WO2009096290A1 - Medical diagnostic imaging device and method - Google Patents

Medical diagnostic imaging device and method Download PDF

Info

Publication number
WO2009096290A1
WO2009096290A1 PCT/JP2009/050868 JP2009050868W WO2009096290A1 WO 2009096290 A1 WO2009096290 A1 WO 2009096290A1 JP 2009050868 W JP2009050868 W JP 2009050868W WO 2009096290 A1 WO2009096290 A1 WO 2009096290A1
Authority
WO
WIPO (PCT)
Prior art keywords
volume data
dimensional volume
subject
medical image
section
Prior art date
Application number
PCT/JP2009/050868
Other languages
French (fr)
Japanese (ja)
Inventor
Ting Wang
Original Assignee
Hitachi Medical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corporation filed Critical Hitachi Medical Corporation
Priority to JP2009551477A priority Critical patent/JP5468909B2/en
Publication of WO2009096290A1 publication Critical patent/WO2009096290A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/563Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution of moving material, e.g. flow contrast angiography
    • G01R33/56308Characterization of motion or flow; Dynamic imaging
    • G01R33/56325Cine imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/561Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by reduction of the scanning time, i.e. fast acquiring systems, e.g. using echo-planar pulse sequences
    • G01R33/5615Echo train techniques involving acquiring plural, differently encoded, echo signals after one RF excitation, e.g. using gradient refocusing in echo planar imaging [EPI], RF refocusing in rapid acquisition with relaxation enhancement [RARE] or using both RF and gradient refocusing in gradient and spin echo imaging [GRASE]
    • G01R33/5616Echo train techniques involving acquiring plural, differently encoded, echo signals after one RF excitation, e.g. using gradient refocusing in echo planar imaging [EPI], RF refocusing in rapid acquisition with relaxation enhancement [RARE] or using both RF and gradient refocusing in gradient and spin echo imaging [GRASE] using gradient refocusing, e.g. EPI
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/563Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution of moving material, e.g. flow contrast angiography
    • G01R33/56375Intentional motion of the sample during MR, e.g. moving table imaging
    • G01R33/56391Intentional motion of the sample during MR, e.g. moving table imaging involving motion of a part of the sample with respect to another part of the sample, e.g. MRI of active joint motion

