WO2009096309A1 - Press-working method for sheet metal, die therefor, and formed product - Google Patents

Press-working method for sheet metal, die therefor, and formed product Download PDF

Info

Publication number
WO2009096309A1
WO2009096309A1 PCT/JP2009/050969 JP2009050969W WO2009096309A1 WO 2009096309 A1 WO2009096309 A1 WO 2009096309A1 JP 2009050969 W JP2009050969 W JP 2009050969W WO 2009096309 A1 WO2009096309 A1 WO 2009096309A1
Authority
WO
WIPO (PCT)
Prior art keywords
blank
mold
pressing
sheet metal
press working
Prior art date
Application number
PCT/JP2009/050969
Other languages
French (fr)
Japanese (ja)
Inventor
Haruo Okahara
Masayuki Yano
Nobuyuki Kajihara
Shingo Kino
Kenji Higashi
Original Assignee
Kasatani Corp.
Public University Corporation Osaka Prefecture University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kasatani Corp., Public University Corporation Osaka Prefecture University filed Critical Kasatani Corp.
Priority to JP2009551485A priority Critical patent/JPWO2009096309A1/en
Publication of WO2009096309A1 publication Critical patent/WO2009096309A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J13/00Details of machines for forging, pressing, or hammering
    • B21J13/02Dies or mountings therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/06Methods for forging, hammering, or pressing; Special equipment or accessories therefor for performing particular operations
    • B21J5/12Forming profiles on internal or external surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K23/00Making other articles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a metal mold for sheet metal press working of a metal plate material, a press working method using the metal mold, and a molded product.
  • the molded product relates to a fuel cell separator.
  • Sheet metal pressing generally obtains a desired shape by bending or drawing a plate-shaped blank with a mold. Accordingly, the thickness of the blank is slight due to these deformations, and the molded product has a shape in which a concave portion is present on the surface opposite to the convex portion.
  • magnesium or a magnesium alloy has poor ductility, so that such general sheet metal press processing has been performed. That is, sheet metal pressing has not been applied to the manufacture of an article made of magnesium or a magnesium alloy in which concave and convex shapes that do not correspond to the concave portion are formed on the opposite surface of the convex portion on both surfaces of the plate material.
  • a separator for a fuel cell for partitioning a large number of units composed of a fuel electrode, an air electrode, a current collector layer, and the like and supplying a reaction gas. It has a shape with a groove.
  • fuel gas generally hydrogen
  • oxygen generally air
  • fuel gas and oxygen are supplied and discharged separately on the front and back sides.
  • the concave and convex portions are formed on the front and back surfaces of the separator on the surface opposite to the convex portion for the groove shape, the conventional sheet metal pressing has not been applied.
  • Patent Document 1 A processing method for obtaining such an uneven shape that does not correspond to front and back using magnesium or a magnesium alloy is described in Patent Document 1, for example.
  • This method is for preheating a magnesium alloy to forge a molded product with bosses and ribs.
  • An example of forging a molded product with a thickness of 0.6 to 3.2 mm using an ingot with a thickness of 10 mm is as follows. It is shown.
  • Patent Document 2 relates to the manufacture of a fuel cell separator.
  • an annealed magnesium alloy is used, and superplastic forging is slowly performed at a strain rate of 2 ⁇ 10 ⁇ 5 to 1 ⁇ 10 ⁇ 1 / sec using a heated mold. Processing to a 2 mm product is illustrated.
  • the present invention eliminates the disadvantages of the above-described prior art, and enables the production of a metal molded product having an uneven shape that does not correspond to the front and back surfaces in a short time, a pressing method, and a low manufacturing cost.
  • An object of the present invention is to provide a molded article having the above shape (specifically, a fuel cell separator).
  • the present invention is a sheet metal press working method of a metal sheet material, wherein a concave and convex shape composed of convex portions due to concentration of fluid material during pressing and concave portions due to discrete is formed on the front and back surfaces of the blank.
  • a mold having an upper mold and a lower mold whose contour of the pressing surface is determined the contact portion of the mold with the blank is heated to a temperature that increases the plastic deformability of the blank, and the convex
  • the present invention provides a sheet metal pressing method characterized by simultaneously forming unevenness having a shape that does not correspond to a concave portion on a surface opposite to a portion on both surfaces of the plate material.
  • uneven shapes having different shapes can be simultaneously formed on both surfaces of the plate blank by warm sheet metal pressing.
  • a plate-like material as a blank, it is possible to obtain a material flow that reaches the final shape even if the press speed is increased, and compared with warm forging that forms from a bulk material to a plate-like material, the press time is reduced. It can be greatly shortened.
  • the present invention is a mold used for warm sheet metal pressing of a metal plate material, and the upper mold and the lower mold do not have unevenness corresponding to each other vertically. And a heating portion for heating the pressing surface, the pressing surface forming an uneven shape including convex portions due to concentration of fluid material during pressing and concave portions due to discrete on the front and back surfaces of the blank. Further, the present invention provides a metal mold for sheet metal press working, characterized in that the contour is determined.
  • the upper mold and the lower mold have a pressing surface that does not have unevenness corresponding to each other vertically, and a heating portion for heating the pressing surface, and the pressing surface is Since the contours are determined so that the concave and convex shapes consisting of convex portions due to the concentration of the fluid material and the concave portions due to the discrete are formed on the front and back surfaces of the blank, both sides of the plate blank are different by warm sheet metal pressing Shape irregularities can be formed at the same time.
  • the upper mold and the lower mold each have a base that moves up and down during press working, a support fixed to the base, a base end fixed to the support, and a tip contacting the blank.
  • a slide portion that protrudes from the hole and accommodates the tip of the pressing member in the through hole at the forward position, and the slide portion receives a spring force toward the forward position. .
  • the contact surface to the blank at the time of pressing is composed of a pressing member fixed to a support that moves up and down together with the base and a slide portion that is supported by the base so as to move up and down, the initial to the blank Since the contact is performed at the slide portion and the pressing element is then projected, the impact on the pressing element and the load of the pressing pressure are reduced. As a result, the durability of the entire mold can be improved, and wear and damage of the mold can be prevented even when a precise press shape is obtained. Moreover, since the slide part is contacting the upper and lower sides of a blank, only the area
  • the pressing elements may be formed of a plate-like body and arranged in parallel with a minute interval in a state of facing each other.
  • a plurality of groove-shaped or bowl-shaped irregularities are press-formed, it is necessary to provide an elongated contour portion corresponding to these at the die tip, and if a high press pressure is applied thereto, the mold is likely to be worn.
  • the pressing element that advances and retreats from the above-described slide portion with the plate-like body as described above, the impact applied to the pressing element and the press pressure load are reduced, and the wear can be prevented.
  • the surface direction of the upper mold presser and the surface direction of the lower mold presser may be arranged so as to cross each other. According to this mold, it is possible to obtain groove-shaped or bowl-shaped uneven shapes extending in directions intersecting each other on both surfaces of the plate material. If wavy irregularities with groove-like parts are formed on the back side of the bowl-shaped part on both sides of the plate material, the upper mold and the lower mold should be pressed surfaces with irregularities corresponding to each other, and deformation of the plate material Is easy to process because it only needs to undergo bending deformation without much change in thickness.
  • the surface direction of the upper mold presser and the surface direction of the lower mold presser are as described above. By arranging them so as to cross each other, a highly accurate uneven shape can be obtained in a short time.
  • the slide parts of the upper mold and the lower mold have the same planar shape as that of the blank after molding, and one of the upper mold and the lower mold
  • the base portion includes a guide portion formed so as to surround the slide portion in the horizontal direction and extend above and below the slide portion, and the other slide portion of the upper die and the lower die enters the surrounding space of the guide portion.
  • the closed cavity for press working can be formed by the guide portion and the slide portions of the upper die and the lower die.
  • the present invention is also characterized in that a concavo-convex shape is simultaneously formed on the front and back surfaces of a plate material using any of the molds of (2) to (6) above.
  • a sheet metal press working method is provided.
  • a pressed product with excellent characteristics based on the characteristics of the molds (2) to (6) can be obtained in a short time with respect to a plate-shaped blank.
  • pre-pressing can be performed in advance with another mold so that the molding area of the blank in the blank is recessed shallower than the deformation height of the pressing element.
  • the convex portion press-molded by the pressing element rises from the concave surface, so that the height of the convex portion can be accurately controlled. Therefore, for example, it is advantageous also when obtaining the height of the convex part of the same plane as the peripheral part of the molded product.
  • the temperature of the contact portion with the blank in the upper mold and the lower mold is 230 to 400 ° C.
  • the slide section of the upper mold and the lower mold After contacting the blank, it is desirable that the press speed to the bottom dead center is 0.5 to 30 mm / second.
  • the temperature of the contact portion is lower than 230 ° C., the material flow during pressing cannot be sufficiently obtained, and it is difficult to obtain an accurate uneven shape.
  • the temperature of the said contact part exceeds 400 degreeC, the coarsening of the crystal grain of a blank will arise and the material of a molded article will be reduced.
  • the pressing speed is higher than 30 mm / second, the material flow cannot be sufficiently obtained, and an accurate uneven shape cannot be obtained.
  • the press speed is lower than 0.5 mm / sec, there is no problem with the quality of the molded product, but it is not desirable because it causes useless processing time.
  • the sheet metal press working method of (1) or (7) to (10) can be advantageously applied when the blank is a sheet material for a fuel cell separator.
  • the separator for a fuel cell has a shape having a large number of grooves for gas flow on both surfaces of a central portion of a flat plate. Therefore, if the above-described sheet metal pressing method is applied to press the groove, a pressed product having excellent characteristics based on the characteristics of these methods can be obtained in a short time.
  • a plurality of narrow grooves for gas flow paths are juxtaposed by sheet metal pressing, and the narrow groove on one surface and the narrow groove on the other surface intersect each other.
  • the present invention provides a fuel cell separator characterized by being arranged in a direction to be operated.
  • the separator for a fuel cell has a shape having a large number of gas flow grooves on both sides of the central portion of the flat plate.
  • the narrow groove on one surface and the narrow groove on the other surface have What is arranged in the direction intersecting each other is based on shortening the press time compared to the conventional warm-forged product separator made from a bulk material by using a sheet metal stamped product in this way. High accuracy can be provided at a low price.
  • the sheet metal pressing may be performed by any of the methods (1) or (7) to (11). According to this method, it is possible to provide a press-processed product having excellent characteristics based on the features of the sheet metal press-processing method of (1) or (7) to (10) at a low price.
  • the fuel cell separator can be subjected to surface processing such as corrosion-resistant coating after the above processing, if necessary.
  • FIG. 1 is a perspective view schematically showing a part of a fuel cell including a fuel cell separator according to an embodiment of the present invention in an exploded state. It is a front view of the separator for fuel cells shown in FIG. It is an enlarged view centering on the groove part in FIG. It is a front view of the upper mold
  • FIG. 1 schematically shows a part of a fuel cell including a fuel cell separator according to an embodiment of the present invention.
  • This fuel cell separator is based on a sheet metal press working method according to the present invention and a separator manufactured using a mold for the method as described below.
  • the fuel cell comprises a unit comprising a fuel electrode 20 comprising a catalyst layer 21 and a porous support 22, an air electrode 30 comprising a catalyst layer 31 and a porous support 32, and an electrolyte layer 40 positioned therebetween.
  • Many separators are stacked, and separators 10 are arranged between the units.
  • FIG. 1 shows one unit and separators 10 on both sides thereof in an exploded state.
  • the separator 10 includes narrow grooves 11 and 12 that extend so as to be orthogonal to each other on the front and back surfaces.
  • a fuel gas such as hydrogen is supplied to the narrow groove 11 on the side facing the fuel electrode 20 to the air electrode 30.
  • Oxygen is supplied to the narrow groove 12 on the facing side by air or the like.
  • FIG. 2 is a front view showing one separator 10 taken out
  • FIG. 3 is an enlarged view centering on the groove portion in FIG.
  • the separator is made of a rectangular magnesium alloy
  • the narrow groove 12 shown in FIG. 1 is formed at the center of the separator and is surrounded by a flat peripheral portion 14.
  • the narrow grooves 12 are formed between the flanges 13 and extend in the vertical direction, and form a group for every five grooves.
  • the flanges 13 located between the groups are alternately extended upward and downward to reach the peripheral part 14, and the other flanges 13 form a side groove 15 with a gap between the peripheral parts 14. is doing.
  • a large number of narrow grooves 12 are formed in a rectangular region as a whole, and air holes 16 serving as gas passages are formed in each corner of the rectangle by through holes.
  • a communication groove 17 reaching the side groove 15 in the immediate vicinity extends from the vent hole 16 located at the upper right and lower left in FIG.
