WO2009093632A1 - Device for evaluating balance of center of gravity - Google Patents

Device for evaluating balance of center of gravity Download PDF

Info

Publication number
WO2009093632A1
WO2009093632A1 PCT/JP2009/050932 JP2009050932W WO2009093632A1 WO 2009093632 A1 WO2009093632 A1 WO 2009093632A1 JP 2009050932 W JP2009050932 W JP 2009050932W WO 2009093632 A1 WO2009093632 A1 WO 2009093632A1
Authority
WO
WIPO (PCT)
Prior art keywords
center
gravity
balance
ability
subject
Prior art date
Application number
PCT/JP2009/050932
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuhiro Ide
Original Assignee
Panasonic Electric Works Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co., Ltd. filed Critical Panasonic Electric Works Co., Ltd.
Priority to JP2009550543A priority Critical patent/JPWO2009093632A1/en
Priority to CN2009801030618A priority patent/CN102088902A/en
Publication of WO2009093632A1 publication Critical patent/WO2009093632A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4005Detecting, measuring or recording for evaluating the nervous system for evaluating the sensory system
    • A61B5/4023Evaluating sense of balance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0537Measuring body composition by impedance, e.g. tissue hydration or fat content

Definitions

  • the present invention relates to an apparatus for determining a center-of-gravity balance using a center-of-gravity fluctuation index.
  • Patent Document 1 three load sensors are installed on the back surface of the platform, the center of gravity position is obtained from the output of each load sensor in a state in which a subject is mounted on the platform, and the center of gravity position that is a center of gravity swing parameter is predetermined. It is shown that the ratio of the total trajectory length over a period and the area (outer peripheral area) of the figure defined by the outermost peripheral line of the trajectory is useful for evaluating the pathological condition of the balance dysfunction.
  • Patent Document 2 although there is a center of gravity shake meter, an average center of gravity position which is a center of gravity position parameter is obtained and used as original data for correction.
  • the ability to balance the center of gravity is influenced not only by the ability of sensory organs such as the semi-hemi organs but also by the ability of movement such as muscle strength and joint flexibility.
  • the center-of-gravity position parameter of Patent Document 2 can be considered as an index reflecting the body bias.
  • human beings are thought to maintain balance while swinging even in an upright posture, and the center-of-gravity parameters such as the total trajectory length and rectangular area of Patent Document 1 are not limited to the body bias, It can be considered as an index that reflects athletic ability.
  • An object of the present invention is to provide a center-of-gravity balance determination apparatus that can determine the center-of-gravity balance ability more accurately than the background art.
  • the center-of-gravity balance determination device includes three or more load sensors installed on the back surface of a step and an output from each of the load sensors in a state where a subject is mounted on the step in a predetermined cycle.
  • a balance capability determination unit that determines a center of gravity balance capability, wherein the balance capability determination unit is a rectangle surrounded by the maximum trajectory length of the calculation position within the predetermined period by the maximum displacement in the front-rear direction and the left-right direction of the calculation position.
  • the center-of-gravity balance ability is determined based on the value divided by the rectangular area.
  • the center-of-gravity balance ability is influenced not only by the ability of sensory organs such as the half organs but also by the ability of movement such as muscle strength and joint flexibility. This is because, as a result of detailed examination of the relationship between various exercises and the center of gravity balance, the inventors of the present application said that improvement of muscle strength, joint flexibility, and posture by performing appropriate exercise for a predetermined period appears in the center of gravity balance index. Based on knowledge. Here, it is considered that humans maintain balance while swinging even in an upright posture, and the total trajectory length and the center of gravity swing parameter of the rectangular area reflect not only the body bias but also the exercise ability. It can be considered as an indicator.
  • the total trajectory length of the calculation position within the predetermined period is the ability to move the center of gravity within the predetermined period.
  • the maximum displacement within the predetermined period and the rectangular area that is a multiplication value in the front-rear direction and the left-right direction are the ability to keep the center of gravity within the range (rectangular area), compared with the outer peripheral area conventionally used
  • effects such as front / rear and left / right body distortion and muscle imbalance appear with high sensitivity.
  • the value obtained by dividing the total trajectory length by the rectangular area is an index that expresses the amount of movement of the center of gravity per unit area, is constantly finely swaying the center of gravity, and becomes high when performing in a narrow range, In particular, there is a tendency for athletes whose balance ability is important, such as ballet, gymnastics, and judo, to be high. Further, in order to measure the outer peripheral area, it is necessary to perform image analysis and count the number of dots, which consumes a large memory, whereas the rectangular area is the maximum in the front-rear direction and the left-right direction. It is only necessary to multiply the displacement, and it can be easily obtained.
  • the center of gravity balance ability can be determined more accurately than in the background art, and the body distortion and exercise ability can be determined at home. ) Easy to check.
  • FIG. 1 is a plan view of a center-of-gravity balance determining apparatus 1 according to a first embodiment of the present invention
  • FIG. 2 is a bottom view thereof
  • FIG. 3 is a longitudinal sectional view thereof.
  • the center-of-gravity balance determination apparatus 1 according to the present embodiment is provided as one function of a weight scale that measures body weight. Therefore, the external shape is similar to a conventional scale.
  • Three or more legs (four indicated by reference numerals 8a to 8d in FIGS. 1 to 3 and collectively referred to as reference numeral 8 hereinafter) are installed on the back surface of the step 2 of the center of gravity balance determination apparatus 1.
  • left and right foot molds 3 a and 3 b for fitting feet are provided on the upper surface of the step platform 2.
  • the foot molds 3a, 3b are provided with depressions 4a, 4b; 5a, 5b for easy alignment of the feet.
  • An operation panel 13 that is detachably connected via a cable wire is also embedded in the upper surface of the step 2, and the operation panel 13 is fixed in a state where the cable wire is wound around a reel. ing.
  • An electronic circuit board 10 is built in the step platform 2. Further, a power switch 11 is provided on the front surface of the step 2 and a battery box 9 is provided on the bottom surface.
  • FIG. 4 is an enlarged cross-sectional view of the leg portion 8.
  • Each of the legs 8a to 8d is formed in a cylindrical shape, and inside thereof, load receivers 6a to 6d (generally referred to as reference numeral 6) and load sensors 7a to 7d (generally referred to as follows) (Indicated by reference numeral 7) are embedded.
  • the load receiver 6 is made of, for example, a hard metal processed into a hemispherical shape, a half crack portion thereof is fixed to the upper surface of the load sensor 7, and the apex portion is in point contact with the bottom surface of the step platform 2, from above (the step platform 2).
  • the vertical load is transmitted to the load sensor 7 without escaping in the horizontal direction.
  • the subject turns on the power switch 11, pulls out the operation panel 13, and displays the age, sex, height, and foot length displayed on the display unit 14 such as a liquid crystal panel, for example.
  • the basic body information such as, from the input unit 15 in accordance with the input instruction
  • the balance of the center of gravity can be measured.
  • the center-of-gravity position (calculation position) is calculated within a predetermined period in which the subject holds the posture, and a center-of-gravity fluctuation locus 16 as shown in FIG. 6 is obtained.
  • FIG. 17 is an explanatory diagram for explaining an example of a calculation method of the gravity center position (calculation position).
  • the distance in the X-axis direction from the origin 0 to the load sensor is m
  • the distance in the Y-axis direction is L.
  • the center of gravity of the load W of the subject is (x, y)
  • the load sensors 7a, 7b, 7c, 7d detect the loads of Ma (kg), Mb (kg), Mc (kg), Md (kg), respectively.
  • the X coordinate of the position where the moment in the X-axis direction balances around the origin 0, that is, the gravity center position (calculation position) is expressed by the following equation (A).
  • x ⁇ m ⁇ (Mb + Md ⁇ Ma ⁇ Mc) ⁇ / W (A)
  • the coordinate position (x, y) of the center of gravity can be calculated from the weight value detected by the load sensors 7a, 7b, 7c, and 7d and the distance between the sensors. .
  • the total trajectory length 17 representing the amount of movement of the center-of-gravity position (calculation position) (the length of the center-of-gravity fluctuation trajectory 16), the maximum horizontal displacement (the maximum value of the X coordinate) And the maximum displacement in the front-rear direction (difference between the maximum value and the minimum value of the Y coordinate) and the rectangular area 18 that is a rectangular area surrounded by these maximum displacements.
  • the total trajectory length 17) / (rectangular area 18) is calculated, and the quality (ability) of the center of gravity balance is determined from the (total trajectory length 17) / (rectangular area 18).
  • the display unit 14 displays, together with the weight, evaluations and scores such as low balance ability, standard, and high balance.
  • FIG. 7 is a block diagram showing an electrical configuration of the center-of-gravity balance determination apparatus 1 configured as described above.
  • a signal indicating the weight detected by each load sensor 7 is appropriately amplified by an amplifier (not shown) or the like, and then AD-converted by the AD converter 21 at a predetermined sampling period.
  • Data indicating the detected weight is stored in an area including the RAM of the storage unit 22.
  • the basic body information of the subject input from the input unit 15 is stored (registered) in a non-volatile area of the storage unit 22.
  • the calculation unit 23 includes, for example, a CPU (Central Processing Unit) that executes predetermined calculation processing, a ROM (Read Only Memory) that stores a predetermined control program, and a RAM (Random Access Memory) that temporarily stores data. And its peripheral circuits and the like. And the calculating part 23 functions as the weight measurement part 24 (weight calculating part) and the balance ability determination part 25 by running the control program memorize
  • ROM Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the weight measurement unit 24 reads the detection results of the load sensors 7a to 7d for each sampling cycle from the storage unit 22, obtains the fluctuation of the total value of the detection values for each sampling, and the fluctuation is within a predetermined value set in advance. The total value when it falls within the range is determined as the weight.
  • the balance ability determination unit 25 obtains the center-of-gravity position coordinates for each sampling based on the distance between the load sensors 7. Note that the coordinates obtained here are not strictly the center of gravity position but the foot pressure center COP (Center of Position), but in the static state, it can be considered that the center of gravity position and the foot pressure center are almost the same. It is written as the center of gravity.
  • the balance ability determination unit 25 further calculates from the position of the center of gravity to obtain (total trajectory length 17) / (rectangular area 18), determines the balance ability, and causes the display unit 14 to display the balance ability.
  • a first threshold value ⁇ and a second threshold value ⁇ having a relationship of ⁇ > ⁇ are set in advance, and the balance ability determination unit 25 determines (total trajectory length 17) / (rectangular area 18). If the value exceeds the first threshold value ⁇ , it is determined that the balance ability is high. If the value is less than the first threshold value ⁇ and greater than or equal to the second threshold value ⁇ , the balance ability is determined to be standard, and the second threshold value ⁇ is not satisfied. It may be determined that the balance ability is low.
  • the balance ability determination unit 25 determines that the center of gravity balance ability of the subject is higher as the value of (total trajectory length 17) / (rectangular area 18) is larger.
  • a person for example, a dancer who is considered to have a high center-of-gravity balance ability and a person who is considered to have a standard center-of-gravity balance ability (for example, a company employee of 20 to 40 years old) experimentally (total trajectory length 17 ) / (Rectangular area 18) is calculated, and the value of (total trajectory length 17) / (rectangular area 18) and the center of gravity balance ability of a person who is considered to have high center of gravity balance ability are considered to be standard.
  • a central value between the value of (total trajectory length 17) / (rectangular area 18) of the person can be used as the first threshold value ⁇ .
  • a person who is considered to have a standard center of gravity balance ability and a person who is considered to have a low center of gravity balance ability for example, an elderly person 65 years or older
  • total trajectory length 17) / (rectangle) is calculated, and the value of (total trajectory length 17) / (rectangular area 18) of a person whose center of gravity balance ability is considered to be standard and the person who is considered to have a low center of gravity balance ability (total trajectory length)
  • the central value between 17) / (rectangular area 18) can be used as the second threshold value ⁇ .
  • FIG. 8 is a flowchart for explaining the determination operation of the balance ability described above.
  • the subject first turns on the power in step S1, and inputs age, gender, height, and foot length in step S2.
  • step S3 immediately after the subject is placed on the platform 2 (from the time when the output of the load sensor 7 adjusted to the zero point fluctuates), the sampling of the output of each load sensor 7 is set at a predetermined cycle set in advance.
  • step S4 the weight measurement unit 24 determines the weight based on the total value of the obtained detection results of the load sensors 7, and the result is displayed on the display unit 14.
  • step S5 the center-of-gravity position coordinates are sequentially calculated from the detection results of the load sensors 7 in step S3, and the center-of-gravity position coordinates over a predetermined period after the start of measurement are extracted.
  • step S6 the balance ability level is determined by calculating (total trajectory length 17) / (rectangular area 18) using the barycentric position coordinates, and the result is displayed in step S7.
  • the reason for using (total trajectory length 17) / (rectangular area 18) to determine the balance ability level is as follows.
  • the total trajectory length 17 is the ability to move the center of gravity in unit time.
  • the maximum displacement in the front-rear direction and the left-right direction and the rectangular area 18 which is a multiplication value thereof are the ability to keep the center of gravity within the range, and the front-rear direction and the left-right direction compared to the conventionally used outer peripheral area. Effects such as body distortion and muscle imbalance appear with high sensitivity. It is thought that humans maintain balance while constantly shaking even in an upright posture, and the total trajectory length and rectangular area do not become zero.
  • the value obtained by dividing the total trajectory length 17 of the calculation position within such a predetermined period by the rectangular area 18 surrounded by the maximum displacement in the front-rear direction and the left-right direction of the calculation position is the center-of-gravity movement amount per unit area. It is an index to show, and it becomes high when the center of gravity is constantly swaying and it is performed in a narrow range. For this reason, it is necessary to smoothly perform quick and accurate movement and stillness, and in particular, there is a tendency to be high in athletes whose balance ability is important, such as ballet, gymnastics, and judo.
  • the basic concept differs between the outer peripheral area according to the background art and the rectangular area according to the present invention.
  • the outer peripheral areas 27 and 28 in the two states of FIGS. 9A and 9B are Although the same, the rectangular area 29 in FIG. 9A is smaller than the rectangular area 30 in FIG. 9B. This is because body distortion in the front-rear and left-right directions and imbalance in muscle strength affect the sway of the center of gravity.
  • the index that has been widely used in the past obtained by dividing the total trajectory lengths 31 and 32 by the outer peripheral areas 27 and 28 has the same value in the two states. .
  • the balance ability is higher in FIG. 9A than in FIG. 9B. Since the rectangular area 29 in FIG. 9A is smaller than the rectangular area 30 in FIG. 9B, the center of gravity movement is controlled within a narrower range in FIG. 9A, and the balance ability is comprehensive. This is because it can be judged to be expensive.
  • the total trajectory length 17 and the rectangular area 18 are stored in advance as a table in the ROM area or the like of the storage unit 22 so as to indicate how many points in each range, or (total trajectory length 17) / A table in which (rectangular area 18) is in a range from how many to what is stored is stored, and the balance capacity determination unit 25 calculates the storage unit 22 from the obtained total trajectory length 17 and rectangular area 18. , Or after obtaining the ratio, the table is referred to, and the obtained score is displayed on the display unit 14 as the score of the overall balance ability level.
  • such a table has a total trajectory length of 17 and a rectangular shape experimentally for a person considered to have a high balance ability, a person considered to have a standard balance ability, and a person considered to have a low balance ability.
  • the area 18 is obtained and scored based on the statistical data distribution.
  • the center-of-gravity balance determination apparatus 1 As described above, in the center-of-gravity balance determination apparatus 1 according to the present embodiment, three or more load sensors 7 are installed on the back surface of the platform 2, and the calculation unit 23 is in a state in which a subject is mounted on the platform 2.
  • the output from each of the load sensors 7 is sampled at a predetermined cycle, and the center-of-gravity balance position is calculated based on the result, and the center-of-gravity balance ability (the center-of-gravity balance quality) is determined from the calculated position over a predetermined period.
  • the balance capacity determination unit 25 divides the total trajectory length 17 of the calculation position within the predetermined period by the rectangular area 18 surrounded by the maximum displacement in the front-rear direction and the left-right direction of the calculation position, The center of gravity balance ability is determined.