Definitions

  • the present invention relates to a medical image diagnostic apparatus and method capable of observing a change in a desired part of a subject that occurs with the movement of the subject.
  • a medical image diagnostic apparatus such as a magnetic resonance imaging apparatus (hereinafter referred to as an MRI apparatus) or an X-ray CT apparatus
  • MRI apparatus magnetic resonance imaging apparatus
  • X-ray CT apparatus a tomographic image of a desired position of a subject is imaged, or a desired part of a subject is three-dimensionally imaged. Or taking pictures.
  • Patent Document 2 discloses a technique for automatically detecting a tomographic plane at a desired position by detecting the movement of a subject using a magnetic resonance imaging apparatus.
  • Patent Document 1 discloses a technique for driving the joint, spine, and the like of the subject, but the desired cross-sectional position when performing dynamic imaging with an MRI apparatus or the like depends on the movement of the subject. No technology is disclosed for detecting how it is changing.
  • Patent Document 2 discloses a technique for displaying a desired cross section by quantitatively detecting the movement of the neck of the subject by rotating the head support.
  • the part to be imaged was a rigid body such as the head, so it was possible to detect the movement of the entire head only by turning the head support part.
  • the diagnostic part moves more complicatedly. In such a case, it is insufficient in accuracy to estimate the movement of the subject using only the fulcrum.
  • the present invention provides a medical image diagnostic apparatus capable of accurately detecting movement of a desired part of a subject, performing dynamic imaging, and displaying a desired cross section corresponding to the movement of the desired part. With the goal.
  • the invention for achieving the above-described object includes an imaging means for imaging a plurality of three-dimensional volume data for a desired part of the subject along with movement of the desired part of the subject in the imaging space, and the imaging Storage means for storing a plurality of three-dimensional volume data obtained by the means, input means for inputting a position of a desired cross section within a desired region of the subject, and an image of the desired cross section stored in the storage means
  • the medical image diagnosis apparatus further comprises detection means for detecting position information of a desired part of the subject, and the image generation means is controlled by the detection means. Using the detected position information, an image of the desired cross section is generated from each of the plurality of three-dimensional volume data of the desired cross section.
  • a medical image diagnostic apparatus and method capable of accurately detecting movement of a desired part of a subject to perform dynamic imaging and displaying a desired cross section corresponding to the movement of the desired part. Can provide.
  • FIG. 1 is a block diagram showing the overall configuration of an MRI apparatus that is an example of a medical image diagnostic apparatus to which the present invention is applied.
  • V1 desired multiple sections, V2 desired multiple sections after the angle of bending the knee etc. is changed
  • FIG. 1 is a block diagram showing an overall configuration of an MRI apparatus which is an example of a medical image diagnostic apparatus to which the present invention is applied.
  • this MRI apparatus mainly includes a static magnetic field generation system 1, a gradient magnetic field generation system 2, a transmission system 3, a reception system 4, a signal processing system 5, a control system (sequencer 6 and CPU7).
  • the static magnetic field generation system 1 generates a uniform static magnetic field in a space (imaging space) around the subject 8, and is composed of a magnet device of a permanent magnet system, a normal conduction system, or a superconductivity system.
  • Gradient magnetic field generation system 2 includes, for example, three gradient magnetic field coils 9 that generate gradient magnetic field pulses in these three axial directions when the direction of the static magnetic field is the Z direction and the two directions orthogonal thereto are X and Y, and Are each composed of a gradient magnetic field power source 10 for driving each of.
  • gradient magnetic field pulses can be generated in the three axes of X, Y, and Z or in the direction in which these are combined.
  • the gradient magnetic field pulse is applied to give position information to the NMR signal generated from the subject 8.
  • the transmission system 3 includes a high frequency oscillator 11, a modulator 12, a high frequency amplifier 13, and a high frequency irradiation coil 14 for transmission.
  • the RF pulse generated by the high-frequency oscillator 11 is modulated into a signal having a predetermined envelope by the modulator 12, amplified by the high-frequency amplifier 13, and applied to the high-frequency irradiation coil 14, whereby the nucleus of the atom constituting the subject is An electromagnetic wave (high frequency signal, RF pulse) that causes magnetic resonance is irradiated to the subject.
  • the high-frequency irradiation coil 14 is usually disposed in the vicinity of the subject.
  • the reception system 4 includes a high-frequency reception coil 15 for reception, an amplifier 16, a quadrature detector 17, and an A / D converter 18.
  • the NMR signal generated by the subject as a response to the RF pulse irradiated from the high-frequency irradiation coil 14 for transmission is detected by the high-frequency reception coil 15 for reception and amplified by the amplifier 16, and then the quadrature detector 17 Then, it is converted into a digital quantity by the A / D converter 18 and sent to the signal processing system 5 as two series of collected data.
  • the signal processing system 5 includes a CPU 7, a storage device 19, and an operation unit 20.
  • the CPU 7 performs various signal processing such as Fourier transform, correction coefficient calculation, and image reconstruction on the digital signal received by the reception system 4.
  • the storage device 19 includes a ROM 21, a RAM 22, a magneto-optical disk 23, a magnetic disk 24, and the like.
  • a program for performing image analysis processing and measurement over time and an invariant parameter used in the execution are stored in the ROM 21 for all measurements.
  • the obtained measurement parameters and echo signals detected by the reception system are stored in the RAM 22 and the reconstructed image data is stored in the magneto-optical disk 23 and the magnetic disk 24, respectively.
  • the operation unit 20 includes input means such as a trackball or a mouse 25 and a keyboard 26, and a display 27 for displaying a GUI necessary for input and displaying processing results in the signal processing system 5. Information necessary for various processes and control performed by the CPU 7 is input via the operation unit 20. An image obtained by photographing is displayed on the display 27.
  • the control system consists of a sequencer 6 and a CPU 7, and controls the operations of the gradient magnetic field generation system 2, the transmission system 3, the reception system 4 and the signal processing system 5 described above.
  • the gradient magnetic field pulse and RF pulse application timing generated by the gradient magnetic field generation system 2 and the transmission system 3 and the echo signal acquisition timing by the reception system 4 are controlled by the sequencer 6 based on a predetermined pulse sequence determined by the imaging method. .
  • Gs, Gp, and Gr represent slice selective gradient magnetic field, phase encode gradient magnetic field, and frequency encode gradient magnetic field axes, respectively, and RF, AD, and Echo represent RF pulse, sampling window, and echo signal, respectively.
  • 201 is an RF pulse
  • 202 is a slice selective gradient magnetic field pulse
  • 203 is a slice encode gradient magnetic field pulse
  • 204 is a phase encode gradient magnetic field pulse
  • 205 is a phase blip gradient magnetic field pulse group
  • 206 is a frequency phase gradient magnetic field pulse
  • 207 Is a frequency encoding gradient magnetic field pulse group
  • 208 is a sampling window group
  • 209 is an echo signal group.
  • the sequencer 4 measures the echo signal 209 for each readout gradient magnetic field pulse 207 while changing the polarity of the readout gradient magnetic field pulse 207 for each irradiation of the RF pulse 201. This is repeatedly executed at a time interval 210 (repetition time TR), and the number of echo signals necessary for image reconstruction is measured.
  • the number of echo signals necessary for image reconstruction is generally about 64, 128, or 256 depending on the matrix of the image to be created.
  • the number after-(underscore) represents a repetition number.
  • FIG. 2 shows the first first sequence among a plurality of repetitions, and the second and subsequent repetition sequences are the same as the first one, and are omitted.
  • a plurality of echo signals are measured by one RF pulse, so that an image can be acquired at a higher speed than a sequence in which one echo signal is measured by one RF pulse.
  • FIG. 2 since six echo signals 209 are measured by one RF pulse 201, it can be photographed six times faster.
  • Example 1 of the present invention will be described.
  • three-dimensional imaging is performed using the MRI apparatus configured as shown in FIG. 1 and using the imaging sequence shown in FIG.
  • three axes (X axis, Y axis, Z axis) in the orthogonal coordinate system are defined in the imaging space (FOV) of the MRI apparatus. Further, any one of the three axis directions is taken as one of the slice encoding direction, the phase encoding direction, and the frequency encoding direction in the sequence diagram of FIG. 2, and the volume data is continuously collected. The obtained three-dimensional volume data is sequentially stored in the storage device 19.
  • the dynamic imaging that is the subject of the present invention is, for example, within the imaging area (FOV) defined in the imaging space of the MRI apparatus, the subject moves his / her foot, knee, etc. as shown in FIG.
  • the doctor (operator) etc. diagnoses how the joints such as these change. For example, while the subject changes the angle of the foot (or the angle at which the knee is bent) from a predetermined position (point A) to another position (point B), 100 pieces of 3D volume data are obtained in time series using the MRI device. Then, for each volume data, an image of the imaging section to be diagnosed is reconstructed and displayed, and the change is observed.
  • a desired cross-sectional image such as a cross section from the heel to the heel, is cut out and displayed in time series, and the doctor or the operator changes the desired cross section (cross section from the knee position to the foot direction or from the toe of the foot to the heel) over time. Observe.
  • the angle at which the knee is bent changes sequentially, so the position of the desired cross-section (cross-section from the knee position to the foot direction or from the foot toe to the heel) is within the 3D volume data. It changes sequentially.
  • three screens of sagittal, coronal, and axial are displayed on the display 27 of the MRI apparatus based on the three-dimensional volume data.
  • a line segment representing a cross-sectional position is sequentially input (for each volume data), and a cross-section to be sequentially observed needs to be displayed for each three-dimensional volume data.
  • the MRI apparatus includes a detection unit that detects a movement of a portion to be diagnosed by a subject, and sets an observation target corresponding to the movement of the target portion detected by the detection unit.
  • the cross section can be reconstructed and displayed. Details will be described below.
  • coordinate transformation that is the basis of image reconstruction in this embodiment will be described. More specifically, the coordinate conversion processing here is used by the MRI apparatus to calculate the position of the observation target cross section to be subjected to image reconstruction in correspondence with the movement of the target portion detected by the detection means. It is coordinate transformation.
  • FIG. 4 schematically shows coordinate transformation in the present invention.
  • the coordinate transformation described in FIG. 4 is the first piece of volume data obtained in time series of 100, and after the doctor or the operator inputs which cross-sectional position is the object of diagnosis, MRI
  • the apparatus is used to calculate how the position of the inputted diagnosis target section changes in time series according to the movement (rotation angle or the like) of the diagnosis target part detected by the detection means.
  • FIG. 4 (a) shows a state in which a desired plurality of cross-sections composed of multi-slices are set on the first volume data.
  • an operator or a doctor inputs and defines a plurality of slices V1 as a desired plurality of cross sections in the volume data.
  • V1 consists of a plurality of desired cross sections C1 1 to C1 n .
  • the position of the observation site of the subject changes in the volume data, so that a plurality of desired cross sections (V1: C1 1 to C1 n ). The position of must also be changed.
  • FIG. 4 (b) illustrates a desired plurality of sections to be set after the angle at which the knee or the like is bent changes, and setting of the desired plurality of sections according to a change in the angle at which the knee or the like is bent.
  • the position (V1: C1 1 to C1 n ) has been changed to (V2: C2 1 to C2 n ).
  • the change of a plurality of desired cross-sections (V1: C1 1 to C1 n ) to (V2: C2 1 to C2 n ) is, for example, the rotation matrix R12 when the change in the angle of bending the knee or the like is ⁇ .
  • C1 and C2 in the equation (1) define the positions or directions of a plurality of desired cross sections, and are composed of position vectors, direction vectors, or the like.
  • Expression (1) will be described.
  • Example 1 Example of rotating coordinate conversion (when rotating around X axis)
  • the rotation matrix in Equation (1) is expressed as follows.
  • represents a rotation angle for bending the knee or the like.
  • the angle ⁇ can be obtained, for example, based on how the position coordinates of the marker have changed compared to before rotation, as will be described later. For example, if the position coordinate of the marker A changes to (xa ', ya', za ') after rotation with (xa, ya, za) before rotation, the following equations (3) and (4) The angle ⁇ can be obtained by using the equation.
  • Example 2 Example of rotating coordinate transformation (when rotating around Y axis) When the rotation of the desired part of the subject is performed with the X axis as the rotation axis, the rotation matrix in Equation (1) is expressed as follows. However, the angle ⁇ can determine how the position coordinates of the marker change compared to before rotation as described later, for example.
  • Example 4 Example of rotating coordinate conversion (when none of the X, Y, or Z axes is rotated) As in Example 1 to Example 3 described above, when any of the X, Y, and Z axes is not a rotation axis and the ⁇ and ⁇ angles are moved from the angles of ⁇ and ⁇ to ⁇ + ⁇ , ⁇ + ⁇ in the polar coordinate system, The rotation matrix is expressed as follows. Formula (11) However, in this example, since there are a plurality of parameters related to the rotation angle, it is necessary to obtain each parameter based on the change in the position coordinates of the plurality of markers.
  • 51 is a data storage unit that corresponds to the ROM 21, RAM 22, magneto-optical disk 23, magnetic disk 24, etc. in FIG. 1, and stores echo signals collected by the above-described three-dimensional imaging.
  • MPR multi-section reconstruction processing
  • Arbitrary multi-section reconstruction processing refers to processing for creating a reconstruction image of a cross section at an arbitrary position from a plurality of two-dimensional images.
  • a plurality of cross sections (C2 1 to C2 N, etc.) at a desired position are reconstructed from volume data composed of a plurality of two-dimensional images.
  • a display processing unit 53 is connected to the MPR processing unit 52 and performs processing for displaying the MPR-processed image on an image display unit 54 described later.
  • reference numeral 54 denotes an image display unit connected to the display processing unit 53 for displaying the MPR processed image.
  • the display 27 in FIG. 1 is connected to the display processing unit 53 and is used as the image display unit 54 to display an MPR-processed image.
  • reference numeral 55 denotes an operation unit that is connected to the MPR processing unit 52, the display processing unit 53, and the image display unit 54, and operates the MPR processing unit 52, the display processing unit 53, and the image display unit 54.
  • the trackball or mouse 25 and the keyboard 26 in FIG. 1 are used as an operation unit 55 for scanning the MPR processing unit, the signal processing unit, and the display processing unit.
  • Step 1 Implementation of dynamic imaging
  • the doctor or operator places the subject in the MRI apparatus and performs dynamic imaging to acquire multiple 3D volume data in time series using the MRI apparatus.
  • the three-dimensional volume data is input to the data storage unit 51.
  • feet etc. in the imaging area (FOV) formed along the three axes (X axis, Y axis, Z axis) in the Cartesian coordinate system set in the imaging space of the MRI apparatus Move while moving.
  • Step 2 Creation and display of MPR reference input screen
  • MPR reference plane input screen is a screen for inputting a desired cross section in the MPR processing, for example, an image of a sagittal, coronal, or axial cross section.
  • Step 3 Setting the desired section for MPR processing
  • the doctor or surgeon performs MPR processing. Parameters and the like are input in order to set a desired cross section (hereinafter referred to as cut plane). Details of the input screen will be described later.
  • a doctor or an operator inputs a plurality of parallel curves or straight lines, or sets a line segment in a radial shape around an axis perpendicular to one screen.
  • the thickness of the cut plane configuring each multi-slice, the region of interest on the cut plane, the interval between the cut planes, the number of cut planes, and the like are set.
  • a single central line is set, an interval between cut planes and the number of cut planes are input, and a plurality of cut planes are set.
  • a desired cross section to be subjected to the MPR process may be set according to the center point position, the angle interval, or the number of lines.
  • Step 4 Marker position designation
  • a doctor or an operator designates a marker serving as a reference for detecting the rotation angle of the diagnosis target portion of the subject.
  • the detection of the rotation angle of the diagnosis target part of the subject is performed automatically from the image by, for example, (a) known tissue tracking technology, (b) placing a jig that generates a large NMR signal at the diagnosis part of the subject.
  • a method of manually detecting the jig (c) a method of using an optical system as described in International Publication No. WO03 / 026505A1, and the like are conceivable.
  • the marker position designation in this step is changed according to the detection method of the rotation angle of the diagnosis target region of the subject.
  • a marker on the part of the foot when using a method that automatically or manually detects from the image by placing a jig that generates a large NMR signal at the diagnostic site of the subject, place a marker on the part of the foot and display the image
  • the pixel intensity and size above are input and stored in the MRI apparatus, and can be recognized from the two-dimensional image data in each volume data by pattern matching from the image.
  • an image of a predetermined organ pattern for example, an image of a part of a foot (ROI)
  • Allow input when using an optical system as described in International Publication No. WO03 / 026505A1, for example, a light emitter and a reflector are arranged in the gantry of the MRI apparatus or in a part of the subject.
  • the number of markers set in this step varies depending on the degree of freedom of rotation of the diagnosis target part of the subject.
  • the rotation axis is any of the above-mentioned X axis, Y axis, and Z axis
  • the rotation center is the knee If it is fixed by a single, etc., the movement of the object to be diagnosed (beyond the knee) is uniquely determined by the position of one marker placed on the foot side from the knee, so the number of markers is only one Good.
  • the rotation axis is not one of the above-mentioned X axis, Y axis, and Z axis
  • the movement of the subject to be diagnosed is not uniquely determined, as in Example 4 above. Since it is possible to rotate, it is considered that two or more markers are required.
  • the diagnostic site of the subject near the ankle is thought to move in a complex manner. In that case, the number of markers is three. This is considered necessary.
  • Step 5 For each of the volume data, the position of the marker and the angle detection of the diagnosis target part For each of the volume data other than the volume data specified in Step 2, the position of the marker specified in (Step 4) is sequentially described above (a) The detection angle is detected according to each of the methods (c) to (c), and the rotation angle of the diagnosis target part of the subject is detected for each volume data by the method according to Examples 1 to 4.
  • Step 6 Calculate the position of the desired cross-section for each volume data
  • the position of the desired cross-section set in Step 3 is set for each volume.
  • the determinants as shown in Examples 1 to 4 above are used.
  • the amount of parallel movement is detected by detecting the position of the marker for each volume data in (Step 5).
  • a known translational transformation may be added to the rotational coordinate transformation by the determinant as shown in 1 to 4.
  • equation (1) may be transformed into equation (12) so that an offset term representing translation is added.
  • C2 R12 ⁇ C1 + P12 (12)
  • P12 in the equation (12) is a vector for adding an offset term to each component of C1 made up of a position vector or a direction vector.
  • Step 7 Generating a cross-sectional image by interpolation processing
  • the MRI apparatus sets one of a plurality of three-dimensional volume data in Step 3, and in Step 6 for each position of the desired cross section obtained for each volume data.
  • a cross-sectional image is obtained by interpolation processing.
  • the MRI apparatus has a data arrangement of three-dimensional volume data composed of a plurality of two-dimensional data when the desired cross-sectional arrangement direction is oblique to the X, Y, and Z3 axes.
  • the position and the position of each pixel of the desired cross-section to be reconstructed do not necessarily match. In such a case, the pixel value of the location where the position does not necessarily match is obtained by interpolation.
  • Step 8 Display Processing
  • the display processing unit 53 performs display processing for displaying the reconstructed image of each desired cross section obtained in Step 7 on the image display unit 54.
  • the screen displayed by this step is as shown in FIG.
  • reference numeral 71 denotes four screens displayed on the image display unit.
  • the upper right of the four screens is the sagittal direction screen, the upper left is the coronal direction screen, the lower left is the axial direction screen, and the lower right is by the MPR process.
  • the obtained tomogram is shown.
  • 72 is a scroll bar for switching the display of a plurality of three-dimensional volume images obtained in time series in step 1.
  • the scroll bar when the scroll bar is located at the left end, it shows the volume data obtained at the first timing in time series, and the display screen switches to a new one in time series as the scroll bar is moved to the right. It shows that.
  • Reference numeral 73 denotes a volume data number. For example, when the volume data number is 1 to 100, the number 1 is the earliest number in time series, and the number 100 is the earliest time series number.
  • 74 is for designating the rotation angle of a part to be diagnosed such as a foot in each volume data. By designating the rotation angle, the CPU 7 selects and displays volume data when the diagnosis target part is at the designated angle.
  • Step 75 is a scroll bar for selecting which volume data to display by switching the display cross section to the lower right screen of 71 for each volume data. More specifically, in Step 3, it is possible to specify a case where there are a plurality of desired cross sections. In that case, a plurality of desired cross sections can be displayed by moving the scroll bar on the display cross section on the lower right screen. It can be switched sequentially.
  • 76 is for a doctor or an operator to input information regarding a desired cross section to be subjected to MPR processing in Step 3. For example, parameters such as the thickness of the cut plane, the region of interest on the cut plane, the interval between the cut planes, and the number of cut planes as described in step 3 are input.
  • 77 is for setting a cross-section sharing range, and the position of a desired cross-section is shared by the entire three-dimensional volume data range (for example, up to 1 to 100) or the first half (for example, 1 to 50). It is shown whether it is a part of it and is part of it, or it is shared and part of it in the latter half (for example 51 to 100).
  • the 78 indicates the relationship between the volume data number and the angle of the diagnosis target part of the subject for a plurality of three-dimensional volume data.
  • the table shows that the angle of the diagnosis target part of the subject increases as the volume data number increases and the time advances in time series.
  • an imaging unit that captures a plurality of three-dimensional volume data for a desired part of the subject together with a movement of the desired part of the subject in the imaging space, and a plurality of three-dimensional data obtained by the imaging unit
  • Storage means for storing volume data, input means for inputting a position of a desired cross section within a desired region of the subject, and an image of the desired cross section are generated from three-dimensional volume data stored in the storage means
  • the image generation means includes detection means for detecting position information of a desired part of the subject, and the image generation means uses the position information detected by the detection means, An image of the desired section is generated from each of the plurality of three-dimensional volume data of the desired section.
  • the detecting means detects position information of a specific position of the desired part, and when the desired part moves around a fixed fulcrum part, the specific position is provided in one place.
  • the movement of the desired part of the subject rotates around the X axis, the Y axis, or the Z axis in the orthogonal coordinate system set in the imaging space of the medical image diagnostic apparatus.
  • the number of the specific positions is set to two or more, and the detection means is the 2
  • the position of the desired part is detected by detecting more than one specific position.
  • a selection unit that selects any one or more of the three-dimensional volume data obtained in time series, and the input unit outputs the two-dimensional data obtained from the three-dimensional volume data selected by the selection unit.
  • a position of a predetermined cross-section is input on a three-dimensional image, and the other three-dimensional volume data not selected by the selection means is selected based on the position information of the desired part detected by the detection means.
  • a calculation means for calculating the position is provided. There may be a case where there are a plurality of desired cross sections, and the case where the desired cross section is a plane or a curved surface is included.
  • the steps (1) and (2) the steps (1) for imaging a plurality of three-dimensional volume data of the subject with movement of a desired part of the subject in the imaging space ) From the three-dimensional volume data imaged in (2), generating a reference screen (2), and inputting a desired cross-sectional position for image generation on the reference screen generated in the step (2) ( 3) and a medical image diagnostic method comprising a step (4) of generating an image of a desired cross-sectional position input in the step (3), wherein a plurality of three-dimensional images obtained by the step (1) From the volume data, comprising the step (5) of selecting any one or more three-dimensional volume data, the step (2) generates a reference screen for the three-dimensional volume data selected in the step (5), Each of the plurality of three-dimensional volume data represents a change in position of a desired part of the subject.
  • (4) provides a medical image diagnostic method characterized by generating an image of a desired cross-sectional position which is input in the step (3) and whose position change is detected in the step (7).
  • a step (1) of imaging a plurality of three-dimensional volume data of the subject with movement of a desired part of the subject in the imaging space, and a plurality of three-dimensional volumes obtained by the step (1) A step (2) for selecting one or more arbitrary three-dimensional volume data from the data, a step (3) for generating a reference screen from the three-dimensional volume data selected in the step (2), and the step (4) inputting a desired cross-sectional position for image generation on the reference screen generated in (3), and detecting a change in position of a desired part of the subject for each of the plurality of three-dimensional volume data
  • the step (6) for calculating the desired cross-sectional position in the other three-dimensional volume data based on the position change of the desired part detected in the step (5), and the step (4) Input or calculated by the above step (6) Medical image diagnosis method characterized by comprising a step (7) for generating an image of the cross-sectional position is provided.
  • Example 2 of the present invention is almost the same as Example 1, except for the following points. That is, in the first embodiment, after the three-dimensional volume data is taken in time series in all time phases in step 1, the processing of step 2 and subsequent steps is performed, but in this embodiment, the three-dimensional volume data is collected. In the middle, the processing from step 2 onwards is performed.
  • the MRI apparatus will start displaying MPR images from step 2 onwards after the dynamic imaging for the 1st to 50th is completed, and the 51st to 100th tertiary At the stage where the original volume data is collected, the MRI apparatus starts to display the MPR image of step 2 and below for the 51st to 100th.
  • the setting of the desired cross section to be subjected to the MPR process in step 3 performed for the first volume data and the setting of the desired cross section to be the target of the MPR process in step 3 performed for the 51st volume data are performed. It may be the same position or a different position in the subject of the specimen diagnosis. By doing so, it can be suitably applied when the rotation trajectory of the object to be diagnosed differs between the first half and the second half of a plurality of three-dimensional volume data, or when the rotation fulcrum differs between the first half and the second half. There is an advantage that it can be suitably handled.
  • Example 3 of the present invention is substantially the same as Example 1, except for the following points. That is, in Example 1, after setting the three-dimensional volume data in all time phases in step 1, the desired cross-section to be subjected to the MPR process is set only for the first three-dimensional volume data. However, in this embodiment, all time-phase three-dimensional volume data is divided into two or more groups, and MPR processing is performed separately for each group.
  • MPR processing is performed by setting a desired cross section to the first 3D volume data
  • 51 MPR processing may be performed by setting a desired section in the three-dimensional volume data of the face.
  • the MPR processing parameter setting (setting of a desired section) is performed only for one or a plurality of three-dimensional volume data, and a desired section for other three-dimensional volume data is set. Can be displayed in response to the movement of a desired part of the subject.
  • the present invention is not limited to the contents disclosed in each of the above embodiments, and can take various forms without departing from the spirit of the present invention.
  • a medical image diagnostic apparatus such as an X-ray CT apparatus may be used.
  • arbitrary multi-section reconstruction is described in which a desired section in each phase is displayed after dynamic imaging with a medical image diagnostic apparatus.
  • a result obtained by dynamic imaging is stored in a storage device in advance and stored. It goes without saying that a system that only reconstructs an arbitrary multi-section can be used. Even in such a system, it is considered that an arbitrary multi-section reconstruction may be performed as described above.