  • a similar narrow groove extends in a direction orthogonal to the narrow groove 12 in a corresponding portion on the back surface of the separator, and a communication groove reaching a nearby side groove from the upper left and lower right vent holes 16 in FIG. 17 'extends (indicated by broken lines in the figure).
  • the flange portion 13 is the same height as the peripheral portion 14 on both the front and back sides, and the tip thereof is on the same plane as the peripheral portion 14.
  • the gas introduced into the vent hole 16 flows so as to undulate the numerous fine grooves 12, and is led out from the vent hole 16 at the diagonal position.
  • the air introduced from the ventilation hole 16-1 shown in FIG. 3 reaches the side groove 15-1 immediately after passing through the communication groove 17-1, and the five narrow grooves which are the first group communicating with the side groove. 12-1 flows through the lower side groove 15-2, and then flows through the next group of fine grooves 12-2 to reach the upper side groove 15-3. In this way, the air flows while undulating the narrow grooves 12, contacts the air electrode 30, is led out from the vent hole 16 located in the lower left of FIG. 2, and flows to the next unit.
  • the fuel gas introduced from the vent hole 16 located in the lower right of FIG. 2 flows while undulating a large number of pores extending in the horizontal direction, contacts the fuel electrode 20, and is located in the upper left of FIG. It is led out from the vent hole 16 and flows to the next unit.
  • the two pairs of diagonally arranged vent holes 16 are divided into fuel gas and air (oxygen). Can be used.
  • the illustrated separator has a vertical and horizontal dimension of 100 mm and a thickness of 2 mm, and the narrow grooves 11 and 12 and the flange 13 each have a width of 0.75 mm and a groove depth of 0.95 mm.
  • these dimensions can be appropriately determined according to the dimensions of the fuel cell and the characteristics of the electrode material.
  • the magnesium alloy constituting the separator can be of various components used in general fuel cell separators.
  • a main additive component to magnesium 2.5 to 3.5 Al is added.
  • FIG. 4 is a front view showing the upper mold 100 and the lower mold 200 constituting the mold.
  • the upper mold components are indicated by numbers in the 100s
  • the lower mold components are indicated by numbers in the 200s
  • the 1-digit and 2-digit portions of these numbers are indicated by the upper mold and the lower digits.
  • the component corresponding to the mold shall be indicated.
  • type 200 have arrange
  • the upper mold 100 includes a base 110 that is attached to a driving frame (not shown) and moves up and down during press working.
  • the base 110 is fixed to the lower surface of the intermediate plate 112 having a fixed portion 111 fixed to the lower portion of the drive frame, an intermediate plate 112 fixed to the lower surface of the fixed portion, and a rectangular space in the central portion. And a go portion 113.
  • the support body 120 is fixed to the lower surface of the intermediate plate 112 so as to be accommodated in the space of the surrounding portion 113, and a large number of pressing elements 130 are fixed to the support body.
  • the pressing element 130 is formed of a plate-like body extending in the vertical direction, and is arranged in parallel with a minute interval in a state of facing each other, extends downward in a comb-like shape from the support body 120, and a tip portion to the blank It is a contact part.
  • FIG. 5 is a perspective view showing the support bodies 120 and 220, the pressing elements 130 and 230, and the slide parts 140 and 240 of the upper mold 100 and the lower mold 200.
  • the pressing element 130 of the upper mold 100 and the pressing element 230 of the lower mold 200 each having a plate shape are arranged so that the surface directions are orthogonal to each other.
  • the support 120 includes an inner plate 121 positioned on the upper side and an outer plate 122 positioned below the inner plate.
  • the outer plate 122 is formed with a through hole that receives the presser 130.
  • the presser 130 is passed through the through hole and abuts the lower surface of the inner plate 121, and a through hole provided in the same position of each presser 130 and a corresponding through hole provided in the outer plate 122.
  • Bolts 123 are passed through and fixed to the outer plate 122.
  • the presser 130 of the upper mold 100 and the presser 230 of the lower mold 200 are provided corresponding to the narrow grooves 11 and 12 of the fuel cell separator shown in FIGS. 1 and 2, respectively.
  • a slide part 140 is mounted below the support 120 in the space of the surrounding part 113 so as to be movable up and down.
  • the slide part 140 has a plurality of elongated through holes that allow the pressing elements 130 to pass individually, is supported by the base part 110 so as to be movable up and down, and has a distal end side as a contact surface with the blank.
  • the slide part 140 is arranged so that the tip of the pressing element 130 protrudes from the through hole in the raised retreat position, and the tip part of the pressing element 130 is accommodated in the through hole in the lowered advance position. .
  • the protruding amount of the pressing element 130 when the sliding part 140 is retracted is determined so that the tip of the pressing element 130 protrudes from the surface of the sliding part 140 surrounding the pressing element 130 over a length corresponding to the depth of the narrow groove of the separator. .
  • the slide portion 140 receives a spring force toward the forward movement position, and is in the forward movement position when no press pressure is applied.
  • through holes extending in the vertical direction are formed at the four corners of the outer plate 122 and the inner plate 121, and the compression coil spring 150 is inserted therein.
  • the spring 150 abuts on the intermediate plate 112 at the upper end and abuts on the slide portion 140 at the lower end, thereby applying a spring force directed toward the forward movement position (downward) to the slide portion 140.
  • FIG. 6 is a plan view of the member shown in FIG. 5
  • FIG. 7 is a longitudinal sectional view taken along line VII-VII in FIG. 6
  • FIG. 8 is a stepwise longitudinal sectional view taken along line VIII-VIII in FIG.
  • FIGS. 7A and 8A show a state where the slide portion 140 is in the forward position
  • FIGS. 7B and 8B show a state where the slide portion 140 is in the backward position.
  • the slide portion 140 is guided by the surrounding portion 113 and is movable in the vertical direction, and is prevented from coming down downward by a bolt B160. That is, the bolt B160 has a head 161 at one end, and is provided with a threaded portion 163 at the tip via a columnar body 162.
  • the inner plate 121 and the outer plate 122 are provided with through holes having a diameter smaller than that of the head 161 of the bolt B160 and allowing the body portion 162 to pass therethrough, and the slide portion 140 is provided with a female screw.
  • the bolt B160 has a head 161 located in a recess 1120 provided at the lower portion of the intermediate plate 112, the body portion 162 passes through the inner plate 121 and the outer plate 122, and the screw portion 163 at the tip is a female screw of the slide portion 140. It is screwed.
  • the bolts B160 are arranged at four locations shown in FIG. 5, but the position and number of these bolts B160 are appropriately determined. In this state, the slide part 140 is pressed by the coil spring 150 and is in the advanced position, and a gap S is formed between the slide part 140 and the outer plate 122 as shown in FIGS. 7 (a) and 8 (a).
  • the bolt B160 rises a distance corresponding to the gap S with respect to the inner plate 121 and the outer plate 122.
  • the recess 120 of the intermediate plate 112 is formed with a depth that allows the bolt B160 to rise.
  • the slide parts 140 and 240 of the upper mold 100 and the lower mold 200 have the same planar shape as that of the blank after molding.
  • the slide part 140 of the upper mold 100 is located at a position where the lower end protrudes downward from the lower surface of the surrounding part 113 in both the forward movement position and the backward movement position.
  • the slide portion 240 of the lower mold 200 has an upper end portion at a position below the upper surface of the surrounding portion 213 in both the forward position and the retracted position, and as a result, exceeds the upper surface of the sliding portion 240 in the surrounding portion 213.
  • a portion extending upward serves as a guide portion 213 a that receives the blank and the slide portion 140 of the upper mold 100.
  • the fixing between the members of the fixing portion 111, the intermediate plate 112, the surrounding portion 113, the inner plate 121, and the outer plate 122 is performed by through bolts B indicated by broken lines in the drawing.
  • the intermediate plate 112 and the surrounding portion 113 are formed with a circulation path H for passing a heat medium.
  • a blank 1 shown in FIG. 9A is prepared.
  • This blank is a rectangular plate material corresponding to the outer shape of the separator, and indented portions 2 having a concave shape in plan view are formed in advance on each side of the blank so as to correspond to the amount of extension by press working.
  • primary pre-pressing is performed so that the molding region formed by the pressers 130 and 230 is recessed shallower than the deformation height by the presser to form the recessed portion 3. .
  • the plate material extends in the plane direction, the recessed portion 2 is eliminated, and each side of the blank becomes linear.
  • it is desirable that the preliminary pressing is performed with a mold having a closed cavity having a dimension after deformation.
  • This pressing is performed by placing a blank on the slide part 240 of the lower die 200 and lowering the upper die 100 (or raising the lower die 200).
  • the upper and lower molds are close to each other, and first, the slide portions 140 and 240 are in contact with the blank.
  • the slide parts 140 and 240 resist the spring force of the coil springs 150 and 250 to the retracted positions shown in FIGS. 7 (b) and 8 (b). It moves and the plate-shaped pressers 130 and 230 protrude from the through hole of the slide portion.
  • the material in contact with the pressing element is discretely deformed into a concave shape, and the material positioned between the pressing elements is pushed and concentrated between the pressing elements.
  • the material rises between the pressing elements and fills the space surrounded by the pressing elements and the slide portion.
  • the blank is formed with a concavo-convex shape composed of convex portions (grooves) due to concentration of material and discrete concave portions (thin grooves).
  • the height becomes the same as the area around the narrow groove forming area in the blank.
  • the thickness of the blank does not change.
  • the material also moves from the central part to the peripheral part.
  • the space for accommodating the blank is closed by the guide part 213a, the extension to the peripheral part is limited, and the whole As a result, a molded product having an accurate dimension is obtained.
  • the temperature of the contact portions of the pressers 130 and 230 and the slide portions 140 and 240 with the blank is 230 to 400 ° C.
  • the pressing speed is preferably 0.5 to 30 mm / second after the upper and lower slide sections 140 and 240 are in contact with the blank and before the bottom dead center.
  • the holding time is preferably up to 10 seconds in consideration of production efficiency.
  • the through holes 18 and 19 are formed to obtain the separator 10.
  • the fuel cell separator can be manufactured in a short time. Further, heat treatment such as blank annealing is not required in advance for manufacturing, and the manufacturing time is short in this respect as well, but heat treatment may be performed as necessary.
  • a rectangular blank having a vertical and horizontal dimension of 100 mm and a thickness of 2 mm was formed from a AZ31 magnesium alloy plate.
  • an arc-shaped recessed portion that was recessed 6 mm from a straight line connecting the corners at the center of the side was formed by a cutting press.
  • a concave portion having a depth of 0.4 mm was formed in a region where a narrow groove was to be formed by a primary preliminary press, and a side groove 15 and a communication groove 17 were formed by a secondary preliminary press.
  • the press work was performed using the metal mold
  • the press device is a servo motor press having an output of 300 tons, and the pressers 130 and 230 and the slide portions 140 and 240 of the mold are made of SKD11.
  • the temperature of the contact portion with the blank in these portions is as follows.
  • the heat medium was supplied to the circulation path H so that it might become 350 degreeC.
  • the blank was placed on the slide part 240 of the lower mold 200, the upper mold 100 was lowered, and after the slide part 140 was in contact with the blank, the lowering speed was 1.5 mm / second. And after hold
  • the narrow grooves 11 and 12 are accurately formed in a rectangular cross section, and the dimensional accuracy is 0.75 ⁇ 0.02 mm in width and 0.95 ⁇ 0.03 mm in depth, It was good.
  • the present invention is not limited to the above embodiment, and various modifications can be made.
  • the dimensions of each part are not limited to those described above, and various shapes and dimensions can be used depending on the application.
  • the direction in which the gas channel narrow groove extends may be perpendicular to the front and back of the separator, cross at another appropriate angle, or extend in the same direction.
  • the pressing element When the pressing element is formed of a plate-like body and is arranged in parallel with a minute interval in a state of facing each other, as in the above embodiment, the pressing element corresponds to all the narrow grooves of the separator.
  • a single groove or multiple grooves are formed on the surface of the separator in a single press process, which is necessary for multiple press processes. It is also possible to form a small number of narrow grooves.
  • one or a plurality of pressing elements are provided on the first press working mold, and a pressing element corresponding to the narrow groove to be formed next is added to the previous pressing element at the second and subsequent presses. Provide in the mold.
  • the blank does not necessarily need to be pressed in the closed space depending on the concavo-convex shape and the accuracy required for it, and in that case, the guide portion 213a can be omitted.
  • the presser can be formed in various shapes such as a columnar shape and a block shape, and the tip of the presser corresponds to the molded product without providing a slide portion. It is good also as an uneven
  • the sheet metal press working method and the mold for the same according to the present invention are not limited to the production of a fuel cell separator, and can be applied to the production of various articles.
  • a cooling plate disposed between components that generate heat, such as an electronic component has meandering grooves on the front and back surfaces and forms a coolant channel between the wall surfaces of the component.
  • the plate-like article having such a groove is made of magnesium or a magnesium alloy, and thus has the advantages of excellent heat conduction, light weight and good electromagnetic shielding properties, and the present invention is advantageous for its production. Can be applied to.
  • the blank material can be aluminum or aluminum alloy of JIS 1000 to 5000, and sheet metal pressing is performed under the same processing conditions as in this embodiment. Can do. It is also possible to use blanks made of other metal materials that can be processed, such as titanium or titanium alloys.

