WO2009093480A1 - Film for keypad, keypad, and key sheet - Google Patents

Film for keypad, keypad, and key sheet Download PDF

Info

Publication number
WO2009093480A1
WO2009093480A1 PCT/JP2009/050062 JP2009050062W WO2009093480A1 WO 2009093480 A1 WO2009093480 A1 WO 2009093480A1 JP 2009050062 W JP2009050062 W JP 2009050062W WO 2009093480 A1 WO2009093480 A1 WO 2009093480A1
Authority
WO
WIPO (PCT)
Prior art keywords
keypad
thermoplastic polyurethane
film
tensile stress
acid
Prior art date
Application number
PCT/JP2009/050062
Other languages
French (fr)
Japanese (ja)
Inventor
Hidekazu Saito
Yoshihiro Yamana
Hiroki Kimura
Original Assignee
Kuraray Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co., Ltd. filed Critical Kuraray Co., Ltd.
Priority to JP2009513499A priority Critical patent/JPWO2009093480A1/en
Publication of WO2009093480A1 publication Critical patent/WO2009093480A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H13/00Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch
    • H01H13/70Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard
    • H01H13/702Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard with contacts carried by or formed from layers in a multilayer structure, e.g. membrane switches
    • H01H13/704Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard with contacts carried by or formed from layers in a multilayer structure, e.g. membrane switches characterised by the layers, e.g. by their material or structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2227/00Dimensions; Characteristics
    • H01H2227/03Hardness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2227/00Dimensions; Characteristics
    • H01H2227/036Minimise height
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2239/00Miscellaneous
    • H01H2239/072High temperature considerations

Definitions

  • the present invention relates to a film for a keypad used for an operation unit such as a communication terminal such as a cellular phone, various instruments, a keyboard for personal computer input, and a remote controller.
  • an operation unit such as a communication terminal such as a cellular phone, various instruments, a keyboard for personal computer input, and a remote controller.
  • Sheets are widely used in operation units such as communication terminals such as mobile phones, various instruments, keyboards for PC input, and remote controllers, and several techniques related to such key sheets are known (for example, Patent Documents). (See 1 and 2 etc.).
  • thermoplastic polyurethane is particularly suitable because it has high durability in addition to moderate soft feeling and excellent cushioning properties.
  • Several techniques related to keypad films made of thermoplastic polyurethane are also known.
  • a method of forming a surface material made of polyurethane which is excellent in soft touch, does not cause yellowing, has high water resistance and heat resistance, and has little deterioration in physical properties by being composed of a resin see Patent Document 3).
  • a polyurethane resin keypad obtained by thermoforming a thermoplastic polyurethane resin sheet obtained by melt-molding is excellent in secondary moldability, oleic acid resistance, discoloration resistance, transparency, and printability. It is known (see Patent Document 4; the film made of thermoplastic polyurethane specifically described in Patent Document 4 has a high tensile stress (M 100 ) at 100% elongation at 23 ° C. ( The polyurethane of Synthesis Example 3) is also about 8 MPa).
  • thermoplastic polyurethane keypad films have a relatively low tensile stress, so that adhesives and printing inks are solidified or fixed as described above, and laminated with other resin layers.
  • problems such as film warping and shrinkage due to insufficient heat resistance and problems such as film sticking were likely to occur.
  • the key sheet obtained is manually inserted into a predetermined position of the final product such as a mobile phone and then inserted after being flattened.
  • the productivity of the final product decreases due to the requirement for special equipment, or the yield decreases due to the occurrence of many defective products that cannot be used as key sheets or keypads.
  • the thermoplastic polyurethane has a high durability in addition to a moderate soft feeling and excellent cushioning properties, but in order to use it as a keypad film made of it, At present, the range of use is limited, and a solution to the above problem has been demanded.
  • mobile phones have become increasingly thinner for emphasizing design, and as a result, there is a tendency for thinner key sheets and keypads, and there is a strong demand for solutions to the above problems. It was done.
  • the keypad film made of a resin film such as a conventional thermoplastic polyurethane has a relatively small tensile stress as described above, and therefore has the purpose of maintaining the shape of the obtained key sheet. Therefore, a technique for laminating frame sheets has been proposed.
  • M 100 tensile stress
  • a technique of laminating a frame sheet has been proposed for the purpose of fixing and reinforcing the key top (button key) (see Patent Document 5).
  • the present invention solves the above-mentioned problems, and is excellent in non-tackiness, handleability, heat resistance, and stability of dimensional accuracy, and in particular, heat treatment performed when an adhesive or printing ink is solidified or fixed. It is an object of the present invention to provide a keypad film that does not cause problems such as warp and shrinkage and problems such as sticking between films. A keypad and key sheet that can retain the shape without using a reinforcing material such as a frame sheet, can reduce the weight and size of final products such as mobile phones, and can simplify the manufacturing process. It is an object to provide a film for a keypad to be given. It is another object of the present invention to provide a keypad including at least a layer made of the keypad film, and a key sheet having at least the keypad and the keytop.
  • the tensile stress at 100% elongation at 23 ° C. of the film (M 100 ) may be simply referred to as “tensile stress (M 100 )”.
  • M 100 tensile stress
  • thermoplastic polyurethane obtained by reacting a polymer polyol, an organic polyisocyanate and a chain extender alone or a thermoplastic polyurethane composition mainly composed of the thermoplastic polyurethane, at 100% elongation at 23 ° C.
  • a keypad film having a tensile stress (M 100 ) of 18 MPa or more [2] The keypad film of [1], wherein the content of nitrogen atoms derived from isocyanate groups in the thermoplastic polyurethane is 4.5% by mass or more.
  • the present invention it is excellent in non-tackiness, handleability, heat resistance, and dimensional accuracy stability, and also warps, shrinks, etc. even by heat treatment applied particularly when an adhesive or printing ink is solidified or fixed.
  • a keypad film can be obtained which does not cause problems such as the above-mentioned defect phenomenon and sticking between films.
  • the shape can be maintained without using a reinforcing material such as a frame sheet, so that the final product such as a mobile phone can be reduced in weight and reduced, and the manufacturing process can be simplified. Keypad and key sheet that can be used.
  • the keypad film of the present invention comprises a thermoplastic polyurethane alone obtained by reacting a polymer polyol, an organic polyisocyanate and a chain extender, or a thermoplastic polyurethane composition mainly composed of the thermoplastic polyurethane.
  • any polymer polyol conventionally used in the production of polyurethane can be used.
  • examples of such polymer polyols include polyester polyols, polyether polyols, polycarbonate polyols, polyester polycarbonate polyols, polyolefin polyols, conjugated diene polymer polyols that may be hydrogenated, castor oil polyols, vinyl polymer polyols, and the like. These polymer polyols may be used alone or in combination of two or more.
  • polyester polyol one or more of polyester polyol, polyether polyol and polycarbonate polyol are preferably used, polyester polyol and / or polyether polyol are more preferably used, polyester diol and / or Alternatively, polyether diol is more preferably used.
  • polyester polyol for example, according to a conventional method, a polyol component and a polycarboxylic acid component such as a polycarboxylic acid, an ester-forming derivative thereof such as an ester or an anhydride thereof are directly esterified or transesterified.
