WO2009096096A1 - Electroconductive molded product and process for producing the electroconductive molded product - Google Patents

Electroconductive molded product and process for producing the electroconductive molded product Download PDF

Info

Publication number
WO2009096096A1
WO2009096096A1 PCT/JP2008/072282 JP2008072282W WO2009096096A1 WO 2009096096 A1 WO2009096096 A1 WO 2009096096A1 JP 2008072282 W JP2008072282 W JP 2008072282W WO 2009096096 A1 WO2009096096 A1 WO 2009096096A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic elastomer
molded article
elastomer composition
conductive
mass
Prior art date
Application number
PCT/JP2008/072282
Other languages
French (fr)
Japanese (ja)
Inventor
Akira Minagoshi
Original Assignee
Sumitomo Rubber Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries, Ltd. filed Critical Sumitomo Rubber Industries, Ltd.
Priority to CN200880126296.4A priority Critical patent/CN101932637B/en
Publication of WO2009096096A1 publication Critical patent/WO2009096096A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/02Copolymers with acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/123Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2309/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08J2309/02Copolymers with acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides

Definitions

  • the present invention relates to a conductive molded article, and more specifically, a conductive molded article suitably used in an OA apparatus such as an ink jet printer, a laser printer, an electrostatic copying machine or a facsimile machine, and an image forming apparatus such as an automatic deposit dispenser (ATM). About.
  • OA apparatus such as an ink jet printer, a laser printer, an electrostatic copying machine or a facsimile machine, and an image forming apparatus such as an automatic deposit dispenser (ATM).
  • ATM automatic deposit dispenser
  • the conductive member in the image forming apparatus needs to have a suitable stable electrical resistance value.
  • a method of imparting conductivity to this kind of conductive member a method of using an electronic conductive polymer composition in which a conductive filler such as metal oxide powder or carbon black is blended in a polymer, and urethane
  • an ion conductive polymer composition such as rubber, acrylonitrile butadiene rubber, epichlorohydrin rubber and the like.
  • the conductive member using the electronically conductive polymer composition has the above problems, the recent progress in image quality improvement technology such as digitization and colorization is not remarkable for the electronically conductive polymer composition. Ion conductive polymer compositions tend to be particularly preferred.
  • ion conductive polymer compositions that have been put to practical use for conductive members are vulcanized rubber compositions, but the vulcanized rubber compositions have the disadvantage that they are not thermoplastic and can not be recycled. Moreover, when using the conventional ion conductive agent, there existed a problem that an electrical resistance could not be reduced efficiently. Therefore, when a large amount of ion conductive agent is added, problems such as bleeding may occur and mechanical properties such as compression set and hardness may be deteriorated.
  • Patent Document 1 Japanese Patent Application Laid-Open Nos. 2004-51829 (Patent Document 1) and 2004-269854 (Patent Document 2), a rubber or / and / or crosslinkable into a thermoplastic resin and / or a thermoplastic elastomer is provided.
  • a crosslinked thermoplastic elastomer composition and a conductive member using the composition are provided.
  • the present inventors have conducted further studies to put into practical use the product produced using the above-mentioned dynamically cross-linked thermoplastic elastomer composition in accordance with the demand of the market becoming more advanced, and the hardness We found that there is room to improve the surface and surface properties. Specifically, when the product is used in contact with another member as, for example, a transfer roller, a certain degree of nip is required, and a demand for low hardness can not be avoided. However, if a large amount of softener is blended for the purpose of lowering hardness, the softness may bleed to other members in contact due to the increase in surface adhesive force, and the friction resistance is high. Problems such as getting worse may occur. In addition, when the hardness is lowered, the adhesion on the surface becomes high, which may cause a defect due to the adhesion of the toner. Thus, there have been frequent cases where it is necessary to overcome the antinomy.
  • the present invention can reduce the surface tackiness while maintaining low hardness and has good formability and recyclability, and can realize sufficiently low electrical resistance even with the addition of a small amount of salt, hence It is an object of the present invention to provide a conductive molded article capable of preventing migration contamination and deterioration in physical properties caused by a large amount of salt.
  • EPDM ethylene-propylene-diene copolymer rubber
  • NBR acryl
  • the present inventors conducted ultraviolet irradiation treatment on the surface of a molded article made of a dynamically cross-linked thermoplastic elastomer composition having a specific composition, thereby achieving low hardness and adhesion of the surface. It succeeded in making reduction compatible and came to this invention.
  • the EPDM used in the present invention includes non-oil spread type EPDM consisting only of a rubber component and oil spread type EPDM containing a parent oil as well as a rubber component, but any type can be used in the present invention .
  • diene monomers in EPDM include dicyclopentadiene, methylene norbornene, ethylidene norbornene, 1,4-hexadiene or cyclooctadiene and the like.
  • the rubber component is dynamically crosslinked and dispersed in a mixture of one or both of a thermoplastic resin and a thermoplastic elastomer. Among them, it is preferable that the rubber component is dynamically crosslinked and dispersed in a thermoplastic resin or in a mixture of a thermoplastic resin and a thermoplastic elastomer.
  • thermoplastic resin A well-known thing can be used as said thermoplastic resin.
  • olefin resin polystyrene (PS), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), nylon and the like can be mentioned.
  • PS polystyrene
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • nylon nylon
  • the olefin resin for example, polyethylene, polypropylene, ethylene ethyl acrylate resin, ethylene vinyl acetate resin, ethylene-methacrylic acid resin, ionomer resin, etc. may be mentioned, but it is preferable to use polypropylene or polyethylene, and it is more preferable to use polypropylene .
  • thermoplastic elastomer known thermoplastic elastomers can be used. Specific examples thereof include styrene-based elastomers, chlorinated polyethylene, vinyl chloride-based elastomers, olefin-based elastomers, urethane-based elastomers, ester-based elastomers, and amide-based elastomers.
  • thermoplastic elastomers it is preferable to use a styrenic elastomer.
  • a styrene-based elastomer a block copolymer of a polymer block (A) mainly composed of a styrene-based monomer and a block (B) mainly composed of a conjugated diene compound and a conjugated diene polymerization unit of the block copolymer hydrogenated Can be illustrated.
  • the styrene-based monomer include styrene, ⁇ -methylstyrene, vinyl toluene and t-butylstyrene. These monomers may be used alone or in combination of two or more.
  • styrene is preferable as the styrene-based monomer.
  • conjugated diene compound butadiene, isoprene, chloroprene, 2,3-dimethyl butadiene and the like can be exemplified. These may be used alone or in combination of two or more.
  • styrene elastomers include styrene-butadiene-styrene copolymer (SBS), styrene-isoprene-styrene copolymer (SIS), styrene-ethylene / butylene-styrene copolymer (SEBS), styrene- Examples thereof include ethylene / propylene-styrene copolymer (SEPS) and styrene-ethylene-ethylene / propylene-styrene copolymer (SEEPS).
  • SBS styrene-butadiene-styrene copolymer
  • SIS styrene-isoprene-styrene copolymer
  • SEBS styrene-ethylene / butylene-styrene copolymer
  • SEPS ethylene / propylene-styrene copolymer
  • SEEPS
  • a hydrogenated styrene-based thermoplastic elastomer it is more preferable to use a hydrogenated styrene-based thermoplastic elastomer, and it is particularly preferable to use a styrene-ethylene-ethylene / propylene-styrene copolymer (SEEPS).
  • SEEPS styrene-ethylene-ethylene / propylene-styrene copolymer
  • thermoplastic resin and / or the mixture of either or both of the thermoplastic elastomer and the thermoplastic resin are preferably contained in a ratio of 2 to 150 parts by mass with respect to 100 parts by mass of the rubber component.
  • the compounding amount is less than 2 parts by mass, the rubber component can not be dispersed in the resin matrix, and processing becomes difficult, and the strength and the abrasion resistance of the conductive molded article of the present invention decrease.
  • the compounding amount exceeds 150 parts by mass, the hardness becomes high, which may cause problems such as poor transfer and poor transport when used as a member for an image forming apparatus.
  • thermoplastic elastomer and the thermoplastic resin be an elastomer even after mixing.
  • the reason is that the hardness of the elastomer composition finally obtained by dispersing the rubber component is lower.
  • the mixing ratio of the thermoplastic elastomer and the thermoplastic resin in the mixture can be determined according to the type of the elastomer and resin used, but 1 mass of the thermoplastic resin is based on 100 parts by mass of the thermoplastic elastomer. It is preferable that it is part or more and 100 parts by mass or less.
  • the mixing amount of the thermoplastic resin is less than 1 part by mass, the effect of mixing the thermoplastic resin can not be observed, and if the mixing amount of the thermoplastic resin is more than 100 parts by mass, the mixture becomes an elastomer. .
  • the mixing amount of the thermoplastic resin is more preferably 20 to 80 parts by mass with respect to 100 parts by mass of the thermoplastic elastomer.
  • a crosslinking agent is usually used to dynamically crosslink the rubber component.
  • the crosslinking agent for example, a known crosslinking agent such as a resin crosslinking agent or a peroxide can be used. Among them, it is preferable to use a resin crosslinking agent.
  • a resin crosslinking agent is a synthetic resin that causes a crosslinking reaction to occur in the rubber component by heating etc., compared to the case where sulfur and a vulcanization accelerator are used in combination, it is difficult to produce a bloom and has a small compression set and a small deterioration in physical properties. It is preferable at the point which is excellent in maintenance and durability. Furthermore, since the crosslinking time is shorter than that of the sulfur crosslinking system, dynamic crosslinking can be progressed within a short time staying in the extruder.
  • An elastomer composition in which a rubber component containing at least EPDM and NBR in a specific ratio as described above is dynamically crosslinked and dispersed in a mixture of one or both of a thermoplastic resin and a thermoplastic elastomer.
  • a PO-AGE copolymer and a salt having an anion having a fluoro group and a sulfonyl group By blending the EO-PO-AGE copolymer with the above-mentioned salt, the copolymer stabilizes the ions derived from the salt, and there is an advantage that a significant effect can be obtained for the reduction of the electric resistance value.
  • the ethylene oxide ratio in the EO-PO-AGE copolymer is preferably 55 mol% or more and 95 mol% or less, more preferably 65 mol% or more and 95 mol% or less.
  • the cation derived from the salt is stabilized with an ethylene oxide unit or a propylene oxide unit, and in general, the ethylene oxide unit has higher stabilization ability than the propylene oxide unit. Therefore, the higher the ratio of ethylene oxide units, the more ions can be stabilized. On the other hand, when the ratio of ethylene oxide units exceeds 95 mol%, the ethylene oxide units are crystallized.
  • the copolymerization ratio of allyl glycidyl ether is preferably 1 mol% or more and 10 mol% or less. If it is less than 1 mol%, bleeding and contamination of other members are likely to occur, while if it exceeds 10 mol%, tensile strength, fatigue characteristics, flex resistance and the like are apt to deteriorate.
  • the number average molecular weight of the EO-PO-AGE copolymer is preferably 10,000 or more, and more preferably 30,000 or more. The reason for this is to prevent bleed bloom and photoreceptor contamination.
  • the EO-PO-AGE copolymer may be dynamically crosslinked.
  • the EO-PO-AGE copolymer may be simultaneously crosslinked when dynamically crosslinking the rubber component in the elastomeric composition, or separately from the dynamic crosslinking of the rubber component in the elastomeric composition.
  • the copolymer may be crosslinked.
  • a crosslinking agent to be used for example, a known crosslinking agent such as a resin crosslinking agent or a peroxide can be mentioned, but it is preferable to use a peroxide.
  • a salt provided with an anion having a fluoro group and a sulfonyl group a salt provided with at least one anion selected from the following chemical formulas 1, 2 and 3 is preferable.
  • X 1 and X 2 may be the same or different, and represent a functional group having 1 to 8 carbon atoms including a carbon atom, a fluorine atom and a sulfonyl group (—SO 2 —).
  • X 3 represents a carbon atom, a fluorine atom and a functional group having 1 to 8 carbon atoms including a sulfonyl group (—SO 2 —).
  • X 4 , X 5 and X 6 may be the same or different, and have a C 1-8 functional group containing a carbon atom, a fluorine atom and a sulfonyl group (—SO 2 —) Represent)
  • Salts with the anions fluoro group (-F) and sulfonyl group (-SO 2 -) is stabilized anion to delocalized charge by a strong electron-withdrawing effect, in the composition It exhibits a high degree of dissociation and can achieve high ion conductivity. For this reason, the salt provided with these anions can greatly reduce the electrical resistance value with a small amount of addition, and the decrease in various physical property values in that case is also small. Furthermore, unlike carbon black and the like, since it does not become black and the like even when blended, it can be used for applications requiring transparency and coloring.
  • the carbon number of the functional group represented by X 1 to X 6 in the chemical formula 1, the chemical formula 2 and the chemical formula 3 is 1 to 8, but it is preferably 1 to 4 from the viewpoint of obtaining a higher degree of dissociation It is more preferable that it is -2.
  • Examples of the functions X 1 to X 6 include groups represented by R—SO 2 — (wherein R represents a hydrocarbon group having 1 to 8 carbon atoms which is substituted by a fluorine atom).
  • examples of the hydrocarbon group having 1 to 8 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group and isopentyl group, alkyl groups such as tert-pentyl, n-hexyl and 1,1-dimethylpropyl; eg vinyl, allyl, 1-propenyl, isopropenyl, 2-butenyl and 1,3-butadienyl Or alkenyl groups such as 2-pentenyl group; and alkynyl groups such as ethynyl group, 2-propynyl group, 1-butynyl group and 2-butynyl group.
  • the number of fluorine atoms as a substituent and the substitution position are not particularly limited as long as they are in a chemically acceptable range.
  • C n H m F (2 n-m + 1) -SO 2- (n represents an integer of 1 or more and 8 or less ) as the functional groups X 1 to X 6 in terms of stability, cost, and handleability; Preferably represents an integer of 0 or more and 16 or less).
  • the cation which makes a pair with the anion which has the said fluoro group and a sulfonyl group, and comprises a salt is a cation of an alkali metal, group 2A, a transition metal, or an amphoteric metal.
  • alkali metals are more preferable because they have small ionization energy and easily form stable cations.
  • lithium ions having high conductivity among alkali metals are particularly preferable.
  • cations such as those represented by the following Chemical Formula 4 and Chemical Formula 5 can also be used.
  • R 11 to R 14 each represent an alkyl group having 1 to 20 carbon atoms which may have a substituent, and may be the same or different).
  • R 15 and R 16 each represent an alkyl group having 1 to 20 carbon atoms which may have a substituent, and may be the same or different).
  • alkyl group having 1 to 20 carbon atoms in the “optionally substituted alkyl group having 1 to 20 carbon atoms” represented by R 11 to R 16 include, for example, methyl, ethyl, n-propyl, Examples include i-propyl, n-butyl, i-butyl, t-butyl, n-pentyl, n-hexyl, n-decyl and the like.
  • halogen preferably fluorine, chlorine, bromine
  • alkanoyl group preferably C 1-8
  • alkanoyloxy group preferably C 1-8
  • alkanoylamino groups preferably C 1 ⁇ 8
  • carboxyl group an alkoxycarbonyl group (preferably C 2 ⁇ 8), haloalkylcarbonyl groups (preferably C 2 ⁇ 8), alkoxy groups (preferably C 1 ⁇ 8), haloalkoxy groups (preferably C 1 ⁇ 8), an amino group, an alkylamino group (preferably C 1 ⁇ 8), dialkylamino group (preferably C 2 ⁇ 16), cyclic amino group, alkylaminocarbonyl group (preferably C 2 1-8), a carbamoyl group, a hydroxyl group, a nitro group, a cyano group, a mercapto group, an alkylthio group (preferably 1-8), alkylsulfonyl group, preferably C 1-8), a carbamoyl group,
  • R 11 to R 14 are methyl groups among others, and the other is an alkyl group having 4 to 20 carbon atoms which may have a substituent.
  • Particularly preferred is a trimethyl type quaternary ammonium cation consisting of Such a trimethyl type quaternary ammonium cation can stabilize a positive charge on a nitrogen atom by three strong electron donating methyl groups, and may have other substituents such as alkyl having 4 to 20 carbon atoms. This is because the groups can improve the compatibility with other components.
  • R 15 or R 16 is preferably an electron donating group, and more preferably a methyl group or an ethyl group.
  • salts provided with the anion having a fluoro group and a sulfonyl group bis (trifluoromethanesulfonyl) imidolithium ((CF 3 SO 2 ) 2 NLi), potassium bis (trifluoromethanesulfonyl) imide ((CF 3 ), among others SO 2 ) 2 NK) or lithium trifluorosulfonate (CF 3 SO 3 Li) is preferred.
  • These salts are stable even at very high temperatures, and unlike perchlorates conventionally used as ion conductive agents, no treatment such as explosion proof specifications is required, and other physical properties are particularly improved. It is difficult to make it worse, and it is also excellent in reducing the rise in resistance under low temperature and low humidity. From these points, it is possible to further improve the performance as the ion conductive agent by reducing the manufacturing cost and securing the safety.
  • salts provided with anions having a fluoro group and a sulfonyl group (C 2 F 5 SO 2 ) 2 NLi, (C 4 F 9 SO 2 ) (CF 3 SO 2 ) NLi, (FSO 2 C 6) F 4 ) (CF 3 SO 2 ) NLi, (C 8 F 17 SO 2 ) (CF 3 SO 2 ) NLi, (CF 3 CH 2 OSO 2 ) 2 NLi, (CF 3 CF 2 CH 2 OSO 2 ) 2 NLi , (HCF 2 CF 2 CH 2 OSO 2 ) 2 NLi, ((CF 3 ) 2 CHOSO 2 ) 2 NLi, (CF 3 SO 2 ) 3 CLi, (CF 3 CH 2 OSO 2 ) 3 CLi, C 4 F 9 SO 3 Li, (C 2 F 5 SO 2 ) 2 NK, (C 4 F 9 SO 2 ) (CF 3 SO 2 ) NK, (FSO 2 C 6 F 4 ) (CF 3 SO 3 Li, (
  • the salt provided with the anion having a fluoro group and a sulfonyl group is preferably blended in a ratio of 0.5 to 20 parts by mass with respect to 100 parts by mass of the EO-PO-AGE copolymer. If the blending amount of the salt is less than 0.5 parts by mass, sufficient conductivity can not be obtained. On the other hand, the conductivity hardly changes even if the salt is added at a certain level or more. Therefore, when the blending amount of the salt is more than 20 parts by mass, the disadvantage that the cost increases compared to the effect of conductivity improvement It is for.
  • a part of the ions generated from the salt to be added can be single-ionized using an anion adsorbent or the like to stabilize the conductivity and improve the conductivity when a small amount is added.
  • an anion adsorbent synthetic hydrotalcite mainly composed of Mg and Al, an inorganic ion exchanger such as Mg-Al-based, Sb-based, Ca-based or the like, and an ion seat for fixing anions in the chain (co )
  • synthetic hydrotalcite Koreana Chemical Industry Co., Ltd. “Kyoward-2000”, “Kyoward-1000”
  • anion exchange ion exchange resin Naippon Shimizu Co., Ltd. “Dionone DCA11” Etc.
  • compatibilizer it is preferable to further add a compatibilizer to the dynamically crosslinked thermoplastic elastomer composition described above.
  • a compatibilizer By blending the compatibilizer, the dispersibility of each component in the dynamically cross-linked thermoplastic elastomer composition, in particular, the rubber component and the thermoplastic resin and / or the thermoplastic elastomer is improved, and thus excellent moldability is obtained.
  • known compatibilizers used in the relevant field may be used, but ethylene-acrylic acid ester-glycidyl methacrylate copolymer or ethylene-acrylic acid ester-maleic anhydride copolymer is blended. Is preferred.
  • acrylic acid ester in ethylene-acrylic acid ester-glycidyl methacrylate copolymer or ethylene-acrylic acid ester-maleic anhydride copolymer methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, acrylic acid 2 And esters of acrylic acid and alcohol such as ethylhexyl and the like, and among them, methyl acrylate and ethyl acrylate are preferable.
  • the content of the acrylic ester component is preferably 0.1 to 30% by mass, more preferably 1 to 20% by mass, and still more preferably 5 to 15% by mass.
  • the content of glycidyl methacrylate or maleic anhydride is preferably 0.05 to 20% by mass, more preferably 0.1 to 15% by mass, and still more preferably 0.5 to 10% by mass. Preferably, it is 1 to 10% by mass.
  • the blending amount of the above-mentioned compatibilizer is preferably 1 to 20 parts by mass with respect to 100 parts by mass of the rubber component in the elastomer composition. If the blending amount of the compatibilizer is less than 1 part by mass, the effect as the compatibilizer is not sufficient, and the rubber component, the thermoplastic resin and / or the thermoplastic elastomer, the EO-PO-AGE copolymer, the salt Is not well mixed, and the uniformity of the composition is impaired, so that the processability is deteriorated. On the other hand, if the compounding amount of the compatibilizer exceeds 20 parts by mass, the compatibilization effect is saturated, so the improvement is not further improved, and conversely, the demerit such as the increase in hardness is increased.
  • the above-mentioned dynamically crosslinked thermoplastic elastomer composition is molded into various shapes to obtain a conductive molded article.
  • forming into a roll, a sheet or a seamless belt is preferable.
  • extrusion molding is used as a molding method. This is because, if extrusion molding is used, the surface can be processed smoothly and continuous molding can be performed, so that mass productivity is excellent.
  • the conductive molded article of the present invention is simple in structure having only one conductive layer comprising the above-mentioned dynamically crosslinked thermoplastic elastomer composition, and is preferable from the viewpoint of industrial production.
  • a multilayer structure of two or three layers may be used to adjust the electrical resistance, etc.
  • the type of each layer, the lamination order, the lamination thickness, etc. should be set appropriately.
  • the conductive layer is preferably the outermost layer.
  • the present invention is characterized in that the surface of the conductive molded article is subjected to an ultraviolet irradiation treatment.
  • an ultraviolet irradiation treatment As described above, by forming the oxide film by irradiating the surface portion of the conductive molded article with ultraviolet light, the oxide film becomes a dielectric layer, and the dielectric loss tangent of the conductive molded article can be reduced.
  • the chargeability can be added to the toner, and the added chargeability can be maintained.
  • it is preferable to form the oxide film by ultraviolet irradiation because the processing time is short and the cost is low.
  • the said ultraviolet irradiation process can be performed according to a well-known method.
  • the wavelength is 100-400 nm
  • ultraviolet light of 100-300 nm is 30 seconds-30 minutes
  • Preferably 1 minute-10 Irradiation for about a minute is preferable. Then, in the case of a roll, irradiation is performed while rotating, so that the entire surface of the conductive molded article is irradiated with ultraviolet rays uniformly.
  • the conductive molded article of the present invention thus obtained has properties of low hardness and reduced surface adhesion.
  • the conductive molded article of the present invention has a Shore A hardness of 80 or less and 40 or more according to JIS K6253 under conditions of a temperature of 23 ° C. and a humidity of 55%, and for a sheet made of polybutylene terephthalate (PBT).
  • the friction coefficient is preferably 1.0 or less and 0.3 or more.
  • the Shore A hardness is more than 80, it is too hard, and when it is less than 40, it is too soft, and the range of application of the conductive molded article of the present invention is narrowed.
  • the coefficient of friction with respect to a sheet produced by PBT exceeds 1.0, the surface is highly adhesive, and problems such as toner adhesion and deterioration in durability tend to occur.
  • the electroconductive molded article of the present invention can be used in various applications as long as the application requires conductivity.