Abstract

A press-working method for a metal plate material uses a die having an upper die and a lower die which have pressing surfaces the outlines of which are determined so that surface irregularities composed of protrusions caused by concentration of a fluid material during press-working and of depressions caused by spreading of the fluid material during the press-working are formed on each of the front and rear sides of the blank. The press-working method heats those contact sections of the dies which make contact with the blank and simultaneously forms the surface irregularities on both sides of the plate material such that the depressions of the irregularities on one side do not correspond to the protrusions of the irregularities on the opposite side. The method can produce in a short time a metal formed product having the surface irregularities on the front and rear sides of the product with the irregularities on each side not corresponding to each other.

Description

板金プレス加工方法、その金型及び成形品Sheet metal pressing method, mold and molded product thereof
 本発明は、金属製板材の板金プレス加工のための金型、該金型を用いたプレス加工方法及び成形品に関するものであり、成形品として具体的には燃料電池用セパレータに関するものである。 The present invention relates to a metal mold for sheet metal press working of a metal plate material, a press working method using the metal mold, and a molded product. Specifically, the molded product relates to a fuel cell separator.
 板金プレス加工は、一般に、板状のブランクを金型により曲げ変形又は絞り変形させることにより、所望の形状を得るものである。したがって、ブランクの厚さはこれらの変形に伴って生じる僅かなものであり、成形品は凸部の反対側の面に凹部が対応して存在する形状のものとなっていた。特に、マグネシウムまたはマグネシウム合金は、展延性に乏しいため、このような一般的な板金プレス加工が行なわれるに留まっていた。すなわち、凸部の反対側の面に凹部が対応しない形状の凹凸を板材の両面に設けたマグネシウムまたはマグネシウム合金製の物品の製造には、板金プレス加工が適用されていなかった。 Sheet metal pressing generally obtains a desired shape by bending or drawing a plate-shaped blank with a mold. Accordingly, the thickness of the blank is slight due to these deformations, and the molded product has a shape in which a concave portion is present on the surface opposite to the convex portion. In particular, magnesium or a magnesium alloy has poor ductility, so that such general sheet metal press processing has been performed. That is, sheet metal pressing has not been applied to the manufacture of an article made of magnesium or a magnesium alloy in which concave and convex shapes that do not correspond to the concave portion are formed on the opposite surface of the convex portion on both surfaces of the plate material.
 例えば、燃料電池用セパレータは、燃料極、空気極、集電体の層等からなる多数のユニットを仕切ると共に反応ガス供給するために設けられ、平板の中央部両面に多数のガス流路用の溝を有した形状となっている。セパレータへは、燃料ガス(一般的には水素)と酸素(一般的には空気)を表裏で別個に供給し排出するので、その給排構造を簡易にするため、セパレータ表裏面で溝の方向を直交させることが多い。すなわち、溝形状のための凸部の反対側の面に凹部が対応しない形状の凹凸がセパレータの表裏面に設けられているので、従来の板金プレス加工が適用されていなかったのである。 For example, a separator for a fuel cell is provided for partitioning a large number of units composed of a fuel electrode, an air electrode, a current collector layer, and the like and supplying a reaction gas. It has a shape with a groove. To the separator, fuel gas (generally hydrogen) and oxygen (generally air) are supplied and discharged separately on the front and back sides. Are often orthogonal. In other words, since the concave and convex portions are formed on the front and back surfaces of the separator on the surface opposite to the convex portion for the groove shape, the conventional sheet metal pressing has not been applied.
 マグネシウムまたはマグネシウム合金を用いて、このような表裏不対応の凹凸形状を得るための加工方法は、例えば、特許文献1に記載されている。この方法は、マグネシウム合金を予熱してボスやリブ付きの成形品を鍛造するためのものであり、厚さ10mmのインゴットを用いて0.6~3.2mm厚の成形品を鍛造した例が示されている。 A processing method for obtaining such an uneven shape that does not correspond to front and back using magnesium or a magnesium alloy is described in Patent Document 1, for example. This method is for preheating a magnesium alloy to forge a molded product with bosses and ribs. An example of forging a molded product with a thickness of 0.6 to 3.2 mm using an ingot with a thickness of 10 mm is as follows. It is shown.
 また、特許文献2に記載の方法は、燃料電池用セパレータの製造に関するものである。この方法は、焼鈍したマグネシウム合金を用い、加熱した金型により、ひずみ速度2×10-5~1×10-1/secでゆっくりと超塑性鍛造するものであり、厚さ6mmのブランクから厚さ2mmの製品への加工が例示されている。 The method described in Patent Document 2 relates to the manufacture of a fuel cell separator. In this method, an annealed magnesium alloy is used, and superplastic forging is slowly performed at a strain rate of 2 × 10 −5 to 1 × 10 −1 / sec using a heated mold. Processing to a 2 mm product is illustrated.
 これら特許文献に記載の方法は、板金プレス加工と区別される鍛造加工であり、ブランクの予熱や焼鈍を必要とする上、プレス速度が遅く、成形に多大の時間を要するという欠点がある。その結果、得られる成形品は、製造コストが高く、高価格のものとならざるを得ない。
特開2001-26835号公報 特開2003-331858号公報
The methods described in these patent documents are forging processes that are distinguished from sheet metal pressing, and require the preheating and annealing of the blank, and have the disadvantages that the pressing speed is slow and a lot of time is required for forming. As a result, the obtained molded product has a high manufacturing cost and must be expensive.
Japanese Patent Laid-Open No. 2001-26835 JP 2003-331858 A
 本発明は、上記従来技術の欠点を解消し、表裏不対応の凹凸形状を有する金属成形品を短時間で製造することができる板金プレス加工用金型、プレス加工方法、及び、製造コストの低い上記形状の成形品(具体的には燃料電池用セパレータ)を提供することを目的とする。 The present invention eliminates the disadvantages of the above-described prior art, and enables the production of a metal molded product having an uneven shape that does not correspond to the front and back surfaces in a short time, a pressing method, and a low manufacturing cost. An object of the present invention is to provide a molded article having the above shape (specifically, a fuel cell separator).
課題を解決するための手段及び効果Means and effects for solving the problems
 (1)本発明は、前記目的を達成するため、金属製板材の板金プレス加工方法であって、プレス時の流動材料の集中による凸部及び離散による凹部からなる凹凸形状をブランクの表裏面に形成するように、押圧面の輪郭が決められている上型及び下型を備えた金型を用い、前記金型におけるブランクへの接触部をブランクの塑性変形能を高める温度に加熱し、凸部の反対側の面に凹部が対応しない形状の凹凸を前記板材の両面に同時に成形することを特徴とする板金プレス加工方法を提供するものである。 (1) In order to achieve the above object, the present invention is a sheet metal press working method of a metal sheet material, wherein a concave and convex shape composed of convex portions due to concentration of fluid material during pressing and concave portions due to discrete is formed on the front and back surfaces of the blank. Using a mold having an upper mold and a lower mold whose contour of the pressing surface is determined, the contact portion of the mold with the blank is heated to a temperature that increases the plastic deformability of the blank, and the convex The present invention provides a sheet metal pressing method characterized by simultaneously forming unevenness having a shape that does not correspond to a concave portion on a surface opposite to a portion on both surfaces of the plate material.
 上記方法によれば、温間板金プレス加工により、板状ブランクの両面に異なる形状の凹凸を同時に形成することができる。特に、ブランクとして板状材を用いることにより、プレス速度を速めても最終形状に至る材料の流動を得ることができ、塊状材料から板状材に成形する温間鍛造に比し、プレス時間を大幅に短縮することができる。 According to the above method, uneven shapes having different shapes can be simultaneously formed on both surfaces of the plate blank by warm sheet metal pressing. In particular, by using a plate-like material as a blank, it is possible to obtain a material flow that reaches the final shape even if the press speed is increased, and compared with warm forging that forms from a bulk material to a plate-like material, the press time is reduced. It can be greatly shortened.
 (2)本発明はまた、前記目的を達成するため、金属製板材の温間板金プレス加工に用いる金型であって、上型及び下型が、相互に上下に対応した凹凸を備えない押圧面と、該押圧面を加熱するための加熱部とを有し、前記押圧面は、プレス時の流動材料の集中による凸部及び離散による凹部からなる凹凸形状をブランクの表裏面に形成するように、各々輪郭が決められていることを特徴とする板金プレス加工用金型を提供するものである。 (2) In order to achieve the above object, the present invention is a mold used for warm sheet metal pressing of a metal plate material, and the upper mold and the lower mold do not have unevenness corresponding to each other vertically. And a heating portion for heating the pressing surface, the pressing surface forming an uneven shape including convex portions due to concentration of fluid material during pressing and concave portions due to discrete on the front and back surfaces of the blank. Further, the present invention provides a metal mold for sheet metal press working, characterized in that the contour is determined.
 上記金型によれば、上型及び下型が、相互に上下に対応した凹凸を備えない押圧面と、該押圧面を加熱するための加熱部とを有し、前記押圧面は、プレス時の流動材料の集中による凸部及び離散による凹部からなる凹凸形状をブランクの表裏面に形成するように、各々輪郭が決められているので、温間板金プレス加工により、板状ブランクの両面に異なる形状の凹凸を同時に形成することができる。特に、ブランクとして板状材を用いることにより、プレス速度を速めても最終形状に至る材料の流動を得ることができ、塊状材料から板状材に成形する温間鍛造に比し、プレス時間を大幅に短縮することができる。 According to the above mold, the upper mold and the lower mold have a pressing surface that does not have unevenness corresponding to each other vertically, and a heating portion for heating the pressing surface, and the pressing surface is Since the contours are determined so that the concave and convex shapes consisting of convex portions due to the concentration of the fluid material and the concave portions due to the discrete are formed on the front and back surfaces of the blank, both sides of the plate blank are different by warm sheet metal pressing Shape irregularities can be formed at the same time. In particular, by using a plate-like material as a blank, it is possible to obtain a material flow that reaches the final shape even if the press speed is increased, and compared with warm forging that forms from a bulk material to a plate-like material, the press time is reduced. It can be greatly shortened.
 (3)前記上型及び下型は各々、プレス加工時に上下動する基部と、該基部に固定された支持体と、基端部を該支持体に固定され先端部をブランクへの接触部とした複数の押圧子と、該押圧子を通す貫通孔を有し、前記基部に上下動可能に支持され、先端側がブランクへの接触面とされ、後退位置で前記押圧子の先端部を前記貫通孔から突出させ前進位置で該押圧子の先端部を前記貫通孔内に収納するスライド部とを備えており、該スライド部は前進位置に向けてばね力を受けているものとすることができる。 (3) The upper mold and the lower mold each have a base that moves up and down during press working, a support fixed to the base, a base end fixed to the support, and a tip contacting the blank. A plurality of pressing elements and a through-hole through which the pressing elements are passed, supported by the base portion so as to be movable up and down, a tip end side as a contact surface to the blank, and the tip end portion of the pressing element at the retracted position. And a slide portion that protrudes from the hole and accommodates the tip of the pressing member in the through hole at the forward position, and the slide portion receives a spring force toward the forward position. .
 このように、プレス時のブランクへの接触面を、基部と共に上下動する支持体に固定した押圧子と、前記基部に上下動可能に支持されたスライド部とで構成すれば、ブランクへの初期接触をスライド部で行ない、その後に押圧子を突出させるので、押圧子に掛かる衝撃やプレス圧の負荷が小さくなる。その結果、金型全体の耐久性を向上させることができ、また、精密なプレス形状を得る場合にも型の摩耗や損傷を防止することができる。また、ブランクの上下にスライド部が接しているので、ブランクの厚みを変えずに、押圧子が接する領域のみを加工できる。 Thus, if the contact surface to the blank at the time of pressing is composed of a pressing member fixed to a support that moves up and down together with the base and a slide portion that is supported by the base so as to move up and down, the initial to the blank Since the contact is performed at the slide portion and the pressing element is then projected, the impact on the pressing element and the load of the pressing pressure are reduced. As a result, the durability of the entire mold can be improved, and wear and damage of the mold can be prevented even when a precise press shape is obtained. Moreover, since the slide part is contacting the upper and lower sides of a blank, only the area | region which a presser contacts can be processed, without changing the thickness of a blank.
 (4)前記押圧子は、板状体により形成され、相互に対面した状態で微小間隔をおいて平行に配置されているものとすることができる。複数の溝状又は畝状の凹凸をプレス形成する場合は、金型先端にこれらに対応した細長い輪郭部分を備える必要があり、ここに高いプレス圧が作用すると、型の損耗を生じやすい。しかしながら、前述のスライド部から進退する押圧子を、上記のように板状体により形成することにより、押圧子に掛かる衝撃やプレス圧負荷が小さくなり、その損耗を防止することができる。 (4) The pressing elements may be formed of a plate-like body and arranged in parallel with a minute interval in a state of facing each other. When a plurality of groove-shaped or bowl-shaped irregularities are press-formed, it is necessary to provide an elongated contour portion corresponding to these at the die tip, and if a high press pressure is applied thereto, the mold is likely to be worn. However, by forming the pressing element that advances and retreats from the above-described slide portion with the plate-like body as described above, the impact applied to the pressing element and the press pressure load are reduced, and the wear can be prevented.
 (5)上記(4)の金型において、上型の押圧子の面方向と、下型の押圧子の面方向とは、相互に交わるように配置されているものとすることができる。この金型によれば、板材の両面に、相互に交差する方向に延びる溝状又は畝状の凹凸形状を得ることができる。板材の両面において畝状部分の裏側に溝状部分がある波状の凹凸を形成する場合であれば、上型及び下型は、相互に上下に対応した凹凸を備えた押圧面とし、板材の変形は厚さの変化をさほど伴わずに、主として曲げ変形を生じればよいので、加工が容易である。しかし、表裏面で相互に交差する方向に延びる溝状又は畝状の凹凸形状を得るには、上記のように上型の押圧子の面方向と、下型の押圧子の面方向とが、相互に交わるように配置されているものすることにより、短時間で高精度の凹凸形状を得ることができる。 (5) In the mold of the above (4), the surface direction of the upper mold presser and the surface direction of the lower mold presser may be arranged so as to cross each other. According to this mold, it is possible to obtain groove-shaped or bowl-shaped uneven shapes extending in directions intersecting each other on both surfaces of the plate material. If wavy irregularities with groove-like parts are formed on the back side of the bowl-shaped part on both sides of the plate material, the upper mold and the lower mold should be pressed surfaces with irregularities corresponding to each other, and deformation of the plate material Is easy to process because it only needs to undergo bending deformation without much change in thickness. However, in order to obtain a groove-like or bowl-shaped uneven shape extending in the direction intersecting with each other on the front and back surfaces, the surface direction of the upper mold presser and the surface direction of the lower mold presser are as described above. By arranging them so as to cross each other, a highly accurate uneven shape can be obtained in a short time.
