WO2009093693A1 - Image generation device, image generation method, and program - Google Patents

Image generation device, image generation method, and program Download PDF

Info

Publication number
WO2009093693A1
WO2009093693A1 PCT/JP2009/051084 JP2009051084W WO2009093693A1 WO 2009093693 A1 WO2009093693 A1 WO 2009093693A1 JP 2009051084 W JP2009051084 W JP 2009051084W WO 2009093693 A1 WO2009093693 A1 WO 2009093693A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
phase
moving
images
still images
Prior art date
Application number
PCT/JP2009/051084
Other languages
French (fr)
Japanese (ja)
Inventor
Osamu Toyama
Koichi Fujiwara
Takuya Kawano
Original Assignee
Konica Minolta Holdings, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Holdings, Inc. filed Critical Konica Minolta Holdings, Inc.
Priority to JP2009550574A priority Critical patent/JP5029702B2/en
Publication of WO2009093693A1 publication Critical patent/WO2009093693A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5217Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data extracting a diagnostic or physiological parameter from medical diagnostic data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformation in the plane of the image
    • G06T3/40Scaling the whole image or part thereof
    • G06T3/4007Interpolation-based scaling, e.g. bilinear interpolation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment

Definitions

  • the present invention relates to an image generation technique that can accurately extract a difference between two moving images having partial differences.
  • a difference image between time-series radiation images is created, and a diagnosis support is proposed by observing the created difference image simultaneously with the time-series radiation image.
  • the present invention has been made in view of the above problems, and can generate an image that can extract only a substantial difference between two moving images obtained by photographing the same object at different times. Is to provide technology.
  • the image generation apparatus is obtained by photographing the same object at different times, each of which includes two time-series sets of still images.
  • phase detection means for detecting the phase of the periodic movement of the object, and at least one of the two moving images is interpolated in time series, so that the still images constituting each of the moving images
  • Interpolated image creating means for obtaining two phase-matched moving images whose phases are matched with each other.
  • the image generation device is the image generation device according to the first aspect, wherein the two moving images have a range including a specific part of a human or animal body as the object.
  • the phase is determined from the temporal variation state of the specific image region corresponding to the specific part.
  • the image generation device is the image generation device according to the second aspect, and the phase is obtained from a temporal variation state of a geometric size of the specific image region.
  • the image generation device is the image generation device according to the second or third aspect, wherein the specific image region is a lung field region that moves by breathing with a respiratory cycle as a cycle, or A heart region that is moved by a heartbeat with a heartbeat cycle as a period.
  • the specific image region is a lung field region that moves by breathing with a respiratory cycle as a cycle, or A heart region that is moved by a heartbeat with a heartbeat cycle as a period.
  • the image generation device is the image generation device according to any one of the first to fourth aspects, and the interpolation image creation means includes each of the two moving images.
  • the moving image with the smaller number of still images is used as the reference moving image
  • the moving image with the larger number of still images is used as the reference moving image.
  • the image generation device is the image generation device according to the fifth aspect, in which the generated interpolated moving image and the reference moving image have still corresponding phases. Further, a temporal difference image creating means for generating a time-series set of difference still images by taking the difference is provided.
  • An image generation device is the image generation device according to the fifth aspect, wherein the first moving image is obtained by taking a difference between two still images that are temporally adjacent to each other in the reference moving image.
  • a phase array corresponding to the set of the first differential still images is obtained by taking a difference between the interpolation still images included in the interpolation moving image and a means for generating a time-series set of differential still images.
  • inter-frame temporal difference image creation means for generating a time-series set of third difference still images and thereby obtaining a difference moving image.
  • the program according to the eighth aspect is a program that, when executed by a computer, causes the computer to function as the image generation apparatus according to any one of the first to seventh aspects.
  • the image generation method is an image generation method, which is obtained by photographing the same object at different times, each of which is constituted by a time-series set of still images. For each of the moving images, for each of the two moving images, a phase detection step for detecting the phase of the periodic movement of the object, and at least one of the two moving images is interpolated in time series The interpolated image creation step of obtaining two phase-matched moving images in which the phases of the still images constituting each of them are matched with each other.
  • the image generation device interpolates at least one of the two moving images in a time series, thereby matching the phases of the still images constituting each of the two. Since two phase-matching moving images can be obtained, phase shifts can be eliminated, and two moving images obtained by photographing the same object at different times can be substantively between them based on changes over time. It is possible to extract only the differences.
  • the phases of the two moving images are determined from the temporal variation state of the specific image region corresponding to the specific part of the human or animal body. Only substantial differences based on changes over time in specific parts of the body can be extracted.
  • the phase is obtained from the temporal variation state of the geometric size of the specific image area. Therefore, the phase is determined by measuring the geometric size of the specific image area. It can be easily obtained.
  • the specific image region is a lung field region that moves by breathing with a breathing cycle as a cycle or a heart region that moves by heartbeat with a heartbeat cycle as a cycle. Only substantial differences based on changes over time in the region or heart region can be extracted.
  • the interpolation image creating means is included in the reference moving image with the smaller number of still images when the number of still images constituting the two moving images is different. Since the phase of each still image is used as a reference phase, the number of still images is large, and an interpolation still image corresponding to each of the reference phases is generated by interpolation of still images included in a reference moving image with a short shooting time interval. Compared to the reverse case, an accurate interpolated moving image with fewer interpolation errors can be created.
  • the interphase moving image generated by the temporal difference image generating means and the reference moving image take a difference between still images having phases corresponding to each other, so that the phases match.
  • Artifacts generated by taking the difference between still images that have not been taken can be reduced, and an image can be displayed, and a portion that changes over time (for example, a diseased portion of a diseased portion that has progressed) can be prominently detected.
  • the difference between two still images that are temporally adjacent in the reference moving image and the two differences between the interpolated still images included in the interpolated moving image having the corresponding phase arrangement And then taking the difference between them to create an inter-frame temporal difference image, so compare the time-varying portion in the reference video with the time-varying portion in the reference video
  • the artifacts caused by the phase shift can be reduced.
  • the same effect as that of the image generation apparatus according to the first aspect can be obtained.
  • FIG. 1 is a block diagram showing a configuration common to each embodiment applied to an image generation device 1.
  • FIG. It is a graph which shows the relationship between a respiratory cycle and lung field size. It is a figure which shows the function structure implement
  • FIG. 1 is a block diagram showing a configuration common to each embodiment in which the present invention is applied to an image generation apparatus 1 capable of generating a diagnostic image of a specific part (for example, a lung) of a patient in cooperation with a medical imaging apparatus. It is.
  • the image generating apparatus 1 has a general computer configuration in which a CPU 21, a RAM 22, and a ROM 23 are connected to a bus line 10. Connected to the bus line 10 are a display unit 3 for displaying images and the like, an operation unit 4 including a keyboard and a mouse for receiving input from a user, an input unit 5 for inputting data, and a fixed disk 24 for storing various data. Has been.
  • the CPU 21 operates based on the program PG transferred from the fixed disk 24 to the RAM 22, determines the operation of the entire image generation apparatus 1, gives a command to the entire image generation apparatus 1, and further displays on the display unit 3 described later. Give instructions.
  • the CPU 21 creates an interpolation image, a temporal difference image, and the like as means for realizing each function described later.
  • the display unit 3 is composed of a liquid crystal display, for example, and visually outputs moving image data generated by the CPU 21.
  • the operation unit 4 includes a keyboard, a touch panel, a mouse, and the like, and transmits various command signals to the CPU 21 in accordance with various user operations.
  • the input unit 5 inputs image data.
  • the input unit 5 may receive image data on-line by connecting a medical image photographing device, and further input data by reading data from a portable storage medium such as a DVD or reading by a scanner. Is possible.
  • a portable storage medium such as a DVD or reading by a scanner.
  • an image obtained by photographing a person who is a subject of photographing (photographing subject) is stored in a file server or the like connected via a network, and the image of the subject subject of photographing is selected from a plurality of stored image data. Data may be retrieved and read.
  • the input image data is stored in a storage device such as the fixed disk 24 or the RAM 22.
  • the medical imaging apparatus is constituted by, for example, an X-ray imaging apparatus or the like, and images a predetermined part included in the imaging subject person's internal body.
  • the X-ray imaging apparatus performs imaging by exposing a subject to be imaged from an X-ray generation source. The exposed X-rays pass through the chest of the subject, the intensity distribution is detected, the detected X-rays are converted into analog electrical signals, and the analog electrical signals are converted into digital signals by A / D conversion. Then, it is stored on the storage device of the X-ray imaging apparatus as a moving image consisting of a plurality of still images in time series. The image stored in the storage device is transferred to the input unit 5 as necessary.
  • an X-ray image is used as a radiation image.
  • X-ray moving images obtained by imaging lung field regions of one respiratory cycle or more at different times (for example, moving images taken in the previous month and the latest images) A moving image photographed in the inspection) is input to the image generating apparatus 1.
  • the image generation apparatus 1 creates an interpolated moving image for at least one of the two moving images that have been input and the respiratory phase information derived therefrom.
  • FIG. 2 is a graph showing the relationship between the respiratory cycle and lung size. Strictly speaking, the size of the lung field corresponds to the “volume” of the lung field, but in two-dimensional X-ray imaging, it is expressed by the “(projection) area” of the photographed lung field.
  • the horizontal axis of the graph represents the respiratory cycle
  • the vertical axis of the graph represents the lung field size
  • the breathing cycle is a breathing exercise that includes a single exhalation mode and an inhalation mode
  • the inspiratory mode is a mode that inhales the breath, and the lung region in the thorax accordingly Becomes larger and the diaphragm is pushed down.
  • the exhalation mode is a mode for exhaling, and as the lung area increases, the diaphragm increases.
  • the phase represents a relative position in one cycle in a periodic motion by exhalation and inspiration.
  • phase ⁇ in the case of the formula (B) has a value in the range of 0 to 1
  • phase ⁇ in the case of the formula (C) has a value in the range of 0 to T.
  • Equation (D) Can also determine the phase ⁇ .
  • the normalization factor T can be omitted and the time t can be used as a proxy index for the phase ⁇ .
  • the phase ⁇ is expressed in units of time t on the assumption that the periods T1 and T2 are the same.
  • the time axis is normalized and adjusted.
  • the time interval from the maximum value to the maximum value is defined as one period.
  • FIG. 3 is a diagram illustrating a functional configuration realized by the image generation apparatus 1 according to the first embodiment.
  • the image acquisition unit 211 includes a standard moving image acquisition unit 212 and a reference moving image acquisition unit 213, and acquires a moving image input from the input unit 5 and stored in the storage unit 219 such as the fixed disk 24 or the RAM 22. To do.
  • the reference moving image acquisition unit 212 acquires the reference moving image, and then outputs the reference moving image to the phase detection unit 214. Further, the reference moving image acquisition unit 213 acquires the reference moving image, and then outputs the reference moving image to the phase detection unit 214 and the interpolation image generation unit 215.
  • the standard moving image and the reference moving image are different from the reference moving image at two different time points (for example, a moving image taken in the examination one month ago and a moving picture taken in the most recent examination).
  • the reference moving image the one with the smaller number of images taken in one breathing cycle is the reference moving image
  • the one with the larger number of images taken in one breathing cycle is taken as the reference moving image.
  • an interpolation error is reduced, and an accurate interpolating moving image can be created.
  • the moving image at either time point may be defined as the reference moving image.
  • the reference moving image is input to the reference moving image acquisition unit 212, and the reference moving image is input to the reference moving image acquisition unit 213.
  • FIG. 4 is a diagram illustrating an example of a time-series still image constituting each of the reference moving image and the standard moving image.