  • the center-of-gravity balance ability is influenced not only by the ability of sensory organs such as the semi-hemi organ, but also by the ability of movement such as muscle strength and joint flexibility. This is because, as a result of detailed examination of the relationship between various exercises and the center of gravity balance, the inventors of the present application said that improvement of muscle strength, joint flexibility, and posture by performing appropriate exercise for a predetermined period appears in the center of gravity balance index. Based on knowledge.
  • the (total trajectory length 17) / (rectangular area 18) can be considered as an index reflecting not only the body bias but also the athletic ability.
  • center-of-gravity balance determination apparatus 1 it is possible to easily check body distortion and exercise ability at home.
  • the outer peripheral line of the movement locus of the center of gravity is drawn with an image, image analysis is performed, and the number of dots in the image of the area surrounded by the outer peripheral line is counted.
  • the rectangular area can be calculated simply by multiplying the maximum displacement in the front-rear direction and the left-right direction, whereas it requires a large memory and is easily obtained.
  • FIG. 10 is a block diagram showing an electrical configuration of the center-of-gravity balance determination apparatus 41 according to the second embodiment of the present invention.
  • the center-of-gravity balance determination device 41 is similar to the above-described center-of-gravity balance determination device 1, and corresponding portions are denoted by the same reference numerals, and description thereof is omitted.
  • the calculation unit 43 is provided with a center-of-gravity balance stable state determination unit 46, and the center-of-gravity balance stable state determination unit 46 determines that the center-of-gravity balance is stable.
  • a trigger for starting measurement is given to the weight measuring unit 24, and a trigger for starting calculation of the center of gravity balance position is given to the balance ability determining unit 45.
  • the determination period of the center of gravity balance can be automatically set and evaluated in a short time, and the determination can be performed with good reproducibility and accuracy.
  • the center-of-gravity balance stable state determination unit 46 starts a counting operation from the time when the subject puts his / her foot on the step platform 2, and when the predetermined time is counted, the center of gravity is counted. It is determined that the balance is in a stable state.
  • FIG. 11 is a graph showing the change in the trajectory length for 50 msec over 10 seconds after obtaining the trajectory length every 50 msec immediately after the subject puts his foot on the platform 2. In FIG. 11, it is understood that the trajectory length is almost stable in about 5 seconds immediately after the subject puts his / her foot on the platform 2.
  • the center-of-gravity balance stable state determination unit 46 determines that the center of gravity has reached a stable state when a predetermined time, for example, about 5 seconds has passed since immediately after placing the foot, and determines this time.
  • a trigger is given as the calculation start time t0, and (total trajectory length 17) / (rectangular area 18) up to a predetermined time, for example, up to 10 seconds, is obtained by the balance ability determination unit 45, and the center-of-gravity balance ability To determine. Thereby, reproducibility is improved even in repeated measurement, and the center-of-gravity balance ability can be determined more accurately.
  • the center-of-gravity balance stable state determination unit 46 converges within a predetermined range in which the center-of-gravity movement distance per unit time from the time when the subject places his / her foot on the platform 2. It is determined that the center-of-gravity balance is in a stable state at a point in time when the above state continues for a predetermined number of times set in advance.
  • FIG. 12 is a graph showing the change in the center of gravity position in the front-rear direction for 10 seconds immediately after the subject puts his / her foot on the platform 2. As shown in FIG. 12, the position of the center of gravity is not determined for a while from immediately after the subject puts his / her foot on the platform 2, and falls within a certain range as time passes.
  • the center-of-gravity balance stable state determination unit 46 determines that, for each unit time, for example, the amount of difference from the one-sampling of the center-of-gravity position obtained at a preset predetermined sampling cycle is within a preset predetermined range. It is determined that the position of the center of gravity is in a stable state when it has converged continuously for a predetermined number of times set in advance, and a trigger is given with this time as the calculation start time t0. Then, (total trajectory length 17) / (rectangular area 18) for a predetermined time set in advance, for example, up to 10 seconds, is obtained by the balance ability judging unit 45, and the center of gravity balance ability is judged. Even in this case, reproducibility is improved even in repeated measurement, and the center-of-gravity balance ability can be determined more accurately.
  • the center-of-gravity balance stable state determination unit 46 converges the change in weight per unit time within a predetermined range from the time when the subject puts his / her foot on the platform 2.
  • FIG. 13 is a graph showing the body weight fluctuation for 10 seconds immediately after the subject puts his / her foot on the platform 2.
  • the total load value that is, the weight is obtained, and the fluctuation is continuously performed a predetermined number of times within a predetermined level.
  • FIG. 14 is a diagram for explaining a determination method in the center-of-gravity balance determination apparatus according to the third embodiment of the present invention.
  • the center-of-gravity balance determination apparatus according to the present embodiment can also use the configuration of the center-of-gravity balance determination apparatus 1 described above.
  • the balance ability determination unit 25 of the calculation unit 23 exercises from the center of gravity balance ability.
  • the ability level is determined.
  • the exercise ability is, for example, agility and endurance.
  • Agility is thought to be an ability related to the speed of adjusting muscle contraction and relaxation. That is, the high agility means that the speed for adjusting the contraction and relaxation of muscles is fast, and the high adjustment speed means that the speed for adjusting the balance of the center of gravity of the body is fast. Therefore, it means that the higher the agility, the center of gravity can be adjusted with a small shaking motion within a small area, and the total trajectory length / rectangular area becomes large.
  • the balance ability determination unit 25 determines that the greater the (total trajectory length 17) / (rectangular area 18), the better the subject's agility and the higher the agility level.
  • the center of gravity balance ability is the change in stability after the sway of the center of gravity, that is, the change in (total trajectory length 17) / (rectangular area 18).
  • the balance ability determination unit 25 determines that the endurance is higher and the endurance level is higher as the variation with time of (total trajectory length 17) / (rectangular area 18) after the center of gravity is stabilized is smaller. To do.
  • FIG. 14 shows the results of the present inventor performing a balance evaluation on 28 monitors and showing the agility level on the horizontal axis and the endurance level on the vertical axis.
  • the agility level is a value of (total trajectory length 17) / (rectangular area 18) by dividing the value of (total trajectory length 17) / (rectangular area 18) for 5 seconds after the center of gravity is stabilized into 10 levels.
  • a score of 0 to 10 is assigned so that the larger the value is, the higher the score is (high agility).
  • the endurance level is calculated by continuously calculating (total trajectory length 17) / (rectangular area 18) for 1 second after stabilization five times, and dividing the coefficient of variation by dividing the standard deviation by the average value into 10 stages, A score of 0 to 10 is assigned so that the smaller the coefficient of variation, the higher the score (the higher the endurance).
  • FIG. 15 is a plan view of a center-of-gravity balance determination device 51 according to the fourth embodiment of the present invention
  • FIG. 16 is a block diagram showing its electrical configuration.
  • the center-of-gravity balance determination device 51 is similar to the center-of-gravity balance determination device 1 described above, and corresponding portions are denoted by the same reference numerals and description thereof is omitted.
  • the depressions 54a and 54b serve as current application electrodes as input electrodes, and the grip portions 64a on both the left and right sides of the operation panel 63.
  • 64b are voltage measuring electrodes that are output electrodes, and a voltage between the voltage measuring electrodes 64a, 64b is measured to a current source 55 that sends current from the current applying electrodes 54a, 54b to the subject's body.
  • a voltage detection unit 65 is provided, and the calculation unit 73 is further provided with a body composition component calculation unit 66 in addition to the weight measurement unit 24 and the balance ability determination unit 25.
  • the body composition component calculation unit 66 measures body impedance from the voltage between the voltage measurement electrodes 64a and 64b and the current passed from the current source 55, and the age and sex input in advance from the operation panel 63 as the body impedance. Using body basic information such as height, body composition components such as body fat percentage, lean mass and muscle mass are calculated and displayed on the display unit 14.
  • the method of using the center-of-gravity balance determination device 51 is the same as in FIG. 5 described above, and the subject turns on the power switch 11, removes the operation panel 63 from the step 2, and pulls out the cable wire 60. Subsequently, according to an input instruction of basic body information such as age, gender, height, and foot length displayed on the display unit 14, the information is input from the input unit 15 to measure the balance of the center of gravity and body composition. Is possible. Next, when both feet stand in the depressions 54a, 54b; 5a, 5b of the step platform 2, both hands are straightened and the operation panel 63 is gripped as shown in FIG.
  • an alternating current is generated from the current source 55 of the electronic circuit board 10 at a predetermined frequency.
  • a weak current is applied to the body from the sole of the subject via the current application electrodes 54a and 54b.
  • the voltage generated by the weak current is detected by the voltage detection unit 65 from the voltage measurement electrodes 64 a and 64 b provided on the operation panel 63 and is input to the body composition component calculation unit 66.
  • the body composition can be measured simultaneously with the weight and center of gravity balance ability, and the health condition can be known in more detail.
  • the calculation start timing for obtaining the center-of-gravity balance ability is the time when the center-of-gravity sway becomes stable, but it may be started in a transient state immediately after the subject puts his foot on the stepping platform 2 until it reaches the stable state.
  • the center-of-gravity balance ability from (total trajectory length 17) / (rectangular area 18)
  • it may be determined using a correction table based on basic body information such as age, sex, and height.
  • (total trajectory length 17) / (rectangular area 18) is used as an index representing the athletic ability level.
  • the total trajectory length 17 and the rectangular area 18 themselves may be combined, and In addition to the agility and endurance, it may be further classified.
  • the center-of-gravity balance determination device predetermines outputs from the three or more load sensors installed on the back surface of the step and the load sensors in a state where the subject is mounted on the step.
  • a balance ability determination unit that determines the center-of-gravity balance ability, and the balance ability determination unit surrounds the total trajectory length of the calculation position within the predetermined period by the maximum displacement in the front-rear direction and the left-right direction of the calculation position.
  • the center-of-gravity balance ability is determined based on the value divided by the rectangular area to be measured.
  • the balance capability determination part is a period which presets the output from each said load sensor in the state which mounts the test subject on the said step. Sampling is performed, and the position of the center of gravity is calculated based on the result, and the center-of-gravity balance ability (the center-of-gravity balance quality) of the subject is determined from the calculated position over a predetermined period.
  • the balance ability determination unit based on a value obtained by dividing the total trajectory length of the calculation position within the predetermined period by a rectangular area surrounded by the maximum displacement in the front-rear direction and the left-right direction of the calculation position, Determine ability.
  • the center-of-gravity balance ability is influenced not only by the ability of sensory organs such as the half organs but also by the ability of movement such as muscle strength and joint flexibility. This is because, as a result of detailed examination of the relationship between various exercises and the center of gravity balance, the inventors of the present application said that improvement of muscle strength, joint flexibility, and posture by performing appropriate exercise for a predetermined period appears in the center of gravity balance index. Based on knowledge. Here, it is considered that humans maintain balance while swinging even in an upright posture, and the total trajectory length and the center of gravity swing parameter of the rectangular area reflect not only the body bias but also the exercise ability. It can be considered as an indicator.
  • the total trajectory length of the calculation position within the predetermined period is the ability to move the center of gravity within the predetermined period.
  • the maximum displacement within the predetermined period and the rectangular area that is a multiplication value in the front-rear direction and the left-right direction are the ability to keep the center of gravity within the range (rectangular area), compared with the outer peripheral area conventionally used
  • effects such as front / rear and left / right body distortion and muscle imbalance appear with high sensitivity.
  • the value obtained by dividing the total trajectory length by the rectangular area is an index that expresses the amount of movement of the center of gravity per unit area, is constantly finely swaying the center of gravity, and becomes high when performing in a narrow range, In particular, there is a tendency for athletes whose balance ability is important, such as ballet, gymnastics, and judo, to be high. Further, in order to measure the outer peripheral area, it is necessary to perform image analysis and count the number of dots, which consumes a large memory, whereas the rectangular area is the maximum in the front-rear direction and the left-right direction. It is only necessary to multiply the displacement, and it can be easily obtained.
  • the center of gravity balance ability can be determined more accurately than in the background art, and the body distortion and exercise ability can be determined at home. ) Easy to check.
  • the balance ability determination unit determines that the subject's center of gravity balance ability is higher as the value obtained by dividing the total trajectory length by the rectangular area is larger.
  • the value obtained by dividing the total trajectory length by the rectangular area is constantly increasing in the small center of gravity, and increases when it is performed in a narrow range, so the value obtained by dividing the total trajectory length by the rectangular area It can be determined that the larger the is, the higher the center of gravity balance ability of the subject is.
  • a center of gravity balance stable state determination unit that determines whether or not the center of gravity balance is stable from the output of each load sensor and causes the balance ability determination unit to calculate the center of gravity position when the balance is stable. Is preferred.
  • the center-of-gravity balance stable state determination unit is further provided, and the center-of-gravity balance stable state determination unit gives a trigger for calculating the center-of-gravity position to the balance ability determination unit when the center-of-gravity balance is stabilized.
  • the center-of-gravity balance determination period can be automatically set, and a period in which the balance is temporarily unstable immediately after the subject puts his / her foot on the platform is excluded from the center-of-gravity balance determination period. As a result, the accuracy of determining the center of gravity balance ability can be improved.
  • the center-of-gravity balance stable state determination unit determines that the center-of-gravity balance is in a stable state when a predetermined time has elapsed since the subject placed his / her foot on the platform.
  • the elapsed time starts counting from the time when the subject puts his / her foot on the platform, and when the predetermined time is counted, it is determined that the balance of the center of gravity is in a stable state. Can be easily determined.
  • the center-of-gravity balance stable state determination unit is configured to perform a predetermined number of times after the subject puts his or her foot on the platform, a state in which a change in the center-of-gravity movement distance or weight per unit time converges within a predetermined range. It is preferable to determine that the balance of the center of gravity is in a stable state.
  • the balance ability determination unit determines an exercise ability level using the total trajectory length and the rectangular area.
  • the level of athletic ability can be determined in addition to the level of the center of gravity balance ability.
  • the athletic ability level represents agility, and the balance ability determination unit further increases the agility of the subject as the value obtained by dividing the total trajectory length by the rectangular area is larger. Is preferably determined.
  • the higher the agility the more the center of gravity can be adjusted with a small shaking movement within a small area, and the value obtained by dividing the total trajectory length by the rectangular area becomes larger. It can be determined that the greater the value divided by the rectangular area, the better the agility of the subject.
  • the athletic ability level represents endurance
  • the balance ability determination unit further determines the endurance as the fluctuation with time of the value obtained by dividing the total trajectory length by the rectangular area decreases. May be determined to be high.
  • a weight calculation unit that obtains the weight of the subject from the sum of outputs of the load sensors, an input electrode and an output electrode, a current source that sends current from the input electrode to the subject's body, and a flow of the current It is preferable to further include a body composition component calculation unit that measures body impedance from the voltage between the output electrodes and calculates a body composition component from the body impedance.
  • the number of load sensors is four, and the balance ability determination unit is configured such that the distance in the X-axis direction from the origin to each load sensor in the X and Y coordinate systems is m, the distance in the Y-axis direction is L, and each load sensor is ,
  • the coordinates (x, y) of the calculation position are preferably calculated by the following equations (A) and (B).
  • the balance capacity determination unit uses the distance in the X-axis direction from the origin to each load sensor in the X and Y coordinate systems, the distance in the Y-axis direction, and the weight value detected by each load sensor. The coordinates of the calculation position can be calculated.

