 15, wherein the polyphenol-containing food is apple, tomato, tea, wine or grape juice.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-016530 | 2008-01-28 | ||
JP2008016530A JP4232850B1 (en) | 2008-01-28 | 2008-01-28 | Removal of paralytic shellfish poison components |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009096398A1 true WO2009096398A1 (en) | 2009-08-06 |
Family
ID=40506357
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/051303 WO2009096398A1 (en) | 2008-01-28 | 2009-01-28 | Removal of paralytic shellfish poison component |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4232850B1 (en) |
WO (1) | WO2009096398A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102397708B1 (en) * | 2020-04-29 | 2022-05-16 | 한국화학연구원 | Botulinum toxin pharmaceutical composition comprising tannic acid |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08131084A (en) * | 1994-11-11 | 1996-05-28 | Nakano Vinegar Co Ltd | Method for removing paralytic shellfish poison and microorganism used therefor |
JPH1146617A (en) * | 1997-07-30 | 1999-02-23 | Kyowa Hakko Kogyo Co Ltd | Detoxification of bivalve and artificial detritus |
JP2002199848A (en) * | 2001-01-04 | 2002-07-16 | Kankyo Seibutsu Kenkyusho:Kk | Formulated feed for aquatic invertebrate |
JP2003266050A (en) * | 2002-03-18 | 2003-09-24 | Ichiro Sakai | Compozyme treatment and sodium hydroxide treatment for midgut gland, or the like, of scallop |
JP2007116982A (en) * | 2005-10-27 | 2007-05-17 | Miyagi Prefecture | Invertebrate feed, method for producing the same, and outflow preventing method of organic ionic matter |
-
2008
- 2008-01-28 JP JP2008016530A patent/JP4232850B1/en not_active Expired - Fee Related
-
2009
- 2009-01-28 WO PCT/JP2009/051303 patent/WO2009096398A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08131084A (en) * | 1994-11-11 | 1996-05-28 | Nakano Vinegar Co Ltd | Method for removing paralytic shellfish poison and microorganism used therefor |
JPH1146617A (en) * | 1997-07-30 | 1999-02-23 | Kyowa Hakko Kogyo Co Ltd | Detoxification of bivalve and artificial detritus |
JP2002199848A (en) * | 2001-01-04 | 2002-07-16 | Kankyo Seibutsu Kenkyusho:Kk | Formulated feed for aquatic invertebrate |
JP2003266050A (en) * | 2002-03-18 | 2003-09-24 | Ichiro Sakai | Compozyme treatment and sodium hydroxide treatment for midgut gland, or the like, of scallop |
JP2007116982A (en) * | 2005-10-27 | 2007-05-17 | Miyagi Prefecture | Invertebrate feed, method for producing the same, and outflow preventing method of organic ionic matter |
Non-Patent Citations (4)
Title |
---|
ASAKAWA M.: "Mahisei Kaidoku Seibun no Seikagakuteki Kangenzai ni yoru Henkan", JOURNAL OF HEALTH SCIENCE, vol. 33, no. 1, 1987, pages 50 - 55 * |
BLOGOSLAWSKI W.J. ET AL.: "OZONE DETOXIFICATION OF PARALYTIC SHELLFISH POISON IN THE SOFTSHELL CLAM(MYA ARENARIA)", TOXICON, vol. 17, no. 6, 1979, pages 650 - 654 * |
SAKATA E.: "Cysteine Gan'yu Shiryo ni yoru Mahisei Kaidoku Osengai kara no Gonyautoxin-gun no Jokyo Hoho", NIPPON SUISAN GAKKAI KOEN YOSISHU, 27 March 2008 (2008-03-27), pages 65 * |
SATO S.: "Polyphenol Yoekichu deno Saxitoxin-gun Mahisei Kaidoku no Bunkai", NIPPON SUISAN GAKKAI KOEN YOSISHU, 27 March 2008 (2008-03-27), pages 64 * |
Also Published As
Publication number | Publication date |
---|---|
JP4232850B1 (en) | 2009-03-04 |
JP2009171931A (en) | 2009-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | Challenges of using blooms of Microcystis spp. in animal feeds: A comprehensive review of nutritional, toxicological and microbial health evaluation | |