  • the horizontal axis indicates the passage of time, and the value obtained by dividing the elapsed time t (horizontal axis) by the period T as described above is an index of the phase.
  • the phase detection unit 214 detects the upper end of the lung field region in each of the reference moving image and the reference moving image calculated from the image coordinate system of the input image (the coordinate system fixed to the imaging screen).
  • the size of the lung field region (the left and right contours of the chest in FIG. 4) is represented by the length from the bottom to the bottom, and the phase of each still image is detected from the time T of one respiratory cycle, and this phase is interpolated.
  • the data is output to the image creation unit 215.
  • the phase may be detected using either the left or right lung field, and the phase may be specified by the average value of both individual phases.
  • FIG. 5 is a diagram showing an image coordinate system.
  • the image coordinate system of the input image has the upper left corner as the origin (0, 0), and the horizontal direction (X direction) and the lower direction (Y direction) are respectively positive directions (+). To do.
  • lung field length the length from the upper end to the lower end of the lung field region
  • FIG. 6 is a graph showing the relationship between the phase ⁇ (time t normalized by the period T) and the lung field length, and how the lung field length changes as the phase (time) changes. Is shown.
  • the horizontal axis of the graph represents one respiratory cycle
  • the vertical axis of the graph represents a lung field size expressed in lung field length.
  • the double-directional arrow (solid line) shown beside the lung image shown in FIG. 6 shows the lung field length.
  • the numerical value on the horizontal axis represents the time t that has elapsed since the start of the respiratory cycle, and the real time unit is 1/30 (second). From the waveform data shown in FIG. 6, the phase at each time point can be defined. However, when the time of one breathing cycle of the standard moving image and the reference moving image is different, the time axis is first normalized and adjusted.
  • the method for determining the top of the lung field (lung top) and the bottom of the lung field (lung bottom) is "Image" feature analysis and computer-aided diagnosis: Accurate determination of ribcage boundary in chest radiographs ", Xin-Wei Xu and Kunio Doi, Medical Physics, Volume 22 (5), May 1995, pp.617-626. Etc.) can be used.
  • the contour extraction of the lung field can be performed using a method disclosed in, for example, Japanese Patent Laid-Open No. 63-240832.
  • the lung field area can be obtained by extracting the contour of the lung field and defining the number of pixels in the region surrounded by the contour as the lung field region.
  • the phase ⁇ can be easily obtained by measuring the geometric size such as the length and area of the specific image region.
  • the period T is determined from the difference between two times at which the lung field size becomes maximum, and the phase ⁇ can be determined using the period T and the time t.
  • the phase ⁇ can be determined using the period T and the time t.
  • the interpolation image creation unit 215 uses the phase of each still image included in the reference moving image as a reference phase by a technique such as warping, for example, and generates a still image corresponding to the phase from the reference moving image.
  • An interpolated still image is generated.
  • the phase of the still images constituting the standard moving image and the reference moving image are matched with each other by arranging the generated series of interpolated still images in time series to form a moving image (interpolated moving image). Specifically, it becomes possible to obtain two phase-matching moving images having the same phase.
  • the created phase matching moving image is stored in the storage unit 219 such as the fixed disk 24 or the RAM 22.
  • a moving image in which the still image density of the reference moving image alone is improved is obtained by merging the created series of interpolated still images and the original still images constituting the reference moving image in time order. It is also possible to save it.
  • the phases of all the still images of the two phase matching moving images are not matched. If the phase of an arbitrary still image included in one of the phase-matching moving images corresponding to the reference moving image is specified, the still image corresponding to that phase exists in the other phase-matching moving image, but the opposite is true. Is not necessarily true (subset relationship). Therefore, in comparison with the state before the interpolation that there is no still image having a phase matching between the two moving images (between the standard moving image and the reference moving image), the two phase-matching moving images also in this case It can be said that it has phase consistency.
  • FIG. 7 is a diagram illustrating the principle of warping that can be used in the creation of the above-described interpolated still image, taking a square deformation as an example.
  • warping an original image representing a base shape and a final image representing a final shape are prepared, and first, each point of the base shape of the original image and the final shape of the final image are associated with each other. .
  • the base shape point Astart is associated with the final shape point Aend.
  • Equation (2) is determined by using Equation (2) with ⁇ start and ⁇ end as the phases of the original image and the final image sandwiching ⁇ i, respectively, where ⁇ i is the phase of the intermediate image that is an image in the middle of deformation.
  • s is determined with ⁇ start and ⁇ end being the phases of two temporally adjacent reference images for which an interpolation image is to be created, and ⁇ i being the phase of the corresponding reference image.
  • FIG. 8 is a diagram showing a corresponding reference moving image, in which the phase shown in FIG. 6 is associated with the image in FIG.
  • the horizontal axis shows the passage of time.
  • 1 in the phase: 1 represents the time elapsed from the start of the respiratory cycle, and the unit is 1/30 (second).
  • the phase is similarly expressed.
  • FIG. 9 is a diagram showing a specific example in the case of creating the created interpolation image.
  • FIG. 9 shows an interpolated image having the phase of the image of the reference moving image [1] in FIG.
  • the horizontal axis shows the passage of time.
  • an interpolated image having a phase of 4 is created and associated with the phase of the still image of the reference moving image [1].
  • the interpolation image creation unit 215 can create an interpolation image by a technique such as morphing.
  • the interpolated moving image is obtained by arranging the series of interpolated images obtained in this way in time series.
  • the image generation apparatus can obtain two phase-matched moving images in which the phases of the still images constituting the two moving images are matched, so that the phase shift can be eliminated at different times. Only substantial differences between them can be extracted from two moving images obtained by photographing the same object (same patient) based on the temporal change of a specific part (lung field).
  • a moving image with few still images is used as a standard moving image
  • a moving image with many still images is used as a reference moving image, and is interpolated.
  • the time interval is short and the interpolation accuracy is high.
  • the above-described temporal difference image is created from the interpolated moving image and the reference moving image. That is, a difference still image is generated by taking a difference between still images having phases corresponding to each other between the generated interpolated moving image and the reference moving image.
  • FIG. 10 is a diagram illustrating a functional configuration realized by the image generation apparatus 50 according to the second embodiment.
  • a part of the functional configuration of the second embodiment is similar to that of FIG. 3 described above, and the configuration of the present embodiment is given the same reference numerals as the corresponding configuration in FIG. Only the description is omitted, and the description of the same configuration is omitted.
  • the configuration and operation until an interpolated moving image that matches the phase of a still image constituting the reference moving image is the same as in the first embodiment.
  • the temporal difference image creation unit 216 of the image generation device 50 takes the difference between the still images having the same phase with respect to the still images constituting the reference moving image and the interpolated moving image, and calculates the time series of the difference still images.
  • a temporal difference image is created as an array or a moving image.
  • the created temporal difference image is stored in the storage unit 219 such as the fixed disk 24 or the RAM 22.
  • FIG. 11 is a diagram showing a specific example of a time-difference image.
  • the horizontal axis shows the passage of time.
  • the temporal difference image creation unit 216 obtains a difference between the lung field areas of the reference image having the same phase and the interpolated moving image for each pixel, and creates a temporal difference image.
  • the reason for processing only the lung field is to clarify the effects of the disease during breathing in the lung field, and the possibility of artifacts increases when processing other than the lung field is included. is there. Another reason is that no respiratory illness appears outside the lung field area, and that processing time is wasted if image data outside the lung field is processed.
  • the interpolated moving image generated by the temporal difference image creating means and the reference moving image take a difference between still images having phases corresponding to each other.
  • An image generated by taking the difference can be reduced, and an image can be displayed. For example, a lesion part of an affected part that has progressed over time can be noticeably detected.
  • the same configuration and operation as in the first embodiment are obtained until a series of still images constituting the interpolated moving image is obtained.
  • an inter-frame temporal difference image is further created from the interpolated moving image and the reference moving image. That is, the difference between two still images temporally adjacent to each other in the reference moving image and the difference between two still images of the interpolated moving image corresponding to the phase of these two adjacent still images are taken, and the difference between them is further calculated. And an inter-frame temporal difference image is obtained.
  • FIG. 12 is a diagram illustrating a functional configuration realized by the image generation apparatus 100 according to the third embodiment.
  • a part of the functional configuration of the third embodiment is similar to that of FIG. 3 described above, and the configuration of this embodiment is given the same reference numerals as the corresponding configuration in FIG. Only the description is omitted, and the description of the same configuration is omitted.
  • the inter-frame difference image creation unit 217 calculates an inter-frame difference image obtained by taking a difference between temporally adjacent frames of the reference moving image and an inter-frame difference frame obtained by taking a difference between temporally adjacent interpolation frames of the interpolated moving image. Create a difference image.
  • the inter-frame time difference image creation unit 218 takes the difference between the above-mentioned inter-frame difference image and the inter-frame difference image lung field, and creates an inter-frame time difference image. That is, the difference between the lung image areas of the reference image and the interpolated moving image between two identical phases is obtained, and an inter-frame temporal difference image is created.
  • Each created inter-frame temporal difference image is stored in the storage unit 219 such as the fixed disk 24 or the RAM 22 as a time-series series of still images or one moving image.
  • FIG. 13 is a diagram showing a specific example of an inter-frame difference image and an inter-frame time difference image.
  • the horizontal axis shows the passage of time.
  • the inter-frame difference image is created from the difference (1) and the difference (2), and the inter-frame difference image is created from the difference (3) and the difference (4). Further, the inter-frame temporal difference image is created by calculating the difference (5) and the difference (6).
  • the difference between two still images that are temporally adjacent to each other in the reference moving image, and the two differences between the interpolated still images included in the interpolated moving image having the corresponding phase arrangement And taking the difference between them to create a time-difference image between frames, so that only two specific imaging periods (eg, lung field) that change dynamically within one respiratory cycle
  • the phase shift is eliminated and the artifact can be deleted, for example, the position where the lesion is present is detected more prominently. be able to.
  • each unit of the image generation apparatus may be realized by a computer provided in the X-ray imaging apparatus itself.
  • the phase of the still image included in the standard moving image is used as the standard phase, and the interpolated moving image that is a still image corresponding to the phase is generated from the reference moving image. To match the phase.
  • the two moving images that are the targets of the image processing and the display processing are the transmission images related to the internal structure of the human body using X-rays, but the present invention is not limited to this.
  • various moving images that is, internal images
  • MRI Magnetic Resonance Magnetic Imaging
  • PET PET
  • echo or the like
  • the lung field has been described as an example.
  • the present invention is not limited to this, and the heart region moving with a heartbeat can be targeted with a heartbeat cycle as a period, and various internal parts of a human or animal body can be used.
  • the present invention can be applied to a moving image related to a structure.
  • the present invention can also be applied to moving images related to various internal structures other than the human body obtained by using ultrasonic waves or various vibrations. That is, by applying the present invention to various structures other than medical uses, it is possible to easily diagnose and evaluate an internal structure in which the relative positional relationship between two or more portions changes.

Abstract

Provided are an image generation device, an image generation method and a program by which only a substantial difference between two moving images captured by photographing the identical object at different times can be extracted from the two moving images. The image generation device comprises a phase detection means which detects the phase of the periodical movement of an object relative to each of the two moving images obtained by photographing the identical object at the different times and an interpolated image creation means which captures two phase-matched moving images in which the phases of still images constituting the two moving images are matched to each other by interpolating at least either of the two moving images in time-series.

