WO2009094696A1 - Timber structural member - Google Patents

Timber structural member Download PDF

Info

Publication number
WO2009094696A1
WO2009094696A1 PCT/AU2009/000082 AU2009000082W WO2009094696A1 WO 2009094696 A1 WO2009094696 A1 WO 2009094696A1 AU 2009000082 W AU2009000082 W AU 2009000082W WO 2009094696 A1 WO2009094696 A1 WO 2009094696A1
Authority
WO
WIPO (PCT)
Prior art keywords
timber
web
flanges
joist according
joist
Prior art date
Application number
PCT/AU2009/000082
Other languages
French (fr)
Inventor
Patrick Thornton
Original Assignee
Patrick Thornton
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2008900435A external-priority patent/AU2008900435A0/en
Priority to ES09705514.9T priority Critical patent/ES2559120T3/en
Priority to NZ587631A priority patent/NZ587631A/en
Priority to PL09705514T priority patent/PL2252747T3/en
Priority to EP09705514.9A priority patent/EP2252747B1/en
Priority to CA2713917A priority patent/CA2713917C/en
Application filed by Patrick Thornton filed Critical Patrick Thornton
Priority to JP2010600060U priority patent/JP3169273U/en
Priority to AU2009208369A priority patent/AU2009208369B2/en
Priority to CN2009901000660U priority patent/CN202023297U/en
Publication of WO2009094696A1 publication Critical patent/WO2009094696A1/en
Priority to US12/845,251 priority patent/US8910454B2/en
Priority to US14/563,573 priority patent/US9605431B2/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/12Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of wood, e.g. with reinforcements, with tensioning members
    • E04C3/17Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of wood, e.g. with reinforcements, with tensioning members with non-parallel upper and lower edges, e.g. roof trusses
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/26Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of wood
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/12Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of wood, e.g. with reinforcements, with tensioning members
    • E04C3/14Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of wood, e.g. with reinforcements, with tensioning members with substantially solid, i.e. unapertured, web
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/12Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of wood, e.g. with reinforcements, with tensioning members
    • E04C3/18Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of wood, e.g. with reinforcements, with tensioning members with metal or other reinforcements or tensioning members
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/29Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces built-up from parts of different material, i.e. composite structures
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/29Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces built-up from parts of different material, i.e. composite structures
    • E04C3/292Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces built-up from parts of different material, i.e. composite structures the materials being wood and metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/38Arched girders or portal frames
    • E04C3/42Arched girders or portal frames of wood, e.g. units for rafter roofs
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/02Structures consisting primarily of load-supporting, block-shaped, or slab-shaped elements
    • E04B1/10Structures consisting primarily of load-supporting, block-shaped, or slab-shaped elements the elements consisting of wood
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/26Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of wood
    • E04B1/2604Connections specially adapted therefor
    • E04B2001/2644Brackets, gussets or joining plates
    • E04B2001/2648Brackets, gussets or joining plates located in slots of the elongated wooden members
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/26Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of wood
    • E04B1/2604Connections specially adapted therefor
    • E04B2001/2668Connections specially adapted therefor for members with a round cross-section