  • it can be very suitably used as a conductive member of an image forming apparatus such as a printer, an electrostatic copying machine, a facsimile machine, an ATM or the like.
  • the sheet-like conductive molded article is preferably used as, for example, a conductive sheet or an antistatic film attached to an image forming apparatus.
  • the seamless belt-like conductive molded product is used as a conveying belt, a transfer belt, an intermediate transfer belt, a fixing belt, a developing belt, a belt for a photosensitive substrate, and the like.
  • the surface is subjected to an ultraviolet irradiation treatment to reduce the surface tackiness while maintaining the hardness low.
  • an ultraviolet irradiation treatment to reduce the surface tackiness while maintaining the hardness low.
  • the electric resistance is effectively reduced by blending a salt having an anion having a fluoro group and a sulfonyl group as an ion conductive agent together with the EO-PO-AGE copolymer. can do. Therefore, since the compounding amount of the ion conductive agent can be smaller than the conventional one, the variation of the electric resistance is also small, and problems such as occurrence of bleeding or deterioration of mechanical properties such as compression set and hardness can be prevented. Furthermore, the cost of raw materials can be reduced.
  • the rubber component in which EPDM and NBR are blended is dynamically crosslinked and dispersed in the mixture of one or both of the thermoplastic resin and the thermoplastic elastomer, it is like rubber. Durability, elasticity, flexibility and moldability such as resin. Furthermore, the conductive moldings of the invention are thermoplastic and recyclable.
  • the preferred embodiments of the dynamically crosslinked thermoplastic elastomer composition constituting the conductive molded article of the present invention will be described below.
  • the rubber components include EPDM and NBR.
  • EPDM rubber has a saturated hydrocarbon main chain and does not contain a double bond in the main chain, so molecular backbone cleavage occurs even when exposed to a high concentration ozone atmosphere or environment such as light irradiation for a long time It is difficult.
  • the rubber component is dynamically crosslinked and dispersed in the thermoplastic resin.
  • a thermoplastic resin it is preferable to use an olefin resin, and it is more preferable to use a polypropylene.
  • the thermoplastic resin is preferably contained in a proportion of 2 to 100 parts by mass, more preferably 5 to 50 parts by mass, and more preferably 10 to 40 parts by mass with respect to 100 parts by mass of the rubber component. More preferably, it is contained in the ratio of
  • the rubber component may be dynamically crosslinked and dispersed in a mixture of thermoplastic resin and thermoplastic elastomer.
  • a thermoplastic resin it is preferable to use an olefin resin, and it is more preferable to use a polypropylene.
  • a thermoplastic elastomer a styrene-based thermoplastic elastomer is preferably used, and a styrene-ethylene-ethylene / propylene-styrene copolymer (SEEPS) is more preferably used.
  • SEEPS styrene-ethylene-ethylene / propylene-styrene copolymer
  • the mixing ratio of the styrene-based thermoplastic elastomer and the olefin-based resin is 30 to 50 parts by mass of the olefin-based resin with respect to 100 parts by mass of the styrene-based thermoplastic elastomer.
  • the mixture of the thermoplastic elastomer and the thermoplastic resin is preferably contained in a proportion of 20 to 120 parts by mass with respect to 100 parts by mass of the EPDM rubber, and more preferably in a proportion of 40 to 100 parts by mass.
  • the content is further preferably 50 to 90 parts by mass.
  • the rubber component is dynamically crosslinked by the crosslinking agent.
  • a crosslinking agent a resin crosslinking agent or a peroxide etc. are mentioned, for example. Among them, it is preferable to use a resin crosslinking agent.
  • a resin crosslinking agent As a resin crosslinking agent, a phenol resin, a melamine formaldehyde resin, a triazine formaldehyde condensate, a hexamethoxymethyl melamine resin etc. are mentioned, for example. Among them, it is preferable to use a phenol resin.
  • the phenol resin include various phenol resins synthesized by the reaction of a phenol such as phenol, alkylphenol, cresol, xylenol or resorcin and an aldehyde such as formaldehyde, acetaldehyde or furfural.
  • a halogenated phenol resin in which at least one halogen atom is bonded to an aldehyde unit of the phenol resin.
  • an alkylphenol-formaldehyde resin obtained by the reaction of an alkylphenol having an alkyl group bonded to the ortho position or para position of benzene and formaldehyde is excellent in compatibility with rubber and is rich in reactivity, and the crosslinking reaction start time is It is preferable because it can be done relatively quickly.
  • the alkyl group of the alkylphenol-formaldehyde resin is usually an alkyl group having 1 to 10 carbon atoms, and specific examples thereof include a methyl group, an ethyl group, a propyl group and a butyl group.
  • halides of this alkylphenol-formaldehyde resin are also suitably used.
  • a modified alkylphenol resin obtained by addition condensation of sulfurized-p-tert-butylphenol and an aldehyde, or an alkylphenol-sulfide resin can also be used as a resin crosslinking agent.
  • the compounding amount of the resin crosslinking agent is preferably 2 to 20 parts by mass with respect to 100 parts by mass of the rubber component. This is because if the compounding amount of the resin crosslinking agent is less than 2 parts by mass, the crosslinking becomes insufficient and the abrasion resistance and the like become poor, while if the compounding amount of the resin crosslinking agent exceeds 20 parts by mass, the conductivity of the present invention This is because the hardness of the molded article may be too high.
  • the blending amount is more preferably 5 to 20 parts by mass, further preferably 5 to 15 parts by mass.
  • a coagent may be used to appropriately carry out the dynamic crosslinking reaction.
  • the coagent metal oxides are used, and zinc oxide and zinc carbonate are particularly preferred.
  • the blending amount of the crosslinking aid is preferably 0.5 to 10 parts by mass, and more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the rubber component.
  • the peroxide is not particularly limited as long as it is a compound capable of crosslinking the rubber component, and examples thereof include benzoyl peroxide, 1,1-bis (tert-butylperoxy) -3,3,5-trimethylcyclohexane, 2,5 -Dimethyl-2,5-di (benzoylperoxy) hexane, di (tert-butylperoxy) diisopropylbenzene, 1,4-bis [(tert-butyl) peroxyisopropyl] benzene, di (tert-butylperoxy) ) Benzoate, tert-butyl peroxybenzoate, dicumyl peroxide, tert-butyl cumyl peroxide, 2,5-dimethyl-2,5-di (tert-butyl peroxy) hexane, di tert-butyl peroxide or 2 5, 5-Dimethyl-2, 5-di (tert-butyl) Peroxy
  • the compounding amount of the peroxide is preferably 0.2 to 3.0 parts by mass with respect to 100 parts by mass of the rubber component. This is because if the compounding amount of the peroxide is less than 0.2 parts by mass, the crosslinking of the rubber component becomes insufficient and the abrasion resistance etc. is inferior, while the compounding amount of the peroxide is 3.0 parts by mass In addition to the decrease in physical properties due to molecular scission, dispersion failure etc. occur and processing becomes difficult.
  • the lower limit of the peroxide content is more preferably 0.5 parts by mass or more and particularly preferably 1.0 parts by mass or more with respect to 100 parts by mass of the rubber component. Moreover, 2.5 mass parts or less are preferable with respect to 100 mass parts of rubber components, and, as for an upper limit, 2.0 mass parts or less are especially preferable.
  • a co-crosslinking agent may be blended with the peroxide.
  • the co-crosslinking agent acts to crosslink itself as well as to react with the rubber molecules to crosslink and polymerize the whole.
  • the molecular weight of the cross-linked molecule can be increased to improve the abrasion resistance and the like.
  • the co-crosslinking agent for example, functional groups of polyfunctional monomers, metal salts of methacrylic acid or acrylic acid, methacrylic esters, aromatic vinyl compounds, heterocyclic vinyl compounds, allyl compounds, and 1,2-polybutadiene are used. Polyfunctional polymers, dioximes and the like can be mentioned.
  • the blending amount of the co-crosslinking agent can be appropriately selected in relation to the type of co-crosslinking agent or other components to be used, but based on 100 parts by mass of the rubber component Preferably, it is 5 parts by mass or more and 20 parts by mass or less, more preferably 10 parts by mass or more and 15 parts by mass or less.
  • An elastomer composition in which a rubber component containing EPDM and NBR in a specific ratio described above is dynamically crosslinked and dispersed in a thermoplastic resin or a mixture of a thermoplastic resin and a thermoplastic elastomer, EO-PO- By blending an AGE copolymer and a salt having an anion having a fluoro group and a sulfonyl group, a conductive, dynamically crosslinked thermoplastic elastomer composition is obtained.
  • EO-PO-AGE co-weight in which the content ratio of ethylene oxide: propylene oxide: allyl glycidyl ether is 80 to 95 mol%: 1 to 10 mol%: 1 to 10 mol% It uses union. It is particularly preferable that the number average molecular weight Mn of the copolymer is 50,000 or more.
  • the blending amount of the EO-PO-AGE copolymer is preferably 3 to 20 parts by mass, and more preferably 5 to 15 parts by mass with respect to 100 parts by mass of the rubber component.
  • a salt provided with an anion having a fluoro group and a sulfonyl group a salt provided with an anion represented by the above-mentioned chemical formula 1 or 2 is preferable, and in particular, it is represented by X 1 to X 3 in the chemical formula 1 or 2. More preferred are salts with anions where the functional group is CF 3 SO 2- . It is preferable that the cation which makes a pair with the anion in the said salt and comprises a salt is an alkali metal, and lithium ion is more preferable among them. Specifically, bis (trifluoromethanesulfonyl) imide lithium is particularly preferable as the salt.
  • the salt provided with the anion having a fluoro group and a sulfonyl group is blended in a ratio of 1 to 20 parts by mass with respect to 100 parts by mass of the EO-PO-AGE copolymer.
  • the proportion is 5 to 15 parts by mass.
  • the dynamically crosslinked thermoplastic elastomer composition constituting the conductive molded article of the present invention preferably further contains a compatibilizer.
  • the compounding amount of the compatibilizer is preferably 3 to 15 parts by mass, and more preferably 5 to 10 parts by mass with respect to 100 parts by mass of the EPDM rubber.
  • the compatibilizer it is preferable to use ethylene-acrylic acid ester-glycidyl methacrylate copolymer or ethylene-acrylic acid ester-maleic anhydride copolymer, and use ethylene-acrylic acid ester-maleic anhydride copolymer Is more preferred.
  • ethylene-acrylic acid ester-maleic anhydride copolymer methyl acrylate or ethyl acrylate is used as the acrylic acid ester, and in particular, it is preferable to use ethyl acrylate.
  • the proportions of the constituent monomers are such that the acrylic ester content is 3 to 10% by mass, and the maleic anhydride content is 1 to 5% by mass.
  • the melt flow rate is preferably 0.5 to 100 g / 10 min, and more preferably 1 to 50 g / 10 min.
  • the terpolymer as a compatibilizer is a terpolymer comprising an olefin component (c1), an acrylic ester or methacrylic ester (c2) and an unsaturated carboxylic acid unit (c3).
  • the olefin component (c1) include ethylene-based hydrocarbons having 2 to 6 carbon atoms such as ethylene, propylene, isobutylene, 1-butene, 1-pentene and 1-hexene.
  • acrylic ester or methacrylic ester (c2) component examples include methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, propyl acrylate, propyl methacrylate, butyl acrylate, butyl methacrylate, acrylic Mention may be made of esters of acrylic acid or methacrylic acid with alcohols, such as 2-ethylhexyl acid, 2-ethylhexyl methacrylate and the like, among which methyl acrylate, methyl methacrylate, ethyl acrylate and ethyl methacrylate are preferred.
  • the unsaturated carboxylic acid unit (c3) is introduced by unsaturated carboxylic acid or its anhydride, and specifically, acrylic acid, methacrylic acid, maleic acid, maleic anhydride, itaconic acid, itaconic acid, fumaric acid, croton Besides acids and the like, half esters of unsaturated dicarboxylic acids, half amides and the like can be mentioned. Among them, acrylic acid, methacrylic acid, maleic acid and maleic anhydride are preferable, and in particular, maleic anhydride is preferable.
  • the form of the unsaturated carboxylic acid unit is not limited as long as it is copolymerized in the terpolymer, and examples thereof include random copolymerization, block copolymerization, graft copolymerization and the like.
  • the content of the acrylic ester or methacrylic ester (c2) component is preferably 0.1 to 30% by mass, more preferably 1 to 20% by mass, and still more preferably 5 to 15% by mass. .
  • the content of unsaturated carboxylic acid unit (c3) is preferably 0.05 to 20% by mass, more preferably 0.1 to 15% by mass, and still more preferably 0.5 to 10% by mass. It is more preferable, and 1 to 10% by mass is particularly preferable.
  • the dynamically crosslinked thermoplastic elastomer composition constituting the conductive molded article of the present invention may be blended with other components in addition to the above components as long as the object of the present invention is not violated.
  • a softener may be blended to provide adequate flexibility and elasticity.
  • the softeners include oils and plasticizers.
  • the oil it is possible to use, for example, mineral oils such as paraffinic, naphthenic and aromatic oils, synthetic oils per se known per se comprising hydrocarbon oligomers, or process oils.
  • a synthetic oil for example, an oligomer with ⁇ -olefin, an oligomer of butene, and an amorphous oligomer of ethylene and ⁇ -olefin are preferable.
  • plasticizer examples include phthalate type, adipate type, sepacate type, phosphate type, polyether type and polyester type plasticizers, and more specifically, for example, dioctyl phthalate (DOP), dibutyl phthalate (DBP), dioctyl Sepacate (DOS), dioctyl adipate (DOA) and the like.
  • DOP dioctyl phthalate
  • DBP dibutyl phthalate
  • DOS dioctyl Sepacate
  • DOA dioctyl adipate
  • paraffinic oil is preferable as the softener, and paraffin process oil is more preferable.
  • the blending amount is 50 to 250 parts by mass with respect to 100 parts by mass of the rubber component in the dynamically crosslinked thermoplastic elastomer composition.
  • the amount is preferably 50 to 200 parts by mass, and particularly preferably 70 to 150 parts by mass.
  • the softener when the amount of the softener is more than the above range, the softener causes crosslinking inhibition and the dynamic crosslinking is not sufficiently performed, so that the physical properties are easily deteriorated and the softener is easily bled.
  • the amount of the extender oil at the time of using oil extended rubber as a rubber component is contained in the compounding quantity of the said softener.
  • a filler or the like may be blended to improve the mechanical strength.
  • the filler include powders of silica, carbon black, clay, talc, calcium carbonate, dibasic phosphite (DLP), basic magnesium carbonate, alumina and the like.
  • the filler is preferably compounded in an amount of 15% by mass or less based on the total mass of the dynamically crosslinked thermoplastic elastomer composition. Although this is effective in improving the tensile strength, tear strength and the like of the composition, the addition of the filler tends to lower the flexibility of the composition if it is incorporated too much.
  • additives such as an antioxidant, an antioxidant, an ultraviolet light absorber, a lubricant, a pigment, an antistatic agent, a flame retardant, a neutralizing agent, a nucleating agent, and an antifoaming agent may be appropriately blended.
  • the conductive molded article of the present invention can be manufactured by a known method, and specifically, for example, the following manufacturing method is mentioned as a preferred embodiment.
  • a dynamically crosslinked thermoplastic elastomer composition constituting the conductive molded article of the present invention is produced. It does not specifically limit as a preparation method of the said composition, A well-known method can be used. All of the components contained in the composition may be kneaded at once, or some of the components may be kneaded beforehand and then the remaining components may be kneaded in two or more stages, such as in stages. It is also good. However, it is preferable to produce by the following method.
  • the rubber component, a mixture of one or both of a thermoplastic resin and a thermoplastic elastomer, and a crosslinking agent are kneaded, and the rubber component is dynamically crosslinked with the crosslinking agent to obtain thermoplastic resin and thermoplastic elastomer Disperse in one or both mixtures.
  • the heating temperature for dynamic crosslinking is preferably 160 to 250 ° C., and the heating time is preferably 1 to 20 minutes.
  • a twin-screw extruder, a Banbury mixer, a kneader or the like can be used.
  • the dynamic crosslinking may be performed in the presence of a halogen such as chlorine, bromine, fluorine or iodine.
  • the above-described halogenated resin crosslinking agent may be used, or a halogen donating substance may be blended.
  • the halogen donating substance include tin chloride such as stannic chloride, ferric chloride, cupric chloride and the like.
  • the halogen donating substance one substance may be used alone, or two or more substances may be used in combination.
  • the EO-PO-AGE copolymer is kneaded with a salt having an anion having a fluoro group and a sulfonyl group.
  • the heating temperature during mixing is preferably 50 to 150 ° C., and the heating time is preferably 1 to 20 minutes.
  • a twin-screw extruder, a Banbury mixer, a kneader, etc. can be used for kneading
  • the obtained elastomer composition, the obtained conductive composition, and optionally the compatibilizer and other additives may be added and kneaded to produce a conductive, dynamically crosslinked thermoplastic elastomer composition.
  • the heating temperature at the time of kneading is preferably 160 to 250 ° C., and the heating time is preferably 1 to 20 minutes.
  • a twin-screw extruder, a Banbury mixer, a kneader, etc. can be used for kneading
  • the resulting composition may be pelletized for later processing. Thereby, good moldability can be obtained.
  • the conductive composition is characterized in that it does not easily enter the dynamically crosslinked domain phase, and is selectively mixed in the matrix phase. For this reason, according to the manufacturing method, the conductive composition is selectively disposed in the matrix of the elastomer composition, and the thermoplastic resin and / or the thermoplastic elastomer in which the conductive composition is a matrix It can be unevenly distributed. As a result, even when the conductive composition is blended, the degree of crosslinking of the rubber is not affected, and therefore, the increase in compression set can be suppressed. At the same time, the amount of salt used is not unnecessarily increased, so that the increase in hardness can be suppressed, and the cost of raw materials can also be suppressed.
  • the obtained dynamically crosslinked thermoplastic elastomer composition is introduced into a resin extruder and extruded into a seamless belt, sheet or roll, preferably a sheet or roll.
  • the extrusion method is preferably used in that it can be manufactured continuously and that the productivity can be considerably improved without the need for a polishing step.
  • the dynamically crosslinked thermoplastic elastomer composition is extruded into a tubular form using a single screw extruder under the conditions of 150 to 250 ° C.
  • a roll-shaped conductive molded article can be obtained by press-fitting the core metal or by bonding and fixing both with an adhesive.
  • the core metal may be made of metal such as aluminum, aluminum alloy, SUS or iron, ceramic, or the like.
  • a substantially D-shaped rubber roller can also be obtained by press-fitting a substantially D-shaped core material into the hollow portion of the roll portion formed into a cylindrical shape.
  • the electroconductive molded article of the present invention when the electroconductive molded article of the present invention is in the form of a sheet, the electroconductive molded article in the form of a sheet can be obtained by extruding the dynamically crosslinked thermoplastic elastomer composition into a sheet using a resin extruder under the conditions of 150 to 250 ° C. can get.
  • the conductive molded article of the present invention can be obtained by irradiating the surface of the obtained molded article with ultraviolet light.
  • an ultraviolet irradiator is used, and the distance between the roll and the ultraviolet lamp is 10 cm. Is irradiated for 5 minutes and the roll is rotated four times so that ultraviolet rays can be irradiated on the entire circumference (360 degrees) of the roll to form an oxide film.
  • an oxide film is formed by irradiating ultraviolet rays (wavelengths 184.9 nm and 253.7 nm) for 10 minutes using an ultraviolet irradiator and setting the distance between the sheet and the ultraviolet lamp to 30 cm. be able to.
  • the conductive molded article of the present invention thus obtained has low hardness and low surface adhesion.
  • the conductive molded article of the present invention preferably has a Shore A hardness of 40 or more and 70 or less, and 45 or more and 60 or less under JIS K6253 under conditions of a temperature of 23 ° C. and a humidity of 55%.
  • the coefficient of friction with respect to a sheet made of polybutylene terephthalate (PBT) is preferably 0.3 or more and 1.0 or less, and more preferably 0.3 or more and 0.8 or less.
  • Example Examples and comparative examples are shown to describe the present invention in detail.
  • a sheet-like conductive molded article is produced using the composition shown in Table 1 below, and evaluation of extrusion processability, hardness and coefficient of friction is carried out by the method described later for the obtained conductive molded article. went. The evaluation results are shown in Tables 1 and 2.
  • a conductive molded article was produced in the following steps. Pelletized EPDM, NBR, thermoplastic resin, thermoplastic elastomer, softener, crosslinking agent, and crosslinking aid in the proportions described in the above table, dry-blended with a tumbler, and then using a twin-screw extruder (IPEC). The rubber component was dynamically crosslinked by kneading at a rotation speed of 200 rpm and a temperature of 200 ° C., and a pellet of an elastomer composition dispersed in a thermoplastic resin and / or a thermoplastic elastomer was produced.
  • IPEC twin-screw extruder
  • a pellet-like EO-PO-AGE copolymer, and a salt provided with an anion having a fluoro group and a sulfonyl group are dry-blended with a tumbler, and then a twin screw single screw extruder (type 2TR-75 made by Moriyama) And extruded at a temperature of 70 ° C. and pelletized.
  • HTM38 twin screw extruder manufactured by I-PAC
  • the pellets of the dynamically crosslinked thermoplastic elastomer composition thus obtained were charged into a resin extruder and extruded into a sheet of 2 mm in thickness to obtain a conductive molded article. Furthermore, in Examples 1 to 7, the surface of the conductive molded article obtained was irradiated with ultraviolet light. Specifically, ultraviolet rays (wavelengths 184.9 nm and 253.7 nm) are irradiated for 10 minutes using an ultraviolet irradiator (“PL21-200” manufactured by Sen Special Light Source Co., Ltd.) with a distance of 30 cm between the sheet and the ultraviolet lamp. did.
  • the test method of a conductive molded article is shown.
  • (Extrusion processability) The shape of the sheet (rubber surface) when the pellets of the dynamically crosslinked thermoplastic elastomer composition were extruded into a sheet by a resin extruder was visually evaluated.
  • The surface asperities are very fine and visually appear to be glossy. The surface is smooth and there is no problem at all.
  • There are small irregularities on the surface, the surface is smooth and no problem.
  • X Unevenness of the surface is very large and the sheet can not be produced because it is cut off during extrusion.
  • the extruded sheet-like conductive molded product was cut into a strip having a width of 15 mm and a length of 50 mm in the extrusion direction to prepare a sample.
  • the coefficient of friction of the above sample and polybutylene terephthalate (PBT) sheet was measured using a surface property measuring machine ("HEIDON-14 type” manufactured by Shinto Scientific Co., Ltd.) under a load of 200 gf and a speed of 3,000 mm / min. . The measurement was performed 5 times, and the average value was made into the coefficient of friction.
  • Comparative Examples 1 to 3 in which the surface was not irradiated with ultraviolet light, it was found that the coefficient of friction against the sheet made of PBT was 1.22 to 1.35, and the adhesive force of the surface was high.
  • Comparative Example 4 in which only NBR is contained as a rubber component, the extrusion processability is inferior so that a sheet can not be formed, and it can be seen that NBR as a rubber component causes a dispersion failure in a thermoplastic resin.
  • the comparative example 5 even if it mix
  • Examples 1 to 7 are excellent in extrusion processability and hardness is sufficiently low, and in addition, it is understood that the surface adhesive force is reduced to 1.0 or less with the coefficient of friction to the sheet made of PBT. .

