WO2009093561A1 - Process for production of inorganic nanoparticle using colloid as precursor and/or intermediate - Google Patents

Process for production of inorganic nanoparticle using colloid as precursor and/or intermediate Download PDF

Info

Publication number
WO2009093561A1
WO2009093561A1 PCT/JP2009/050728 JP2009050728W WO2009093561A1 WO 2009093561 A1 WO2009093561 A1 WO 2009093561A1 JP 2009050728 W JP2009050728 W JP 2009050728W WO 2009093561 A1 WO2009093561 A1 WO 2009093561A1
Authority
WO
WIPO (PCT)
Prior art keywords
colloid
precursor
hours
aqueous solution
particles
Prior art date
Application number
PCT/JP2009/050728
Other languages
French (fr)
Japanese (ja)
Inventor
Tomohiro Iwasaki
Original Assignee
Osaka Prefecture University Public Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Prefecture University Public Corporation filed Critical Osaka Prefecture University Public Corporation
Priority to JP2009550513A priority Critical patent/JPWO2009093561A1/en
Publication of WO2009093561A1 publication Critical patent/WO2009093561A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/08Ferroso-ferric oxide (Fe3O4)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0086Preparation of sols by physical processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • C01P2004/52Particles with a specific particle size distribution highly monodisperse size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties

Definitions

  • the present invention relates to a production method for obtaining inorganic nanoparticles such as magnetite particles that can be produced from an aqueous system.
  • Inorganic nanoparticles such as metals and ceramics are widely used as raw materials in various industries.
  • magnetite magnetite, triiron tetroxide
  • one of the metal oxides are ferromagnetic and have excellent electrical conductivity. Therefore, it is widely used as an electronic material.
  • magnetite nanoparticles 10 nanometers or less because of high integration of electronic devices and attempts in medical fields such as drug delivery systems.
  • coprecipitation method colloid method
  • divalent and trivalent iron ions are reacted in an aqueous solution, compares the operations of washing the product and separating it from the liquid phase. It is often used because of its simplicity (see Non-Patent Document 1).
  • the coprecipitation method performs the reaction at room temperature, so that the crystallinity of the product is lowered.
  • the magnetic properties of magnetite which are extremely important for practical use, depend strongly on their crystallinity and homogeneity, so the product obtained by the coprecipitation method is heated in an inert atmosphere after the reaction ( Annealing and annealing).
  • the crystallinity and homogeneity are improved by performing the heat treatment, particle growth also occurs at the same time. Therefore, even if it is 10 nanometers or less before the heat treatment, it becomes 20 nanometers or more after the heat treatment.
  • the hydrothermal method corresponds to a combination of the coprecipitation method and the subsequent heat treatment, but the same phenomenon occurs and particle growth is unavoidable.
  • Magnetite nanoparticles have been used in the medical field as a contrast agent for magnetic resonance imaging (MRI) (superparamagnetic iron oxide, Super Paragonic Iron Oxide: SPIO), but recently formed a complex with a drug. Research is also underway to target this to the affected area (tumor) (drug delivery system, DDS). At this time, a complex of magnetite and drug is injected into the blood, and this is delivered to the affected area using a magnet. However, it is necessary that the magnetite nanoparticles used are superparamagnetic materials of 10 nanometers or less. Become.
  • the superparamagnetic material exhibits ferromagnetism only when an external magnetic field is generated by bringing the magnet close to it, and when the external magnetic field is removed, there is no residual magnetization and the coercive force becomes zero. .
  • a large reaction area is obtained, and further, the effect of treatment is expected to be improved because it does not settle in blood.
  • magnetite nanoparticles larger than 10 nanometers are not superparamagnetic materials, residual magnetization occurs even when the external magnetic field is removed, and magnetization cohesion is likely to occur due to the coercive force.
  • Patent Document 1 As a method using an organic solvent.
  • organic solvent systems are difficult to handle environmentally.
  • Patent Document 2 As a method for synthesizing magnetite fine particles from an aqueous solution having a temperature of room temperature or lower, there are Patent Document 2 and Patent Document 3, but there are the following problems.
  • E The particle size is very large. Japanese Patent No.
  • the problem to be solved is that, in the conventional coprecipitation method, the reaction is performed at room temperature, so that the crystallinity of the product is low, and even if it is 10 nanometers or less before the heat treatment, 20 nanometers after the heat treatment. It is the point which becomes more than a meter.
  • an organic solvent is used or a surfactant is used in an aqueous system, which is inappropriate for application to the human body.
  • the present invention does not use additives such as organic solvent systems, oxidants, reducing agents, surfactants, etc., and mechanical energy (
  • An object of the present invention is to provide a method for producing inorganic nanoparticles, which advances the reaction only by mechanochemical effect) and improves the crystallinity without causing particle growth at the same time.
  • the solution of claim 1 of the present invention is that a colloidal state is produced using an aqueous solution of an inorganic compound, and the colloidal state is used as a precursor or / and an intermediate in an inert atmosphere and at a low temperature for a predetermined time.
  • ball mill mechanical stirring and mixing is performed to confirm that there is no unreacted colloid, the particles are centrifuged, washed, and then dried, and the colloid is characterized as a precursor or / and an intermediate. It is a method for producing inorganic nanoparticles.
  • the solution of claim 2 of the present invention is to produce an inorganic compound in a colloidal form from an aqueous solution, using the colloidal state as a precursor or / and an intermediate, and a rotational speed of 35 rpm to 140 rpm in an inert atmosphere and at a low temperature. It is characterized in that it is mixed by ball mill mechanical stirring and mixing for 12 hours on the low rotation side to 6 hours on the high rotation side, and confirmed that there is no unreacted colloid, and the particles are centrifuged, washed and dried. Yes.
  • sodium hydroxide corresponding to the stoichiometric ratio is dropped into an aqueous solution of an inorganic compound to adjust the pH to near neutrality, and the rotation is performed 140 times per minute in an inert atmosphere. It is characterized by performing ball milling at room temperature for 2 hours at room temperature.
  • the solution of claim 4 uses a mixture of ferrous sulfate heptahydrate and ferric chloride hexahydrate as an inorganic compound, and adds sodium hydroxide to form a colloidal form at 5 ° C. Although it takes several days in the above, the reaction due to heat proceeds slowly in a standing state. To suppress this, magnetite nanoparticles are produced by the method described in the previous section at a low temperature of 5 ° C. or less. Yes.
  • the solution of claim 5 is characterized in that when sodium hydroxide is added, the pH is maintained at 12 or higher, and the inorganic nanoparticles having the colloid as a precursor or / and an intermediate as described above are used.
  • This method is characterized in that it is a method for producing magnetite nanoparticles.
  • the present invention can be carried out in an environmentally friendly aqueous system without using an additive such as a surfactant, an oxidant, and a reducing agent in an organic solvent, and is not mechanically heat as energy for advancing the reaction.
  • energy mechanochemical effect, mechanochemical reaction
  • it can be carried out at a low temperature, does not add heat, and acts on mechanical energy. Therefore, it is possible to realize high crystallization while suppressing particle growth and to control the progress of the reaction by mechanical energy, that is, milling conditions.
  • the present invention uses nanoparticle colloidal particle suspension as a starting solution to produce nanoparticles having colloidal precursors and / or intermediates such as iron oxides such as magnetite and hematite, and ferrites such as zinc and manganese.
  • it is applicable to the complexization.
  • the sample synthesized without adding a surfactant by the conventional method has an average particle diameter of 39 nm and is very large, and the saturation magnetization is 79 emu / g and exhibits ferromagnetism, but the coercive force is 73 Oe and is supernormal. It is not magnetic.
  • Table 1 shows a comparison between the conventional hydrothermal method and the method according to the present invention.
  • the rotation speed of the ball mill container has an influence on the synthesis time, it has been confirmed that it has almost no influence on the particle size and magnetic properties of the product, and is 120 to 160 rpm (85% to 115% of the critical rotation speed).
  • the synthesis is preferably within 12 hours.
  • the size, filling amount, and material of the ball change the mechanical energy acting on the sample suspension per unit time, but it only affects the length of the synthesis time as well as the rotational speed of the ball mill container.
  • a preferable range of the dynamic energy is 2 J / s to 30 J / s (calculated from a discrete element simulation of medium ball behavior).
  • FIG. 1 It is an X-ray-diffraction pattern of the product in the comparative example 1, and is a pattern of a starting solution (a) and cooling stationary 24 hours (b).
  • 2 is an electron micrograph of a product of a starting solution (a) and a cooled standing for 24 hours (b) in Comparative Example 1.
  • FIG. 2 It is a X-ray-diffraction pattern of the product in the comparative example 2 of this invention, The product of the milling process of Example 1 after 9 hours (a), and the product of the comparative example 2 after 9 hours of heating standing (b) It is an X-ray diffraction pattern.
  • 4 is an electron micrograph of a product after 9 hours of heating and standing in Comparative Example 2.
  • the suspension thus prepared was transferred to a stainless steel rolling ball mill (inner diameter: 90 mm, capacity: 500 ml) cooled to 5 ° C. or less.
  • the ball mill container was Sealed (third step).
  • a stainless steel ball having a diameter of 3.2 millimeters (1/8 inch) was used as the medium ball, and the filling amount was 40% of the container (including the space between the balls).
  • the ball mill container was cooled from the outside and rotated at a rotation speed of 140 times per minute with the inside kept at 5 ° C. or less (fourth step). After a predetermined milling time had elapsed (fifth step), the suspension and the medium balls were taken out from the ball mill container and separated using a wire mesh (sixth step). Next, the operation of centrifuging particles from the suspension and washing with ion-exchanged water was repeated three times (seventh step) and dried overnight under reduced pressure (eighth step).
  • FIG. 2 The ball mill type agitator used in the present invention is shown in FIG. 2 as a front view.
  • a ball mill container turntable 2 is laid in the insulated water tank 1, and the ball mill container 3 is placed thereon so as to be supported by rotation, and is rotated by a motor 4.
  • the ball mill container contains a suspension and a suitably sized stainless steel ball.
  • ⁇ -FeOOH unreacted goethite
  • FIG. 4 is an image of the nanoparticle diameter of the product after 9 hours of milling using an electron microscope.
  • Example 2 Experiments were carried out while changing the rotation speed of the ball mill container, and it was found that the magnetite formation reaction was completed in a process of 12 hours at 35 rpm, 9 hours at 70 rpm, and 6 hours at 140 rpm.
  • Table 2 shows the physical properties of the obtained sample.
  • FIG. 5 is a graph showing the relationship between the obtained particle size and frequency (%). According to this, the obtained particle diameter is predominantly around 10 nanometers, and all the particle diameters are 12 nanometers or less.
  • Example 3 The amount of 1N sodium hydroxide aqueous solution dropped into the aqueous solution of ferrous sulfate and ferric chloride was adjusted to 12 ml corresponding to the stoichiometric ratio, and the pH of the aqueous solution was adjusted to near neutral (approximately 7.5). When the resulting suspension was ball milled at room temperature for 2 hours at a rotational speed of 140 revolutions per minute, about 10 nanometer magnetite particles having relatively high crystallinity were obtained.
  • Example 4 Dissolve 4.5 mmol of ferrous sulfate alone in 60 ml of water, add 30 ml of 1N sodium hydroxide aqueous solution at a rate of 3 ml / min, and ball suspension for 6 hours at a rotational speed of 140 rpm. As a result, about 20 nanometer magnetite nanoparticles having relatively high crystallinity were obtained.
  • Example 5 4.5 mmol of ferrous sulfate and 4.5 mmol of sodium thiosulfate as a reducing agent are dissolved in 60 ml of water, 30 ml of 1N sodium hydroxide aqueous solution is added thereto at a rate of 3 ml per minute, and the resulting suspension is added at 140 rpm.
  • ball milling was performed for 6 hours at a rotational speed of 10 to 20 nanometers of magnetite nanoparticles with relatively high crystallinity were obtained.
  • FIG. 6 is an X-ray diffraction pattern of the starting solution (a) and 24 hours after cooling standing (b) in Comparative Example 1
  • FIG. 7 shows the starting solution before milling (A) and 24 hours after cooling standing ( It is an electron micrograph of B).
  • FIG. 8 is an X-ray diffraction pattern (a) of the product after 9 hours (a) of the milling treatment in Example 1 and an X-ray diffraction pattern of the product after 9 hours of heating and standing in Comparative Example 2 (b).
  • FIG. 9 is an electron micrograph of the product after 9 hours of heating and standing. As can be seen from these figures, the X-ray diffraction pattern of the obtained product was measured. As a result, the crystallinity was higher than that of the product obtained by the milling treatment of Example 1 for 9 hours. From observation, the particle diameter was 20 nanometers or more, and particle growth was confirmed.
  • the molar ratio of the divalent and trivalent iron ions as the raw material is 1: 2, these may be replaced with other compounds (for example, using FeCl2Fe instead of FeSO4). Further, the alkaline solution for raising the pH of the aqueous solution may be other than the sodium hydroxide solution.
  • a media mill equipped with a temperature control (cooling) device can be used even if the motion mechanism of the media is different.
  • the cooling temperature may be other temperature as long as the reaction does not proceed (however, it should be higher than the temperature at which the solution freezes).
  • Equipment and operating conditions such as ball mill container and medium ball size and material, container rotation speed, ball filling amount, and milling time are not particularly limited as long as the mechanical energy applied to the sample exceeds a certain threshold. None (these are factors controlling homogeneity and properties).
  • the milling processing time in the present invention is related to the rotation speed and speed of the ball mill, but these are not so much influence, but rather the influence of the cooling temperature etc. seems to be stronger.