Definitions

  • the invention generally relates to the field of structural members for use in building construction. More particularly, but not exclusively, the • invention relates to timber structural members for poi ⁇ frames, which can be incorporated into modular building systems.
  • Timber structural members play an important part in the construction of building structures.
  • Timber is commonly used for joists, beams, columns, rafters and frames because of its strengths for load bearing and its natural ability to withstand a variety of forces. Additionally, compared to metal based materials, timber structural members often cost less to manufacture and are more easily cut and processed for specific building requirements.
  • a strong and useful type of structural member is an "l-joist".
  • the l-joist comprises two flange members with an interconnecting web member, resembling a letter "I" in its cross-section, l-joists have good load bearing and distribution capabilities and are key components in building construction.
  • Timber joists The flanges of timber l-joists (hereon called "timber joists”) have historically been made from solid wood lumber or laminated timber. In order to obtain flanges of appropriate length and cross-sectional dimensions, relatively large diameter lumber is required. Any imperfection in the flange can greatly compromise the strength of the flange, so relatively high quality lumber is required for the manufacture of timber joists. This places a large demand on particular species of trees that are of specific age and quality. This has led in turn to increased cost in production as well as raising natural resource conservation issues. Depending on the part of the log it is sawn from, the solid lumber may have issues with splinters, rots, abnormal growth and grain structures.
  • wood material for making timber joists have been sought. These include engineered wood composites such as plywood, laminated veneer lumber (“LVL”), oriented strand lumber (“OSL”) and oriented strand board (“OSB”). Wood composites have the advantage of being less expensive in raw material cost (as they are able to be formed from lower grade wood or even wood wastes) and do not have the problems associated with solid lumber defects. However, the energy and resource requirements in their manufacture are generally significantly higher as processed structural timber requires significantly more cutting, bonding, and curing than naturally formed timber.
  • a timber joist comprising: first and second flanges connected together by a web which is structurally integral with the flanges, both flanges comprising timber poles.
  • each flange has a slot formed therein which extends longitudinally along the length of the flange, the slot being dimensional to receive the web, the web being bonded in the slot.
  • the web may be generally planar and may extend the full length of the flanges. Alternatively, the web may extend beyond the length of the flanges or be shorter than the length of the flanges.
  • the web may comprise one or more segments wherein the flanges include one or more slots and each web segment connects into one of the corresponding slots in the flanges.
  • the web may be formed of any suitable relatively high strength planar material. Suitable materials include: timber; processed timber such as chipboard, plywood or the like; metal sheet or plate; fibre reinforced cement sheet; plastics or fibre reinforced plastics materials; and the like.
  • the flanges are preferably parallel to each other and the web is preferably of elongate rectangular shape.
  • One or more ends of the flanges may be configured to form a dowel connection.
  • the dowel connection may comprise of an axial bore in the flange sized to receive a dowel.
  • the dowel will preferably comprise a mild steel or high strength steel rod.
  • One or more ends of the flanges may be provided with a radial cut shaped and positioned to engage with a further timber pole.
  • Timber pole as used herein is intended to mean a naturally occurring round cross-section pole having a central core and having had its peripheral surface trimmed so that the pole has a substantially constant cross-sectional shape along its full length.
  • Suitable poles include true round plantation pine, such as slashpine or carribaea hybrids, or other timber species.
  • a structure comprising a plurality of interconnected structural members, wherein one or more structural members is a timber structural member according to the invention.
  • the present invention provides a truss comprising at least two timber poles in non-parallel alignment with each other, each pole having a slot therein, and a web bonded into the slots of the two poles to form a structurally integral assembly.
  • Figure 1 shows a perspective view of one embodiment of a timber joist in accordance with the present invention
  • Figure 2 shows a top view of the timber joist shown in Figure 1 ;
  • Figure 3 shows an end view of the timber joist shown in Figure 1 ;
  • Figure 4 shows a side view of the timber joist shown in Figure 1 ;
  • Figure 5 shows a perspective view of an alternative embodiment of a timber joist in accordance with the present invention
  • Figure 6 shows a top view of the timber joist shown in Figure 5;
  • Figure 7 shows a front view of the timber joist shown in Figure 5;
  • Figure 8 shows an end view of the timber joist shown in Figure 5;
  • Figure 9 shows a front view of a section of a structural member for which the timber joist shown in Figure 5 may connect to;
  • Figures 10 shows a side view of one embodiment of a truss which incorporates the flange and web construct of the invention
  • the joist 10 comprises a first flange 12 and a second flange 14 which are joined together by a web 16 such that the two flanges 12 and 14 are aligned and parallel with each other and are spaced apart from each other by a predetermined distance.
  • the diameter of the flanges 12 and 14 and the dimensions of the web 16 are selected so that the structural strength of the combined joist will meet predetermined design and load bearing requirements.
  • the flanges 12 and 14 are comprised of timber poles.
  • each of the flanges 12 and 14 has a rectangular groove or slot 18 cut therein into which the web 16 is located in a relatively close sliding fit.
  • a suitable bonding material or other fixing means is used to secure the web 16 into the slots 18 to thereby ensure that the joist acts in a structurally integral manner.
  • the bonding material that is used to bond the web 16 into the slots 18 will depend on the material from which the web 16 is formed.
  • the web 16 is formed of a plywood or plywood like material which is well known in the art, and the bonding material selected will be of a type such that a high strength timber to timber bond is achieved between the web 16 and the timber from which the flanges 12 and 14 are made. If necessary, the composite joist may be treated after assembly, such as by heat treatment, to ensure that the web to flange bond is of high strength.
  • the flanges 12 and 14 are both formed of timber poles.
  • Timber poles are selected because of the significant advantages that timber poles provide. A number of advantages which are inherent in the use of timber poles and are not to be found with other timber products such as sawn timber or laminated timber products.
  • One significant advantage, for example, is that timber poles are relatively inexpensive and are manufactured simply by cutting down a suitable diameter tree and then trimming the outer surface of the tree to form a pole with a constant diameter along its full length. Only waste material such as bark and branches are cut from the outer surface of the pole.
  • the natural characteristics of timber are that the central core or pith of the pole is relatively soft and has low structural strength.
  • the periphery of the pole is much harder and the timber fibres are able to carry a high tensile load.
  • this hard outer layer is more resistant to water absorption and attack by insects, and thus by keeping the outer circumference of the timber pole intact, the structural integrity of the pole is maintained.
  • the joist (once assembled) acts as a composite member which serves to provides further structural strength and ' stability.
  • forming a structural member out of timber poles has a number of advantages, including relatively low waste, and maintaining the structural integrity of the round timber pole.
  • the overall height of the joist can be controlled by ensuring that timber poles of constant diameter are used, and that the slots 18 cut in the poles are of constant depth to accommodate standard dimension webs.