  • a polyol component and a polycarboxylic acid component such as a polycarboxylic acid, an ester-forming derivative thereof such as an ester or an anhydride thereof are directly esterified or transesterified.
  • polyester polyol component used in the production of the polyester polyol those generally used in the production of polyester can be used.
  • polyester polyol these polyols may be used alone or in combination of two or more.
  • 1,4-butanediol is non-adhesive, has excellent melt moldability, has excellent mechanical properties such as tensile stress and tear strength, and has excellent heat resistance.
  • an aliphatic diol having 4 to 10 carbon atoms such as 3-methyl-1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, It is more preferable to use a linear aliphatic diol having 4 to 10 carbon atoms such as 1,6-hexanediol or 1,8-octanediol.
  • polycarboxylic acid component used in the production of the polyester polyol those generally used in the production of polyester can be used.
  • polycarboxylic acid components may be used alone or in combination of two or more.
  • aliphatic polyurethanes having 6 to 12 carbon atoms are thermoplastic polyurethanes that are non-adhesive, have excellent melt moldability, have excellent mechanical properties such as tensile stress and tear strength, and have excellent heat resistance.
  • Dicarboxylic acids are preferred, adipic acid, azelaic acid and sebacic acid are more preferred, and adipic acid is even more preferred.
  • lactones used for producing polyester polyols include ⁇ -caprolactone and ⁇ -methyl- ⁇ -valerolactone.
  • polyether polyol examples include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and poly (methyltetramethylene glycol) obtained by ring-opening polymerization of a cyclic ether in the presence of a polyol. , One or more of these can be used. Among them, non-adhesive, excellent melt moldability, excellent mechanical properties represented by tensile stress and tear strength, and thermoplastic polyurethane having excellent heat resistance. (Methyltetramethylene glycol) is preferably used.
  • polycarbonate polyol examples include those obtained by a reaction between a polyol component and a carbonate compound such as dialkyl carbonate, alkylene carbonate, or diaryl carbonate.
  • a polyol component used for the production of the polycarbonate polyol the polyol components exemplified above as the components that can be used for the production of the polyester polyol can be used.
  • the dialkyl carbonate examples include dimethyl carbonate and diethyl carbonate.
  • alkylene carbonate examples include ethylene carbonate.
  • diaryl carbonate examples include diphenyl carbonate.
  • polyester polycarbonate polyol for example, those obtained by simultaneously reacting a polyol component, a polycarboxylic acid component and a carbonate compound, or previously synthesized polyester polyol and polycarbonate polyol, respectively, and then combining them with a carbonate compound.
  • polyester polycarbonate polyol for example, those obtained by simultaneously reacting a polyol component, a polycarboxylic acid component and a carbonate compound, or previously synthesized polyester polyol and polycarbonate polyol, respectively, and then combining them with a carbonate compound.
  • examples thereof include those obtained by reacting or reacting with a polyol component and a polycarboxylic acid component.
  • polymer polyol examples include, for example, poly (1,4-tetramethylene adipate) diol, poly (3-methyl-1,5-pentamethylene adipate) diol, poly ( ⁇ -caprolactone) diol, poly Examples include tetramethylene glycol.
  • the number average molecular weight of the polymer polyol is preferably in the range of 500 to 8,000, more preferably in the range of 600 to 5,000, and further in the range of 800 to 3,000. preferable.
  • a polymer polyol having a number average molecular weight in this range a thermoplastic polyurethane that is non-adhesive, excellent in melt moldability, excellent in mechanical properties represented by tensile stress and tear strength, and excellent in heat resistance Is obtained.
  • the number average molecular weight of the polymer polyol in this specification is a number average molecular weight calculated based on the hydroxyl value measured according to JIS K 1557.
  • organic polyisocyanate used in the present invention any organic polyisocyanate conventionally used in the production of polyurethane can be used.
  • organic polyisocyanates include, for example, 4,4′-diphenylmethane diisocyanate, tolylene diisocyanate, phenylene diisocyanate, xylylene diisocyanate, 1,5-naphthylene diisocyanate, 3,3′-dichloro-4,4′- Examples thereof include aromatic diisocyanates such as diphenylmethane diisocyanate; aliphatic or alicyclic diisocyanates such as hexamethylene diisocyanate, isophorone diisocyanate, 4,4′-dicyclohexylmethane diisocyanate, and hydrogenated xylylene diisocyanate.
  • organic polyisocyanates may be used alone or in combination of two or more.
  • 4,4'-diphenylmethane diisocyanate is a non-adhesive, excellent melt moldability, excellent mechanical properties represented by tensile stress and tear strength, and thermoplastic polyurethane with excellent heat resistance. It is preferable that it mainly comprises (preferably 50 mol% or more, more preferably 80 mol% or more, further preferably 95 mol% or more, particularly preferably 100 mol%).
  • chain extender used in the present invention any chain extender conventionally used in the production of polyurethane can be used.
  • chain extenders include ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, 1,4-bis ( ⁇ -hydroxyethoxy) benzene, 1,4-cyclohexanediol, bis Diols such as ( ⁇ -hydroxyethyl) terephthalate and xylylene glycol; hydrazine, ethylenediamine, propylenediamine, xylylenediamine, isophoronediamine, piperazine or derivatives thereof, phenylenediamine, tolylenediamine, xylenediamine, adipic acid dihydrazide, isophthalate
  • diamines such as acid dihydrazide
  • amino alcohols such as aminoethyl alcohol and aminopropyl alcohol.
  • chain extenders may be used alone or in combination of two or more.
  • the chain extender is a non-adhesive, excellent melt moldability, excellent mechanical properties represented by tensile stress and tear strength, and excellent in heat resistance. It is preferably mainly composed of an aliphatic diol of several 2 to 10 (preferably containing 50 mol% or more, more preferably 80 mol% or more, further preferably 95 mol% or more, particularly preferably 100 mol%), More preferably, it is mainly composed of butanediol (preferably 50 mol% or more, more preferably 80 mol% or more, further preferably 95 mol% or more, particularly preferably 100 mol%).
  • thermoplastic polyurethane In the production of a thermoplastic polyurethane by reacting the above-mentioned polymer polyol, organic polyisocyanate and chain extender, the mixing ratio of each component depends on the hardness, mechanical performance, etc. to be imparted to the desired thermoplastic polyurethane. Although it is appropriately determined in consideration, it is preferable to use each component in such a ratio that the molar ratio of active hydrogen atom: isocyanate group present in the reaction system is within the range of 1: 0.9 to 1.1. It is more preferable to use each component at a ratio of 1: 0.95 to 1.05.
  • a thermoplastic polyurethane that is non-adhesive, excellent in melt moldability, excellent in mechanical properties represented by tensile stress and tear strength, and excellent in heat resistance is obtained. Can do.
  • the method for producing the thermoplastic polyurethane is not particularly limited, and may be performed using any of the known urethanization reaction techniques using a polymer polyol, an organic polyisocyanate, and a chain extender. Any of the shot methods can be employed. Among these, it is preferable to perform melt polymerization substantially in the absence of a solvent, and it is more preferable to employ a continuous melt polymerization method using a multi-screw extruder.