Abstract

A medical diagnostic imaging device comprising an imaging means for imaging plural three-dimensional volume data on a desired site of a subject with the movement of the desired site of the subject in a photographing space, a storage means for storing the plural three-dimensional volume data acquired by the imaging means, an input means for inputting the position of a desired cross section in the desired site of the subject, and an image generating means for generating the image of the desired cross section from the three-dimensional volume data stored in the storage means, comprises a detection means for detecting positional information on the desired site of the subject. The image generating means generates each image of the desired cross section from each of the plural three-dimensional volume data on the desired cross section by using the positional information detected by the detection means.

Description

医用画像診断装置及び方法Medical image diagnostic apparatus and method
 本発明は、被検体の動きとともに生じる被検体の所望の部位の変化を観察することが可能な医用画像診断装置及び方法に関する。 The present invention relates to a medical image diagnostic apparatus and method capable of observing a change in a desired part of a subject that occurs with the movement of the subject.
 磁気共鳴イメージング装置(以下、MRI装置という。)あるいはX線CT装置等の医用画像診断装置では、被検体の所望の位置の断層像を撮像したり、被検体の所望の部位を三次元的画像を撮像したりする。 In a medical image diagnostic apparatus such as a magnetic resonance imaging apparatus (hereinafter referred to as an MRI apparatus) or an X-ray CT apparatus, a tomographic image of a desired position of a subject is imaged, or a desired part of a subject is three-dimensionally imaged. Or taking pictures.
 近年、膝や肘の関節や脊椎等の可動部位の損傷を診断する際、関節等を動かしながらX線透視装置等を用いて撮影を行う「動態撮影」の研究がされている。(例えば、動態撮影システム及び動態撮像方法について特許文献1参照。)なぜならば、膝や肘の関節や脊椎等の可動部位の診断のためには、関節や脊椎等が静止された状態よりも、関節や脊椎等がその動きとともにどのように変化するかを診断することが、関節や脊椎等の不具合(病変)を診断する上で重要だからである。 In recent years, research has been conducted on “dynamic imaging” in which X-ray fluoroscopy is used while moving joints when diagnosing damage to movable parts such as knees and elbow joints and spines. (For example, refer to Patent Document 1 regarding a dynamic imaging system and a dynamic imaging method.) Because, for diagnosis of movable parts such as knees and elbow joints and spines, the joints and spines are not stationary. This is because diagnosing how the joint, spine, and the like change with its movement is important in diagnosing defects (lesions) of the joint, spine, and the like.
 一方特許文献2では、磁気共鳴イメージング装置を用いて、被検体の動きを検出して、所望の位置の断層面を自動的に検出する技術が開示されている。 On the other hand, Patent Document 2 discloses a technique for automatically detecting a tomographic plane at a desired position by detecting the movement of a subject using a magnetic resonance imaging apparatus.
特開2006-149488号公報JP 2006-149488 A 特開平11-318849号公報JP 11-318849 A
 しかしながら、特許文献1は、被検体の関節や脊椎等を駆動する技術については開示されているが、MRI装置等で動態撮影する際の所望の撮影断面位置が、被検体の動きに依存してどう変化しているかを探知する技術は開示されていない。 However, Patent Document 1 discloses a technique for driving the joint, spine, and the like of the subject, but the desired cross-sectional position when performing dynamic imaging with an MRI apparatus or the like depends on the movement of the subject. No technology is disclosed for detecting how it is changing.
 また、特許文献2では、被検体の頚部の動きを、頭受け部の回動により定量的に検出して所望の断面を表示する技術が開示されている。本技術では撮影の対象とする部位が頭部のように硬い剛体の場合であったので、頭受け部の回動のみで頭全体の動きを検知することが可能であったが、足等のように柔らかい部位を対象とする場合には、より複雑に診断部位が移動すると考えられ、そのような場合支点のみで被検体の動きを推定するのは正確性が不十分であった。 Patent Document 2 discloses a technique for displaying a desired cross section by quantitatively detecting the movement of the neck of the subject by rotating the head support. In this technology, the part to be imaged was a rigid body such as the head, so it was possible to detect the movement of the entire head only by turning the head support part. In such a case where the soft part is targeted, it is considered that the diagnostic part moves more complicatedly. In such a case, it is insufficient in accuracy to estimate the movement of the subject using only the fulcrum.
 本発明は、被検体の所望の部位の動きを正確に検知して動態撮影を行い、所望の断面を所望の部位の動きに対応して表示することが可能な医用画像診断装置を提供することを目的とする。 The present invention provides a medical image diagnostic apparatus capable of accurately detecting movement of a desired part of a subject, performing dynamic imaging, and displaying a desired cross section corresponding to the movement of the desired part. With the goal.
 前述した目的を達成するための発明は、撮影空間内で被検体の所望の部位の動きと伴に、前記被検体の所望の部位について複数の三次元ボリュームデータを撮像する撮像手段と、前記撮像手段で得られた複数の三次元ボリュームデータを記憶する記憶手段と、前記被検体の所望の部位内の所望断面の位置を入力する入力手段と、前記所望断面の画像を、前記記憶手段に記憶されている三次元ボリュームデータより生成する画像生成手段を備えた医用画像診断装置において、前記被検体の所望の部位の位置情報を検出する検出手段を備え、前記画像生成手段は、前記検出手段により検出した位置情報を用いて、前記所望断面の前記複数の三次元ボリュームデータの各々から前記所望断面の画像をそれぞれ生成する。 The invention for achieving the above-described object includes an imaging means for imaging a plurality of three-dimensional volume data for a desired part of the subject along with movement of the desired part of the subject in the imaging space, and the imaging Storage means for storing a plurality of three-dimensional volume data obtained by the means, input means for inputting a position of a desired cross section within a desired region of the subject, and an image of the desired cross section stored in the storage means In the medical image diagnostic apparatus provided with the image generation means for generating the generated three-dimensional volume data, the medical image diagnosis apparatus further comprises detection means for detecting position information of a desired part of the subject, and the image generation means is controlled by the detection means. Using the detected position information, an image of the desired cross section is generated from each of the plurality of three-dimensional volume data of the desired cross section.
 また、
(1)撮影空間内で被検体の所望の部位を動きと伴に、前記被検体の三次元ボリュームデータを複数撮像する工程と、
(2)前記工程(1)で撮像された前記三次元ボリュームデータより、基準画面を生成する工程と、
(3)前記工程(2)により生成された基準画面上に画像生成のための所望の断面位置を入力する工程と、
(4)前記工程(3)で入力された所望の断面位置の画像を生成する工程を備えた医用画像診断方法であって、
(5)前記工程(1)により得られた複数の三次元ボリュームデータより、任意の1個以上の三次元ボリュームデータを選択する工程を備え、
 前記工程(2)は前記工程(5)で選択された三次元ボリュームデータについて基準画面を生成し、
(6)前記被検体の所望の部位の位置変化を前記複数の三次元ボリュームデータそれぞれについて検出する工程と、
(7)前記工程(6)により検出した所望の部位の位置変化に基づいて、他の三次元ボリュームデータにおける前記所望断面位置を算出する工程を備え、
 前記工程(4)は、前記工程(3)で入力され、前記工程(7)で位置変化が検出された所望断面位置の画像を生成する。
Also,
(1) a step of imaging a plurality of three-dimensional volume data of the subject with movement of a desired part of the subject in the imaging space;
(2) generating a reference screen from the three-dimensional volume data imaged in the step (1);
(3) a step of inputting a desired cross-sectional position for image generation on the reference screen generated by the step (2);
(4) A medical image diagnostic method comprising a step of generating an image of a desired cross-sectional position input in the step (3),
(5) a step of selecting any one or more three-dimensional volume data from a plurality of three-dimensional volume data obtained in the step (1),
The step (2) generates a reference screen for the three-dimensional volume data selected in the step (5),
(6) detecting a change in position of a desired part of the subject for each of the plurality of three-dimensional volume data;
(7) Based on the position change of the desired part detected by the step (6), comprising the step of calculating the desired cross-sectional position in other three-dimensional volume data,
In the step (4), an image of a desired cross-sectional position which is input in the step (3) and whose position change is detected in the step (7) is generated.
 本発明によれば、被検体の所望の部位の動きを正確に検知して動態撮影を行い、所望の断面を所望の部位の動きに対応して表示することが可能な医用画像診断装置及び方法を提供できる。 According to the present invention, a medical image diagnostic apparatus and method capable of accurately detecting movement of a desired part of a subject to perform dynamic imaging and displaying a desired cross section corresponding to the movement of the desired part. Can provide.
本発明が適用される医用画像診断装置の一例であるMRI装置の全体構成を示すブロック図。1 is a block diagram showing the overall configuration of an MRI apparatus that is an example of a medical image diagnostic apparatus to which the present invention is applied. 本発明のMRI装置が備える三次元のグラディエントエコー型のマルチショットエコープレナー法を示す図。The figure which shows the three-dimensional gradient echo type | mold multi-shot echo planar method with which the MRI apparatus of this invention is provided. 動態撮影を説明する図。The figure explaining dynamic imaging | photography. (a)マルチスライスから成る所望の複数断面が1番目のボリュームデータ上に設定された様子を示す図。(b)膝等を曲げる角度が変わった後において、設定されるべき所望の複数断面を示す図。(a) The figure which shows a mode that the desired several cross section which consists of multi slices was set on the 1st volume data. (b) The figure which shows the desired several cross section which should be set after the angle which bends a knee etc. changes. 本実施例におけるMRI装置の動態撮影を行うための内部構成を示す図。The figure which shows the internal structure for performing dynamic imaging of the MRI apparatus in a present Example. 本実施例における動態撮影のフローを示す図。The figure which shows the flow of dynamic imaging | photography in a present Example. 表示処理により表示される画面。Screen displayed by the display process.
符号の説明Explanation of symbols
 V1 所望の複数断面、V2 膝等を曲げる角度の変化された後の所望の複数断面 V1 desired multiple sections, V2 desired multiple sections after the angle of bending the knee etc. is changed
発明を実施するための形態BEST MODE FOR CARRYING OUT THE INVENTION
 図1は、本発明が適用される医用画像診断装置の一例であるMRI装置の全体構成を示すブロック図である。図1に示すように、このMRI装置は、主として、静磁場発生系1と、傾斜磁場発生系2と、送信系3と、受信系4と、信号処理系5と、制御系(シーケンサ6とCPU7)とを備えている。 FIG. 1 is a block diagram showing an overall configuration of an MRI apparatus which is an example of a medical image diagnostic apparatus to which the present invention is applied. As shown in FIG. 1, this MRI apparatus mainly includes a static magnetic field generation system 1, a gradient magnetic field generation system 2, a transmission system 3, a reception system 4, a signal processing system 5, a control system (sequencer 6 and CPU7).
 静磁場発生系1は、被検体8の周りの空間(撮影空間)に均一な静磁場を発生させるもので、永久磁石方式、常電導方式或いは超電導方式等の磁石装置からなる。 The static magnetic field generation system 1 generates a uniform static magnetic field in a space (imaging space) around the subject 8, and is composed of a magnet device of a permanent magnet system, a normal conduction system, or a superconductivity system.
 傾斜磁場発生系2は、例えば静磁場の方向をZ方向とし、それと直交する2方向をX,Yとするとき、これら3軸方向に傾斜磁場パルスを発生する3つの傾斜磁場コイル9と、それらをそれぞれ駆動する傾斜磁場電源10とからなる。傾斜磁場電源10を駆動することにより、X,Y,Zの3軸あるいはこれらを合成した方向に傾斜磁場パルスを発生することができる。傾斜磁場パルスは、被検体8から発生するNMR信号に位置情報を付与するために印加される。 Gradient magnetic field generation system 2 includes, for example, three gradient magnetic field coils 9 that generate gradient magnetic field pulses in these three axial directions when the direction of the static magnetic field is the Z direction and the two directions orthogonal thereto are X and Y, and Are each composed of a gradient magnetic field power source 10 for driving each of. By driving the gradient magnetic field power supply 10, gradient magnetic field pulses can be generated in the three axes of X, Y, and Z or in the direction in which these are combined. The gradient magnetic field pulse is applied to give position information to the NMR signal generated from the subject 8.
 送信系3は、高周波発振器11と、変調器12と、高周波増幅器13と、送信用の高周波照射コイル14とから成る。高周波発振器11が発生したRFパルスを変調器12で所定のエンベロープの信号に変調した後、高周波増幅器13で増幅し、高周波照射コイル14に印加することにより、被検体を構成する原子の原子核に核磁気共鳴を起こさせる電磁波(高周波信号、RFパルス)が被検体に照射される。高周波照射コイル14は、通常、被検体に近接して配置されている。 The transmission system 3 includes a high frequency oscillator 11, a modulator 12, a high frequency amplifier 13, and a high frequency irradiation coil 14 for transmission. The RF pulse generated by the high-frequency oscillator 11 is modulated into a signal having a predetermined envelope by the modulator 12, amplified by the high-frequency amplifier 13, and applied to the high-frequency irradiation coil 14, whereby the nucleus of the atom constituting the subject is An electromagnetic wave (high frequency signal, RF pulse) that causes magnetic resonance is irradiated to the subject. The high-frequency irradiation coil 14 is usually disposed in the vicinity of the subject.
 受信系4は、受信用の高周波受信コイル15と、増幅器16と、直交位相検波器17と、A/D変換器18とから成る。送信用の高周波照射コイル14から照射されたRFパルスの応答として被検体が発生したNMR信号は、受信用の高周波受信コイル15により検出され、増幅器16で増幅された後、直交位相検波器を17介してA/D変換器18によりデジタル量に変換され、二系列の収集データとして信号処理系5に送られる。 The reception system 4 includes a high-frequency reception coil 15 for reception, an amplifier 16, a quadrature detector 17, and an A / D converter 18. The NMR signal generated by the subject as a response to the RF pulse irradiated from the high-frequency irradiation coil 14 for transmission is detected by the high-frequency reception coil 15 for reception and amplified by the amplifier 16, and then the quadrature detector 17 Then, it is converted into a digital quantity by the A / D converter 18 and sent to the signal processing system 5 as two series of collected data.
 信号処理系5は、CPU7と、記憶装置19と、操作部20とから成り、CPU7において受信系4が受信したデジタル信号にフーリエ変換、補正係数計算、画像再構成等の種々の信号処理を行う。記憶装置19は、ROM21、RAM22、光磁気ディスク23、磁気ディスク24等を備え、例えば、経時的な画像解析処理および計測を行うプロブラムやその実行において用いる不変のパラメータなどをROM21に、全計測で得た計測パラメータや受信系で検出したエコー信号などをRAM22に、再構成された画像データを光磁気ディスク23や磁気ディスク24にそれぞれ格納する。操作部20は、トラックボール或いはマウス25、キーボード26などの入力手段と、入力に必要なGUIを表示するとともに信号処理系5における処理結果などを表示するディスプレイ27とを備えている。CPU7が行う各種処理や制御に必要な情報は、操作部20を介して入力される。また撮影により得られた画像はディスプレイ27に表示される。 The signal processing system 5 includes a CPU 7, a storage device 19, and an operation unit 20. The CPU 7 performs various signal processing such as Fourier transform, correction coefficient calculation, and image reconstruction on the digital signal received by the reception system 4. . The storage device 19 includes a ROM 21, a RAM 22, a magneto-optical disk 23, a magnetic disk 24, and the like.For example, a program for performing image analysis processing and measurement over time and an invariant parameter used in the execution are stored in the ROM 21 for all measurements. The obtained measurement parameters and echo signals detected by the reception system are stored in the RAM 22 and the reconstructed image data is stored in the magneto-optical disk 23 and the magnetic disk 24, respectively. The operation unit 20 includes input means such as a trackball or a mouse 25 and a keyboard 26, and a display 27 for displaying a GUI necessary for input and displaying processing results in the signal processing system 5. Information necessary for various processes and control performed by the CPU 7 is input via the operation unit 20. An image obtained by photographing is displayed on the display 27.
 制御系は、シーケンサ6とCPU7とから成り、上述した傾斜磁場発生系2、送信系3、受信系4および信号処理系5の動作を制御する。特に傾斜磁場発生系2および送信系3が発生する傾斜磁場パルスおよびRFパルスの印加タイミングならびに受信系4によるエコー信号の取得タイミングは、シーケンサ6が撮影方法によって決まる所定のパルスシーケンスに基づいて制御する。 The control system consists of a sequencer 6 and a CPU 7, and controls the operations of the gradient magnetic field generation system 2, the transmission system 3, the reception system 4 and the signal processing system 5 described above. In particular, the gradient magnetic field pulse and RF pulse application timing generated by the gradient magnetic field generation system 2 and the transmission system 3 and the echo signal acquisition timing by the reception system 4 are controlled by the sequencer 6 based on a predetermined pulse sequence determined by the imaging method. .