  • the diameters of the poles are variable to some degree, that variation can be accommodated by changing the depth of the slots 18 to ensure that the overall height dimension of the joist is constant.
  • An alternative option is to cut a flat face, as indicated by dotted lines 20 into the top and bottom of the joist, with the faces 20 being a preselected distance apart from each other. This will ensure the joist has a flat bearing face on which cross members can be seated, and also ensures that the overall height of the joist can be precisely controlled.
  • connection of the joist to any desired structure can conveniently be achieved by providing a pair of dowel type connections at each end of the joist.
  • each of the flanges 12 and 14 have had an axially central bore 22 machined into the end thereof to a predetermined depth. This bore 22 is dimensioned to receive a steel dowel 24 as shown.
  • the axial bore 22 not only provides for a strong attachment means (as described below), it also removes the central weakest part of the pole flanges 12 and 14 thereby providing enhanced strength/structural integrity to the joist as a whole..
  • a lateral access bore 26 connects the end of the bore 22 to a location exterior of the pole and this lateral access bore 26 is used to inject a suitable adhesive bonding material into the bore 22 in order to bond the dowel 24 into the bore 22 .
  • the bore 22 will be of slightly larger diameter than the dowel 24 so that the bonding material injected through the access bore 26 will fully surround the dowel 24, thereby ensuring a high strength bonded connection between the dowel 24 and the flange 12 or 14.
  • a dowel centring ring shown by dotted lines 29, may be placed at the opening of bore 22 for axially centring the dowel 24.
  • the dowel centring ring may be made from plastic, metal or composite materials, or the like.
  • the centring ring may comprise of lugs on the external diameter for secure placement of the ring to the opening of bore 22.
  • the centring ring 29 may be used to create a sealing face between the end 28 of the pole, and the pole or other structural component to which the joist is mounted, thereby ensuring a sealed continuous passage for bonding material injected into passage 26.
  • the adhesive bonding material may comprise a two component epoxy material or in some applications a single phase epoxy may be used. Generally the epoxy will By axially securing each of the flanges 12 and 14 of the joist all load forces experienced by the joist are transmitted axially through the flanges 12 and 14. This again serves to add to the strength of the joist and any construction erected using the joist.
  • the dowel 24 is protected from fire.
  • Other known joining systems make use of connectors (e.g. dowels, pins, nails, bolts, plates etc) which are externally fitted. In the event of a fire, such externally fitted connectors have been found to transfer heat into the timber of the joist resulting in an undesirable increase in the destabilisation of joints. It is theorised this increase in destabilisation is caused by the connector becoming so hot that the timber in the hole is charred and shrinks away, thereby creating dynamic stresses in now moving members.
  • the opposite end 25 of the dowel 24 will pass through a vertical post or the like which will have a similar bonding arrangement to ensure that both ends of the dowel are properly anchored in their respective bores.
  • the joist 10 Since two dowels 24 are provided, one for each of the flanges 12 and 14, the joist 10 will be held vertical by the two dowels 24, preventing twisting of the joist as load is applied to the joist in use. Additionally, by securing both flanges 12 and 14 of the joist 10 (by dowels 24) potential rotation of an individual flange 12 or 14 under load is prevented. Obviously both ends of the joist will be mounted in this fashion, thereby ensuring that four high strength dowels 24 are used to secure the joist in position. Hot dipped galvanised deformed or Y-bar dowels may be used, or other suitable alternatives may be considered, depending on strength requirements and environmental conditions.
  • the ends 28 of the flanges 12 and 14 may be formed having a scalloped concave shape as indicated at numeral 30.
  • the radius of curvature of this concave shape 30 will be selected to mirror the diameter of the vertical pole to which the joist is to be connected, thereby ensuring a neat and structurally sound connection with a vertical pole of this type.
  • the ends 28 of the flanges 12 and 14 may be formed with a scalloped concave shape 30 oriented so as to connect with a circular pole of any orientation.
  • a vertical radial cut (as opposed to the horizontal radial cut as depicted) could be made to form a scalloped concave shape suitable for use with a horizontally extending circular pole.
  • the vertical member to which the joist is connected can itself be a joist of the type described herein.
  • joists of the type shown in Figure 1 can be placed at right angles to each other to form, for example, a portal frame or like structure.
  • the joist shown in Figure 1 can thus be used either horizontally, or vertically, or indeed in any orientation, and the term "joist" is not intended to limit in any way the application to which the structural member of the invention can be put.
  • the web 16 may be extended beyond the end of the flanges, as depicted in Figures 5 to 9 of the drawings.
  • the web 16 has a tongue 32 which extends beyond the end face 28 of the flanges, and that tongue 32 will be slotted into a vertically extending groove 36 in the end support.
  • the tongue 32 will be bonded with the suitable adhesive material into the vertically extending groove to thereby strengthen the integrity of the end connection and furthermore prevent twisting of the joist as load is applied to the joist in use.
  • the web 16 can be made of relatively high strength material this end connection can be made to be operatively high strength, further improving the overall structural strength of the structure into which the joist is incorporated. If necessary, a laterally extending pin as indicated by dotted lines 34 can be used to laterally pin the tongue 32 to the vertical support.
  • a web member 44 has been bonded into one of the polygon shaped gaps between the poles 42, and bonded with a slot and tongue type connection arrangement as discussed previously with respect to the flange and web arrangements of the joist shown in Figures 1 to 9.
  • the web material can be formed of any suitable material and the strength and thickness of the web will depend on the overall strength requirements of the joist, the diameters of the log, and like considerations. Clearly, if a high strength web is required, a thicker plywood material, for example, may be used. Other web materials might comprise steel or other metal plate or sheet, fibrous cement or like material, or other high strength planar materials such as chipboard, particle board, and plastics type materials.
  • Plantation pine materials tend to form suitable true rounds.
  • Other materials that might be considered, for example, include coconut, Douglas fir, and various eucalypt species. In some applications, high strength bamboo poles might be considered.
  • the timber poles will typically be treated against insect damage and fungus and might be impregnated with various timber protection products and/or fire retardants.
  • the joists described herein can be used in many different applications and in particular, the joists will be suitable for use as columns of a structure in which case the lower ends of the columns might either be embedded in concrete or supported on studs which in turn are embedded in concrete foundations.
  • the dowel type connection described herein is advantageous since it transfers connection loads directly along the central axis of the timber pole.
  • the bore hole along the core of the timber pole serves to remove only the weakest portion of the timber pole.
  • the scalloped end of the poles serve to increase the bearing surface area of the pole ends, thereby ensuring a well supported transfer of loads between different components within the structure.
  • one advantage of the dowel type construction referred to herein is that all metal components are encased within timber components in the manner described herein. That arrangement not only provides an aesthetically attractive connection arrangement, but also is advantageous in that the metal components, in the event of a fire, are not directly exposed to the heat of the fire, at least initially, and therefore failure of such components as often occurs during a fire will only take place some time after the fire has started, thus avoiding catastrophic collapse of the structure shortly after the outbreak of a fire.