Abstract

The object is to allow the reaction to proceed only with a mechanical energy (a mechanochemical effect) without using any organic solvent system or any additive such as an oxidizing agent, a reducing agent and a surfactant and without the need of heating from an aqueous system, and to improve the crystallinity without growing particles. Specifically disclosed is a process for producing an inorganic nanoparticle by using a colloid as a precursor and/or an intermediate, which comprises the steps of: producing a colloidal material by using an aqueous solution of an inorganic compound; mixing the colloidal material, as a precursor and/or an intermediate, by ball-mill-type mechanical stirring for a predetermined period at a low temperature in an inert atmosphere until any unreacted colloidal material does not appear; centrifuging the mixture to obtain particles; and washing and drying the particles.

Description

コロイドを前駆体もしくは/および中間体とする無機ナノ粒子の製造方法Method for producing inorganic nanoparticles using colloid as precursor or / and intermediate
 本発明は、水系から製造可能な、マグネタイト粒子などの無機ナノ粒子を得る製造方法に関するものである。 The present invention relates to a production method for obtaining inorganic nanoparticles such as magnetite particles that can be produced from an aqueous system.
 金属やセラミックスなどの無機ナノ粒子は各種工業における原材料として幅広く利用されており、なかでも金属酸化物の一つであるマグネタイト(磁鉄鉱、四酸化三鉄)のナノ粒子は強磁性と優れた電気伝導性を有することから電子材料として広く用いられている。特に、最近では電子機器の高集積化や、ドラッグデリバリーシステムなど医療分野での応用が試みられていることから、10ナノメートル以下のマグネタイトナノ粒子の必要性が増している。マグネタイトナノ粒子の合成方法は数多くあるが、なかでも水溶液中で二価および三価の鉄イオンを反応させる共沈法(コロイド法)は、生成物の洗浄や液相からの分離の操作が比較的簡単であるために、よく用いられている(非特許文献1を参照)。 Inorganic nanoparticles such as metals and ceramics are widely used as raw materials in various industries. Among them, magnetite (magnetite, triiron tetroxide) nanoparticles, one of the metal oxides, are ferromagnetic and have excellent electrical conductivity. Therefore, it is widely used as an electronic material. In particular, recently, there is an increasing need for magnetite nanoparticles of 10 nanometers or less because of high integration of electronic devices and attempts in medical fields such as drug delivery systems. There are many methods for synthesizing magnetite nanoparticles, but the coprecipitation method (colloid method), in which divalent and trivalent iron ions are reacted in an aqueous solution, compares the operations of washing the product and separating it from the liquid phase. It is often used because of its simplicity (see Non-Patent Document 1).
 共沈法は室温で反応を行うために生成物の結晶性が低くなる。実際に利用する際に極めて重要な、マグネタイトの磁気的な諸特性はその結晶性や均質性に強く依存するため、共沈法で得られた生成物を反応後に不活性雰囲気中で加熱処理(焼鈍、アニーリング)する必要がある。加熱処理を行うことで結晶性や均質性は向上するが、同時に粒子成長も起こるために加熱処理前の段階で10ナノメートル以下であっても加熱処理後には20ナノメートル以上となってしまう。また、水熱法は、共沈法とその後の加熱処理を組み合わせたものに相当するが、同様の現象が起こり、粒子成長は避けられない。 The coprecipitation method performs the reaction at room temperature, so that the crystallinity of the product is lowered. The magnetic properties of magnetite, which are extremely important for practical use, depend strongly on their crystallinity and homogeneity, so the product obtained by the coprecipitation method is heated in an inert atmosphere after the reaction ( Annealing and annealing). Although the crystallinity and homogeneity are improved by performing the heat treatment, particle growth also occurs at the same time. Therefore, even if it is 10 nanometers or less before the heat treatment, it becomes 20 nanometers or more after the heat treatment. The hydrothermal method corresponds to a combination of the coprecipitation method and the subsequent heat treatment, but the same phenomenon occurs and particle growth is unavoidable.
 また、マグネタイトナノ粒子は医療分野において従来から磁気共鳴イメージング(MRI)法の造影剤(超常磁性酸化鉄、Super Paramagnetic Iron Oxide:SPIO)として利用されているが、最近では薬物との複合体を形成させ、これを患部(腫瘍)へターゲティング(ドラッグデリバリーシステム、DDS)させる研究も進められている。この際、マグネタイトと薬物との複合体を血液中へ注入し、磁石を利用してこれを患部へ送達するが、使用するマグネタイトナノ粒子が10ナノメートル以下の超常磁性体であることが必要となる。すなわち、超常磁性体は磁石を近づけて外部磁界を生じさせた場合にのみ強磁性を示し、外部磁界を除去すると残留磁化がなく、保磁力はゼロとなるために、血液中で分散安定化する。これによって大きな反応面積が得られ、さらに血液中で沈降しないために治療効果の向上が見込まれる。これに対し、10ナノメートルより大きいマグネタイトナノ粒子は超常磁性体ではないために、外部磁界を除去しても残留磁化を生じ、保磁力があるために磁化凝集が起こりやすくなる。 Magnetite nanoparticles have been used in the medical field as a contrast agent for magnetic resonance imaging (MRI) (superparamagnetic iron oxide, Super Paragonic Iron Oxide: SPIO), but recently formed a complex with a drug. Research is also underway to target this to the affected area (tumor) (drug delivery system, DDS). At this time, a complex of magnetite and drug is injected into the blood, and this is delivered to the affected area using a magnet. However, it is necessary that the magnetite nanoparticles used are superparamagnetic materials of 10 nanometers or less. Become. That is, the superparamagnetic material exhibits ferromagnetism only when an external magnetic field is generated by bringing the magnet close to it, and when the external magnetic field is removed, there is no residual magnetization and the coercive force becomes zero. . As a result, a large reaction area is obtained, and further, the effect of treatment is expected to be improved because it does not settle in blood. On the other hand, since magnetite nanoparticles larger than 10 nanometers are not superparamagnetic materials, residual magnetization occurs even when the external magnetic field is removed, and magnetization cohesion is likely to occur due to the coercive force.
 超常磁性のマグネタイトナノ粒子を製造する従来の方法では、有機溶媒を使用したり、あるいは水系で界面活性剤を使用しており、人体への適用が不適当であった。このように、水系で有機溶媒や界面活性剤を使わずに結晶性の高い10ナノメートル以下の超常磁性マグネタイトナノ粒子を合成した例は未だ報告されていない。
 上記するように、従来のマグネタイトナノ粒子の調整方法では、合成過程において凝集による粒子成長を抑制するために界面活性剤が添加されているが、本発明では界面活性剤等のいかなる添加剤も用いずに、10ナノメートル以下の強磁性を有する超常磁性マグネタイトナノ粒子を調整する。
In the conventional method for producing superparamagnetic magnetite nanoparticles, an organic solvent is used or a surfactant is used in an aqueous system, which is inappropriate for application to the human body. Thus, an example of synthesizing superparamagnetic magnetite nanoparticles having a high crystallinity of 10 nanometers or less without using an organic solvent or a surfactant in an aqueous system has not yet been reported.