 次に、本発明のMRI装置が備える三次元のグラディエントエコー型のマルチショットエコープレナー法について、図2を用いて説明する。図2において、Gs、Gp、Gr、はそれぞれ、スライス選択傾斜磁場、位相エンコード傾斜磁場、周波数エンコード傾斜磁場の軸を表し、RF、AD、EchoはそれぞれRFパルス、サンプリングウインド、エコー信号を表す。また、201はRFパルス、202はスライス選択傾斜磁場パルス、203はスライスエンコード傾斜磁場パルス、204は位相エンコード傾斜磁場パルス、205は位相ブリップ傾斜磁場パルス群、206は周波数ディフェイズ傾斜磁場パルス、207は周波数エンコード傾斜磁場パルス群、208はサンプリングウインド群、209はエコー信号群である。 Next, a three-dimensional gradient echo type multi-shot echo planar method provided in the MRI apparatus of the present invention will be described with reference to FIG. In FIG. 2, Gs, Gp, and Gr represent slice selective gradient magnetic field, phase encode gradient magnetic field, and frequency encode gradient magnetic field axes, respectively, and RF, AD, and Echo represent RF pulse, sampling window, and echo signal, respectively. 201 is an RF pulse, 202 is a slice selective gradient magnetic field pulse, 203 is a slice encode gradient magnetic field pulse, 204 is a phase encode gradient magnetic field pulse, 205 is a phase blip gradient magnetic field pulse group, 206 is a frequency phase gradient magnetic field pulse, 207 Is a frequency encoding gradient magnetic field pulse group, 208 is a sampling window group, and 209 is an echo signal group.
 エコープレナー法では、シーケンサ4は、一回のRFパルス201の照射毎に、読み出し傾斜磁場パルス207の極性を変えながら、各読み出し傾斜磁場パルス207についてエコー信号209を計測する。これを時間間隔210(繰り返し時間TR)で繰り返し実行し、画像再構成に必要な数のエコー信号を計測する。画像再構成に必要なエコー信号の数としては、作成する画像のマトリクスに応じて、一般的には64、128、256程度である。なお、-(アンダースコア)後の数字は、繰り返し番号を表す。図2は、複数回の繰り返しの内の最初の第1回目のシーケンスを示しており、2回目以降の繰り返しのシーケンスは、第1回目と同様なので省略している。 In the echo planar method, the sequencer 4 measures the echo signal 209 for each readout gradient magnetic field pulse 207 while changing the polarity of the readout gradient magnetic field pulse 207 for each irradiation of the RF pulse 201. This is repeatedly executed at a time interval 210 (repetition time TR), and the number of echo signals necessary for image reconstruction is measured. The number of echo signals necessary for image reconstruction is generally about 64, 128, or 256 depending on the matrix of the image to be created. The number after-(underscore) represents a repetition number. FIG. 2 shows the first first sequence among a plurality of repetitions, and the second and subsequent repetition sequences are the same as the first one, and are omitted.
 このように、エコープレナー法では、一回のRFパルスで複数のエコー信号が計測されるため、一回のRFパルスで1つのエコー信号を計測するシーケンスと比べて高速に画像を取得できる。図2の場合は、一回のRFパルス201で6個のエコー信号209を計測しているので、6倍高速に撮影できる。 As described above, in the echo planar method, a plurality of echo signals are measured by one RF pulse, so that an image can be acquired at a higher speed than a sequence in which one echo signal is measured by one RF pulse. In the case of FIG. 2, since six echo signals 209 are measured by one RF pulse 201, it can be photographed six times faster.
(実施例1)
 次に、本発明の実施例1を説明する。本発明の実施例1では、図1によって示された構成のMRI装置を用い、図2によって示された撮影シーケンスを用いて、三次元の撮影をする。
Example 1
Next, Example 1 of the present invention will be described. In Embodiment 1 of the present invention, three-dimensional imaging is performed using the MRI apparatus configured as shown in FIG. 1 and using the imaging sequence shown in FIG.
 本実施例における三次元の撮影では、例えばMRI装置の撮影空間(FOV)に、直交座標系における3軸(X軸、Y軸、Z軸)を規定する。さらに、該3軸方向のいづれかを、図2のシーケンス図におけるスライスエンコード方向、位相エンコード方向、周波数エンコード方向のいずれかとして、連続的に撮影を行い、ボリュームデータを連続的に収集して、さらに得られた三次元ボリュームデータを記憶装置19に順次記憶する。 In the three-dimensional imaging in the present embodiment, for example, three axes (X axis, Y axis, Z axis) in the orthogonal coordinate system are defined in the imaging space (FOV) of the MRI apparatus. Further, any one of the three axis directions is taken as one of the slice encoding direction, the phase encoding direction, and the frequency encoding direction in the sequence diagram of FIG. 2, and the volume data is continuously collected. The obtained three-dimensional volume data is sequentially stored in the storage device 19.
 本発明の対象とする動態撮影とは、例えばMRI装置の撮影空間に規定された撮影領域(FOV)内で、被検体が足、膝等を図3のように動かし、その動きとともに足、膝等の関節がどのように変化するかを医者(術者)等が診断するものである。例えば足等の角度(あるいは膝を曲げる角度)を所定の位置(A地点)から別の位置(B地点)へ被検体が変えながら、MRI装置により三次元ボリュームデータを100個時系列的に得て、各ボリュームデータそれぞれについて、診断の対象とする撮影断面の画像再構成、表示をしてその変化を観察する。 The dynamic imaging that is the subject of the present invention is, for example, within the imaging area (FOV) defined in the imaging space of the MRI apparatus, the subject moves his / her foot, knee, etc. as shown in FIG. The doctor (operator) etc. diagnoses how the joints such as these change. For example, while the subject changes the angle of the foot (or the angle at which the knee is bent) from a predetermined position (point A) to another position (point B), 100 pieces of 3D volume data are obtained in time series using the MRI device. Then, for each volume data, an image of the imaging section to be diagnosed is reconstructed and displayed, and the change is observed.
 例えば、足の関節の診断をしたい場合には、被検体が膝を折り曲げる角度をいろいろと変化させて、各角度で得られたボリュームデータそれぞれより、膝から足方向への断面や、足のつま先からかかとへの断面等の所望の断面像を時系列的に切り出し表示し、医者又は術者は所望の断面(膝の位置から足方向、あるいは足のつま先からかかとへの断面)の時間的変化を観察する。 For example, if you want to diagnose the joints of the foot, change the angle at which the subject bends the knee in various ways, and use the volume data obtained at each angle to determine the cross section from the knee to the foot and the toes of the foot. A desired cross-sectional image, such as a cross section from the heel to the heel, is cut out and displayed in time series, and the doctor or the operator changes the desired cross section (cross section from the knee position to the foot direction or from the toe of the foot to the heel) over time. Observe.
 しかしながら、このような動態撮影では、膝を折り曲げる角度が逐次変化するために、所望の断面(膝の位置から足方向、あるいは足のつま先からかかとへの断面)の位置が三次元ボリュームデータ内で逐次変わる。従来は、MRI装置のディスプレイ27上に三次元ボリュームデータに基づいてサジタル、コロナル、アクシアルの3画面(前記3軸についてのXY平面、YZ平面、ZX平面)が表示され、該画面上に所望の断面位置を表す線分が逐次(ボリュームデータ毎に)入力され、逐次観察の対象とする断面がそれぞれの三次元ボリュームデータについて表示される必要があった。 However, in such dynamic imaging, the angle at which the knee is bent changes sequentially, so the position of the desired cross-section (cross-section from the knee position to the foot direction or from the foot toe to the heel) is within the 3D volume data. It changes sequentially. Conventionally, three screens of sagittal, coronal, and axial (XY plane, YZ plane, and ZX plane for the three axes) are displayed on the display 27 of the MRI apparatus based on the three-dimensional volume data. A line segment representing a cross-sectional position is sequentially input (for each volume data), and a cross-section to be sequentially observed needs to be displayed for each three-dimensional volume data.
 本発明の実施例1に係るMRI装置では、被検体の診断の対象とする部位の動きを検出する検出手段を備え、検出手段で検出された対象部の動きに対応して観察の対象とする断面を再構成して表示できるようにした。以下、詳細を説明する。 The MRI apparatus according to the first embodiment of the present invention includes a detection unit that detects a movement of a portion to be diagnosed by a subject, and sets an observation target corresponding to the movement of the target portion detected by the detection unit. The cross section can be reconstructed and displayed. Details will be described below.
 先ず、本実施例における画像再構成の基礎となる座標変換について説明する。ここでの座標変換処理は、より具体的にはMRI装置が、検出手段で検出された対象部の動きに対応させて、画像再構成の対象とする観察対象断面の位置を計算するために用いる座標変換である。 First, coordinate transformation that is the basis of image reconstruction in this embodiment will be described. More specifically, the coordinate conversion processing here is used by the MRI apparatus to calculate the position of the observation target cross section to be subjected to image reconstruction in correspondence with the movement of the target portion detected by the detection means. It is coordinate transformation.
 図4は、本発明における座標変換を模式的に示したものである。ただし、図4で説明する座標変換は、100個時系列的に得たボリュームデータの最初の一枚で、医者又は術者がどの断面の位置を診断の対象とするかを入力した後、MRI装置が上記検出手段により検出した診断対象部位の動き(回転角度等)に応じて、入力された診断対象断面の位置が時系列的にどのように変化するかを算出するために用いる。 FIG. 4 schematically shows coordinate transformation in the present invention. However, the coordinate transformation described in FIG. 4 is the first piece of volume data obtained in time series of 100, and after the doctor or the operator inputs which cross-sectional position is the object of diagnosis, MRI The apparatus is used to calculate how the position of the inputted diagnosis target section changes in time series according to the movement (rotation angle or the like) of the diagnosis target part detected by the detection means.
 例えば、図4(a)はマルチスライスから成る所望の複数断面が1番目のボリュームデータ上に設定された様子を示したものである。図4(a)はボリュームデータ内に、例えば、複数のスライスV1を所望の複数断面として術者あるいは医者が入力して規定する。 For example, FIG. 4 (a) shows a state in which a desired plurality of cross-sections composed of multi-slices are set on the first volume data. In FIG. 4A, for example, an operator or a doctor inputs and defines a plurality of slices V1 as a desired plurality of cross sections in the volume data.
 V1は、C11からC1の複数個の所望断面より成っている。次に本実施例において時間の経過とともに、膝等を曲げる角度が変わると、被検体の観察部位の位置がボリュームデータ内で変化するので、複数個の所望断面(V1:C11~C1)の位置も変化させられなければならない。 V1 consists of a plurality of desired cross sections C1 1 to C1 n . Next, in this embodiment, when the angle at which the knee or the like is bent changes with time, the position of the observation site of the subject changes in the volume data, so that a plurality of desired cross sections (V1: C1 1 to C1 n ). The position of must also be changed.
 図4(b)は、膝等を曲げる角度が変わった後において、設定されるべき所望の複数断面を図示したものであり、膝等を曲げる角度の変化に応じて、所望の複数断面の設定位置(V1:C11~C1)が変更されて(V2:C21~C2)とされたものである。ここで、複数個の所望断面(V1:C11~C1)の(V2:C21~C2)への変更は、例えば膝等を曲げる角度の変化をαとした場合の回転行列R12を用いて
  C2=R12・C1             式(1)
 といった行列式で表すことができる。ただし、式(1)におけるC1及びC2は、複数個の所望断面の位置あるいは方向を規定したものであり、位置ベクトルあるいは方向ベクトル等より成るものである。以下、式(1)の詳細な例について説明する。
FIG. 4 (b) illustrates a desired plurality of sections to be set after the angle at which the knee or the like is bent changes, and setting of the desired plurality of sections according to a change in the angle at which the knee or the like is bent. The position (V1: C1 1 to C1 n ) has been changed to (V2: C2 1 to C2 n ). Here, the change of a plurality of desired cross-sections (V1: C1 1 to C1 n ) to (V2: C2 1 to C2 n ) is, for example, the rotation matrix R12 when the change in the angle of bending the knee or the like is α. Use C2 = R12 ・ C1 Formula (1)
Can be expressed by a determinant. However, C1 and C2 in the equation (1) define the positions or directions of a plurality of desired cross sections, and are composed of position vectors, direction vectors, or the like. Hereinafter, a detailed example of Expression (1) will be described.
 例1:回転座標変換の例(X軸を回転軸として回転する場合)
 被検体の所望部位の回転がX軸を回転軸とする場合には、式(1)における回転行列は次のように表される。
Figure JPOXMLDOC01-appb-I000001
 式(2)においてαは、膝等を曲げる回転角度を表す。ただし、角度αは、例えば後述するようにマーカーの位置座標が回転前と比較してどう変化したかを基に、求めることができる。例えば、回転前にマーカーAの位置座標が(xa、ya、za)で回転後に(xa'、ya'、za')に変化したとすると、次式(3)と(4)のような連立方程式を用いることにより、角度αを求めることができる。
Example 1: Example of rotating coordinate conversion (when rotating around X axis)
When the rotation of the desired part of the subject is performed with the X axis as the rotation axis, the rotation matrix in Equation (1) is expressed as follows.
Figure JPOXMLDOC01-appb-I000001
In Expression (2), α represents a rotation angle for bending the knee or the like. However, the angle α can be obtained, for example, based on how the position coordinates of the marker have changed compared to before rotation, as will be described later. For example, if the position coordinate of the marker A changes to (xa ', ya', za ') after rotation with (xa, ya, za) before rotation, the following equations (3) and (4) The angle α can be obtained by using the equation.
 ya'=ya・cosα+za・sinα                    式(3)
 za'= -ya・cosα+za・sinα         式(4)
 例2:回転座標変換の例(Y軸を回転軸として回転する場合)
 被検体の所望部位の回転がX軸を回転軸とする場合には、式(1)における回転行列は次のように表される。
Figure JPOXMLDOC01-appb-I000002
 ただし、角度αは、例えば後述するようにマーカーの位置座標が回転前と比較してどう変化するかを、求めることができる。例えば、回転前にマーカーAの位置座標が(xa、ya、za)で回転後に(xa'、ya'、za')に変化したとすると、次式(6)と(7)のような連立方程式を用いることにより、角度αを求めることができる。
ya '= ya · cosα + za · sinα Equation (3)
za '= -ya ・ cosα + za ・ sinα Equation (4)
Example 2: Example of rotating coordinate transformation (when rotating around Y axis)
When the rotation of the desired part of the subject is performed with the X axis as the rotation axis, the rotation matrix in Equation (1) is expressed as follows.
Figure JPOXMLDOC01-appb-I000002
However, the angle α can determine how the position coordinates of the marker change compared to before rotation as described later, for example. For example, if the position coordinate of the marker A changes to (xa ', ya', za ') after rotation with (xa, ya, za) before rotation, the following equations (6) and (7) The angle α can be obtained by using the equation.
  xa'=xa・cosα-za・sinα                     式(6)
  za'= xa・sinα+za・sinα          式(7)
 例3:回転座標変換の例(Z軸を回転軸として回転する場合)
 被検体の所望部位の回転がZ軸を回転軸とする場合には、式(1)における回転行列は次のように表される。
Figure JPOXMLDOC01-appb-I000003
xa '= xa ・ cosα-za ・ sinα Equation (6)
za '= xa ・ sinα + za ・ sinα Equation (7)
Example 3: Example of rotating coordinate transformation (when rotating around Z axis)
When the rotation of the desired part of the subject uses the Z axis as the rotation axis, the rotation matrix in equation (1) is expressed as follows.
Figure JPOXMLDOC01-appb-I000003
 ただし、角度αは、例えば後述するようにマーカーの位置座標が回転前と比較してどう変化するかを、求めることができる。例えば、回転前にマーカーAの位置座標が(xa、ya、za)で回転後に(xa'、ya'、za')に変化したとすると、次式(9)と(10)のような連立方程式を用いることにより、角度αを求めることができる。
xa'=xa・cosα-ya・sinα                     式(9)
 ya'= xa・sinα+ya・sinα          式(10)
However, the angle α can determine how the position coordinates of the marker change compared to before rotation as described later, for example. For example, if the position coordinate of the marker A changes to (xa ', ya', za ') after rotation with (xa, ya, za) before rotation, the following equations (9) and (10) The angle α can be obtained by using the equation.
xa '= xa ・ cosα-ya ・ sinα Equation (9)
ya '= xa · sinα + ya · sinα Equation (10)
 例4:回転座標変換の例(X、YあるいはZ軸のいずれをも回転軸として回転しない場合)
 上述した例1から例3のように、X、YあるいはZ軸のいずれをも回転軸とせず、極座標系でλ、φの角度からλ+Δλ、φ+Δφへ移動する場合には、式(1)における回転行列は次のように表される。
Figure JPOXMLDOC01-appb-I000004
         式(11)
 ただし、本例では、回転角度に関するパラメータが複数個あるので、複数個のマーカーの位置座標の変化を基に、それぞれのパラメータを求める必要がある。
Example 4: Example of rotating coordinate conversion (when none of the X, Y, or Z axes is rotated)
As in Example 1 to Example 3 described above, when any of the X, Y, and Z axes is not a rotation axis and the λ and φ angles are moved from the angles of λ and φ to λ + Δλ, φ + Δφ in the polar coordinate system, The rotation matrix is expressed as follows.
Figure JPOXMLDOC01-appb-I000004
Formula (11)
However, in this example, since there are a plurality of parameters related to the rotation angle, it is necessary to obtain each parameter based on the change in the position coordinates of the plurality of markers.
 次に本実施例におけるMRI装置の動態撮影を行うための内部構成を図5を用い説明する。 Next, the internal configuration for performing dynamic imaging of the MRI apparatus in this embodiment will be described with reference to FIG.
 51は、図1におけるROM21、RAM22、光磁気ディスク23、磁気ディスク24等に相当し、上述した三次元撮影により収集したエコー信号を記憶するためのデータ記憶部である。 51 is a data storage unit that corresponds to the ROM 21, RAM 22, magneto-optical disk 23, magnetic disk 24, etc. in FIG. 1, and stores echo signals collected by the above-described three-dimensional imaging.