 (6)上記(3)から(5)の金型は、前記上型及び下型のスライド部がブランクの成形後の平面形状と同じ平面形状を有し、前記上型及び下型の一方の基部が、スライド部を水平方向に囲んで該スライド部を上下方向に超えて形成されたガイド部を備えており、前記上型及び下型の他方のスライド部は前記ガイド部の囲繞空間に進入し、前記ガイド部と前記上型及び下型のスライド部とによりプレス加工のための閉塞キャビティを形成するものとすることができる。このように、ガイド部の囲繞空間にスライド部が進入し閉塞キャビティ内でプレス加工を行なうことにより、ブランクはその閉塞キャビティを満たすように変形するので、スライド部に対する押圧子の進退構造と相俟って、極めて精度の高いプレス成形物を得ることができる。 (6) In the molds of the above (3) to (5), the slide parts of the upper mold and the lower mold have the same planar shape as that of the blank after molding, and one of the upper mold and the lower mold The base portion includes a guide portion formed so as to surround the slide portion in the horizontal direction and extend above and below the slide portion, and the other slide portion of the upper die and the lower die enters the surrounding space of the guide portion. The closed cavity for press working can be formed by the guide portion and the slide portions of the upper die and the lower die. Thus, when the slide part enters the enclosed space of the guide part and presses in the closed cavity, the blank is deformed so as to fill the closed cavity. Thus, it is possible to obtain a press molded product with extremely high accuracy.
 (7)本発明はまた、前記目的を達成するため、上記(2)から(6)のいずれかの金型を用いて、板材の表裏面に同時に凹凸形状を形成することを特徴とする温間板金プレス加工方法を提供するものである。 (7) In order to achieve the above object, the present invention is also characterized in that a concavo-convex shape is simultaneously formed on the front and back surfaces of a plate material using any of the molds of (2) to (6) above. A sheet metal press working method is provided.
 この方法によれば、板状のブランクに対して、上記(2)から(6)の金型の特徴に基づく優れた特性のプレス加工品を短時間に得ることができる。 According to this method, a pressed product with excellent characteristics based on the characteristics of the molds (2) to (6) can be obtained in a short time with respect to a plate-shaped blank.
 (8)上記(7)の方法においては、ブランクにおける前記押圧子による成形領域を、該押圧子による変形高さより浅く凹陥させるように予め別の金型で予備プレス加工することができる。このように、予備プレス加工をすることにより、前記押圧子によりプレス成形される凸部は、前記凹陥した面から立ち上がることになるので、凸部の高さを正確に制御することができる。したがって、例えば、成形品の周辺部と同一平面の高さの凸部の高さを得る場合にも有利である。 (8) In the method of (7) above, pre-pressing can be performed in advance with another mold so that the molding area of the blank in the blank is recessed shallower than the deformation height of the pressing element. In this way, by performing the pre-pressing process, the convex portion press-molded by the pressing element rises from the concave surface, so that the height of the convex portion can be accurately controlled. Therefore, for example, it is advantageous also when obtaining the height of the convex part of the same plane as the peripheral part of the molded product.
 (9)上記(1)、(7)または(8)の方法においては、ブランクが多角形である場合に、ブランクの各辺に対して平面視凹状の凹入部をプレス加工による延展量に対応させて予め形成してプレス加工を行なうことができる。多角形のブランクをプレス成形するときの材料の流動は、多角形の各辺を外側に拡げるように生じがちである。この方法によれば、プレス加工による延展量に見合う凹入部を予めブランクの各辺に形成するので、このような材料流動に対して、高い平面形状のプレス成形品を得ることができる。 (9) In the method of (1), (7), or (8) above, when the blank is a polygon, the concave portions in plan view with respect to each side of the blank correspond to the amount of extension by pressing. Thus, it can be formed in advance and pressed. When a polygonal blank is pressed, the material flow tends to occur so that each side of the polygon is expanded outward. According to this method, since the recessed portion corresponding to the amount of extension by press working is formed in advance on each side of the blank, a press-formed product having a high planar shape can be obtained against such material flow.
 (10)上記(1)または(7)から(9)の方法においては、前記上型及び下型におけるブランクとの接触部分の温度を230~400℃とし、前記上型及び下型のスライド部がブランクに接した後、下死点までのプレス速度を0.5~30mm/秒とするのが望ましい。上記接触部分の温度が230℃より低いと、プレス時の材料流動が十分に得られず、正確な凹凸形状を得難い。また、上記接触部分の温度が400℃を超えると、ブランクの結晶粒の粗大化が生じ、成形品の材質を低下させる。また、上記プレス速度が30mm/秒より高いと、材料流動が十分に得られず、正確な凹凸形状が得られない。一方、上記プレス速度が0.5mm/秒より低いと、成形品の品質状の問題は生じないが無駄な加工時間を生じることとなり望ましくない。 (10) In the method of (1) or (7) to (9), the temperature of the contact portion with the blank in the upper mold and the lower mold is 230 to 400 ° C., and the slide section of the upper mold and the lower mold After contacting the blank, it is desirable that the press speed to the bottom dead center is 0.5 to 30 mm / second. When the temperature of the contact portion is lower than 230 ° C., the material flow during pressing cannot be sufficiently obtained, and it is difficult to obtain an accurate uneven shape. Moreover, when the temperature of the said contact part exceeds 400 degreeC, the coarsening of the crystal grain of a blank will arise and the material of a molded article will be reduced. On the other hand, if the pressing speed is higher than 30 mm / second, the material flow cannot be sufficiently obtained, and an accurate uneven shape cannot be obtained. On the other hand, if the press speed is lower than 0.5 mm / sec, there is no problem with the quality of the molded product, but it is not desirable because it causes useless processing time.
 (11)上記(1)または(7)から(10)の板金プレス加工方法は、ブランクが燃料電池用セパレータのための板材である場合に有利に適用することができる。燃料電池用セパレータは、平板の中央部両面に多数のガス流動用の溝を有した形状を有している。したがって、その溝をプレス加工するのに、上記板金プレス加工方法を適用すれば、これらの方法の特徴に基づく優れた特性のプレス加工品を短時間に得ることができる。 (11) The sheet metal press working method of (1) or (7) to (10) can be advantageously applied when the blank is a sheet material for a fuel cell separator. The separator for a fuel cell has a shape having a large number of grooves for gas flow on both surfaces of a central portion of a flat plate. Therefore, if the above-described sheet metal pressing method is applied to press the groove, a pressed product having excellent characteristics based on the characteristics of these methods can be obtained in a short time.
 (12)本発明はまた、前記目的を達成するため、ガス流路用の複数の細溝が板金プレス加工により並設され、一方の面の細溝と他方の面の細溝とは互いに交差する方向に配置されていることを特徴とする燃料電池用セパレータを提供するものである。 (12) According to the present invention, in order to achieve the above object, a plurality of narrow grooves for gas flow paths are juxtaposed by sheet metal pressing, and the narrow groove on one surface and the narrow groove on the other surface intersect each other. The present invention provides a fuel cell separator characterized by being arranged in a direction to be operated.
 燃料電池用セパレータは、前述の通り、平板の中央部両面に多数のガス流動用の溝を有した形状を有しており、特に、一方の面の細溝と他方の面の細溝とが互いに交差する方向に配置されているものは、このように板金プレス加工品とすることにより、塊状材料から成形する従来の温間鍛造品による燃料電池用セパレータに比し、プレス時間の短縮に基づいて高精度のものを低価格で提供することが可能となる。 As described above, the separator for a fuel cell has a shape having a large number of gas flow grooves on both sides of the central portion of the flat plate. In particular, the narrow groove on one surface and the narrow groove on the other surface have What is arranged in the direction intersecting each other is based on shortening the press time compared to the conventional warm-forged product separator made from a bulk material by using a sheet metal stamped product in this way. High accuracy can be provided at a low price.
 (13)上記(12)の燃料電池用セパレータは、前記板金プレス加工が上記(1)または(7)から(11)のいずれかの方法により行なわれたものとすることができる。この方法によれば、上記(1)または(7)から(10)の板金プレス加工方法の特徴に基づく優れた特性のプレス加工品を低価格で提供することができる。 (13) In the fuel cell separator of (12), the sheet metal pressing may be performed by any of the methods (1) or (7) to (11). According to this method, it is possible to provide a press-processed product having excellent characteristics based on the features of the sheet metal press-processing method of (1) or (7) to (10) at a low price.
 なお、燃料電池用セパレータは、上記加工後、必要に応じて、耐蝕コーティング等の表面加工をすることができる。 The fuel cell separator can be subjected to surface processing such as corrosion-resistant coating after the above processing, if necessary.
本発明の一実施形態に係る燃料電池用セパレータを備えた燃料電池の一部を、分解した状態で概略的に示す斜視図である。1 is a perspective view schematically showing a part of a fuel cell including a fuel cell separator according to an embodiment of the present invention in an exploded state. 図1に示した燃料電池用セパレータの正面図である。It is a front view of the separator for fuel cells shown in FIG. 図2における溝部分を中心とする拡大図である。It is an enlarged view centering on the groove part in FIG. 本発明の一実施形態に係る金型の上型及び下型の正面図である。It is a front view of the upper mold | type and lower mold | type of the metal mold | die which concerns on one Embodiment of this invention. 図4に示した上型及び下型の支持体、押圧子、スライド部を示す斜視図である。It is a perspective view which shows the support body, presser, and slide part of the upper mold | type and lower mold | type shown in FIG. 図5に示した部材の平面図である。It is a top view of the member shown in FIG. 図6におけるVII-VII線に沿う縦断面図である。It is a longitudinal cross-sectional view which follows the VII-VII line in FIG. 図6におけるVIII-VIII線に沿う階段縦断面図である。FIG. 7 is a vertical cross-sectional view taken along a line VIII-VIII in FIG. 6. 図2に示した燃料電池用セパレータの製造工程を示す図である。It is a figure which shows the manufacturing process of the separator for fuel cells shown in FIG.
符号の説明Explanation of symbols
1 ブランク
2 凹入部
3 凹陥部
10 燃料電池用セパレータ
11,12 細溝
14 周囲部
15 側溝
100 上型
200 下型
110,210 基部
113,213 囲繞部
120,220 支持体
130,230 押圧子
140,240 スライド部
DESCRIPTION OF SYMBOLS 1 Blank 2 Recessed part 3 Recessed part 10 Fuel cell separator 11, 12 Narrow groove 14 Peripheral part 15 Side groove 100 Upper mold 200 Lower mold 110, 210 Base 113, 213 Surrounding part 120, 220 Support body 130, 230 Presser 140, 240 Slide part
 以下、本発明の実施形態について添付図面を参照しつつ説明する。図1は、本発明の一実施形態に係る燃料電池用セパレータを備えた燃料電池の一部を概略的に示している。この燃料電池用セパレータは、以下に説明するように本発明に係る板金プレス加工方法及びそのための金型を用いて製造されたセパレータによるものである。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 schematically shows a part of a fuel cell including a fuel cell separator according to an embodiment of the present invention. This fuel cell separator is based on a sheet metal press working method according to the present invention and a separator manufactured using a mold for the method as described below.
 燃料電池は、触媒層21と多孔質支持体22からなる燃料極20と、触媒層31と多孔質支持体32からなる空気極30と、これらの間に位置する電解質層40とからなるユニットを多数積層したものであり、各ユニットの間にセパレータ10が配置されている。図1は、1つのユニットとその両側のセパレータ10を分解した状態で示している。セパレータ10は、表裏面で相互に直交するように延びる細溝11、12を備えており、燃料極20に面する側の細溝11には水素等の燃料ガスが供給され、空気極30に面する側の細溝12には空気等により酸素が供給される。 The fuel cell comprises a unit comprising a fuel electrode 20 comprising a catalyst layer 21 and a porous support 22, an air electrode 30 comprising a catalyst layer 31 and a porous support 32, and an electrolyte layer 40 positioned therebetween. Many separators are stacked, and separators 10 are arranged between the units. FIG. 1 shows one unit and separators 10 on both sides thereof in an exploded state. The separator 10 includes narrow grooves 11 and 12 that extend so as to be orthogonal to each other on the front and back surfaces. A fuel gas such as hydrogen is supplied to the narrow groove 11 on the side facing the fuel electrode 20 to the air electrode 30. Oxygen is supplied to the narrow groove 12 on the facing side by air or the like.
 図2は、1枚のセパレータ10を取出して示す正面図であり、図3は図2における溝部分を中心とする拡大図である。図2に示すように、セパレータは矩形をなすマグネシウム合金により形成されており、図1に示した細溝12は、セパレータの中央部に形成され、平坦な周囲部14に囲まれている。細溝12は、畝部13の間に形成されて上下方向に延びており、5本毎に1グループをなしている。そして、各グループの間に位置する畝部13は交互に上方及び下方に延長されて周囲部14に達し、他の畝部13は周囲部14との間に間隙を有して側溝15を形成している。 FIG. 2 is a front view showing one separator 10 taken out, and FIG. 3 is an enlarged view centering on the groove portion in FIG. As shown in FIG. 2, the separator is made of a rectangular magnesium alloy, and the narrow groove 12 shown in FIG. 1 is formed at the center of the separator and is surrounded by a flat peripheral portion 14. The narrow grooves 12 are formed between the flanges 13 and extend in the vertical direction, and form a group for every five grooves. The flanges 13 located between the groups are alternately extended upward and downward to reach the peripheral part 14, and the other flanges 13 form a side groove 15 with a gap between the peripheral parts 14. is doing.
 多数の細溝12の形成領域は全体として矩形をなし、その矩形の各角部には貫通孔によりガス通路となる通気孔16が形成されている。図2の右上及び左下に位置する通気孔16からは、すぐ近くの側溝15に達する連絡溝17が延びている。なお、セパレータの裏面の対応部分には、同様の細溝が細溝12と直交する方向に延びており、図2の左上及び右下の通気孔16からは、すぐ近くの側溝に達する連絡溝17’が延びている(図に破線で示す)。畝部13は、表裏双方において周囲部14と同じ高さであり、その先端は周囲部14と同一平面上にある。 A large number of narrow grooves 12 are formed in a rectangular region as a whole, and air holes 16 serving as gas passages are formed in each corner of the rectangle by through holes. A communication groove 17 reaching the side groove 15 in the immediate vicinity extends from the vent hole 16 located at the upper right and lower left in FIG. In addition, a similar narrow groove extends in a direction orthogonal to the narrow groove 12 in a corresponding portion on the back surface of the separator, and a communication groove reaching a nearby side groove from the upper left and lower right vent holes 16 in FIG. 17 'extends (indicated by broken lines in the figure). The flange portion 13 is the same height as the peripheral portion 14 on both the front and back sides, and the tip thereof is on the same plane as the peripheral portion 14.