Description

画像生成装置、画像生成方法およびプログラムImage generating apparatus, image generating method, and program
 本発明は、部分的な差異を持つ2つの動画像から、相互の差異を正確に抽出可能な画像生成技術に関する。 The present invention relates to an image generation technique that can accurately extract a difference between two moving images having partial differences.
 近年、肺疾患を含む多くの疾病の発見に役立つため、通常の健康診断において、人体の胸部撮影を行うことは不可欠なものになっている。胸部撮影で得られた呼吸動画像を時系列に観察することによって、疾患の影響を明確にすることが可能である。 In recent years, it has become indispensable to take a chest image of a human body in a normal health checkup in order to help discover many diseases including lung diseases. By observing respiratory motion images obtained by chest imaging in time series, it is possible to clarify the influence of the disease.
 また、患部の進行した病変部を検出するために、時系列放射線画像間の差分画像を作成し、作成した差分画像を時系列放射線画像と同時に観察することにより診断支援をするものが提案されている。 In addition, in order to detect a diseased part that has progressed in an affected area, a difference image between time-series radiation images is created, and a diagnosis support is proposed by observing the created difference image simultaneously with the time-series radiation image. Yes.
 しかし、単純に過去に撮影した呼吸動画像と、現在撮影した呼吸動画像を比較する際に、位相のずれがあれば比較しにくく、両者間の経時差分をとった場合、呼吸位相が一致してしないため、画像処理をすることによって発生する画像のノイズであるアーチファクトが、経時差分情報に発生してしまう可能性がある。 However, when simply comparing the respiratory motion image captured in the past with the currently captured respiratory motion image, it is difficult to compare if there is a phase shift, and if the time difference between them is taken, the respiratory phase will match. Therefore, there is a possibility that artifacts, which are image noises generated by image processing, occur in the time difference information.
 そこで従来技術においては、経時的に隔たった複数の呼吸サイクル中に撮影された呼吸動画画像における差分を求め経時的変化を抽出する場合において、ある時点における基準画像の呼吸位相に近似する呼吸位相を有する別の時点での参照画像を決定し、両者間の差分処理を行うことによって、アーチファクトを軽減している(たとえば、特許文献1)。 Therefore, in the conventional technique, when a difference in a respiratory moving image captured during a plurality of respiratory cycles separated over time is obtained and a change over time is extracted, a respiratory phase that approximates the respiratory phase of a reference image at a certain point in time is calculated. Artifacts are reduced by determining a reference image at another point in time and performing difference processing between the two (for example, Patent Document 1).
特開2005-151099号公報JP 2005-151099 A
 しかしながら、従来技術においては、ある時点における基準画像と、当該基準画像の呼吸位相に近似する呼吸位相を有する別の時点での参照画像とで比較を行っており、両者の画像において呼吸位相が一致しているとは限らないため、差分画像にアーチファクトが現れてしまう可能性がある。 However, in the prior art, a comparison is made between a reference image at a certain time point and a reference image at another time point having a respiration phase that approximates the respiration phase of the reference image. Since it is not always done, an artifact may appear in the difference image.
 本発明は、上記課題に鑑みてなされたものであり、異なる時期に同一の対象物を撮影して得られた2つの動画像から、それらの間の実質的な差異のみを抽出可能な画像生成技術を提供することである。 The present invention has been made in view of the above problems, and can generate an image that can extract only a substantial difference between two moving images obtained by photographing the same object at different times. Is to provide technology.
 上記の課題を解決するために、第1の態様に係る画像生成装置は、異なる時期に同一の対象物を撮影して得られ、それぞれが静止画像の時系列的な組によって構成される2つの動画像のそれぞれについて、前記対象物の周期的な動きの位相を検出する位相検出手段と、前記2つの動画像のうち少なくとも一方を時系列的に補間することによって、それぞれを構成する静止画像の位相を互いに整合させた2つの位相整合動画像を得る補間画像作成手段とを有する。 In order to solve the above-described problem, the image generation apparatus according to the first aspect is obtained by photographing the same object at different times, each of which includes two time-series sets of still images. For each moving image, phase detection means for detecting the phase of the periodic movement of the object, and at least one of the two moving images is interpolated in time series, so that the still images constituting each of the moving images Interpolated image creating means for obtaining two phase-matched moving images whose phases are matched with each other.
 また、第2の態様に係る画像生成装置は、第1の態様に係る画像生成装置であって、前記2つの動画像は、人間または動物の身体の特定部位を含んだ範囲を前記対象物として撮影したものであり、前記位相は、前記特定部位に相当する特定画像領域の時間的変動状態から決定される。 The image generation device according to the second aspect is the image generation device according to the first aspect, wherein the two moving images have a range including a specific part of a human or animal body as the object. The phase is determined from the temporal variation state of the specific image region corresponding to the specific part.
 また、第3の態様に係る画像生成装置は、第2の態様に係る画像生成装置であって、前記位相は、前記特定画像領域の幾何学的サイズの時間的変動状態から求められる。 Further, the image generation device according to the third aspect is the image generation device according to the second aspect, and the phase is obtained from a temporal variation state of a geometric size of the specific image region.
 また、第4の態様に係る画像生成装置は、第2または第3の態様に係る画像生成装置であって、前記特定画像領域は、呼吸サイクルを周期として、呼吸によって動く肺野領域、または、心拍サイクルを周期として、心拍によって動く心臓領域、である。 The image generation device according to the fourth aspect is the image generation device according to the second or third aspect, wherein the specific image region is a lung field region that moves by breathing with a respiratory cycle as a cycle, or A heart region that is moved by a heartbeat with a heartbeat cycle as a period.
 また、第5の態様に係る画像生成装置は、第1から第4のいずれか1つの態様に係る画像生成装置であって、前記補間画像作成手段は、前記2つの動画像を構成するそれぞれの静止画像の枚数が異なるときに、静止画像の数が少ない方の動画像を基準動画像とし、静止画像の数が多い方の動画像を参照動画像とした場合において、前記基準動画像に含まれるそれぞれの静止画像の位相を基準位相として、前記参照動画像に含まれる静止画像の補間によって前記基準位相のそれぞれに対応する補間静止画像を生成することにより、前記位相整合動画像のひとつとしての補間動画像を生成する。 The image generation device according to the fifth aspect is the image generation device according to any one of the first to fourth aspects, and the interpolation image creation means includes each of the two moving images. When the number of still images is different, the moving image with the smaller number of still images is used as the reference moving image, and the moving image with the larger number of still images is used as the reference moving image. By generating an interpolated still image corresponding to each of the reference phases by interpolation of a still image included in the reference moving image using the phase of each of the still images as a reference phase, Generate an interpolated video.
 また、第6の態様に係る画像生成装置は、第5の態様に係る画像生成装置であって、生成された前記補間動画像と前記基準動画像とで、互いに対応する位相を持つ静止画像どうしの差分をとることによって、差分静止画像の時系列的な組を生成する経時差分画像作成手段をさらに有する。 The image generation device according to the sixth aspect is the image generation device according to the fifth aspect, in which the generated interpolated moving image and the reference moving image have still corresponding phases. Further, a temporal difference image creating means for generating a time-series set of difference still images by taking the difference is provided.
 また、第7の態様に係る画像生成装置は、第5の態様に係る画像生成装置であって、前記基準動画像において時間的に隣接する2つずつの静止画像の差分をとることによって第1差分静止画像の時系列的な組を生成する手段と、前記補間動画像に含まれる補間静止画像の2つずつの差分をとることによって、前記第1差分静止画像の組に対応した位相配列を有する第2差分静止画像の時系列的な組を生成する手段と、互いの位相を対応させつつ前記第1と第2の差分静止画像の組相互についての静止画像ごとの差分をとることによって、第3差分静止画像の時系列的な組を生成し、それによって差分動画像を得るフレーム間経時差分画像作成手段とをさらに有する。 An image generation device according to a seventh aspect is the image generation device according to the fifth aspect, wherein the first moving image is obtained by taking a difference between two still images that are temporally adjacent to each other in the reference moving image. A phase array corresponding to the set of the first differential still images is obtained by taking a difference between the interpolation still images included in the interpolation moving image and a means for generating a time-series set of differential still images. Means for generating a time-series set of second differential still images, and taking a difference for each still image for the set of the first and second differential still images while corresponding to each other's phase, There is further provided inter-frame temporal difference image creation means for generating a time-series set of third difference still images and thereby obtaining a difference moving image.
 また、第8の態様に係るプログラムは、コンピュータによって実行されることにより、前記コンピュータを、第1ないし第7のいずれかの態様に係る画像生成装置として機能させるプログラムである。 The program according to the eighth aspect is a program that, when executed by a computer, causes the computer to function as the image generation apparatus according to any one of the first to seventh aspects.
 また、第9の態様に係る画像生成方法は、画像生成方法であって、異なる時期に同一の対象物を撮影して得られ、それぞれが静止画像の時系列的な組によって構成される2つの動画像のそれぞれについて、前記2つの動画像のそれぞれについて、前記対象物の周期的な動きの位相を検出する位相検出工程と、前記2つの動画像のうち少なくとも一方を時系列的に補間することによって、それぞれを構成する静止画像の位相を互いに整合させた2つの位相整合動画像を得る補間画像作成工程とを有する。 The image generation method according to the ninth aspect is an image generation method, which is obtained by photographing the same object at different times, each of which is constituted by a time-series set of still images. For each of the moving images, for each of the two moving images, a phase detection step for detecting the phase of the periodic movement of the object, and at least one of the two moving images is interpolated in time series The interpolated image creation step of obtaining two phase-matched moving images in which the phases of the still images constituting each of them are matched with each other.
 第1の態様に係る画像生成装置によれば、画像生成装置は、2つの動画像のうち少なくとも一方を時系列的に補間することによって、それぞれを構成する静止画像の位相を互いに整合させた2つの位相整合動画像を得ることができるので、位相のずれを排除でき、異なる時期に同一の対象物を撮影して得られた2つの動画像から、経時的な変化に基づくそれらの間の実質的な差異のみを抽出可能となる。 According to the image generation device according to the first aspect, the image generation device interpolates at least one of the two moving images in a time series, thereby matching the phases of the still images constituting each of the two. Since two phase-matching moving images can be obtained, phase shifts can be eliminated, and two moving images obtained by photographing the same object at different times can be substantively between them based on changes over time. It is possible to extract only the differences.
 第2の態様に係る画像生成装置によれば、2つの動画像の位相は、人間または動物の身体の特定部位に相当する特定画像領域の時間的変動状態から決定されるので、人間または動物の身体の特定部位の経時的な変化に基づく実質的な差異のみを抽出可能となる。 According to the image generation device according to the second aspect, the phases of the two moving images are determined from the temporal variation state of the specific image region corresponding to the specific part of the human or animal body. Only substantial differences based on changes over time in specific parts of the body can be extracted.
 第3の態様に係る画像生成装置によれば、位相は、特定画像領域の幾何学的サイズの時間的変動状態から求められるので、特定画像領域の幾何学的サイズを測定することによって、位相を容易に求めることができる。 According to the image generating apparatus according to the third aspect, the phase is obtained from the temporal variation state of the geometric size of the specific image area. Therefore, the phase is determined by measuring the geometric size of the specific image area. It can be easily obtained.
 第4の態様に係る画像生成装置によれば、特定画像領域は、呼吸サイクルを周期として、呼吸によって動く肺野領域、または、心拍サイクルを周期として、心拍によって動く心臓領域であるので、肺野領域または心臓領域の経時的な変化に基づく実質的な差異のみを抽出可能となる。 According to the image generating apparatus according to the fourth aspect, the specific image region is a lung field region that moves by breathing with a breathing cycle as a cycle or a heart region that moves by heartbeat with a heartbeat cycle as a cycle. Only substantial differences based on changes over time in the region or heart region can be extracted.
 第5の態様に係る画像生成装置によれば、補間画像作成手段は、2つの動画像を構成するそれぞれの静止画像の枚数が異なるときには、静止画像の数が少ない方の基準動画像に含まれるそれぞれの静止画像の位相を基準位相として、静止画像の数が多く、撮影時間間隔の短い参照動画像に含まれる静止画像の補間によって前記基準位相のそれぞれに対応する補間静止画像を生成するので、逆の場合と比較して補間誤差がより少ない正確な補間動画像を作成することができる。 According to the image generating apparatus of the fifth aspect, the interpolation image creating means is included in the reference moving image with the smaller number of still images when the number of still images constituting the two moving images is different. Since the phase of each still image is used as a reference phase, the number of still images is large, and an interpolation still image corresponding to each of the reference phases is generated by interpolation of still images included in a reference moving image with a short shooting time interval. Compared to the reverse case, an accurate interpolated moving image with fewer interpolation errors can be created.
 第6の態様に係る画像生成装置によれば、経時差分画像作成手段が生成された補間動画像と基準動画像とで、互いに対応する位相を持つ静止画像どうしの差分をとるので、位相が一致しない静止画像どうしの差分をとることによって発生するアーチファクトを軽減して画像を表示することができ、経時的に変化する部分(例えば進行した患部の病変部)を顕著化して検出することができる。 According to the image generating apparatus of the sixth aspect, the interphase moving image generated by the temporal difference image generating means and the reference moving image take a difference between still images having phases corresponding to each other, so that the phases match. Artifacts generated by taking the difference between still images that have not been taken can be reduced, and an image can be displayed, and a portion that changes over time (for example, a diseased portion of a diseased portion that has progressed) can be prominently detected.