Abstract

Disclosed is a device for evaluating center of gravity balancing (1) wherein three or more load sensors (7) have been installed on the back surface of a platform, and a computing part (23) samples the output from each load sensor (7) at a prescribed cycle when a subject is standing on the aforementioned platform and, based on the results thereof, calculates the center of gravity balancing position and evaluates the ability (good or bad) of said subject to balance the center of gravity from the calculated position over the prescribed cycle. A balancing ability evaluating part (25) evaluates the ability to balance the center of gravity based on a value obtained by dividing total path length determined from oscillations determined from oscillations in the calculated position over a prescribed period of time by rectangular area. The value of total path length divided by rectangular area is an index indicating the magnitude of shift in the center of gravity per unit area and increases when small oscillations in the center of gravity are constantly being made, as well as within a narrow range. It tends to be high, particularly for athletes in sports wherein balancing ability is important such as ballet, gymnastics, judo, etc. Taking the ability to move into consideration, it is therefore possible to accurately evaluate the ability to balance the center of gravity.

Description

重心バランス判定装置Center of gravity balance judgment device
 本発明は、重心動揺指標を用いて重心バランスを判定するための装置に関する。 The present invention relates to an apparatus for determining a center-of-gravity balance using a center-of-gravity fluctuation index.
 従来から、重心動揺指標を用いて、めまいや平衡機能障害等の検査が行われている。一般にそのような検査を行うものとして重心動揺計があり、従来の重心動揺計については、たとえば特許文献1および特許文献2に記載されている。 Conventionally, examinations such as dizziness and balance dysfunction have been performed using the center of gravity fluctuation index. In general, there is a center-of-gravity sway meter that performs such inspection, and the conventional sway meter is described in, for example, Patent Document 1 and Patent Document 2.
 特許文献1では、踏み台の裏面に3つの荷重センサを設置し、前記踏み台上に被験者を搭載した状態での前記各荷重センサの出力から重心位置を求め、重心動揺パラメータであるその重心位置の所定期間に亘る総軌跡長と、前記軌跡の最外周線によって区画された図形の面積(外周面積)との比を求めることで、前記平衡機能障害の病態の評価に役立てることが示されている。 In Patent Document 1, three load sensors are installed on the back surface of the platform, the center of gravity position is obtained from the output of each load sensor in a state in which a subject is mounted on the platform, and the center of gravity position that is a center of gravity swing parameter is predetermined. It is shown that the ratio of the total trajectory length over a period and the area (outer peripheral area) of the figure defined by the outermost peripheral line of the trajectory is useful for evaluating the pathological condition of the balance dysfunction.
 また、特許文献2では、重心動揺計とあるものの、重心位置パラメータである平均重心位置を求めて、矯正の元データとしている。 In Patent Document 2, although there is a center of gravity shake meter, an average center of gravity position which is a center of gravity position parameter is obtained and used as original data for correction.
 重心バランス能力は、三半器官等の感覚器官の能力だけでなく、筋力や関節の柔軟性等の運動能力にも影響される。そして、前記特許文献2の重心位置パラメータは、身体の偏りを反映した指標と考えることができる。一方、人間は直立姿勢時においても絶えず揺れながらバランスを保っていると考えられており、前記特許文献1の総軌跡長、矩形面積等の重心動揺パラメータは、前記身体の偏りだけでなく、前記運動能力も反映した指標と考えることができる。しかしながら、これら2つのパラメータを個別に用いても、特に前記運動能力による影響が考慮されず、前記重心バランス能力を正確に判定することができないという問題がある。
特許第2760471号公報 特許第2760472号公報
The ability to balance the center of gravity is influenced not only by the ability of sensory organs such as the semi-hemi organs but also by the ability of movement such as muscle strength and joint flexibility. The center-of-gravity position parameter of Patent Document 2 can be considered as an index reflecting the body bias. On the other hand, human beings are thought to maintain balance while swinging even in an upright posture, and the center-of-gravity parameters such as the total trajectory length and rectangular area of Patent Document 1 are not limited to the body bias, It can be considered as an index that reflects athletic ability. However, even if these two parameters are used individually, there is a problem in that the influence of the athletic ability is not taken into consideration and the center-of-gravity balance ability cannot be accurately determined.
Japanese Patent No. 2760471 Japanese Patent No. 2760472
 本発明の目的は、重心バランス能力を背景技術よりも精度よく判定することができる重心バランス判定装置を提供することである。 An object of the present invention is to provide a center-of-gravity balance determination apparatus that can determine the center-of-gravity balance ability more accurately than the background art.
 本発明の一局面に従う重心バランス判定装置は、踏み台の裏面に設置された3つ以上の荷重センサと、前記踏み台上に被験者を搭載した状態での前記各荷重センサからの出力を予め定める周期でサンプリングし、その結果に基づいて前記被験者の重心位置である演算位置を繰り返し演算し、所定期間内に演算された前記重心位置である各演算位置から、前記被験者の重心のバランスをとる能力である重心バランス能力を判定するバランス能力判定部とを備え、前記バランス能力判定部は、前記所定期間内における演算位置の総軌跡長を、前記演算位置の前後方向および左右方向の最大変位で囲まれる矩形の矩形面積で除した値に基づいて、前記重心バランス能力を判定する。 The center-of-gravity balance determination device according to one aspect of the present invention includes three or more load sensors installed on the back surface of a step and an output from each of the load sensors in a state where a subject is mounted on the step in a predetermined cycle. The ability to sample, repeatedly calculate the position of the subject's center of gravity based on the results, and balance the center of gravity of the subject from each position calculated as the center of gravity calculated within a predetermined period. A balance capability determination unit that determines a center of gravity balance capability, wherein the balance capability determination unit is a rectangle surrounded by the maximum trajectory length of the calculation position within the predetermined period by the maximum displacement in the front-rear direction and the left-right direction of the calculation position. The center-of-gravity balance ability is determined based on the value divided by the rectangular area.
 前記重心バランス能力は、三半器官等の感覚器官の能力だけでなく、筋力や関節の柔軟性等の運動能力にも影響される。これは、本願発明者らが各種運動と重心バランスとの関係を詳細に検討した結果、適切な運動を所定期間行うことによる筋力、関節の柔軟性、姿勢の改善が、重心バランス指標に現れるという知見に基づくものである。ここで、人間は直立姿勢時においても絶えず揺れながらバランスを保っていると考えられており、前記総軌跡長および矩形面積の重心動揺パラメータは、前記身体の偏りだけでなく、運動能力も反映した指標と考えることができる。 The center-of-gravity balance ability is influenced not only by the ability of sensory organs such as the half organs but also by the ability of movement such as muscle strength and joint flexibility. This is because, as a result of detailed examination of the relationship between various exercises and the center of gravity balance, the inventors of the present application said that improvement of muscle strength, joint flexibility, and posture by performing appropriate exercise for a predetermined period appears in the center of gravity balance index. Based on knowledge. Here, it is considered that humans maintain balance while swinging even in an upright posture, and the total trajectory length and the center of gravity swing parameter of the rectangular area reflect not only the body bias but also the exercise ability. It can be considered as an indicator.
 その内、前記所定期間内における演算位置の総軌跡長は、重心をその所定期間内に移動させられる能力である。一方、前記所定期間内における最大変位およびその前後方向および左右方向の乗算値である矩形面積は、重心をその範囲(矩形面積)内で留めておく能力であり、従来から用いられる外周面積に比べて、前後方向および左右方向の身体のゆがみや筋力のアンバランスなどの影響が感度良く現れる。 Among them, the total trajectory length of the calculation position within the predetermined period is the ability to move the center of gravity within the predetermined period. On the other hand, the maximum displacement within the predetermined period and the rectangular area that is a multiplication value in the front-rear direction and the left-right direction are the ability to keep the center of gravity within the range (rectangular area), compared with the outer peripheral area conventionally used Thus, effects such as front / rear and left / right body distortion and muscle imbalance appear with high sensitivity.
 そして、前記総軌跡長を矩形面積で除した値は、単位面積当りの重心移動量を現す指標であり、絶えず細かい重心の揺れを行っており、しかも狭い範囲で行っている場合に高くなり、特にバレエ、体操、柔道など、前記バランス能力が重要なスポーツ選手で高く出る傾向がある。また、前記外周面積は、それを測定するには、画像解析をして、ドット数をカウントする必要があり、大きなメモリを消費するのに対して、矩形面積は、前後方向および左右方向の最大変位を乗算するだけでよく、容易に求めることができる。 Then, the value obtained by dividing the total trajectory length by the rectangular area is an index that expresses the amount of movement of the center of gravity per unit area, is constantly finely swaying the center of gravity, and becomes high when performing in a narrow range, In particular, there is a tendency for athletes whose balance ability is important, such as ballet, gymnastics, and judo, to be high. Further, in order to measure the outer peripheral area, it is necessary to perform image analysis and count the number of dots, which consumes a large memory, whereas the rectangular area is the maximum in the front-rear direction and the left-right direction. It is only necessary to multiply the displacement, and it can be easily obtained.
 したがって、前記総軌跡長を矩形面積で除した値から重心バランス能力を判定することで、重心バランス能力を背景技術よりも精度良く判定することができ、身体のゆがみや運動能力を(家庭内で)簡単にチェックすることができる。また、生活習慣病の自己管理において日々の運動トレーニングが有効であるかどうかを前記重心バランス能力を用いて評価し、必要に応じてトレーニング内容を修正する目安として活用することもでき、極めて有用である。 Therefore, by determining the center of gravity balance ability from the value obtained by dividing the total trajectory length by the rectangular area, the center of gravity balance ability can be determined more accurately than in the background art, and the body distortion and exercise ability can be determined at home. ) Easy to check. In addition, it is possible to evaluate whether daily exercise training is effective in self-management of lifestyle-related diseases by using the center of gravity balance ability, and it can be used as a guideline to correct the training contents as necessary. is there.
本発明の実施の第1の形態に係る重心バランス判定装置の平面図である。It is a top view of the gravity center balance determination apparatus which concerns on the 1st Embodiment of this invention. 前記重心バランス判定装置の底面図である。It is a bottom view of the said gravity center balance determination apparatus. 前記重心バランス判定装置の縦断面図である。It is a longitudinal cross-sectional view of the said gravity center balance determination apparatus. 前記重心バランス判定装置における脚部の拡大断面図である。It is an expanded sectional view of the leg part in the said gravity center balance determination apparatus. 前記重心バランス判定装置の使用方法を説明するための図である。It is a figure for demonstrating the usage method of the said gravity center balance determination apparatus. 重心動揺軌跡の一例を示すグラフである。It is a graph which shows an example of a gravity center fluctuation locus. 前記重心バランス判定装置の電気的構成を示すブロック図である。It is a block diagram which shows the electric constitution of the said gravity center balance determination apparatus. 前記重心バランス判定装置におけるバランス能力の判定動作を説明するためのフローチャートである。It is a flowchart for demonstrating the balance capability determination operation | movement in the said gravity center balance determination apparatus. 前記重心バランス判定装置における判定方法を説明するための重心動揺軌跡のグラフである。It is a graph of the gravity center fluctuation locus | trajectory for demonstrating the determination method in the said gravity center balance determination apparatus. 本発明の実施の第2の形態に係る重心バランス判定装置の電気的構成を示すブロック図である。It is a block diagram which shows the electric constitution of the gravity center balance determination apparatus which concerns on the 2nd Embodiment of this invention. 前記図10で示す重心バランス判定装置における重心バランスの安定を判定する方法の第1の態様を説明するための軌跡長変動を示すグラフである。It is a graph which shows the locus | trajectory length fluctuation | variation for demonstrating the 1st aspect of the method of determining the stability of the gravity center balance in the gravity center balance determination apparatus shown in the said FIG. 前記図10で示す重心バランス判定装置における重心バランスの安定を判定する方法の第2の態様を説明するための前後方向の重心位置変動を示すグラフである。It is a graph which shows the gravity center position fluctuation | variation of the front-back direction for demonstrating the 2nd aspect of the method of determining the stability of the gravity center balance in the gravity center balance determination apparatus shown in the said FIG. 前記図10で示す重心バランス判定装置における重心バランスの安定を判定する方法の第3の態様を説明するための体重変動を示すグラフである。It is a graph which shows the body weight fluctuation | variation for demonstrating the 3rd aspect of the method of determining the stability of the gravity center balance in the gravity center balance determination apparatus shown in the said FIG. 本発明の実施の第3の形態に係る重心バランス判定装置における運動能力の判定方法を示す敏捷性と持久力とのグラフである。It is a graph of agility and endurance which shows the determination method of the athletic ability in the gravity center determination apparatus which concerns on the 3rd Embodiment of this invention. 本発明の実施の第4の形態に係る重心バランス判定装置の平面図である。It is a top view of the gravity center balance determination apparatus which concerns on the 4th Embodiment of this invention. 図15で示す重心バランス判定装置の電気的構成を示すブロック図である。It is a block diagram which shows the electric constitution of the gravity center balance determination apparatus shown in FIG. 重心位置(演算位置)の算出方法の一例を説明するための説明図である。It is explanatory drawing for demonstrating an example of the calculation method of a gravity center position (calculation position).
 [実施の形態1]
 図1は本発明の実施の第1の形態に係る重心バランス判定装置1の平面図であり、図2はその底面図であり、図3はその縦断面図である。本実施の形態に係る重心バランス判定装置1は、体重を計測する体重計の1機能として設けられるものである。したがって、外観形状は従来の体重計と類似している。重心バランス判定装置1の踏み台2の裏面には、3つ以上の脚部(図1~図3では参照符号8a~8dで示す4つ、総称するときは、以下参照符号8で示す)が設置され、踏み台2の上面には足を合わせる左右の足型3a,3bが設けられている。
[Embodiment 1]
1 is a plan view of a center-of-gravity balance determining apparatus 1 according to a first embodiment of the present invention, FIG. 2 is a bottom view thereof, and FIG. 3 is a longitudinal sectional view thereof. The center-of-gravity balance determination apparatus 1 according to the present embodiment is provided as one function of a weight scale that measures body weight. Therefore, the external shape is similar to a conventional scale. Three or more legs (four indicated by reference numerals 8a to 8d in FIGS. 1 to 3 and collectively referred to as reference numeral 8 hereinafter) are installed on the back surface of the step 2 of the center of gravity balance determination apparatus 1. In addition, left and right foot molds 3 a and 3 b for fitting feet are provided on the upper surface of the step platform 2.
 足型3a,3bには足を合わせ易くするための窪み4a,4b;5a,5bが設けられている。前記踏み台2の上面にはまた、着脱可能に、ケーブル線を介して接続される操作パネル13が埋込まれており、該操作パネル13は前記ケーブル線がリールに巻取られた状態で固定されている。前記踏み台2内には、電子回路基板10が内蔵されている。さらに、前記踏み台2の前面には電源スイッチ11が、底面には電池ボックス9がそれぞれ設けられている。 The foot molds 3a, 3b are provided with depressions 4a, 4b; 5a, 5b for easy alignment of the feet. An operation panel 13 that is detachably connected via a cable wire is also embedded in the upper surface of the step 2, and the operation panel 13 is fixed in a state where the cable wire is wound around a reel. ing. An electronic circuit board 10 is built in the step platform 2. Further, a power switch 11 is provided on the front surface of the step 2 and a battery box 9 is provided on the bottom surface.
 図4は、前記脚部8の拡大断面図である。前記各脚部8a~8dは円柱形に形成され、その内部には荷重受け6a~6d(総称するときは、以下参照符号6で示す)および荷重センサ7a~7d(総称するときは、以下参照符号7で示す)がそれぞれ埋込まれている。前記荷重受け6は、たとえば硬い金属が半球状に加工され、その半割れ部分が荷重センサ7の上面に固着され、頂点部分が踏み台2の底面に点接触しており、上(踏み台2)からの垂直荷重が水平方向へ逃げず、荷重センサ7に伝達する構造になっている。 FIG. 4 is an enlarged cross-sectional view of the leg portion 8. Each of the legs 8a to 8d is formed in a cylindrical shape, and inside thereof, load receivers 6a to 6d (generally referred to as reference numeral 6) and load sensors 7a to 7d (generally referred to as follows) (Indicated by reference numeral 7) are embedded. The load receiver 6 is made of, for example, a hard metal processed into a hemispherical shape, a half crack portion thereof is fixed to the upper surface of the load sensor 7, and the apex portion is in point contact with the bottom surface of the step platform 2, from above (the step platform 2). The vertical load is transmitted to the load sensor 7 without escaping in the horizontal direction.
 上述のように構成される重心バランス判定装置1において、被験者は電源スイッチ11を入れ、操作パネル13を引出し、例えば液晶パネル等の表示部14に表示される年齢、性別、身長、足の長さなどの身体基本情報を、入力指示に従い、入力部15から入力することで、重心バランスの測定が可能になる。次に、被験者が、踏み台2の窪み4a,4b;5a,5bに両足を合わせて立ち、図5に示すように両手をまっすぐに伸ばし、操作パネル13を把持すると、前記電子回路基板10では、被験者がその姿勢を保持している予め設定された所定の期間内で重心位置(演算位置)が演算され、図6に示すような重心動揺軌跡16が得られる。 In the center-of-gravity balance determination apparatus 1 configured as described above, the subject turns on the power switch 11, pulls out the operation panel 13, and displays the age, sex, height, and foot length displayed on the display unit 14 such as a liquid crystal panel, for example. By inputting the basic body information, such as, from the input unit 15 in accordance with the input instruction, the balance of the center of gravity can be measured. Next, when the subject stands with his feet aligned with the dents 4a, 4b; 5a, 5b of the step platform 2, with both hands straightened and gripping the operation panel 13, as shown in FIG. The center-of-gravity position (calculation position) is calculated within a predetermined period in which the subject holds the posture, and a center-of-gravity fluctuation locus 16 as shown in FIG. 6 is obtained.
 図17は、重心位置(演算位置)の算出方法の一例を説明するための説明図である。図17において、原点0から荷重センサまでのX軸方向の距離をm、Y軸方向の距離をLとする。被験者の荷重Wの重心が(x,y)であるとし、荷重センサ7a,7b,7c,7dがMa(kg),Mb(kg),Mc(kg),Md(kg)の荷重をそれぞれ検出したとすると、原点0を中心にX軸方向のモーメントが釣り合う位置すなわち重心位置(演算位置)のX座標は、下記の式(A)によって表される。
 x={m・(Mb+Md-Ma-Mc)}/W  ・・・(A)