As described above, in the conventional method for preparing magnetite nanoparticles, a surfactant is added to suppress particle growth due to aggregation in the synthesis process, but in the present invention, any additive such as a surfactant is used. First, superparamagnetic magnetite nanoparticles having ferromagnetism of 10 nanometers or less are prepared.
 更に、有機系溶媒を用いる方法としては、特許文献1がある。しかし、有機溶媒系は環境的には取り扱いにくいものである。 Furthermore, there is Patent Document 1 as a method using an organic solvent. However, organic solvent systems are difficult to handle environmentally.
 室温以下の温度の水溶液からマグネタイト微粒子を合成する方法として特許文献2,特許文献3などがあるが、つぎのような問題点がある。
(a)いずれの手法においても合成に長時間(数日)を要する。
(b)合成後にアニーリングを要する。
(c)酸化剤等の添加物を使用している。
(d)生成物の磁気的な特性が良好でない。
(e)粒子径が非常に大きい。
特許第3989868号公報 特開平09-169525号公報 特開2006-219353号公報 特開2007-023027号公報 「Sub 5 nm magnetite nanoparticles : Synthesis、 microstructure、 and magnetic properties」Jun-Hua Wu、 Seung Pil Ko、 Hong-Ling Liu、 Sangsig Kim、 Jae-Seon Ju、 Young Keun Kim、 Materials Letters 61(2007) 3124-3129 「S.Meerod,G.Tumcharern,U.Wichai,M.Rutnakonpituk,Magnetitite nanoparticles stabilized with polymeric bilayer of poly(ethylene glycol) meyhylether-poly(ε-caprolactone)copolymers,Polymer49,3950-3956,2008.」
As a method for synthesizing magnetite fine particles from an aqueous solution having a temperature of room temperature or lower, there are Patent Document 2 and Patent Document 3, but there are the following problems.
(A) In any method, synthesis takes a long time (several days).
(B) Annealing is required after synthesis.
(C) An additive such as an oxidizing agent is used.
(D) The magnetic properties of the product are not good.
(E) The particle size is very large.
Japanese Patent No. 39898868 JP 09-169525 A JP 2006-219353 A JP 2007-023027 A " "S. Meerod, G. Tumcharern, U. Wichai, M. Rutnakonpituk, Magnetotide nanopolys stabile with a highly polymerized solid polymer of e-ylene.
 解決しようとする問題点は、従来の共沈法では室温で反応を行うために生成物の結晶性が低くなり、加熱処理前の段階で10ナノメートル以下であっても加熱処理後には20ナノメートル以上となってしまう点である。また、超常磁性のマグネタイトナノ粒子を製造する従来の方法では、有機溶媒を使用したり、あるいは水系で界面活性剤を使用しており、人体への適用が不適当である点である。 The problem to be solved is that, in the conventional coprecipitation method, the reaction is performed at room temperature, so that the crystallinity of the product is low, and even if it is 10 nanometers or less before the heat treatment, 20 nanometers after the heat treatment. It is the point which becomes more than a meter. In addition, in the conventional method for producing superparamagnetic magnetite nanoparticles, an organic solvent is used or a surfactant is used in an aqueous system, which is inappropriate for application to the human body.
 本発明は、有機溶剤系や酸化剤、還元剤、界面活性剤等の添加物を使用せず、水系から加熱することなく、反応の進行と結晶性の向上を行うように、機械的エネルギー(メカノケミカル効果)だけで反応を進め、同時に粒子成長させることなく結晶性を向上させる無機ナノ粒子の製造方法を提供することを目的とする。 The present invention does not use additives such as organic solvent systems, oxidants, reducing agents, surfactants, etc., and mechanical energy ( An object of the present invention is to provide a method for producing inorganic nanoparticles, which advances the reaction only by mechanochemical effect) and improves the crystallinity without causing particle growth at the same time.
 本発明の請求項1の解決手段は、無機化合物の水溶液を用いて、コロイド状に生成し、該コロイド状態を前駆体もしくは/および中間体として、不活性雰囲気中且つ低温下で、所定時間の間、ボールミル式機械的攪拌混合して、未反応のコロイドのないことを確認して、粒子を遠心分離して洗浄後、乾燥することを特徴とするコロイドを前駆体もしくは/および中間体とする無機ナノ粒子の製造方法であることを特徴としている。 The solution of claim 1 of the present invention is that a colloidal state is produced using an aqueous solution of an inorganic compound, and the colloidal state is used as a precursor or / and an intermediate in an inert atmosphere and at a low temperature for a predetermined time. In the meantime, ball mill mechanical stirring and mixing is performed to confirm that there is no unreacted colloid, the particles are centrifuged, washed, and then dried, and the colloid is characterized as a precursor or / and an intermediate. It is a method for producing inorganic nanoparticles.
 本発明の請求項2の解決手段は、無機化合物を水溶液からコロイド状に生成し、該コロイド状態を前駆体もしくは/および中間体として、不活性雰囲気中且つ低温下で、35rpm~140rpmの回転速度にかけて低回転側で12時間~高回転側で6時間ボールミル式機械的攪拌混合して、未反応のコロイドのないことを確認して、粒子を遠心分離して洗浄後、乾燥することを特徴としている。 The solution of claim 2 of the present invention is to produce an inorganic compound in a colloidal form from an aqueous solution, using the colloidal state as a precursor or / and an intermediate, and a rotational speed of 35 rpm to 140 rpm in an inert atmosphere and at a low temperature. It is characterized in that it is mixed by ball mill mechanical stirring and mixing for 12 hours on the low rotation side to 6 hours on the high rotation side, and confirmed that there is no unreacted colloid, and the particles are centrifuged, washed and dried. Yes.
 また、請求項3の解決手段は、無機化合物の水溶液に化学量論比に相当する水酸化ナトリウムを滴下してpHを中性付近に調整し、不活性雰囲気中で、毎分140回の回転速度で2時間のボールミル処理を室温でおこなうことを特徴としている。 According to a third aspect of the present invention, sodium hydroxide corresponding to the stoichiometric ratio is dropped into an aqueous solution of an inorganic compound to adjust the pH to near neutrality, and the rotation is performed 140 times per minute in an inert atmosphere. It is characterized by performing ball milling at room temperature for 2 hours at room temperature.
 更に、請求項4の解決手段は、無機化合物として、硫酸第一鉄七水和物と塩化第二鉄六水和物との混合物を用い、水酸化ナトリウムを添加してコロイド状とし、5℃以上では数日を要するものの静置した状態で熱による反応が緩やかに進行するので,これを抑制するために5℃以下の低温下で前項の方法で、マグネタイトナノ粒子を製造することを特徴としている。 Further, the solution of claim 4 uses a mixture of ferrous sulfate heptahydrate and ferric chloride hexahydrate as an inorganic compound, and adds sodium hydroxide to form a colloidal form at 5 ° C. Although it takes several days in the above, the reaction due to heat proceeds slowly in a standing state. To suppress this, magnetite nanoparticles are produced by the method described in the previous section at a low temperature of 5 ° C. or less. Yes.