 第7の態様に係る画像生成装置によれば、基準動画像における時間的に隣接する2つの静止画像の差分と、それに対応する位相配列を有する補間動画像に含まれる補間静止画像の2つの差分とをとり、さらにそれらの差分をとることによって、フレーム間経時差分画像を作成するので、基準動画像内において時間的に変動する部分と、参照動画像内において時間的に変動する部分との比較を行うにあたって、位相のずれに起因するアーチファクトを軽減可能である。 According to the image generation device according to the seventh aspect, the difference between two still images that are temporally adjacent in the reference moving image and the two differences between the interpolated still images included in the interpolated moving image having the corresponding phase arrangement And then taking the difference between them to create an inter-frame temporal difference image, so compare the time-varying portion in the reference video with the time-varying portion in the reference video When performing, the artifacts caused by the phase shift can be reduced.
 第8の態様に係るプログラムによれば、第1の態様から第7の態様に係る画像生成装置と同じ効果を得ることができる。 According to the program according to the eighth aspect, it is possible to obtain the same effect as that of the image generation apparatus according to the first to seventh aspects.
 第9の態様に係るに係る画像生成方法によれば、第1の態様に係る画像生成装置と同じ効果を得ることができる。 According to the image generation method according to the ninth aspect, the same effect as that of the image generation apparatus according to the first aspect can be obtained.
画像生成装置1に適用した各実施形態に共通の構成を示すブロック図である。1 is a block diagram showing a configuration common to each embodiment applied to an image generation device 1. FIG. 呼吸サイクルと肺野サイズとの関係を示すグラフである。It is a graph which shows the relationship between a respiratory cycle and lung field size. 第1実施形態である画像生成装置1で実現される機能構成を示す図である。It is a figure which shows the function structure implement | achieved by the image generation apparatus 1 which is 1st Embodiment. 参照動画像と基準動画像とのそれぞれを構成する時系列的な静止画の例を示す図である。It is a figure which shows the example of the time series still image which comprises each of a reference moving image and a reference | standard moving image. 画像座標系を示す図である。It is a figure which shows an image coordinate system. 位相θと肺野長さとの関係を示すグラフである。It is a graph which shows the relationship between phase (theta) and lung field length. 補間静止画像の作成において利用可能なワーピングの原理を示す図である。It is a figure which shows the principle of the warping which can be utilized in preparation of an interpolation still image. 対応する参照動画像を示した図である。It is the figure which showed the corresponding reference moving image. 作成された補間画像を作成する場合の具体例を示す図である。It is a figure which shows the specific example in the case of producing the produced interpolation image. 第2実施形態である画像生成装置50で実現される機能構成を示す図である。It is a figure which shows the function structure implement | achieved by the image generation apparatus 50 which is 2nd Embodiment. 経時差分画像の具体例を示す図である。It is a figure which shows the specific example of a time difference image. 第3実施形態である画像生成装置100で実現される機能構成を示す図である。It is a figure which shows the function structure implement | achieved by the image generation apparatus 100 which is 3rd Embodiment. フレーム間差分画像とフレーム間経時差分画像の具体例を示す図である。It is a figure which shows the specific example of an inter-frame difference image and an inter-frame time difference image.
 以下、本発明の実施形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 <画像取得システムの全体構成>
 図1は、この発明を医療用画像撮影装置と協働して患者の特定部位(例えば肺)の診断画像を生成可能な画像生成装置1に適用した各実施形態に共通の構成を示すブロック図である。
<Overall configuration of image acquisition system>
FIG. 1 is a block diagram showing a configuration common to each embodiment in which the present invention is applied to an image generation apparatus 1 capable of generating a diagnostic image of a specific part (for example, a lung) of a patient in cooperation with a medical imaging apparatus. It is.
 図1に示すように、画像生成装置1は、CPU21、RAM22、及びROM23をバスライン10に接続した一般的なコンピュータの構成となっている。またバスライン10には、画像などを表示する表示部3、ユーザからの入力を受け付けるキーボードとマウスとを含む操作部4、データを入力する入力部5、各種データを保存する固定ディスク24が接続されている。 As shown in FIG. 1, the image generating apparatus 1 has a general computer configuration in which a CPU 21, a RAM 22, and a ROM 23 are connected to a bus line 10. Connected to the bus line 10 are a display unit 3 for displaying images and the like, an operation unit 4 including a keyboard and a mouse for receiving input from a user, an input unit 5 for inputting data, and a fixed disk 24 for storing various data. Has been.
 CPU21は、固定ディスク24からRAM22へと転送されたプログラムPGに基づいて動作し、画像生成装置1全体の動作を決定し、画像生成装置1全体に指令を与え、さらに後述する表示部3に表示の指示を出す。CPU21は、後述する各機能の実現手段として補間画像や経時差分画像などを作成する。 The CPU 21 operates based on the program PG transferred from the fixed disk 24 to the RAM 22, determines the operation of the entire image generation apparatus 1, gives a command to the entire image generation apparatus 1, and further displays on the display unit 3 described later. Give instructions. The CPU 21 creates an interpolation image, a temporal difference image, and the like as means for realizing each function described later.
 表示部3は、例えば液晶表示ディスプレイ等によって構成され、CPU21で生成される動画像データなどを可視的に出力する。 The display unit 3 is composed of a liquid crystal display, for example, and visually outputs moving image data generated by the CPU 21.
 操作部4は、キーボード、タッチパネルまたはマウス等から構成され、ユーザの各種操作にしたがって各種指令信号をCPU21に送信する。 The operation unit 4 includes a keyboard, a touch panel, a mouse, and the like, and transmits various command signals to the CPU 21 in accordance with various user operations.
 入力部5は、画像データを入力する。入力部5は、医療用画像撮影装置を接続することによって、画像データをオンライン受信してもよく、さらに、DVD等の可搬型の記憶媒体からのデータの読み取りや、スキャナによる読み取りによっても入力が可能である。あるいは、ネットワークで接続されたファイルサーバなどに撮影の対象である人物(撮影対象者)を撮影した画像を記憶しておき、記憶されている複数の画像データの中から該当する撮影対象者の画像データを検索して読み込むようにしてもよい。入力された画像データは、固定ディスク24またはRAM22などの記憶装置に記憶される。 The input unit 5 inputs image data. The input unit 5 may receive image data on-line by connecting a medical image photographing device, and further input data by reading data from a portable storage medium such as a DVD or reading by a scanner. Is possible. Alternatively, an image obtained by photographing a person who is a subject of photographing (photographing subject) is stored in a file server or the like connected via a network, and the image of the subject subject of photographing is selected from a plurality of stored image data. Data may be retrieved and read. The input image data is stored in a storage device such as the fixed disk 24 or the RAM 22.
 医療用画像撮影装置は、例えば、X線撮影装置等によって構成され、撮影対象者の内蔵等に含まれる所定部位を撮影する。X線撮影装置は、撮影対象者にX線発生源から曝射して撮影を行う。曝射されたX線は、撮影対象者の胸部を透過して、強度分布が検出され、検出したX線をアナログ電気信号に変換し、更にA/D変換によってアナログ電気信号はデジタル信号に変換されて、複数の静止画の時系列からなる動画像としてX線撮影装置の記憶装置上に記憶される。該記憶装置に記憶された画像は必要に応じて入力部5に転送される。 The medical imaging apparatus is constituted by, for example, an X-ray imaging apparatus or the like, and images a predetermined part included in the imaging subject person's internal body. The X-ray imaging apparatus performs imaging by exposing a subject to be imaged from an X-ray generation source. The exposed X-rays pass through the chest of the subject, the intensity distribution is detected, the detected X-rays are converted into analog electrical signals, and the analog electrical signals are converted into digital signals by A / D conversion. Then, it is stored on the storage device of the X-ray imaging apparatus as a moving image consisting of a plurality of still images in time series. The image stored in the storage device is transferred to the input unit 5 as necessary.
 下記の第1から第3の実施形態では、放射線画像としてX線画像を用いる。 In the following first to third embodiments, an X-ray image is used as a radiation image.
 <第1実施形態> 
 第1実施形態では、同じ患者について、異なる時期にそれぞれ1呼吸サイクル以上の肺野領域を撮影して得られたX線動画像(例えば、1ケ月前の検査で撮影した動画像と、直近の検査で撮影した動画像)を画像生成装置1に入力する。画像生成装置1は入力された2つの動画像と、それから導出される呼吸の位相情報とを基に、少なくとも一方についての補間動画像を作成する。
<First Embodiment>
In the first embodiment, for the same patient, X-ray moving images obtained by imaging lung field regions of one respiratory cycle or more at different times (for example, moving images taken in the previous month and the latest images) A moving image photographed in the inspection) is input to the image generating apparatus 1. The image generation apparatus 1 creates an interpolated moving image for at least one of the two moving images that have been input and the respiratory phase information derived therefrom.
 図2は、呼吸サイクルと肺野サイズとの関係を示すグラフである。肺野のサイズは厳密には肺野の「体積」に対応するが、2次元のX線撮影においては撮影された肺野の「(投影)面積」によって表現される。グラフの横軸は、呼吸サイクルを表し、グラフの縦軸は、肺野サイズを表し、複数の呼吸サイクルで肺野のサイズがどのように変化するかを示す。 FIG. 2 is a graph showing the relationship between the respiratory cycle and lung size. Strictly speaking, the size of the lung field corresponds to the “volume” of the lung field, but in two-dimensional X-ray imaging, it is expressed by the “(projection) area” of the photographed lung field. The horizontal axis of the graph represents the respiratory cycle, the vertical axis of the graph represents the lung field size, and shows how the lung field size changes in a plurality of respiratory cycles.
 ここで、呼吸サイクル(周期)とは1回の呼気モードと吸気モードが含まれる呼吸運動であり、吸気モードとは息を吸い込んでゆくモードであり、それに連れて胸郭中での肺野の領域が大きくなり横隔膜が押し下げられる。呼気モードとは息を吐き出すモードであり、それにつれて肺野の領域が小さくなり横隔膜が上がってくる。位相とは、呼気と吸気による周期運動における、1サイクル中の相対位置を表すものである。 Here, the breathing cycle (cycle) is a breathing exercise that includes a single exhalation mode and an inhalation mode, and the inspiratory mode is a mode that inhales the breath, and the lung region in the thorax accordingly Becomes larger and the diaphragm is pushed down. The exhalation mode is a mode for exhaling, and as the lung area increases, the diaphragm increases. The phase represents a relative position in one cycle in a periodic motion by exhalation and inspiration.
 一般式で表現すれば、1呼吸サイクルの時間(周期)をT、経過時間をtとしたとき、周期Tの周期関数Fに対して、位相θは、
 θ=F(t:T)       ...式(A)
と表現できる。
In terms of a general expression, when the time (period) of one respiratory cycle is T and the elapsed time is t, the phase θ is
θ = F (t: T) Formula (A)
Can be expressed as
 1例として、位相θは、時間tの(周期化された)線形関数として、
 θ=t/T-int(t/T)   ...式(B)
と表現できる。ただし記号intは、引数の整数部を示す。
As an example, the phase θ is a (periodic) linear function of time t:
θ = t / T−int (t / T) (formula (B))
Can be expressed as The symbol int indicates the integer part of the argument.
 また、各サイクルの終点で時刻tを0にリセットするように定義すれば
 θ=t            ...式(C)
で定めることもできる。
Further, if it is defined that the time t is reset to 0 at the end of each cycle, θ = t ... Formula (C)
It can also be determined by
 式(B)の場合の位相θは0~1の範囲の値を持ち、式(C)の場合の位相θは0~Tの範囲の値を持つ。 The phase θ in the case of the formula (B) has a value in the range of 0 to 1, and the phase θ in the case of the formula (C) has a value in the range of 0 to T.
 さらに、肺野サイズをパラメータPで表現し、その最大値をP0と表現したとき、周期Tを持つ周期関数Gを用いて
 θ=G(P/P0)     ...式(D)
によって位相θを定めることもできる。周期関数Gは例えば周期Tを持つ逆正弦関数(arcsine)である。これは呼吸サイクルによってパラメータPが周期的に変化することを利用した定義であるが、パラメータPは時間tの周期関数(周期T)であるから、
 P=P(t:T)      ...式(E)
と書くことが可能であり、この場合も時間tの関数を位相θの代理指標とすることができる。
Furthermore, when the lung field size is expressed by the parameter P and the maximum value is expressed by P0, θ = G (P / P0) using the periodic function G having the period T. Equation (D)
Can also determine the phase θ. The periodic function G is, for example, an arc sine function having a period T. This is a definition using the fact that the parameter P periodically changes depending on the respiratory cycle, but the parameter P is a periodic function (period T) of time t.
P = P (t: T) ... Formula (E)
In this case as well, a function of time t can be used as a surrogate index of the phase θ.
 比較すべき2つの動画像のそれぞれの動きの周期T=T1、T2が同一のときには、規格化因子Tを省略して時間tをそのまま位相θの代理指標とすることができる。後述する例において位相θを時間tの単位で表現しているのは、周期T1、T2が同一となっている場合を想定している。周期T1、T2が異なるときには、それぞれの周期T1、T2でそれぞれ規格化した時間変数t1、t2:
 t1=t/T1、
 t2=t/T2、
を2つの動画像のそれぞれの位相θ1、θ2の代理指標とすれば、「位相が同一」とは、第1の動画像中の位相指標t1と、第2の動画像中の位相指標t2とが同一の値を持つことを意味することになる。このように、2つの動画像の1呼吸サイクルの時間が異なる場合は、時間軸の正規化を行い調整する。
When the motion periods T = T1 and T2 of the two moving images to be compared are the same, the normalization factor T can be omitted and the time t can be used as a proxy index for the phase θ. In the example described later, the phase θ is expressed in units of time t on the assumption that the periods T1 and T2 are the same. When the periods T1 and T2 are different, time variables t1 and t2 normalized by the periods T1 and T2, respectively:
t1 = t / T1,
t2 = t / T2,
Is a proxy index for the phases θ1 and θ2 of the two moving images, “the same phase” means that the phase index t1 in the first moving image and the phase index t2 in the second moving image are Will have the same value. Thus, when the time of one respiratory cycle of two moving images is different, the time axis is normalized and adjusted.
 また、周期は、例えば、各肺野サイズの極大値を求め、極大値から極大値の時間間隔を1周期とする。 Also, for the period, for example, the maximum value of each lung field size is obtained, and the time interval from the maximum value to the maximum value is defined as one period.
 図3は、第1実施形態である画像生成装置1で実現される機能構成を示す図である。 FIG. 3 is a diagram illustrating a functional configuration realized by the image generation apparatus 1 according to the first embodiment.
 画像取得部211は、基準動画像取得部212及び参照動画像取得部213を有しており、入力部5から入力され、固定ディスク24またはRAM22などの記憶部219に記憶された動画像を取得する。 The image acquisition unit 211 includes a standard moving image acquisition unit 212 and a reference moving image acquisition unit 213, and acquires a moving image input from the input unit 5 and stored in the storage unit 219 such as the fixed disk 24 or the RAM 22. To do.
 基準動画像取得部212は、基準動画像を取得した後、位相検出部214に出力する。また、参照動画像取得部213は、参照動画像を取得した後、位相検出部214と補間画像作成部215に出力する。 The reference moving image acquisition unit 212 acquires the reference moving image, and then outputs the reference moving image to the phase detection unit 214. Further, the reference moving image acquisition unit 213 acquires the reference moving image, and then outputs the reference moving image to the phase detection unit 214 and the interpolation image generation unit 215.