Abstract

A timber joist comprising first and second flanges connected together by a web, the web being structurally integral with the flanges. Both flanges comprise timber poles.

Description

Timber structural member
Field of the invention
The invention generally relates to the field of structural members for use in building construction. More particularly, but not exclusively, the invention relates to timber structural members for poi^ frames, which can be incorporated into modular building systems.
Background of the invention
Timber structural members play an important part in the construction of building structures. Timber is commonly used for joists, beams, columns, rafters and frames because of its strengths for load bearing and its natural ability to withstand a variety of forces. Additionally, compared to metal based materials, timber structural members often cost less to manufacture and are more easily cut and processed for specific building requirements. A strong and useful type of structural member is an "l-joist". The l-joist comprises two flange members with an interconnecting web member, resembling a letter "I" in its cross-section, l-joists have good load bearing and distribution capabilities and are key components in building construction.
The flanges of timber l-joists (hereon called "timber joists") have historically been made from solid wood lumber or laminated timber. In order to obtain flanges of appropriate length and cross-sectional dimensions, relatively large diameter lumber is required. Any imperfection in the flange can greatly compromise the strength of the flange, so relatively high quality lumber is required for the manufacture of timber joists. This places a large demand on particular species of trees that are of specific age and quality. This has led in turn to increased cost in production as well as raising natural resource conservation issues. Depending on the part of the log it is sawn from, the solid lumber may have issues with splinters, rots, abnormal growth and grain structures. Additionally, when sawn and prepared for commercial use the lumbers are prone to processing defects such as chipping, torn grain and timber wanes. to address the problems associated with solid wood lumber, alternative forms of wood material for making timber joists have been sought. These include engineered wood composites such as plywood, laminated veneer lumber ("LVL"), oriented strand lumber ("OSL") and oriented strand board ("OSB"). Wood composites have the advantage of being less expensive in raw material cost (as they are able to be formed from lower grade wood or even wood wastes) and do not have the problems associated with solid lumber defects. However, the energy and resource requirements in their manufacture are generally significantly higher as processed structural timber requires significantly more cutting, bonding, and curing than naturally formed timber. Also, timber joists made from wood composites do not have effective end grain connection and when used in building construction they are usually joined by bearing onto another member and nailed to deter sideway twisting and/or movement. This type of connection often requires further mounted metal braces which become design hindrances. Additionally, the metal braces are prone to oxidation and collapse in fire as their strength decreases significantly at elevated temperatures.
Accordingly there is a need for a timber structural member that is constructed to have superior strength characteristics, requires less processing, has less material wastage, and is easily joined to other structural members without compromising the strength of the structure.
Any reference in this specification to the prior art does not constitute, nor should it be considered, an admission that such prior art was widely known or forms part of the common general knowledge in Australia, or in any other jurisdiction, before the priority date of any of the appended claims.
Summary of the invention According to one aspect of the present invention there is provided a timber joist comprising: first and second flanges connected together by a web which is structurally integral with the flanges, both flanges comprising timber poles. Preferably each flange has a slot formed therein which extends longitudinally along the length of the flange, the slot being dimensional to receive the web, the web being bonded in the slot.
The web may be generally planar and may extend the full length of the flanges. Alternatively, the web may extend beyond the length of the flanges or be shorter than the length of the flanges. The web may comprise one or more segments wherein the flanges include one or more slots and each web segment connects into one of the corresponding slots in the flanges.
The web may be formed of any suitable relatively high strength planar material. Suitable materials include: timber; processed timber such as chipboard, plywood or the like; metal sheet or plate; fibre reinforced cement sheet; plastics or fibre reinforced plastics materials; and the like. The flanges are preferably parallel to each other and the web is preferably of elongate rectangular shape.
One or more ends of the flanges may be configured to form a dowel connection. The dowel connection may comprise of an axial bore in the flange sized to receive a dowel. The dowel will preferably comprise a mild steel or high strength steel rod.
One or more ends of the flanges may be provided with a radial cut shaped and positioned to engage with a further timber pole.
The term "timber pole" as used herein is intended to mean a naturally occurring round cross-section pole having a central core and having had its peripheral surface trimmed so that the pole has a substantially constant cross-sectional shape along its full length. Suitable poles include true round plantation pine, such as slashpine or carribaea hybrids, or other timber species.
According to another aspect of the present invention there is provided a structure comprising a plurality of interconnected structural members, wherein one or more structural members is a timber structural member according to the invention. In a further aspect the present invention provides a truss comprising at least two timber poles in non-parallel alignment with each other, each pole having a slot therein, and a web bonded into the slots of the two poles to form a structurally integral assembly.
Brief description of the drawings Figure 1 shows a perspective view of one embodiment of a timber joist in accordance with the present invention;
Figure 2 shows a top view of the timber joist shown in Figure 1 ;
Figure 3 shows an end view of the timber joist shown in Figure 1 ;
Figure 4 shows a side view of the timber joist shown in Figure 1 ;
Figure 5 shows a perspective view of an alternative embodiment of a timber joist in accordance with the present invention;
Figure 6 shows a top view of the timber joist shown in Figure 5;
Figure 7 shows a front view of the timber joist shown in Figure 5;
Figure 8 shows an end view of the timber joist shown in Figure 5;
Figure 9 shows a front view of a section of a structural member for which the timber joist shown in Figure 5 may connect to;
Figures 10 shows a side view of one embodiment of a truss which incorporates the flange and web construct of the invention;
Detailed description of the embodiments Referring initially to Figures 1 to 4, a timber joist 10 in accordance with an embodiment of the invention is shown. The joist 10 comprises a first flange 12 and a second flange 14 which are joined together by a web 16 such that the two flanges 12 and 14 are aligned and parallel with each other and are spaced apart from each other by a predetermined distance. The diameter of the flanges 12 and 14 and the dimensions of the web 16 are selected so that the structural strength of the combined joist will meet predetermined design and load bearing requirements. The flanges 12 and 14 are comprised of timber poles.
As is shown, each of the flanges 12 and 14 has a rectangular groove or slot 18 cut therein into which the web 16 is located in a relatively close sliding fit. A suitable bonding material or other fixing means is used to secure the web 16 into the slots 18 to thereby ensure that the joist acts in a structurally integral manner. The bonding material that is used to bond the web 16 into the slots 18 will depend on the material from which the web 16 is formed.
In the preferred form of the invention, the web 16 is formed of a plywood or plywood like material which is well known in the art, and the bonding material selected will be of a type such that a high strength timber to timber bond is achieved between the web 16 and the timber from which the flanges 12 and 14 are made. If necessary, the composite joist may be treated after assembly, such as by heat treatment, to ensure that the web to flange bond is of high strength.
As mentioned, the flanges 12 and 14 are both formed of timber poles. Timber poles are selected because of the significant advantages that timber poles provide. A number of advantages which are inherent in the use of timber poles and are not to be found with other timber products such as sawn timber or laminated timber products. One significant advantage, for example, is that timber poles are relatively inexpensive and are manufactured simply by cutting down a suitable diameter tree and then trimming the outer surface of the tree to form a pole with a constant diameter along its full length. Only waste material such as bark and branches are cut from the outer surface of the pole.
Timber poles, sometimes called "logs" or "true rounds" are particularly strong since the natural strength of the timber fibres is not disrupted by sawing or other treatment. The integrity of the pole is maintained, and the trimming process required to circularise the Timber poles, sometimes called "logs" or "true rounds" are particularly strong since the natural strength of the timber fibres is not disrupted by sawing or other treatment. The integrity of the pole is maintained, and the trimming process required to circularise the pole will not greatly affect the overall strength of the pole. Also, it will be appreciated that the core of the pole, which is relatively structurally weak, is kept at the centre of the pole where, under load conditions, the stresses on the pole will be less than the stresses at the periphery of the pole.
It will be appreciated that the natural characteristics of timber are that the central core or pith of the pole is relatively soft and has low structural strength. The periphery of the pole, on the other hand, is much harder and the timber fibres are able to carry a high tensile load. Also, this hard outer layer is more resistant to water absorption and attack by insects, and thus by keeping the outer circumference of the timber pole intact, the structural integrity of the pole is maintained.
In addition to the benefits gained by use of timber poles, the joist (once assembled) acts as a composite member which serves to provides further structural strength and ' stability.
Thus, forming a structural member out of timber poles has a number of advantages, including relatively low waste, and maintaining the structural integrity of the round timber pole.