FIG. 17 is an explanatory diagram for explaining an example of a calculation method of the gravity center position (calculation position). In FIG. 17, the distance in the X-axis direction from the origin 0 to the load sensor is m, and the distance in the Y-axis direction is L. Assume that the center of gravity of the load W of the subject is (x, y), and the load sensors 7a, 7b, 7c, 7d detect the loads of Ma (kg), Mb (kg), Mc (kg), Md (kg), respectively. If this is the case, the X coordinate of the position where the moment in the X-axis direction balances around the origin 0, that is, the gravity center position (calculation position) is expressed by the following equation (A).
x = {m · (Mb + Md−Ma−Mc)} / W (A)
そして、原点0を中心にY軸方向のモーメントが釣り合う位置すなわち重心位置(演算位置)のY座標は、下記の式(B)によって表される。
 y={L・(Ma+Mb-Mc-Md)}/W  ・・・(B)
 ただし、W=Ma+Mb+Mc+Md
Then, the position where the moments in the Y-axis direction are balanced with respect to the origin 0, that is, the Y coordinate of the gravity center position (calculation position) is expressed by the following equation (B).
y = {L · (Ma + Mb−Mc−Md)} / W (B)
However, W = Ma + Mb + Mc + Md
 したがって、式(A)、(B)を用いて、荷重センサ7a,7b,7c,7dで検出された重量値と、各センサー間の距離とから重心の座標位置(x,y)が算出できる。 Therefore, using the formulas (A) and (B), the coordinate position (x, y) of the center of gravity can be calculated from the weight value detected by the load sensors 7a, 7b, 7c, and 7d and the distance between the sensors. .
 このようにして所定期間、重心位置(演算位置)の座標を繰り返し算出し、得られた座標を順次線でつなぐと、図6に示すような重心動揺軌跡16が得られる。 When the coordinates of the center of gravity position (calculation position) are repeatedly calculated in this way for a predetermined period, and the obtained coordinates are sequentially connected by a line, a center-of-gravity fluctuation locus 16 as shown in FIG. 6 is obtained.
 この重心動揺軌跡16から、以下に示すようにして、重心位置(演算位置)の移動量(重心動揺軌跡16の長さ)を表す総軌跡長17、左右方向の最大変位(X座標の最大値と最小値との差)、および前後方向の最大変位(Y座標の最大値と最小値との差)、及びそれらの最大変位で囲まれる矩形の面積である矩形面積18を求めた後、(総軌跡長17)/(矩形面積18)を算出し、その(総軌跡長17)/(矩形面積18)から重心バランスの良否(能力)が判定される。そして、前記表示部14に体重と共に、例えばバランス能力が低い、標準、高いといった評価や点数が表示される。 From this center-of-gravity fluctuation trajectory 16, as shown below, the total trajectory length 17 representing the amount of movement of the center-of-gravity position (calculation position) (the length of the center-of-gravity fluctuation trajectory 16), the maximum horizontal displacement (the maximum value of the X coordinate) And the maximum displacement in the front-rear direction (difference between the maximum value and the minimum value of the Y coordinate) and the rectangular area 18 that is a rectangular area surrounded by these maximum displacements, The total trajectory length 17) / (rectangular area 18) is calculated, and the quality (ability) of the center of gravity balance is determined from the (total trajectory length 17) / (rectangular area 18). Then, the display unit 14 displays, together with the weight, evaluations and scores such as low balance ability, standard, and high balance.
 図7は、上述のように構成される重心バランス判定装置1の電気的構成を示すブロック図である。前記各荷重センサ7では、適宜ゼロ点調整が行われる。そして、各荷重センサ7で検出された重量を示す信号が、図示しないアンプなどで適宜増幅された後、AD変換部21で所定のサンプリング周期毎にAD変換されることで、各荷重センサ7で検出された重量を示すデータが、記憶部22のRAMなどから成る領域に記憶されてゆく。一方、前記入力部15から入力された被験者の身体基本情報は、前記記憶部22の不揮発性の領域に記憶(登録)されている。 FIG. 7 is a block diagram showing an electrical configuration of the center-of-gravity balance determination apparatus 1 configured as described above. In each of the load sensors 7, zero point adjustment is appropriately performed. A signal indicating the weight detected by each load sensor 7 is appropriately amplified by an amplifier (not shown) or the like, and then AD-converted by the AD converter 21 at a predetermined sampling period. Data indicating the detected weight is stored in an area including the RAM of the storage unit 22. On the other hand, the basic body information of the subject input from the input unit 15 is stored (registered) in a non-volatile area of the storage unit 22.
 演算部23は、例えば所定の演算処理を実行するCPU(Central Processing Unit)と、所定の制御プログラムが記憶されたROM(Read Only Memory)と、データを一時的に記憶するRAM(Random Access Memory)と、その周辺回路等とを備えて構成されている。そして、演算部23は、例えばROMに記憶された制御プログラムを実行することにより、体重計測部24(体重演算部)およびバランス能力判定部25として機能する。 The calculation unit 23 includes, for example, a CPU (Central Processing Unit) that executes predetermined calculation processing, a ROM (Read Only Memory) that stores a predetermined control program, and a RAM (Random Access Memory) that temporarily stores data. And its peripheral circuits and the like. And the calculating part 23 functions as the weight measurement part 24 (weight calculating part) and the balance ability determination part 25 by running the control program memorize | stored in ROM, for example.
 体重計測部24は、記憶部22から、サンプリング周期毎の各荷重センサ7a~7dの検出結果を読出し、そのサンプリング毎の検出値の合計値の変動を求め、変動が予め設定された所定値以内に収まった時点での当該合計値を体重として判定する。 The weight measurement unit 24 reads the detection results of the load sensors 7a to 7d for each sampling cycle from the storage unit 22, obtains the fluctuation of the total value of the detection values for each sampling, and the fluctuation is within a predetermined value set in advance. The total value when it falls within the range is determined as the weight.
 一方、バランス能力判定部25は、各荷重センサ7間の距離に基づき、重心位置座標をサンプリング毎に求める。なお、ここで求められる座標は、厳密には重心位置ではなく、足圧中心COP(Center of Position)であるが、静的状態では重心位置と足圧中心とはほぼ一致するとみなせるので、ここでは重心位置と表記する。バランス能力判定部25は、その重心位置からさらに演算を行って(総軌跡長17)/(矩形面積18)を求め、バランス能力を判定し、表示部14に表示させる。 On the other hand, the balance ability determination unit 25 obtains the center-of-gravity position coordinates for each sampling based on the distance between the load sensors 7. Note that the coordinates obtained here are not strictly the center of gravity position but the foot pressure center COP (Center of Position), but in the static state, it can be considered that the center of gravity position and the foot pressure center are almost the same. It is written as the center of gravity. The balance ability determination unit 25 further calculates from the position of the center of gravity to obtain (total trajectory length 17) / (rectangular area 18), determines the balance ability, and causes the display unit 14 to display the balance ability.
 具体的には、例えばα>βの関係を有する第1閾値αと、第2閾値βとを予め設定しておき、バランス能力判定部25は、(総軌跡長17)/(矩形面積18)の値が、第1閾値αを超える場合バランス能力が高いと判定し、第1閾値α以下、かつ第2閾値β以上の場合バランス能力が標準的と判定し、第2閾値βに満たない場合バランス能力が低いと判定するようにしてもよい。 Specifically, for example, a first threshold value α and a second threshold value β having a relationship of α> β are set in advance, and the balance ability determination unit 25 determines (total trajectory length 17) / (rectangular area 18). If the value exceeds the first threshold value α, it is determined that the balance ability is high. If the value is less than the first threshold value α and greater than or equal to the second threshold value β, the balance ability is determined to be standard, and the second threshold value β is not satisfied. It may be determined that the balance ability is low.
 これにより、バランス能力判定部25は、(総軌跡長17)/(矩形面積18)の値が大きいほど、被験者の重心バランス能力が高いと判定する。 Thereby, the balance ability determination unit 25 determines that the center of gravity balance ability of the subject is higher as the value of (total trajectory length 17) / (rectangular area 18) is larger.
 例えば、重心バランス能力が高いと考えられる人(例えばダンサー)と、重心バランス能力が標準的であると考えられる人(例えば20歳~40歳の会社員)とについて実験的に(総軌跡長17)/(矩形面積18)の値を算出し、重心バランス能力が高いと考えられる人の(総軌跡長17)/(矩形面積18)の値と、重心バランス能力が標準的であると考えられる人の(総軌跡長17)/(矩形面積18)の値との間の中央の値を第1閾値αとして用いることができる。 For example, a person (for example, a dancer) who is considered to have a high center-of-gravity balance ability and a person who is considered to have a standard center-of-gravity balance ability (for example, a company employee of 20 to 40 years old) experimentally (total trajectory length 17 ) / (Rectangular area 18) is calculated, and the value of (total trajectory length 17) / (rectangular area 18) and the center of gravity balance ability of a person who is considered to have high center of gravity balance ability are considered to be standard. A central value between the value of (total trajectory length 17) / (rectangular area 18) of the person can be used as the first threshold value α.
 また、例えば、重心バランス能力が標準的であると考えられる人と、重心バランス能力が低いと考えられる人(例えば65歳以上の高齢者)とについて実験的に(総軌跡長17)/(矩形面積18)の値を算出し、重心バランス能力が標準的と考えられる人の(総軌跡長17)/(矩形面積18)の値と、重心バランス能力が低いと考えられる人の(総軌跡長17)/(矩形面積18)の値との間の中央の値を第2閾値βとして用いることができる。 Also, for example, a person who is considered to have a standard center of gravity balance ability and a person who is considered to have a low center of gravity balance ability (for example, an elderly person 65 years or older) (total trajectory length 17) / (rectangle The value of (Area 18) is calculated, and the value of (total trajectory length 17) / (rectangular area 18) of a person whose center of gravity balance ability is considered to be standard and the person who is considered to have a low center of gravity balance ability (total trajectory length) The central value between 17) / (rectangular area 18) can be used as the second threshold value β.
 図8は、上述のバランス能力の判定動作を説明するためのフローチャートである。被験者は、ステップS1で先ず電源を入れ、ステップS2で、年齢、性別、身長、足の長さを入力する。ステップS3では、被験者が踏み台2に載った直後から(前記ゼロ点調整された荷重センサ7の出力に変動が生じた時点から)、各荷重センサ7の出力のサンプリングが予め設定された所定の周期で行われ、ステップS4では、前記体重計測部24で、得られた各荷重センサ7の検出結果の合計値によって体重が確定され、表示部14に結果が表示される。 FIG. 8 is a flowchart for explaining the determination operation of the balance ability described above. The subject first turns on the power in step S1, and inputs age, gender, height, and foot length in step S2. In step S3, immediately after the subject is placed on the platform 2 (from the time when the output of the load sensor 7 adjusted to the zero point fluctuates), the sampling of the output of each load sensor 7 is set at a predetermined cycle set in advance. In step S4, the weight measurement unit 24 determines the weight based on the total value of the obtained detection results of the load sensors 7, and the result is displayed on the display unit 14.
 ステップS5では、ステップS3での各荷重センサ7の検出結果から重心位置座標が逐次算出され、測定開始後の予め設定された所定期間に亘る重心位置座標が抽出される。ステップS6では、重心位置座標を用いて(総軌跡長17)/(矩形面積18)を演算してバランス能力レベルが判定され、ステップS7で結果が表示される。 In step S5, the center-of-gravity position coordinates are sequentially calculated from the detection results of the load sensors 7 in step S3, and the center-of-gravity position coordinates over a predetermined period after the start of measurement are extracted. In step S6, the balance ability level is determined by calculating (total trajectory length 17) / (rectangular area 18) using the barycentric position coordinates, and the result is displayed in step S7.
 ここで、バランス能力レベルを判定するために(総軌跡長17)/(矩形面積18)を用いる理由は以下のとおりである。先ず、総軌跡長17は、重心を単位時間に移動させる能力である。また、前後方向および左右方向の最大変位およびこれらの乗算値である矩形面積18は、重心をその範囲内にとどめておく能力であり、従来から用いられる外周面積に比べて、前後方向および左右方向の身体のゆがみや筋力のアンバランスなどの影響が感度良く現れる。人間は直立姿勢時においても絶えず揺れながらバランスを保っていると考えられており、前記総軌跡長および矩形面積がゼロになることはない。 Here, the reason for using (total trajectory length 17) / (rectangular area 18) to determine the balance ability level is as follows. First, the total trajectory length 17 is the ability to move the center of gravity in unit time. Further, the maximum displacement in the front-rear direction and the left-right direction and the rectangular area 18 which is a multiplication value thereof are the ability to keep the center of gravity within the range, and the front-rear direction and the left-right direction compared to the conventionally used outer peripheral area. Effects such as body distortion and muscle imbalance appear with high sensitivity. It is thought that humans maintain balance while constantly shaking even in an upright posture, and the total trajectory length and rectangular area do not become zero.
 そして、そのような所定期間内における演算位置の総軌跡長17を、前記演算位置の前後方向および左右方向の最大変位で囲まれる矩形面積18で除した値は、単位面積当りの重心移動量を現す指標であり、絶えず細かい重心の揺れを行っており、しかも狭い範囲で行っている場合に高くなる。そのため、素早く正確な動きと静止とをスムースに行う必要がある、特にバレエ、体操、柔道など、前記バランス能力が重要なスポーツ選手で高く出る傾向がある。 Then, the value obtained by dividing the total trajectory length 17 of the calculation position within such a predetermined period by the rectangular area 18 surrounded by the maximum displacement in the front-rear direction and the left-right direction of the calculation position is the center-of-gravity movement amount per unit area. It is an index to show, and it becomes high when the center of gravity is constantly swaying and it is performed in a narrow range. For this reason, it is necessary to smoothly perform quick and accurate movement and stillness, and in particular, there is a tendency to be high in athletes whose balance ability is important, such as ballet, gymnastics, and judo.
 詳しくは、背景技術に係る外周面積と本発明に係る矩形面積とでは基本概念が異なり、たとえば図9に示す重心動揺軌跡において、図9A,図9Bの2つの状態での外周面積27,28はまったく同じであるが、図9Aにおける矩形面積29の方が図9Bにおける矩形面積30に比べて小さい。これは前後、左右方向の身体のゆがみや筋力のアンバランスなどが重心動揺に影響を及ぼすためである。簡単のため、総軌跡長31,32もまったく同じとすると、総軌跡長31,32を外周面積27,28で割った従来から広く用いられている指標では、2つの状態ではまったく同じ値になる。これに対して、総軌跡長31,32を矩形面積29,30で割った本実施の形態の指標では、図9Aの方が図9Bに比べてバランス能力が高いと判断される。これは、図9Aにおける矩形面積29の方が図9Bにおける矩形面積30に比べて小さいことから、図9Aの方が狭い範囲内で重心移動を制御していることになり、バランス能力が総合的には高いと判断し得るためである。 Specifically, the basic concept differs between the outer peripheral area according to the background art and the rectangular area according to the present invention. For example, in the center of gravity fluctuation locus shown in FIG. 9, the outer peripheral areas 27 and 28 in the two states of FIGS. 9A and 9B are Although the same, the rectangular area 29 in FIG. 9A is smaller than the rectangular area 30 in FIG. 9B. This is because body distortion in the front-rear and left-right directions and imbalance in muscle strength affect the sway of the center of gravity. For the sake of simplicity, assuming that the total trajectory lengths 31 and 32 are exactly the same, the index that has been widely used in the past obtained by dividing the total trajectory lengths 31 and 32 by the outer peripheral areas 27 and 28 has the same value in the two states. . On the other hand, in the index of the present embodiment obtained by dividing the total trajectory lengths 31 and 32 by the rectangular areas 29 and 30, it is determined that the balance ability is higher in FIG. 9A than in FIG. 9B. Since the rectangular area 29 in FIG. 9A is smaller than the rectangular area 30 in FIG. 9B, the center of gravity movement is controlled within a narrower range in FIG. 9A, and the balance ability is comprehensive. This is because it can be judged to be expensive.
 実際は、総軌跡長17と矩形面積18が、それぞれ幾らから幾らの範囲では何点というように、前記記憶部22のROM領域などに予めテーブルとして格納されており、或いは(総軌跡長17)/(矩形面積18)が、幾らから幾らの範囲では何点というようなテーブルが格納されており、前記バランス能力判定部25は、得られた総軌跡長17および矩形面積18から、前記記憶部22のテーブルを参照し、或いは比を求めた後テーブルを参照し、得られた点数を総合的なバランス能力レベルの点数として、前記表示部14に表示する。 Actually, the total trajectory length 17 and the rectangular area 18 are stored in advance as a table in the ROM area or the like of the storage unit 22 so as to indicate how many points in each range, or (total trajectory length 17) / A table in which (rectangular area 18) is in a range from how many to what is stored is stored, and the balance capacity determination unit 25 calculates the storage unit 22 from the obtained total trajectory length 17 and rectangular area 18. , Or after obtaining the ratio, the table is referred to, and the obtained score is displayed on the display unit 14 as the score of the overall balance ability level.
 このようなテーブルは、例えば、バランス能力が高いと考えられる人、バランス能力が標準的であると考えられる人、及びバランス能力が低いと考えられる人等について、実験的に総軌跡長17と矩形面積18とを求め、統計的なデータ分布に基づき点数化することで、得られる。 For example, such a table has a total trajectory length of 17 and a rectangular shape experimentally for a person considered to have a high balance ability, a person considered to have a standard balance ability, and a person considered to have a low balance ability. The area 18 is obtained and scored based on the statistical data distribution.
 以上のように、本実施の形態の重心バランス判定装置1では、踏み台2の裏面に3つ以上の荷重センサ7が設置され、演算部23が、前記踏み台2上に被験者を搭載した状態での前記各荷重センサ7からの出力を予め定める周期でサンプリングし、その結果に基づいて重心バランス位置を演算し、所定期間に亘る演算位置から、前記被験者の重心バランス能力(重心バランスの良否)を判定するにあたって、バランス能力判定部25が、前記所定期間内における演算位置の総軌跡長17を、前記演算位置の前後方向および左右方向の最大変位で囲まれる矩形面積18で除した値に基づいて、前記重心バランス能力を判定する。 As described above, in the center-of-gravity balance determination apparatus 1 according to the present embodiment, three or more load sensors 7 are installed on the back surface of the platform 2, and the calculation unit 23 is in a state in which a subject is mounted on the platform 2. The output from each of the load sensors 7 is sampled at a predetermined cycle, and the center-of-gravity balance position is calculated based on the result, and the center-of-gravity balance ability (the center-of-gravity balance quality) is determined from the calculated position over a predetermined period. In doing so, the balance capacity determination unit 25 divides the total trajectory length 17 of the calculation position within the predetermined period by the rectangular area 18 surrounded by the maximum displacement in the front-rear direction and the left-right direction of the calculation position, The center of gravity balance ability is determined.
 ここで、前記重心バランス能力は、三半器官等の感覚器官の能力だけでなく、筋力や関節の柔軟性等の運動能力にも影響される。これは、本願発明者らが各種運動と重心バランスとの関係を詳細に検討した結果、適切な運動を所定期間行うことによる筋力、関節の柔軟性、姿勢の改善が、重心バランス指標に現れるという知見に基づくものである。そして、(総軌跡長17)/(矩形面積18)は、前記身体の偏りだけでなく、前記運動能力も反映した指標と考えることができる。 Here, the center-of-gravity balance ability is influenced not only by the ability of sensory organs such as the semi-hemi organ, but also by the ability of movement such as muscle strength and joint flexibility. This is because, as a result of detailed examination of the relationship between various exercises and the center of gravity balance, the inventors of the present application said that improvement of muscle strength, joint flexibility, and posture by performing appropriate exercise for a predetermined period appears in the center of gravity balance index. Based on knowledge. The (total trajectory length 17) / (rectangular area 18) can be considered as an index reflecting not only the body bias but also the athletic ability.