  • the polymerization temperature at the time of melt polymerization is preferably in the range of 180 to 280 ° C.
  • a urethanization reaction catalyst may be used.
  • the kind in particular of the said urethanation reaction catalyst is not restrict
  • the urethanization reaction catalyst include at least one compound selected from organic tin compounds, organic zinc compounds, organic bismuth compounds, organic titanium compounds, organic zirconium compounds, and amine compounds. Can do.
  • a urethanization reaction catalyst may be used individually by 1 type, or may use 2 or more types together.
  • the content of nitrogen atoms derived from isocyanate groups is preferably 4.5% by mass or more.
  • Thermoplastic polyurethane having a content of nitrogen atoms derived from isocyanate groups within the above range is non-adhesive, excellent in melt moldability, excellent in mechanical properties represented by tensile stress and tear strength, and also in heat resistance. It will be excellent.
  • the content of nitrogen atoms derived from isocyanate groups in the thermoplastic polyurethane is more preferably 4.5 to 6.5% by mass, further preferably 4.6 to 6.0% by mass, and more preferably 4.7 to The amount is particularly preferably 5.7% by mass, and most preferably 4.8 to 5.5% by mass.
  • the logarithmic viscosity of the thermoplastic polyurethane is a value obtained by measuring a solution obtained by dissolving the thermoplastic polyurethane in N, N-dimethylformamide (DMF) to a concentration of 0.5 g / dl at 30 ° C. Is preferably from 0.7 to 1.5 dl / g, more preferably from 0.8 to 1.4 dl / g, and even more preferably from 0.9 to 1.3 dl / g.
  • a film containing a thermoplastic polyurethane having a logarithmic viscosity in the above range is non-adhesive, excellent in melt moldability, excellent in mechanical properties represented by tensile stress and tear strength, and excellent in heat resistance It becomes.
  • the logarithmic viscosity ((eta) inh ) of the thermoplastic polyurethane in this specification means the value measured by the method described in a following example.
  • the ASTM D hardness of the thermoplastic polyurethane is preferably 52 or more, more preferably 55 or more, and further preferably 58 or more.
  • the thermoplastic polyurethane having ASTM D hardness in the above range is non-adhesive, excellent in melt moldability, excellent in mechanical properties represented by tensile stress and tear strength, and excellent in heat resistance.
  • ASTM D hardness of the thermoplastic polyurethane in this specification is a value measured according to ASTM D2240.
  • the keypad film of the present invention is composed of the above thermoplastic polyurethane alone or a thermoplastic polyurethane composition mainly composed of the thermoplastic polyurethane.
  • the content of the thermoplastic polyurethane in the thermoplastic polyurethane composition is preferably 50% by mass or more, more preferably 80% by mass or more, and further preferably 95% by mass or more.
  • thermoplastic polyurethane composition is within the range that does not impair the effects of the present invention, and if necessary, a mold release agent, a reinforcing agent, a colorant, a flame retardant, an ultraviolet absorber, an antioxidant, a weather resistance improver. , Light resistance improver, hydrolysis resistance improver, antifungal agent, antibacterial agent, stabilizer, urethanization catalyst deactivator, etc .; glass fiber, polyester fiber, etc .; talc, silica, etc. Inorganic components; various coupling agents; optional components such as resins other than the thermoplastic polyurethane described above can be contained. The content of these optional components in the thermoplastic polyurethane composition is preferably 50% by mass or less, more preferably 20% by mass or less, and still more preferably 5% by mass or less.
  • the tensile stress (M 100 ) of the keypad film of the present invention is required to be 18 MPa or more.
  • the heat treatment does not cause defects such as warping or shrinkage, or sticking between films, and no reinforcing material is used. Even so, a keypad or a key sheet that can retain the shape is provided.
  • the tensile stress (M 100 ) of the keypad film is preferably 18 to 30 MPa, more preferably 18 to 25 MPa.
  • the tensile stress (M 100 ) in the present specification is a value measured according to JIS K 7311-1995.
  • thermoplastic polyurethanes By using those having a predetermined tensile stress (M 100) as the thermoplastic polyurethanes that constitute the keypad film, tensile stress of keypad film of the present invention (M 100) easily in the above range be able to. That is, when the keypad film of the present invention consist above thermoplastic polyurethane alone, thermoplastic polyurethane having a tensile to be assigned to keypad film stress (M 100) to the same tensile stress (M 100) Can be used. As the thermoplastic polyurethane, as described above, it can be obtained by reacting a polymer polyol, an organic polyisocyanate, and a chain extender, and the tensile stress (M 100 ) is within the above range.
  • thermoplastic polyurethane used include (i) poly The content of nitrogen atoms derived from isocyanate groups obtained by reacting (1,4-tetramethylene adipate) diol, 4,4′-diphenylmethane diisocyanate and 1,4-butanediol is 4.8% by mass or more.
  • thermoplastic polyurethane (ii) poly (3-methyl-1,5-pentamethylene A thermoplastic polyurethane obtained by reacting diol, 4,4′-diphenylmethane diisocyanate and 1,4-butanediol, wherein the content of nitrogen atoms derived from isocyanate groups is 4.7% by mass or more; iii) The content of nitrogen atoms derived from isocyanate groups obtained by reacting poly ( ⁇ -caprolactone) diol, 4,4′-diphenylmethane diisocyanate and 1,4-butanediol is 4.9% by mass or more.
  • the content of nitrogen atoms derived from isocyanate groups obtained by reacting thermoplastic polyurethane and (iv) polytetramethylene glycol, 4,4′-diphenylmethane diisocyanate and 1,4-butanediol is 5.1% by mass. Is it a group consisting of thermoplastic polyurethane Such as at least one thermoplastic polyurethane chosen may be mentioned.
  • the method for producing the keypad film of the present invention is not particularly limited, and any of the known film-forming production techniques using a thermoplastic polyurethane obtained by reacting a polymer polyol, an organic polyisocyanate and a chain extender.
  • a thermoplastic polyurethane obtained by reacting a polymer polyol, an organic polyisocyanate and a chain extender.
  • any of extrusion molding, injection molding, inflation molding, calendar molding, press molding, and the like can be employed.
  • it is preferable to employ extrusion molding or inflation molding and it is more preferable to employ extrusion molding or inflation molding using a single screw extruder.
  • the cylinder temperature of the single-screw extruder is preferably in the range of 180 to 230 ° C.
  • Key pad thickness film of the present invention is not particularly limited, the thermoplastic content or the thermoplastic polyurethane hardness nitrogen atom derived from the isocyanate groups of the polyurethane or obtained keypad film for tensile stress, (M 100 However, it is preferably 20 to 300 ⁇ m, more preferably 30 to 200 ⁇ m from the viewpoints of film production ease, heat resistance, and post-processing passability. 40 to 150 ⁇ m is more preferable.
  • the keypad film of the present invention can be used as it is to make a keypad composed of a single layer made of the keypad film, but the keypad film of the present invention and other layers are laminated.
  • a keypad may be formed from the stacked body.