The overall height of the joist can be controlled by ensuring that timber poles of constant diameter are used, and that the slots 18 cut in the poles are of constant depth to accommodate standard dimension webs. Alternatively, if the diameters of the poles are variable to some degree, that variation can be accommodated by changing the depth of the slots 18 to ensure that the overall height dimension of the joist is constant. This will ensure that where the joists are used, for example, as supports for a deck or floor, the deck or floor is planar and all components of the deck or floor are supported by adjacent joists. An alternative option is to cut a flat face, as indicated by dotted lines 20 into the top and bottom of the joist, with the faces 20 being a preselected distance apart from each other. This will ensure the joist has a flat bearing face on which cross members can be seated, and also ensures that the overall height of the joist can be precisely controlled.
Connection of the joist to any desired structure can conveniently be achieved by providing a pair of dowel type connections at each end of the joist. As shown in Figure 1 , each of the flanges 12 and 14 have had an axially central bore 22 machined into the end thereof to a predetermined depth. This bore 22 is dimensioned to receive a steel dowel 24 as shown. As will be appreciated, the axial bore 22 not only provides for a strong attachment means (as described below), it also removes the central weakest part of the pole flanges 12 and 14 thereby providing enhanced strength/structural integrity to the joist as a whole..
A lateral access bore 26 connects the end of the bore 22 to a location exterior of the pole and this lateral access bore 26 is used to inject a suitable adhesive bonding material into the bore 22 in order to bond the dowel 24 into the bore 22 Generally the bore 22 will be of slightly larger diameter than the dowel 24 so that the bonding material injected through the access bore 26 will fully surround the dowel 24, thereby ensuring a high strength bonded connection between the dowel 24 and the flange 12 or 14. A dowel centring ring, shown by dotted lines 29, may be placed at the opening of bore 22 for axially centring the dowel 24. In this configuration the dowel 24 is received through the ring into the bore 22 and the inner diameter of the centring ring matches substantially to the diameter of the dowel 24 to enable a secure fit. The dowel centring ring may be made from plastic, metal or composite materials, or the like. The centring ring may comprise of lugs on the external diameter for secure placement of the ring to the opening of bore 22. The centring ring 29 may be used to create a sealing face between the end 28 of the pole, and the pole or other structural component to which the joist is mounted, thereby ensuring a sealed continuous passage for bonding material injected into passage 26.
The adhesive bonding material may comprise a two component epoxy material or in some applications a single phase epoxy may be used. Generally the epoxy will By axially securing each of the flanges 12 and 14 of the joist all load forces experienced by the joist are transmitted axially through the flanges 12 and 14. This again serves to add to the strength of the joist and any construction erected using the joist.
Further, by housing the dowel 24 inside the flange 12 or 14 the dowel 24 is protected from fire. Other known joining systems make use of connectors (e.g. dowels, pins, nails, bolts, plates etc) which are externally fitted. In the event of a fire, such externally fitted connectors have been found to transfer heat into the timber of the joist resulting in an undesirable increase in the destabilisation of joints. It is theorised this increase in destabilisation is caused by the connector becoming so hot that the timber in the hole is charred and shrinks away, thereby creating dynamic stresses in now moving members.
By providing internal dowel connectors 24 this problem is avoided, and the fire rating of the resulting joist is dependent on the web and flanges 12 and 14 of the joist. It is further noted that the round flanges 12 and 14 of the preferred embodiment of the invention are, in their own right, less combustible than sawn timber as is used in traditional joists.
In use it is envisaged that the opposite end 25 of the dowel 24 will pass through a vertical post or the like which will have a similar bonding arrangement to ensure that both ends of the dowel are properly anchored in their respective bores.
Since two dowels 24 are provided, one for each of the flanges 12 and 14, the joist 10 will be held vertical by the two dowels 24, preventing twisting of the joist as load is applied to the joist in use. Additionally, by securing both flanges 12 and 14 of the joist 10 (by dowels 24) potential rotation of an individual flange 12 or 14 under load is prevented. Obviously both ends of the joist will be mounted in this fashion, thereby ensuring that four high strength dowels 24 are used to secure the joist in position. Hot dipped galvanised deformed or Y-bar dowels may be used, or other suitable alternatives may be considered, depending on strength requirements and environmental conditions.
Where the joist is to be connected to a vertically extending circular pole, or the like, the ends 28 of the flanges 12 and 14 may be formed having a scalloped concave shape as indicated at numeral 30. The radius of curvature of this concave shape 30 will be selected to mirror the diameter of the vertical pole to which the joist is to be connected, thereby ensuring a neat and structurally sound connection with a vertical pole of this type. It will, of course, be appreciated that the ends 28 of the flanges 12 and 14 may be formed with a scalloped concave shape 30 oriented so as to connect with a circular pole of any orientation. For example, a vertical radial cut (as opposed to the horizontal radial cut as depicted) could be made to form a scalloped concave shape suitable for use with a horizontally extending circular pole.
The vertical member to which the joist is connected can itself be a joist of the type described herein. In other words, joists of the type shown in Figure 1 can be placed at right angles to each other to form, for example, a portal frame or like structure. The joist shown in Figure 1 can thus be used either horizontally, or vertically, or indeed in any orientation, and the term "joist" is not intended to limit in any way the application to which the structural member of the invention can be put.
To improve the strength of the end connections of the joist with vertical support to which the joist is to be connected, the web 16 may be extended beyond the end of the flanges, as depicted in Figures 5 to 9 of the drawings. As shown, the web 16 has a tongue 32 which extends beyond the end face 28 of the flanges, and that tongue 32 will be slotted into a vertically extending groove 36 in the end support. The tongue 32 will be bonded with the suitable adhesive material into the vertically extending groove to thereby strengthen the integrity of the end connection and furthermore prevent twisting of the joist as load is applied to the joist in use. Since the web 16 can be made of relatively high strength material this end connection can be made to be operatively high strength, further improving the overall structural strength of the structure into which the joist is incorporated. If necessary, a laterally extending pin as indicated by dotted lines 34 can be used to laterally pin the tongue 32 to the vertical support.
It will be appreciated that the scalloped ends 28 of the flanges act in conjunction with vertical posts to which the joists are connected to prevent the joists twisting under load. Thus, the combined effect of a shaped and nested interconnection between post and joist, and the dual dowel connection at each end of the joist will ensure that the end connection of the joist is structurally sound. Whilst it is envisaged that a joist of the type shown in Figures 1 to 9 will be the preferred form of structural member with which the invention will be used, other forms of structural members are possible. Figure 10 depicts one such additional example. The example shown comprises a truss 40 formed of a series of timber poles 42 connected together to form a truss. A web member 44 has been bonded into one of the polygon shaped gaps between the poles 42, and bonded with a slot and tongue type connection arrangement as discussed previously with respect to the flange and web arrangements of the joist shown in Figures 1 to 9. By bonding the web into the polygonal shaped space in this manner will ensure that the overall strength of the truss is significantly improved, particularly where a relatively high strength web material, such as plywood, is used.
As mentioned previously, the web material can be formed of any suitable material and the strength and thickness of the web will depend on the overall strength requirements of the joist, the diameters of the log, and like considerations. Clearly, if a high strength web is required, a thicker plywood material, for example, may be used. Other web materials might comprise steel or other metal plate or sheet, fibrous cement or like material, or other high strength planar materials such as chipboard, particle board, and plastics type materials.
Various species of timber would be suitable to form the timber poles, particularly those type of species that tend to have a relatively constant diameter for a considerable portion of their length to minimise waste during the trimming and circularising processes referred to previously. Plantation pine materials tend to form suitable true rounds. Other materials that might be considered, for example, include coconut, Douglas fir, and various eucalypt species. In some applications, high strength bamboo poles might be considered.
The timber poles will typically be treated against insect damage and fungus and might be impregnated with various timber protection products and/or fire retardants.
As mentioned above, the joists described herein can be used in many different applications and in particular, the joists will be suitable for use as columns of a structure in which case the lower ends of the columns might either be embedded in concrete or supported on studs which in turn are embedded in concrete foundations.
It will be appreciated that the dowel type connection described herein is advantageous since it transfers connection loads directly along the central axis of the timber pole. The bore hole along the core of the timber pole serves to remove only the weakest portion of the timber pole. Also, the scalloped end of the poles serve to increase the bearing surface area of the pole ends, thereby ensuring a well supported transfer of loads between different components within the structure.
As described above, one advantage of the dowel type construction referred to herein is that all metal components are encased within timber components in the manner described herein. That arrangement not only provides an aesthetically attractive connection arrangement, but also is advantageous in that the metal components, in the event of a fire, are not directly exposed to the heat of the fire, at least initially, and therefore failure of such components as often occurs during a fire will only take place some time after the fire has started, thus avoiding catastrophic collapse of the structure shortly after the outbreak of a fire.
It will be understood that the invention disclosed and defined in this specification extends to all alternative combinations of two or more of the individual features mentioned or evident from the text or drawings. All of these different combinations constitute various alternative aspects of the invention.
It will also be understood that the term comprises (and grammatical variants thereof) as used herein is equivalent to the term includes and should not be taken as precluding the existence of additional elements or features.