 更にまた、請求項5の解決手段は、水酸化ナトリウムを添加する場合、pH12以上に保持するようにしたことを特徴とする、前項記載のコロイドを前駆体もしくは/および中間体とする無機ナノ粒子の製造方法によって、マグネタイトナノ粒子の製造方法であることを特徴としている。 Furthermore, the solution of claim 5 is characterized in that when sodium hydroxide is added, the pH is maintained at 12 or higher, and the inorganic nanoparticles having the colloid as a precursor or / and an intermediate as described above are used. This method is characterized in that it is a method for producing magnetite nanoparticles.
 本発明は、有機系溶媒での界面活性剤、酸化剤、還元剤などの添加物を使用せず、環境にやさしい水系で実施でき、また、反応を進めるためのエネルギーとして、熱ではなく機械的エネルギー(メカノケミカル効果、メカノケミカル反応)を利用し、しかもメカノケミカル効果だけで反応を進めるために、低温で実施することができ、熱を加えず、かつ、機械的なエネルギーを作用させているために、粒子成長が抑制されつつ、高結晶化が実現できるとともに、反応の進行を機械的エネルギー、すなわちミリング処理の条件で制御できるという効果がある。 The present invention can be carried out in an environmentally friendly aqueous system without using an additive such as a surfactant, an oxidant, and a reducing agent in an organic solvent, and is not mechanically heat as energy for advancing the reaction. In order to use energy (mechanochemical effect, mechanochemical reaction) and advance the reaction only by the mechanochemical effect, it can be carried out at a low temperature, does not add heat, and acts on mechanical energy. Therefore, it is possible to realize high crystallization while suppressing particle growth and to control the progress of the reaction by mechanical energy, that is, milling conditions.
 更に、本発明は、無機化合物コロイド粒子懸濁液を出発溶液とし、マグネタイトやヘマタイトなどの酸化鉄や、亜鉛・マンガン等のフェライトなど、コロイドを前駆体もしくは/および中間体とするナノ粒子の生成ならびにその複合化に適用可能である。 Furthermore, the present invention uses nanoparticle colloidal particle suspension as a starting solution to produce nanoparticles having colloidal precursors and / or intermediates such as iron oxides such as magnetite and hematite, and ferrites such as zinc and manganese. In addition, it is applicable to the complexization.
 従来法(水熱法)で界面活性剤を添加せずに合成した試料は、平均粒子径が39nmで非常に大きく、飽和磁化は79emu/gで強磁性を示すものの、保磁力は73Oeで超常磁性ではない。従来の水熱法と本発明による方法を比較した場合を表1に示す。
Figure JPOXMLDOC01-appb-T000001
The sample synthesized without adding a surfactant by the conventional method (hydrothermal method) has an average particle diameter of 39 nm and is very large, and the saturation magnetization is 79 emu / g and exhibits ferromagnetism, but the coercive force is 73 Oe and is supernormal. It is not magnetic. Table 1 shows a comparison between the conventional hydrothermal method and the method according to the present invention.
Figure JPOXMLDOC01-appb-T000001
 尚、ボールミル容器の回転速度は、合成時間に影響を及ぼすものの、生成物の粒子径や磁気特性にはほとんど影響しないことを確認しており、120~160rpm(臨界回転速度の85%~115%に相当)として12時間以内の合成とするのが好ましい。
 ボールの大きさや充填量、材質は、試料懸濁液に単位時間あたりに作用する機械的エネルギーを変化させるが、ボールミル容器の回転速度と同様に合成時間の長さに影響するだけであり、機械的エネルギーの好ましい範囲は2J/sから30J/s(媒体ボール挙動の離散要素シミュレーションより算出)である。
Although the rotation speed of the ball mill container has an influence on the synthesis time, it has been confirmed that it has almost no influence on the particle size and magnetic properties of the product, and is 120 to 160 rpm (85% to 115% of the critical rotation speed). The synthesis is preferably within 12 hours.
The size, filling amount, and material of the ball change the mechanical energy acting on the sample suspension per unit time, but it only affects the length of the synthesis time as well as the rotational speed of the ball mill container. A preferable range of the dynamic energy is 2 J / s to 30 J / s (calculated from a discrete element simulation of medium ball behavior).
本発明の実施形態における工程フロー図である。It is a process flow figure in an embodiment of the present invention. 本発明の実施形態に用いた、ボールミル式攪拌機の正面図である。It is a front view of the ball mill type agitator used for the embodiment of the present invention. 本発明の実施例1における生成物のX線回折パターンであり、(a)ミリング処理前、(b)ミリング処理1時間、(c)ミリング処理3時間、(d)ミリング処理6時間、(e)ミリング処理9時間のパターンである。It is an X-ray-diffraction pattern of the product in Example 1 of this invention, (a) Before milling process, (b) Milling process 1 hour, (c) Milling process 3 hours, (d) Milling process 6 hours, (e ) 9 hours of milling process. 本発明の実施例1におけるミリング処理9時間の生成物の電子顕微鏡写真である。It is an electron micrograph of the product of the milling process for 9 hours in Example 1 of this invention. 本発明の実施例2において、得られた粒径の大きさと頻度(%)の関係を示す図である。In Example 2 of this invention, it is a figure which shows the relationship between the magnitude | size of the obtained particle size, and frequency (%). 比較例1における生成物のX線回折パターンであり、出発溶液(a)および冷却静置24時間(b)のパターンである。It is an X-ray-diffraction pattern of the product in the comparative example 1, and is a pattern of a starting solution (a) and cooling stationary 24 hours (b). 比較例1における出発溶液(a)および冷却静置24時間(b)の生成物の電子顕微鏡写真である。2 is an electron micrograph of a product of a starting solution (a) and a cooled standing for 24 hours (b) in Comparative Example 1. FIG. 本発明の比較例2における生成物のX線回折パターンであり、実施例1のミリング処理9時間後(a)の生成物および比較例2における加熱静置9時間後(b)の生成物のX線回折パターンである。It is a X-ray-diffraction pattern of the product in the comparative example 2 of this invention, The product of the milling process of Example 1 after 9 hours (a), and the product of the comparative example 2 after 9 hours of heating standing (b) It is an X-ray diffraction pattern. 比較例2における加熱静置9時間後の生成物の電子顕微鏡写真である。4 is an electron micrograph of a product after 9 hours of heating and standing in Comparative Example 2.
 図1の本発明1実施例の工程フロー図で示すように、硫酸第一鉄七水和物(FeSO4 ・7H2 O)1.5ミリモル(0.417グラム)と塩化第二鉄六水和物(FeCl3 ・6H2 O)3.0ミリモル(0.812グラム)を、脱酸素処理したイオン交換水60ミリリットルに5℃以下に冷却しながら溶解させた(第1工程)。次に、この水溶液をマグネティックスターラーで激しく撹拌しながら、5℃以下に冷却した1規定の水酸化ナトリウム溶液をこの水溶液に毎分3ミリリットルの速度(水酸化ナトリウム溶液の濃度および滴下速度は予備実験により均質な生成物が得られる条件として決定)で30ミリリットル滴下することで(このときpH>12)、暗褐色のコロイド懸濁液を出発溶液として得た(第2工程)。このときは、二価の鉄イオンの酸化を防止するために、アルゴン雰囲気中で水酸化ナトリウム溶液を滴下した。このとき下記の反応が起こる。冷却下でもpHを上昇させた段階で少量のマグネタイト(Fe3 O4 )の生成反応が直ちに起こるが、冷却することでそれ以上の反応の進行を抑制でき、機械的エネルギーのみでマグネタイトの生成反応を進める。 As shown in the process flow diagram of the first embodiment of the present invention in FIG. 1, ferrous sulfate heptahydrate (FeSO4 7H2 O) 1.5 mmol (0.417 grams) and ferric chloride hexahydrate 3.0 mmol (0.812 g) of (FeCl3 · 6H2 O) was dissolved in 60 mL of deoxygenated ion exchange water while cooling to 5 ° C. or less (first step). Next, while stirring the aqueous solution vigorously with a magnetic stirrer, a 1N sodium hydroxide solution cooled to 5 ° C. or less was added to the aqueous solution at a rate of 3 ml / min (the concentration and dropping rate of the sodium hydroxide solution were preliminary experiments). Was added dropwise (pH> 12 at this time) to obtain a dark brown colloidal suspension as a starting solution (second step). At this time, a sodium hydroxide solution was dropped in an argon atmosphere in order to prevent oxidation of divalent iron ions. At this time, the following reaction occurs. A small amount of magnetite (Fe 3 O 4 生成) formation reaction occurs immediately when the pH is raised even under cooling, but the further reaction can be suppressed by cooling, and the formation reaction of magnetite proceeds only with mechanical energy. .