  • the material constituting the other layer include resins such as polyester, polyamide, polycarbonate, silicone, thermoplastic polyurethane, thermosetting polyurethane, and polyolefin; metal; paper; cotton cloth and the like.
  • the keypad may have a layer composed of paint or ink, a layer composed of an adhesive, a primer, or the like as the other layer.
  • heat treatment When forming a layer composed of the above-mentioned paint or ink, or a layer composed of an adhesive or a primer, it is preferable to perform heat treatment.
  • the temperature of the heat treatment include 40 to 120 ° C.
  • Examples of the heat treatment time include 10 seconds to 3 hours.
  • a keypad By processing into a keypad, a keypad can be manufactured. Further, a desired groove or hole may be formed on the keypad by grinding or laser.
  • the keypad has an irregularity for arranging the key top; an irregularity for arranging the pusher for pressing the key switch installed on the lower surface of the key sheet; Various irregularities such as irregularities for enabling the pusher to have a function may be provided. These irregularities are subjected to compression molding (press molding), vacuum molding, etc. on a single layer of the keypad film of the present invention or a laminate in which the keypad film of the present invention and other layers are laminated. Can be formed.
  • a key sheet having the keypad and the keytop By arranging a key top such as a button key at a predetermined position of the keypad, a key sheet having the keypad and the keytop can be obtained.
  • the key sheet may have a pusher in addition to the key top.
  • Arrangement of key tops and pressers on the keypad can be performed using an adhesive such as a chemically reactive adhesive (such as an adhesive containing cyanoacrylate) or a UV adhesive.
  • the keypad or key sheet obtained by using the keypad film of the present invention is preferably used as a member constituting an operation unit of a communication terminal such as a mobile phone, various instruments, a keyboard for personal computer input, a remote control, etc. Can do.
  • melt viscosity logarithmic viscosity
  • ASTM D hardness of the thermoplastic polyurethane and the tensile stress (M 100 ) and heat resistance of the keypad film were measured or evaluated by the following methods.
  • the melt viscosity of the thermoplastic polyurethane which was dried under reduced pressure (less than 10 torr) at 80 ° C. for 2 hours using a flow tester (manufactured by Shimadzu Corporation) with a melt viscosity of thermoplastic polyurethane, was 490.3 N (50 kgf).
  • Nozzle size diameter 1 mm ⁇ length 10 mm, measured at a temperature of 200 ° C.
  • thermoplastic polyurethane When the extraction rate was less than 100%, it was judged that the part that was not extracted was insoluble in DMF because the molecular weight of the thermoplastic polyurethane was sufficiently high, and was excluded from the log viscosity measurement target. .
  • the extracted thermoplastic polyurethane was dissolved again in DMF to a concentration of 0.5 g / dl, and the flow time at 30 ° C. of the DMF solution of the thermoplastic polyurethane was measured using an Ubbelohde viscometer.
  • the logarithmic viscosity ( ⁇ inh ) of the thermoplastic polyurethane was determined by the equation.
  • thermoplastic polyurethane produced in the following examples or comparative examples was injection-molded using a mold having a mirror finished ASTM D hardness surface of thermoplastic polyurethane (cylinder temperature 185 to 210 ° C., mold temperature 30 ° C. ), A disk-shaped molded product (diameter 120 mm, thickness 2 mm), and a product obtained by superimposing three obtained disk-shaped molded products in accordance with ASTM D2240.
  • the ASTM D hardness of the plastic polyurethane) was measured.
  • Tensile stress of keypad film (M 100 ) A dumbbell-shaped test piece (5 mm in width at the center) defined in JIS K 7311-1995 was produced from a keypad film obtained in the following examples or comparative examples. Using “Instron 5566” manufactured by Instron Japan Company Limited, the tensile stress when the dumbbell-shaped test piece was stretched 100% under the conditions of a temperature of 23 ° C. and a tensile speed of 300 mm / min was measured. The tensile stress (M 100 ) of the keypad film was used.
  • Polyester diol POH-2 produced by reacting 3-methyl-1,5-pentanediol with adipic acid and having a number of hydroxyl groups per molecule of 2.00 and a number average molecular weight of 1,500 :
  • Polyester diol POH-3 produced by reacting 1,4-butanediol and adipic acid and having a number of hydroxyl groups per molecule of 2.00 and a number average molecular weight of 1,000: 1,4-butanediol
  • Polyester diol POH-4 having a number of hydroxyl groups per molecule of 2.00 and a number average molecular weight of 2,000 produced by reacting adipic acid with adipic acid: 2.00 hydroxyl groups per molecule average molecular weight of polytetramethylene glycol POH-5 1,000: 1 hydroxyl group per molecule is 2.00, positive number average molecular weight
  • thermoplastic polyurethane A polymer polyol (POH-1), an organic polyisocyanate (MDI) and a chain extender (BD) are mixed at a molar ratio of POH-1: MDI: BD of 1. 0: 6.1: 5.1 (the content of the nitrogen atom derived from the isocyanate group is 4.9% by mass), and these two axes rotate in the coaxial direction so that the total supply amount thereof is 200 g / min.
  • PU-1 thermoplastic polyurethane
  • POH-1 polymer polyol
  • MDI organic polyisocyanate
  • BD chain extender
  • Polyurethane formation reaction was carried out by continuous melt polymerization under the conditions.
  • the obtained melt was continuously extruded into water as a strand, and then cut with a pelletizer to obtain pellets.
  • the obtained pellets were dehumidified and dried at 95 ° C. for 4 hours to obtain thermoplastic polyurethane (PU-1).
  • the melt viscosity and ASTM D hardness of the obtained thermoplastic polyurethane (PU-1) were measured by the methods described above. The results are shown in Table 1.
  • thermoplastic polyurethane (PU-2 to PU-5)
  • Polymer polyol (POH-2 to POH-5), organic polyisocyanate (MDI) and chain extender (BD) are shown in Table 1 below.
  • Thermoplastic polyurethanes (PU-2 to PU-5) were produced in the same manner as in Example 1 except that they were used in proportions.
  • the melt viscosity and ASTM D hardness were measured by the methods described above. The results are shown in Table 1.
  • thermoplastic polyurethane (PU-6 to PU-9)
  • Polymer polyol (POH-1, POH-2 or POH-4), organic polyisocyanate (MDI) and chain extender (BD)
  • Thermoplastic polyurethanes (PU-6 to PU-9) were produced in the same manner as in Example 1 except that the proportions shown in Table 2 were used.
  • the melt viscosity and ASTM D hardness were measured by the methods described above. The results are shown in Table 2.
  • thermoplastic polyurethane (PU-10) Polymer polyol (POH-6), organic polyisocyanate (HDI) and chain extender (BD) are mixed at a molar ratio of POH-6: HDI: BD of 1. 0: 4.2: 3.2 (the content of the nitrogen atom derived from the isocyanate group is 5.9% by mass), and these two axes rotate in the coaxial direction so that the total supply amount is 78 g / min.
  • PU-10 thermoplastic polyurethane
  • POH-6 polymer polyol
  • HDI organic polyisocyanate
  • BD chain extender
  • thermoplastic polyurethane (PU-10).