Claims

1. A timber joist comprising first and second flanges connected together by a web which is structurally integral with the flanges, both flanges comprising timber poles.
2. A timber joist according to claim 1 , wherein each flange has a slot formed therein which extends longitudinally along the length of the flange, the slot being dimensional to receive the web, the web being bonded in the slot.
3. A timber joist according to claim 2, wherein the web is generally planar.
4. A timber joist according to claim 2 or claim 3, wherein the web extends the full length of the flanges.
5. A timber joist according to 2 or claim 3, wherein the web extends beyond the length of the flanges.
6. A timber joist according to claim 2 or claim 3, wherein the web is shorter than the length of the flanges.
7. A timber joist according to any one of the preceding claims, wherein the web comprises one or more segments and the flanges include one or more slots, and wherein each web segment connects into one of the corresponding slots in the flanges.
8. A timber joist according to any one of the preceding claims, wherein the web is formed of a relatively high strength planar material.
9. A timber joist according to any one of the preceding claims, wherein the web is formed of a material selected from a group including: timber, processed timber; chipboard, plywood, metal sheet, metal plate, fibre reinforced cement sheet, plastic, and fibre reinforced plastic material.
10. A timber joist according to any one of the preceding claims, wherein the flanges are parallel to each other and the web is of elongate rectangular shape.
11. A timber joist according to any one of the preceding claims, wherein one or more ends of the flanges are configured to form a dowel connection.
12. A timber joist according to claim 11 , wherein the dowel connection is comprised of an axial bore in the flange sized to receive a dowel.
13. A timber joist according to claim 12, wherein the dowel comprises a mild steel or high strength steel rod.
14. A timber joist according to any one of the preceding claims, wherein one or more ends of the flanges is provided with a radial cut shaped and positioned to engage with a further timber pole.
15. A structure comprising a plurality of interconnected structural members, wherein one or more of the structural members is a timber joist according to any one of the preceding claims.
16. A truss comprising at least two timber poles in non-parallel alignment with each other, each pole having a slot therein, and a web bonded into the slots of the two poles to form a structurally integral assembly.
PCT/AU2009/000082 2008-02-01 2009-01-28 Timber structural member WO2009094696A1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
CN2009901000660U CN202023297U (en) 2008-02-01 2009-01-28 Wooden structure member
NZ587631A NZ587631A (en) 2008-02-01 2009-01-28 Timber joist, with two flanges in the form of poles joined together by a web
PL09705514T PL2252747T3 (en) 2008-02-01 2009-01-28 Timber structural member
EP09705514.9A EP2252747B1 (en) 2008-02-01 2009-01-28 Timber structural member
CA2713917A CA2713917C (en) 2008-02-01 2009-01-28 Timber structural member
ES09705514.9T ES2559120T3 (en) 2008-02-01 2009-01-28 Wood structural member
JP2010600060U JP3169273U (en) 2008-02-01 2009-01-28 Wood structural components
AU2009208369A AU2009208369B2 (en) 2008-02-01 2009-01-28 Timber structural member
US12/845,251 US8910454B2 (en) 2008-02-01 2010-07-28 Timber structural member
US14/563,573 US9605431B2 (en) 2008-02-01 2014-12-08 Timber structural member with embedded web