Abstract

Disclosed is an electroconductive molded product that can reduce surface tackiness while maintaining low hardness, can simultaneously have good moldability and recycle properties, and, even with the addition of a small amount of a salt, can realize a satisfactorily low level of electric resistance. The electroconductive molded product is a sheet- or roll-shaped molded product formed of a dynamically crosslinked thermoplastic elastomer composition produced by mixing an ethylene oxide-propylene oxide-allyl glycidyl ether copolymer and a salt having an anion containing a fluoro group and a sulfonyl group to an elastomer composition comprisingrubber component, produced by mixing an ethylene-propylene-diene copolymer rubber (EPDM) and an acrylonitrile-butadiene rubber (NBR) at a mixing ratio of EPDM : NBR = 100 : 0 to 5 : 95, which has been dynamically crosslinked and dispersed in any one of or a mixture of both a thermoplastic resin and a thermoplastic elastomer to render the elastomer composition electrically conductive. The electroconductive molded product is characterized in that the surface of the electroconductive molded product has been irradiated with ultraviolet light.

Description

導電性成形品およびその製造方法Conductive molded article and method for producing the same
 本発明は導電性成形品に関し、詳しくはインクジェットプリンター、レーザープリンター、静電複写機もしくはファクシミリ装置等のOA機器や自動預金支払機(ATM)等の画像形成装置において好適に用いられる導電性成形品に関する。 The present invention relates to a conductive molded article, and more specifically, a conductive molded article suitably used in an OA apparatus such as an ink jet printer, a laser printer, an electrostatic copying machine or a facsimile machine, and an image forming apparatus such as an automatic deposit dispenser (ATM). About.
 画像形成装置における導電性部材は、適度の安定した電気抵抗値を有する必要がある。
 従来、この種の導電性部材に導電性を付与する方法としては、ポリマー中に金属酸化物の粉末やカーボンブラック等の導電性充填剤を配合した電子導電性ポリマー組成物を用いる方法と、ウレタンゴム、アクリロニトリルブタジエンゴム、エピクロルヒドリンゴム等のイオン導電性ポリマー組成物を用いる方法がある。
The conductive member in the image forming apparatus needs to have a suitable stable electrical resistance value.
Conventionally, as a method of imparting conductivity to this kind of conductive member, a method of using an electronic conductive polymer composition in which a conductive filler such as metal oxide powder or carbon black is blended in a polymer, and urethane There is a method using an ion conductive polymer composition such as rubber, acrylonitrile butadiene rubber, epichlorohydrin rubber and the like.
 電子導電性ポリマー組成物を導電性部材に用いた場合、導電性充填剤の添加量のわずかな変化により電気抵抗が急激に変化する領域があるため、電気抵抗の制御が非常に困難になるという問題がある。その上、ポリマー中で導電性充填剤が均一に分散し難いことから導電性部材内で電気抵抗値がばらつきを持つという問題もある。
 また、電子導電性ポリマー組成物を用いた導電性部材の電気抵抗値は印加電圧に依存する問題がある。特に導電性充填剤としてカーボンブラックを用いた場合この傾向が顕著に現れる。さらに、カーボンブラック等の導電性充填剤を配合しすぎると成形加工も行いにくくなる。
When an electronically conductive polymer composition is used for the conductive member, control of the electrical resistance becomes very difficult because there is a region where the electrical resistance changes rapidly due to a slight change in the amount of the conductive filler added. There's a problem. In addition, the conductive filler is difficult to uniformly disperse in the polymer, and there is also a problem that the electrical resistance value varies in the conductive member.
In addition, the electric resistance value of the conductive member using the electron conductive polymer composition has a problem depending on the applied voltage. This tendency is particularly noticeable when carbon black is used as the conductive filler. Furthermore, if too much a conductive filler such as carbon black is compounded, it becomes difficult to carry out molding processing.
 電子導電性ポリマー組成物を用いた導電性部材は前記問題を有していることから、デジタル化・カラー化等の高画質化技術の進歩がめざましい最近においては、電子導電性ポリマー組成物ではなく、イオン導電性ポリマー組成物の方が特に好んで用いられる傾向にある。 Since the conductive member using the electronically conductive polymer composition has the above problems, the recent progress in image quality improvement technology such as digitization and colorization is not remarkable for the electronically conductive polymer composition. Ion conductive polymer compositions tend to be particularly preferred.
 イオン導電性ポリマー組成物で導電性部材用に実用化されているものは加硫ゴム組成物がほとんどであるが、加硫ゴム組成物は熱可塑性がなくリサイクルできないという欠点がある。
 また、従来のイオン導電剤を用いる場合には効率的に電気抵抗を下げられないという問題があった。そのためイオン導電剤を多量に入れると、今度はブリードが起こったり、圧縮永久ひずみや硬度等の力学的物性が悪化したりするなどの問題が出てくる。
Most of the ion conductive polymer compositions that have been put to practical use for conductive members are vulcanized rubber compositions, but the vulcanized rubber compositions have the disadvantage that they are not thermoplastic and can not be recycled.
Moreover, when using the conventional ion conductive agent, there existed a problem that an electrical resistance could not be reduced efficiently. Therefore, when a large amount of ion conductive agent is added, problems such as bleeding may occur and mechanical properties such as compression set and hardness may be deteriorated.
 そこで、本出願人は、ゴムのような耐久性、弾性、柔軟性と樹脂のような成形性を併せ持つと共にリサイクル性にも優れ、低電気抵抗である導電性ポリマー組成物を開発した。
 具体的には、特開2004-51829号公報(特許文献1)および特開2004-269854号公報(特許文献2)において、熱可塑性樹脂あるいは/および熱可塑性エラストマー中に架橋可能なゴムあるいは/および熱可塑性エラストマーを動的架橋させて分散させているエラストマー組成物に、エーテルやエステル構造を有するポリマーとフルオロ基及びスルホニル基を有する陰イオンを備えた塩とを配合することで導電化した動的架橋熱可塑性エラストマー組成物、および当該組成物を用いた導電性部材を提供している。
Therefore, the present applicants have developed a conductive polymer composition that has both durability such as rubber, elasticity, flexibility and moldability such as resin and is excellent in recyclability and has low electrical resistance.
Specifically, in Japanese Patent Application Laid-Open Nos. 2004-51829 (Patent Document 1) and 2004-269854 (Patent Document 2), a rubber or / and / or crosslinkable into a thermoplastic resin and / or a thermoplastic elastomer is provided. Dynamically conducted by blending a polymer having an ether or ester structure and a salt having an anion having a fluoro group and a sulfonyl group into an elastomer composition in which a thermoplastic elastomer is dynamically crosslinked and dispersed. Provided are a crosslinked thermoplastic elastomer composition and a conductive member using the composition.
 本発明者らは、上記導電化した動的架橋熱可塑性エラストマー組成物を使って作成した製品をより高度になっていく市場の要求に応じた形で実用化するためにさらに検討を重ね、硬度と表面性に関して改良を加える余地があることを知見した。
 具体的には、前記製品を例えば転写ローラなどとして他の部材と接触させて使用する際には、ある程度のニップが必要となるため低硬度化という要求は避けられない。しかし、低硬度化を目的として軟化剤を大量に配合すると、表面の粘着力が高くなることで接触している他の部材に軟化剤がブリードしたり、摩擦係数が高いために耐摩耗性が悪くなったりする等の問題が発生し得る。また、低硬度化すると表面の粘着力が高くなることでトナーの付着による不具合も発生し得る。このように二律背反性を克服しなければならないケースが頻繁に出てきていた。
The present inventors have conducted further studies to put into practical use the product produced using the above-mentioned dynamically cross-linked thermoplastic elastomer composition in accordance with the demand of the market becoming more advanced, and the hardness We found that there is room to improve the surface and surface properties.
Specifically, when the product is used in contact with another member as, for example, a transfer roller, a certain degree of nip is required, and a demand for low hardness can not be avoided. However, if a large amount of softener is blended for the purpose of lowering hardness, the softness may bleed to other members in contact due to the increase in surface adhesive force, and the friction resistance is high. Problems such as getting worse may occur. In addition, when the hardness is lowered, the adhesion on the surface becomes high, which may cause a defect due to the adhesion of the toner. Thus, there have been frequent cases where it is necessary to overcome the antinomy.
特開2004-51829号公報JP 2004-51829 A 特開2004-269854号公報JP 2004-269854 A
 本発明は、低硬度を維持したまま表面の粘着性を低減することができ、かつ良好な成形性とリサイクル性を併せ持つと共に、少量の塩の添加でも十分に低い電気抵抗を実現でき、それゆえに塩の配合量が多いことに起因する移行汚染や物性低下を防ぐことができる導電性成形品を提供することを課題としている。 The present invention can reduce the surface tackiness while maintaining low hardness and has good formability and recyclability, and can realize sufficiently low electrical resistance even with the addition of a small amount of salt, hence It is an object of the present invention to provide a conductive molded article capable of preventing migration contamination and deterioration in physical properties caused by a large amount of salt.
 前記課題を解決するために、本発明は、
 エチレン-プロピレン-ジエン共重合ゴム(EPDM)とアクリロニトリルブタジエンゴム(NBR)とをEPDM:NBR=100:0~5:95で配合したゴム成分が、熱可塑性樹脂と熱可塑性エラストマーのいずれか一方または両方の混合物中に、動的架橋されて分散されているエラストマー組成物に、
 エチレンオキサイド-プロピレンオキサイド-アリルグリシジルエーテル(EO-PO-AGE)共重合体とフルオロ基及びスルホニル基を有する陰イオンを備えた塩とを配合した導電化した動的架橋熱可塑性エラストマー組成物からなり、
 前記動的架橋熱可塑性エラストマー組成物のシート状またはロール状の成形品の表面が紫外線照射処理されていることを特徴とする導電性成形品を提供している。
In order to solve the above-mentioned subject, the present invention is
The rubber component prepared by blending ethylene-propylene-diene copolymer rubber (EPDM) and acrylonitrile butadiene rubber (NBR) at EPDM: NBR = 100: 0 to 5:95 is either one of thermoplastic resin and thermoplastic elastomer or In the elastomer composition which is dynamically crosslinked and dispersed in both mixtures,
A conductive, dynamically crosslinked thermoplastic elastomer composition obtained by blending an ethylene oxide-propylene oxide-allyl glycidyl ether (EO-PO-AGE) copolymer and a salt having an anion having a fluoro group and a sulfonyl group. ,
The conductive molded article is characterized in that the surface of the sheet-like or roll-like molded article of the dynamically crosslinked thermoplastic elastomer composition is subjected to UV irradiation treatment.
 本発明者らは上記課題を解決すべく鋭意検討した結果、特定組成の動的架橋熱可塑性エラストマー組成物からなる成形品の表面を紫外線照射処理することにより、低硬度化と表面の粘着力の低減を両立させることに成功し、本発明に至った。 As a result of intensive studies to solve the above problems, the present inventors conducted ultraviolet irradiation treatment on the surface of a molded article made of a dynamically cross-linked thermoplastic elastomer composition having a specific composition, thereby achieving low hardness and adhesion of the surface. It succeeded in making reduction compatible and came to this invention.
 本発明で用いるEPDMにはゴム成分のみからなる非油展タイプのEPDMとゴム成分とともに親展油を含む油展タイプのEPDMとが存在するが、本発明ではいずれのタイプのものも使用可能である。EPDMにおけるジエンモノマーの例としては、ジシクロペンタジエン、メチレンノルボルネン、エチリデンノルボルネン、1,4-ヘキサジエンまたはシクロオクタジエンなどが挙げられる。 The EPDM used in the present invention includes non-oil spread type EPDM consisting only of a rubber component and oil spread type EPDM containing a parent oil as well as a rubber component, but any type can be used in the present invention . Examples of diene monomers in EPDM include dicyclopentadiene, methylene norbornene, ethylidene norbornene, 1,4-hexadiene or cyclooctadiene and the like.
 本発明で用いるNBRとしては、アクリロニトリル含量が25%以下である低ニトリルNBR、アクリロニトリル含量が25~31%である中ニトリルNBR、アクリロニトリル含量が31~36%である中高ニトリルNBR、アクリロニトリル含量が36%以上である高ニトリルNBRのいずれを用いてもよい。
 なかでもゴム比重を低減するために比重の小さい低ニトリルNBRを用いることが好ましい。より具体的にはアクリロニトリル含量が15~25%、好ましくは15~20%のNBRを用いることが好適である。
As the NBR used in the present invention, a low nitrile NBR having an acrylonitrile content of 25% or less, a middle nitrile NBR having an acrylonitrile content of 25 to 31%, a middle and high nitrile NBR having an acrylonitrile content of 31 to 36%, and an acrylonitrile content of 36 You may use any high nitrile NBR which is% or more.
Above all, in order to reduce the specific gravity of rubber, it is preferable to use low-nitrile NBR having a small specific gravity. More specifically, it is suitable to use an NBR having an acrylonitrile content of 15 to 25%, preferably 15 to 20%.
 前記EPDMとNBRの配合比はEPDM:NBR=100:0~5:95となるようにする。NBR/(EPDM+NBR)>0.95となると、ゴム成分を熱可塑性樹脂と熱可塑性エラストマーのいずれか一方または両方の混合物中に分散させる際にNBRの分散不良が発生してしまうからである。 The blend ratio of EPDM and NBR is such that EPDM: NBR = 100: 0-5: 95. If NBR / (EPDM + NBR)> 0.95, a dispersion failure of the NBR will occur when the rubber component is dispersed in the mixture of one or both of the thermoplastic resin and the thermoplastic elastomer.
 前記ゴム成分は動的架橋されて熱可塑性樹脂と熱可塑性エラストマーのいずれか一方または両方の混合物中に分散されている。なかでも、前記ゴム成分が動的架橋されて熱可塑性樹脂中または熱可塑性樹脂と熱可塑性エラストマーの混合物中に分散されていることが好ましい。 The rubber component is dynamically crosslinked and dispersed in a mixture of one or both of a thermoplastic resin and a thermoplastic elastomer. Among them, it is preferable that the rubber component is dynamically crosslinked and dispersed in a thermoplastic resin or in a mixture of a thermoplastic resin and a thermoplastic elastomer.
 前記熱可塑性樹脂としては公知のものを使用できる。例えば、オレフィン系樹脂、ポリスチレン(PS)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ナイロン等が挙げられる。なかでもオレフィン系樹脂を用いることが好ましい。オレフィン系樹脂としては、例えばポリエチレン、ポリプロピレン、エチレンエチルアクリレート樹脂、エチレンビニルアセテート樹脂、エチレン-メタクリル酸樹脂またはアイオノマー樹脂等が挙げられるが、ポリプロピレンまたはポリエチレン用いることが好ましく、ポリプロピレンを用いることがより好ましい。 A well-known thing can be used as said thermoplastic resin. For example, olefin resin, polystyrene (PS), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), nylon and the like can be mentioned. Among them, it is preferable to use an olefin resin. As the olefin resin, for example, polyethylene, polypropylene, ethylene ethyl acrylate resin, ethylene vinyl acetate resin, ethylene-methacrylic acid resin, ionomer resin, etc. may be mentioned, but it is preferable to use polypropylene or polyethylene, and it is more preferable to use polypropylene .
 前記熱可塑性エラストマーとしては公知の熱可塑性エラストマーを使用できる。具体的には、例えば、スチレン系エラストマー、塩素化ポリエチレン、塩化ビニル系エラストマー、オレフィン系エラストマー、ウレタン系エラストマー、エステル系エラストマー、アミド系エラストマー等が挙げられる。 As the thermoplastic elastomer, known thermoplastic elastomers can be used. Specific examples thereof include styrene-based elastomers, chlorinated polyethylene, vinyl chloride-based elastomers, olefin-based elastomers, urethane-based elastomers, ester-based elastomers, and amide-based elastomers.
 前記熱可塑性エラストマーのうち、スチレン系エラストマーを用いることが好ましい。
 スチレン系エラストマーとしては、スチレン系モノマーを主体とする重合体ブロック(A)と共役ジエン化合物を主体とするブロック(B)のブロック共重合体および該ブロック共重合体の共役ジエン重合単位を水素添加したものを例示することができる。前記スチレン系モノマーとしては、スチレン、α-メチルスチレン、ビニルトルエンまたはt-ブチルスチレンなどを例示することができる。これらモノマーは1種類のみを使用しても良いし、2種以上を組み合わせて用いても良い。スチレン系モノマーとしては、なかでもスチレンが好ましい。また前記共役ジエン化合物としては、ブタジエン、イソプレン、クロロプレン、2,3-ジメチルブタジエンなどを例示することができる。これらは1種類のみを使用しても良いし、2種以上を組み合わせて用いても良い。
Among the thermoplastic elastomers, it is preferable to use a styrenic elastomer.
As a styrene-based elastomer, a block copolymer of a polymer block (A) mainly composed of a styrene-based monomer and a block (B) mainly composed of a conjugated diene compound and a conjugated diene polymerization unit of the block copolymer hydrogenated Can be illustrated. Examples of the styrene-based monomer include styrene, α-methylstyrene, vinyl toluene and t-butylstyrene. These monomers may be used alone or in combination of two or more. Among them, styrene is preferable as the styrene-based monomer. Further, as the conjugated diene compound, butadiene, isoprene, chloroprene, 2,3-dimethyl butadiene and the like can be exemplified. These may be used alone or in combination of two or more.
 スチレン系エラストマーとして、具体的には、スチレン-ブタジエン-スチレン共重合体(SBS)、スチレン-イソプレン-スチレン共重合体(SIS)、スチレン-エチレン/ブチレン-スチレン共重合体(SEBS)、スチレン-エチレン/プロピレン-スチレン共重合体(SEPS)またはスチレン-エチレン-エチレン/プロピレン-スチレン共重合体(SEEPS)等が挙げられる。なかでも、水素添加スチレン系熱可塑性エラストマーを用いることがより好ましく、スチレン-エチレン-エチレン/プロピレン-スチレン共重合体(SEEPS)を用いることが特に好ましい。 Specific examples of styrene elastomers include styrene-butadiene-styrene copolymer (SBS), styrene-isoprene-styrene copolymer (SIS), styrene-ethylene / butylene-styrene copolymer (SEBS), styrene- Examples thereof include ethylene / propylene-styrene copolymer (SEPS) and styrene-ethylene-ethylene / propylene-styrene copolymer (SEEPS). Among them, it is more preferable to use a hydrogenated styrene-based thermoplastic elastomer, and it is particularly preferable to use a styrene-ethylene-ethylene / propylene-styrene copolymer (SEEPS).
 熱可塑性樹脂と熱可塑性エラストマーのいずれか一方または両方の混合物は、ゴム成分100質量部に対し2~150質量部の割合で含まれていることが好ましい。
 前記配合量が2質量部未満であると、ゴム成分を樹脂マトリックス中に分散できず加工がしにくくなると共に、本発明の導電性成形品の強度および耐摩耗性が低下する。一方、前記配合量が150質量部を超えると硬度が高くなり、例えば画像形成装置用部材として用いたときに転写不良や搬送不良などの問題が生じる可能性があることに因る。
The thermoplastic resin and / or the mixture of either or both of the thermoplastic elastomer and the thermoplastic resin are preferably contained in a ratio of 2 to 150 parts by mass with respect to 100 parts by mass of the rubber component.
When the compounding amount is less than 2 parts by mass, the rubber component can not be dispersed in the resin matrix, and processing becomes difficult, and the strength and the abrasion resistance of the conductive molded article of the present invention decrease. On the other hand, when the compounding amount exceeds 150 parts by mass, the hardness becomes high, which may cause problems such as poor transfer and poor transport when used as a member for an image forming apparatus.
 熱可塑性エラストマーと熱可塑性樹脂との混合物を用いる場合、熱可塑性エラストマーと熱可塑性樹脂の混合物は、混合後もエラストマーであることが望ましい。その理由は、ゴム成分を分散させて最終的に得られるエラストマー組成物の硬度がより低くなるからである。
 前記混合物において熱可塑性エラストマーと熱可塑性樹脂との混合割合は、使用するエラストマーおよび樹脂の種類に応じて適切な混合割合を決定できるが、熱可塑性エラストマー100質量部に対して熱可塑性樹脂が1質量部以上100質量部以下であることが好ましい。熱可塑性樹脂の混合量が1質量部未満であると熱可塑性樹脂を混合した効果が見られないからであり、熱可塑性樹脂の混合量が100質量部より多いと混合物がエラストマーでなくなるからである。熱可塑性樹脂の混合量は、熱可塑性エラストマー100質量部に対して20~80質量部であることがより好ましい。
When using a mixture of a thermoplastic elastomer and a thermoplastic resin, it is desirable that the mixture of the thermoplastic elastomer and the thermoplastic resin be an elastomer even after mixing. The reason is that the hardness of the elastomer composition finally obtained by dispersing the rubber component is lower.
The mixing ratio of the thermoplastic elastomer and the thermoplastic resin in the mixture can be determined according to the type of the elastomer and resin used, but 1 mass of the thermoplastic resin is based on 100 parts by mass of the thermoplastic elastomer. It is preferable that it is part or more and 100 parts by mass or less. If the mixing amount of the thermoplastic resin is less than 1 part by mass, the effect of mixing the thermoplastic resin can not be observed, and if the mixing amount of the thermoplastic resin is more than 100 parts by mass, the mixture becomes an elastomer. . The mixing amount of the thermoplastic resin is more preferably 20 to 80 parts by mass with respect to 100 parts by mass of the thermoplastic elastomer.
 前記ゴム成分を動的架橋するには通常架橋剤を用いる。架橋剤としては、例えば樹脂架橋剤または過酸化物など公知の架橋剤を用いることができる。なかでも、樹脂架橋剤を用いることが好ましい。
 樹脂架橋剤は加熱等によってゴム成分に架橋反応を起こさせる合成樹脂であり、硫黄と加硫促進剤とを併用する場合に比べ、ブルームが生じにくく圧縮永久ひずみも小さく、物性低下も小さく、精度維持や耐久性に優れる点で好ましい。さらに、硫黄架橋系に比べ架橋時間が短いため、押出機内に滞留している短い時間内に動的架橋を進行させることができる。
A crosslinking agent is usually used to dynamically crosslink the rubber component. As the crosslinking agent, for example, a known crosslinking agent such as a resin crosslinking agent or a peroxide can be used. Among them, it is preferable to use a resin crosslinking agent.
A resin crosslinking agent is a synthetic resin that causes a crosslinking reaction to occur in the rubber component by heating etc., compared to the case where sulfur and a vulcanization accelerator are used in combination, it is difficult to produce a bloom and has a small compression set and a small deterioration in physical properties. It is preferable at the point which is excellent in maintenance and durability. Furthermore, since the crosslinking time is shorter than that of the sulfur crosslinking system, dynamic crosslinking can be progressed within a short time staying in the extruder.
 以上述べてきた少なくともEPDMとNBRとを特定割合で含むゴム成分が動的架橋されて熱可塑性樹脂と熱可塑性エラストマーのいずれか一方または両方の混合物中に分散されているエラストマー組成物に、EO-PO-AGE共重合体とフルオロ基及びスルホニル基を有する陰イオンを備えた塩を配合することで導電化した動的架橋熱可塑性エラストマー組成物としている。
 前記塩とともにEO-PO-AGE共重合体を配合することにより、当該共重合体が塩由来のイオンを安定化してくれ、電気抵抗値の低減のために著しい効果が得られるという利点がある。
An elastomer composition in which a rubber component containing at least EPDM and NBR in a specific ratio as described above is dynamically crosslinked and dispersed in a mixture of one or both of a thermoplastic resin and a thermoplastic elastomer. By blending a PO-AGE copolymer and a salt having an anion having a fluoro group and a sulfonyl group, a conductive, dynamically crosslinked thermoplastic elastomer composition is obtained.
By blending the EO-PO-AGE copolymer with the above-mentioned salt, the copolymer stabilizes the ions derived from the salt, and there is an advantage that a significant effect can be obtained for the reduction of the electric resistance value.
 EO-PO-AGE共重合体中、エチレンオキサイド比率は55モル%以上95モル%以下であることが好ましく、65モル%以上95モル%以下であることがより好ましい。塩由来の陽イオンはエチレンオキサイドユニットやプロピレンオキサイドユニットで安定化され、一般にはエチレンオキサイドユニットの方がプロピレンオキサイドユニットよりも前記の安定化能は高い。よって、エチレンオキサイドユニットの比率が高い方が多くのイオンを安定化できる。一方、エチレンオキサイドユニットの比率が95モル%を超えると、エチレンオキサイドユニットが結晶化してしまう。
 EO-PO-AGE共重合体中、アリルグリシジルエーテルの共重合比率は1モル%以上10モル%以下とすることが好ましい。1モル%未満ではブリードや他の部材の汚染の発生が起こり易くなる一方、10モル%を超えると引張強さや疲労特性、耐屈曲性等が悪化しやすい。
 EO-PO-AGE共重合体の数平均分子量は1万以上が好ましく、3万以上がより好ましい。この理由はブリードブルームや感光体汚染を防止するためである。
The ethylene oxide ratio in the EO-PO-AGE copolymer is preferably 55 mol% or more and 95 mol% or less, more preferably 65 mol% or more and 95 mol% or less. The cation derived from the salt is stabilized with an ethylene oxide unit or a propylene oxide unit, and in general, the ethylene oxide unit has higher stabilization ability than the propylene oxide unit. Therefore, the higher the ratio of ethylene oxide units, the more ions can be stabilized. On the other hand, when the ratio of ethylene oxide units exceeds 95 mol%, the ethylene oxide units are crystallized.
In the EO-PO-AGE copolymer, the copolymerization ratio of allyl glycidyl ether is preferably 1 mol% or more and 10 mol% or less. If it is less than 1 mol%, bleeding and contamination of other members are likely to occur, while if it exceeds 10 mol%, tensile strength, fatigue characteristics, flex resistance and the like are apt to deteriorate.