 この溝配置を有するセパレータが組み込まれた燃料電池においては、通気孔16に導入されたガスが、多数の細溝12をうねるようにして流れ、対角位置にある通気孔16から導出される。例えば、図3に示す通気孔16-1から導入された空気は、連絡溝17-1を経てすぐ近くの側溝15-1に達し、該側溝に連通する最初のグループである5本の細溝12-1を流れ、その下の側溝15-2を経て、次のグループである細溝12-2を流れ、その上の側溝15-3に達する。このようにして、空気は多数の細溝12をうねりながら流れて空気極30と接し、図2の左下に位置する通気孔16から導出され、次のユニットへと流れる。同様に、例えば、図2の右下に位置する通気孔16から導入された燃料ガスは、水平方向に延びる多数の細孔をうねりながら流れて燃料極20と接し、図2の左上に位置する通気孔16から導出され、次のユニットへと流れる。このように、セパレータの表裏で細溝が直交する方向に設けられていることにより、対角状に配置された2対の通気孔16を、燃料ガス用と空気(酸素)用とに分けて使用することができる。 In the fuel cell in which the separator having this groove arrangement is incorporated, the gas introduced into the vent hole 16 flows so as to undulate the numerous fine grooves 12, and is led out from the vent hole 16 at the diagonal position. For example, the air introduced from the ventilation hole 16-1 shown in FIG. 3 reaches the side groove 15-1 immediately after passing through the communication groove 17-1, and the five narrow grooves which are the first group communicating with the side groove. 12-1 flows through the lower side groove 15-2, and then flows through the next group of fine grooves 12-2 to reach the upper side groove 15-3. In this way, the air flows while undulating the narrow grooves 12, contacts the air electrode 30, is led out from the vent hole 16 located in the lower left of FIG. 2, and flows to the next unit. Similarly, for example, the fuel gas introduced from the vent hole 16 located in the lower right of FIG. 2 flows while undulating a large number of pores extending in the horizontal direction, contacts the fuel electrode 20, and is located in the upper left of FIG. It is led out from the vent hole 16 and flows to the next unit. Thus, by providing the narrow grooves in the direction perpendicular to the front and back of the separator, the two pairs of diagonally arranged vent holes 16 are divided into fuel gas and air (oxygen). Can be used.
 図示のセパレータは、縦横の寸法が100mm、厚さが2mmであり、細溝11,12及び畝部13は各々幅0.75mm、溝深さが0.95mmとなっている。但し、これらの寸法は燃料電池の寸法や電極材料の特性などに応じて適宜決めることができる。 The illustrated separator has a vertical and horizontal dimension of 100 mm and a thickness of 2 mm, and the narrow grooves 11 and 12 and the flange 13 each have a width of 0.75 mm and a groove depth of 0.95 mm. However, these dimensions can be appropriately determined according to the dimensions of the fuel cell and the characteristics of the electrode material.
 セパレータを構成するマグネシウム合金は、一般的な燃料電池用セパレータに使用される種々の成分のものとすることができ、例えば、マグネシウムへの主要な添加成分として、Alを2.5~3.5%(重量%、以下同じ)、Znを0.6~1.4%、Mnを0.2~1.0%含んだものとすることができる。 The magnesium alloy constituting the separator can be of various components used in general fuel cell separators. For example, as a main additive component to magnesium, 2.5 to 3.5 Al is added. % (% By weight, the same applies hereinafter), 0.6 to 1.4% Zn, and 0.2 to 1.0% Mn.
 次に、以上に説明した燃料電池用セパレータの製造を例にとって、本発明に係る板金プレス加工方法及びそのための金型について説明する。 Next, taking the production of the fuel cell separator described above as an example, the sheet metal press working method according to the present invention and the mold therefor will be described.
 図4は、金型を構成する上型100及び下型200を示す正面図である。以下の説明では、特に断らない限り上型の構成部分を100番台の数字、下型の構成部分を200番台の数字で示し、それらの数字の1桁及び2桁の部分は、上型と下型とで対応した構成部分を示すものとする。この実施形態においては、上型100と下型200とは、基本的形態が同一のものを、上下逆に配置したものとなっている。したがって、説明は上型100を中心に行ない、下型200に関しては説明を一部省略する。 FIG. 4 is a front view showing the upper mold 100 and the lower mold 200 constituting the mold. In the following description, unless otherwise specified, the upper mold components are indicated by numbers in the 100s, the lower mold components are indicated by numbers in the 200s, and the 1-digit and 2-digit portions of these numbers are indicated by the upper mold and the lower digits. The component corresponding to the mold shall be indicated. In this embodiment, the upper mold | type 100 and the lower mold | type 200 have arrange | positioned the thing with the same basic form upside down. Therefore, the description will be made mainly on the upper mold 100, and a part of the description on the lower mold 200 will be omitted.
 上型100は、図外の駆動フレームに取り付けられプレス加工時に上下動する基部110を備えている。基部110は、駆動フレームの下部に固定される固定部111と、該固定部の下面に固定された中間プレート112と、中央部に矩形の空所を有し中間プレート112の下面に固定された囲繞部113とを備えている。 The upper mold 100 includes a base 110 that is attached to a driving frame (not shown) and moves up and down during press working. The base 110 is fixed to the lower surface of the intermediate plate 112 having a fixed portion 111 fixed to the lower portion of the drive frame, an intermediate plate 112 fixed to the lower surface of the fixed portion, and a rectangular space in the central portion. And a go portion 113.
 この囲繞部113の空所内に納まるようにして中間プレート112の下面に支持体120が固定され、該支持体に多数の押圧子130が固定されている。押圧子130は、鉛直方向に延びる板状体により形成され、相互に対面した状態で微小間隔をおいて平行に配置され、支持体120から櫛歯状に下方へ延び、先端部がブランクへの接触部となっている。 The support body 120 is fixed to the lower surface of the intermediate plate 112 so as to be accommodated in the space of the surrounding portion 113, and a large number of pressing elements 130 are fixed to the support body. The pressing element 130 is formed of a plate-like body extending in the vertical direction, and is arranged in parallel with a minute interval in a state of facing each other, extends downward in a comb-like shape from the support body 120, and a tip portion to the blank It is a contact part.
 図5は、上型100及び下型200の支持体120及び220、押圧子130及び230、スライド部140及び240を示す斜視図である。図示のように、各々板状をなす上型100の押圧子130と下型200の押圧子230とは、面方向が相互に直交するように配置されている。支持体120は、上側に位置する内プレート121と、該内プレートの下に位置する外プレート122とを備えている。外プレート122には、押圧子130を受け入れる貫通孔が形成されている。押圧子130は、その貫通孔に通されて内プレート121の下面に当接し、各押圧子130の同じ位置に設けられた通し孔と、これに対応して外プレート122に設けられた通し孔とにボルト123が通されて、外プレート122に固定されている。上型100の押圧子130及び下型200の押圧子230は各々、図1及び図2に示した燃料電池用セパレータの細溝11及び12に対応して設けられている。 FIG. 5 is a perspective view showing the support bodies 120 and 220, the pressing elements 130 and 230, and the slide parts 140 and 240 of the upper mold 100 and the lower mold 200. As shown in the figure, the pressing element 130 of the upper mold 100 and the pressing element 230 of the lower mold 200 each having a plate shape are arranged so that the surface directions are orthogonal to each other. The support 120 includes an inner plate 121 positioned on the upper side and an outer plate 122 positioned below the inner plate. The outer plate 122 is formed with a through hole that receives the presser 130. The presser 130 is passed through the through hole and abuts the lower surface of the inner plate 121, and a through hole provided in the same position of each presser 130 and a corresponding through hole provided in the outer plate 122. Bolts 123 are passed through and fixed to the outer plate 122. The presser 130 of the upper mold 100 and the presser 230 of the lower mold 200 are provided corresponding to the narrow grooves 11 and 12 of the fuel cell separator shown in FIGS. 1 and 2, respectively.
 囲繞部113の空所内における支持体120の下方にはスライド部140が上下動可能に装着されている。スライド部140は、押圧子130を個々に通す複数の細長い貫通孔を有し、基部110に上下動可能に支持され、先端側がブランクへの接触面となっている。そして、スライド部140は、上昇した後退位置で押圧子130の先端部を記貫通孔から突出させ、下降した前進位置で押圧子130の先端部を貫通孔内に収納するように配置されている。スライド部140後退時の押圧子130の突出量は、押圧子130先端部が、これを囲むスライド部140の面から、セパレータの細溝の深さに対応する長さにわたって突出するように決められる。スライド部140は、前進位置に向けてばね力を受けており、プレス圧が作用しないときは前進位置にある。このばね力を作用させるために、外プレート122及び内プレート121の四隅には上下方向に延びる貫通孔が形成され、そこに圧縮コイルばね150が挿入されている。ばね150は、上端が中間プレート112に当接し、下端がスライド部140に当接することにより、スライド部140に対し前進位置(下方)に向くばね力を作用させている。 A slide part 140 is mounted below the support 120 in the space of the surrounding part 113 so as to be movable up and down. The slide part 140 has a plurality of elongated through holes that allow the pressing elements 130 to pass individually, is supported by the base part 110 so as to be movable up and down, and has a distal end side as a contact surface with the blank. The slide part 140 is arranged so that the tip of the pressing element 130 protrudes from the through hole in the raised retreat position, and the tip part of the pressing element 130 is accommodated in the through hole in the lowered advance position. . The protruding amount of the pressing element 130 when the sliding part 140 is retracted is determined so that the tip of the pressing element 130 protrudes from the surface of the sliding part 140 surrounding the pressing element 130 over a length corresponding to the depth of the narrow groove of the separator. . The slide portion 140 receives a spring force toward the forward movement position, and is in the forward movement position when no press pressure is applied. In order to apply this spring force, through holes extending in the vertical direction are formed at the four corners of the outer plate 122 and the inner plate 121, and the compression coil spring 150 is inserted therein. The spring 150 abuts on the intermediate plate 112 at the upper end and abuts on the slide portion 140 at the lower end, thereby applying a spring force directed toward the forward movement position (downward) to the slide portion 140.
 図6は図5に示した部材の平面図、図7は図6におけるVII-VII線に沿う縦断面図、図8は図6におけるVIII-VIII線に沿う階段縦断面図であり、図7(a)及び図8(a)はスライド部140が前進位置にある状態、図7(b)及び図8(b)はスライド部140が後退位置にある状態を示している。 6 is a plan view of the member shown in FIG. 5, FIG. 7 is a longitudinal sectional view taken along line VII-VII in FIG. 6, and FIG. 8 is a stepwise longitudinal sectional view taken along line VIII-VIII in FIG. FIGS. 7A and 8A show a state where the slide portion 140 is in the forward position, and FIGS. 7B and 8B show a state where the slide portion 140 is in the backward position.
 スライド部140は、囲繞部113に案内されて上下方向に可動となっており、ボルトB160により下方への抜け止めがなされている。すなわち、ボルトB160は、一端にヘッド161を有し、柱状の胴部162を経て、先端にねじ部163が設けられている。内プレート121及び外プレート122には、ボルトB160のヘッド161より径が小さく胴部162を通す貫通孔が設けられ、スライド部140には雌ねじが設けられている。ボルトB160は、中間プレート112の下部に設けられた凹所1120内にヘッド161が位置し、胴部162は内プレート121及び外プレート122を通り、先端のねじ部163はスライド部140の雌ねじに螺合している。この実施形態においては、図5に示されている4箇所にボルトB160が配置されているが、これらの位置及び本数は適宜決められる。この状態で、スライド部140はコイルばね150に押圧されて前進位置にあり、図7(a)及び図8(a)に示すように外プレート122との間に間隙Sを形成している。プレス時にスライド部140が後退位置を取るとボルトB160は内プレート121及び外プレート122に対して間隙Sに相当する距離上昇する。中間プレート112の凹所120は、ボルトB160のこの上昇を許容する深さで形成されている。 The slide portion 140 is guided by the surrounding portion 113 and is movable in the vertical direction, and is prevented from coming down downward by a bolt B160. That is, the bolt B160 has a head 161 at one end, and is provided with a threaded portion 163 at the tip via a columnar body 162. The inner plate 121 and the outer plate 122 are provided with through holes having a diameter smaller than that of the head 161 of the bolt B160 and allowing the body portion 162 to pass therethrough, and the slide portion 140 is provided with a female screw. The bolt B160 has a head 161 located in a recess 1120 provided at the lower portion of the intermediate plate 112, the body portion 162 passes through the inner plate 121 and the outer plate 122, and the screw portion 163 at the tip is a female screw of the slide portion 140. It is screwed. In this embodiment, the bolts B160 are arranged at four locations shown in FIG. 5, but the position and number of these bolts B160 are appropriately determined. In this state, the slide part 140 is pressed by the coil spring 150 and is in the advanced position, and a gap S is formed between the slide part 140 and the outer plate 122 as shown in FIGS. 7 (a) and 8 (a). When the slide part 140 takes the retracted position during pressing, the bolt B160 rises a distance corresponding to the gap S with respect to the inner plate 121 and the outer plate 122. The recess 120 of the intermediate plate 112 is formed with a depth that allows the bolt B160 to rise.
 この実施形態では、上型100及び下型200のスライド部140、240は、ブランクの成形後の平面形状と同じ平面形状を有している。そして、上型100のスライド部140は、前進位置においても後退位置においても、下端部が囲繞部113の下面より下方へ突出した位置にある。一方、下型200のスライド部240は、前進位置においても後退位置においても、上端部が囲繞部213の上面より下方の位置にあり、その結果、囲繞部213におけるスライド部240の上面を越えて上方へ延びた部分は、ブランク及び上型100のスライド部140を受け入れるガイド部213aとなっている。この構造により、プレス時に上型100が下降すると、そのスライド部140の下端部がガイド部213aの囲繞空間に進入し、ガイド部と上型及び下型のスライド部とによりプレス加工のための閉塞キャビティを形成する。 In this embodiment, the slide parts 140 and 240 of the upper mold 100 and the lower mold 200 have the same planar shape as that of the blank after molding. The slide part 140 of the upper mold 100 is located at a position where the lower end protrudes downward from the lower surface of the surrounding part 113 in both the forward movement position and the backward movement position. On the other hand, the slide portion 240 of the lower mold 200 has an upper end portion at a position below the upper surface of the surrounding portion 213 in both the forward position and the retracted position, and as a result, exceeds the upper surface of the sliding portion 240 in the surrounding portion 213. A portion extending upward serves as a guide portion 213 a that receives the blank and the slide portion 140 of the upper mold 100. With this structure, when the upper die 100 is lowered during pressing, the lower end portion of the slide portion 140 enters the surrounding space of the guide portion 213a, and the guide portion and the upper die and the lower die slide portion close the press working. A cavity is formed.