 ここで、基準動画像および参照動画像とは、異なる2つの時点(例えば、1ケ月前の検査で撮影した動画像と、直近の検査で撮影した動画像)で、1呼吸サイクルの肺野領域が撮影されたX線画像のうち、1呼吸サイクルに撮影された画像枚数が少ない方を基準動画像とし、1呼吸サイクルに撮影された画像枚数が多い方を参照動画像とする。画像枚数が多い参照動画像を補間の対象とすることによって補間誤差が少なくなり、正確な補間動画像を作成することができる。ただし、異なる2つの時点で撮影された画像枚数が同じであった場合は、どちらの時点の動画像を基準動画像と定義してもよい。基準動画像が基準動画像取得部212に、参照動画像が参照動画像取得部213に、それぞれ入力される。 Here, the standard moving image and the reference moving image are different from the reference moving image at two different time points (for example, a moving image taken in the examination one month ago and a moving picture taken in the most recent examination). Of the X-ray images taken in, the one with the smaller number of images taken in one breathing cycle is the reference moving image, and the one with the larger number of images taken in one breathing cycle is taken as the reference moving image. By interpolating a reference moving image having a large number of images as an object of interpolation, an interpolation error is reduced, and an accurate interpolating moving image can be created. However, if the number of images taken at two different time points is the same, the moving image at either time point may be defined as the reference moving image. The reference moving image is input to the reference moving image acquisition unit 212, and the reference moving image is input to the reference moving image acquisition unit 213.
 図4は、参照動画像と基準動画像とのそれぞれを構成する時系列的な静止画の例を示す図である。横軸は、時間の経過を示したものであり、既述したように経過時間t(横軸)を周期Tで除した値が位相の指標となる。 FIG. 4 is a diagram illustrating an example of a time-series still image constituting each of the reference moving image and the standard moving image. The horizontal axis indicates the passage of time, and the value obtained by dividing the elapsed time t (horizontal axis) by the period T as described above is an index of the phase.
 図3を参照して、位相検出部214は、入力された画像の画像座標系(撮影画面に固定された座標系)から算出された基準動画像と参照動画像のそれぞれにおける肺野領域の上端から下端までの長さによって肺野領域(図4の胸部の左右の輪郭部分)の面積の大小を表現するとともに、1呼吸サイクルの時間Tから各静止画像の位相を検出し、この位相を補間画像作成部215に出力する。左右の肺野のいずれを用いて位相を検出してもよく、双方の個別位相の平均値によって位相を特定してもよい。 Referring to FIG. 3, the phase detection unit 214 detects the upper end of the lung field region in each of the reference moving image and the reference moving image calculated from the image coordinate system of the input image (the coordinate system fixed to the imaging screen). The size of the lung field region (the left and right contours of the chest in FIG. 4) is represented by the length from the bottom to the bottom, and the phase of each still image is detected from the time T of one respiratory cycle, and this phase is interpolated. The data is output to the image creation unit 215. The phase may be detected using either the left or right lung field, and the phase may be specified by the average value of both individual phases.
 図5は、画像座標系を示す図である。図5では、入力された画像の画像座標系は、左上の角を原点(0、0)とし、横方向(X方向)と下方向(Y方向)とをそれぞれの正の方向(+)とする。 FIG. 5 is a diagram showing an image coordinate system. In FIG. 5, the image coordinate system of the input image has the upper left corner as the origin (0, 0), and the horizontal direction (X direction) and the lower direction (Y direction) are respectively positive directions (+). To do.
 本実施形態では、上記のように基準動画像と参照動画像の1呼吸サイクルの時間と肺野領域の上端から下端までの長さ(以下「肺野長」)の変化を基にして、基準動画像および参照動画像の位相を決定する。 In the present embodiment, as described above, based on the change in the time of one respiratory cycle of the reference moving image and the reference moving image and the length from the upper end to the lower end of the lung field region (hereinafter referred to as “lung field length”), The phase of the moving image and the reference moving image is determined.
 図6は、位相θ(周期Tで規格化された時間t)と肺野長さとの関係を示すグラフであり、位相(時間)の変化に伴い、肺野長さがどのように変化するかを示している。グラフの横軸は、1呼吸サイクルを表し、グラフの縦軸は、肺野長で表現された肺野サイズを表す。また、図6に記載の肺画像の横に示した両方向矢印(実線)は、肺野長さを示す。ここで、横軸における数値は、呼吸サイクル開始から経過した時間tを表し、実時間単位は1/30(秒)である。図6に示される波形データから、それぞれの時点での位相を定義することができる。ただし、基準動画像と参照動画像の1呼吸サイクルの時間が異なる場合は、時間軸の正規化を最初に行い調整する。 FIG. 6 is a graph showing the relationship between the phase θ (time t normalized by the period T) and the lung field length, and how the lung field length changes as the phase (time) changes. Is shown. The horizontal axis of the graph represents one respiratory cycle, and the vertical axis of the graph represents a lung field size expressed in lung field length. Moreover, the double-directional arrow (solid line) shown beside the lung image shown in FIG. 6 shows the lung field length. Here, the numerical value on the horizontal axis represents the time t that has elapsed since the start of the respiratory cycle, and the real time unit is 1/30 (second). From the waveform data shown in FIG. 6, the phase at each time point can be defined. However, when the time of one breathing cycle of the standard moving image and the reference moving image is different, the time axis is first normalized and adjusted.
 肺野領域の上端(lung top)と、肺野領域の下端(lung bottom)の決定方法は、"Image feature analysis and computer-aided diagnosis :Accurate determination of ribcage boundary in chest radiographs",Xin-Wei Xu and Kunio Doi ,Medical Physics, Volume 22(5), May 1995, pp.617-626.等参照)に記されている手法等を採用することができる。 The method for determining the top of the lung field (lung top) and the bottom of the lung field (lung bottom) is "Image" feature analysis and computer-aided diagnosis: Accurate determination of ribcage boundary in chest radiographs ", Xin-Wei Xu and Kunio Doi, Medical Physics, Volume 22 (5), May 1995, pp.617-626. Etc.) can be used.
 また、肺野領域の上端と下端とを決定するために肺野部の輪郭抽出を行い、例えば、求められた輪郭のY座標値の最小値を上端、最大値を下端とすることも可能である。 In addition, it is possible to extract the contour of the lung field in order to determine the upper end and lower end of the lung field region, for example, to set the minimum value of the Y coordinate value of the obtained contour as the upper end and the maximum value as the lower end. is there.
 肺野部の輪郭抽出は、例えば特開昭63-240832号公報に開示される方法を用いて行うことができる。 The contour extraction of the lung field can be performed using a method disclosed in, for example, Japanese Patent Laid-Open No. 63-240832.
 また、肺野領域の面積を基に基準動画像の位相を検出することも可能である。肺野部の面積の求め方は、肺野部の輪郭抽出を行い、輪郭に囲まれた領域の画素数を肺野領域として定義することが可能である。このように、特定画像領域の長さ、面積などの幾何学的サイズを測定することによって、位相θを容易に求めることができる。 Also, it is possible to detect the phase of the reference moving image based on the area of the lung field region. The lung field area can be obtained by extracting the contour of the lung field and defining the number of pixels in the region surrounded by the contour as the lung field region. In this way, the phase θ can be easily obtained by measuring the geometric size such as the length and area of the specific image region.
 すなわち、それぞれで肺野サイズが最大になる2つの時刻の差から周期Tが定まり、この周期Tと時間tを用いて位相θを定めることが可能である。位相の定義方法は既述したように種々あるが、いずれにしても1呼吸サイクルT内においては肺野サイズの波形は位相θに対して1価関数となり、位相θの値を指定すれば1つの状態が一義的に特定される。 That is, the period T is determined from the difference between two times at which the lung field size becomes maximum, and the phase θ can be determined using the period T and the time t. As described above, there are various methods for defining the phase. In any case, within one respiratory cycle T, the waveform of the lung field size is a monovalent function with respect to the phase θ. One state is uniquely identified.
 図3を参照して、補間画像作成部215は、例えばワーピングなどの手法によって、基準動画像に含まれるそれぞれの静止画像の位相を基準位相として、参照動画像からそれらの位相に対応する静止画像である補間静止画像を生成する。生成された一連の補間静止画像を間に時系列的に配列して動画像(補間動画像)とすることによって、基準動画像および参照動画像を構成する静止画像の位相を互いに整合させた、具体的には位相を一致させた2つの位相整合動画像を得ることが可能になる。作成された位相整合動画像は固定ディスク24またはRAM22などの記憶部219に記憶される。 With reference to FIG. 3, the interpolation image creation unit 215 uses the phase of each still image included in the reference moving image as a reference phase by a technique such as warping, for example, and generates a still image corresponding to the phase from the reference moving image. An interpolated still image is generated. The phase of the still images constituting the standard moving image and the reference moving image are matched with each other by arranging the generated series of interpolated still images in time series to form a moving image (interpolated moving image). Specifically, it becomes possible to obtain two phase-matching moving images having the same phase. The created phase matching moving image is stored in the storage unit 219 such as the fixed disk 24 or the RAM 22.
 なお、作成された一連の補間静止画像と、参照動画像を構成する元のそれぞれの静止画像とを時間順序でマージすることによって、参照動画像単独の静止画密度を向上させた動画像を得て、それを保存することも可能である。この場合は、2つの位相整合動画像(基準動画像およびマージされた参照動画像)の静止画像のすべてについて位相が整合しているわけではない。位相整合動画像のうち、基準動画像に相当する一方に含まれる任意の静止画像の位相を指定すれば、その位相に相当する静止画像は他方の位相整合動画像には存在するが、その逆は必ずしも成り立たないという関係(部分集合の関係)になっている。したがって、補間前の状態は2つの動画像間(基準動画像および参照動画像間)で位相が整合する静止画像が存在していなかったことと比較すれば、この場合も2つの位相整合動画像での位相の整合性を持っていると言える。 Note that a moving image in which the still image density of the reference moving image alone is improved is obtained by merging the created series of interpolated still images and the original still images constituting the reference moving image in time order. It is also possible to save it. In this case, the phases of all the still images of the two phase matching moving images (the reference moving image and the merged reference moving image) are not matched. If the phase of an arbitrary still image included in one of the phase-matching moving images corresponding to the reference moving image is specified, the still image corresponding to that phase exists in the other phase-matching moving image, but the opposite is true. Is not necessarily true (subset relationship). Therefore, in comparison with the state before the interpolation that there is no still image having a phase matching between the two moving images (between the standard moving image and the reference moving image), the two phase-matching moving images also in this case It can be said that it has phase consistency.
 図7は、上述した補間静止画像の作成において利用可能なワーピングの原理を、正方形の変形を例にして示す図である。ワーピングは、基となる形状を表す原画像と最終的な形状を表す最終画像を用意し、最初に、原画像の基の形状と最終画像の最終的形状との各々の点について対応付けを行う。例えば、基の形状の点Astartと、最終的な形状の点Aendを対応付ける。対応付けた各々の点AstartとAendの特徴点(座標値)を(Axstart,Aystart)と(Axend,Ayend)とするとき、変形途中の画像である中間画像の各頂点Aiに対応する特徴点(Axi,Ayi)の変形の割合をsとする。これは式(1)によって表すことができる。 FIG. 7 is a diagram illustrating the principle of warping that can be used in the creation of the above-described interpolated still image, taking a square deformation as an example. In warping, an original image representing a base shape and a final image representing a final shape are prepared, and first, each point of the base shape of the original image and the final shape of the final image are associated with each other. . For example, the base shape point Astart is associated with the final shape point Aend. When the feature points (coordinate values) of the associated points Astart and Aend are (Axstart, Aystart) and (Axend, Ayend), the feature points corresponding to the vertices Ai of the intermediate image that is the image being deformed ( Let s be the deformation ratio of Axi, Ayi). This can be represented by equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 sは、変形途中の画像である中間画像の位相をθiとした場合、θiを挟む原画像と最終画像の位相をそれぞれθstart,θendとして式(2)を用いて決定する。 S is determined by using Equation (2) with θstart and θend as the phases of the original image and the final image sandwiching θi, respectively, where θi is the phase of the intermediate image that is an image in the middle of deformation.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 したがって、時間とともに、sを変化(増加)させることでワーピングを行ことができる。原画像および最終画像に記載されているBstartとBend,CstartとCend,DstartとDendも同様の処理を行う。図7では、例として、s=0.3の場合の中間画像を示している。補間画像を作成する場合、間に補間画像を作成しようとする時間的に隣接する2つの参照画像の位相をそれぞれθstart,θendとし、対応させる基準画像の位相をθiとしてsを決定する。 Therefore, warping can be performed by changing (increasing) s with time. Similar processing is performed for Bstart and Bend, Cstart and Cend, and Dstart and Dend described in the original image and the final image. FIG. 7 shows an intermediate image when s = 0.3 as an example. When creating an interpolation image, s is determined with θstart and θend being the phases of two temporally adjacent reference images for which an interpolation image is to be created, and θi being the phase of the corresponding reference image.
 図8は、対応する参照動画像を示した図であり、図6に示されている位相と、図4の画像の対応付けを行ったものである。横軸は、時間の経過を示したものである。ここで、位相:1における1とは、呼吸サイクル開始から経過した時間を表し、単位は1/30(秒)である。以下、位相については同様に表す。 FIG. 8 is a diagram showing a corresponding reference moving image, in which the phase shown in FIG. 6 is associated with the image in FIG. The horizontal axis shows the passage of time. Here, 1 in the phase: 1 represents the time elapsed from the start of the respiratory cycle, and the unit is 1/30 (second). Hereinafter, the phase is similarly expressed.
 図9は、作成された補間画像を作成する場合の具体例を示す図である。図9は、図8における基準動画像[1]の画像の位相を持つ補間画像を示している。横軸は、時間の経過を示したものである。図9に示すように、基準動画像[1]の静止画像の位相を持つ補間画像は、図8の参照動画像(1)および(2)を用いて作成される。この場合、
  s=(4-1)/(5-1)=0.75
として位相:4の補間画像を作成し、基準動画像[1]の静止画像の位相と対応させる。