Testai et al. | Risk to human health associated with the environmental occurrence of cyanobacterial neurotoxic alkaloids anatoxins and saxitoxins | |
Jahazi et al. | Dietary supplementation of polyphenols positively affects the innate immune response, oxidative status, and growth performance of common carp, Cyprinus carpio L. | |
Kwong et al. | The uptake, distribution and elimination of paralytic shellfish toxins in mussels and fish exposed to toxic dinoflagellates | |
Kumar et al. | Immuno-protective role of biologically synthesized dietary selenium nanoparticles against multiple stressors in Pangasinodon hypophthalmus | |
Mutoti et al. | Occurrence of cyanobacteria in water used for food production: A review | |
Vasconcelos | Uptake and depuration of the heptapeptide toxin microcystin-LR in Mytilus galloprovincialis | |
Gutiérrez-Praena et al. | Presence and bioaccumulation of microcystins and cylindrospermopsin in food and the effectiveness of some cooking techniques at decreasing their concentrations: A review | |
Jauffrais et al. | Azaspiracid accumulation, detoxification and biotransformation in blue mussels (Mytilus edulis) experimentally fed Azadinium spinosum | |
Hoffmann et al. | A case of palytoxin poisoning due to contact with zoanthid corals through a skin injury | |
Katsumata et al. | A sub-chronic toxicity evaluation of a natural astaxanthin-rich carotenoid extract of Paracoccus carotinifaciens in rats | |
Nyakairu et al. | Assessment of cyanobacteria toxins in freshwater fish: A case study of Murchison Bay (Lake Victoria) and Lake Mburo, Uganda | |
Mason et al. | Ultraviolet radiation-absorbing mycosporine-like amino acids (MAAs) are acquired from their diet by medaka fish (Oryzias latipes) but not by SKH-1 hairless mice | |
Ettoumi et al. | Bioaccumulation of cyanobacterial toxins in aquatic organisms and its consequences for public health | |
Schaeffer et al. | Risk assessment of microcystin in dietary Aphanizomenon flos-aquae | |
Guzmán-Guillén et al. | The protective role of l-carnitine against cylindrospermopsin-induced oxidative stress in tilapia (Oreochromis niloticus) | |
Kheirabadi et al. | Red yeast (Phaffia rhodozyma) and its effect on growth, antioxidant activity and color pigmentation of rainbow trout (Oncorhynchus mykiss) | |
Ahmed et al. | Growth performance and starch utilization in common carp (Cyprinus carpio L.) in response to dietary chromium chloride supplementation | |
Wang et al. | Effects of dietary vitamin C supplementation on lead-treated sea cucumbers, Apostichopus japonicus | |
Khan et al. | Anti-glycationand Anti-oxidation properties of Capsicum frutescens and Curcuma longa fruits: Possible role in prevention of diabetic complication | |
Shi et al. | Taurine inhibits hydrogen peroxide-induced oxidative stress, inflammatory response and apoptosis in liver of Monopterus albus | |
Martínez-Antequera et al. | Feed supplementation with winery by-products improves the physiological status of juvenile Liza aurata during a short-term feeding trial and hypoxic challenge | |
Dastan et al. | The determination of different effective concentration of ethanolic extract of bee pollen on biochemical analysis in liver, spleen and heart tissues of rainbow trout, Oncorhynchus mykiss (Walbaum, 1792) | |
JP4893725B2 (en) | Removal of paralytic shellfish poison components | |
JP4232850B1 (en) | Removal of paralytic shellfish poison components |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09704946 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09704946 Country of ref document: EP Kind code of ref document: A1 |