  Fe2+ + 2OH→ Fe(OH)2                           (1)
  Fe3+ + 3OH→ Fe(OH)3                           (2)
  Fe(OH)3 → α-FeOOH + H2 O          (3)
  Fe(OH)2 + 2α-FeOOH → Fe3 O4 + 2H2 O (4)
Fe 2+ + 2OH - → Fe ( OH) 2 (1)
Fe 3+ + 3OH → Fe (OH) 3 (2)
Fe (OH) 3 → α-FeOOH + H2O (3)
Fe (OH) 2 + 2α-FeOOH → Fe3 O4 + 2H2 O (4)
 このようにして調製された懸濁液を5℃以下に冷却された、ステンレス鋼製の転動ボールミル(内径90ミリメートル、容量500ミリリットル)に移し、気相をアルゴンで置換した後、ボールミル容器を密封した(第3工程)。媒体ボールとして直径3.2ミリメートル(1/8インチ)のステンレス鋼製ボールを用い、その充填量は容器の40%(ボール間の空隙含む)とした。ボールミル容器を外部から冷却することでその内部を5℃以下に保った状態で、毎分140回の回転速度で回転させた(第4工程)。所定のミリング時間が経過した(第5工程)後、ボールミル容器から懸濁液ならびに媒体ボールを取り出し、これらを金網を使って分離した(第6工程)。次に、懸濁液から粒子を遠心分離してイオン交換水で洗浄する操作を3回繰り返し(第7工程)、減圧下で一晩乾燥させた(第8工程)。 The suspension thus prepared was transferred to a stainless steel rolling ball mill (inner diameter: 90 mm, capacity: 500 ml) cooled to 5 ° C. or less. After replacing the gas phase with argon, the ball mill container was Sealed (third step). A stainless steel ball having a diameter of 3.2 millimeters (1/8 inch) was used as the medium ball, and the filling amount was 40% of the container (including the space between the balls). The ball mill container was cooled from the outside and rotated at a rotation speed of 140 times per minute with the inside kept at 5 ° C. or less (fourth step). After a predetermined milling time had elapsed (fifth step), the suspension and the medium balls were taken out from the ball mill container and separated using a wire mesh (sixth step). Next, the operation of centrifuging particles from the suspension and washing with ion-exchanged water was repeated three times (seventh step) and dried overnight under reduced pressure (eighth step).
 本発明に用いた、ボールミル式攪拌機は、正面図として図2に示す。保温水槽1の中に、ボールミル容器回転台2が敷設され、この上にボールミル容器3が回転支持されるように置かれ、モータ4により回転される。ボールミル容器の中には、懸濁液と適当な大きさのステンレス鋼製ボールが入れられている。 The ball mill type agitator used in the present invention is shown in FIG. 2 as a front view. A ball mill container turntable 2 is laid in the insulated water tank 1, and the ball mill container 3 is placed thereon so as to be supported by rotation, and is rotated by a motor 4. The ball mill container contains a suspension and a suitably sized stainless steel ball.
 このようにして得られた粒子の諸特性を下記の方法で評価した。
 評価方法として、
(イ)同定:粉末X線回折装置(リガク製RINT-1500)により、試料のX線回折パターンを既知のマグネタイトのパターンと比較した。
(ロ)粒子径:走査型電子顕微鏡(日本電子製JSM-6700FW)により測定した。(ハ)磁性:超伝導量子干渉素子磁束計(Quantum Design製MPMS)により測定(強磁性であることを確認)した。
Various properties of the particles thus obtained were evaluated by the following methods.
As an evaluation method,
(B) Identification: The X-ray diffraction pattern of the sample was compared with a known magnetite pattern by a powder X-ray diffractometer (RINT-1500 manufactured by Rigaku).
(B) Particle size: Measured with a scanning electron microscope (JSM-6700FW manufactured by JEOL). (C) Magnetism: Measured (confirmed to be ferromagnetic) with a superconducting quantum interference device magnetometer (MPMS manufactured by Quantum Design).
(実施例1)
 図3は、本発明の実施例1におけるミリング処理前(a)、ミリング処理1時間(b)、ミリング処理3時間(c)、ミリング処理6時間(d)、ミリング処理9時間(e)と変化させて得られた生成物のX線回折パターンである。
 図3のX線回折図からわかるように、3時間以下の処理では未反応のゲーサイト(α-FeOOH)の存在(横軸の2θ=21.2度のところに現れる)が確認できたが、6時間以上の処理でほぼ均一なマグネタイト相が形成されていることがわかった。電子顕微鏡観察より、9時間のミリング処理で得られたマグネタイトナノ粒子の大きさは約10ナノメートルであった。磁気的特性として飽和磁化値を測定したところ、70.5emu/gであり、粒子が非常に微細であるためにやや小さい値を示しているものの、実用に際して十分であった。図4は、ミリング処理9時間の生成物の電子顕微鏡によるナノ粒子径の撮影である。
Example 1
FIG. 3 shows the pre-milling process (a), milling process 1 hour (b), milling process 3 hours (c), milling process 6 hours (d), and milling process 9 hours (e) in Example 1 of the present invention. It is an X-ray diffraction pattern of the product obtained by changing.
As can be seen from the X-ray diffraction pattern of FIG. 3, the presence of unreacted goethite (α-FeOOH) (appears at 2θ = 21.2 degrees on the horizontal axis) was confirmed in the treatment for 3 hours or less. It was found that a substantially uniform magnetite phase was formed by the treatment for 6 hours or more. From the electron microscope observation, the size of the magnetite nanoparticles obtained by the milling treatment for 9 hours was about 10 nanometers. When the saturation magnetization value was measured as a magnetic characteristic, it was 70.5 emu / g, and although the value was slightly small because the particles were very fine, it was sufficient for practical use. FIG. 4 is an image of the nanoparticle diameter of the product after 9 hours of milling using an electron microscope.
(実施例2)
 ボールミル容器の回転速度を変化させて実験を行ったところ、35rpmでは12時間、70rpmでは9時間、140rpmでは6時間の処理でマグネタイトの生成反応が完了することがわかった。得られた試料の物性を表2に示す。また、図5は、得られた粒径の大きさと頻度(%)の関係を示す図である。これによれば、得られた粒子径は圧倒的に10ナノメートル前後が多く、また、すべての粒子径は12ナノメートル以下である。
Figure JPOXMLDOC01-appb-T000002
(Example 2)
Experiments were carried out while changing the rotation speed of the ball mill container, and it was found that the magnetite formation reaction was completed in a process of 12 hours at 35 rpm, 9 hours at 70 rpm, and 6 hours at 140 rpm. Table 2 shows the physical properties of the obtained sample. FIG. 5 is a graph showing the relationship between the obtained particle size and frequency (%). According to this, the obtained particle diameter is predominantly around 10 nanometers, and all the particle diameters are 12 nanometers or less.
Figure JPOXMLDOC01-appb-T000002
(実施例3)