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
AU2008900435A AU2008900435A0 (en) 2008-02-01 Composite structural member and building structures
AU2008900435 2008-02-01
AU2008901730A AU2008901730A0 (en) 2008-04-09 Timber structural member
AU2008901730 2008-04-09

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/845,251 Continuation-In-Part US8910454B2 (en) 2008-02-01 2010-07-28 Timber structural member
US12/845,251 Continuation US8910454B2 (en) 2008-02-01 2010-07-28 Timber structural member

Publications (1)

Publication Number Publication Date
WO2009094696A1 true WO2009094696A1 (en) 2009-08-06

Family

ID=40912155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AU2009/000082 WO2009094696A1 (en) 2008-02-01 2009-01-28 Timber structural member

Country Status (11)

Country Link
US (2) US8910454B2 (en)
EP (1) EP2252747B1 (en)
JP (1) JP3169273U (en)
CN (1) CN202023297U (en)
AU (2) AU2009208369B2 (en)
CA (1) CA2713917C (en)
ES (1) ES2559120T3 (en)
MY (1) MY168234A (en)
NZ (1) NZ587631A (en)
PL (1) PL2252747T3 (en)
WO (1) WO2009094696A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3430212A4 (en) * 2016-03-15 2019-11-06 Andrew Thornton Structural member having paired flanges and web

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2009208369B2 (en) 2008-02-01 2015-01-15 Loggo Ip Pty Ltd, In Its Capacity As Trustee For Thornton Ip Trust Timber structural member
AU338575S (en) * 2011-06-06 2011-09-20 Loggo Ip Pty Ltd Structural member
US9038347B2 (en) * 2012-12-24 2015-05-26 Whole Trees, LLC Truss and column structures incorporating natural round timbers and natural branched round timbers
CN105917058B (en) * 2013-09-06 2018-06-26 桑顿Ip信托人洛戈Ip有限公司 composite structural member
CN107250467A (en) * 2014-12-05 2017-10-13 洛戈Ip股份有限公司 Wood structure component with embedded web
DE102014225953A1 (en) * 2014-12-16 2016-06-16 Robert Bosch Gmbh Valve assembly for a pressure change damper for a brake power-controlled, hydraulic vehicle brake system, hydraulic block for such a vehicle brake system and vehicle brake system with such a hydraulic block
RU2018127285A (en) * 2016-01-07 2020-02-10 Эндрю ТОРНТОН COMPONENTS OF WOODEN STRUCTURE ELEMENTS

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3802206A (en) * 1972-03-08 1974-04-09 R Moore Pile splicer
US4677806A (en) * 1986-04-04 1987-07-07 The United States Of America As Represented By The Secretary Of Agriculture Wooden building system with flange interlock and beams for use in the system
US5974760A (en) * 1993-03-24 1999-11-02 Tingley; Daniel A. Wood I-beam with synthetic fiber reinforcement