The number average molecular weight of the EO-PO-AGE copolymer is preferably 10,000 or more, and more preferably 30,000 or more. The reason for this is to prevent bleed bloom and photoreceptor contamination.
 前記EO-PO-AGE共重合体は動的架橋されていてもよい。前記エラストマー組成物においてゴム成分を動的架橋する際にEO-PO-AGE共重合体が同時に架橋されてもよいし、エラストマー組成物におけるゴム成分の動的架橋とは別個にEO-PO-AGE共重合体を架橋してもよい。用いる架橋剤としては例えば樹脂架橋剤または過酸化物など公知の架橋剤が挙げられるが、過酸化物を用いることが好ましい。 The EO-PO-AGE copolymer may be dynamically crosslinked. The EO-PO-AGE copolymer may be simultaneously crosslinked when dynamically crosslinking the rubber component in the elastomeric composition, or separately from the dynamic crosslinking of the rubber component in the elastomeric composition. The copolymer may be crosslinked. As a crosslinking agent to be used, for example, a known crosslinking agent such as a resin crosslinking agent or a peroxide can be mentioned, but it is preferable to use a peroxide.
 フルオロ基およびスルホニル基を有する陰イオンを備えた塩としては、下記の化学式1、2、3から選択される少なくとも1種の陰イオンを備えた塩が好ましい。
Figure JPOXMLDOC01-appb-C000001
(式中、XおよびXは、同一であっても異なってもよく、炭素原子、フッ素原子およびスルホニル基(-SO-)を含む炭素数が1~8の官能基を表す。)
As a salt provided with an anion having a fluoro group and a sulfonyl group, a salt provided with at least one anion selected from the following chemical formulas 1, 2 and 3 is preferable.
Figure JPOXMLDOC01-appb-C000001
(Wherein, X 1 and X 2 may be the same or different, and represent a functional group having 1 to 8 carbon atoms including a carbon atom, a fluorine atom and a sulfonyl group (—SO 2 —).)
Figure JPOXMLDOC01-appb-C000002
(式中、Xは炭素原子、フッ素原子およびスルホニル基(-SO-)を含む炭素数が1~8の官能基を表す。)
Figure JPOXMLDOC01-appb-C000002
(Wherein, X 3 represents a carbon atom, a fluorine atom and a functional group having 1 to 8 carbon atoms including a sulfonyl group (—SO 2 —).)
Figure JPOXMLDOC01-appb-C000003
(式中、X、XおよびXは、同一であっても異なってもよく、炭素原子、フッ素原子およびスルホニル基(-SO-)を含む炭素数が1~8の官能基を表す。)
Figure JPOXMLDOC01-appb-C000003
(Wherein, X 4 , X 5 and X 6 may be the same or different, and have a C 1-8 functional group containing a carbon atom, a fluorine atom and a sulfonyl group (—SO 2 —) Represent)
 前記陰イオンを備えた塩は、フルオロ基(-F)およびスルホニル基(-SO2-)による強い電子吸引効果によって電荷が非局在化するために陰イオンが安定化され、組成物中で高い解離度を示し、高いイオン導電性を実現できる。このため、これらの陰イオンを備えた塩は、少量の添加で非常に大きく電気抵抗値を下げることができると共に、その場合の各種物性値の低下も少ない。さらに、カーボンブラック等と異なり、配合しても黒色等となることがないため、透明性や着色が必要な用途にも使用することができる。 Salts with the anions fluoro group (-F) and sulfonyl group (-SO 2 -) is stabilized anion to delocalized charge by a strong electron-withdrawing effect, in the composition It exhibits a high degree of dissociation and can achieve high ion conductivity. For this reason, the salt provided with these anions can greatly reduce the electrical resistance value with a small amount of addition, and the decrease in various physical property values in that case is also small. Furthermore, unlike carbon black and the like, since it does not become black and the like even when blended, it can be used for applications requiring transparency and coloring.
 前記化学式1、化学式2、化学式3中のX~Xで示される官能基の炭素数は1~8であるが、より高い解離度を得る観点から1~4であることが好ましく、1~2であることがさらに好ましい。
 官能X1~Xとしては、R-SO2-(式中、Rはフッ素原子で置換されている炭素数1~8の炭化水素基を表す。)で示される基等が挙げられる。ここで炭素数1~8の炭化水素基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、tert-ペンチル基、n-ヘキシル基、1,1-ジメチルプロピル基等のアルキル基;例えば、ビニル基、アリル基、1-プロペニル基、イソプロペニル基、2-ブテニル基、1,3-ブタジエニル基、もしくは2-ペンテニル基等のアルケニル基;例えば、エチニル基、2-プロピニル基、1-ブチニル基もしくは2-ブチニル基等のアルキニル基等が挙げられる。置換基としてのフッ素原子の数および置換位置は化学的に許容される範囲であれば特に限定されない。
 なかでも、官能X~Xとしては、安定性、コスト、取扱い性の点からC(2n-m+1)-SO-(nは1以上8以下の整数を表し、mは0以上16以下の整数を表す。)であることが好ましい。
The carbon number of the functional group represented by X 1 to X 6 in the chemical formula 1, the chemical formula 2 and the chemical formula 3 is 1 to 8, but it is preferably 1 to 4 from the viewpoint of obtaining a higher degree of dissociation It is more preferable that it is -2.
Examples of the functions X 1 to X 6 include groups represented by R—SO 2 — (wherein R represents a hydrocarbon group having 1 to 8 carbon atoms which is substituted by a fluorine atom). Here, examples of the hydrocarbon group having 1 to 8 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group and isopentyl group, alkyl groups such as tert-pentyl, n-hexyl and 1,1-dimethylpropyl; eg vinyl, allyl, 1-propenyl, isopropenyl, 2-butenyl and 1,3-butadienyl Or alkenyl groups such as 2-pentenyl group; and alkynyl groups such as ethynyl group, 2-propynyl group, 1-butynyl group and 2-butynyl group. The number of fluorine atoms as a substituent and the substitution position are not particularly limited as long as they are in a chemically acceptable range.
Among them, C n H m F (2 n-m + 1) -SO 2- (n represents an integer of 1 or more and 8 or less ) as the functional groups X 1 to X 6 in terms of stability, cost, and handleability; Preferably represents an integer of 0 or more and 16 or less).
 前記フルオロ基およびスルホニル基を有する陰イオンと対になり塩を構成する陽イオンは、アルカリ金属、2A族、遷移金属または両性金属のいずれかの陽イオンであることが好ましい。中でもアルカリ金属はイオン化エネルギーが小さく、安定な陽イオンを形成しやすいためより好ましい。さらに、アルカリ金属中でも導電度の高いリチウムイオンが特に好ましい。 It is preferable that the cation which makes a pair with the anion which has the said fluoro group and a sulfonyl group, and comprises a salt is a cation of an alkali metal, group 2A, a transition metal, or an amphoteric metal. Among them, alkali metals are more preferable because they have small ionization energy and easily form stable cations. Furthermore, lithium ions having high conductivity among alkali metals are particularly preferable.
 その他、金属の陽イオン以外にも下記の化学式4、化学式5で示されるような陽イオンを用いることもできる。
Figure JPOXMLDOC01-appb-C000004
(式中、R11~R14は置換基を有していてもよい炭素数1~20のアルキル基を表し、同一であっても異なっていてもよい。)
In addition to the metal cations, cations such as those represented by the following Chemical Formula 4 and Chemical Formula 5 can also be used.
Figure JPOXMLDOC01-appb-C000004
(Wherein, R 11 to R 14 each represent an alkyl group having 1 to 20 carbon atoms which may have a substituent, and may be the same or different).
Figure JPOXMLDOC01-appb-C000005
(式中、R15およびR16は置換基を有していてもよい炭素数1~20のアルキル基を表し、同一であっても異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000005
(Wherein, R 15 and R 16 each represent an alkyl group having 1 to 20 carbon atoms which may have a substituent, and may be the same or different).
 R11~R16で表される「置換基を有していてもよい炭素数1~20のアルキル基」における炭素数1~20のアルキル基としては、例えば、メチル、エチル、n-プロピル、i-プロピル、n-ブチル、i-ブチル、t-ブチル、n-ペンチル、n-ヘキシル、n-デシル等が挙げられる。置換基としては、例えばハロゲン(好ましくは、フッ素、塩素、臭素)、オキソ基、アルキレンオキシド基、アルカノイル基(好ましくはC1~8)、アルカノイルオキシ基(好ましくはC1~8)、アルカノイルアミノ基(好ましくはC1~8)、カルボキシル基、アルコキシカルボニル基(好ましくはC2~8)、ハロアルキルカルボニル基(好ましくはC2~8)、アルコキシ基(好ましくはC1~8)、ハロアルコキシ基(好ましくはC1~8)、アミノ基、アルキルアミノ基(好ましくはC1~8)、ジアルキルアミノ基(好ましくはC2~16)、環状アミノ基、アルキルアミノカルボニル基(好ましくはC2~8)、カルバモイル基、水酸基、ニトロ基、シアノ基、メルカプト基、アルキルチオ基(好ましくはC1~8)、アルキルスルホニルオキシ基(好ましくはC1~8)、アルキルスルホニルアミノ基(好ましくはC1~8)またはフェニル基等が挙げられる。 Examples of the alkyl group having 1 to 20 carbon atoms in the “optionally substituted alkyl group having 1 to 20 carbon atoms” represented by R 11 to R 16 include, for example, methyl, ethyl, n-propyl, Examples include i-propyl, n-butyl, i-butyl, t-butyl, n-pentyl, n-hexyl, n-decyl and the like. As a substituent, for example, halogen (preferably fluorine, chlorine, bromine), oxo group, alkylene oxide group, alkanoyl group (preferably C 1-8 ), alkanoyloxy group (preferably C 1-8 ), alkanoylamino groups (preferably C 1 ~ 8), a carboxyl group, an alkoxycarbonyl group (preferably C 2 ~ 8), haloalkylcarbonyl groups (preferably C 2 ~ 8), alkoxy groups (preferably C 1 ~ 8), haloalkoxy groups (preferably C 1 ~ 8), an amino group, an alkylamino group (preferably C 1 ~ 8), dialkylamino group (preferably C 2 ~ 16), cyclic amino group, alkylaminocarbonyl group (preferably C 2 1-8), a carbamoyl group, a hydroxyl group, a nitro group, a cyano group, a mercapto group, an alkylthio group (preferably 1-8), alkylsulfonyloxy group (preferably C 1-8), alkylsulfonylamino group (preferably include C 1-8) or phenyl group.
 前記化学式4で示されるような陽イオンとしては、中でもR11~R14の内の3つがメチル基であり、その他の1つが置換基を有していてもよい炭素数4~20のアルキル基からなるトリメチルタイプの第4級アンモニウム陽イオンが特に好ましい。かかるトリメチルタイプの第4級アンモニウム陽イオンは電子供与性の強い3つのメチル基により窒素原子上の正電荷を安定化でき、他の置換基を有していてもよい炭素数4~20のアルキル基により他の成分との相溶性を向上できるためである。
 また化学式5で示される陽イオンにおいては、R15あるいはR16がより強い電子供与性を有する方が窒素原子上の正電荷を安定化させることにより陽イオンとしての安定度を高め、より解離度が高くなり、その結果として導電付与性能に優れた塩にすることができる。従って、R15あるいはR16は電子供与性基が好ましく、メチル基またはエチル基であることがより好ましい。
As a cation as shown by said Chemical formula 4, three of R 11 to R 14 are methyl groups among others, and the other is an alkyl group having 4 to 20 carbon atoms which may have a substituent. Particularly preferred is a trimethyl type quaternary ammonium cation consisting of Such a trimethyl type quaternary ammonium cation can stabilize a positive charge on a nitrogen atom by three strong electron donating methyl groups, and may have other substituents such as alkyl having 4 to 20 carbon atoms. This is because the groups can improve the compatibility with other components.
Further, in the cation represented by the chemical formula 5, the stronger electron donating property of R 15 or R 16 enhances the stability as a cation by stabilizing the positive charge on the nitrogen atom, and the dissociation degree is further increased. As a result, it is possible to make the salt excellent in conductivity imparting performance. Thus, R 15 or R 16 is preferably an electron donating group, and more preferably a methyl group or an ethyl group.
 前記フルオロ基およびスルホニル基を有する陰イオンを備えた塩としては、中でも、ビス(トリフルオロメタンスルホニル)イミドリチウム((CF3SO22NLi)、ビス(トリフルオロメタンスルホニル)イミドカリウム((CF3SO22NK)またはトリフルオロスルホン酸リチウム(CF3SO3Li)等が好ましい。これらの塩は、非常に高温に渡っても安定なため従来からイオン導電剤として用いられている過塩素酸塩等と異なり防爆仕様にする等の処置が不要であると共に、特に他の物性を悪化させにくく、低温低湿下での抵抗上昇の低減にも優れている。これらの点から、製造コストを減じたり、安全性を確保したりして、イオン導電剤としての性能をより一層向上させることができる。 Among the salts provided with the anion having a fluoro group and a sulfonyl group, bis (trifluoromethanesulfonyl) imidolithium ((CF 3 SO 2 ) 2 NLi), potassium bis (trifluoromethanesulfonyl) imide ((CF 3 ), among others SO 2 ) 2 NK) or lithium trifluorosulfonate (CF 3 SO 3 Li) is preferred. These salts are stable even at very high temperatures, and unlike perchlorates conventionally used as ion conductive agents, no treatment such as explosion proof specifications is required, and other physical properties are particularly improved. It is difficult to make it worse, and it is also excellent in reducing the rise in resistance under low temperature and low humidity. From these points, it is possible to further improve the performance as the ion conductive agent by reducing the manufacturing cost and securing the safety.
 その他、フルオロ基およびスルホニル基を有する陰イオンを備えた塩としては、(CSONLi、(CSO)(CFSO)NLi、(FSO)(CFSO)NLi、(C17SO)(CFSO)NLi、(CFCHOSONLi、(CFCFCHOSONLi、(HCFCFCHOSONLi、((CFCHOSONLi、(CFSOCLi、(CFCHOSOCLi、CSOLi、(CSONK、(CSO)(CFSO)NK、(FSO)(CFSO)NK、(C17SO)(CFSO)NK、(CFCHOSONK、(CFCFCHOSONK、(HCFCFCHOSONK、((CFCHOSONK、(CFSOCK、(CFCHOSOCK,CSOK等も好適な例として挙げられる。
 なお、本発明において前記フルオロ基及びスルホニル基を有する陰イオンを備えた塩として、前記例示したような化合物1種類を単独で用いてもよいし、複数種を併用しても良い。
In addition, as salts provided with anions having a fluoro group and a sulfonyl group, (C 2 F 5 SO 2 ) 2 NLi, (C 4 F 9 SO 2 ) (CF 3 SO 2 ) NLi, (FSO 2 C 6) F 4 ) (CF 3 SO 2 ) NLi, (C 8 F 17 SO 2 ) (CF 3 SO 2 ) NLi, (CF 3 CH 2 OSO 2 ) 2 NLi, (CF 3 CF 2 CH 2 OSO 2 ) 2 NLi , (HCF 2 CF 2 CH 2 OSO 2 ) 2 NLi, ((CF 3 ) 2 CHOSO 2 ) 2 NLi, (CF 3 SO 2 ) 3 CLi, (CF 3 CH 2 OSO 2 ) 3 CLi, C 4 F 9 SO 3 Li, (C 2 F 5 SO 2 ) 2 NK, (C 4 F 9 SO 2 ) (CF 3 SO 2 ) NK, (FSO 2 C 6 F 4 ) (CF 3 SO 2 ) NK, (C 8 F 1 SO 2) (CF 3 SO 2 ) NK, (CF 3 CH 2 OSO 2) 2 NK, (CF 3 CF 2 CH 2 OSO 2) 2 NK, (HCF 2 CF 2 CH 2 OSO 2) 2 NK, (( CF 3 ) 2 CHOSO 2 ) 2 NK, (CF 3 SO 2 ) 3 CK, (CF 3 CH 2 OSO 2 ) 3 CK, C 4 F 9 SO 3 K, etc. are also mentioned as suitable examples.
In the present invention, as the salt provided with the anion having the fluoro group and the sulfonyl group, one kind of compounds as exemplified above may be used alone, or plural kinds may be used in combination.
 フルオロ基およびスルホニル基を有する陰イオンを備えた塩は、EO-PO-AGE共重合体100質量部に対し0.5~20質量部の割合で配合されていることが好ましい。塩の配合量が0.5質量部より少ないと十分な導電性が得られないためである。一方、塩はあるレベル以上添加しても導電性はほとんど変化しなくなるため、塩の配合量が20質量部より多いと、導電性向上の効果に比べてコストが増加するデメリットの方が大きくなるためである。 The salt provided with the anion having a fluoro group and a sulfonyl group is preferably blended in a ratio of 0.5 to 20 parts by mass with respect to 100 parts by mass of the EO-PO-AGE copolymer. If the blending amount of the salt is less than 0.5 parts by mass, sufficient conductivity can not be obtained. On the other hand, the conductivity hardly changes even if the salt is added at a certain level or more. Therefore, when the blending amount of the salt is more than 20 parts by mass, the disadvantage that the cost increases compared to the effect of conductivity improvement It is for.
 本発明では、添加する塩から生じるイオンの一部を、陰イオン吸着剤等を用いてシングルイオン化し、導電性の安定や少量添加時の導電性向上をはかることができる。
 陰イオン吸着剤としては、MgとAlを主成分とする合成ハイドロタルサイト、Mg-Al系,Sb系,Ca系等の無機イオン交換体やアニオンを連鎖中に固定するイオン席を有する(共)重合体等の公知の化合物が有用である。具体的には、合成ハイドロタルサイト(協和化学工業(株)製「キョーワード-2000」、「キョーワード-1000」)、アニオン交換性イオン交換樹脂(日本錬水(株)製「ダイアノンDCA11」)等が挙げられる。
In the present invention, a part of the ions generated from the salt to be added can be single-ionized using an anion adsorbent or the like to stabilize the conductivity and improve the conductivity when a small amount is added.
As the anion adsorbent, synthetic hydrotalcite mainly composed of Mg and Al, an inorganic ion exchanger such as Mg-Al-based, Sb-based, Ca-based or the like, and an ion seat for fixing anions in the chain (co ) Known compounds such as polymers are useful. Specifically, synthetic hydrotalcite (Kyowa Chemical Industry Co., Ltd. “Kyoward-2000”, “Kyoward-1000”), anion exchange ion exchange resin (Nippon Shimizu Co., Ltd. “Dionone DCA11” Etc.).
 本発明においては、以上述べてきた動的架橋熱可塑性エラストマー組成物中に、更に相溶化剤を配合することが好ましい。相溶化剤を配合することにより、動的架橋熱可塑性エラストマー組成物中の各成分、特にゴム成分と熱可塑性樹脂または/および熱可塑性エラストマーとの分散性が向上し、ひいては優れた成形性を得ることができる。
 相溶化剤としては当該分野で用いられている公知の相溶化剤を用いてよいが、エチレン-アクリル酸エステル-グリシジルメタクリレート共重合体またはエチレン-アクリル酸エステル-無水マレイン酸共重合体を配合することが好ましい。
In the present invention, it is preferable to further add a compatibilizer to the dynamically crosslinked thermoplastic elastomer composition described above. By blending the compatibilizer, the dispersibility of each component in the dynamically cross-linked thermoplastic elastomer composition, in particular, the rubber component and the thermoplastic resin and / or the thermoplastic elastomer is improved, and thus excellent moldability is obtained. be able to.
As the compatibilizer, known compatibilizers used in the relevant field may be used, but ethylene-acrylic acid ester-glycidyl methacrylate copolymer or ethylene-acrylic acid ester-maleic anhydride copolymer is blended. Is preferred.
 エチレン-アクリル酸エステル-グリシジルメタクリレート共重合体またはエチレン-アクリル酸エステル-無水マレイン酸共重合体におけるアクリル酸エステルとしては、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸2-エチルヘキシル等のアクリル酸とアルコールとのエステル化物を挙げることができ、この中でもアクリル酸メチル、アクリル酸エチルが好ましい。
 アクリル酸エステル成分の含量は0.1~30質量%であることが好ましく、1~20質量%であることがより好ましく、5~15質量%であることがさらに好ましい。また、グリシジルメタクリレートまたは無水マレイン酸の含量は0.05~20質量%であることが好ましく、0.1~15質量%であることがより好ましく、0.5~10質量%であることがさらに好ましく、1~10質量%であることが特に好ましい。
As acrylic acid ester in ethylene-acrylic acid ester-glycidyl methacrylate copolymer or ethylene-acrylic acid ester-maleic anhydride copolymer, methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, acrylic acid 2 And esters of acrylic acid and alcohol such as ethylhexyl and the like, and among them, methyl acrylate and ethyl acrylate are preferable.
The content of the acrylic ester component is preferably 0.1 to 30% by mass, more preferably 1 to 20% by mass, and still more preferably 5 to 15% by mass. The content of glycidyl methacrylate or maleic anhydride is preferably 0.05 to 20% by mass, more preferably 0.1 to 15% by mass, and still more preferably 0.5 to 10% by mass. Preferably, it is 1 to 10% by mass.
 前記のような相溶化剤の配合量は、エラストマー組成物中のゴム成分100質量に対し1~20質量部であることが好ましい。
 前記相溶化剤の配合量が1質量部未満であると、相溶化剤としての効果が十分でなく、ゴム成分、熱可塑性樹脂または/および熱可塑性エラストマー、EO-PO-AGE共重合体、塩とがうまく混合されず、組成物の均一性が損われるため加工性が悪化する。一方、前記相溶化剤の配合量が20質量部を超えると、相溶化効果は飽和しているためそれ以上向上せず、逆に硬度が高くなるなどのデメリットが大きくなってくる。
The blending amount of the above-mentioned compatibilizer is preferably 1 to 20 parts by mass with respect to 100 parts by mass of the rubber component in the elastomer composition.
If the blending amount of the compatibilizer is less than 1 part by mass, the effect as the compatibilizer is not sufficient, and the rubber component, the thermoplastic resin and / or the thermoplastic elastomer, the EO-PO-AGE copolymer, the salt Is not well mixed, and the uniformity of the composition is impaired, so that the processability is deteriorated. On the other hand, if the compounding amount of the compatibilizer exceeds 20 parts by mass, the compatibilization effect is saturated, so the improvement is not further improved, and conversely, the demerit such as the increase in hardness is increased.
 本発明においては、以上述べてきた動的架橋熱可塑性エラストマー組成物を種々の形状に成形して導電性成形品を得る。なかでもロール状、シート状またはシームレスのベルト状に成形することが好ましい。
 成形方法としては、押出成形を用いている。これは、押出成形を用いれば、表面を滑らかに加工でき、かつ連続成形することができるため量産性に優れているからである。
In the present invention, the above-mentioned dynamically crosslinked thermoplastic elastomer composition is molded into various shapes to obtain a conductive molded article. Among them, forming into a roll, a sheet or a seamless belt is preferable.
As a molding method, extrusion molding is used. This is because, if extrusion molding is used, the surface can be processed smoothly and continuous molding can be performed, so that mass productivity is excellent.
 本発明の導電性成形品は、前記動的架橋熱可塑性エラストマー組成物からなる導電層1層のみとする構造が簡便で工業的製造の見地からは好ましい。しかし、前記導電層以外に、電気抵抗の調整等のために2層・3層等の複層構造としても良く、要求性能に応じて各層の種類、積層順序、積層厚み等を適宜設定することができる。なかでも、前記導電層を最外層とすることが好ましい。 The conductive molded article of the present invention is simple in structure having only one conductive layer comprising the above-mentioned dynamically crosslinked thermoplastic elastomer composition, and is preferable from the viewpoint of industrial production. However, in addition to the conductive layer, a multilayer structure of two or three layers may be used to adjust the electrical resistance, etc. According to the required performance, the type of each layer, the lamination order, the lamination thickness, etc. should be set appropriately. Can. Among them, the conductive layer is preferably the outermost layer.
 本発明では、前記導電性の成形品の表面に紫外線照射処理を施していることを特徴としている。
 このように、導電性成形品の表面部分に紫外線照射することで酸化膜を形成することにより、酸化膜が誘電層となり導電性成形品の誘電正接を低減でき、例えば導電性成形品をトナー搬送用部材として用いる場合トナーに帯電性を付加でき、付加した帯電性を維持することができるようになる。そして、酸化膜の形成は紫外線照射により行わせることが、処理時間が早く、コストも低いことから好ましい。
 前記紫外線照射処理は公知の方法に従って行うことができる。例えば導電性成形品の表面と紫外線ランプとの距離やゴム成分の種類等により異なるが、波長が100~400nm、より好ましくは100~300nmの紫外線を30秒~30分、好ましくは1分~10分程度照射することが好適である。そして、ロール状の場合は回転させながら照射するなど導電性成形品の表面全体に均一に紫外線照射がなされるようにする。
The present invention is characterized in that the surface of the conductive molded article is subjected to an ultraviolet irradiation treatment.
As described above, by forming the oxide film by irradiating the surface portion of the conductive molded article with ultraviolet light, the oxide film becomes a dielectric layer, and the dielectric loss tangent of the conductive molded article can be reduced. When used as a member, the chargeability can be added to the toner, and the added chargeability can be maintained. Then, it is preferable to form the oxide film by ultraviolet irradiation because the processing time is short and the cost is low.
The said ultraviolet irradiation process can be performed according to a well-known method. For example, although it changes with the distance of the surface of an electroconductive molded article, and an ultraviolet lamp, the kind of rubber component, etc., the wavelength is 100-400 nm, More preferably, ultraviolet light of 100-300 nm is 30 seconds-30 minutes, Preferably 1 minute-10 Irradiation for about a minute is preferable. Then, in the case of a roll, irradiation is performed while rotating, so that the entire surface of the conductive molded article is irradiated with ultraviolet rays uniformly.
 このようにして得られる本発明の導電性成形品は低硬度と表面の粘着力の低減という性質を併せ有する。その指標として、本発明の導電性成形品は、温度23℃、湿度55%の条件下におけるJIS K6253のショアA硬度が80以下40以上であり、かつポリブチレンテレフタレート(PBT)で作成したシートに対する摩擦係数が1.0以下0.3以上であることが好ましい。
 ショアA硬度が80を超える場合は固すぎて、40を下回る場合は軟らかすぎて、本発明の導電性成形品の用途範囲が狭くなるからである。PBTで作成したシートに対する摩擦係数が1.0を超えると表面の粘着性が高く、トナーの付着や耐久性の低下などの問題が生じる傾向にある。
The conductive molded article of the present invention thus obtained has properties of low hardness and reduced surface adhesion. As an index thereof, the conductive molded article of the present invention has a Shore A hardness of 80 or less and 40 or more according to JIS K6253 under conditions of a temperature of 23 ° C. and a humidity of 55%, and for a sheet made of polybutylene terephthalate (PBT). The friction coefficient is preferably 1.0 or less and 0.3 or more.
When the Shore A hardness is more than 80, it is too hard, and when it is less than 40, it is too soft, and the range of application of the conductive molded article of the present invention is narrowed. When the coefficient of friction with respect to a sheet produced by PBT exceeds 1.0, the surface is highly adhesive, and problems such as toner adhesion and deterioration in durability tend to occur.
 本発明の導電性成形品は導電性が要求される用途であれば種々の用途に使用することができる。特に、プリンター、静電式複写機、ファクシミリ装置、ATM等の画像形成装置の導電性部材として非常に好適に用いることができる。
 具体的には、例えばロール状の導電性成形品は、感光ドラムを一様に帯電させるための帯電ローラ、トナーを感光体に付着させるための現像ローラ、トナー像を感光体等から用紙または中間転写ベルト等に転写するための転写ローラ、トナーを搬送するためのトナー供給ローラ、転写ベルトを内側から駆動するための駆動ローラ、紙の搬送に寄与する紙送りローラ(より具体的には給紙機構を構成する給紙ローラ、搬送ローラもしくは排紙ローラ等)、残留しているトナーを除去するためのクリーニングローラとして用いられる。