  • the melt viscosity and ASTM D hardness of the obtained thermoplastic polyurethane (PU-10) were measured by the methods described above. The results are shown in Table 2.
  • PU-10 thermoplastic polyurethane
  • a disk-shaped molded product (diameter: 120 mm, thickness: 2 mm) in the same manner as described above in the section of the ASTM D hardness measurement method for thermoplastic polyurethane.
  • a hardness test using a type A durometer in accordance with JIS K 7311-1995 was conducted using a product obtained by superimposing three obtained disk-shaped molded articles.
  • (2) Production of Keypad Film A keypad film having a thickness of 100 ⁇ m was produced in the same manner as in Example 1 using the thermoplastic polyurethane (PU-10) obtained in (1) above. Using the obtained keypad film, the logarithmic viscosity of the thermoplastic polyurethane contained therein, the tensile stress (M 100 ) of the keypad film, and the heat resistance were measured by the methods described above. The results are shown in Table 2.
  • the keypad films of Examples 1 to 5 whose tensile stress (M 100 ) satisfies the provisions of the present invention were obtained by hot air drying at 90 ° C. for 1 hour after application of the screen ink.
  • the screen ink application part is not warped or contracted, and the smoothness is maintained, and it can be seen that the screen ink application part has excellent heat resistance required for a keypad film.
  • the keypad films of Comparative Examples 1 to 5 whose tensile stress (M 100 ) does not satisfy the provisions of the present invention were subjected to a number of tests by hot air drying treatment at 90 ° C. for 1 hour after application of the screen ink. In the strip, warping and shrinkage are observed in the screen ink application part, and it can be seen that it does not have the excellent heat resistance required for the keypad film.
  • the present invention it is excellent in non-tackiness, handleability, heat resistance, and dimensional accuracy stability, and also warps, shrinks, etc. even by heat treatment applied particularly when an adhesive or printing ink is solidified or fixed.
  • a keypad film that does not cause problems such as the above-mentioned defective phenomenon and film sticking.
  • the keypad film of the present invention when a key sheet is placed at a predetermined position of a final product such as a mobile phone, the key sheet is flattened manually, or a special device is required. It can solve the problem that the productivity of the final product is reduced and the problem that the yield is reduced due to the occurrence of many defective products that cannot be used as key sheets or keypads. Thinning can also be achieved.
  • a keypad and a key sheet that can retain the shape without using a reinforcing material such as a frame sheet are provided, thereby reducing the weight and size of the final product.
  • the manufacturing process can be simplified.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Push-Button Switches (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

A film for keypads is provided which is excellent in nontackiness, handleability, heat resistance, and dimensional-accuracy stability. Even when subjected especially to a heat treatment, the film causes no problems such as failures, e.g., warpage and shrinkage, and blocking with another film. This film enables a final product to be reduced in weight and size, and gives a keypad or key sheet which can be produced through simplified steps. Also provided are a keypad and a key sheet both employing the film. The film for keypads is made only of a thermoplastic polyurethane obtained by reacting a high-molecular polyol, an organic polyisocyanate, and a chain extender or is made of a thermoplastic polyurethane composition comprising the thermoplastic polyurethane as the main ingredient. This film has a tensile stress at 100% elongation as measured at 23°C (M100) of 18 MPa or higher.

Description

キーパッド用フィルム、キーパッドおよびキーシートKeypad film, keypad and key sheet
 本発明は、携帯電話等の通信端末、各種計器、パソコン入力用キーボード、リモコンなどの操作部に用いるキーパッド用フィルムに関する。 The present invention relates to a film for a keypad used for an operation unit such as a communication terminal such as a cellular phone, various instruments, a keyboard for personal computer input, and a remote controller.
 近年、熱可塑性ポリウレタン、ポリエチレンテレフタレート、ポリエステルエラストマー等の樹脂製のフィルムからなるキーパッド用フィルムから得られるキーパッドにキートップ(ボタンキー)を接着、印刷または印刷接着するなどして製造されたキーシートが、携帯電話等の通信端末、各種計器、パソコン入力用キーボード、リモコンなどの操作部に広く使用されており、このようなキーシートに関連した技術がいくつか知られている(例えば特許文献1および2等を参照)。また、上記したキーパッドを構成するキーパッド用フィルムの素材のうち、適度なソフト感や優れたクッション性に加えて高い耐久性を有することから、熱可塑性ポリウレタンが特に好適であり、このような熱可塑性ポリウレタンを素材としたキーパッド用フィルムに関する技術もいくつか知られている。 In recent years, a key manufactured by bonding a key top (button key) to a keypad obtained from a keypad film made of a resin film such as thermoplastic polyurethane, polyethylene terephthalate, polyester elastomer, etc. Sheets are widely used in operation units such as communication terminals such as mobile phones, various instruments, keyboards for PC input, and remote controllers, and several techniques related to such key sheets are known (for example, Patent Documents). (See 1 and 2 etc.). Among the materials of the keypad film constituting the keypad, thermoplastic polyurethane is particularly suitable because it has high durability in addition to moderate soft feeling and excellent cushioning properties. Several techniques related to keypad films made of thermoplastic polyurethane are also known.
 例えば、シリコーンゴム等に積層させてキーパッドとするためのキーパッド用表面材を、ヘキサメチレンジイソシアネートまたは水添ジフェニルメタンジイソシアネートから選ばれるイソシアネートおよびポリオールを少なくとも合成成分として使用して合成された熱可塑性ポリウレタン樹脂で構成することにより、ソフトな触感に優れ、黄変を起こさず、耐水性、耐熱性が高く、物性低下の少ないポリウレタン製表面材とする方法が提案されている(特許文献3参照)。 For example, a thermoplastic polyurethane synthesized by using, as a synthesis component, at least an isocyanate and a polyol selected from hexamethylene diisocyanate or hydrogenated diphenylmethane diisocyanate as a keypad surface material to be laminated on silicone rubber or the like to form a keypad There has been proposed a method of forming a surface material made of polyurethane which is excellent in soft touch, does not cause yellowing, has high water resistance and heat resistance, and has little deterioration in physical properties by being composed of a resin (see Patent Document 3).
 また、ヘキサメチレンジイソシアネートを主成分とする有機ジイソシアネート、ポリカーボネートジオールを主成分とする高分子ポリオール、および炭素数2~10の脂肪族ジオールを主成分とする鎖延長剤を反応させて得られる樹脂ペレットを溶融成形してなる熱可塑性ポリウレタン樹脂シートを熱成形することにより得られるポリウレタン樹脂製キーパッドが、二次成形性、耐オレイン酸性、耐変色性、透明性、印刷適性に優れたものとなることが知られている(特許文献4参照;なお、特許文献4に具体的に記載された熱可塑性ポリウレタンからなるフィルムの23℃における100%伸長時の引張応力(M100)は、高いもの(合成実施例3のポリウレタン)でも8MPa程度である)。 Resin pellets obtained by reacting an organic diisocyanate mainly composed of hexamethylene diisocyanate, a polymer polyol mainly composed of polycarbonate diol, and a chain extender mainly composed of an aliphatic diol having 2 to 10 carbon atoms. A polyurethane resin keypad obtained by thermoforming a thermoplastic polyurethane resin sheet obtained by melt-molding is excellent in secondary moldability, oleic acid resistance, discoloration resistance, transparency, and printability. It is known (see Patent Document 4; the film made of thermoplastic polyurethane specifically described in Patent Document 4 has a high tensile stress (M 100 ) at 100% elongation at 23 ° C. ( The polyurethane of Synthesis Example 3) is also about 8 MPa).