 固定部111、中間プレート112、囲繞部113、内プレート121、外プレート122の部材間の固定は、図に破線で示す通しボルトBにより行なわれている。中間プレート112及び囲繞部113には、熱媒体を通すための循環路Hが形成されている。 The fixing between the members of the fixing portion 111, the intermediate plate 112, the surrounding portion 113, the inner plate 121, and the outer plate 122 is performed by through bolts B indicated by broken lines in the drawing. The intermediate plate 112 and the surrounding portion 113 are formed with a circulation path H for passing a heat medium.
 この金型を用いた図1及び図2の燃料電池用セパレータの製造は、以下のように行なわれる。先ず、図9(a)に示すブランク1を用意する。このブランクは、セパレータ外形に対応した矩形の板材であり、ブランクの各辺に対して平面視凹状の凹入部2を、プレス加工による延展量に対応させて予め形成しておく。次に、図9(b)の状態を得るために、押圧子130,230による成形領域を、該押圧子による変形高さより浅く凹陥させて凹陥部3を形成するように、一次予備プレスを行なう。この一次予備プレスにより、板材は平面方向に延展し、凹入部2は解消して、ブランクの各辺は直線状となる。この直線状への変形を正確に得るために、予備プレスは、変形後の寸法の閉塞キャビティを有する金型で行なうのが望ましい。 The manufacture of the fuel cell separator of FIGS. 1 and 2 using this mold is performed as follows. First, a blank 1 shown in FIG. 9A is prepared. This blank is a rectangular plate material corresponding to the outer shape of the separator, and indented portions 2 having a concave shape in plan view are formed in advance on each side of the blank so as to correspond to the amount of extension by press working. Next, in order to obtain the state of FIG. 9B, primary pre-pressing is performed so that the molding region formed by the pressers 130 and 230 is recessed shallower than the deformation height by the presser to form the recessed portion 3. . By this primary pre-press, the plate material extends in the plane direction, the recessed portion 2 is eliminated, and each side of the blank becomes linear. In order to accurately obtain this linear deformation, it is desirable that the preliminary pressing is performed with a mold having a closed cavity having a dimension after deformation.
 次に、図9(c)に示す側溝15を形成するために、これらに対応した押圧部を有する金型により、二次予備プレスを行なう。そして、図9(d)の状態を得るために、図4に示した金型を用いてプレス加工を行なう。 Next, in order to form the side grooves 15 shown in FIG. 9 (c), secondary preliminary pressing is performed using a mold having pressing portions corresponding to these. And in order to obtain the state of FIG.9 (d), it press-processes using the metal mold | die shown in FIG.
 このプレス加工は、ブランクを下型200のスライド部240に置き、上型100を下降(または下型200を上昇)させることにより行なう。上下型は、相互に接近して、先ず各々のスライド部140,240がブランクに接する。スライド部がブランクに接した状態で、さらに型が前進すると、スライド部140,240がコイルばね150,250のばね力に抗して図7(b)、図8(b)に示す後退位置に移動し、板状の押圧子130,230がスライド部の貫通孔から突出する。これに伴って、押圧子に接した材料は離散して凹状に変形し、押圧子の間に位置する材料は押しやられて押圧子の間に集中する。その結果、材料は押圧子の間で隆起し、押圧子とスライド部とで囲まれた空間を満たす。こうして、ブランクには、材料の集中による凸部(畝部)と、離散による凹部(細溝)からなる凹凸形状が形成される。凸部は、スライド部に接するまで隆起する結果、ブランクにおける細溝形成領域の周囲の領域と同一の高さとなる。このとき、上下のスライド部は周辺の領域に接した位置で停止しているので、ブランクの板厚は変化しない。また、この変形に伴って、材料は中央部から周囲部へも移動するが、ブランクを収容する空間は、ガイド部213aにより閉塞空間とされているので、周囲部への延展が制限され、全体として正確な寸法の成形品が得られる。 This pressing is performed by placing a blank on the slide part 240 of the lower die 200 and lowering the upper die 100 (or raising the lower die 200). The upper and lower molds are close to each other, and first, the slide portions 140 and 240 are in contact with the blank. When the mold further advances while the slide part is in contact with the blank, the slide parts 140 and 240 resist the spring force of the coil springs 150 and 250 to the retracted positions shown in FIGS. 7 (b) and 8 (b). It moves and the plate-shaped pressers 130 and 230 protrude from the through hole of the slide portion. Along with this, the material in contact with the pressing element is discretely deformed into a concave shape, and the material positioned between the pressing elements is pushed and concentrated between the pressing elements. As a result, the material rises between the pressing elements and fills the space surrounded by the pressing elements and the slide portion. Thus, the blank is formed with a concavo-convex shape composed of convex portions (grooves) due to concentration of material and discrete concave portions (thin grooves). As a result of the protrusion protruding up to contact with the slide portion, the height becomes the same as the area around the narrow groove forming area in the blank. At this time, since the upper and lower slide portions are stopped at a position in contact with the surrounding area, the thickness of the blank does not change. Further, along with this deformation, the material also moves from the central part to the peripheral part. However, since the space for accommodating the blank is closed by the guide part 213a, the extension to the peripheral part is limited, and the whole As a result, a molded product having an accurate dimension is obtained.
 このプレス加工の際には、押圧子130,230及びスライド部140,240におけるブランクとの接触部分の温度を230~400℃とするのが望ましい。プレス速度は、上型及び下型のスライド部140,240がブランクに接した後、下死点までの間、0.5~30mm/秒とするのが望ましい。材料流動後の安定を得るためには、下死点で金型を所定の時間保持するのが望ましく、保持時間は生産効率を考慮して10秒までとするのが望ましい。但し、ブランクの材質やプレス条件によって材料流動後の安定が十分得られる場合は、下死点での保持を省略することもできる。また、金型には、ブランクの材料流動を円滑にするために離型剤を塗布するのが望ましい。その後は、図9(e)の連絡溝17を形成するために、別の金型によるプレス加工を行ない、図9(f)の状態を得るために、切削による穴あけ加工を行なって通気孔16、貫通孔18,19を形成し、セパレータ10を得る。 In this press working, it is desirable that the temperature of the contact portions of the pressers 130 and 230 and the slide portions 140 and 240 with the blank is 230 to 400 ° C. The pressing speed is preferably 0.5 to 30 mm / second after the upper and lower slide sections 140 and 240 are in contact with the blank and before the bottom dead center. In order to obtain stability after material flow, it is desirable to hold the mold at a bottom dead center for a predetermined time, and the holding time is preferably up to 10 seconds in consideration of production efficiency. However, if sufficient stability after material flow is obtained depending on the blank material and pressing conditions, the holding at the bottom dead center can be omitted. In addition, it is desirable to apply a release agent to the mold in order to make the material flow of the blank smooth. After that, in order to form the communication groove 17 of FIG. 9E, another metal mold is pressed, and in order to obtain the state of FIG. The through holes 18 and 19 are formed to obtain the separator 10.
 このようにして、燃料電池用セパレータを短時間で製造することができる。また、製造にあたり予めブランクの焼鈍等の熱処理を必要とせず、この点でも製造時間が短くて済むが、必要に応じて熱処理を施してもよい。 Thus, the fuel cell separator can be manufactured in a short time. Further, heat treatment such as blank annealing is not required in advance for manufacturing, and the manufacturing time is short in this respect as well, but heat treatment may be performed as necessary.
 実施例
 以下、本発明の実施例について説明する。まず、AZ31のマグネシウム合金製板材により、縦横の寸法が100mm、厚さが2mmの矩形状のブランクを形成した。次に、ブランクには、辺の中央部において角部を結ぶ直線から6mm凹入した円弧状の凹入部を切断プレスにより形成した。また、細溝を形成すべき領域に、一次予備プレスにより0.4mmの深さの凹陥部を形成し、二次予備プレスにより側溝15及び連絡溝17を形成した。そして、図4に示した金型を用いてプレス加工を行なった。プレス装置は、300トンの出力を有するサーボモータプレスであり、金型の押圧子130,230、スライド部140,240は、材質がSKD11であり、これらの部分におけるブランクとの接触部分の温度は、350℃となるように循環路Hに熱媒体を供給した。ブランクを下型200のスライド部240上に置き、上型100を下降させ、スライド部140がブランクに接した後は、下降速度を1.5mm/秒とした。そして、所定の下降量を経た下死点において5秒間上型100を保持した後、上型100を上昇させ、ブランクを取り出した。得られたセパレータは、細溝11,12が断面矩形状に正確に形成されており、その寸法精度は、幅が0.75±0.02mm、深さが0.95±0.03mmと、良好なものであった。
Examples of the present invention will be described below. First, a rectangular blank having a vertical and horizontal dimension of 100 mm and a thickness of 2 mm was formed from a AZ31 magnesium alloy plate. Next, in the blank, an arc-shaped recessed portion that was recessed 6 mm from a straight line connecting the corners at the center of the side was formed by a cutting press. In addition, a concave portion having a depth of 0.4 mm was formed in a region where a narrow groove was to be formed by a primary preliminary press, and a side groove 15 and a communication groove 17 were formed by a secondary preliminary press. And the press work was performed using the metal mold | die shown in FIG. The press device is a servo motor press having an output of 300 tons, and the pressers 130 and 230 and the slide portions 140 and 240 of the mold are made of SKD11. The temperature of the contact portion with the blank in these portions is as follows. The heat medium was supplied to the circulation path H so that it might become 350 degreeC. The blank was placed on the slide part 240 of the lower mold 200, the upper mold 100 was lowered, and after the slide part 140 was in contact with the blank, the lowering speed was 1.5 mm / second. And after hold | maintaining the upper mold | type 100 for 5 second in the bottom dead center which passed through the predetermined fall amount, the upper mold | type 100 was raised and the blank was taken out. In the obtained separator, the narrow grooves 11 and 12 are accurately formed in a rectangular cross section, and the dimensional accuracy is 0.75 ± 0.02 mm in width and 0.95 ± 0.03 mm in depth, It was good.
 他の形態
 本発明は、上記実施形態に限定されるものではなく、種々の変形が可能である。例えば、製造する燃料電池用セパレータとしては、各部の寸法は前述のものに限らず、用途等に応じて種々の形状及び寸法とすることができる。また、ガス流路用細溝が延びる方向は、セパレータの表裏で直交するもののほか、他の適宜の角度で交差するもの、或いは、同一方向に延びるものとすることもできる。
Other Embodiments The present invention is not limited to the above embodiment, and various modifications can be made. For example, as the fuel cell separator to be manufactured, the dimensions of each part are not limited to those described above, and various shapes and dimensions can be used depending on the application. The direction in which the gas channel narrow groove extends may be perpendicular to the front and back of the separator, cross at another appropriate angle, or extend in the same direction.
 押圧子が板状体により形成され、相互に対面した状態で微小間隔をおいて平行に配置された形態をとる場合は、上記実施例のように、セパレータの全ての細溝に対応して押圧子を設け、1回のプレス加工で全ての細溝を形成するほか、1回のプレス加工でセパレータの面に1本置きまたは複数本置きで細溝を形成し、複数回のプレス加工で必要な本数の細溝を形成することもできる。この場合は、最初のプレス加工の金型に1本または複数本置きに押圧子を設け、2回目以後のプレス時には、次に形成する細溝に対応した押圧子を先の押圧子に加えて金型に設ける。2回目以後のプレス時に先の押圧子に相当するものを残して次の押圧子を加えることにより、先に形成された細溝が2回目以後のプレス加工時に変形するのが防止される。こうして複数回のプレス加工で全体の細溝を形成することにより、1回毎のプレス加工時に金型及びプレス機に掛かる負荷を軽減することができる。 When the pressing element is formed of a plate-like body and is arranged in parallel with a minute interval in a state of facing each other, as in the above embodiment, the pressing element corresponds to all the narrow grooves of the separator. In addition to forming all the narrow grooves in one press process, a single groove or multiple grooves are formed on the surface of the separator in a single press process, which is necessary for multiple press processes. It is also possible to form a small number of narrow grooves. In this case, one or a plurality of pressing elements are provided on the first press working mold, and a pressing element corresponding to the narrow groove to be formed next is added to the previous pressing element at the second and subsequent presses. Provide in the mold. By adding the next pressing member while leaving the one corresponding to the previous pressing member in the second and subsequent presses, it is possible to prevent the previously formed narrow groove from being deformed during the second and subsequent pressing operations. By forming the entire narrow groove by a plurality of press processes in this way, it is possible to reduce the load applied to the mold and the press machine at the time of each press process.
 ブランクは凹凸形状やそれに要求される精度によっては、必ずしも閉塞空間でプレスする必要ななく、その場合は、ガイド部213aを省略することができる。押圧子は、必要とされる物品の形状に応じて、柱状、ブロック状など、種々の形状とすることができ、また、スライド部を設けることなく、押圧子の先端部を成形品に対応した凹凸形状としてもよい。 The blank does not necessarily need to be pressed in the closed space depending on the concavo-convex shape and the accuracy required for it, and in that case, the guide portion 213a can be omitted. Depending on the required shape of the article, the presser can be formed in various shapes such as a columnar shape and a block shape, and the tip of the presser corresponds to the molded product without providing a slide portion. It is good also as an uneven | corrugated shape.
 本発明に係る板金プレス加工方法及びそのための金型は、燃料電池用セパレータの製造に限られず、種々の物品の製造に適用することができる。例えば、電子部品等、発熱を伴う部品の間に配置される冷却板は、蛇行する溝を表裏面に有し部品の壁面との間に冷媒流路を形成する。そのような溝を有した板状物品は、マグネシウムまたはマグネシウム合金製とすることにより、熱伝導に優れ、軽量かつ電磁波シールド性がよいという利点が得られるのであり、本発明は、その製造に有利に適用することができる。 The sheet metal press working method and the mold for the same according to the present invention are not limited to the production of a fuel cell separator, and can be applied to the production of various articles. For example, a cooling plate disposed between components that generate heat, such as an electronic component, has meandering grooves on the front and back surfaces and forms a coolant channel between the wall surfaces of the component. The plate-like article having such a groove is made of magnesium or a magnesium alloy, and thus has the advantages of excellent heat conduction, light weight and good electromagnetic shielding properties, and the present invention is advantageous for its production. Can be applied to.
 また、ブランクの材料は、本実施形態のマグネシウムまたはマグネシウム合金以外に、JIS1000番台から5000番台のアルミニウムまたはアルミニウム合金を使用することができ、本実施形態と同様の加工条件で板金プレス加工を行うことができる。更に、チタンまたはチタン合金など加工可能な他の金属材料からなるブランクを使用することも可能である。 In addition to the magnesium or magnesium alloy of this embodiment, the blank material can be aluminum or aluminum alloy of JIS 1000 to 5000, and sheet metal pressing is performed under the same processing conditions as in this embodiment. Can do. It is also possible to use blanks made of other metal materials that can be processed, such as titanium or titanium alloys.