 したがって、(総軌跡長17)/(矩形面積18)から重心バランス能力を判定することで、重心バランス能力を正確に判定することができ、身体のゆがみや運動能力を簡単にチェックすることができる。ところで、健常者においても、近年、生活習慣病や運動不足による足腰の脆弱化が重心バランスの安定性に影響を及ぼしていると考えられている。重心バランスの安定性は、腹筋、背筋、下肢にあるひふく筋、ヒラメ筋などの筋力、股関節、膝関節、足関節の柔軟性などが関与する。また、姿勢(アライメント)も重心バランスに関与する。身体にゆがみが生じると重心バランスの安定性は低下する。 Therefore, by determining the center-of-gravity balance ability from (total trajectory length 17) / (rectangular area 18), it is possible to accurately determine the center-of-gravity balance ability, and to easily check body distortion and exercise ability. . By the way, even in healthy individuals, in recent years, it has been considered that weakness of the legs and hips due to lifestyle-related diseases and lack of exercise has affected the stability of the balance of the center of gravity. The stability of the balance of the center of gravity is related to the strength of the abdominal muscles, back muscles, puffer muscles in the lower limbs, soleus muscles, the flexibility of the hip joints, knee joints, and ankle joints. The posture (alignment) is also involved in the balance of the center of gravity. When the body is distorted, the stability of the center of gravity balance is reduced.
 しかしながらこれまでは、筋力、柔軟性、姿勢などの計測は専用の機器や画像診断などを用いて行われていた。そのため家庭内で間単に計測することは困難であった。しかしながら、本実施の形態の重心バランス判定装置1を用いることで、身体のゆがみや運動能力を家庭内で簡単にチェックすることができる。また、前記生活習慣病の自己管理において、日々の運動トレーニングが有効であるかどうかを前記重心バランス能力を用いて評価し、必要に応じてトレーニング内容を修正する目安として活用することもでき、極めて有用である。 However, until now, measurement of muscle strength, flexibility, posture, etc. has been performed using dedicated equipment and diagnostic imaging. For this reason, it was difficult to simply measure at home. However, by using the center-of-gravity balance determination apparatus 1 according to the present embodiment, it is possible to easily check body distortion and exercise ability at home. Moreover, in the self-management of the lifestyle-related diseases, it is possible to evaluate whether or not daily exercise training is effective using the center of gravity balance ability, and it can be used as a guideline for correcting the training content as necessary. Useful.
 また、従来から用いられる外周面積は、それを測定するには、重心の移動軌跡の外周線を画像で描き、画像解析をして、外周線で囲まれたエリアの画像のドット数をカウントする必要があり、大きなメモリを消費するのに対して、矩形面積は、前後方向および左右方向の最大変位を乗算するだけで算出できるので、容易に求めることができる。 In order to measure the outer peripheral area used in the past, the outer peripheral line of the movement locus of the center of gravity is drawn with an image, image analysis is performed, and the number of dots in the image of the area surrounded by the outer peripheral line is counted. The rectangular area can be calculated simply by multiplying the maximum displacement in the front-rear direction and the left-right direction, whereas it requires a large memory and is easily obtained.
 [実施の形態2]
 図10は本発明の実施の第2の形態に係る重心バランス判定装置41の電気的構成を示すブロック図である。この重心バランス判定装置41は、前述の重心バランス判定装置1に類似し、対応する部分には同一の参照符号を付して示し、その説明を省略する。注目すべきは、この重心バランス判定装置41では、演算部43に、重心バランス安定状態判定部46が設けられており、この重心バランス安定状態判定部46は、重心バランスが安定したと判定した時点で、前記体重計測部24に測定開始のトリガを、バランス能力判定部45に前記重心バランス位置の演算開始のトリガを与えることである。
[Embodiment 2]
FIG. 10 is a block diagram showing an electrical configuration of the center-of-gravity balance determination apparatus 41 according to the second embodiment of the present invention. The center-of-gravity balance determination device 41 is similar to the above-described center-of-gravity balance determination device 1, and corresponding portions are denoted by the same reference numerals, and description thereof is omitted. It should be noted that in the center-of-gravity balance determination device 41, the calculation unit 43 is provided with a center-of-gravity balance stable state determination unit 46, and the center-of-gravity balance stable state determination unit 46 determines that the center-of-gravity balance is stable. Thus, a trigger for starting measurement is given to the weight measuring unit 24, and a trigger for starting calculation of the center of gravity balance position is given to the balance ability determining unit 45.
 この点、従来の重心動揺計においては、被験者が立位姿勢を取ってからどの時点で計測を開始するか明確に定義されていなかった。このため、測定期間は測定者の主観によって曖昧に定められ、30~60秒も要していた。これに対して、本実施の形態では、重心バランスの判定期間を自動的に設定し、短時間で評価することができるとともに、再現性が良く、正確な判定を行うことができる。 In this regard, in the conventional center-of-gravity sway meter, it was not clearly defined at which point the measurement started after the subject took a standing posture. For this reason, the measurement period is ambiguously determined by the subjectivity of the measurer and takes 30 to 60 seconds. On the other hand, in this embodiment, the determination period of the center of gravity balance can be automatically set and evaluated in a short time, and the determination can be performed with good reproducibility and accuracy.
 具体的には、先ず第1の態様では、前記重心バランス安定状態判定部46は、前記被験者が前記踏み台2に足を載せた時点からカウント動作を開始し、予め設定された所定時間カウントすると重心バランスが安定状態であると判定する。図11は、前記被験者が踏み台2に足を載せた直後から50msec毎に軌跡長を求め、10秒間に亘るその50msec間の軌跡長の変動を示すグラフである。この図11では、被験者が踏み台2に足を載せた直後から約5秒で軌跡長がほぼ安定していることが理解される。 Specifically, first, in the first aspect, the center-of-gravity balance stable state determination unit 46 starts a counting operation from the time when the subject puts his / her foot on the step platform 2, and when the predetermined time is counted, the center of gravity is counted. It is determined that the balance is in a stable state. FIG. 11 is a graph showing the change in the trajectory length for 50 msec over 10 seconds after obtaining the trajectory length every 50 msec immediately after the subject puts his foot on the platform 2. In FIG. 11, it is understood that the trajectory length is almost stable in about 5 seconds immediately after the subject puts his / her foot on the platform 2.
 このため、前記重心バランス安定状態判定部46は、足を載せた直後から予め設定された所定の時間、たとえば前記5秒程度経過した時点で重心が安定状態に到達したと判定し、この時刻を演算開始時刻t0としてトリガを与え、そこから予め設定された所定の時間、たとえば10秒までにおける(総軌跡長17)/(矩形面積18)をバランス能力判定部45によって求めさせ、前記重心バランス能力を判定させる。これによって、繰返し測定においても再現性が良くなり、より正確に重心バランス能力を判定することができる。 For this reason, the center-of-gravity balance stable state determination unit 46 determines that the center of gravity has reached a stable state when a predetermined time, for example, about 5 seconds has passed since immediately after placing the foot, and determines this time. A trigger is given as the calculation start time t0, and (total trajectory length 17) / (rectangular area 18) up to a predetermined time, for example, up to 10 seconds, is obtained by the balance ability determination unit 45, and the center-of-gravity balance ability To determine. Thereby, reproducibility is improved even in repeated measurement, and the center-of-gravity balance ability can be determined more accurately.
 次に、第2の態様では、前記重心バランス安定状態判定部46は、前記被験者が前記踏み台2に足を載せた時点から、単位時間当りの重心移動距離が予め設定された所定範囲内に収束した状態が予め設定された所定回数連続した時点で重心バランスが安定状態であると判定する。図12は、前記被験者が踏み台2に足を載せた直後から10秒間の前後方向の重心位置変動を示すグラフである。この図12で示すように、被験者が踏み台2に足を載せた直後からしばらくの間は重心位置が定まらず、時間の経過とともに一定範囲に収まる。 Next, in the second aspect, the center-of-gravity balance stable state determination unit 46 converges within a predetermined range in which the center-of-gravity movement distance per unit time from the time when the subject places his / her foot on the platform 2. It is determined that the center-of-gravity balance is in a stable state at a point in time when the above state continues for a predetermined number of times set in advance. FIG. 12 is a graph showing the change in the center of gravity position in the front-rear direction for 10 seconds immediately after the subject puts his / her foot on the platform 2. As shown in FIG. 12, the position of the center of gravity is not determined for a while from immediately after the subject puts his / her foot on the platform 2, and falls within a certain range as time passes.
 前記重心バランス安定状態判定部46は、前記単位時間毎に、たとえば予め設定された所定のサンプリング周期毎に得られる重心位置の1サンプリング前との差分量が、予め設定された所定の範囲内に予め設定された所定回数連続して収束した時点で重心位置が安定状態になったと判定し、この時刻を演算開始時刻t0としてトリガを与える。そして、そこから予め設定された所定の時間、たとえば10秒までにおける(総軌跡長17)/(矩形面積18)を、バランス能力判定部45によって求めさせ、前記重心バランス能力を判定させる。このようにしてもまた、繰返し測定においても再現性が良くなり、より正確に重心バランス能力を判定することができる。 The center-of-gravity balance stable state determination unit 46 determines that, for each unit time, for example, the amount of difference from the one-sampling of the center-of-gravity position obtained at a preset predetermined sampling cycle is within a preset predetermined range. It is determined that the position of the center of gravity is in a stable state when it has converged continuously for a predetermined number of times set in advance, and a trigger is given with this time as the calculation start time t0. Then, (total trajectory length 17) / (rectangular area 18) for a predetermined time set in advance, for example, up to 10 seconds, is obtained by the balance ability judging unit 45, and the center of gravity balance ability is judged. Even in this case, reproducibility is improved even in repeated measurement, and the center-of-gravity balance ability can be determined more accurately.
 同様に第3の態様では、前記重心バランス安定状態判定部46は、前記被験者が前記踏み台2に足を載せた時点から、単位時間当りの体重の変化が予め設定された所定範囲内に収束した状態が予め設定された所定回数連続した時点で重心バランスが安定状態であると判定する。図13は、前記被験者が踏み台2に足を載せた直後から10秒間の体重変動を示すグラフである。この図13で示すように、被験者が踏み台2に足を載せた直後から荷重値の合計、すなわち前記体重を求め、その変動が予め設定された一定レベル以内に予め設定された所定回数連続して含まれた時点で重心バランスが安定した判定し、この時刻を演算開始時刻t0とする。このようにしてもまた、繰返し測定においても再現性が良くなり、より正確に重心バランス能力を判定することができる。 Similarly, in the third aspect, the center-of-gravity balance stable state determination unit 46 converges the change in weight per unit time within a predetermined range from the time when the subject puts his / her foot on the platform 2. When the state continues for a predetermined number of times set in advance, it is determined that the balance of the center of gravity is in a stable state. FIG. 13 is a graph showing the body weight fluctuation for 10 seconds immediately after the subject puts his / her foot on the platform 2. As shown in FIG. 13, immediately after the subject puts his / her foot on the platform 2, the total load value, that is, the weight is obtained, and the fluctuation is continuously performed a predetermined number of times within a predetermined level. When it is included, it is determined that the balance of the center of gravity is stable, and this time is set as a calculation start time t0. Even in this case, reproducibility is improved even in repeated measurement, and the center-of-gravity balance ability can be determined more accurately.
 [実施の形態3]
 図14は、本発明の実施の第3の形態に係る重心バランス判定装置における判定方法を説明するための図である。本実施の形態の重心バランス判定装置にも、前述の重心バランス判定装置1の構成を用いることができ、注目すべきは、前記演算部23のバランス能力判定部25が、前記重心バランス能力から運動能力レベルを判定することである。ここで、運動能力は、たとえば敏捷性および持久力である。
[Embodiment 3]
FIG. 14 is a diagram for explaining a determination method in the center-of-gravity balance determination apparatus according to the third embodiment of the present invention. The center-of-gravity balance determination apparatus according to the present embodiment can also use the configuration of the center-of-gravity balance determination apparatus 1 described above. It should be noted that the balance ability determination unit 25 of the calculation unit 23 exercises from the center of gravity balance ability. The ability level is determined. Here, the exercise ability is, for example, agility and endurance.
 敏捷性は筋肉の収縮、弛緩を調整する速度に関係する能力と考えられる。すなわち、敏捷性が高いことは筋肉の収縮、弛緩を調整する速度が速いということであり、調整速度が速いということは身体の重心バランスを調整する速度が速いということである。従って、敏捷性が高いほど小さな面積内で細かい揺れ動きで重心調整できることを意味し、総軌跡長/矩形面積が大きくなる。 Agility is thought to be an ability related to the speed of adjusting muscle contraction and relaxation. That is, the high agility means that the speed for adjusting the contraction and relaxation of muscles is fast, and the high adjustment speed means that the speed for adjusting the balance of the center of gravity of the body is fast. Therefore, it means that the higher the agility, the center of gravity can be adjusted with a small shaking motion within a small area, and the total trajectory length / rectangular area becomes large.
 そこで、バランス能力判定部25は、(総軌跡長17)/(矩形面積18)が大きいほど、被験者の俊敏性が優れ、敏捷性レベルが高いと判定する。 Therefore, the balance ability determination unit 25 determines that the greater the (total trajectory length 17) / (rectangular area 18), the better the subject's agility and the higher the agility level.
 また、持久力は筋肉の収縮、弛緩の状態を維持する能力と考えられるが、重心バランス能力では重心動揺が安定した後の持続性すなわち(総軌跡長17)/(矩形面積18)の変動を用いて持久力レベルを表すことができる。すなわち、重心動揺が安定した後、(総軌跡長17)/(矩形面積18)の時間経過に伴う変動が小さくほぼ一定の値が維持されていれば、持久力が高いと考えられ、(総軌跡長17)/(矩形面積18)の値が時間経過に伴い大きく変動するようであれば、持久力が低いと考えられる。 Endurance is thought to be the ability to maintain muscle contraction and relaxation, but the center of gravity balance ability is the change in stability after the sway of the center of gravity, that is, the change in (total trajectory length 17) / (rectangular area 18). Can be used to represent endurance level. That is, after the fluctuation of the center of gravity is stabilized, if the variation with time of (total trajectory length 17) / (rectangular area 18) is small and an almost constant value is maintained, the endurance is considered high. If the value of the trajectory length 17) / (rectangular area 18) varies greatly with time, the endurance is considered low.
 そこで、バランス能力判定部25は、重心動揺が安定した後の(総軌跡長17)/(矩形面積18)の時間経過に伴う変動が小さいほど、持久力が高く、持久力レベルが高いと判定する。 Therefore, the balance ability determination unit 25 determines that the endurance is higher and the endurance level is higher as the variation with time of (total trajectory length 17) / (rectangular area 18) after the center of gravity is stabilized is smaller. To do.
 図14は、本願発明者が、28名のモニタについてバランス評価を行い、横軸に敏捷性レベル、縦軸に持久力レベルで現した結果である。ここで敏捷性レベルは重心が安定後5秒間の(総軌跡長17)/(矩形面積18)の値を、10段階に区分して、(総軌跡長17)/(矩形面積18)の値が大きいほど点数が高く(敏捷性が高く)なるように0~10の点数を割り当てたものである。 FIG. 14 shows the results of the present inventor performing a balance evaluation on 28 monitors and showing the agility level on the horizontal axis and the endurance level on the vertical axis. Here, the agility level is a value of (total trajectory length 17) / (rectangular area 18) by dividing the value of (total trajectory length 17) / (rectangular area 18) for 5 seconds after the center of gravity is stabilized into 10 levels. A score of 0 to 10 is assigned so that the larger the value is, the higher the score is (high agility).
 また、持久力レベルは安定後1秒間の(総軌跡長17)/(矩形面積18)を連続5回算出し、それらの標準偏差を平均値で除した変動係数を10段階に区分して、この変動係数が小さいほど点数が高く(持久力が高く)なるように0~10の点数を割り当てたものである。 Further, the endurance level is calculated by continuously calculating (total trajectory length 17) / (rectangular area 18) for 1 second after stabilization five times, and dividing the coefficient of variation by dividing the standard deviation by the average value into 10 stages, A score of 0 to 10 is assigned so that the smaller the coefficient of variation, the higher the score (the higher the endurance).
 本実施の形態によれば、図14に示すように敏捷性および持久力レベルから、被験者の運動能力特性を4タイプに分けることが可能である。 According to the present embodiment, it is possible to classify the subject's motor ability characteristics into four types based on the agility and endurance levels as shown in FIG.
 このようにして、重心バランスレベルに加えて、敏捷性や持久力等の運動能力レベルも判定することができる。 In this way, in addition to the center of gravity balance level, it is also possible to determine athletic ability levels such as agility and endurance.
 [実施の形態4]
 図15は本発明の実施の第4の形態に係る重心バランス判定装置51の平面図であり、図16はその電気的構成を示すブロック図である。この重心バランス判定装置51は、前述の重心バランス判定装置1に類似し、対応する部分には同一の参照符号を付して示し、その説明を省略する。注目すべきは、本実施の形態では、踏み台2上の足型53a,53bにおいて、窪み54a,54bが入力電極である電流印加電極となっており、また操作パネル63の左右両側の把持部分64a,64bが出力電極である電圧測定電極となっているとともに、前記電流印加電極54a,54bから前記被験者の身体に電流を流す電流源55に、前記電圧測定電極64a,64b間の電圧を測定する電圧検出部65が設けられ、さらに演算部73には、前記体重計測部24およびバランス能力判定部25に加えて、体組成成分算出部66が設けられていることである。
[Embodiment 4]
FIG. 15 is a plan view of a center-of-gravity balance determination device 51 according to the fourth embodiment of the present invention, and FIG. 16 is a block diagram showing its electrical configuration. The center-of-gravity balance determination device 51 is similar to the center-of-gravity balance determination device 1 described above, and corresponding portions are denoted by the same reference numerals and description thereof is omitted. It should be noted that in this embodiment, in the foot molds 53a and 53b on the step platform 2, the depressions 54a and 54b serve as current application electrodes as input electrodes, and the grip portions 64a on both the left and right sides of the operation panel 63. , 64b are voltage measuring electrodes that are output electrodes, and a voltage between the voltage measuring electrodes 64a, 64b is measured to a current source 55 that sends current from the current applying electrodes 54a, 54b to the subject's body. A voltage detection unit 65 is provided, and the calculation unit 73 is further provided with a body composition component calculation unit 66 in addition to the weight measurement unit 24 and the balance ability determination unit 25.
 体組成成分算出部66は、前記電圧測定電極64a,64b間の電圧および電流源55から流した電流から身体インピーダンスを測定し、その身体インピーダンスに、前記操作パネル63から予め入力された年齢、性別、身長などの身体基本情報を用いて、体脂肪率、除脂肪量、筋肉量などの体組成成分を算出し、前記表示部14に表示する。 The body composition component calculation unit 66 measures body impedance from the voltage between the voltage measurement electrodes 64a and 64b and the current passed from the current source 55, and the age and sex input in advance from the operation panel 63 as the body impedance. Using body basic information such as height, body composition components such as body fat percentage, lean mass and muscle mass are calculated and displayed on the display unit 14.