 ところで、キーパッド用フィルムを用いてキーパッドや、さらにはキーシートを製造する際には、接着剤や印刷インキを塗布してそれを固化または定着させたり他の樹脂からなる層と積層させたりするために、加熱処理が施される場合が多い。しかしながら、従来の熱可塑性ポリウレタン製のキーパッド用フィルムは引張応力が比較的小さいため、特に上記のように接着剤や印刷インキを固化または定着させたり他の樹脂からなる層と積層させたりするための加熱処理を施した場合に耐熱性不足によるフィルムの反りや収縮等の不良現象や、フィルム同士の膠着などの問題が生じやすかった。このようなフィルムの反りや収縮、さらにはフィルム同士の膠着が生じると、得られるキーシートを携帯電話等の最終製品の所定位置に配置する際などに人手によりこれを平坦にした後に嵌め込んだり特殊な装置が要求されるなどして最終製品の生産性が低下したり、またキーシートやキーパッドとして使用することができない不良品が多く発生することにより歩留まりが低下したりするといった問題が生じる。そのため、熱可塑性ポリウレタンは、上記したように、適度なソフト感や優れたクッション性に加えて高い耐久性を有するにも拘らず、それを素材とするキーパッド用フィルムとして使用するためには、その使用範囲が限定されているのが現状であり、上記の問題の解決が求められていた。特に、近年、携帯電話においては、デザイン性重視のための薄型化がいっそう進行し、それによりキーシートやキーパッドもより薄型のものが要求される傾向にあり、上記問題の解決がより強く求められていた。 By the way, when manufacturing a keypad or even a key sheet using a film for a keypad, an adhesive or printing ink is applied to solidify or fix it, or it is laminated with a layer made of another resin. Therefore, heat treatment is often performed. However, conventional thermoplastic polyurethane keypad films have a relatively low tensile stress, so that adhesives and printing inks are solidified or fixed as described above, and laminated with other resin layers. When the heat treatment was performed, problems such as film warping and shrinkage due to insufficient heat resistance and problems such as film sticking were likely to occur. When such warping or shrinkage of the film, or even sticking between the films occurs, the key sheet obtained is manually inserted into a predetermined position of the final product such as a mobile phone and then inserted after being flattened. There is a problem that the productivity of the final product decreases due to the requirement for special equipment, or the yield decreases due to the occurrence of many defective products that cannot be used as key sheets or keypads. . Therefore, as described above, the thermoplastic polyurethane has a high durability in addition to a moderate soft feeling and excellent cushioning properties, but in order to use it as a keypad film made of it, At present, the range of use is limited, and a solution to the above problem has been demanded. In particular, in recent years, mobile phones have become increasingly thinner for emphasizing design, and as a result, there is a tendency for thinner key sheets and keypads, and there is a strong demand for solutions to the above problems. It was done.
 また、従来の熱可塑性ポリウレタンをはじめとする樹脂製のフィルムからなるキーパッド用フィルムは、上述のように引張応力が比較的小さく柔らかいことから、得られるキーシートの形状を保持するなどの目的のためにフレームシートを積層させる技術が提案されている。例えば、比較的柔らかい熱可塑性ポリウレタン(23℃における100%伸長時の引張応力(M100)が7MPa程度)等からなる樹脂フィルムでなるベースシート(キーパッド)と、ベースシートに配置するキートップと、特定の印刷接着層とを備えるキーシートにおいて、当該キートップ(ボタンキー)を固定し補強することを目的に、フレームシートを積層する技術が提案されている(特許文献5参照)。 In addition, the keypad film made of a resin film such as a conventional thermoplastic polyurethane has a relatively small tensile stress as described above, and therefore has the purpose of maintaining the shape of the obtained key sheet. Therefore, a technique for laminating frame sheets has been proposed. For example, a base sheet (keypad) made of a resin film made of relatively soft thermoplastic polyurethane (tensile stress (M 100 ) at 100% elongation at 23 ° C. of about 7 MPa), and a key top disposed on the base sheet In a key sheet provided with a specific printing adhesive layer, a technique of laminating a frame sheet has been proposed for the purpose of fixing and reinforcing the key top (button key) (see Patent Document 5).
 しかしながら、フレームシートを積層すると、最終製品である携帯電話等の軽量化や縮小化の達成が困難となることに加え、製造工程が煩雑になるという問題があった。 However, when the frame sheets are laminated, there is a problem that the manufacturing process becomes complicated in addition to difficulty in achieving weight reduction and reduction in the final product such as a mobile phone.
特開2004-327307号公報JP 2004-327307 A 特開2004-111258号公報JP 2004-111258 A 特開2005-25960号公報JP 2005-25960 A 国際公開第2004/106401号パンフレットInternational Publication No. 2004/106401 Pamphlet 特開2007-66818号公報JP 2007-66818 A
 本発明は上記問題を解決するものであり、非粘着性、取り扱い性、耐熱性および寸法精度の安定性に優れるとともに、特に接着剤や印刷インキを固化または定着させる際などに施される加熱処理によっても反りや収縮等の不良現象やフィルム同士の膠着などの問題が生じないキーパッド用フィルムを提供することを課題とする。またフレームシート等の補強材を使用しなくても形状を保持することができ携帯電話等の最終製品の軽量化や縮小化を達成し製造工程も簡略化することのできるキーパッドやキーシートを与えるキーパッド用フィルムを提供することを課題とする。さらに本発明は上記キーパッド用フィルムよりなる層を少なくとも含むキーパッド、ならびに当該キーパッドおよびキートップを少なくとも有するキーシートを提供することを課題とする。 The present invention solves the above-mentioned problems, and is excellent in non-tackiness, handleability, heat resistance, and stability of dimensional accuracy, and in particular, heat treatment performed when an adhesive or printing ink is solidified or fixed. It is an object of the present invention to provide a keypad film that does not cause problems such as warp and shrinkage and problems such as sticking between films. A keypad and key sheet that can retain the shape without using a reinforcing material such as a frame sheet, can reduce the weight and size of final products such as mobile phones, and can simplify the manufacturing process. It is an object to provide a film for a keypad to be given. It is another object of the present invention to provide a keypad including at least a layer made of the keypad film, and a key sheet having at least the keypad and the keytop.