 シート状の導電性成形品は、例えば画像形成装置に装着される導電性シートまたは静電防止フィルムとして用いられることが好ましい。
 シームレスベルト状の導電性成形品は、搬送ベルト、転写ベルト、中間転写ベルト、定着ベルト、現像ベルトまたは感光体基体用ベルト等として用いられる。
The electroconductive molded article of the present invention can be used in various applications as long as the application requires conductivity. In particular, it can be very suitably used as a conductive member of an image forming apparatus such as a printer, an electrostatic copying machine, a facsimile machine, an ATM or the like.
Specifically, for example, in the case of a roll-shaped conductive molded product, a charging roller for charging the photosensitive drum uniformly, a developing roller for adhering the toner to the photosensitive member, a toner image from the photosensitive member etc. A transfer roller for transferring to a transfer belt or the like, a toner supply roller for conveying toner, a drive roller for driving the transfer belt from the inside, a paper feed roller contributing to conveyance of paper (more specifically, paper feed It is used as a sheet feeding roller, a conveying roller, a sheet discharging roller, etc. constituting the mechanism, and a cleaning roller for removing the remaining toner.
The sheet-like conductive molded article is preferably used as, for example, a conductive sheet or an antistatic film attached to an image forming apparatus.
The seamless belt-like conductive molded product is used as a conveying belt, a transfer belt, an intermediate transfer belt, a fixing belt, a developing belt, a belt for a photosensitive substrate, and the like.
 本発明の導電性成形品においては、表面に紫外線照射処理が施されることにより硬度を低く維持したまま表面の粘着性が低減されている。その結果、軟化剤等のブリードの心配がなく、トナーの付着による不具合の発生が抑えられ、耐摩耗性も向上する。 In the conductive molded article of the present invention, the surface is subjected to an ultraviolet irradiation treatment to reduce the surface tackiness while maintaining the hardness low. As a result, there is no concern of bleeding such as a softener, the occurrence of defects due to toner adhesion is suppressed, and the abrasion resistance is also improved.
 本発明の導電性成形品においては、イオン導電剤としてのフルオロ基及びスルホニル基を有する陰イオンを備えた塩をEO-PO-AGE共重合体とともに配合することにより、電気抵抗を効果的に低減することができる。ゆえに、イオン導電剤の配合量が従来よりも少なくて済むために、電気抵抗のばらつきも少なく、ブリードの発生または圧縮永久ひずみや硬度等の力学的物性の悪化などの問題を防ぐことができ、さらに原材料コストを抑えることもできる。 In the conductive molded article of the present invention, the electric resistance is effectively reduced by blending a salt having an anion having a fluoro group and a sulfonyl group as an ion conductive agent together with the EO-PO-AGE copolymer. can do. Therefore, since the compounding amount of the ion conductive agent can be smaller than the conventional one, the variation of the electric resistance is also small, and problems such as occurrence of bleeding or deterioration of mechanical properties such as compression set and hardness can be prevented. Furthermore, the cost of raw materials can be reduced.
 本発明の導電性成形品においては、EPDMとNBRを配合したゴム成分が動的架橋されて熱可塑性樹脂と熱可塑性エラストマーのいずれか一方または両方の混合物中に分散されているので、ゴムのような耐久性、弾性、柔軟性と樹脂のような成形性を併せ持つことができる。さらに、本発明の導電性成形品は熱可塑性であり、リサイクル可能である。 In the conductive molded article of the present invention, since the rubber component in which EPDM and NBR are blended is dynamically crosslinked and dispersed in the mixture of one or both of the thermoplastic resin and the thermoplastic elastomer, it is like rubber. Durability, elasticity, flexibility and moldability such as resin. Furthermore, the conductive moldings of the invention are thermoplastic and recyclable.
 本発明の導電性成形品を構成する動的架橋熱可塑性エラストマー組成物の好ましい態様について以下に述べる。
 ゴム成分としてはEPDMとNBRを含む。その配合量は、EPDM:NBR=100:0~10:90としている。EPDMの比率を全ゴム成分中の50質量%以上、好ましくは80質量%以上、より好ましくは95~100質量%とすれば本発明の導電性成形品の耐候性を高めることができるため、用途によってはEPDMの比率を高めることが有効である。この理由は、EPDMゴムは主鎖が飽和炭化水素からなり主鎖に二重結合を含まないため、高濃度オゾン雰囲気または光線照射等の環境下に長時間曝されても分子主鎖切断が起こりにくいためである。
The preferred embodiments of the dynamically crosslinked thermoplastic elastomer composition constituting the conductive molded article of the present invention will be described below.
The rubber components include EPDM and NBR. The compounding amount is EPDM: NBR = 100: 0 to 10:90. If the proportion of EPDM is 50% by mass or more, preferably 80% by mass or more, more preferably 95 to 100% by mass in the entire rubber component, the weatherability of the conductive molded article of the present invention can be enhanced. In some cases it is effective to increase the proportion of EPDM. The reason is that EPDM rubber has a saturated hydrocarbon main chain and does not contain a double bond in the main chain, so molecular backbone cleavage occurs even when exposed to a high concentration ozone atmosphere or environment such as light irradiation for a long time It is difficult.
 前記ゴム成分は動的架橋されて熱可塑性樹脂中に分散されている。熱可塑性樹脂としては、オレフィン系樹脂を用いることが好ましく、ポリプロピレンを用いることがより好ましい。
 熱可塑性樹脂は、ゴム成分100質量部に対し2~100質量部の割合で含まれていることが好ましく、5~50質量部の割合で含まれていることがより好ましく、10~40質量部の割合で含まれていることがさらに好ましい。
The rubber component is dynamically crosslinked and dispersed in the thermoplastic resin. As a thermoplastic resin, it is preferable to use an olefin resin, and it is more preferable to use a polypropylene.
The thermoplastic resin is preferably contained in a proportion of 2 to 100 parts by mass, more preferably 5 to 50 parts by mass, and more preferably 10 to 40 parts by mass with respect to 100 parts by mass of the rubber component. More preferably, it is contained in the ratio of
 前記ゴム成分を動的架橋して熱可塑性樹脂と熱可塑性エラストマーの混合物中に分散してもよい。
 熱可塑性樹脂としては、オレフィン系樹脂を用いることが好ましく、ポリプロピレンを用いることがより好ましい。
 熱可塑性エラストマーとしては、スチレン系熱可塑性エラストマーを用いることが好ましく、スチレン-エチレン-エチレン/プロピレン-スチレン共重合体(SEEPS)を用いることがより好ましい。
 スチレン系熱可塑性エラストマーとオレフィン系樹脂の混合割合は、スチレン系熱可塑性エラストマー100質量部に対してオレフィン系樹脂が30~50質量部としている。
 前記熱可塑性エラストマーと熱可塑性樹脂の混合物は、EPDMゴム100質量部に対し20~120質量部の割合で含まれていることが好ましく、40~100質量部の割合で含まれていることがより好ましく、50~90質量部の割合で含まれていることがさらに好ましい。
The rubber component may be dynamically crosslinked and dispersed in a mixture of thermoplastic resin and thermoplastic elastomer.
As a thermoplastic resin, it is preferable to use an olefin resin, and it is more preferable to use a polypropylene.
As the thermoplastic elastomer, a styrene-based thermoplastic elastomer is preferably used, and a styrene-ethylene-ethylene / propylene-styrene copolymer (SEEPS) is more preferably used.
The mixing ratio of the styrene-based thermoplastic elastomer and the olefin-based resin is 30 to 50 parts by mass of the olefin-based resin with respect to 100 parts by mass of the styrene-based thermoplastic elastomer.
The mixture of the thermoplastic elastomer and the thermoplastic resin is preferably contained in a proportion of 20 to 120 parts by mass with respect to 100 parts by mass of the EPDM rubber, and more preferably in a proportion of 40 to 100 parts by mass. Preferably, the content is further preferably 50 to 90 parts by mass.
 ゴム成分は架橋剤により動的架橋されている。架橋剤としては、例えば樹脂架橋剤または過酸化物などが挙げられる。なかでも、樹脂架橋剤を用いることが好ましい。 The rubber component is dynamically crosslinked by the crosslinking agent. As a crosslinking agent, a resin crosslinking agent or a peroxide etc. are mentioned, for example. Among them, it is preferable to use a resin crosslinking agent.
 樹脂架橋剤としては、例えば、フェノール樹脂、メラミン・ホルムアルデヒド樹脂、トリアジン・ホルムアルデヒド縮合物、ヘキサメトキシメチル・メラミン樹脂等が挙げられる。なかでもフェノール樹脂を用いることが好ましい。
 フェノール樹脂の具体例としては、フェノール、アルキルフェノール、クレゾール、キシレノールもしくはレゾルシン等のフェノール類と、ホルムアルデヒド、アセトアルデヒドもしくはフルフラール等のアルデヒド類との反応により合成される各種フェノール樹脂が挙げられる。フェノール樹脂のアルデヒドユニットに少なくとも一個のハロゲン原子が結合したハロゲン化フェノール樹脂を用いることもできる。
 特に、ベンゼンのオルト位またはパラ位にアルキル基が結合したアルキルフェノールと、ホルムアルデヒドとの反応によって得られるアルキルフェノール・ホルムアルデヒド樹脂が、ゴムとの相溶性に優れるとともに反応性に富んでいて架橋反応開始時間を比較的早くできるので好ましい。アルキルフェノール・ホルムアルデヒド樹脂のアルキル基は、通常、炭素数が1から10のアルキル基であり、具体的にはメチル基、エチル基、プロピル基またはブチル基等が挙げられる。また、このアルキルフェノール・ホルムアルデヒド樹脂のハロゲン化物も好適に用いられる。
 さらに、硫化-p-第三ブチルフェノールとアルデヒド類とを付加縮合させた変性アルキルフェノール樹脂や、アルキルフェノール・スルフィド樹脂も樹脂架橋剤として使用可能である。
As a resin crosslinking agent, a phenol resin, a melamine formaldehyde resin, a triazine formaldehyde condensate, a hexamethoxymethyl melamine resin etc. are mentioned, for example. Among them, it is preferable to use a phenol resin.
Specific examples of the phenol resin include various phenol resins synthesized by the reaction of a phenol such as phenol, alkylphenol, cresol, xylenol or resorcin and an aldehyde such as formaldehyde, acetaldehyde or furfural. It is also possible to use a halogenated phenol resin in which at least one halogen atom is bonded to an aldehyde unit of the phenol resin.
In particular, an alkylphenol-formaldehyde resin obtained by the reaction of an alkylphenol having an alkyl group bonded to the ortho position or para position of benzene and formaldehyde is excellent in compatibility with rubber and is rich in reactivity, and the crosslinking reaction start time is It is preferable because it can be done relatively quickly. The alkyl group of the alkylphenol-formaldehyde resin is usually an alkyl group having 1 to 10 carbon atoms, and specific examples thereof include a methyl group, an ethyl group, a propyl group and a butyl group. In addition, halides of this alkylphenol-formaldehyde resin are also suitably used.
Furthermore, a modified alkylphenol resin obtained by addition condensation of sulfurized-p-tert-butylphenol and an aldehyde, or an alkylphenol-sulfide resin can also be used as a resin crosslinking agent.
 前記樹脂架橋剤の配合量は、前記ゴム成分100質量部に対して2~20質量部であることが好ましい。これは、樹脂架橋剤の配合量が2質量部未満では架橋が不十分となるため耐摩耗性等が劣ることとなる一方、樹脂架橋剤の配合量が20質量部を越えると本発明の導電性成形品の硬度が高くなりすぎる場合があるからである。前記配合量は5~20質量部であることがより好ましく、5~15質量部であることがさらに好ましい。 The compounding amount of the resin crosslinking agent is preferably 2 to 20 parts by mass with respect to 100 parts by mass of the rubber component. This is because if the compounding amount of the resin crosslinking agent is less than 2 parts by mass, the crosslinking becomes insufficient and the abrasion resistance and the like become poor, while if the compounding amount of the resin crosslinking agent exceeds 20 parts by mass, the conductivity of the present invention This is because the hardness of the molded article may be too high. The blending amount is more preferably 5 to 20 parts by mass, further preferably 5 to 15 parts by mass.
 動的架橋反応を適切に行うために架橋助剤を用いてもよい。架橋助剤としては金属酸化物が使用され、特に酸化亜鉛、炭酸亜鉛が好ましい。
 架橋助剤の配合量は、前記ゴム成分100質量部に対して0.5~10質量部であることが好ましく、さらには1~10質量部であることがより好ましい。
A coagent may be used to appropriately carry out the dynamic crosslinking reaction. As the coagent, metal oxides are used, and zinc oxide and zinc carbonate are particularly preferred.
The blending amount of the crosslinking aid is preferably 0.5 to 10 parts by mass, and more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the rubber component.
 過酸化物としては、ゴム成分を架橋できる化合物であれば特に限定されないが、例えばベンゾイルパーオキサイド、1,1-ビス(tert-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、ジ(tert-ブチルパーオキシ)ジイソプロピルベンゼン、1,4-ビス[(tert-ブチル)パーオキシイソプロピル]ベンゼン、ジ(tert-ブチルパーオキシ)ベンゾエート、tert-ブチルパーオキシベンゾエート、ジクミルパーオキシド、tert-ブチルクミルパーオキシド、2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)ヘキサン、ジtert-ブチルパーオキシドまたは2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)-3-ヘキセン等が挙げられる。これらは1種類を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 The peroxide is not particularly limited as long as it is a compound capable of crosslinking the rubber component, and examples thereof include benzoyl peroxide, 1,1-bis (tert-butylperoxy) -3,3,5-trimethylcyclohexane, 2,5 -Dimethyl-2,5-di (benzoylperoxy) hexane, di (tert-butylperoxy) diisopropylbenzene, 1,4-bis [(tert-butyl) peroxyisopropyl] benzene, di (tert-butylperoxy) ) Benzoate, tert-butyl peroxybenzoate, dicumyl peroxide, tert-butyl cumyl peroxide, 2,5-dimethyl-2,5-di (tert-butyl peroxy) hexane, di tert-butyl peroxide or 2 5, 5-Dimethyl-2, 5-di (tert-butyl) Peroxy) -3-hexene, and the like. One of these may be used alone, or two or more of these may be used in combination.
 前記過酸化物の配合量はゴム成分100質量部に対し0.2~3.0質量部であることが好ましい。これは、過酸化物の配合量が0.2質量部未満ではゴム成分の架橋が不十分となるため耐摩耗性等が劣ることとなる一方、過酸化物の配合量が3.0質量部を越えると分子切断による物性低下が起ってしまううえに分散不良などが発生して加工も困難となることによる。
 過酸化物の配合量に関し、下限はゴム成分100質量部に対し0.5質量部以上であることがより好ましく、1.0質量部以上であることが特に好ましい。また、上限はゴム成分100質量部に対し2.5質量部以下が好ましく、2.0質量部以下が特に好ましい。
The compounding amount of the peroxide is preferably 0.2 to 3.0 parts by mass with respect to 100 parts by mass of the rubber component. This is because if the compounding amount of the peroxide is less than 0.2 parts by mass, the crosslinking of the rubber component becomes insufficient and the abrasion resistance etc. is inferior, while the compounding amount of the peroxide is 3.0 parts by mass In addition to the decrease in physical properties due to molecular scission, dispersion failure etc. occur and processing becomes difficult.
The lower limit of the peroxide content is more preferably 0.5 parts by mass or more and particularly preferably 1.0 parts by mass or more with respect to 100 parts by mass of the rubber component. Moreover, 2.5 mass parts or less are preferable with respect to 100 mass parts of rubber components, and, as for an upper limit, 2.0 mass parts or less are especially preferable.
 前記過酸化物とともに共架橋剤を配合してもよい。共架橋剤とはそれ自身も架橋するとともにゴム分子とも反応して架橋し全体を高分子化する働きをするものである。この共架橋剤を用いて共架橋することにより架橋分子の分子量が増大し、耐摩耗性等を向上させることができる。
 前記共架橋剤としては、例えば多官能性モノマー、メタクリル酸あるいはアクリル酸の金属塩、メタクリル酸エステル、芳香族ビニル化合物、複素環ビニル化合物、アリル化合物、1,2-ポリブタジエンの官能基を利用した多官能ポリマー類、ジオキシム類等が挙げられる。
 過酸化物とともに共架橋剤を配合する場合、当該共架橋剤の配合量は共架橋剤の種類または用いる他の成分との関係で適宜選択することができるが、ゴム成分100質量部に対して好ましくは5質量部以上20質量部以下、より好ましくは10質量部以上15質量部以下とする。
A co-crosslinking agent may be blended with the peroxide. The co-crosslinking agent acts to crosslink itself as well as to react with the rubber molecules to crosslink and polymerize the whole. By co-crosslinking with this co-crosslinking agent, the molecular weight of the cross-linked molecule can be increased to improve the abrasion resistance and the like.
As the co-crosslinking agent, for example, functional groups of polyfunctional monomers, metal salts of methacrylic acid or acrylic acid, methacrylic esters, aromatic vinyl compounds, heterocyclic vinyl compounds, allyl compounds, and 1,2-polybutadiene are used. Polyfunctional polymers, dioximes and the like can be mentioned.
When the co-crosslinking agent is blended with the peroxide, the blending amount of the co-crosslinking agent can be appropriately selected in relation to the type of co-crosslinking agent or other components to be used, but based on 100 parts by mass of the rubber component Preferably, it is 5 parts by mass or more and 20 parts by mass or less, more preferably 10 parts by mass or more and 15 parts by mass or less.
 以上述べてきたEPDMとNBRとを特定割合で含むゴム成分が動的架橋されて熱可塑性樹脂中または熱可塑性樹脂と熱可塑性エラストマーの混合物中に分散されているエラストマー組成物に、EO-PO-AGE共重合体とフルオロ基及びスルホニル基を有する陰イオンを備えた塩を配合することで導電化した動的架橋熱可塑性エラストマー組成物としている。 An elastomer composition in which a rubber component containing EPDM and NBR in a specific ratio described above is dynamically crosslinked and dispersed in a thermoplastic resin or a mixture of a thermoplastic resin and a thermoplastic elastomer, EO-PO- By blending an AGE copolymer and a salt having an anion having a fluoro group and a sulfonyl group, a conductive, dynamically crosslinked thermoplastic elastomer composition is obtained.
 EO-PO-AGE共重合体としては、エチレンオキサイド:プロピレンオキサイド:アリルグリシジルエーテルの含有比率が80~95モル%:1~10モル%:1~10モル%であるEO-PO-AGE共重合体を用いている。当該共重合体の数平均分子量Mnは5万以上であることがとくに好ましい。
 EO-PO-AGE共重合体の配合量はゴム成分100質量部に対して3~20質量部が好ましく、5~15質量部がより好ましい。
As an EO-PO-AGE copolymer, EO-PO-AGE co-weight in which the content ratio of ethylene oxide: propylene oxide: allyl glycidyl ether is 80 to 95 mol%: 1 to 10 mol%: 1 to 10 mol% It uses union. It is particularly preferable that the number average molecular weight Mn of the copolymer is 50,000 or more.
The blending amount of the EO-PO-AGE copolymer is preferably 3 to 20 parts by mass, and more preferably 5 to 15 parts by mass with respect to 100 parts by mass of the rubber component.
 フルオロ基およびスルホニル基を有する陰イオンを備えた塩としては、上述の化学式1または2で表される陰イオンを備えた塩が好ましく、なかでも化学式1または2においてX~Xで示される官能基がCF3SO2-である陰イオンを備えた塩がより好ましい。
 前記塩において陰イオンと対になり塩を構成する陽イオンは、アルカリ金属であることが好ましく、中でもリチウムイオンがより好ましい。具体的に、前記塩としてはビス(トリフルオロメタンスルホニル)イミドリチウムが特に好ましい。
 フルオロ基およびスルホニル基を有する陰イオンを備えた塩は、EO-PO-AGE共重合体100質量部に対し1~20質量部の割合で配合されている。好ましくは5~15質量部の割合である。
As a salt provided with an anion having a fluoro group and a sulfonyl group, a salt provided with an anion represented by the above-mentioned chemical formula 1 or 2 is preferable, and in particular, it is represented by X 1 to X 3 in the chemical formula 1 or 2. More preferred are salts with anions where the functional group is CF 3 SO 2- .
It is preferable that the cation which makes a pair with the anion in the said salt and comprises a salt is an alkali metal, and lithium ion is more preferable among them. Specifically, bis (trifluoromethanesulfonyl) imide lithium is particularly preferable as the salt.
The salt provided with the anion having a fluoro group and a sulfonyl group is blended in a ratio of 1 to 20 parts by mass with respect to 100 parts by mass of the EO-PO-AGE copolymer. Preferably, the proportion is 5 to 15 parts by mass.
 本発明の導電性成形品を構成する動的架橋熱可塑性エラストマー組成物は、更に相溶化剤を配合することが好ましい。相溶化剤の配合量は、EPDMゴム100質量に対し3~15質量部であることが好ましく、5~10質量部であることがより好ましい。 The dynamically crosslinked thermoplastic elastomer composition constituting the conductive molded article of the present invention preferably further contains a compatibilizer. The compounding amount of the compatibilizer is preferably 3 to 15 parts by mass, and more preferably 5 to 10 parts by mass with respect to 100 parts by mass of the EPDM rubber.
 相溶化剤としてはエチレン-アクリル酸エステル-グリシジルメタクリレート共重合体またはエチレン-アクリル酸エステル-無水マレイン酸共重合体を用いることが好ましく、エチレン-アクリル酸エステル-無水マレイン酸共重合体を用いることがより好ましい。
 エチレン-アクリル酸エステル-無水マレイン酸共重合体において、アクリル酸エステルとしてアクリル酸メチルまたはアクリル酸エチルを用いており、特にアクリル酸エチルを用いることが好ましい。構成モノマーの比率は、アクリル酸エステル含量が3~10質量%、無水マレイン酸含量が1~5質量%としている。当該共重合体においては、メルトフローレートが0.5~100g/10分であることが好ましく、1~50g/10分であることがより好ましい。
As the compatibilizer, it is preferable to use ethylene-acrylic acid ester-glycidyl methacrylate copolymer or ethylene-acrylic acid ester-maleic anhydride copolymer, and use ethylene-acrylic acid ester-maleic anhydride copolymer Is more preferred.
In the ethylene-acrylic acid ester-maleic anhydride copolymer, methyl acrylate or ethyl acrylate is used as the acrylic acid ester, and in particular, it is preferable to use ethyl acrylate. The proportions of the constituent monomers are such that the acrylic ester content is 3 to 10% by mass, and the maleic anhydride content is 1 to 5% by mass. In the copolymer, the melt flow rate is preferably 0.5 to 100 g / 10 min, and more preferably 1 to 50 g / 10 min.
 相溶化剤としては、前記2種の共重合体のいずれかとともに下記の定義に該当する三元共重合体の1種または2種以上を用いてもよい。
 相溶化剤としての三元共重合体とはオレフィン成分(c1)とアクリル酸エステルまたはメタクリル酸エステル(c2)と不飽和カルボン酸単位(c3)からなる三元共重合体である。
 オレフィン成分(c1)としては、エチレン、プロピレン、イソブチレン、1-ブテン、1-ペンテン、1-ヘキセン等の炭素数2~6のエチレン系炭化水素を挙げることができる。
 アクリル酸エステルまたはメタクリル酸エステル(c2)成分の具体例としては、アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、メタクリル酸エチル、アクリル酸プロピル、メタクリル酸プロピル、アクリル酸ブチル、メタクリル酸ブチル、アクリル酸2-エチルヘキシル、メタアクリル酸2-エチルヘキシル等のアクリル酸またはメタクリル酸とアルコールとのエステル化物を挙げることができ、この中でもアクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、メタクリル酸エチルが好ましい。
 不飽和カルボン酸単位(c3)は、不飽和カルボン酸やその無水物により導入され、具体的にはアクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、イタコン酸、無水イタコン酸、フマル酸、クロトン酸等のほか、不飽和ジカルボン酸のハーフエステル、ハーフアミド等が挙げられる。中でもアクリル酸、メタクリル酸、マレイン酸、無水マレイン酸が好ましく、特に無水マレイン酸が好ましい。また不飽和カルボン酸単位は、前記3元共重合体中に共重合されていればその形態は限定されず、例えばランダム共重合、ブロック共重合、グラフト共重合等が挙げられる。
 アクリル酸エステルまたはメタクリル酸エステル(c2)成分の含量は0.1~30質量%であることが好ましく、1~20質量%であることがより好ましく、5~15質量%であることがさらに好ましい。また、不飽和カルボン酸単位(c3)含量は0.05~20質量%であることが好ましく、0.1~15質量%であることがより好ましく、0.5~10質量%であることがさらに好ましく、1~10質量%であることが特に好ましい。
As the compatibilizer, one or two or more of the terpolymers falling under the following definition may be used together with any of the above-mentioned two types of copolymers.
The terpolymer as a compatibilizer is a terpolymer comprising an olefin component (c1), an acrylic ester or methacrylic ester (c2) and an unsaturated carboxylic acid unit (c3).
Examples of the olefin component (c1) include ethylene-based hydrocarbons having 2 to 6 carbon atoms such as ethylene, propylene, isobutylene, 1-butene, 1-pentene and 1-hexene.
Specific examples of the acrylic ester or methacrylic ester (c2) component include methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, propyl acrylate, propyl methacrylate, butyl acrylate, butyl methacrylate, acrylic Mention may be made of esters of acrylic acid or methacrylic acid with alcohols, such as 2-ethylhexyl acid, 2-ethylhexyl methacrylate and the like, among which methyl acrylate, methyl methacrylate, ethyl acrylate and ethyl methacrylate are preferred.
The unsaturated carboxylic acid unit (c3) is introduced by unsaturated carboxylic acid or its anhydride, and specifically, acrylic acid, methacrylic acid, maleic acid, maleic anhydride, itaconic acid, itaconic acid, fumaric acid, croton Besides acids and the like, half esters of unsaturated dicarboxylic acids, half amides and the like can be mentioned. Among them, acrylic acid, methacrylic acid, maleic acid and maleic anhydride are preferable, and in particular, maleic anhydride is preferable. The form of the unsaturated carboxylic acid unit is not limited as long as it is copolymerized in the terpolymer, and examples thereof include random copolymerization, block copolymerization, graft copolymerization and the like.