 この重心バランス判定装置51の使用方法は、前述の図5と同様であり、被験者は電源スイッチ11を入れ、踏み台2から操作パネル63を取外し、ケーブル線60を引出す。続いて、表示部14に表示される年齢、性別、身長、足の長さなどの身体基本情報の入力指示に従い、入力部15からそれらの情報を入力することで、重心バランスおよび体組成の測定が可能になる。次に、踏み台2の窪み54a,54b;5a,5bに両足を合わせて立ち、前記図5に示すように両手をまっすぐに伸ばし、操作パネル63を把持すると、前記電子回路基板10では、被験者がその姿勢を保持している予め設定された所定の期間内で重心位置(演算位置)が求められると同時に、前記電子回路基板10の電流源55から、予め設定された所定の周波数で交流電流が供給され、電流印加電極54a,54bを介して被験者の足裏から身体に微弱な電流が印加される。この微弱な電流によって発生した電圧が、操作パネル63に設けられた電圧測定電極64a,64bから電圧検出部65で検出され、体組成成分算出部66に入力される。 The method of using the center-of-gravity balance determination device 51 is the same as in FIG. 5 described above, and the subject turns on the power switch 11, removes the operation panel 63 from the step 2, and pulls out the cable wire 60. Subsequently, according to an input instruction of basic body information such as age, gender, height, and foot length displayed on the display unit 14, the information is input from the input unit 15 to measure the balance of the center of gravity and body composition. Is possible. Next, when both feet stand in the depressions 54a, 54b; 5a, 5b of the step platform 2, both hands are straightened and the operation panel 63 is gripped as shown in FIG. At the same time as the center of gravity (calculation position) is determined within a predetermined period of time in which the posture is maintained, an alternating current is generated from the current source 55 of the electronic circuit board 10 at a predetermined frequency. A weak current is applied to the body from the sole of the subject via the current application electrodes 54a and 54b. The voltage generated by the weak current is detected by the voltage detection unit 65 from the voltage measurement electrodes 64 a and 64 b provided on the operation panel 63 and is input to the body composition component calculation unit 66.
 このように構成することで、体重、重心バランス能力とともに、体組成まで同時に測定することができ、健康状態をより詳しく知ることができる。 With this configuration, the body composition can be measured simultaneously with the weight and center of gravity balance ability, and the health condition can be known in more detail.
 以上、重心バランス能力を求める演算開始タイミングを重心動揺が安定状態になった時点としたが、被験者が足を踏み台2に載せた直後から安定状態に達するまでの過渡状態で開始してもよい。また、(総軌跡長17)/(矩形面積18)から重心バランス能力を判定する際に、年齢、性別、身長などの身体基本情報による補正テーブルを用いて判定するようにしてもよい。さらにまた、運動能力レベルを現す指標として(総軌跡長17)/(矩形面積18)を用いたが、前記総軌跡長17および矩形面積18自体を組合わせてもよく、また運動能力特性を、前記敏捷性および持久力以外に、さらに細かく分類してもよい。 As described above, the calculation start timing for obtaining the center-of-gravity balance ability is the time when the center-of-gravity sway becomes stable, but it may be started in a transient state immediately after the subject puts his foot on the stepping platform 2 until it reaches the stable state. Further, when determining the center-of-gravity balance ability from (total trajectory length 17) / (rectangular area 18), it may be determined using a correction table based on basic body information such as age, sex, and height. Furthermore, (total trajectory length 17) / (rectangular area 18) is used as an index representing the athletic ability level. However, the total trajectory length 17 and the rectangular area 18 themselves may be combined, and In addition to the agility and endurance, it may be further classified.
 すなわち、本発明の一局面に従う重心バランス判定装置は、踏み台の裏面に設置された3つ以上の荷重センサと、前記踏み台上に被験者を搭載した状態での前記各荷重センサからの出力を予め定める周期でサンプリングし、その結果に基づいて前記被験者の重心位置である演算位置を繰り返し演算し、所定期間内に演算された前記重心位置である各演算位置から、前記被験者の重心のバランスをとる能力である重心バランス能力を判定するバランス能力判定部とを備え、前記バランス能力判定部は、前記所定期間内における演算位置の総軌跡長を、前記演算位置の前後方向および左右方向の最大変位で囲まれる矩形の矩形面積で除した値に基づいて、前記重心バランス能力を判定する。 That is, the center-of-gravity balance determination device according to one aspect of the present invention predetermines outputs from the three or more load sensors installed on the back surface of the step and the load sensors in a state where the subject is mounted on the step. Ability to sample at periodic intervals, repeatedly calculate the position of the subject's center of gravity based on the result, and balance the center of gravity of the subject from each position calculated as the center of gravity calculated within a predetermined period A balance ability determination unit that determines the center-of-gravity balance ability, and the balance ability determination unit surrounds the total trajectory length of the calculation position within the predetermined period by the maximum displacement in the front-rear direction and the left-right direction of the calculation position. The center-of-gravity balance ability is determined based on the value divided by the rectangular area to be measured.
 上記の構成によれば、踏み台の裏面に3つ以上の荷重センサが設置され、バランス能力判定部が、前記踏み台上に被験者を搭載した状態での前記各荷重センサからの出力を予め定める周期でサンプリングし、その結果に基づいて重心位置を演算し、所定期間に亘る演算位置から、前記被験者の重心バランス能力(重心バランスの良否)を判定する。このとき、バランス能力判定部は、前記所定期間内における演算位置の総軌跡長を、前記演算位置の前後方向および左右方向の最大変位で囲まれる矩形面積で除した値に基づいて、前記重心バランス能力を判定する。 According to said structure, three or more load sensors are installed in the back surface of a step, and the balance capability determination part is a period which presets the output from each said load sensor in the state which mounts the test subject on the said step. Sampling is performed, and the position of the center of gravity is calculated based on the result, and the center-of-gravity balance ability (the center-of-gravity balance quality) of the subject is determined from the calculated position over a predetermined period. At this time, the balance ability determination unit, based on a value obtained by dividing the total trajectory length of the calculation position within the predetermined period by a rectangular area surrounded by the maximum displacement in the front-rear direction and the left-right direction of the calculation position, Determine ability.
 前記重心バランス能力は、三半器官等の感覚器官の能力だけでなく、筋力や関節の柔軟性等の運動能力にも影響される。これは、本願発明者らが各種運動と重心バランスとの関係を詳細に検討した結果、適切な運動を所定期間行うことによる筋力、関節の柔軟性、姿勢の改善が、重心バランス指標に現れるという知見に基づくものである。ここで、人間は直立姿勢時においても絶えず揺れながらバランスを保っていると考えられており、前記総軌跡長および矩形面積の重心動揺パラメータは、前記身体の偏りだけでなく、運動能力も反映した指標と考えることができる。 The center-of-gravity balance ability is influenced not only by the ability of sensory organs such as the half organs but also by the ability of movement such as muscle strength and joint flexibility. This is because, as a result of detailed examination of the relationship between various exercises and the center of gravity balance, the inventors of the present application said that improvement of muscle strength, joint flexibility, and posture by performing appropriate exercise for a predetermined period appears in the center of gravity balance index. Based on knowledge. Here, it is considered that humans maintain balance while swinging even in an upright posture, and the total trajectory length and the center of gravity swing parameter of the rectangular area reflect not only the body bias but also the exercise ability. It can be considered as an indicator.
 その内、前記所定期間内における演算位置の総軌跡長は、重心をその所定期間内に移動させられる能力である。一方、前記所定期間内における最大変位およびその前後方向および左右方向の乗算値である矩形面積は、重心をその範囲(矩形面積)内で留めておく能力であり、従来から用いられる外周面積に比べて、前後方向および左右方向の身体のゆがみや筋力のアンバランスなどの影響が感度良く現れる。 Among them, the total trajectory length of the calculation position within the predetermined period is the ability to move the center of gravity within the predetermined period. On the other hand, the maximum displacement within the predetermined period and the rectangular area that is a multiplication value in the front-rear direction and the left-right direction are the ability to keep the center of gravity within the range (rectangular area), compared with the outer peripheral area conventionally used Thus, effects such as front / rear and left / right body distortion and muscle imbalance appear with high sensitivity.
 そして、前記総軌跡長を矩形面積で除した値は、単位面積当りの重心移動量を現す指標であり、絶えず細かい重心の揺れを行っており、しかも狭い範囲で行っている場合に高くなり、特にバレエ、体操、柔道など、前記バランス能力が重要なスポーツ選手で高く出る傾向がある。また、前記外周面積は、それを測定するには、画像解析をして、ドット数をカウントする必要があり、大きなメモリを消費するのに対して、矩形面積は、前後方向および左右方向の最大変位を乗算するだけでよく、容易に求めることができる。 Then, the value obtained by dividing the total trajectory length by the rectangular area is an index that expresses the amount of movement of the center of gravity per unit area, is constantly finely swaying the center of gravity, and becomes high when performing in a narrow range, In particular, there is a tendency for athletes whose balance ability is important, such as ballet, gymnastics, and judo, to be high. Further, in order to measure the outer peripheral area, it is necessary to perform image analysis and count the number of dots, which consumes a large memory, whereas the rectangular area is the maximum in the front-rear direction and the left-right direction. It is only necessary to multiply the displacement, and it can be easily obtained.
 したがって、前記総軌跡長を矩形面積で除した値から重心バランス能力を判定することで、重心バランス能力を背景技術よりも精度良く判定することができ、身体のゆがみや運動能力を(家庭内で)簡単にチェックすることができる。また、生活習慣病の自己管理において日々の運動トレーニングが有効であるかどうかを前記重心バランス能力を用いて評価し、必要に応じてトレーニング内容を修正する目安として活用することもでき、極めて有用である。 Therefore, by determining the center of gravity balance ability from the value obtained by dividing the total trajectory length by the rectangular area, the center of gravity balance ability can be determined more accurately than in the background art, and the body distortion and exercise ability can be determined at home. ) Easy to check. In addition, it is possible to evaluate whether daily exercise training is effective in self-management of lifestyle-related diseases by using the center of gravity balance ability, and it can be used as a guideline to correct the training contents as necessary. is there.
 また、前記バランス能力判定部は、前記総軌跡長を前記矩形面積で除した値が大きいほど、前記被験者の重心バランス能力が高いと判定することが好ましい。 Further, it is preferable that the balance ability determination unit determines that the subject's center of gravity balance ability is higher as the value obtained by dividing the total trajectory length by the rectangular area is larger.
 総軌跡長を矩形面積で除した値は、上述したように、絶えず細かい重心の揺れを行っており、しかも狭い範囲で行っている場合に高くなるので、総軌跡長を矩形面積で除した値が大きいほど、被験者の重心バランス能力が高いと判定することができる。 The value obtained by dividing the total trajectory length by the rectangular area, as described above, is constantly increasing in the small center of gravity, and increases when it is performed in a narrow range, so the value obtained by dividing the total trajectory length by the rectangular area It can be determined that the larger the is, the higher the center of gravity balance ability of the subject is.
 また、前記各荷重センサの出力から、重心バランスが安定したか否かを判定し、安定した時点で、前記バランス能力判定部に、前記重心位置を演算させる重心バランス安定状態判定部をさらに備えることが好ましい。 Further, it is further provided with a center of gravity balance stable state determination unit that determines whether or not the center of gravity balance is stable from the output of each load sensor and causes the balance ability determination unit to calculate the center of gravity position when the balance is stable. Is preferred.
 上記の構成によれば、重心バランス安定状態判定部をさらに設け、その重心バランス安定状態判定部は、重心バランスが安定した時点で、バランス能力判定部に前記重心位置の演算のトリガを与える。 According to the above configuration, the center-of-gravity balance stable state determination unit is further provided, and the center-of-gravity balance stable state determination unit gives a trigger for calculating the center-of-gravity position to the balance ability determination unit when the center-of-gravity balance is stabilized.
 したがって、重心バランスの判定期間を自動的に設定することができるとともに、被験者が前記踏み台に足を載せた直後に一時的にバランスが不安定になっている期間が重心バランスの判定期間から除外される結果、重心バランス能力の判定精度を向上することができる。 Therefore, the center-of-gravity balance determination period can be automatically set, and a period in which the balance is temporarily unstable immediately after the subject puts his / her foot on the platform is excluded from the center-of-gravity balance determination period. As a result, the accuracy of determining the center of gravity balance ability can be improved.
 さらにまた、前記重心バランス安定状態判定部は、前記被験者が前記踏み台に足を載せた時点から所定時間経過したことにより重心バランスが安定状態であると判定することが好ましい。 Furthermore, it is preferable that the center-of-gravity balance stable state determination unit determines that the center-of-gravity balance is in a stable state when a predetermined time has elapsed since the subject placed his / her foot on the platform.
 上記の構成によれば、前記被験者が前記踏み台に足を載せた時点から経過時間のカウント動作を開始し、所定時間カウントすると重心バランスが安定状態であると判定するので、前記安定状態であることを容易に判定することができる。 According to the above configuration, the elapsed time starts counting from the time when the subject puts his / her foot on the platform, and when the predetermined time is counted, it is determined that the balance of the center of gravity is in a stable state. Can be easily determined.
 また、前記重心バランス安定状態判定部は、前記被験者が前記踏み台に足を載せた時点から、単位時間当りの重心移動距離または体重の変化が所定範囲内に収束した状態が所定回数連続した時点で重心バランスが安定状態であると判定することが好ましい。 In addition, the center-of-gravity balance stable state determination unit is configured to perform a predetermined number of times after the subject puts his or her foot on the platform, a state in which a change in the center-of-gravity movement distance or weight per unit time converges within a predetermined range. It is preferable to determine that the balance of the center of gravity is in a stable state.
 上記の構成によれば、被験者が前記踏み台に足を載せた直後に一時的にバランスが不安定になっている期間が重心バランスの判定期間から除外される結果、重心バランス能力の判定精度を向上することができる。 According to the above configuration, as a result of excluding the period in which the balance is temporarily unstable immediately after the subject puts his / her foot on the platform, the determination accuracy of the center of gravity balance is improved. can do.
 さらにまた、前記バランス能力判定部は、前記総軌跡長と前記矩形面積とを用いて運動能力レベルを判定することが好ましい。 Furthermore, it is preferable that the balance ability determination unit determines an exercise ability level using the total trajectory length and the rectangular area.
 上記の構成によれば、重心バランス能力のレベルに加えて、運動能力のレベルも判定することができる。 According to the above configuration, the level of athletic ability can be determined in addition to the level of the center of gravity balance ability.
 また、前記運動能力レベルは、俊敏性を表すものであり、前記バランス能力判定部は、さらに、前記総軌跡長を前記矩形面積で除した値が大きいほど、前記被験者の俊敏性が優れていると判定することが好ましい。 The athletic ability level represents agility, and the balance ability determination unit further increases the agility of the subject as the value obtained by dividing the total trajectory length by the rectangular area is larger. Is preferably determined.
 この構成によれば、敏捷性が高いほど小さな面積内で細かい揺れ動きで重心調整できることを意味し、総軌跡長を矩形面積で除した値が大きくなるから、バランス能力判定部は、総軌跡長を矩形面積で除した値が大きいほど、被験者の俊敏性が優れていると判定することができる。 According to this configuration, the higher the agility, the more the center of gravity can be adjusted with a small shaking movement within a small area, and the value obtained by dividing the total trajectory length by the rectangular area becomes larger. It can be determined that the greater the value divided by the rectangular area, the better the agility of the subject.
 また、前記運動能力レベルは、持久力を表すものであり、前記バランス能力判定部は、さらに、前記総軌跡長を前記矩形面積で除した値の、時間経過に伴う変動が小さいほど、持久力が高いと判定するようにしてもよい。 The athletic ability level represents endurance, and the balance ability determination unit further determines the endurance as the fluctuation with time of the value obtained by dividing the total trajectory length by the rectangular area decreases. May be determined to be high.
 この構成によれば、総軌跡長を矩形面積で除した値の時間経過に伴う変動が小さくほぼ一定の値が維持されていれば、持久力が高いと考えられるから、バランス能力判定部は、総軌跡長を矩形面積で除した値の時間経過に伴う変動が小さいほど、持久力が高いと判定することができる。 According to this configuration, since the variation with time of the value obtained by dividing the total trajectory length by the rectangular area is small and a substantially constant value is maintained, it is considered that the endurance is high. It can be determined that the endurance is higher as the variation with time of the value obtained by dividing the total trajectory length by the rectangular area is smaller.
 また、前記各荷重センサの出力の和から前記被験者の体重を求める体重演算部と、入力電極および出力電極と、前記入力電極から前記被験者の身体に電流を流す電流源と、前記電流の流れによる前記出力電極間の電圧から、身体インピーダンスを測定し、その身体インピーダンスから体組成成分を算出する体組成成分算出部とをさらに備えることが好ましい。 Further, according to a weight calculation unit that obtains the weight of the subject from the sum of outputs of the load sensors, an input electrode and an output electrode, a current source that sends current from the input electrode to the subject's body, and a flow of the current It is preferable to further include a body composition component calculation unit that measures body impedance from the voltage between the output electrodes and calculates a body composition component from the body impedance.
 上記の構成によれば、単体の装置で、前記重心バランスの良否判定とともに、体重および体組成の計測も同時に行うことができるようになる。 According to the above configuration, it is possible to simultaneously measure the weight and body composition as well as the determination of the balance of the center of gravity with a single device.
 また、前記荷重センサは4つであり、前記バランス能力判定部は、X、Y座標系における原点から各荷重センサまでのX軸方向の距離をm、Y軸方向の距離をL、各荷重センサがMa,Mb,Mc,Mdの荷重をそれぞれ検出したとすると、前記演算位置の座標(x,y)を、下記の式(A)、(B)によって演算することが好ましい。 Further, the number of load sensors is four, and the balance ability determination unit is configured such that the distance in the X-axis direction from the origin to each load sensor in the X and Y coordinate systems is m, the distance in the Y-axis direction is L, and each load sensor is , The coordinates (x, y) of the calculation position are preferably calculated by the following equations (A) and (B).
 x={m・(Mb+Md-Ma-Mc)}/W  ・・・(A)
 y={L・(Ma+Mb-Mc-Md)}/W  ・・・(B)
 ただし、W=Ma+Mb+Mc+Md
 この構成によれば、バランス能力判定部は、X、Y座標系における原点から各荷重センサまでのX軸方向の距離、Y軸方向の距離、及び各荷重センサによって検出される重量値を用いて、演算位置の座標を算出することができる。
x = {m · (Mb + Md−Ma−Mc)} / W (A)
y = {L · (Ma + Mb−Mc−Md)} / W (B)
However, W = Ma + Mb + Mc + Md
According to this configuration, the balance capacity determination unit uses the distance in the X-axis direction from the origin to each load sensor in the X and Y coordinate systems, the distance in the Y-axis direction, and the weight value detected by each load sensor. The coordinates of the calculation position can be calculated.