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1813455A (en) * 1929-08-31 1931-07-07 Howard B Lawton Log structure
US2130231A (en) * 1935-05-09 1938-09-13 Ernest A Forciea Log cabin structure
US2416162A (en) * 1943-12-21 1947-02-18 Pioneer Log Cabin Company Log cabin structure
US2463612A (en) * 1946-09-16 1949-03-08 Grudda August Log or post cabin structure
US2619686A (en) * 1947-05-22 1952-12-02 Stanley B Dombrowski Building construction
US3460301A (en) * 1966-03-24 1969-08-12 Allan Everett Davis Log wall flex joint
US3527005A (en) * 1968-11-12 1970-09-08 Bert M Slavens Wall construction with compressible splines
US4012876A (en) * 1976-03-03 1977-03-22 Grubbs George B Half-log wall construction
US4249355A (en) * 1977-04-12 1981-02-10 Douglas E. Chatfield Modified dovetail joint
US4305238A (en) * 1978-09-19 1981-12-15 Harward Leland A Insulating simulated log and siding
EP0034224A3 (en) 1980-02-15 1982-09-15 Emergo Chemical Coating, N.V. Process for reinforcing wooden beams, and beams so obtained
US4429500A (en) * 1980-10-10 1984-02-07 Farmont Johann H Building logs with weathertight joints
US4413459A (en) * 1981-03-16 1983-11-08 Boise Cascade Corporation Laminated wooden structural assembly
US4463532A (en) * 1981-06-29 1984-08-07 Precision Interlock Log Homes, Inc. Prefabricated wall unit for log building construction, method of producing same and method of constructing log building therewith
US4356676A (en) * 1981-09-21 1982-11-02 Norton Company Sealant strip
US4443990A (en) * 1982-03-11 1984-04-24 Johnson Wilfred B Method of producing crack free logs
FR2556030A1 (en) * 1983-12-02 1985-06-07 Bringer Sa Ste Nle Ets Supporting timber pole
AT385544B (en) * 1986-01-22 1988-04-11 Winter Herbert Ing Wooden structural part
NL8701712A (en) * 1987-07-20 1989-02-16 Drs Ir Gosse Feddema Bar shaped building construction element - has metal core and wooden casing to transmit axial forces
NL8703076A (en) * 1987-12-18 1989-07-17 Pieter De Jong WOOD CONNECTION.
US5058343A (en) * 1989-07-03 1991-10-22 Nipko John A Modular log structures and methods of constructing same
US5277008A (en) * 1991-08-16 1994-01-11 Alexander R. Andrews Building blocks
JP3181375B2 (en) * 1992-05-30 2001-07-03 株式会社豊夢 Bonding tool, method for bonding structural members using the same, and bonding structure between structural members
US5641553A (en) * 1993-03-24 1997-06-24 Tingley; Daniel A. Cellulose surface material adhered to a reinforcement panel for structural wood members
US5736220A (en) * 1993-03-24 1998-04-07 Tingley; Daniel A. Surface treated synthetic reinforcement for structural wood members
US5498460A (en) * 1993-03-24 1996-03-12 Tingley; Daniel A. Surface treated synthetic reinforcement for structural wood members
US5547729A (en) * 1993-03-24 1996-08-20 Tingley; Daniel A. Glue-laminated wood structural member with synthetic fiber reinforcement
US6173550B1 (en) * 1993-03-24 2001-01-16 Daniel A. Tingley Wood I-beam conditioned reinforcement panel
US5362545A (en) * 1993-03-24 1994-11-08 Tingley Daniel A Aligned fiber reinforcement panel for structural wood members
US5648138A (en) * 1993-03-24 1997-07-15 Tingley; Daniel A. Reinforced wood structural member
US5565257A (en) * 1993-03-24 1996-10-15 Tingley; Daniel A. Method of manufacturing wood structural member with synthetic fiber reinforcement
US5721036A (en) * 1993-03-24 1998-02-24 Tingley; Daniel A. Aligned fiber reinforcement panel and method for making the same for use in structural wood members
US5456781A (en) * 1993-03-24 1995-10-10 Tingley; Daniel A. Method of manufacturing glue-laminated wood structural member with synthetic fiber reinforcement
JPH07166610A (en) * 1993-12-15 1995-06-27 Houmu:Kk Jig for joining and joining method for building structure using the jig
US5505028A (en) * 1994-11-22 1996-04-09 Hearthstone Builders, Inc. Log fabricating process and log for the construction of log structures
JPH08158537A (en) * 1994-12-06 1996-06-18 Ishita:Kk Combined woody structural material
US5618371A (en) * 1995-06-21 1997-04-08 Sing; Peter Method of producing laminated wood beams
DE29717759U1 (en) * 1996-11-07 1998-02-05 Doka Ind Gmbh Beam made of wood
US6199332B1 (en) * 1998-08-20 2001-03-13 Randall W. Ellson Log facade
AU144458S (en) 1999-10-07 2001-07-19 Construction element
AU144245S (en) 1999-11-05 2001-06-28 A construction element
US6245842B1 (en) * 2000-03-03 2001-06-12 Trus Joist Macmillan A Limited Partnership Flame-retardant coating and building product
USD462788S1 (en) * 2001-03-02 2002-09-10 Patrick Thornton Log product
USD459488S1 (en) * 2001-03-02 2002-06-25 Patrick Thornton Flooring unit
USD459493S1 (en) * 2001-03-02 2002-06-25 Patrick Thornton Railway tie
USD462798S1 (en) 2001-03-06 2002-09-10 Toyota Jidosha Kabushiki Kaisha Front combination lamp for automobile
AU150489S (en) 2001-08-14 2003-01-31 Set of chamfered logs
USD475144S1 (en) * 2002-07-01 2003-05-27 Patrick Thornton Slabbed log
AU156224S (en) 2003-02-17 2004-08-20 Set of chamfered logs
DE10352902A1 (en) * 2003-11-11 2005-06-09 Alexander Miller Log cabin-like facade
AU158523S (en) 2004-04-19 2006-03-21 Flooring unit
AU2009208369B2 (en) 2008-02-01 2015-01-15 Loggo Ip Pty Ltd, In Its Capacity As Trustee For Thornton Ip Trust Timber structural member
US20090293373A1 (en) * 2008-05-27 2009-12-03 Klinkhamer Richard System and method for construction of log structure
US8561373B1 (en) * 2009-07-25 2013-10-22 Bamcore LLC Bamboo I-beam with laminated web and flanges

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3802206A (en) * 1972-03-08 1974-04-09 R Moore Pile splicer
US4677806A (en) * 1986-04-04 1987-07-07 The United States Of America As Represented By The Secretary Of Agriculture Wooden building system with flange interlock and beams for use in the system
US5974760A (en) * 1993-03-24 1999-11-02 Tingley; Daniel A. Wood I-beam with synthetic fiber reinforcement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3430212A4 (en) * 2016-03-15 2019-11-06 Andrew Thornton Structural member having paired flanges and web

Also Published As

Publication number Publication date
MY168234A (en) 2018-10-15
US9605431B2 (en) 2017-03-28
ES2559120T3 (en) 2016-02-10
CA2713917A1 (en) 2009-08-06
US20150089900A1 (en) 2015-04-02
AU2009208369B2 (en) 2015-01-15
NZ587631A (en) 2011-12-22
AU2014271341A1 (en) 2016-06-23
AU2009208369A2 (en) 2010-09-23
US8910454B2 (en) 2014-12-16
EP2252747A4 (en) 2012-01-04
CN202023297U (en) 2011-11-02
CA2713917C (en) 2016-10-11
EP2252747B1 (en) 2015-11-04
JP3169273U (en) 2011-07-28
AU2009208369A1 (en) 2009-08-06
PL2252747T3 (en) 2016-05-31
US20110016824A1 (en) 2011-01-27
EP2252747A1 (en) 2010-11-24

Similar Documents

Publication Publication Date Title
US9605431B2 (en) Timber structural member with embedded web
AU2009317857B2 (en) Timber structural member
AU2014317815B2 (en) Composite structural member
US10119270B2 (en) Extended span timber structural member
US11041308B2 (en) Structural member having paired flanges and web
EP3227502A1 (en) Timber structural member with embedded web
AU2020200790A1 (en) Composite structural member 2
NZ726958B2 (en) Composite structural member 2

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200990100066.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09705514

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 5501/DELNP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010600060

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2713917

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: PI 2010003566

Country of ref document: MY

WWE Wipo information: entry into national phase

Ref document number: 2009208369

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 587631

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2009705514

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009208369

Country of ref document: AU

Date of ref document: 20090128

Kind code of ref document: A