 上記の課題を解決すべく本発明者らが種々検討を重ねた結果、キーパッド用フィルムを熱可塑性ポリウレタンから形成するにあたり、当該フィルムの23℃における100%伸長時の引張応力(M100)[以下、「23℃における100%伸長時の引張応力(M100)」を、単に「引張応力(M100)」という場合がある。]を特定の範囲とすることにより、加熱処理時あるいは処理後におけるフィルムの反りが改善され、後工程での加工工程通過性も良好となるのみならず、生産収率も向上することを見出した。また、本発明者らは上記キーパッド用フィルムを用いれば、キーパッドやキーシートを製造する際に、補強材が不要となり、携帯電話等の最終製品の軽量化や縮小化につながり、製造工程の簡略化も達成することができることも見出した。そしてこれらの知見を踏まえてさらに検討を重ねて本発明を完成させるに至った。 As a result of various studies by the present inventors to solve the above-mentioned problems, when forming a keypad film from thermoplastic polyurethane, the tensile stress at 100% elongation at 23 ° C. of the film (M 100 ) [ Hereinafter, “tensile stress at 100% elongation at 23 ° C. (M 100 )” may be simply referred to as “tensile stress (M 100 )”. ] In a specific range, the warpage of the film during heat treatment or after the treatment is improved, and not only the processing process passability in the subsequent process is improved, but also the production yield is improved. . In addition, if the present inventors use the above-described keypad film, a reinforcing material is not necessary when manufacturing a keypad or a key sheet, leading to a reduction in weight and reduction of a final product such as a mobile phone, and a manufacturing process. It has also been found that simplification can be achieved. Based on these findings, further studies have been made and the present invention has been completed.
 すなわち本発明は、
[1]高分子ポリオール、有機ポリイソシアネートおよび鎖伸長剤を反応させて得られる熱可塑性ポリウレタン単独からなるかまたは当該熱可塑性ポリウレタンから主としてなる熱可塑性ポリウレタン組成物からなり、23℃における100%伸長時の引張応力(M100)が18MPa以上であるキーパッド用フィルム、
[2]上記熱可塑性ポリウレタンにおけるイソシアネート基由来の窒素原子の含有率が4.5質量%以上である上記[1]のキーパッド用フィルム、
[3]上記有機ポリイソシアネートが4,4’-ジフェニルメタンジイソシアネートから主としてなる上記[1]または[2]のキーパッド用フィルム、
[4]上記鎖伸長剤が1,4-ブタンジオールから主としてなる上記[1]~[3]のいずれかのキーパッド用フィルム、
[5]上記高分子ポリオールの数平均分子量が500~8,000である上記[1]~[4]のいずれかのキーパッド用フィルム、
[6]厚さが20~300μmである上記[1]~[5]のいずれかのキーパッド用フィルム、
[7]上記[1]~[6]のいずれかのキーパッド用フィルムよりなる層を少なくとも含むキーパッド、
[8]上記[7]のキーパッドおよびキートップを少なくとも有するキーシート、
に関する。
That is, the present invention
[1] A thermoplastic polyurethane obtained by reacting a polymer polyol, an organic polyisocyanate and a chain extender alone or a thermoplastic polyurethane composition mainly composed of the thermoplastic polyurethane, at 100% elongation at 23 ° C. A keypad film having a tensile stress (M 100 ) of 18 MPa or more,
[2] The keypad film of [1], wherein the content of nitrogen atoms derived from isocyanate groups in the thermoplastic polyurethane is 4.5% by mass or more.
[3] The keypad film of [1] or [2], wherein the organic polyisocyanate is mainly composed of 4,4′-diphenylmethane diisocyanate,
[4] The keypad film according to any one of [1] to [3], wherein the chain extender is mainly composed of 1,4-butanediol,
[5] The keypad film of any one of [1] to [4], wherein the polymer polyol has a number average molecular weight of 500 to 8,000,
[6] The keypad film according to any one of [1] to [5], wherein the thickness is 20 to 300 μm,
[7] A keypad including at least a layer made of the keypad film according to any one of [1] to [6] above,
[8] A key sheet having at least the keypad and keytop of [7] above,
About.
 本発明によれば、非粘着性、取り扱い性、耐熱性および寸法精度の安定性に優れるとともに、特に接着剤や印刷インキを固化または定着させる際などに施される加熱処理によっても反りや収縮等の不良現象やフィルム同士の膠着などの問題が生じないキーパッド用フィルムが得られる。本発明のキーパッド用フィルムによればフレームシート等の補強材を使用しなくても形状を保持することができ携帯電話等の最終製品の軽量化や縮小化を達成し製造工程も簡略化することのできるキーパッドやキーシートが得られる。 According to the present invention, it is excellent in non-tackiness, handleability, heat resistance, and dimensional accuracy stability, and also warps, shrinks, etc. even by heat treatment applied particularly when an adhesive or printing ink is solidified or fixed. Thus, a keypad film can be obtained which does not cause problems such as the above-mentioned defect phenomenon and sticking between films. According to the keypad film of the present invention, the shape can be maintained without using a reinforcing material such as a frame sheet, so that the final product such as a mobile phone can be reduced in weight and reduced, and the manufacturing process can be simplified. Keypad and key sheet that can be used.
 以下に、本発明について詳細に説明する。
 本発明のキーパッド用フィルムは、高分子ポリオール、有機ポリイソシアネートおよび鎖伸長剤を反応させて得られる熱可塑性ポリウレタン単独からなるかまたは当該熱可塑性ポリウレタンから主としてなる熱可塑性ポリウレタン組成物からなる。
The present invention is described in detail below.
The keypad film of the present invention comprises a thermoplastic polyurethane alone obtained by reacting a polymer polyol, an organic polyisocyanate and a chain extender, or a thermoplastic polyurethane composition mainly composed of the thermoplastic polyurethane.
 本発明において使用される高分子ポリオールとしては、ポリウレタンの製造に従来から使用されているいずれの高分子ポリオールも使用することができる。かかる高分子ポリオールの例としては、ポリエステルポリオール、ポリエーテルポリオール、ポリカーボネートポリオール、ポリエステルポリカーボネートポリオール、ポリオレフィン系ポリオール、水素添加されていてもよい共役ジエン重合体系ポリオール、ひまし油系ポリオール、ビニル重合体系ポリオール等を挙げることができ、これらの高分子ポリオールは1種を単独で使用しても2種以上を併用してもよい。そのうちでも、高分子ポリオールとしては、ポリエステルポリオール、ポリエーテルポリオール、ポリカーボネートポリオールのうちの1種または2種以上が好ましく用いられ、ポリエステルポリオールおよび/またはポリエーテルポリオールがより好ましく用いられ、ポリエステルジオールおよび/またはポリエーテルジオールがさらに好ましく用いられる。 As the polymer polyol used in the present invention, any polymer polyol conventionally used in the production of polyurethane can be used. Examples of such polymer polyols include polyester polyols, polyether polyols, polycarbonate polyols, polyester polycarbonate polyols, polyolefin polyols, conjugated diene polymer polyols that may be hydrogenated, castor oil polyols, vinyl polymer polyols, and the like. These polymer polyols may be used alone or in combination of two or more. Among these, as the polymer polyol, one or more of polyester polyol, polyether polyol and polycarbonate polyol are preferably used, polyester polyol and / or polyether polyol are more preferably used, polyester diol and / or Alternatively, polyether diol is more preferably used.