Claims (14)

  1. 金属製板材の板金プレス加工方法であって、プレス時の流動材料の集中による凸部及び離散による凹部からなる凹凸形状をブランクの表裏面に形成するように、押圧面の輪郭が決められている上型及び下型を備えた金型を用い、前記金型におけるブランクへの接触部をブランクの塑性変形能を高める温度に加熱し、凸部の反対側の面に凹部が対応しない形状の凹凸を前記板材の両面に同時に成形することを特徴とする板金プレス加工方法。 A sheet metal press working method of a metal plate material, wherein the contour of the pressing surface is determined so as to form a concavo-convex shape consisting of convex portions due to concentration of fluid material during pressing and concave portions due to discrete on the front and back surfaces of the blank. Using a mold having an upper mold and a lower mold, the contact portion of the mold with the blank is heated to a temperature that enhances the plastic deformability of the blank, and the recesses do not correspond to the surface opposite to the protrusions. Is formed on both sides of the sheet material at the same time.
  2. 金属製板材の温間板金プレス加工に用いる金型であって、上型及び下型が、相互に上下に対応した凹凸を備えない押圧面と、該押圧面を加熱するための加熱部とを有し、前記押圧面は、プレス時の流動材料の集中による凸部及び離散による凹部からなる凹凸形状をブランクの表裏面に形成するように、各々輪郭が決められていることを特徴とする板金プレス加工用金型。 A mold used for warm sheet metal press working of a metal plate material, wherein the upper mold and the lower mold have no pressing surface corresponding to the upper and lower sides, and a heating unit for heating the pressing surface. And the pressing surface has a contour determined so as to form a concavo-convex shape composed of a convex portion due to concentration of fluid material during pressing and a concave portion due to discrete on the front and back surfaces of the blank. Die for press working.
  3. 前記上型及び下型は各々、プレス加工時に上下動する基部と、該基部に固定された支持体と、基端部を該支持体に固定され先端部をブランクへの接触部とした複数の押圧子と、該押圧子を通す貫通孔を有し、前記基部に上下動可能に支持され、先端側がブランクへの接触面とされ、後退位置で前記押圧子の先端部を前記貫通孔から突出させ前進位置で該押圧子の先端部を前記貫通孔内に収納するスライド部とを備えており、該スライド部は前進位置に向けてばね力を受けていることを特徴とする請求項2に記載の板金プレス加工用金型。 Each of the upper mold and the lower mold includes a base that moves up and down during press processing, a support fixed to the base, a plurality of base ends fixed to the support, and a distal end serving as a contact portion with a blank. A presser and a through hole through which the presser passes, supported by the base so as to be movable up and down, the tip side is a contact surface to the blank, and the tip of the presser protrudes from the through hole in a retracted position 3. A slide portion that houses the tip of the pressing element in the through hole at the advanced position, and the slide portion receives a spring force toward the advanced position. Metal mold for sheet metal press working as described.
  4. 前記押圧子が板状体により形成され、相互に対面した状態で微小間隔をおいて平行に配置されていることを特徴とする請求項3に記載の板金プレス加工用金型。 The metal mold for sheet metal pressing according to claim 3, wherein the pressing elements are formed of a plate-like body, and are arranged in parallel with a minute interval in a state of facing each other.
  5. 上型の押圧子の面方向と、下型の押圧子の面方向とが、相互に交わるように配置されていることを特徴とする請求項4に記載の板金プレス加工用金型。 5. The metal mold for sheet metal pressing according to claim 4, wherein the surface direction of the upper die presser and the surface direction of the lower die presser are arranged so as to cross each other.
  6. 前記上型及び下型のスライド部がブランクの成形後の平面形状と同じ平面形状を有し、前記上型及び下型の一方の基部が、スライド部を水平方向に囲んで該スライド部を上下方向に超えて形成されたガイド部を備えており、前記上型及び下型の他方のスライド部は前記ガイド部の囲繞空間に進入し、前記ガイド部と前記上型及び下型のスライド部とによりプレス加工のための閉塞キャビティを形成することを特徴とする請求項3に記載の板金プレス加工用金型。 The slide part of the upper mold and the lower mold has the same planar shape as that of the blank after molding, and one base part of the upper mold and the lower mold surrounds the slide part in the horizontal direction and moves the slide part up and down. A guide part formed beyond the direction, and the other slide part of the upper mold and the lower mold enters the surrounding space of the guide part, and the guide part, the slide part of the upper mold and the lower mold, The metal mold for sheet metal pressing according to claim 3, wherein a closed cavity for pressing is formed.
  7. 請求項2に記載の金型を用いて、板材の表裏面に同時に凹凸形状を形成することを特徴とする温間板金プレス加工方法。 3. A warm sheet metal press working method, wherein uneven shapes are simultaneously formed on the front and back surfaces of a sheet material using the mold according to claim 2.
  8. ブランクにおける前記押圧子による成形領域を、該押圧子による変形高さより浅く凹陥させるように予め別の金型で予備プレス加工することを特徴とする請求項7に記載の温間板金プレス加工方法。 The warm sheet metal press working method according to claim 7, wherein a pre-pressing process is performed in advance with another mold so that a molding region of the blank in the blank is recessed shallower than a deformation height by the pressing element.
  9. ブランクが平面視多角形であり、ブランクの各辺に対して平面視凹状の凹入部をプレス加工による延展量に対応させて予め形成してプレス加工を行なうことを特徴とする請求項1または7に記載の板金プレス加工方法。 The blank is a polygon in a plan view, and a concave portion in a plan view is formed in advance on each side of the blank so as to correspond to the amount of extension by the press work, and the press work is performed. The sheet metal press working method according to 1.
  10. 前記上型及び下型におけるブランクとの接触部分の温度が230~400℃であり、前記上型及び下型のスライド部がブランクに接した後、下死点までのプレス速度が0.5~30mm/秒であることを特徴とする請求項1または7に記載の板金プレス加工方法。 The temperature of the contact part with the blank in the upper mold and the lower mold is 230 to 400 ° C., and the press speed to the bottom dead center is 0.5 to 400 after the slide parts of the upper mold and the lower mold are in contact with the blank. The sheet metal press working method according to claim 1, wherein the sheet metal press working method is 30 mm / second.
  11. ブランクが燃料電池用セパレータのための板材であることを特徴とする請求項1または7に記載の板金プレス加工方法。 The sheet metal press working method according to claim 1 or 7, wherein the blank is a sheet material for a fuel cell separator.
  12. ブランクが、マグネシウム、アルミニウムまたはチタン、あるいはいずれかの合金からなることを特徴とする請求項1または7に記載の板金プレス加工方法。 The sheet metal press working method according to claim 1 or 7, wherein the blank is made of magnesium, aluminum, titanium, or any alloy thereof.
  13. ガス流路用の複数の細溝が板金プレス加工により並設され、一方の面の細溝と他方の面の細溝とは互いに交差する方向に配置されていることを特徴とする燃料電池用セパレータ。 A plurality of narrow grooves for gas flow paths are juxtaposed by sheet metal pressing, and the narrow groove on one surface and the narrow groove on the other surface are arranged in a direction intersecting each other. Separator.
  14. 前記板金プレス加工が請求項1または7に記載の方法により行なわれたものであることを特徴とする請求項13に記載の燃料電池用セパレータ。 The separator for a fuel cell according to claim 13, wherein the sheet metal press working is performed by the method according to claim 1 or 7.
PCT/JP2009/050969 2008-01-31 2009-01-22 Press-working method for sheet metal, die therefor, and formed product WO2009096309A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009551485A JPWO2009096309A1 (en) 2008-01-31 2009-01-22 Sheet metal pressing method, mold and molded product thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-020765 2008-01-31
JP2008020765 2008-01-31