 硫酸第一鉄と塩化第二鉄の水溶液に滴下する1N水酸化ナトリウム水溶液の量を化学量論比に対応する12ミリリットルとして水溶液のpHを中性付近(大凡7.5)に調整し、得られた懸濁液を毎分140回の回転速度で2時間のボールミル処理を室温でおこなったところ、比較的結晶性の高い約10ナノメートルのマグネタイト粒子が得られた。この生成物の飽和磁化値は72emu/g,保磁力は5Oeであったことから,強磁性の超常磁性マグネタイトナノ粒子が室温で短時間で得られることが確認された。
(Example 3)
The amount of 1N sodium hydroxide aqueous solution dropped into the aqueous solution of ferrous sulfate and ferric chloride was adjusted to 12 ml corresponding to the stoichiometric ratio, and the pH of the aqueous solution was adjusted to near neutral (approximately 7.5). When the resulting suspension was ball milled at room temperature for 2 hours at a rotational speed of 140 revolutions per minute, about 10 nanometer magnetite particles having relatively high crystallinity were obtained. Since the saturation magnetization value of this product was 72 emu / g and the coercive force was 5 Oe, it was confirmed that ferromagnetic superparamagnetic magnetite nanoparticles can be obtained at room temperature in a short time.
(実施例4)
 硫酸第一鉄のみ4.5mmolを水60mlに溶解させ、これに1N水酸化ナトリウム水溶液30mlを毎分3mlの速度で添加し、得られた懸濁液を140rpmの回転速度で6時間のボールミル処理をおこなったところ、比較的結晶性の高い約20ナノメートルのマグネタイトナノ粒子が得られた。
Example 4
Dissolve 4.5 mmol of ferrous sulfate alone in 60 ml of water, add 30 ml of 1N sodium hydroxide aqueous solution at a rate of 3 ml / min, and ball suspension for 6 hours at a rotational speed of 140 rpm. As a result, about 20 nanometer magnetite nanoparticles having relatively high crystallinity were obtained.
(実施例5)
 硫酸第一鉄4.5mmolと還元剤としてチオ硫酸ナトリウム4.5mmolを水60mlに溶解させ、これに1N水酸化ナトリウム水溶液30mlを毎分3mlの速度で添加し、得られた懸濁液を140rpmの回転速度で6時間のボールミル処理をおこなったところ、比較的結晶性の高い10~20ナノメートルのマグネタイトナノ粒子が得られた。
(Example 5)
4.5 mmol of ferrous sulfate and 4.5 mmol of sodium thiosulfate as a reducing agent are dissolved in 60 ml of water, 30 ml of 1N sodium hydroxide aqueous solution is added thereto at a rate of 3 ml per minute, and the resulting suspension is added at 140 rpm. When ball milling was performed for 6 hours at a rotational speed of 10 to 20 nanometers of magnetite nanoparticles with relatively high crystallinity were obtained.
(比較例1)
 5℃で調製した出発溶液をステンレス鋼製の密閉容器に封入し(気相はアルゴンで置換)、そのまま5℃で24時間静置した。図6は比較例1における出発溶液(a)および冷却静置24時間後(b)のX線回折パターンであり、図7は出発溶液のミリング処理前(A)および冷却静置24時間後(B)の電子顕微鏡写真である。
 これらに見られるように、得られた生成物を電子顕微鏡で観察し、そのX線回折パターンを測定したところ、出発溶液のそれらと変化が無かった(針状のゲーサイト粒子が多数存在した)ことから、5℃では反応はほとんど進行しないことがわかった。
(Comparative Example 1)
The starting solution prepared at 5 ° C. was sealed in a stainless steel sealed container (the gas phase was replaced with argon), and allowed to stand at 5 ° C. for 24 hours. FIG. 6 is an X-ray diffraction pattern of the starting solution (a) and 24 hours after cooling standing (b) in Comparative Example 1, and FIG. 7 shows the starting solution before milling (A) and 24 hours after cooling standing ( It is an electron micrograph of B).
As can be seen from these, the obtained product was observed with an electron microscope, and its X-ray diffraction pattern was measured. As a result, there was no change from those of the starting solution (many needle-like goethite particles were present). Thus, it was found that the reaction hardly progressed at 5 ° C.
(比較例2)
 5℃で調製した出発溶液をステンレス鋼製の密閉容器に封入し(気相はアルゴンで置換)、120℃に保たれたオーブンで9時間静置加熱した(水熱合成)。図8は、実施例1におけるミリング処理9時間後(a)の生成物のX線回折パターン(a)および比較例2における加熱静置9時間後(b)の生成物のX線回折パターンであり、図9は加熱静置9時間後の生成物の電子顕微鏡写真である。
 これらの図に見られるように、得られた生成物のX線回折パターンを測定したところ、実施例1の9時間のミリング処理で得られた生成物よりも結晶性は高かったが、電子顕微鏡観察から粒子径は20ナノメートル以上であり、粒子成長が確認された。
(Comparative Example 2)
The starting solution prepared at 5 ° C. was sealed in a stainless steel sealed container (the gas phase was replaced with argon), and was left to stand in an oven maintained at 120 ° C. for 9 hours (hydrothermal synthesis). FIG. 8 is an X-ray diffraction pattern (a) of the product after 9 hours (a) of the milling treatment in Example 1 and an X-ray diffraction pattern of the product after 9 hours of heating and standing in Comparative Example 2 (b). FIG. 9 is an electron micrograph of the product after 9 hours of heating and standing.
As can be seen from these figures, the X-ray diffraction pattern of the obtained product was measured. As a result, the crystallinity was higher than that of the product obtained by the milling treatment of Example 1 for 9 hours. From observation, the particle diameter was 20 nanometers or more, and particle growth was confirmed.
 尚、原料となる二価および三価の鉄イオンのモル比が1対2であれば、これらが他の化合物(たとえばFeSO4 の代わりにFeCl2 を使用するなど)に置き換わっても構わない。また、水溶液のpHを上昇させるアルカリ溶液としては、水酸化ナトリウム溶液以外のものでも構わない。 If the molar ratio of the divalent and trivalent iron ions as the raw material is 1: 2, these may be replaced with other compounds (for example, using FeCl2Fe instead of FeSO4). Further, the alkaline solution for raising the pH of the aqueous solution may be other than the sodium hydroxide solution.
 温度制御(冷却)装置が備わった媒体ミルなら媒体の運動メカニズムが異なっても利用可能である。また、冷却温度は反応が進行しない温度なら他の温度でも構わない(ただし、溶液が凍る温度以上であること)。 媒体 A media mill equipped with a temperature control (cooling) device can be used even if the motion mechanism of the media is different. The cooling temperature may be other temperature as long as the reaction does not proceed (however, it should be higher than the temperature at which the solution freezes).
 ボールミル容器と媒体ボールの大きさと材質、容器の回転速度、ボールの充填量、ミリング時間などの装置条件・操作条件は、試料に与える機械的エネルギーがあるしきい値を超えていればとくに制限はない(これらが均質性や諸特性の制御因子となる)。 Equipment and operating conditions such as ball mill container and medium ball size and material, container rotation speed, ball filling amount, and milling time are not particularly limited as long as the mechanical energy applied to the sample exceeds a certain threshold. None (these are factors controlling homogeneity and properties).
 本発明におけるミリング処理時間は、ボールミルの回転数及び速度にも関連するが、これらがそれほど極端な影響を及ぼすものではなく、むしろ冷却温度などの影響の方が強いと思われる。 The milling processing time in the present invention is related to the rotation speed and speed of the ball mill, but these are not so much influence, but rather the influence of the cooling temperature etc. seems to be stronger.
符号の説明Explanation of symbols
 1 保温水槽
 2 ボールミル容器回転台
 3 ボールミル容器
 4 モータ
DESCRIPTION OF SYMBOLS 1 Warm water tank 2 Ball mill container turntable 3 Ball mill container 4 Motor