FIG. 9 is a diagram showing a specific example in the case of creating the created interpolation image. FIG. 9 shows an interpolated image having the phase of the image of the reference moving image [1] in FIG. The horizontal axis shows the passage of time. As shown in FIG. 9, the interpolated image having the phase of the still image of the reference moving image [1] is created using the reference moving images (1) and (2) in FIG. in this case,
s = (4-1) / (5-1) = 0.75
As a result, an interpolated image having a phase of 4 is created and associated with the phase of the still image of the reference moving image [1].
 また、補間画像作成部215は、モーフィングなどの手法によっても補間画像を作成することが可能である。 Also, the interpolation image creation unit 215 can create an interpolation image by a technique such as morphing.
 このようにして得られた一連の補間画像を時系列的に配列することによって、補間後の動画像が得られる。 The interpolated moving image is obtained by arranging the series of interpolated images obtained in this way in time series.
 本実施形態によれば、画像生成装置は、2つの動画像を構成する静止画像の位相を整合させた2つの位相整合動画像を得ることができるので、位相のずれを排除でき、異なる時期に同一の対象物(同一患者)を撮影して得られた2つの動画像から、特定部位(肺野)の経時的な変化に基づくそれらの間の実質的な差異のみを抽出可能となる。 According to the present embodiment, the image generation apparatus can obtain two phase-matched moving images in which the phases of the still images constituting the two moving images are matched, so that the phase shift can be eliminated at different times. Only substantial differences between them can be extracted from two moving images obtained by photographing the same object (same patient) based on the temporal change of a specific part (lung field).
 特に、静止画像が少ない動画像を基準動画像とし、静止画像が多い動画像を参照動画像としてそれを補間するようにしているため、逆の場合と比較して補間する2つの静止画像の間の時間間隔が短く、補間精度が高い。 In particular, a moving image with few still images is used as a standard moving image, and a moving image with many still images is used as a reference moving image, and is interpolated. The time interval is short and the interpolation accuracy is high.
 <第2実施形態>
 第2実施の形態では、補間動画像と基準動画像から上述した経時差分画像を作成する。すなわち、生成された補間動画像と基準動画像とで、互いに対応する位相を持つ静止画像どうしの差分をとることによって、差分静止画像を生成する。
Second Embodiment
In the second embodiment, the above-described temporal difference image is created from the interpolated moving image and the reference moving image. That is, a difference still image is generated by taking a difference between still images having phases corresponding to each other between the generated interpolated moving image and the reference moving image.
 図10は、第2実施形態である画像生成装置50で実現される機能構成を示す図である。 FIG. 10 is a diagram illustrating a functional configuration realized by the image generation apparatus 50 according to the second embodiment.
 第2実施形態の機能構成の一部は、前述の図3と類似しており、本実施の形態の構成には前述の図3における対応する構成と同一の参照符号を付し、異なる構成についてだけ説明し、同様の構成については説明を省略する。特に、基準動画像を構成する静止画像の位相に一致する補間動画像を作成するまでの構成および動作は第1実施形態と同じである。 A part of the functional configuration of the second embodiment is similar to that of FIG. 3 described above, and the configuration of the present embodiment is given the same reference numerals as the corresponding configuration in FIG. Only the description is omitted, and the description of the same configuration is omitted. In particular, the configuration and operation until an interpolated moving image that matches the phase of a still image constituting the reference moving image is the same as in the first embodiment.
 画像生成装置50の経時差分画像作成部216は、基準動画像と補間動画像とのそれぞれを構成する静止画像について、互いに同一位相となっている静止画像の差分をとり、差分静止画の時系列配列ないしは動画像として経時差分画像を作成する。作成された経時差分画像は、固定ディスク24またはRAM22などの記憶部219に記憶される。 The temporal difference image creation unit 216 of the image generation device 50 takes the difference between the still images having the same phase with respect to the still images constituting the reference moving image and the interpolated moving image, and calculates the time series of the difference still images. A temporal difference image is created as an array or a moving image. The created temporal difference image is stored in the storage unit 219 such as the fixed disk 24 or the RAM 22.
 図11は、経時差分画像の具体例を示す図である。横軸は、時間の経過を示したものである。図11に示すように経時差分画像作成部216は、同一位相の基準画像と補間動画像の肺野領域の差を画素ごとに求め、経時差分画像を作成する。 FIG. 11 is a diagram showing a specific example of a time-difference image. The horizontal axis shows the passage of time. As shown in FIG. 11, the temporal difference image creation unit 216 obtains a difference between the lung field areas of the reference image having the same phase and the interpolated moving image for each pixel, and creates a temporal difference image.
 肺野領域のみを処理する理由としては、肺野領域における呼吸時の疾患の影響を明確にするためであり、肺野領域以外も含めて処理すると、アーチファクトが発生する可能性が高くなるためである。また、呼吸時の疾病は肺野領域以外に現れることはなく、かつ、肺野の外側の画像データも処理すると、計算時間が無駄にかかることも理由として挙げられる。 The reason for processing only the lung field is to clarify the effects of the disease during breathing in the lung field, and the possibility of artifacts increases when processing other than the lung field is included. is there. Another reason is that no respiratory illness appears outside the lung field area, and that processing time is wasted if image data outside the lung field is processed.
 第2実施形態によれば、経時差分画像作成手段が生成された補間動画像と基準動画像とで、互いに対応する位相を持つ静止画像どうしの差分をとるので、位相が一致しない静止画像どうしの差分をとることによって発生する、アーチファクトを軽減して画像を表示することができ、例えば、経時的に進行した患部の病変部を顕著化して検出することができる。 According to the second embodiment, the interpolated moving image generated by the temporal difference image creating means and the reference moving image take a difference between still images having phases corresponding to each other. An image generated by taking the difference can be reduced, and an image can be displayed. For example, a lesion part of an affected part that has progressed over time can be noticeably detected.
 <第3実施形態>
 第3実施の形態でも補間動画像を構成する一連の静止画像を得るまでは第1実施形態と同じ構成および動作となる。第3実施形態ではさらに、補間動画像と基準動画像からフレーム間経時差分画像を作成する。すなわち、基準動画像において時間的に隣接する2つの静止画像の差分と、これらの隣接する2つの静止画像の位相に対応する補間動画像の2つの静止画像の差分とをとり、さらにそれらの差分をとり、フレーム間経時差分画像を得る。
<Third Embodiment>
Also in the third embodiment, the same configuration and operation as in the first embodiment are obtained until a series of still images constituting the interpolated moving image is obtained. In the third embodiment, an inter-frame temporal difference image is further created from the interpolated moving image and the reference moving image. That is, the difference between two still images temporally adjacent to each other in the reference moving image and the difference between two still images of the interpolated moving image corresponding to the phase of these two adjacent still images are taken, and the difference between them is further calculated. And an inter-frame temporal difference image is obtained.
 図12は、第3実施形態である画像生成装置100で実現される機能構成を示す図である。 FIG. 12 is a diagram illustrating a functional configuration realized by the image generation apparatus 100 according to the third embodiment.
 第3実施形態の機能構成の一部は、前述の図3と類似しており、本実施の形態の構成には前述の図10における対応する構成と同一の参照符号を付し、異なる構成についてだけ説明し、同様の構成については説明を省略する。 A part of the functional configuration of the third embodiment is similar to that of FIG. 3 described above, and the configuration of this embodiment is given the same reference numerals as the corresponding configuration in FIG. Only the description is omitted, and the description of the same configuration is omitted.
 フレーム間差分画像作成部217は、基準動画像の時間的に隣り合うフレーム間の差を取ったフレーム間差分画像と、補間動画像の時間的に隣り合う補間フレーム間の差を取った補間フレーム間差分画像とを作成する。 The inter-frame difference image creation unit 217 calculates an inter-frame difference image obtained by taking a difference between temporally adjacent frames of the reference moving image and an inter-frame difference frame obtained by taking a difference between temporally adjacent interpolation frames of the interpolated moving image. Create a difference image.
 フレーム間経時差分画像作成部218は、上述のフレーム間差分画像と、補間フレーム間差分画像の肺野領域の差分を取り、フレーム間経時差分画像を作成する。すなわち、2つの同一位相間の基準画像と補間動画像の肺野領域の差を求め、フレーム間経時差分画像を作成する。作成されたそれぞれのフレーム間経時差分画像は、時系列的な一連の静止画像あるいは1つの動画像として固定ディスク24またはRAM22などの記憶部219に記憶される。 The inter-frame time difference image creation unit 218 takes the difference between the above-mentioned inter-frame difference image and the inter-frame difference image lung field, and creates an inter-frame time difference image. That is, the difference between the lung image areas of the reference image and the interpolated moving image between two identical phases is obtained, and an inter-frame temporal difference image is created. Each created inter-frame temporal difference image is stored in the storage unit 219 such as the fixed disk 24 or the RAM 22 as a time-series series of still images or one moving image.
 図13は、フレーム間差分画像とフレーム間経時差分画像の具体例を示す図である。横軸は、時間の経過を示したものである。図13に示すように、補間フレーム間差分画像は、差分(1)、差分(2)から作成され、フレーム間差分画像は、差分(3)、差分(4)から作成される。さらに、フレーム間経時差分画像は、差分(5)、差分(6)を計算することによって作成される。 FIG. 13 is a diagram showing a specific example of an inter-frame difference image and an inter-frame time difference image. The horizontal axis shows the passage of time. As illustrated in FIG. 13, the inter-frame difference image is created from the difference (1) and the difference (2), and the inter-frame difference image is created from the difference (3) and the difference (4). Further, the inter-frame temporal difference image is created by calculating the difference (5) and the difference (6).
 このように、第3実施形態によれば、基準動画像における時間的に隣接する2つの静止画像の差分と、それに対応する位相配列を有する補間動画像に含まれる補間静止画像の2つの差分とをとり、さらにそれらの差分をとることによって、フレーム間経時差分画像を作成するので、1呼吸サイクル内で動的に変化する特定部分(例:肺野)についてのみ2つの撮影時期(前回検査と今回検査)の間での画像の違いを検出することが可能であって、そこにおいては位相のずれが解消されてアーチファクトを削除でき、例えば、病変部が存在する位置をより顕著化して検出することができる。 As described above, according to the third embodiment, the difference between two still images that are temporally adjacent to each other in the reference moving image, and the two differences between the interpolated still images included in the interpolated moving image having the corresponding phase arrangement, And taking the difference between them to create a time-difference image between frames, so that only two specific imaging periods (eg, lung field) that change dynamically within one respiratory cycle It is possible to detect the difference in image between the current examination), in which the phase shift is eliminated and the artifact can be deleted, for example, the position where the lesion is present is detected more prominently. be able to.
 <変形例>
 以上、この発明の実施形態について説明したが、この発明は上記説明した内容のものに限定されるものではない。
<Modification>
As mentioned above, although embodiment of this invention was described, this invention is not limited to the thing of the content demonstrated above.
 例えば、上記実施形態では、画像生成装置がX線撮影装置から独立した構成である場合について説明したが、X線撮影装置そのものに設けたコンピュータによって画像生成装置の各手段を実現する構成でもよい。 For example, in the above-described embodiment, the case where the image generation apparatus has a configuration independent of the X-ray imaging apparatus has been described. However, each unit of the image generation apparatus may be realized by a computer provided in the X-ray imaging apparatus itself.
 上記実施形態では、基準動画像に含まれる静止画像の位相を基準位相として、参照動画像からその位相に対応する静止画像である補間動画像を生成したが、2つの動画像からそれぞれ補間動画像を作成し、位相を整合させてもよい。 In the above embodiment, the phase of the still image included in the standard moving image is used as the standard phase, and the interpolated moving image that is a still image corresponding to the phase is generated from the reference moving image. To match the phase.
 また、上記実施形態では、画像処理および表示処理の対象となった2つの動画像が、X線を用いた人体の内部構造に係る透過像であったが、これに限られない。例えば、MRI(Magnetic Resonance Imaging)やPET(Positron Emission Tomography)やエコーなどを用いて人体の内部構造をとらえた各種動画像(すなわち内部画像)であってもよい。 In the above embodiment, the two moving images that are the targets of the image processing and the display processing are the transmission images related to the internal structure of the human body using X-rays, but the present invention is not limited to this. For example, various moving images (that is, internal images) that capture the internal structure of the human body using MRI (Magnetic Resonance Magnetic Imaging), PET (Positron Emission Tomography), echo, or the like may be used.
 上記実施形態では、肺野を例示して説明したが、これに限られず、心拍サイクルを周期として、心拍によって動く心臓領域を対象とすることができ、また、人体または動物の身体の種々の内部構造に係る動画像に対して本発明を適用することができる。さらに、超音波や各種振動などを用いて得られた人体以外の各種内部構造に係る動画像に対しても本発明を適用することができる。つまり、医療用途以外の各種構造体等に対して本発明を適用することによっても、2以上の部分の相対的な位置関係が変化する内部構造の診断や評価を容易に行うことができる。 In the above-described embodiment, the lung field has been described as an example. However, the present invention is not limited to this, and the heart region moving with a heartbeat can be targeted with a heartbeat cycle as a period, and various internal parts of a human or animal body can be used. The present invention can be applied to a moving image related to a structure. Furthermore, the present invention can also be applied to moving images related to various internal structures other than the human body obtained by using ultrasonic waves or various vibrations. That is, by applying the present invention to various structures other than medical uses, it is possible to easily diagnose and evaluate an internal structure in which the relative positional relationship between two or more portions changes.
 なお、上記実施形態ならびに変形例で説明した構成は、矛盾が生じない限り適宜一部の構成を入れ換えてもよい。 It should be noted that the configurations described in the above embodiments and modifications may be replaced as appropriate as long as no contradiction arises.
 これらの変形例によっても、前記実施の形態と同様の効果を、達成することができる。 These modifications can also achieve the same effects as in the above embodiment.