The content of the acrylic ester or methacrylic ester (c2) component is preferably 0.1 to 30% by mass, more preferably 1 to 20% by mass, and still more preferably 5 to 15% by mass. . The content of unsaturated carboxylic acid unit (c3) is preferably 0.05 to 20% by mass, more preferably 0.1 to 15% by mass, and still more preferably 0.5 to 10% by mass. It is more preferable, and 1 to 10% by mass is particularly preferable.
 本発明の導電性成形品を構成する動的架橋熱可塑性エラストマー組成物は、前記成分以外に本発明の目的に反しない限り他の成分を配合してもよい。
 例えば、適度な柔軟性と弾性を与えるために軟化剤を配合してもよい。
 軟化剤としてはオイルや可塑剤が挙げられる。オイルとしては、例えばパラフィン系、ナフテン系、芳香族系等の鉱物油や炭化水素系オリゴマーからなるそれ自体公知の合成油、またはプロセスオイルを用いることができる。合成油としては、例えばα-オレフィンとのオリゴマー、ブテンのオリゴマー、エチレンとα-オレフィンとの非晶質オリゴマーが好ましい。可塑剤としては、フタレート系、アジペート系、セパケート系、ホスフェート系、ポリエーテル系、ポリエステル系等の可塑剤が挙げられ、より具体的には例えばジオクチルフタレート(DOP)、ジブチルフタレート(DBP)、ジオクチルセパケート(DOS)、ジオクチルアジペート(DOA)等が挙げられる。なかでも、軟化剤としてはパラフィン系オイルが好ましく、パラフィンプロセスオイルがより好ましい。
The dynamically crosslinked thermoplastic elastomer composition constituting the conductive molded article of the present invention may be blended with other components in addition to the above components as long as the object of the present invention is not violated.
For example, a softener may be blended to provide adequate flexibility and elasticity.
The softeners include oils and plasticizers. As the oil, it is possible to use, for example, mineral oils such as paraffinic, naphthenic and aromatic oils, synthetic oils per se known per se comprising hydrocarbon oligomers, or process oils. As a synthetic oil, for example, an oligomer with α-olefin, an oligomer of butene, and an amorphous oligomer of ethylene and α-olefin are preferable. Examples of the plasticizer include phthalate type, adipate type, sepacate type, phosphate type, polyether type and polyester type plasticizers, and more specifically, for example, dioctyl phthalate (DOP), dibutyl phthalate (DBP), dioctyl Sepacate (DOS), dioctyl adipate (DOA) and the like. Among them, paraffinic oil is preferable as the softener, and paraffin process oil is more preferable.
 前記軟化剤を配合する場合、その配合量は上記動的架橋熱可塑性エラストマー組成物中のゴム成分100質量部に対し50~250質量部としている。好ましく50~200質量部であり、特に、70~150質量部が好ましい。
 軟化剤の配合量が前記範囲よりも少ないと、軟化剤を添加した効果、すなわち動的架橋時におけるゴム成分の分散性をより良化する効果が得られ難く、また硬度も高くなりやすい。一方、軟化剤を前記範囲より多く配合すると、軟化剤が架橋阻害を起こして十分に動的架橋が行われないため、物性が低下しやすく、また軟化剤がブリードしやすいためである。なお、前記軟化剤の配合量にはゴム成分として油展ゴムを用いた場合の伸展油の量が含まれている。
When the softener is blended, the blending amount is 50 to 250 parts by mass with respect to 100 parts by mass of the rubber component in the dynamically crosslinked thermoplastic elastomer composition. The amount is preferably 50 to 200 parts by mass, and particularly preferably 70 to 150 parts by mass.
When the blending amount of the softener is less than the above range, the effect of adding the softener, that is, the effect of further improving the dispersibility of the rubber component at the time of dynamic crosslinking is hardly obtained, and the hardness also tends to be high. On the other hand, when the amount of the softener is more than the above range, the softener causes crosslinking inhibition and the dynamic crosslinking is not sufficiently performed, so that the physical properties are easily deteriorated and the softener is easily bled. In addition, the amount of the extender oil at the time of using oil extended rubber as a rubber component is contained in the compounding quantity of the said softener.
 また、機械的強度を改善するために充填剤等を配合してもよい。
 充填剤としては、例えば、シリカ,カーボンブラック、クレー、タルク、炭酸カルシウム、二塩基性亜リン酸塩(DLP)、塩基性炭酸マグネシウム、アルミナ等の粉体を挙げることができる。
 充填剤は動的架橋熱可塑性エラストマー組成物全質量の15質量%以下で配合するのが好ましい。これは充填剤の配合は組成物の引張強度および引裂強度等の改善には有効であるものの、余り多く配合すると組成物の柔軟性が低下する傾向を示すためである。
In addition, a filler or the like may be blended to improve the mechanical strength.
Examples of the filler include powders of silica, carbon black, clay, talc, calcium carbonate, dibasic phosphite (DLP), basic magnesium carbonate, alumina and the like.
The filler is preferably compounded in an amount of 15% by mass or less based on the total mass of the dynamically crosslinked thermoplastic elastomer composition. Although this is effective in improving the tensile strength, tear strength and the like of the composition, the addition of the filler tends to lower the flexibility of the composition if it is incorporated too much.
 そのほか、老化防止剤、酸化防止剤、紫外線吸収剤、滑剤、顔料、帯電防止剤、難燃剤、中和剤、造核剤または気泡防止剤等の添加剤を適宜配合してもよい。 In addition, additives such as an antioxidant, an antioxidant, an ultraviolet light absorber, a lubricant, a pigment, an antistatic agent, a flame retardant, a neutralizing agent, a nucleating agent, and an antifoaming agent may be appropriately blended.
 本発明の導電性成形品は公知の方法により製造することができるが、具体的には例えば以下のような製造方法が好適な態様として挙げられる。
 まず、本発明の導電性成形品を構成する動的架橋熱可塑性エラストマー組成物を作製する。
 前記組成物の作製方法としては特に限定されず、公知方法を用いることができる。組成物に含まれる成分全てを一度に混練してもよいし、一部の成分を予め混練しておいた後残りの成分を混練するというように2段階以上に分けて段階的に混合してもよい。しかし、下記のような方法で作製することが好ましい。
The conductive molded article of the present invention can be manufactured by a known method, and specifically, for example, the following manufacturing method is mentioned as a preferred embodiment.
First, a dynamically crosslinked thermoplastic elastomer composition constituting the conductive molded article of the present invention is produced.
It does not specifically limit as a preparation method of the said composition, A well-known method can be used. All of the components contained in the composition may be kneaded at once, or some of the components may be kneaded beforehand and then the remaining components may be kneaded in two or more stages, such as in stages. It is also good. However, it is preferable to produce by the following method.
 まず、前記ゴム成分と、熱可塑性樹脂と熱可塑性エラストマーの一方または両方の混合物と、架橋剤とを混練して、前記ゴム成分を架橋剤により動的架橋させて熱可塑性樹脂と熱可塑性エラストマーの一方または両方の混合物中に分散させる。
 動的架橋させる時の加熱温度は160~250℃、加熱時間は1~20分であることが好ましい。動的架橋には、2軸押出機、バンバリーミキサー、ニーダー等を使用することができる。
 前記動的架橋は、塩素、臭素、フッ素またはヨウ素等のハロゲンの存在下に行ってもよい。動的架橋時にハロゲンを存在させるには、上述したハロゲン化された樹脂架橋剤を用いるか、ハロゲン供与性物質を配合すればよい。前記ハロゲン供与性物質としては、塩化第二スズ等の塩化スズ、塩化第二鉄、塩化第二銅等が挙げられる。ハロゲン供与性物質は1種類の物質を単独で用いてもよく、2種以上の物質を併用してもよい。
First, the rubber component, a mixture of one or both of a thermoplastic resin and a thermoplastic elastomer, and a crosslinking agent are kneaded, and the rubber component is dynamically crosslinked with the crosslinking agent to obtain thermoplastic resin and thermoplastic elastomer Disperse in one or both mixtures.
The heating temperature for dynamic crosslinking is preferably 160 to 250 ° C., and the heating time is preferably 1 to 20 minutes. For dynamic crosslinking, a twin-screw extruder, a Banbury mixer, a kneader or the like can be used.
The dynamic crosslinking may be performed in the presence of a halogen such as chlorine, bromine, fluorine or iodine. In order to cause a halogen to be present at the time of dynamic crosslinking, the above-described halogenated resin crosslinking agent may be used, or a halogen donating substance may be blended. Examples of the halogen donating substance include tin chloride such as stannic chloride, ferric chloride, cupric chloride and the like. As the halogen donating substance, one substance may be used alone, or two or more substances may be used in combination.
 別に、EO-PO-AGE共重合体にフルオロ基及びスルホニル基を有する陰イオンを備えた塩を混練しておく。混合時の加熱温度は50~150℃、加熱時間は1~20分であることが好ましい。混練には、2軸押出機、バンバリーミキサー、ニーダー等を使用することができる。 Separately, the EO-PO-AGE copolymer is kneaded with a salt having an anion having a fluoro group and a sulfonyl group. The heating temperature during mixing is preferably 50 to 150 ° C., and the heating time is preferably 1 to 20 minutes. A twin-screw extruder, a Banbury mixer, a kneader, etc. can be used for kneading | mixing.
 得られたエラストマー組成物と、得られた導電性組成物と、所望により相溶化剤およびその他添加物とを加えて混練し、導電化した動的架橋熱可塑性エラストマー組成物を作製することができる。混練時の加熱温度は160~250℃、加熱時間は1~20分であることが好ましい。混練には、2軸押出機、バンバリーミキサー、ニーダー等を使用することができる。
 得られた組成物は、後工程のためにペレット状とするのが良い。これにより良好な成形性を得ることができる。
The obtained elastomer composition, the obtained conductive composition, and optionally the compatibilizer and other additives may be added and kneaded to produce a conductive, dynamically crosslinked thermoplastic elastomer composition. . The heating temperature at the time of kneading is preferably 160 to 250 ° C., and the heating time is preferably 1 to 20 minutes. A twin-screw extruder, a Banbury mixer, a kneader, etc. can be used for kneading | mixing.
The resulting composition may be pelletized for later processing. Thereby, good moldability can be obtained.
 前記導電性組成物は、動的架橋したドメイン相の方には入りにくく、マトリクス相の方に選択的に混入されるという特徴を持つ。このため、前記製造方法によれば、エラストマー組成物のマトリクスの方に導電性組成物が選択的に配置されることとなり、導電性組成物をマトリクスとなる熱可塑性樹脂あるいは/および熱可塑性エラストマー中に偏在させることができる。その結果、導電性組成物を配合してもゴムの架橋度に影響を与えないので、圧縮永久ひずみの増大を抑制することができる。かつ、不必要に塩の使用量を増やすことがなく、このため硬度の上昇を抑えることができ、さらには原材料コストを抑えることもできる。 The conductive composition is characterized in that it does not easily enter the dynamically crosslinked domain phase, and is selectively mixed in the matrix phase. For this reason, according to the manufacturing method, the conductive composition is selectively disposed in the matrix of the elastomer composition, and the thermoplastic resin and / or the thermoplastic elastomer in which the conductive composition is a matrix It can be unevenly distributed. As a result, even when the conductive composition is blended, the degree of crosslinking of the rubber is not affected, and therefore, the increase in compression set can be suppressed. At the same time, the amount of salt used is not unnecessarily increased, so that the increase in hardness can be suppressed, and the cost of raw materials can also be suppressed.
 得られた動的架橋熱可塑性エラストマー組成物を樹脂押出機に投入して、シームレスのベルト状、シート状またはロール状、好ましくはシート状またはロール状に押出成形をする。連続的に製造することができ、かつ、研磨工程を必要とせず生産性をかなり向上させることができるという点で押出成形による方法が好適に用いられる。 The obtained dynamically crosslinked thermoplastic elastomer composition is introduced into a resin extruder and extruded into a seamless belt, sheet or roll, preferably a sheet or roll. The extrusion method is preferably used in that it can be manufactured continuously and that the productivity can be considerably improved without the need for a polishing step.
 具体的には、本発明の導電性成形品がロール状の場合、動的架橋熱可塑性エラストマー組成物を150~250℃の条件下で単軸押出機を用いてチューブ状に押し出し、中空部に芯金を圧入するか、あるいは両者を接着剤で接合して固定することにより、ロール状の導電性成形品が得られる。芯金は、アルミニウム、アルミニウム合金、SUSもしくは鉄等の金属製、セラミック製等とすることができる。なお、円筒形状に成形したロール部の中空部に略D字形状の芯材を圧入することにより略D字形状のゴムローラとすることもできる。
 本発明の導電性成形品がシート状の場合、動的架橋熱可塑性エラストマー組成物を150~250℃の条件下で樹脂押出機を用いシート状に押し出すことにより、シート状の導電性成形品が得られる。
Specifically, when the conductive molded article of the present invention is in the form of a roll, the dynamically crosslinked thermoplastic elastomer composition is extruded into a tubular form using a single screw extruder under the conditions of 150 to 250 ° C. A roll-shaped conductive molded article can be obtained by press-fitting the core metal or by bonding and fixing both with an adhesive. The core metal may be made of metal such as aluminum, aluminum alloy, SUS or iron, ceramic, or the like. A substantially D-shaped rubber roller can also be obtained by press-fitting a substantially D-shaped core material into the hollow portion of the roll portion formed into a cylindrical shape.
When the electroconductive molded article of the present invention is in the form of a sheet, the electroconductive molded article in the form of a sheet can be obtained by extruding the dynamically crosslinked thermoplastic elastomer composition into a sheet using a resin extruder under the conditions of 150 to 250 ° C. can get.
 成形後、所望により研磨などの処理を付してもよい。
 得られた成形品の表面に紫外線を照射することにより本発明の導電性成形品を得ることができる。
 具体的には、本発明の導電性成形品がロール状の場合、紫外線照射機を用い、ロールと紫外線ランプ間の距離を10cmとして周方向90度毎に紫外線(波長184.9nmと253.7nm)を5分間照射し、ロールを4回回転させることで、ロール全周(360度)に紫外線を照射し酸化膜を形成することができる。
 本発明の導電性成形品がシート状の場合、紫外線照射機を用い、シートと紫外線ランプ間の距離を30cmとして紫外線(波長184.9nmと253.7nm)を10分間照射し酸化膜を形成することができる。
After molding, processing such as polishing may be applied if desired.
The conductive molded article of the present invention can be obtained by irradiating the surface of the obtained molded article with ultraviolet light.
Specifically, when the conductive molded article of the present invention is in the form of a roll, an ultraviolet irradiator is used, and the distance between the roll and the ultraviolet lamp is 10 cm. Is irradiated for 5 minutes and the roll is rotated four times so that ultraviolet rays can be irradiated on the entire circumference (360 degrees) of the roll to form an oxide film.
When the conductive molded article of the present invention is in the form of a sheet, an oxide film is formed by irradiating ultraviolet rays (wavelengths 184.9 nm and 253.7 nm) for 10 minutes using an ultraviolet irradiator and setting the distance between the sheet and the ultraviolet lamp to 30 cm. be able to.
 このようにして得られる本発明の導電性成形品は低硬度で、かつ表面の粘着力が低い。具体的に、本発明の導電性成形品は、温度23℃、湿度55%の条件下におけるJIS K6253のショアA硬度が40以上70以下であることが好ましく、45以上60以下であることがより好ましく、かつポリブチレンテレフタレート(PBT)で作成したシートに対する摩擦係数が0.3以上1.0以下であることが好ましく、0.3以上0.8以下であることがより好ましい。 The conductive molded article of the present invention thus obtained has low hardness and low surface adhesion. Specifically, the conductive molded article of the present invention preferably has a Shore A hardness of 40 or more and 70 or less, and 45 or more and 60 or less under JIS K6253 under conditions of a temperature of 23 ° C. and a humidity of 55%. The coefficient of friction with respect to a sheet made of polybutylene terephthalate (PBT) is preferably 0.3 or more and 1.0 or less, and more preferably 0.3 or more and 0.8 or less.
 「実施例」
 実施例および比較例を示し、本発明について詳述する。
 下記の表1に示す配合からなる組成物を用いてシート状の導電性成形品を製造し、得られた導電性成形品について後述する方法により、押出加工性、硬度および摩擦係数についての評価を行った。評価結果を表1、表2に示した。
"Example"
Examples and comparative examples are shown to describe the present invention in detail.
A sheet-like conductive molded article is produced using the composition shown in Table 1 below, and evaluation of extrusion processability, hardness and coefficient of friction is carried out by the method described later for the obtained conductive molded article. went. The evaluation results are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表中の各成分については下記製品を用いた。
・EPDMゴム;住友化学(株)製「エスプレン505A」
・NBR;日本ゼオン(株)製「Nipol DN401LL」
・熱可塑性樹脂;ポリプロピレン(日本ポリプロ(株)製「ノバテックPP」)
・熱可塑性エラストマー;スチレン系熱可塑性エラストマー((株)クラレ製「セプトン4077」)
・軟化剤;パラフィン系プロセスオイル(出光興産(株)製「ダイアナプロセスオイルPW-380」)
・架橋剤;フェノール系樹脂架橋剤(田岡化学工業(株)製「タッキロール250-III」)
・架橋助剤;亜鉛華(三井金属鉱業(株)製「亜鉛華1号」)
・EO-PO-AGE共重合体;日本ゼオン(株)製「ゼオスパン8100」
・塩;ビス(トリフルオロメタンスルホニル)イミドリチウム
・エチレン-アクリル酸エステル-無水マレイン酸共重合体;アルケマ(株)製「ボンダインLX4110」
The following products were used for each component in the table.
・ EPDM rubber; "Esprene 505A" manufactured by Sumitomo Chemical Co., Ltd.
・ NBR; Nippon Zeon Co., Ltd. “Nipol DN401LL”
-Thermoplastic resin; polypropylene ("Novatec PP" manufactured by Japan Polypropylene Corp.)
-Thermoplastic elastomer; styrenic thermoplastic elastomer ("Septon 4077" manufactured by Kuraray Co., Ltd.)
・ Softening agent: Paraffinic process oil (Idemitsu Kosan Co., Ltd. “Diana Process Oil PW-380”)
Crosslinker; Phenolic resin crosslinker (Takashiru 250-III, manufactured by Taoka Chemical Industry Co., Ltd.)
-Crosslinking auxiliary agent: Zinc flower ("Zinc flower No. 1" manufactured by Mitsui Mining & Smelting Co., Ltd.)
・ EO-PO-AGE copolymer; Nippon Zeon Co., Ltd. “Zeospan 8100”
Salt: bis (trifluoromethanesulfonyl) imide lithium ethylene-acrylic acid ester-maleic anhydride copolymer; "bondine LX 4110" manufactured by Arkema Co., Ltd.
 導電性成形品を以下の工程で製造した。
 ペレット状のEPDM、NBR、熱可塑性樹脂、熱可塑性エラストマー、軟化剤、架橋剤、架橋助剤を上記表に記載の割合で配合し、タンブラーにてドライブレンドを行ってから2軸押出機(アイペック製「HTM38」)にて回転数200rpm、温度200℃で混練し、ゴム成分を動的架橋させて熱可塑性樹脂及び/または熱可塑性エラストマー中に分散させたエラストマー組成物のペレットを作製した。
 別途、ペレット状のEO-PO-AGE共重合体と、フルオロ基及びスルホニル基を有する陰イオンを備えた塩をタンブラーでドライブレンドした後、2軸1軸押出機(モリヤマ製「2TR-75型」)にて温度70℃で混練して押し出し、ペレット化した。
A conductive molded article was produced in the following steps.
Pelletized EPDM, NBR, thermoplastic resin, thermoplastic elastomer, softener, crosslinking agent, and crosslinking aid in the proportions described in the above table, dry-blended with a tumbler, and then using a twin-screw extruder (IPEC The rubber component was dynamically crosslinked by kneading at a rotation speed of 200 rpm and a temperature of 200 ° C., and a pellet of an elastomer composition dispersed in a thermoplastic resin and / or a thermoplastic elastomer was produced.
Separately, a pellet-like EO-PO-AGE copolymer, and a salt provided with an anion having a fluoro group and a sulfonyl group are dry-blended with a tumbler, and then a twin screw single screw extruder (type 2TR-75 made by Moriyama) And extruded at a temperature of 70 ° C. and pelletized.
 得られたエラストマー組成物のペレット、別途得られた導電性組成物のペレット、実施例7および比較例5,6においてはエチレン-アクリル酸エステル-無水マレイン酸共重合体を上記表に記載の割合で配合し、タンブラーにてドライブレンドを行ってから2軸押出機(アイペック製「HTM38」)にて回転数200rpm、温度200℃で混練し、動的架橋熱可塑性エラストマー組成物のペレットを得た。 Pellets of the obtained elastomer composition, pellets of the separately obtained conductive composition, and in Example 7 and Comparative Examples 5 and 6, ethylene-acrylic acid ester-maleic anhydride copolymer in the proportions described in the above Table And dry blending in a tumbler, followed by kneading at a rotation speed of 200 rpm and a temperature of 200 ° C. with a twin screw extruder (“HTM38” manufactured by I-PAC) to obtain pellets of a dynamically crosslinked thermoplastic elastomer composition .
 このようにして得られた動的架橋熱可塑性エラストマー組成物のペレットを樹脂押出機に投入し、厚み2mmのシート状に押し出して、導電性成形品を得た。
 さらに、実施例1~7では得られた導電性成形品の表面に紫外線を照射した。具体的には、紫外線照射機(セン特殊光源(株)製「PL21-200」)を用い、シートと紫外線ランプ間の距離を30cmとして紫外線(波長184.9nmと253.7nm)を10分間照射した。
The pellets of the dynamically crosslinked thermoplastic elastomer composition thus obtained were charged into a resin extruder and extruded into a sheet of 2 mm in thickness to obtain a conductive molded article.
Furthermore, in Examples 1 to 7, the surface of the conductive molded article obtained was irradiated with ultraviolet light. Specifically, ultraviolet rays (wavelengths 184.9 nm and 253.7 nm) are irradiated for 10 minutes using an ultraviolet irradiator (“PL21-200” manufactured by Sen Special Light Source Co., Ltd.) with a distance of 30 cm between the sheet and the ultraviolet lamp. did.
 導電性成形品の試験方法を示す。
(押出加工性)
 動的架橋熱可塑性エラストマー組成物のペレットを樹脂押出機でシート状に押し出したときのシートの形状(ゴム肌)を目視にて評価した。
 ◎;表面の凹凸は非常に細かく、目視では光沢があるように見える。表面は滑らかで全く問題なし。
 ○;表面に小さな凹凸があるもの、表面は滑らかで問題ないレベル。
 ×:表面の凹凸が非常に大きく、押出途中で切れるためシートを作製できない。
The test method of a conductive molded article is shown.
(Extrusion processability)
The shape of the sheet (rubber surface) when the pellets of the dynamically crosslinked thermoplastic elastomer composition were extruded into a sheet by a resin extruder was visually evaluated.
凹凸; The surface asperities are very fine and visually appear to be glossy. The surface is smooth and there is no problem at all.
○: There are small irregularities on the surface, the surface is smooth and no problem.
X: Unevenness of the surface is very large and the sheet can not be produced because it is cut off during extrusion.
(硬度)
 JIS K6253に準じ、雰囲気温度23℃、相対湿度55%の恒温恒湿条件下にて測定した。
(hardness)
According to JIS K6253, it measured on the constant temperature and humidity conditions of 23 degreeC of atmospheric temperature, and 55% of relative humidity.
(摩擦係数)
 押し出したシート状の導電性成形品を押出方向に幅15mm、長さ50mmの短冊状に切出してサンプルを作成した。
 上記サンプルとポリブチレンテレフタレート(PBT)シートの摩擦係数を表面性測定機(新東科学(株)製「HEIDON-14型」)にて、荷重200gf、速度3,000mm/分の条件で測定した。
 測定は5回行い、その平均値を摩擦係数とした。
(Coefficient of friction)
The extruded sheet-like conductive molded product was cut into a strip having a width of 15 mm and a length of 50 mm in the extrusion direction to prepare a sample.
The coefficient of friction of the above sample and polybutylene terephthalate (PBT) sheet was measured using a surface property measuring machine ("HEIDON-14 type" manufactured by Shinto Scientific Co., Ltd.) under a load of 200 gf and a speed of 3,000 mm / min. .
The measurement was performed 5 times, and the average value was made into the coefficient of friction.
 表面に紫外線照射を施さなかった比較例1~3では、PBTで作成したシートに対する摩擦係数が1.22~1.35であり表面の粘着力が高いことがわかる。
 ゴム成分としてNBRのみを含む比較例4ではシートを作成できないほど押出加工性に劣っており、ゴム成分であるNBRが熱可塑性樹脂中で分散不良を起こしていることがわかる。そして、比較例5に示したように、相溶化剤を配合してもNBRの分散不良は解消させず、依然として押出加工性に劣ることがわかる。また、比較例6に示したように、EPDM:NBR=3:97とわずかにEPDMを配合してもNBRの分散不良は解消させず、依然として押出加工性に劣ることがわかる。
In Comparative Examples 1 to 3 in which the surface was not irradiated with ultraviolet light, it was found that the coefficient of friction against the sheet made of PBT was 1.22 to 1.35, and the adhesive force of the surface was high.
In Comparative Example 4 in which only NBR is contained as a rubber component, the extrusion processability is inferior so that a sheet can not be formed, and it can be seen that NBR as a rubber component causes a dispersion failure in a thermoplastic resin. And as shown to the comparative example 5, even if it mix | blends a compatibilizer, it is understood that the dispersion | distribution defect of NBR is not eliminated but it is still inferior to extrusion processability. Further, as shown in Comparative Example 6, even when EPDM: NBR = 3: 97 is blended slightly, the dispersion failure of NBR is not resolved and it is understood that the extrusion processability is still inferior.
 これに対し、実施例1~7は押出加工性に優れ、硬度も十分に低く、加えてPBTで作成したシートに対する摩擦係数が1.0以下と表面の粘着力が低減されていることがわかる。 On the other hand, Examples 1 to 7 are excellent in extrusion processability and hardness is sufficiently low, and in addition, it is understood that the surface adhesive force is reduced to 1.0 or less with the coefficient of friction to the sheet made of PBT. .