Claims (10)

  1.  踏み台の裏面に設置された3つ以上の荷重センサと、
     前記踏み台上に被験者を搭載した状態での前記各荷重センサからの出力を予め定める周期でサンプリングし、その結果に基づいて前記被験者の重心位置である演算位置を繰り返し演算し、所定期間内に演算された前記重心位置である各演算位置から、前記被験者の重心のバランスをとる能力である重心バランス能力を判定するバランス能力判定部とを備え、
     前記バランス能力判定部は、前記所定期間内における演算位置の総軌跡長を、前記演算位置の前後方向および左右方向の最大変位で囲まれる矩形の矩形面積で除した値に基づいて、前記重心バランス能力を判定すること
     を特徴とする重心バランス判定装置。
    3 or more load sensors installed on the back of the platform,
    The output from each of the load sensors in the state where the subject is mounted on the platform is sampled at a predetermined cycle, and the calculation position that is the center of gravity of the subject is repeatedly calculated based on the result, and the calculation is performed within a predetermined period. A balance ability determination unit that determines a center of gravity balance ability that is an ability to balance the center of gravity of the subject from each calculated position that is the center of gravity position,
    The balance ability determination unit is configured to calculate the balance of the center of gravity based on a value obtained by dividing the total trajectory length of the calculation position within the predetermined period by a rectangular area surrounded by a maximum displacement in the front-rear direction and the left-right direction of the calculation position. A center-of-gravity balance determination device characterized by determining ability.
  2.  前記バランス能力判定部は、
     前記総軌跡長を前記矩形面積で除した値が大きいほど、前記被験者の重心バランス能力が高いと判定すること
     を特徴とする請求項1記載の重心バランス判定装置。
    The balance ability determination unit
    The center-of-gravity balance determination device according to claim 1, wherein the center-of-gravity balance determination apparatus determines that the subject's center-of-gravity balance ability is higher as the value obtained by dividing the total trajectory length by the rectangular area is greater.
  3.  前記各荷重センサの出力から、重心バランスが安定したか否かを判定し、安定した時点で、前記バランス能力判定部に、前記重心位置を演算させる重心バランス安定状態判定部をさらに備えること
     を特徴とする請求項1又は2記載の重心バランス判定装置。
    It is further determined whether or not the center of gravity balance is stable from the output of each load sensor, and when the balance is stable, the balance ability determination unit further includes a center of gravity balance stable state determination unit that calculates the center of gravity position. The center-of-gravity balance determination apparatus according to claim 1 or 2.
  4.  前記重心バランス安定状態判定部は、
     前記被験者が前記踏み台に足を載せた時点から所定時間経過したことにより重心バランスが安定状態であると判定すること
     を特徴とする請求項3記載の重心バランス判定装置。
    The center-of-gravity balance stable state determination unit
    The center-of-gravity balance determination apparatus according to claim 3, wherein the center-of-gravity balance is determined to be in a stable state when a predetermined time has elapsed since the subject placed his / her foot on the platform.
  5.  前記重心バランス安定状態判定部は、
     前記被験者が前記踏み台に足を載せた時点から、単位時間当りの重心移動距離または体重の変化が所定範囲内に収束した状態が所定回数連続した時点で重心バランスが安定状態であると判定すること
     を特徴とする請求項3記載の重心バランス判定装置。
    The center-of-gravity balance stable state determination unit
    It is determined that the balance of the center of gravity is stable when a state in which the change in the center-of-gravity movement distance or body weight converges within a predetermined range from the time when the subject puts his / her foot on the stepping platform continues for a predetermined number of times. The center-of-gravity balance determination apparatus according to claim 3.
  6.  前記バランス能力判定部は、
     前記総軌跡長と前記矩形面積とを用いて運動能力レベルを判定すること
     を特徴とする請求項1~5のいずれか1項に記載の重心バランス判定装置。
    The balance ability determination unit
    The center-of-gravity balance determination apparatus according to any one of claims 1 to 5, wherein an athletic ability level is determined using the total trajectory length and the rectangular area.
  7.  前記運動能力レベルは、俊敏性を表すものであり、
     前記バランス能力判定部は、さらに、
     前記総軌跡長を前記矩形面積で除した値が大きいほど、前記被験者の俊敏性が優れていると判定すること
     を特徴とする請求項6記載の重心バランス判定装置。
    The athletic ability level represents agility,
    The balance ability determination unit further includes:
    The center-of-gravity balance determination device according to claim 6, wherein the larger the value obtained by dividing the total trajectory length by the rectangular area, the better the subject's agility.
  8.  前記運動能力レベルは、持久力を表すものであり、
     前記バランス能力判定部は、さらに、
     前記総軌跡長を前記矩形面積で除した値の、時間経過に伴う変動が小さいほど、持久力が高いと判定すること
     を特徴とする請求項6記載の重心バランス判定装置。
    The athletic ability level represents endurance,
    The balance ability determination unit further includes:
    The center-of-gravity balance determination device according to claim 6, wherein the endurance is determined to be higher as the change with time of the value obtained by dividing the total trajectory length by the rectangular area is smaller.
  9.  前記各荷重センサの出力の和から前記被験者の体重を求める体重演算部と、
     入力電極および出力電極と、
     前記入力電極から前記被験者の身体に電流を流す電流源と、
     前記電流の流れによる前記出力電極間の電圧から、身体インピーダンスを測定し、その身体インピーダンスから体組成成分を算出する体組成成分算出部とをさらに備えること
     を特徴とする請求項1~8のいずれか1項に記載の重心バランス判定装置。
    A weight calculator that calculates the weight of the subject from the sum of the outputs of the load sensors;
    Input and output electrodes;
    A current source for passing a current from the input electrode to the body of the subject;
    9. A body composition component calculation unit that measures body impedance from a voltage between the output electrodes due to the current flow and calculates a body composition component from the body impedance. The center-of-gravity balance determination apparatus according to claim 1.
  10.  前記荷重センサは4つであり、
     前記バランス能力判定部は、
     X、Y座標系における原点から各荷重センサまでのX軸方向の距離をm、Y軸方向の距離をL、各荷重センサがMa,Mb,Mc,Mdの荷重をそれぞれ検出したとすると、前記演算位置の座標(x,y)を、下記の式(A)、(B)によって演算すること
     x={m・(Mb+Md-Ma-Mc)}/W  ・・・(A)
     y={L・(Ma+Mb-Mc-Md)}/W  ・・・(B)
     ただし、W=Ma+Mb+Mc+Md
     を特徴とする請求項1~9のいずれか1項に記載の重心バランス判定装置。
    There are four load sensors,
    The balance ability determination unit
    If the distance in the X-axis direction from the origin to each load sensor in the X, Y coordinate system is m, the distance in the Y-axis direction is L, and each load sensor detects a load of Ma, Mb, Mc, Md, respectively, Calculate the coordinates (x, y) of the calculation position by the following formulas (A) and (B): x = {m · (Mb + Md−Ma−Mc)} / W (A)
    y = {L · (Ma + Mb−Mc−Md)} / W (B)
    However, W = Ma + Mb + Mc + Md
    The center-of-gravity balance determination device according to any one of claims 1 to 9, wherein:
PCT/JP2009/050932 2008-01-23 2009-01-22 Device for evaluating balance of center of gravity WO2009093632A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009550543A JPWO2009093632A1 (en) 2008-01-23 2009-01-22 Center of gravity balance judgment device
CN2009801030618A CN102088902A (en) 2008-01-23 2009-01-22 Device for evaluating balance of center of gravity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008012727 2008-01-23
JP2008-012727 2008-01-23