Claims (9)

  1.  画像生成装置であって、
     異なる時期に同一の対象物を撮影して得られ、それぞれが静止画像の時系列的な組によって構成される2つの動画像のそれぞれについて、前記対象物の周期的な動きの位相を検出する位相検出手段と、
     前記2つの動画像のうち少なくとも一方を時系列的に補間することによって、それぞれを構成する静止画像の位相を互いに整合させた2つの位相整合動画像を得る補間画像作成手段と、
    を有することを特徴とする画像生成装置。
    An image generation device,
    A phase for detecting the phase of the periodic movement of the object for each of two moving images obtained by photographing the same object at different times, each of which is composed of a time-series set of still images. Detection means;
    Interpolated image creating means for interpolating at least one of the two moving images in time series to obtain two phase-matched moving images in which the phases of the still images constituting each of them are matched with each other;
    An image generation apparatus comprising:
  2.  請求項1の画像生成装置であって、
     前記2つの動画像は、人間または動物の身体の特定部位を含んだ範囲を前記対象物として撮影したものであり、
     前記位相は、前記特定部位に相当する特定画像領域の時間的変動状態から決定されることを特徴とする画像生成装置。
    The image generation apparatus according to claim 1,
    The two moving images are obtained by photographing a range including a specific part of a human or animal body as the object,
    The image generation apparatus according to claim 1, wherein the phase is determined from a temporal variation state of a specific image region corresponding to the specific part.
  3.  請求項2の画像生成装置であって、
     前記位相は、前記特定画像領域の幾何学的サイズの時間的変動状態から求められることを特徴とする画像生成装置。
    The image generation apparatus according to claim 2,
    The image generation apparatus according to claim 1, wherein the phase is obtained from a temporal variation state of a geometric size of the specific image region.
  4.  請求項2または請求項3に記載の画像生成装置であって、
     前記特定画像領域は、呼吸サイクルを周期として、呼吸によって動く肺野領域、または、心拍サイクルを周期として、心拍によって動く心臓領域、であることを特徴とする画像生成装置。
    The image generation apparatus according to claim 2 or 3, wherein
    The image generating apparatus according to claim 1, wherein the specific image region is a lung field region that moves by breathing with a respiratory cycle as a cycle, or a heart region that moves by heartbeat with a heartbeat cycle as a cycle.
  5.  請求項1から請求項4のいずれかに記載の画像生成装置であって、
     前記補間画像作成手段は、
     前記2つの動画像を構成するそれぞれの静止画像の枚数が異なるときに、静止画像の数が少ない方の動画像を基準動画像とし、静止画像の数が多い方の動画像を参照動画像とした場合において、前記基準動画像に含まれるそれぞれの静止画像の位相を基準位相として、前記参照動画像に含まれる静止画像の補間によって前記基準位相のそれぞれに対応する補間静止画像を生成することにより、前記位相整合動画像のひとつとしての補間動画像を生成することを特徴とする画像生成装置。
    The image generation apparatus according to any one of claims 1 to 4,
    The interpolation image creating means includes
    When the number of still images constituting the two moving images is different, the moving image with the smaller number of still images is set as the reference moving image, and the moving image with the larger number of still images is set as the reference moving image. In this case, by using the phase of each still image included in the reference moving image as a reference phase, generating an interpolated still image corresponding to each of the reference phases by interpolation of the still image included in the reference moving image An image generating apparatus that generates an interpolated moving image as one of the phase matching moving images.
  6.  請求項5の画像生成装置であって、
     生成された前記補間動画像と前記基準動画像とで、互いに対応する位相を持つ静止画像どうしの差分をとることによって、差分静止画像の時系列的な組を生成する経時差分画像作成手段、
    をさらに有することを特徴とする画像生成装置。
    The image generation apparatus according to claim 5,
    A temporal difference image creating means for generating a time-series set of difference still images by taking a difference between still images having mutually corresponding phases in the generated interpolated moving image and the reference moving image,
    An image generating apparatus further comprising:
  7.  請求項5の画像生成装置であって、
     前記基準動画像において時間的に隣接する2つずつの静止画像の差分をとることによって第1差分静止画像の時系列的な組を生成する手段と、
     前記補間動画像に含まれる補間静止画像の2つずつの差分をとることによって、前記第1差分静止画像の組に対応した位相配列を有する第2差分静止画像の時系列的な組を生成する手段と、
     互いの位相を対応させつつ前記第1と第2の差分静止画像の組相互についての静止画像ごとの差分をとることによって、第3差分静止画像の時系列的な組を生成し、それによって差分動画像を得るフレーム間経時差分画像作成手段と、
    をさらに有することを特徴とする画像生成装置。
    The image generation apparatus according to claim 5,
    Means for generating a time-series set of first differential still images by taking a difference between two still images that are temporally adjacent in the reference moving image;
    A time-series set of second differential still images having a phase array corresponding to the set of the first differential still images is generated by taking a difference of each two of the interpolated still images included in the interpolated moving image. Means,
    A time-series set of third differential still images is generated by taking a difference for each still image for each set of the first and second differential still images while corresponding to each other's phase, thereby generating a difference Inter-frame temporal difference image creation means for obtaining a moving image;
    An image generating apparatus further comprising:
  8.  コンピュータによって実行されることにより、
     前記コンピュータを、請求項1ないし請求項7のいずれかの画像生成装置として機能させるプログラム。
    By being executed by the computer,
    A program that causes the computer to function as the image generation apparatus according to any one of claims 1 to 7.
  9.  画像生成方法であって、
     異なる時期に同一の対象物を撮影して得られ、それぞれが静止画像の時系列的な組によって構成される2つの動画像のそれぞれについて、前記2つの動画像のそれぞれについて、前記対象物の周期的な動きの位相を検出する位相検出工程と、
     前記2つの動画像のうち少なくとも一方を時系列的に補間することによって、それぞれを構成する静止画像の位相を互いに整合させた2つの位相整合動画像を得る補間画像作成工程と、
    を有することを特徴とする画像生成方法。
    An image generation method comprising:
    For each of the two moving images obtained by photographing the same object at different times and each consisting of a time-series set of still images, the period of the object for each of the two moving images A phase detection process for detecting the phase of a typical movement;
    Interpolating at least one of the two moving images in time series to obtain two phase-matching moving images in which the phases of the still images constituting each of them are mutually matched; and
    An image generation method characterized by comprising:
PCT/JP2009/051084 2008-01-25 2009-01-23 Image generation device, image generation method, and program WO2009093693A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009550574A JP5029702B2 (en) 2008-01-25 2009-01-23 Image generating apparatus, image generating method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-015143 2008-01-25
JP2008015143 2008-01-25