 次に52は、データ記憶部51に接続され、本実施に係る画像再構成である任意多断面再構成処理(MPR)を行うMPR処理部である。任意多断面再構成処理とは、複数の二次元画像から任意の位置の断面の再構成画像を作成する処理のことをいう。例えば、図4の説明では複数の二次元画像から成るボリュームデータより、所望の位置(例えば、足のつま先からかかとへの断面の位置)の複数断面(C21~C2等)を再構成するための処理をいう。 Next, 52 is an MPR processing unit that is connected to the data storage unit 51 and performs arbitrary multi-section reconstruction processing (MPR) that is image reconstruction according to the present embodiment. Arbitrary multi-section reconstruction processing refers to processing for creating a reconstruction image of a cross section at an arbitrary position from a plurality of two-dimensional images. For example, in the description of FIG. 4, a plurality of cross sections (C2 1 to C2 N, etc.) at a desired position (for example, the position of the cross section from the toe of the foot to the heel) are reconstructed from volume data composed of a plurality of two-dimensional images. Process.
 次に53は、MPR処理部52に接続され、MPR処理された画像を後述する画像表示部54へ表示するための処理を行う表示処理部である。 Next, a display processing unit 53 is connected to the MPR processing unit 52 and performs processing for displaying the MPR-processed image on an image display unit 54 described later.
 次に54は表示処理部53に接続され、MPR処理された画像を表示するための画像表示部である。例えば、図1におけるディスプレイ27は、表示処理部53に接続され、MPR処理された画像を表示するために画像表示部54として用いられる。 Next, reference numeral 54 denotes an image display unit connected to the display processing unit 53 for displaying the MPR processed image. For example, the display 27 in FIG. 1 is connected to the display processing unit 53 and is used as the image display unit 54 to display an MPR-processed image.
 次に55はMPR処理部52、表示処理部53、画像表示部54 に接続され、MPR処理部52、表示処理部53、画像表示部54を操作するための操作部である。図1におけるトラックボール又はマウス25、キーボード26は、MPR処理部、信号処理部、表示処理部を走査するための操作部55として用いられる。 Next, reference numeral 55 denotes an operation unit that is connected to the MPR processing unit 52, the display processing unit 53, and the image display unit 54, and operates the MPR processing unit 52, the display processing unit 53, and the image display unit 54. The trackball or mouse 25 and the keyboard 26 in FIG. 1 are used as an operation unit 55 for scanning the MPR processing unit, the signal processing unit, and the display processing unit.
 次に本実施例における動態撮影のフローについて図6を用い説明する。以下図6のフローチャートの各ステップを順に説明する。 Next, the flow of dynamic shooting in this embodiment will be described with reference to FIG. Hereinafter, each step of the flowchart of FIG. 6 will be described in order.
 (ステップ1)動態撮像の実施
 医者又は術者が被検体をMRI装置内に配置して、複数の三次元ボリュームデータを時系列的に取得する動態撮像をMRI装置により行い、MRI装置により得られた三次元ボリュームデータをデータ記憶部51に入力する。ただし、本ステップにおける動態撮像では、MRI装置の撮影空間内に設定された直交座標系における3軸(X軸、Y軸、Z軸)に沿って形成された撮影領域(FOV)内で足等を動かしながら行う。
(Step 1) Implementation of dynamic imaging The doctor or operator places the subject in the MRI apparatus and performs dynamic imaging to acquire multiple 3D volume data in time series using the MRI apparatus. The three-dimensional volume data is input to the data storage unit 51. However, in dynamic imaging in this step, feet etc. in the imaging area (FOV) formed along the three axes (X axis, Y axis, Z axis) in the Cartesian coordinate system set in the imaging space of the MRI apparatus Move while moving.
 (ステップ2)MPR基準入力画面の作成表示
 MRI装置により時系列的に得られた複数の三次元ボリュームデータの内一つを取り出し、MPR基準面入力画面を作成して表示する。MPR基準面入力画面とは、MPR処理における所望の断面を入力するための画面であり、例えばサジタル、コロナル、アクシアル断面の画像をいう。
(Step 2) Creation and display of MPR reference input screen One of a plurality of three-dimensional volume data obtained in time series by the MRI apparatus is taken out, and an MPR reference plane input screen is created and displayed. The MPR reference plane input screen is a screen for inputting a desired cross section in the MPR processing, for example, an image of a sagittal, coronal, or axial cross section.
 (ステップ3)MPR処理の対象とする所望の断面の設定
 ステップ2で表示されたMPR基準面入力画面(例えば、サジタル、コロナル、アクシアル断面のいずれか)上で、医者又は術者がMPR処理の対象とする所望の断面(以下、カットPlane)を設定するためにパラメータ等を入力する。入力画面の詳細は、後述する。例えば、医者又は術者は複数の平行な曲線または直線を入力したり、一つの画面に垂直な軸を中心にRadial状に線分を設定したりする。例えば、マルチスライスでカットPlaneを指定する場合には、マルチスライスそれぞれを構成するカットPlaneの厚さ、カットPlane上の関心領域、カットPlane間の間隔、カットPlaneの数などが設定される。具体的には、複数の平行な曲線または直線の設定について、中心となる一本の線が設定され、カットPlane間の間隔、カットPlaneの数が入力され、複数のカットPlaneが設定される。また、Radial状に線分を設定する場合には、中心点位置と、角度間隔あるいは線の数により、MPR処理の対象とする所望の断面を設定すれば良い。
(Step 3) Setting the desired section for MPR processing On the MPR reference plane input screen displayed in Step 2 (for example, one of sagittal, coronal, or axial section), the doctor or surgeon performs MPR processing. Parameters and the like are input in order to set a desired cross section (hereinafter referred to as cut plane). Details of the input screen will be described later. For example, a doctor or an operator inputs a plurality of parallel curves or straight lines, or sets a line segment in a radial shape around an axis perpendicular to one screen. For example, when the cut plane is designated by multi-slice, the thickness of the cut plane configuring each multi-slice, the region of interest on the cut plane, the interval between the cut planes, the number of cut planes, and the like are set. Specifically, for setting a plurality of parallel curves or straight lines, a single central line is set, an interval between cut planes and the number of cut planes are input, and a plurality of cut planes are set. Further, when setting a line segment in a radial shape, a desired cross section to be subjected to the MPR process may be set according to the center point position, the angle interval, or the number of lines.
 (ステップ4)マーカーの位置指定
 後述するステップにおいて、医者又は術者が被検体の診断対象部位の回転角度を検出するための基準となるマーカーを指定する。被検体の診断対象部位の回転角度の検出は、例えば(a)公知の組織追跡技術、(b)被検体の診断部位にNMR信号を大きく発生する治具を配置して、画像上より自動的あるいは手動で該治具を検出する方法、(c)国際公開WO03/026505A1号公報に記載されているような光学的なシステムを利用する方法等が考えられる。本ステップにおけるマーカーの位置指定は、被検体の診断対象部位の回転角度の検出の方法に応じてそれぞれ変える。
(Step 4) Marker position designation In a step described later, a doctor or an operator designates a marker serving as a reference for detecting the rotation angle of the diagnosis target portion of the subject. The detection of the rotation angle of the diagnosis target part of the subject is performed automatically from the image by, for example, (a) known tissue tracking technology, (b) placing a jig that generates a large NMR signal at the diagnosis part of the subject. Alternatively, a method of manually detecting the jig, (c) a method of using an optical system as described in International Publication No. WO03 / 026505A1, and the like are conceivable. The marker position designation in this step is changed according to the detection method of the rotation angle of the diagnosis target region of the subject.
 例えば、被検体の診断部位にNMR信号を大きく発生する治具を配置して、画像上より自動的あるいは手動で検出する方法を用いる場合には、足の一部にマーカーを配置し、その画像上での画素強度及び大きさをMRI装置に入力して記憶させ、画像上よりパターンマッチングで各ボリュームデータ内の二次元画像データより認識できるようにする。また、公知の組織追跡技術により被検体の回転角度を検出する場合には、所定の臓器のパターンの画像(例えば足の一部の画像(ROI))を、ステップ2で表示された画面上に入力できるようにする。国際公開WO03/026505A1号公報に記載されているような光学的なシステムを用いる場合には、例えば発光体、反射体をMRI装置のガントリ内や被検体の一部に配置したりする。 For example, when using a method that automatically or manually detects from the image by placing a jig that generates a large NMR signal at the diagnostic site of the subject, place a marker on the part of the foot and display the image The pixel intensity and size above are input and stored in the MRI apparatus, and can be recognized from the two-dimensional image data in each volume data by pattern matching from the image. In addition, when detecting the rotation angle of a subject using a known tissue tracking technique, an image of a predetermined organ pattern (for example, an image of a part of a foot (ROI)) is displayed on the screen displayed in step 2. Allow input. When using an optical system as described in International Publication No. WO03 / 026505A1, for example, a light emitter and a reflector are arranged in the gantry of the MRI apparatus or in a part of the subject.
 また、本ステップで設定するマーカーの数は、被検体の診断対象部位の回転の自由度により異ならせる。例えば、足を回転させる場合膝等が何らかの治具に固定されていて膝より先を回転させる場合で、回転軸が上述のX軸、Y軸、Z軸のいずれかであり、回転中心が膝等で固定されている場合には、被検体の診断対象部位(膝より先)の動きが膝より足側に設置されたマーカー1つの位置により一義的に定まるので、マーカーの数は1個のみで良い。また、回転軸が上述のX軸、Y軸、Z軸のいずれかでない場合には、被検体の診断対象部位(膝より先)の動きが一義的に定まらず、前述の例4のように回転することが考えられるので、マーカーの数が2つ以上必要と考えられる。また、更に足が膝を軸に回転するのみならず、足首でも回転する場合には、足首付近の被検体の診断部位は複雑に動くと考えられるので、その場合にはマーカーの数は3つ以上必要と考えられる。 Also, the number of markers set in this step varies depending on the degree of freedom of rotation of the diagnosis target part of the subject. For example, when rotating the foot, the knee or the like is fixed to some jig and the tip is rotated beyond the knee, the rotation axis is any of the above-mentioned X axis, Y axis, and Z axis, and the rotation center is the knee If it is fixed by a single, etc., the movement of the object to be diagnosed (beyond the knee) is uniquely determined by the position of one marker placed on the foot side from the knee, so the number of markers is only one Good. In addition, when the rotation axis is not one of the above-mentioned X axis, Y axis, and Z axis, the movement of the subject to be diagnosed (beyond the knee) is not uniquely determined, as in Example 4 above. Since it is possible to rotate, it is considered that two or more markers are required. In addition, if the foot not only rotates around the knee but also the ankle, the diagnostic site of the subject near the ankle is thought to move in a complex manner. In that case, the number of markers is three. This is considered necessary.
 (ステップ5)ボリュームデータそれぞれについて、マーカーの位置及び診断対象部位の角度検出
 ステップ2で指定したボリュームデータ以外のボリュームデータそれぞれについて、順次(ステップ4)で指定したマーカーの位置を順次上記(a)~(c)のそれぞれの方法に応じて検出し、それと伴に上記例1~例4に準じた手法により被検体の診断対象部位の回転角度をそれぞれのボリュームデータについて検出する。
(Step 5) For each of the volume data, the position of the marker and the angle detection of the diagnosis target part For each of the volume data other than the volume data specified in Step 2, the position of the marker specified in (Step 4) is sequentially described above (a) The detection angle is detected according to each of the methods (c) to (c), and the rotation angle of the diagnosis target part of the subject is detected for each volume data by the method according to Examples 1 to 4.
 (ステップ6)各ボリュームデータそれぞれについて、所望の断面の位置を計算
 ステップ5で検出した回転角度に応じて、図4で示したように、ステップ3で設定した所望の断面の位置を、各ボリュームデータそれぞれについて計算する。所望の断面の位置の変化を計算する際には、上述の例1から4に示されたような行列式を用いる。ただし、被検体の診断対象部位の動きが回転運動のみならず、平行移動もある場合には、(ステップ5)で各ボリュームデータ毎に平行移動の量をマーカーの位置検出により検出して、例1から4に示されたような行列式による回転座標変換に、公知の平行移動の変換を付加すれば良いと考えられる。例えば、式(1)を式(12)のように変形して、平行移動を表すオフセット項が付加されるようにすれば良い。
(Step 6) Calculate the position of the desired cross-section for each volume data According to the rotation angle detected in Step 5, as shown in FIG. 4, the position of the desired cross-section set in Step 3 is set for each volume. Calculate for each piece of data. In calculating the change in the position of the desired cross section, the determinants as shown in Examples 1 to 4 above are used. However, if the movement of the subject to be diagnosed is not only rotational movement but also parallel movement, the amount of parallel movement is detected by detecting the position of the marker for each volume data in (Step 5). It is considered that a known translational transformation may be added to the rotational coordinate transformation by the determinant as shown in 1 to 4. For example, equation (1) may be transformed into equation (12) so that an offset term representing translation is added.
  C2=R12・C1+P12              (12)
 式(12)におけるP12は、位置ベクトルあるいは方向ベクトル等より成るC1の各成分に、オフセットのための項を付加するベクトルである。
C2 = R12 ・ C1 + P12 (12)
P12 in the equation (12) is a vector for adding an offset term to each component of C1 made up of a position vector or a direction vector.
 (ステップ7)補間処理により断面像を生成
 MRI装置は、ステップ3で複数の三次元ボリュームデータの内一つについて設定し、ステップ6で各ボリュームデータそれぞれについて求めた所望の断面の各位置についての断面像を、補間処理により求める。より具体的にMRI装置は、所望の断面の配置される方向が上記X、Y、Z3軸に対して斜めになっている場合には、複数の二次元データから成る三次元ボリュームデータのデータ配置位置と画像再構成する所望の断面の各画素の位置が必ずしも一致しない場合があり、そのような場合には位置が必ずしも一致しない場所の画素値を補間により求める。
(Step 7) Generating a cross-sectional image by interpolation processing The MRI apparatus sets one of a plurality of three-dimensional volume data in Step 3, and in Step 6 for each position of the desired cross section obtained for each volume data. A cross-sectional image is obtained by interpolation processing. More specifically, the MRI apparatus has a data arrangement of three-dimensional volume data composed of a plurality of two-dimensional data when the desired cross-sectional arrangement direction is oblique to the X, Y, and Z3 axes. In some cases, the position and the position of each pixel of the desired cross-section to be reconstructed do not necessarily match. In such a case, the pixel value of the location where the position does not necessarily match is obtained by interpolation.
 (ステップ8)表示処理
 ステップ7で求めた各所望の断面の再構成画像を、画像表示部54へ表示するための表示処理を表示処理部53が行う。本ステップにより表示される画面は図6のようになっている。以下、図6の表示画面について説明する。図7において、71は、画像表示部上に表示された4つの画面である4つの画面の内右上は、サジタル方向画面、左上はコロナル方向画面、左下はアクシアル方向画面、右下はMPR処理によって得られた断層像を示す。
(Step 8) Display Processing The display processing unit 53 performs display processing for displaying the reconstructed image of each desired cross section obtained in Step 7 on the image display unit 54. The screen displayed by this step is as shown in FIG. Hereinafter, the display screen of FIG. 6 will be described. In FIG. 7, reference numeral 71 denotes four screens displayed on the image display unit. The upper right of the four screens is the sagittal direction screen, the upper left is the coronal direction screen, the lower left is the axial direction screen, and the lower right is by the MPR process. The obtained tomogram is shown.
 次に72は、スクロールバーを示し、ステップ1により時系列的に得られた複数の三次元ボリューム画像の表示を切り替えるためのものである。例えば、スクロールバーが左端に位置している場合には、時系列的に始めのタイミングで得られたボリュームデータを示し、スクロールバーを右へ動かすに従って、表示画面が時系列的に新しいものへ切り替わることを示す。73は、ボリュームデータの番号を示す。例えば、ボリュームデータの番号が1~100である場合に、番号1が最も時系列的に早い番号のもの、番号100が最も時系列的に遅い番号のものを示す。74は、各ボリュームデータにおける、足等の診断対象部位の回転角度が指定するためのものである。この回転角度が指定されることにより、CPU7は診断対象部位が指定された角度にある場合のボリュームデータを選択して表示するようになっている。 Next, 72 is a scroll bar for switching the display of a plurality of three-dimensional volume images obtained in time series in step 1. For example, when the scroll bar is located at the left end, it shows the volume data obtained at the first timing in time series, and the display screen switches to a new one in time series as the scroll bar is moved to the right. It shows that. Reference numeral 73 denotes a volume data number. For example, when the volume data number is 1 to 100, the number 1 is the earliest number in time series, and the number 100 is the earliest time series number. 74 is for designating the rotation angle of a part to be diagnosed such as a foot in each volume data. By designating the rotation angle, the CPU 7 selects and displays volume data when the diagnosis target part is at the designated angle.