Publications (1)

Publication Number Publication Date
WO2009093632A1 true WO2009093632A1 (en) 2009-07-30

Family

ID=40901138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050932 WO2009093632A1 (en) 2008-01-23 2009-01-22 Device for evaluating balance of center of gravity

Country Status (3)

Country Link
JP (1) JPWO2009093632A1 (en)
CN (1) CN102088902A (en)
WO (1) WO2009093632A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102210584A (en) * 2011-06-07 2011-10-12 哈尔滨工程大学 Suspension type human body barycentre testing platform
JP2011217884A (en) * 2010-04-07 2011-11-04 Anima Kk Centroid oscillation system
JP2012061049A (en) * 2010-09-14 2012-03-29 Tanita Corp Stabilometer
JP2014176439A (en) * 2013-03-14 2014-09-25 Tanita Corp Motor function evaluation device, and motor function evaluation method
CN105852815A (en) * 2016-05-04 2016-08-17 深圳市汇思科电子科技有限公司 System and method for detecting balance ability of human body
JP2016179171A (en) * 2015-03-24 2016-10-13 富士ゼロックス株式会社 Standing posture evaluation device
JP2018033825A (en) * 2016-09-02 2018-03-08 アニマ株式会社 Apparatus and method for acquiring directional body trunk stability index
CN107967931A (en) * 2017-12-29 2018-04-27 新绎健康科技有限公司 Balance data collector
CN111214212A (en) * 2020-01-19 2020-06-02 上海佑久健康科技有限公司 Human body balance detection method and system

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106137132B (en) * 2013-03-14 2019-05-07 株式会社百利达 Motion function evaluating apparatus and method, arithmetic unit and method
TWI508030B (en) * 2013-08-07 2015-11-11 Li Chiang Chen Human body imbalance judging system and method thereof
CN105380652B (en) * 2015-12-18 2018-07-10 青岛海蓝康复器械有限公司 A kind of human motion postural assessment method and system
CN105816998A (en) * 2016-03-11 2016-08-03 上海泰亿格康复医疗科技股份有限公司 Method for measuring areal coordinate of balancing instrument
US20170296113A1 (en) * 2016-04-14 2017-10-19 Hong Kong Baptist University Combined device that measures the body weight and balance index
KR102614487B1 (en) * 2016-07-29 2023-12-15 엘지전자 주식회사 Electronic device and method for controlling the same
CN106491088B (en) * 2016-11-01 2019-04-19 吉林大学 A kind of balanced ability of human body appraisal procedure based on smart phone
CN107961014B (en) * 2017-12-29 2024-01-30 新绎健康科技有限公司 Body balance
CN108309236B (en) * 2018-01-15 2021-08-27 新绎健康科技有限公司 Human body balance evaluation method and system
KR102318085B1 (en) * 2018-12-06 2021-10-26 이정우 Pressure measuring foot plate, and exercise device for correcting body unbalance compring the same
CN114377269A (en) * 2022-01-12 2022-04-22 褚明礼 Method and device for determining balance ability index

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0428353A (en) * 1990-03-02 1992-01-30 Anima Kk Judging device for oscillation of center of gravity
JPH08215176A (en) * 1995-02-17 1996-08-27 Anima Kk Gravity center oscillation meter
JPH09168529A (en) * 1995-12-19 1997-06-30 Anima Kk Floor reaction force measuring device
JPH1085200A (en) * 1996-09-12 1998-04-07 Anima Kk Centroid oscillation meter
JP2003079599A (en) * 2001-09-07 2003-03-18 Matsushita Electric Works Ltd Device for evaluating balancing ability
JP2003339671A (en) * 2002-05-24 2003-12-02 Biospace Co Ltd Weighing machine with function to measure posture balance in human body

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0428353A (en) * 1990-03-02 1992-01-30 Anima Kk Judging device for oscillation of center of gravity
JPH08215176A (en) * 1995-02-17 1996-08-27 Anima Kk Gravity center oscillation meter
JPH09168529A (en) * 1995-12-19 1997-06-30 Anima Kk Floor reaction force measuring device
JPH1085200A (en) * 1996-09-12 1998-04-07 Anima Kk Centroid oscillation meter
JP2003079599A (en) * 2001-09-07 2003-03-18 Matsushita Electric Works Ltd Device for evaluating balancing ability
JP2003339671A (en) * 2002-05-24 2003-12-02 Biospace Co Ltd Weighing machine with function to measure posture balance in human body

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011217884A (en) * 2010-04-07 2011-11-04 Anima Kk Centroid oscillation system
JP2012061049A (en) * 2010-09-14 2012-03-29 Tanita Corp Stabilometer
CN102210584A (en) * 2011-06-07 2011-10-12 哈尔滨工程大学 Suspension type human body barycentre testing platform
CN102210584B (en) * 2011-06-07 2012-09-26 哈尔滨工程大学 Suspension type human body barycentre testing platform
JP2014176439A (en) * 2013-03-14 2014-09-25 Tanita Corp Motor function evaluation device, and motor function evaluation method
US9808184B2 (en) 2013-03-14 2017-11-07 Tanita Corporation Motor function evaluation device and motor function evaluation method
JP2016179171A (en) * 2015-03-24 2016-10-13 富士ゼロックス株式会社 Standing posture evaluation device
CN105852815A (en) * 2016-05-04 2016-08-17 深圳市汇思科电子科技有限公司 System and method for detecting balance ability of human body
JP2018033825A (en) * 2016-09-02 2018-03-08 アニマ株式会社 Apparatus and method for acquiring directional body trunk stability index
CN107967931A (en) * 2017-12-29 2018-04-27 新绎健康科技有限公司 Balance data collector
CN107967931B (en) * 2017-12-29 2024-01-26 新绎健康科技有限公司 Body balance data collector
CN111214212A (en) * 2020-01-19 2020-06-02 上海佑久健康科技有限公司 Human body balance detection method and system

Also Published As

Publication number Publication date
JPWO2009093632A1 (en) 2011-05-26
CN102088902A (en) 2011-06-08

Similar Documents

Publication Publication Date Title
WO2009093632A1 (en) Device for evaluating balance of center of gravity
WO2009093631A1 (en) Device for evaluating center of gravity balancing
US7901324B2 (en) Exercise detection apparatus
Banyard et al. Validity of various methods for determining velocity, force, and power in the back squat
JP3871247B2 (en) Center-of-gravity detection device that can evaluate motor ability
EP2777483B1 (en) Motor function evaluation device and motor function evaluation method
JP4990719B2 (en) Health measuring device
US20040082877A1 (en) Muscle measuring device
JP2009056010A (en) Body composition scale
JP2008539856A (en) Measurement and analysis of the force associated with the foot during a golf swing
JPH09168529A (en) Floor reaction force measuring device
EP3057505B1 (en) Method and apparatus for assessing the performances of an athlete that performs a gymnastic exercise
KR20190080156A (en) Berg balance testing apparatus and method for the same
TWI699188B (en) Cognitive function evaluation device, cognitive function evaluation system, cognitive function evaluation method, and program recording medium
JP2710223B2 (en) Body sway meter
JPH0355077A (en) Sole pressure detector
JP4959260B2 (en) Lower limb training device
US8016727B2 (en) State-of-exercise measuring apparatus and biometric apparatus
KR100454183B1 (en) Apparatus for measuring basal metabolism
JP2020192307A (en) Lower limb muscle strength evaluation method, lower limb muscle strength evaluation program, lower limb muscle strength evaluation device, and lower limb muscle strength evaluation system
JP2760472B2 (en) Body sway meter
JP2800912B2 (en) Body sway meter
JP2005253819A (en) Stabilometer
JP2007068623A (en) Lower limb training apparatus
CN113362948B (en) System for detecting muscle health state of object of interest

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980103061.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09704570

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009550543

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09704570

Country of ref document: EP

Kind code of ref document: A1