Claims (5)

  1.  エチレン-プロピレン-ジエン共重合ゴム(EPDM)とアクリロニトリルブタジエンゴム(NBR)とをEPDM:NBR=100:0~5:95で配合したゴム成分が、熱可塑性樹脂と熱可塑性エラストマーのいずれか一方または両方の混合物中に、動的架橋されて分散されているエラストマー組成物に、
     エチレンオキサイド-プロピレンオキサイド-アリルグリシジルエーテル(EO-PO-AGE)共重合体とフルオロ基及びスルホニル基を有する陰イオンを備えた塩とを配合した導電化した動的架橋熱可塑性エラストマー組成物からなり、
     前記動的架橋熱可塑性エラストマー組成物のシート状またはロール状の成形品の表面が紫外線照射処理されていることを特徴とする導電性成形品。
    The rubber component prepared by blending ethylene-propylene-diene copolymer rubber (EPDM) and acrylonitrile butadiene rubber (NBR) at EPDM: NBR = 100: 0 to 5:95 is either one of thermoplastic resin and thermoplastic elastomer or In the elastomer composition which is dynamically crosslinked and dispersed in both mixtures,
    A conductive, dynamically crosslinked thermoplastic elastomer composition obtained by blending an ethylene oxide-propylene oxide-allyl glycidyl ether (EO-PO-AGE) copolymer and a salt having an anion having a fluoro group and a sulfonyl group. ,
    A conductive molded article, wherein the surface of the sheet-like or roll-like molded article of the dynamically crosslinked thermoplastic elastomer composition is subjected to ultraviolet irradiation treatment.
  2.  前記動的架橋熱可塑性エラストマー組成物中に、更に、相溶化剤としてエチレン-アクリル酸エステル-グリシジルメタクリレート共重合体またはエチレン-アクリル酸エステル-無水マレイン酸共重合体が含まれている請求項1に記載の導電性成形品。 The dynamically crosslinked thermoplastic elastomer composition further contains an ethylene-acrylic acid ester-glycidyl methacrylate copolymer or an ethylene-acrylic acid ester-maleic anhydride copolymer as a compatibilizing agent. The electroconductive molded article according to
  3.  温度23℃、湿度55%の条件下におけるJIS K6253のショアA硬度が80以下40以上であり、
     ポリブチレンテレフタレート(PBT)で作成したシートに対する摩擦係数が1.0以下0.3以上である請求項1または請求項2に記載の導電性成形品。
    Shore A hardness of JIS K6253 under conditions of temperature 23 ° C. and humidity 55% is 80 or less and 40 or more,
    The conductive molded article according to claim 1 or 2, wherein the friction coefficient with respect to a sheet made of polybutylene terephthalate (PBT) is 1.0 or less and 0.3 or more.
  4.  画像形成装置に装着される導電性シートまたは導電性ローラからなる請求項1乃至請求項3のいずれか1項に記載の導電性成形品。 The electroconductive molded article according to any one of claims 1 to 3, comprising an electroconductive sheet or an electroconductive roller attached to the image forming apparatus.
  5.  請求項1乃至請求項4のいずれか1項に記載の導電性成形品の製造方法であって、
     前記ゴム成分と、熱可塑性樹脂と熱可塑性エラストマーの一方または両方の混合物と、架橋剤とを混練し、前記ゴム成分を架橋剤により動的架橋させて熱可塑性樹脂と熱可塑性エラストマーの一方または両方の混合物中に分散させ前記熱可塑性エラストマー組成物を作成し、
     前記EO-PO-AGE共重合体と前記塩との混練物を設け、
     前記混練物を前記熱可塑性エラストマー組成物と混練して前記導電化した動的架橋熱可塑性エラストマー組成物を作成し、
     前記動的架橋熱可塑性エラストマー組成物を樹脂押出機に投入して、前記シート状またはロール状の成形品を取得し、
     前記成形品の表面に紫外線を照射していることを特徴とする導電性成形品の製造方法。
    It is a manufacturing method of the electroconductive molded article of any one of Claim 1 thru | or 4, Comprising:
    The rubber component, a mixture of one or both of a thermoplastic resin and a thermoplastic elastomer, and a crosslinking agent are kneaded, and the rubber component is dynamically crosslinked by the crosslinking agent to form one or both of the thermoplastic resin and the thermoplastic elastomer. Dispersed in a mixture of the above to make the thermoplastic elastomer composition,
    Providing a mixture of the EO-PO-AGE copolymer and the salt,
    The kneaded product is kneaded with the thermoplastic elastomer composition to form the conductive, dynamically crosslinked thermoplastic elastomer composition,
    The dynamically crosslinked thermoplastic elastomer composition is charged into a resin extruder to obtain the sheet-like or roll-like shaped article,
    A method of producing a conductive molded article, characterized in that the surface of the molded article is irradiated with ultraviolet light.
PCT/JP2008/072282 2008-01-31 2008-12-08 Electroconductive molded product and process for producing the electroconductive molded product WO2009096096A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200880126296.4A CN101932637B (en) 2008-01-31 2008-12-08 Electroconductive molded product and process for producing the electroconductive molded product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008020428A JP5255289B2 (en) 2008-01-31 2008-01-31 Conductive molded product and manufacturing method thereof
JP2008-020428 2008-01-31