 75は、それぞれのボリュームデータについて、71の右下の画面への表示断面を切り替えて、それぞれのボリュームデータのどれを表示するかを選択するためのスクロールバーである。より具体的にはステップ3において、所望の断面が複数である場合も指定可能であるが、その場合に右下の画面への表示断面をスクロールバーを動かすことにより複数の所望の断面の表示を順次切り替えることができる。76は、医者又は術者がステップ3でMPR処理の対象とする所望の断面に関する情報を入力するためのものである。例えば、ステップ3に記載されているようなカットPlaneの厚さ、カットPlane上の関心領域、カットPlane間の間隔、カットPlaneの数等のパラメータを入力するためのものである。 75 is a scroll bar for selecting which volume data to display by switching the display cross section to the lower right screen of 71 for each volume data. More specifically, in Step 3, it is possible to specify a case where there are a plurality of desired cross sections. In that case, a plurality of desired cross sections can be displayed by moving the scroll bar on the display cross section on the lower right screen. It can be switched sequentially. 76 is for a doctor or an operator to input information regarding a desired cross section to be subjected to MPR processing in Step 3. For example, parameters such as the thickness of the cut plane, the region of interest on the cut plane, the interval between the cut planes, and the number of cut planes as described in step 3 are input.
 77は、断面共有範囲を設定するためのものであり、所望の断面の位置が、三次元ボリュームデータ全範囲(例えば1~100個まで)で共有化されているか、前半部分(例えば1~50個まで)で共有化されていてその一部であるのか、後半部分(例えば51~100個まで)で共有化されていてその一部であるのかを示したものである。 77 is for setting a cross-section sharing range, and the position of a desired cross-section is shared by the entire three-dimensional volume data range (for example, up to 1 to 100) or the first half (for example, 1 to 50). It is shown whether it is a part of it and is part of it, or it is shared and part of it in the latter half (for example 51 to 100).
 78は、複数の三次元ボリュームデータについて、ボリュームデータの番号と被検体の診断対象部位の角度との関係を示すものである。例えば、ボリュームデータの番号が増え、時系列的に時間が進むのに従って、被検体の診断対象部位の角度が増えることが表として表されている。 78 indicates the relationship between the volume data number and the angle of the diagnosis target part of the subject for a plurality of three-dimensional volume data. For example, the table shows that the angle of the diagnosis target part of the subject increases as the volume data number increases and the time advances in time series.
 以上説明したように、本実施例によれば、1回のMPR処理パラメータの設定(所望の断面の設定)を1つの三次元ボリュームデータについて行うのみで、被検体の所望の部位の動きに対応して、他の三次元ボリュームデータについての所望の断面像の表示を行うことができる。すなわち、撮影空間内で被検体の所望の部位の動きと伴に、前記被検体の所望の部位について複数の三次元ボリュームデータを撮像する撮像手段と、前記撮像手段で得られた複数の三次元ボリュームデータを記憶する記憶手段と、前記被検体の所望の部位内の所望断面の位置を入力する入力手段と、前記所望断面の画像を、前記記憶手段に記憶されている三次元ボリュームデータより生成する画像生成手段を備えた医用画像診断装置において、前記被検体の所望の部位の位置情報を検出する検出手段を備え、前記画像生成手段は、前記検出手段により検出した位置情報を用いて、前記所望断面の前記複数の三次元ボリュームデータの各々から前記所望断面の画像をそれぞれ生成する。 As described above, according to this embodiment, only one MPR processing parameter setting (setting of a desired cross section) is performed for one piece of three-dimensional volume data, and the movement of a desired part of the subject can be handled. Thus, it is possible to display a desired cross-sectional image for other three-dimensional volume data. That is, an imaging unit that captures a plurality of three-dimensional volume data for a desired part of the subject together with a movement of the desired part of the subject in the imaging space, and a plurality of three-dimensional data obtained by the imaging unit Storage means for storing volume data, input means for inputting a position of a desired cross section within a desired region of the subject, and an image of the desired cross section are generated from three-dimensional volume data stored in the storage means In the medical image diagnostic apparatus provided with the image generation means, the image generation means includes detection means for detecting position information of a desired part of the subject, and the image generation means uses the position information detected by the detection means, An image of the desired section is generated from each of the plurality of three-dimensional volume data of the desired section.
 また、前記検出手段は、前記所望の部位の特定位置の位置情報を検出することを特徴とし、前記所望の部位が固定された支点部位を中心に動く場合には、前記特定位置が1ヵ所設けられていて、前記被検体の所望の部位の動きは、前記医用画像診断装置の撮像空間に設定された直交座標系におけるX軸あるいはY軸、Z軸を回転軸として回転することを特徴とする。また、前記被検体の所望の部位の動きが、極座標系における2つの回転軸を回転中心とする回転運動を含む場合は、前記特定位置の数を2ヶ所以上設定し、前記検出手段は前記2ヶ所以上の特定位置を検出することにより前記所望の部位の位置を検出することを特徴とする。 Further, the detecting means detects position information of a specific position of the desired part, and when the desired part moves around a fixed fulcrum part, the specific position is provided in one place. The movement of the desired part of the subject rotates around the X axis, the Y axis, or the Z axis in the orthogonal coordinate system set in the imaging space of the medical image diagnostic apparatus. . Further, when the movement of the desired part of the subject includes a rotational motion around two rotational axes in the polar coordinate system, the number of the specific positions is set to two or more, and the detection means is the 2 The position of the desired part is detected by detecting more than one specific position.
 また、前記時系列的に得られた三次元ボリュームデータより任意の1個以上を選択する選択手段を備え、前記入力手段は、前記選択手段により選択された三次元ボリュームデータより得られたた二次元画像上に、所定断面の位置を入力し、前記検出手段により検出した前記所望の部位の位置情報に基づいて、前記選択手段により選択されていない他の三次元ボリュームデータについて、前記所定断面の位置を算出する算出手段を備えたことを特徴とする。前記所望断面は複数ある場合もあれば、前記所望断面は平面である場合や曲面である場合を含む。 And a selection unit that selects any one or more of the three-dimensional volume data obtained in time series, and the input unit outputs the two-dimensional data obtained from the three-dimensional volume data selected by the selection unit. A position of a predetermined cross-section is input on a three-dimensional image, and the other three-dimensional volume data not selected by the selection means is selected based on the position information of the desired part detected by the detection means. A calculation means for calculating the position is provided. There may be a case where there are a plurality of desired cross sections, and the case where the desired cross section is a plane or a curved surface is included.
 また、本実施例によれば、撮影空間内で被検体の所望の部位を動きと伴に、前記被検体の三次元ボリュームデータを複数撮像する工程(1)と、(2)前記工程(1)で撮像された前記三次元ボリュームデータより、基準画面を生成する工程(2)と、前記工程(2)により生成された基準画面上に画像生成のための所望の断面位置を入力する工程(3)と、前記工程(3)で入力された所望の断面位置の画像を生成する工程(4)を備えた医用画像診断方法であって、前記工程(1)により得られた複数の三次元ボリュームデータより、任意の1個以上の三次元ボリュームデータを選択する工程(5)を備え、前記工程(2)は前記工程(5)で選択された三次元ボリュームデータについて基準画面を生成し、前記被検体の所望の部位の位置変化を前記複数の三次元ボリュームデータそれぞれについて検出する工程(6)と、前記工程(6)により検出した所望の部位の位置変化に基づいて、他の三次元ボリュームデータにおける前記所望断面位置を算出する工程(7)を備え、前記工程(4)は、前記工程(3)で入力され、前記工程(7)で位置変化が検出された所望断面位置の画像を生成することを特徴とする医用画像診断方法が提供される。 Further, according to the present embodiment, the steps (1) and (2) the steps (1) for imaging a plurality of three-dimensional volume data of the subject with movement of a desired part of the subject in the imaging space ) From the three-dimensional volume data imaged in (2), generating a reference screen (2), and inputting a desired cross-sectional position for image generation on the reference screen generated in the step (2) ( 3) and a medical image diagnostic method comprising a step (4) of generating an image of a desired cross-sectional position input in the step (3), wherein a plurality of three-dimensional images obtained by the step (1) From the volume data, comprising the step (5) of selecting any one or more three-dimensional volume data, the step (2) generates a reference screen for the three-dimensional volume data selected in the step (5), Each of the plurality of three-dimensional volume data represents a change in position of a desired part of the subject. A step (6) for detecting the step, and a step (7) for calculating the desired cross-sectional position in the other three-dimensional volume data based on the position change of the desired part detected in the step (6). (4) provides a medical image diagnostic method characterized by generating an image of a desired cross-sectional position which is input in the step (3) and whose position change is detected in the step (7).
 また、撮影空間内で被検体の所望の部位を動きと伴に、前記被検体の三次元ボリュームデータを複数撮像する工程(1)と、前記工程(1)により得られた複数の三次元ボリュームデータより、任意の1個以上の三次元ボリュームデータを選択する工程(2)と、前記工程(2)により選択された三次元ボリュームデータより、基準画面を生成する工程(3)と、前記工程(3)により生成された基準画面上に画像生成のための所望断面位置を入力する工程(4)と、前記被検体の所望の部位の位置変化を前記複数の三次元ボリュームデータそれぞれについて検出する工程(5)と、前記工程(5)により検出した所望の部位の位置変化に基づいて、他の三次元ボリュームデータにおける前記所望断面位置を算出する工程(6)と、前記工程(4)で入力あるいは前記工程(6)により算出した断面位置の画像を生成する工程(7)を備えたことを特徴とする医用画像診断方法が提供される。 Also, a step (1) of imaging a plurality of three-dimensional volume data of the subject with movement of a desired part of the subject in the imaging space, and a plurality of three-dimensional volumes obtained by the step (1) A step (2) for selecting one or more arbitrary three-dimensional volume data from the data, a step (3) for generating a reference screen from the three-dimensional volume data selected in the step (2), and the step (4) inputting a desired cross-sectional position for image generation on the reference screen generated in (3), and detecting a change in position of a desired part of the subject for each of the plurality of three-dimensional volume data In the step (5), the step (6) for calculating the desired cross-sectional position in the other three-dimensional volume data based on the position change of the desired part detected in the step (5), and the step (4) Input or calculated by the above step (6) Medical image diagnosis method characterized by comprising a step (7) for generating an image of the cross-sectional position is provided.
 その結果、複数の三次元ボリュームデータの各々から同じ切断面のMPR像の取得が容易になると共に、カットPlaneパラメータの設定操作が容易になり操作者の負担が低減できるようになる。
(実施例2)
 次に、本発明の実施例2を説明する。本発明の実施例2は、実施例1とほぼ同じであるが、以下の点が異なる。すなわち、実施例1ではステップ1において三次元ボリュームデータを時系列的にすべての時相においてとり終わってからステップ2以下の処理を行うが、本実施例では、三次元ボリュームデータを収集している最中にステップ2以下の処理を行う。例えば、全体で1~100の三次元ボリュームデータがある場合、1~50番目についての動態撮像が終わった段階で、MRI装置がステップ2以下のMPR像を表示し始め、51~100番目の三次元ボリュームデータが収集された段階で51~100番目について、MRI装置がステップ2以下のMPR像を表示し始めるようにする。
As a result, it becomes easy to obtain the MPR image of the same cut surface from each of the plurality of three-dimensional volume data, and the setting operation of the cut plane parameter becomes easy and the burden on the operator can be reduced.
(Example 2)
Next, Example 2 of the present invention will be described. Example 2 of the present invention is almost the same as Example 1, except for the following points. That is, in the first embodiment, after the three-dimensional volume data is taken in time series in all time phases in step 1, the processing of step 2 and subsequent steps is performed, but in this embodiment, the three-dimensional volume data is collected. In the middle, the processing from step 2 onwards is performed. For example, if there is a total of 1 to 100 3D volume data, the MRI apparatus will start displaying MPR images from step 2 onwards after the dynamic imaging for the 1st to 50th is completed, and the 51st to 100th tertiary At the stage where the original volume data is collected, the MRI apparatus starts to display the MPR image of step 2 and below for the 51st to 100th.
 その際、1番目のボリュームデータについて行うステップ3のMPR処理の対象とする所望の断面の設定と、51番目のボリュームデータについて行うステップ3のMPR処理の対象とする所望の断面の設定が、被検体の診断の対象における同じ位置であっても良いし、違う位置であっても良い。このようにすることで、複数の三次元ボリュームデータの前半と後半で被検体の診断の対象の回転軌跡が異なる場合に好適に対応できたり、前半と後半とで回転の支点が異なる場合等に好適に対応できたりする利点がある。 At that time, the setting of the desired cross section to be subjected to the MPR process in step 3 performed for the first volume data and the setting of the desired cross section to be the target of the MPR process in step 3 performed for the 51st volume data are performed. It may be the same position or a different position in the subject of the specimen diagnosis. By doing so, it can be suitably applied when the rotation trajectory of the object to be diagnosed differs between the first half and the second half of a plurality of three-dimensional volume data, or when the rotation fulcrum differs between the first half and the second half. There is an advantage that it can be suitably handled.
 また、MPRの処理がされた画像が実施例1の場合より、素早くディスプレイに得られたMPR画像が表示され、すぐ診断ができるという利点がある。
(実施例3)
 次に、本発明の実施例3を説明する。本発明の実施例3は、実施例1とほぼ同じであるが、以下の点が異なる。すなわち、実施例1ではステップ1において三次元ボリュームデータを時系列的にすべての時相においてとり終わってから1番目の三次元ボリュームデータのみについてMPR処理の対象とする所望の断面の設定を行っていたが、本実施例はすべての時相の三次元ボリュームデータを2つ以上のいくつかのグループに分け、それぞれのグループ別々にMPR処理を行う。
In addition, the MPR image obtained by the MPR process is displayed on the display more quickly than in the first embodiment, and there is an advantage that the diagnosis can be performed immediately.
(Example 3)
Next, Example 3 of the present invention will be described. Example 3 of the present invention is substantially the same as Example 1, except for the following points. That is, in Example 1, after setting the three-dimensional volume data in all time phases in step 1, the desired cross-section to be subjected to the MPR process is set only for the first three-dimensional volume data. However, in this embodiment, all time-phase three-dimensional volume data is divided into two or more groups, and MPR processing is performed separately for each group.
 例えば、1~50番目の三次元ボリュームデータのグループについて、1番面の三次元ボリュームデータに所望の断面を設定してMPR処理を行い、51~100番目の三次元ボリュームデータのグループについて、51番面の三次元ボリュームデータに所望の断面を設定してMPR処理を行うようにしても良い。このようにすることによって、複数の三次元ボリュームデータの前半と後半で被検体の診断の対象の回転軌跡が異なる場合に好適に対応できたり、前半と後半とで回転の支点が異なる場合等に好適に対応できたりする利点がある。 For example, for the 1st to 50th groups of 3D volume data, MPR processing is performed by setting a desired cross section to the first 3D volume data, and for the 51st to 100th groups of 3D volume data, 51 MPR processing may be performed by setting a desired section in the three-dimensional volume data of the face. By doing so, it is possible to suitably cope with the case where the rotation trajectory of the object to be diagnosed differs between the first half and the second half of a plurality of three-dimensional volume data, or when the rotation fulcrum differs between the first half and the second half. There is an advantage that it can be suitably handled.
 上記本発明の本実施例によれば、MPR処理パラメータの設定(所望の断面の設定)を1個あるいは複数個の三次元ボリュームデータについて行うのみで、他の三次元ボリュームデータについての所望の断面の表示を被検体の所望の部位の動きに対応して行うことができる。その結果、複数の三次元ボリュームデータの各々から同じ切断面のMPR像を取得が容易になると共に、カットPlaneパラメータの設定操作が容易になり操作者の負担が低減できるようになる。 According to the embodiment of the present invention, the MPR processing parameter setting (setting of a desired section) is performed only for one or a plurality of three-dimensional volume data, and a desired section for other three-dimensional volume data is set. Can be displayed in response to the movement of a desired part of the subject. As a result, it becomes easy to acquire the MPR image of the same cut surface from each of the plurality of three-dimensional volume data, and the setting operation of the cut plane parameter becomes easy, and the burden on the operator can be reduced.
 なお、本発明は、以上の各実施形態に開示された内容にとどまらず、本発明の趣旨を逸脱しない範囲で各種の形態を取り得る。例えば、上記実施形態ではMRI装置で説明したが、X線CT装置等の医用画像診断装置でも良い。また、上記実施形態では医用画像診断装置で動態撮影した後各自相における所望の断面を表示する任意多断面再構成を説明したが、動態撮影で得られた結果を予め記憶装置に記憶し、記憶されたものを任意多断面再構成することのみを行うシステムでも良いことはいうまでもない。このようなシステムでも、上述のように任意多断面再構成をすれば良いと考えられる。 It should be noted that the present invention is not limited to the contents disclosed in each of the above embodiments, and can take various forms without departing from the spirit of the present invention. For example, although the MRI apparatus has been described in the above embodiment, a medical image diagnostic apparatus such as an X-ray CT apparatus may be used. In the above embodiment, arbitrary multi-section reconstruction is described in which a desired section in each phase is displayed after dynamic imaging with a medical image diagnostic apparatus. However, a result obtained by dynamic imaging is stored in a storage device in advance and stored. It goes without saying that a system that only reconstructs an arbitrary multi-section can be used. Even in such a system, it is considered that an arbitrary multi-section reconstruction may be performed as described above.