Publications (1)

Publication Number Publication Date
WO2009093693A1 true WO2009093693A1 (en) 2009-07-30

Family

ID=40901196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051084 WO2009093693A1 (en) 2008-01-25 2009-01-23 Image generation device, image generation method, and program

Country Status (2)

Country Link
JP (1) JP5029702B2 (en)
WO (1) WO2009093693A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012040363A (en) * 2010-07-22 2012-03-01 Toshiba Corp Medical image display apparatus and x-ray computed tomography apparatus
JP2014050753A (en) * 2013-12-06 2014-03-20 Ziosoft Inc Medical image processor and medical image processing program
WO2014054379A1 (en) * 2012-10-04 2014-04-10 コニカミノルタ株式会社 Image processing device and program
JP2015033023A (en) * 2013-08-05 2015-02-16 カシオ計算機株式会社 Motion picture processing apparatus, motion picture processing method and program
JP2018148964A (en) * 2017-03-10 2018-09-27 コニカミノルタ株式会社 Dynamic analysis system
CN109561863A (en) * 2016-07-19 2019-04-02 拉德微斯普私人有限公司 Diagnostic assistance program
JP2020203191A (en) * 2020-09-30 2020-12-24 コニカミノルタ株式会社 Dynamic analysis system and program
WO2021024637A1 (en) * 2019-08-08 2021-02-11 株式会社Jvcケンウッド Recording playback control device, recording playback control method, and program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005151099A (en) * 2003-11-14 2005-06-09 Canon Inc Device and method for processing radiation image
JP2005278659A (en) * 2004-03-26 2005-10-13 Fuji Photo Film Co Ltd Method and apparatus for acquiring radiation dynamic image
JP2008206741A (en) * 2007-02-27 2008-09-11 Fujifilm Corp Radiological image processing apparatus, radiological image processing method, and program

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4993403B2 (en) * 2006-06-02 2012-08-08 富士ゼロックス株式会社 Image processing apparatus, image encoding apparatus, image decoding apparatus, image processing system, and program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005151099A (en) * 2003-11-14 2005-06-09 Canon Inc Device and method for processing radiation image
JP2005278659A (en) * 2004-03-26 2005-10-13 Fuji Photo Film Co Ltd Method and apparatus for acquiring radiation dynamic image
JP2008206741A (en) * 2007-02-27 2008-09-11 Fujifilm Corp Radiological image processing apparatus, radiological image processing method, and program

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012040363A (en) * 2010-07-22 2012-03-01 Toshiba Corp Medical image display apparatus and x-ray computed tomography apparatus
WO2014054379A1 (en) * 2012-10-04 2014-04-10 コニカミノルタ株式会社 Image processing device and program
CN104703539A (en) * 2012-10-04 2015-06-10 柯尼卡美能达株式会社 Image processing device and program
JPWO2014054379A1 (en) * 2012-10-04 2016-08-25 コニカミノルタ株式会社 Image processing apparatus and program
US9836842B2 (en) 2012-10-04 2017-12-05 Konica Minolta, Inc. Image processing apparatus and image processing method
JP2018138193A (en) * 2012-10-04 2018-09-06 コニカミノルタ株式会社 Image processing device and program
JP2015033023A (en) * 2013-08-05 2015-02-16 カシオ計算機株式会社 Motion picture processing apparatus, motion picture processing method and program
JP2014050753A (en) * 2013-12-06 2014-03-20 Ziosoft Inc Medical image processor and medical image processing program
CN109561863A (en) * 2016-07-19 2019-04-02 拉德微斯普私人有限公司 Diagnostic assistance program
JP2018148964A (en) * 2017-03-10 2018-09-27 コニカミノルタ株式会社 Dynamic analysis system
US10810741B2 (en) 2017-03-10 2020-10-20 Konica Minolta, Inc. Dynamic analysis system
US11410312B2 (en) 2017-03-10 2022-08-09 Konica Minolta, Inc. Dynamic analysis system
WO2021024637A1 (en) * 2019-08-08 2021-02-11 株式会社Jvcケンウッド Recording playback control device, recording playback control method, and program
US11812140B2 (en) 2019-08-08 2023-11-07 Jvckenwood Corporation Recording and reproduction control device, and recording and reproduction control method
JP7379918B2 (en) 2019-08-08 2023-11-15 株式会社Jvcケンウッド Recording/playback control device and recording/playback control method
JP2020203191A (en) * 2020-09-30 2020-12-24 コニカミノルタ株式会社 Dynamic analysis system and program

Also Published As

Publication number Publication date
JPWO2009093693A1 (en) 2011-05-26
JP5029702B2 (en) 2012-09-19

Similar Documents

Publication Publication Date Title
JP5029702B2 (en) Image generating apparatus, image generating method, and program
EP2192855B1 (en) Patent breathing modeling
US8824756B2 (en) Image reconstruction incorporating organ motion
KR101428005B1 (en) Method of motion compensation and phase-matched attenuation correction in pet imaging based on a few low-dose ct images
US10052032B2 (en) Stenosis therapy planning
JP6253085B2 (en) X-ray moving image analysis apparatus, X-ray moving image analysis program, and X-ray moving image imaging apparatus
WO2011114733A1 (en) Medical image conversion device, method, and program
JP4935693B2 (en) Image generating apparatus, program, and image generating method
US8064979B2 (en) Tempero-spatial physiological signal detection method and apparatus
JP2013517837A (en) Method for acquiring a three-dimensional image
US20100030572A1 (en) Temporal registration of medical data
KR101028798B1 (en) Method for detection of hepatic tumors using registration of multi-phase liver CT images
Hao et al. OFx: A method of 4D image construction from free-breathing non-gated MRI slice acquisitions of the thorax via optical flux
JP2001148005A (en) Method for reconstructing three-dimensional image of moving object
JP2019046057A (en) Image processing device, image processing method and program
JP6155177B2 (en) Computer program, apparatus and method for causing image diagnosis support apparatus to execute image processing
Hao et al. 4D image construction from free-breathing MRI slice acquisitions of the thorax based on a concept of flux
JP5051025B2 (en) Image generating apparatus, program, and image generating method
EP1502549B1 (en) Medical image displaying method
JP5408493B2 (en) Medical image processing apparatus and medical image processing program
JP5068336B2 (en) Medical image conversion apparatus and method, and program
EP4231234A1 (en) Deep learning for registering anatomical to functional images
JP7106096B2 (en) Cardiac function analysis device, analysis method, program and recording medium
EP4258215A1 (en) Device-less motion state estimation
WO2022256421A1 (en) System and method for simultaneously registering multiple lung ct scans for quantitative lung analysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09703908

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009550574

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09703908

Country of ref document: EP

Kind code of ref document: A1