Claims (5)

  1.  無機化合物を水溶液からコロイド状に生成し、該コロイド状態を前駆体もしくは/および中間体として、不活性雰囲気中且つ低温下で、所定時間の間、ボールミル式機械的攪拌混合して、未反応のコロイドのないことを確認して、粒子を遠心分離して洗浄後、乾燥することを特徴とするコロイドを前駆体もしくは/および中間体とする無機ナノ粒子の製造方法。 An inorganic compound is formed in a colloidal form from an aqueous solution, and the colloidal state is used as a precursor or / and an intermediate, in an inert atmosphere and at a low temperature, for a predetermined period of time by a ball mill mechanical stirring and mixing, and unreacted. A method for producing inorganic nanoparticles using a colloid as a precursor or / and an intermediate, which comprises confirming the absence of a colloid, centrifuging the particles, washing, and drying.
  2.  無機化合物を水溶液からコロイド状に生成し、該コロイド状態を前駆体もしくは/および中間体として、不活性雰囲気中且つ低温下で、35rpm~140rpmの回転速度にかけて低回転側で12時間~高回転側で6時間ボールミル式機械的攪拌混合して、未反応のコロイドのないことを確認して、粒子を遠心分離して洗浄後、乾燥することを特徴とする請求項1に記載のコロイドを前駆体もしくは/および中間体とする無機ナノ粒子の製造方法。 An inorganic compound is formed in a colloidal form from an aqueous solution, and the colloidal state is used as a precursor or / and an intermediate, in an inert atmosphere and at a low temperature, at a rotation speed of 35 rpm to 140 rpm on the low rotation side for 12 hours to the high rotation side 6. The colloid precursor according to claim 1, wherein the colloid is mechanically stirred and mixed for 6 hours to confirm that there is no unreacted colloid, the particles are centrifuged, washed, and then dried. Or / and a method for producing inorganic nanoparticles as an intermediate.
  3. 無機化合物の水溶液に化学量論比に相当する水酸化ナトリウムを滴下してpHを中性付近に調整し、不活性雰囲気中で、毎分140回の回転速度で2時間のボールミル処理を室温でおこなうことを特徴とする請求項1または請求項2に記載のコロイドを前駆体もしくは/および中間体とする無機ナノ粒子の製造方法。 Sodium hydroxide corresponding to the stoichiometric ratio is dropped into an aqueous solution of an inorganic compound to adjust the pH to near neutrality, and ball milling is performed at room temperature for 2 hours at 140 rotations per minute in an inert atmosphere. A method for producing inorganic nanoparticles using the colloid according to claim 1 or 2 as a precursor or / and an intermediate.
  4.  無機化合物として、硫酸第一鉄七水和物と塩化第二鉄六水和物との混合物を用い、その脱酸素水溶液に水酸化ナトリウムを添加してコロイド状とし、熱による反応を抑制するために5℃以下の低温とすることを特徴とする請求項1記載乃至請求項3のいずれかに記載のコロイドを前駆体もしくは/および中間体とする無機ナノ粒子の製造方法。 As an inorganic compound, a mixture of ferrous sulfate heptahydrate and ferric chloride hexahydrate is used, and sodium hydroxide is added to the deoxygenated aqueous solution to make it into a colloidal form to suppress the reaction caused by heat. The method for producing inorganic nanoparticles using the colloid according to any one of claims 1 to 3 as a precursor or / and an intermediate, wherein the temperature is 5 ° C or lower.
  5.  水酸化ナトリウムを添加する場合、pH12以上に保持するようにしたことを特徴とする、請求項4に記載のコロイドを前駆体もしくは/および中間体とする無機ナノ粒子の製造方法。
     