Claims (11)

  1.  撮影空間内で被検体の所望の部位の動きと伴に、前記被検体の所望の部位について複数の三次元ボリュームデータを撮像する撮像手段と、前記撮像手段で得られた複数の三次元ボリュームデータを記憶する記憶手段と、前記被検体の所望の部位内の所望断面の位置を入力する入力手段と、前記所望断面の画像を、前記記憶手段に記憶されている三次元ボリュームデータより生成する画像生成手段を備えた医用画像診断装置において、
     前記被検体の所望の部位の位置情報を検出する検出手段を備え、前記画像生成手段は、前記検出手段により検出した位置情報を用いて、前記所望断面の前記複数の三次元ボリュームデータの各々から前記所望断面の画像をそれぞれ生成することを特徴とする医用画像診断装置。
    An imaging means for imaging a plurality of three-dimensional volume data for the desired part of the subject along with movement of the desired part of the subject in the imaging space, and a plurality of three-dimensional volume data obtained by the imaging means An image for generating the image of the desired cross section from the three-dimensional volume data stored in the storage means. In the medical image diagnostic apparatus provided with the generating means,
    Detection means for detecting position information of a desired part of the subject is provided, and the image generation means uses each of the plurality of three-dimensional volume data of the desired section using the position information detected by the detection means. A medical image diagnostic apparatus characterized in that each image of the desired cross section is generated.
  2.  前記検出手段は、前記所望の部位の特定位置の位置情報を検出することを特徴とする請求項1記載の医用画像診断装置。 2. The medical image diagnostic apparatus according to claim 1, wherein the detection unit detects position information of a specific position of the desired part.
  3.  前記所望の部位が固定された支点部位を中心に動く場合には、前記特定位置が1ヵ所設けられていて、前記被検体の所望の部位の動きは、前記医用画像診断装置の撮像空間に設定された直交座標系におけるX軸あるいはY軸、Z軸を回転軸として回転することを特徴とする請求項2記載の医用画像診断装置。 When the desired part moves around a fixed fulcrum part, the specific position is provided in one place, and the movement of the desired part of the subject is set in the imaging space of the medical image diagnostic apparatus 3. The medical image diagnostic apparatus according to claim 2, wherein the medical image diagnostic apparatus rotates with an X axis, a Y axis, or a Z axis as a rotation axis in the orthogonal coordinate system.
  4.  前記被検体の所望の部位の動きが、極座標系における2つの回転軸を回転中心とする回転運動を含む場合は、前記特定位置の数を2ヶ所以上設定し、前記検出手段は前記2ヶ所以上の特定位置を検出することにより前記所望の部位の位置を検出することを特徴とする請求項2記載の医用画像診断装置。 When the movement of the desired part of the subject includes a rotational movement about two rotational axes in the polar coordinate system, the number of the specific positions is set to two or more, and the detection means is the two or more 3. The medical image diagnostic apparatus according to claim 2, wherein the position of the desired part is detected by detecting a specific position of the medical image.
  5.  前記時系列的に得られた三次元ボリュームデータより任意の1個以上を選択する選択手段を備え、
     前記入力手段は、前記選択手段により選択された三次元ボリュームデータより得られたた二次元画像上に、所定断面の位置を入力し、前記検出手段により検出した前記所望の部位の位置情報に基づいて、前記選択手段により選択されていない他の三次元ボリュームデータについて、前記所定断面の位置を算出する算出手段を備えたことを特徴とする請求項1記載の医用画像診断装置。
    A selection means for selecting any one or more from the three-dimensional volume data obtained in time series,
    The input means inputs a position of a predetermined cross section on a two-dimensional image obtained from the three-dimensional volume data selected by the selection means, and based on position information of the desired part detected by the detection means 2. The medical image diagnostic apparatus according to claim 1, further comprising a calculation unit that calculates the position of the predetermined cross section for other three-dimensional volume data not selected by the selection unit.
  6.  前記所望断面は複数あることを特徴とする請求項1記載の医用画像診断装置。 2. The medical image diagnostic apparatus according to claim 1, wherein there are a plurality of the desired cross sections.
  7.  前記所望断面は平面であることを特徴とする請求項1記載の医用画像診断装置。 2. The medical image diagnostic apparatus according to claim 1, wherein the desired cross section is a plane.
  8.  前記所望断面は曲面であることを特徴とする請求項1記載の医用画像診断装置。 2. The medical image diagnostic apparatus according to claim 1, wherein the desired cross section is a curved surface.
  9.  前記医用画像診断装置は、X線CT装置あるいはMRI装置であることを特徴とする請求項1記載の医用画像診断装置。 2. The medical image diagnostic apparatus according to claim 1, wherein the medical image diagnostic apparatus is an X-ray CT apparatus or an MRI apparatus.
  10.  (1)撮影空間内で被検体の所望の部位を動きと伴に、前記被検体の三次元ボリュームデータを複数撮像する工程と、
     (2)前記工程(1)で撮像された前記三次元ボリュームデータより、基準画面を生成する工程と、
     (3)前記工程(2)により生成された基準画面上に画像生成のための所望の断面位置を入力する工程と、
     (4)前記工程(3)で入力された所望の断面位置の画像を生成する工程を備えた医用画像診断方法であって、
     (5)前記工程(1)により得られた複数の三次元ボリュームデータより、任意の1個以上の三次元ボリュームデータを選択する工程を備え、
     前記工程(2)は前記工程(5)で選択された三次元ボリュームデータについて基準画面を生成し、
     (6)前記被検体の所望の部位の位置変化を前記複数の三次元ボリュームデータそれぞれについて検出する工程と、
     (7)前記工程(6)により検出した所望の部位の位置変化に基づいて、他の三次元ボリュームデータにおける前記所望断面位置を算出する工程を備え、
     前記工程(4)は、前記工程(3)で入力され、前記工程(7)で位置変化が検出された所望断面位置の画像を生成することを特徴とする医用画像診断方法。
    (1) a step of imaging a plurality of three-dimensional volume data of the subject with movement of a desired part of the subject in the imaging space;
    (2) generating a reference screen from the three-dimensional volume data imaged in the step (1);
    (3) a step of inputting a desired cross-sectional position for image generation on the reference screen generated by the step (2);
    (4) A medical image diagnostic method comprising a step of generating an image of a desired cross-sectional position input in the step (3),
    (5) a step of selecting any one or more three-dimensional volume data from a plurality of three-dimensional volume data obtained in the step (1),
    The step (2) generates a reference screen for the three-dimensional volume data selected in the step (5),
    (6) detecting a change in position of a desired part of the subject for each of the plurality of three-dimensional volume data;
    (7) Based on the position change of the desired part detected by the step (6), comprising the step of calculating the desired cross-sectional position in other three-dimensional volume data,
    The medical image diagnostic method characterized in that the step (4) generates an image of a desired cross-sectional position that is input in the step (3) and whose position change is detected in the step (7).
  11.  (1)撮影空間内で被検体の所望の部位を動きと伴に、前記被検体の三次元ボリュームデータを複数撮像する工程と、
     (2)前記工程(1)により得られた複数の三次元ボリュームデータより、任意の1個以上の三次元ボリュームデータを選択する工程と、
     (3)前記工程(2)により選択された三次元ボリュームデータより、基準画面を生成する工程と、
     (4)前記工程(3)により生成された基準画面上に画像生成のための所望断面位置を入力する工程と、
     (5)前記被検体の所望の部位の位置変化を前記複数の三次元ボリュームデータそれぞれについて検出する工程と、
     (6)前記工程(5)により検出した所望の部位の位置変化に基づいて、他の三次元ボリュームデータにおける前記所望断面位置を算出する工程と、
     (7)前記工程(4)で入力あるいは前記工程(6)により算出した断面位置の画像を生成する工程を備えたことを特徴とする医用画像診断方法。
    (1) a step of imaging a plurality of three-dimensional volume data of the subject with movement of a desired part of the subject in the imaging space;
    (2) a step of selecting any one or more three-dimensional volume data from a plurality of three-dimensional volume data obtained in the step (1);
    (3) a step of generating a reference screen from the three-dimensional volume data selected in the step (2);
    (4) a step of inputting a desired cross-sectional position for image generation on the reference screen generated by the step (3);
    (5) detecting a change in position of a desired part of the subject for each of the plurality of three-dimensional volume data;
    (6) Based on the position change of the desired part detected in the step (5), calculating the desired cross-sectional position in other three-dimensional volume data;
    (7) A medical image diagnostic method comprising a step of generating an image of a cross-sectional position input in the step (4) or calculated in the step (6).
PCT/JP2009/050868 2008-01-31 2009-01-21 Medical diagnostic imaging device and method WO2009096290A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009551477A JP5468909B2 (en) 2008-01-31 2009-01-21 Medical diagnostic imaging equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008020069 2008-01-31
JP2008-020069 2008-01-31