Publications (1)

Publication Number Publication Date
WO2009096096A1 true WO2009096096A1 (en) 2009-08-06

Family

ID=40912455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/072282 WO2009096096A1 (en) 2008-01-31 2008-12-08 Electroconductive molded product and process for producing the electroconductive molded product

Country Status (3)

Country Link
JP (1) JP5255289B2 (en)
CN (1) CN101932637B (en)
WO (1) WO2009096096A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016065197A (en) * 2014-09-17 2016-04-28 住友ゴム工業株式会社 Rubber composition and rubber molded article using the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5937449B2 (en) * 2012-07-19 2016-06-22 キヤノン化成株式会社 Conductive member for pressure sensor, pressure sensor using the same
JP2017155182A (en) * 2016-03-04 2017-09-07 信越化学工業株式会社 Photo-hardening method of silicone rubber surface, and silicone rubber molded body
JP7001263B2 (en) * 2017-12-27 2022-01-19 ヤマウチ株式会社 Composition for Conductive Rubber Roller, Method for Manufacturing Conductive Rubber Roller and Conductive Rubber Roller
CN112080112B (en) * 2019-06-13 2022-12-20 上海朗亿功能材料有限公司 Conductive plastic and raw material composition, preparation method and application thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004018788A (en) * 2002-06-19 2004-01-22 Sumitomo Rubber Ind Ltd Conductive elastomer composition, conductive roller and conductive belt
JP2004051829A (en) * 2002-07-22 2004-02-19 Sumitomo Rubber Ind Ltd Electroconductive polymer composition, its manufacturing process, and electroconductive material using the composition
JP2004176056A (en) * 2002-11-13 2004-06-24 Sumitomo Rubber Ind Ltd Conductive elastomer composition, conductive member given by using the composition and image-forming device equipped with the conductive member
JP2004175945A (en) * 2002-11-27 2004-06-24 Sumitomo Rubber Ind Ltd Conductive polymer composition
JP2004269854A (en) * 2003-01-15 2004-09-30 Sumitomo Rubber Ind Ltd Polymer type antistatic agent, antistatic polymer composition and method for preparing the same
JP2004272209A (en) * 2002-11-27 2004-09-30 Sumitomo Rubber Ind Ltd Conductive member for image forming apparatus
JP2006105374A (en) * 2004-10-08 2006-04-20 Sumitomo Rubber Ind Ltd Conductive roll
JP2008045029A (en) * 2006-08-16 2008-02-28 Sumitomo Rubber Ind Ltd Electroconductive thermoplastic elastomer composition, its manufacturing method and molded product
JP2008045031A (en) * 2006-08-16 2008-02-28 Sumitomo Rubber Ind Ltd Electroconductive thermoplastic elastomer composition, its manufacturing method and molded product
JP2008070672A (en) * 2006-09-15 2008-03-27 Sumitomo Rubber Ind Ltd Electroconductive roller

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100592928B1 (en) * 2002-11-13 2006-06-23 스미토모 고무 고교 가부시키가이샤 Conductive elastomer compositions, conductive member using the compositions, image forming apparatus equipped with the conductive member
US7641973B2 (en) * 2002-11-27 2010-01-05 Sumitomo Rubber Industries, Ltd. Conductive member for image-forming apparatus
TWI319412B (en) * 2003-01-15 2010-01-11 Sumitomo Rubber Ind Polymeric-type antistatic agent and antistatic polymer composition and fabricating method thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004018788A (en) * 2002-06-19 2004-01-22 Sumitomo Rubber Ind Ltd Conductive elastomer composition, conductive roller and conductive belt
JP2004051829A (en) * 2002-07-22 2004-02-19 Sumitomo Rubber Ind Ltd Electroconductive polymer composition, its manufacturing process, and electroconductive material using the composition
JP2004176056A (en) * 2002-11-13 2004-06-24 Sumitomo Rubber Ind Ltd Conductive elastomer composition, conductive member given by using the composition and image-forming device equipped with the conductive member
JP2004175945A (en) * 2002-11-27 2004-06-24 Sumitomo Rubber Ind Ltd Conductive polymer composition
JP2004272209A (en) * 2002-11-27 2004-09-30 Sumitomo Rubber Ind Ltd Conductive member for image forming apparatus
JP2004269854A (en) * 2003-01-15 2004-09-30 Sumitomo Rubber Ind Ltd Polymer type antistatic agent, antistatic polymer composition and method for preparing the same
JP2006105374A (en) * 2004-10-08 2006-04-20 Sumitomo Rubber Ind Ltd Conductive roll
JP2008045029A (en) * 2006-08-16 2008-02-28 Sumitomo Rubber Ind Ltd Electroconductive thermoplastic elastomer composition, its manufacturing method and molded product
JP2008045031A (en) * 2006-08-16 2008-02-28 Sumitomo Rubber Ind Ltd Electroconductive thermoplastic elastomer composition, its manufacturing method and molded product
JP2008070672A (en) * 2006-09-15 2008-03-27 Sumitomo Rubber Ind Ltd Electroconductive roller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016065197A (en) * 2014-09-17 2016-04-28 住友ゴム工業株式会社 Rubber composition and rubber molded article using the same

Also Published As

Publication number Publication date
CN101932637B (en) 2013-01-30
JP5255289B2 (en) 2013-08-07
JP2009179728A (en) 2009-08-13
CN101932637A (en) 2010-12-29

Similar Documents

Publication Publication Date Title
JP4475472B2 (en) Method for producing conductive thermoplastic elastomer composition, and conductive roller using the composition
JP4140856B2 (en) Conductive roller
EP1889803B1 (en) Conductive thermoplastic elastomer composition, method of producing same, and molding
KR100804164B1 (en) Polymeric antistatic agents, antistatic polymer composition and manufacturing method thereof
JP4347869B2 (en) Thermoplastic elastomer composition, method for producing the same, and molded product
US20070088128A1 (en) Elastomer composition and rubber roller composed of elastomer composition
JP4700746B2 (en) Conductive roller
WO2009096096A1 (en) Electroconductive molded product and process for producing the electroconductive molded product
JP4615855B2 (en) Molded product comprising antistatic polymer composition
JP5080034B2 (en) Rubber roller
JP4077307B2 (en) Antistatic paper feed roller manufacturing method and antistatic paper feed roller manufactured by the manufacturing method
JP4347870B2 (en) Thermoplastic elastomer composition, method for producing the same, and molded product
JP2009096841A (en) Thermoplastic elastomer composition and vibration-proof and soundproof member comprising the composition
JP4121798B2 (en) Conductive polymer composition, method for producing the same, and conductive member using the composition
JP4474636B2 (en) Polymer composition and conductive member comprising the polymer composition
KR101540824B1 (en) Conductive roller and electrophotography device using thereof
JP2012197397A (en) Electrically conductive thermoplastic elastomer composition and conductive roller
JP2011017934A (en) Conductive roller
JP4121797B2 (en) Conductive thermoplastic elastomer composition, method for producing conductive thermoplastic elastomer composition, and conductive roller
JP2011017935A (en) Conductive roller
JP5711549B2 (en) Conductive roller and image forming apparatus
JP2012153784A (en) Electroconductive thermoplastic elastomer composition, electroconductive roller and image forming apparatus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880126296.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08871833

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08871833

Country of ref document: EP

Kind code of ref document: A1