    The method for producing inorganic nanoparticles using colloid as a precursor or / and an intermediate according to claim 4, wherein sodium hydroxide is added to maintain the pH at 12 or more.
PCT/JP2009/050728 2008-01-22 2009-01-20 Process for production of inorganic nanoparticle using colloid as precursor and/or intermediate WO2009093561A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009550513A JPWO2009093561A1 (en) 2008-01-22 2009-01-20 Method for producing inorganic nanoparticles using colloid as precursor or / and intermediate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008011642 2008-01-22
JP2008-011642 2008-01-22

Publications (1)

Publication Number Publication Date
WO2009093561A1 true WO2009093561A1 (en) 2009-07-30

Family

ID=40901069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050728 WO2009093561A1 (en) 2008-01-22 2009-01-20 Process for production of inorganic nanoparticle using colloid as precursor and/or intermediate

Country Status (2)

Country Link
JP (1) JPWO2009093561A1 (en)
WO (1) WO2009093561A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011131768A1 (en) * 2010-04-24 2011-10-27 Technische Universität Carolo-Wilhelmina Zu Braunschweig Process for producing particles
JP2013527594A (en) * 2010-03-08 2013-06-27 コンセホ スペリオール デ インベスティガシオネス シエンティフィカス(セエセイセ) Method for obtaining materials with superparamagnetic behavior

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
E. MANOVA ET AL.: "Mechanochemically synthesized nano-dimensional iron-cobalt spinel oxides as catalysts for methanol decomposition", APPLIED CATALYSIS A: GENERAL, vol. 277, no. 1-2, 8 December 2004 (2004-12-08), pages 119 - 127 *
H. YANG ET AL.: "Cobalt Ferrite Nanoparticles Prepared by Coprecipitation/Mechanochemical Treatment", CHEMISTRY LETTERS, vol. 33, no. 7, 5 July 2004 (2004-07-05), pages 826 - 827 *
Y. SHI ET AL.: "CoFe204 nanoparticles prepared by the mechanochemical method", JOURNAL OF ALLOYS AND COMPOUNDS, vol. 308, no. 1-2, 10 August 2000 (2000-08-10), pages 290 - 295 *
Y. SHI ET AL.: "NiFe204 ultrafine particles prepared by co-precipitation/mechanical alloying", JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, vol. 205, no. 2-3, November 1999 (1999-11-01), pages 249 - 254 *
Y. TODAKA ET AL.: "Synthesis of Ferrite Nanoparticles by Mechanochemical Processing Using a Ball Mill", MATERIALS TRANSACTIONS, vol. 44, no. 2, 20 February 2003 (2003-02-20), pages 277 - 284 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013527594A (en) * 2010-03-08 2013-06-27 コンセホ スペリオール デ インベスティガシオネス シエンティフィカス(セエセイセ) Method for obtaining materials with superparamagnetic behavior
WO2011131768A1 (en) * 2010-04-24 2011-10-27 Technische Universität Carolo-Wilhelmina Zu Braunschweig Process for producing particles
DE112011101392B4 (en) * 2010-04-24 2014-11-06 Technische Universität Carolo-Wilhelmina Zu Braunschweig Process for the production of particles

Also Published As

Publication number Publication date
JPWO2009093561A1 (en) 2011-05-26

Similar Documents

Publication Publication Date Title
Bepari et al. Controlled synthesis of α-and γ-Fe2O3 nanoparticles via thermolysis of PVA gels and studies on α-Fe2O3 catalyzed styrene epoxidation
Shokrollahi A review of the magnetic properties, synthesis methods and applications of maghemite
Tomar et al. Synthesis of cobalt ferrite nanoparticles with different morphologies via thermal decomposition approach and studies on their magnetic properties
Mohapatra et al. Iron oxide nanorods as high-performance magnetic resonance imaging contrast agents
Lu et al. Green synthesis and characterization of superparamagnetic Fe3O4 nanoparticles
JP5105503B2 (en) ε Iron oxide production method
JP3989868B2 (en) Synthesis of magnetite nanoparticles and method for forming iron-based nanomaterials
Marchegiani et al. Sonochemical synthesis of versatile hydrophilic magnetite nanoparticles
Saxena et al. Efficient synthesis of superparamagnetic magnetite nanoparticles under air for biomedical applications
Uskoković et al. The characterization of nanosized nickel-zinc ferrites synthesized within reverse micelles of CTAB/1–hexanol/water microemulsion
Zhang et al. Synthesis and characterization of Gd-doped magnetite nanoparticles
Palomino et al. Sonochemical assisted synthesis of SrFe12O19 nanoparticles
Gherca et al. Eco-environmental synthesis and characterization of nanophase powders of Co, Mg, Mn and Ni ferrites
Kurian et al. A facile approach to the elucidation of magnetic parameters of CuFe2O4 nanoparticles synthesized by hydrothermal route
Yelenich et al. Synthesis and properties MFe2O4 (M= Fe, Co) nanoparticles and core–shell structures
KR101480169B1 (en) The Method for Preparation of Monodisperse Iron Oxide Nanoparticles Using High Pressure Homogenizer and Monodisperse Iron Oxide Nanoparticels Thereof
WO2015194647A1 (en) Magnetic iron oxide nanopowder and process for producing same
Uskoković et al. A mechanism for the formation of nanostructured NiZn ferrites via a microemulsion-assisted precipitation method
Almessiere et al. Customized magnetic properties of (Mn0. 5Zn0. 5)[EuxNdxFe2-2x] O4 nanospinel ferrites synthesized via ultrasonic irradiation approach
Iwasaki et al. Direct transformation from goethite to magnetite nanoparticles by mechanochemical reduction
Makovec et al. The preparation of MnZn-ferrite nanoparticles in water–CTAB–hexanol microemulsions
Hussain et al. One pot synthesis of exchange coupled Nd2Fe14B/α-Fe by pechini type sol–gel method
Wang et al. Controllable 5-sulfosalicylic acid assisted solvothermal synthesis of monodispersed superparamagnetic Fe3O4 nanoclusters with tunable size
Iwasaki et al. Novel environmentally friendly synthesis of superparamagnetic magnetite nanoparticles using mechanochemical effect
Maiti et al. Selective formation of iron oxide and oxyhydroxide nanoparticles at room temperature: Critical role of concentration of ferric nitrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09703689

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009550513

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09703689

Country of ref document: EP

Kind code of ref document: A1