Publications (1)

Publication Number Publication Date
WO2009096290A1 true WO2009096290A1 (en) 2009-08-06

Family

ID=40912642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050868 WO2009096290A1 (en) 2008-01-31 2009-01-21 Medical diagnostic imaging device and method

Country Status (2)

Country Link
JP (1) JP5468909B2 (en)
WO (1) WO2009096290A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012050166A1 (en) * 2010-10-15 2012-04-19 株式会社 東芝 Medical image-processing apparatus and x-ray computer tomography apparatus
JP2014050530A (en) * 2012-09-06 2014-03-20 Toshiba Corp Magnetic resonance imaging apparatus and magnetic resonance imaging method
US8798227B2 (en) 2010-10-15 2014-08-05 Kabushiki Kaisha Toshiba Medical image processing apparatus and X-ray computed tomography apparatus
JP2015109962A (en) * 2013-11-08 2015-06-18 株式会社東芝 Medical image processing apparatus, x-ray computerized tomography apparatus, and medical image processing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110176715A1 (en) * 2010-01-21 2011-07-21 Foos David H Four-dimensional volume imaging system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001340315A (en) * 2000-06-05 2001-12-11 Toshiba Corp Mri apparatus and mr imaging method
JP2004358001A (en) * 2003-06-05 2004-12-24 Ziosoft Inc Medical image processor, medical image processing method and program
JP2005103197A (en) * 2003-10-02 2005-04-21 Advanced Telecommunication Research Institute International Apparatus, method and program for extracting skeleton posture
JP2006102353A (en) * 2004-10-08 2006-04-20 Toshiba Corp Apparatus, method and program for analyzing joint motion
JP2007282945A (en) * 2006-04-19 2007-11-01 Toshiba Corp Image processor
JP2007319190A (en) * 2006-05-30 2007-12-13 Toshiba Corp Ultrasonograph, and medical image processing apparatus and program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001340315A (en) * 2000-06-05 2001-12-11 Toshiba Corp Mri apparatus and mr imaging method
JP2004358001A (en) * 2003-06-05 2004-12-24 Ziosoft Inc Medical image processor, medical image processing method and program
JP2005103197A (en) * 2003-10-02 2005-04-21 Advanced Telecommunication Research Institute International Apparatus, method and program for extracting skeleton posture
JP2006102353A (en) * 2004-10-08 2006-04-20 Toshiba Corp Apparatus, method and program for analyzing joint motion
JP2007282945A (en) * 2006-04-19 2007-11-01 Toshiba Corp Image processor
JP2007319190A (en) * 2006-05-30 2007-12-13 Toshiba Corp Ultrasonograph, and medical image processing apparatus and program

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012050166A1 (en) * 2010-10-15 2012-04-19 株式会社 東芝 Medical image-processing apparatus and x-ray computer tomography apparatus
JP2012101045A (en) * 2010-10-15 2012-05-31 Toshiba Corp Medical image processor and x-ray computerized tomographic apparatus
CN102573642A (en) * 2010-10-15 2012-07-11 株式会社东芝 Medical image-processing apparatus and x-ray computer tomography apparatus
US8798227B2 (en) 2010-10-15 2014-08-05 Kabushiki Kaisha Toshiba Medical image processing apparatus and X-ray computed tomography apparatus
JP2014050530A (en) * 2012-09-06 2014-03-20 Toshiba Corp Magnetic resonance imaging apparatus and magnetic resonance imaging method
JP2015109962A (en) * 2013-11-08 2015-06-18 株式会社東芝 Medical image processing apparatus, x-ray computerized tomography apparatus, and medical image processing method

Also Published As

Publication number Publication date
JPWO2009096290A1 (en) 2011-05-26
JP5468909B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
US6484048B1 (en) Real-time interactive three-dimensional locating and displaying system
RU2468436C2 (en) System and method to combine ultrasonic images in real time with previously received medical images
JP4300488B2 (en) Reference image display method and ultrasonic diagnostic apparatus in ultrasonic diagnosis
JP4717486B2 (en) Image reconstruction apparatus for X-ray apparatus and local 3D reconstruction method of target range
JP3996359B2 (en) Magnetic resonance imaging system
JP5944650B2 (en) Magnetic resonance imaging system
US8731270B2 (en) Magnetic resonance imaging apparatus and imaging slice determination method
US20060241379A1 (en) Method for imaging of a periodically-moving subject region of a subject
JP6556165B2 (en) Automatic multi-modality ultrasonic registration without reconstruction
JP3878462B2 (en) Diagnostic imaging support system
JP5470185B2 (en) Medical image processing apparatus and treatment support system
JP5468909B2 (en) Medical diagnostic imaging equipment
JP2008035895A (en) Image processing method and image processing program
JP2003180660A (en) Operating method for medical image diagnostic system
JP2003199726A (en) Method and apparatus of magnetic resonance imaging
JP2009247739A (en) Medical image processing and displaying device, computer processing program thereof, and ultrasonic diagnosing equipment
JP2007167374A (en) Medical image processor
JP2009254629A (en) Magnetic resonance imaging apparatus
JP2003190117A (en) Medical operation support system
JP4327313B2 (en) MRI equipment
JP4201089B2 (en) Magnetic resonance imaging apparatus and multi-station CE-MRA method
JP2010051615A (en) Magnetic resonance imaging apparatus
JP6188764B2 (en) Magnetic resonance imaging system
US11963826B2 (en) Reconstruction-free automatic multi-modality ultrasound registration
US20240090791A1 (en) Anatomy Masking for MRI

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09706739

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009551477

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09706739

Country of ref document: EP

Kind code of ref document: A1