Publications (1)

Publication Number Publication Date
WO2009096309A1 true WO2009096309A1 (en) 2009-08-06

Family

ID=40912662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050969 WO2009096309A1 (en) 2008-01-31 2009-01-22 Press-working method for sheet metal, die therefor, and formed product

Country Status (2)

Country Link
JP (1) JPWO2009096309A1 (en)
WO (1) WO2009096309A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ305629B6 (en) * 2014-06-17 2016-01-13 Zkl Hanušovice. A.S. Forging tool for forging brass blanks of roller bearing cages with rough-wrought pockets
CN109119652A (en) * 2017-06-23 2019-01-01 丰田自动车株式会社 The manufacturing method of separator for fuel battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09234535A (en) * 1996-02-29 1997-09-09 Japan Small Corp Shape deciding method and designing method of forging die in pre-process of forging article
JP2000311663A (en) * 1999-04-28 2000-11-07 Matsushita Electric Ind Co Ltd Formation device of valve element for sealing plate
JP2003039131A (en) * 2001-07-30 2003-02-12 Kurimoto Ltd Forming method of magnesium alloy-made plate stock
JP2003531726A (en) * 2000-04-28 2003-10-28 モルフィック テクノロジーズ アクティエボラーグ Plate manufacturing method including intermediate roughing and final forming

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007007694A (en) * 2005-06-30 2007-01-18 Mingjun Xu Method for working magnesium alloy and producing process therefor
JP4666659B2 (en) * 2007-05-29 2011-04-06 日立金属株式会社 Magnesium alloy forged thin casing and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09234535A (en) * 1996-02-29 1997-09-09 Japan Small Corp Shape deciding method and designing method of forging die in pre-process of forging article
JP2000311663A (en) * 1999-04-28 2000-11-07 Matsushita Electric Ind Co Ltd Formation device of valve element for sealing plate
JP2003531726A (en) * 2000-04-28 2003-10-28 モルフィック テクノロジーズ アクティエボラーグ Plate manufacturing method including intermediate roughing and final forming
JP2003039131A (en) * 2001-07-30 2003-02-12 Kurimoto Ltd Forming method of magnesium alloy-made plate stock

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ305629B6 (en) * 2014-06-17 2016-01-13 Zkl Hanušovice. A.S. Forging tool for forging brass blanks of roller bearing cages with rough-wrought pockets
CN109119652A (en) * 2017-06-23 2019-01-01 丰田自动车株式会社 The manufacturing method of separator for fuel battery

Also Published As

Publication number Publication date
JPWO2009096309A1 (en) 2011-05-26

Similar Documents

Publication Publication Date Title
WO2010084864A1 (en) Method of press-forming of embossed steel sheet
US20080295563A1 (en) Method for Delaying of Cooling and Hardening of Desired Zones of a Sheet During a Hot Metal Stamping Process
KR101910782B1 (en) METHOD FOR MANUFACTURING PRESSED MOLD AND PRESS DEVICE
JP5199805B2 (en) Die quench processed product, manufacturing method and manufacturing apparatus thereof
JP6561608B2 (en) Press mold equipment
JP6619645B2 (en) Hot press apparatus and hot press molding method
WO2013005318A1 (en) Hot press forming method, and hot press device
CN110293148B (en) Magnesium alloy plate stamping and forging composite forming method
JP2018089679A (en) Metal plate molding method and molding equipment
WO2013061480A1 (en) Hot press molding method, article molded by hot press molding, and mold for hot pressing
CN109789467B (en) Hot stamping method and hot stamping system
WO2009096309A1 (en) Press-working method for sheet metal, die therefor, and formed product
JP2006289453A (en) Press forming method, and forming device
CN215879421U (en) Intelligent manufacturing production line for metal polar plate of hydrogen fuel cell
JP7265141B2 (en) Press-molding blank, press-molding blank manufacturing method, connected molded product manufacturing method, press-molded product manufacturing method, press-molding mold, and press-molding apparatus
CN210333984U (en) One shot forming's bending die
CN203900354U (en) Auxiliary device for producing U-shaped forging through titanium alloy
CN113664092A (en) Intelligent manufacturing production line for metal polar plate of hydrogen fuel cell
JP7158153B2 (en) Method for manufacturing hot stamped molded article, mold for hot stamped molded article, and hot stamped molded article molded using the mold
JP2009101378A (en) Pressing device for die quenching technique
JP7323824B2 (en) Method for manufacturing press-formed product and press-forming apparatus
CN216027508U (en) Two-side simultaneous ribbing die for closed-section automobile structural part
WO2018044217A1 (en) Press and method for the simultaneous shaping of more than one thin product
CN216324282U (en) Thermal shaping jig
CN109773044B (en) Semicircular plate pressing die and semicircular plate manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09705471

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009551485

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09705471

Country of ref document: EP

Kind code of ref document: A1