 上記のポリエステルポリオールとしては、例えば、常法にしたがって、ポリオール成分とポリカルボン酸、そのエステル、無水物等のエステル形成性誘導体などのポリカルボン酸成分とを直接エステル化反応またはエステル交換反応させて得られるポリエステルポリオール、ポリオールを開始剤としてラクトンを開環重合することによって得られるポリエステルポリオールなどを挙げることができる。 As the polyester polyol, for example, according to a conventional method, a polyol component and a polycarboxylic acid component such as a polycarboxylic acid, an ester-forming derivative thereof such as an ester or an anhydride thereof are directly esterified or transesterified. Examples thereof include polyester polyols obtained and polyester polyols obtained by ring-opening polymerization of lactone using a polyol as an initiator.
 ポリエステルポリオールの製造に用いるポリオール成分としては、ポリエステルの製造において一般的に使用されているものを用いることができ、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、1,3-プロパンジオール、2-メチル-1,3-プロパンジオール,2,2-ジエチル-1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2-メチル-1,4-ブタンジオール、ネオペンチルグリコール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、2-メチル-1,8-オクタンジオール、2,7-ジメチル-1,8-オクタンジオール、1,9-ノナンジオール、2-メチル-1,9-ノナンジオール、2,8-ジメチル-1,9-ノナンジオール、1,10-デカンジオール等の炭素数2~15の脂肪族ジオール;1,4-シクロヘキサンジオール、シクロヘキサンジメタノール、シクロオクタンジメタノール、ジメチルシクロオクタンジメタノール等の脂環式ジオール;1,4-ビス(β-ヒドロキシエトキシ)ベンゼン等の芳香族二価アルコールなどの1分子当たり水酸基を2個有するジオール;トリメチロールプロパン、トリメチロールエタン、グリセリン、1,2,6-ヘキサントリオール、ペンタエリスリトール、ジグリセリン等の1分子当たり水酸基を3個以上有するポリオールなどを挙げることができる。ポリエステルポリオールの製造に当たっては、これらのポリオールは単独で使用しても2種以上を併用してもよい。これらのうちでも、非粘着性で、溶融成形性に優れ、引張応力や引裂強度で代表される力学的特性に優れ、耐熱性にも優れる熱可塑性ポリウレタンとなることから、1,4-ブタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール等の炭素数4~10の脂肪族ジオールを用いることが好ましく、1,4-ブタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール等の炭素数4~10の直鎖状脂肪族ジオールを用いることがより好ましい。 As the polyol component used in the production of the polyester polyol, those generally used in the production of polyester can be used. For example, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, 1,3-propanediol, 2-methyl-1,3-propanediol, 2,2-diethyl-1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 2-methyl-1,4-butanediol, neo Pentyl glycol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 2-methyl-1,8- Octanediol, 2,7-dimethyl-1,8-octanedioe Aliphatic diols having 2 to 15 carbon atoms such as 1,9-nonanediol, 2-methyl-1,9-nonanediol, 2,8-dimethyl-1,9-nonanediol, 1,10-decanediol; 1 such as cycloaliphatic diols such as 1,4-cyclohexanediol, cyclohexanedimethanol, cyclooctanedimethanol, dimethylcyclooctanedimethanol; aromatic dihydric alcohols such as 1,4-bis (β-hydroxyethoxy) benzene Diols having two hydroxyl groups per molecule; polyols having three or more hydroxyl groups per molecule such as trimethylolpropane, trimethylolethane, glycerin, 1,2,6-hexanetriol, pentaerythritol, diglycerin, etc. it can. In producing the polyester polyol, these polyols may be used alone or in combination of two or more. Among these, 1,4-butanediol is non-adhesive, has excellent melt moldability, has excellent mechanical properties such as tensile stress and tear strength, and has excellent heat resistance. It is preferable to use an aliphatic diol having 4 to 10 carbon atoms such as 3-methyl-1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, It is more preferable to use a linear aliphatic diol having 4 to 10 carbon atoms such as 1,6-hexanediol or 1,8-octanediol.
 ポリエステルポリオールの製造に用いるポリカルボン酸成分としては、ポリエステルの製造において一般的に使用されているものを用いることができ、例えば、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸、メチルコハク酸、2-メチルグルタル酸、3-メチルグルタル酸、トリメチルアジピン酸、2-メチルオクタン二酸、3,8-ジメチルデカン二酸、3,7-ジメチルデカン二酸等の炭素数4~12の脂肪族ジカルボン酸;シクロヘキサンジカルボン酸、ダイマー酸、水添ダイマー酸等の脂環式ジカルボン酸;テレフタル酸、イソフタル酸、オルトフタル酸、ナフタレンジカルボン酸等の芳香族ジカルボン酸;トリメリット酸、ピロメリット酸等の3官能以上のポリカルボン酸;あるいはそれらのエステル形成性誘導体などを挙げることができる。これらのポリカルボン酸成分は、単独で使用しても2種以上を併用してもよい。そのうちでも、非粘着性で、溶融成形性に優れ、引張応力や引裂強度で代表される力学的特性に優れ、耐熱性にも優れる熱可塑性ポリウレタンとなることから、炭素数6~12の脂肪族ジカルボン酸が好ましく、アジピン酸、アゼライン酸、セバシン酸がより好ましく、アジピン酸がさらに好ましい。 As the polycarboxylic acid component used in the production of the polyester polyol, those generally used in the production of polyester can be used. For example, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid , Sebacic acid, dodecanedioic acid, methylsuccinic acid, 2-methylglutaric acid, 3-methylglutaric acid, trimethyladipic acid, 2-methyloctanedioic acid, 3,8-dimethyldecanedioic acid, 3,7-dimethyldecanediate C4-C12 aliphatic dicarboxylic acid such as acid; cycloaliphatic dicarboxylic acid, dimer acid, hydrogenated dimer acid and other alicyclic dicarboxylic acid; terephthalic acid, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid and other aromatic dicarboxylic acids Acid; Tri- or higher functional polycals such as trimellitic acid and pyromellitic acid Phosphate; and or their ester-forming derivatives. These polycarboxylic acid components may be used alone or in combination of two or more. Among them, aliphatic polyurethanes having 6 to 12 carbon atoms are thermoplastic polyurethanes that are non-adhesive, have excellent melt moldability, have excellent mechanical properties such as tensile stress and tear strength, and have excellent heat resistance. Dicarboxylic acids are preferred, adipic acid, azelaic acid and sebacic acid are more preferred, and adipic acid is even more preferred.
 また、ポリエステルポリオールの製造に用いるラクトンとしては、ε-カプロラクトン、β-メチル-δ-バレロラクトン等を挙げることができる。 Examples of lactones used for producing polyester polyols include ε-caprolactone and β-methyl-δ-valerolactone.
 上記のポリエーテルポリオールとしては、例えば、ポリオールの存在下に、環状エーテルを開環重合して得られるポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリ(メチルテトラメチレングリコール)等を挙げることができ、これらのうちの1種または2種以上を用いることができる。そのうちでも、非粘着性で、溶融成形性に優れ、引張応力や引裂強度で代表される力学的特性に優れ、耐熱性にも優れる熱可塑性ポリウレタンとなることから、ポリテトラメチレングリコールおよび/またはポリ(メチルテトラメチレングリコール)が好ましく用いられる。 Examples of the polyether polyol include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and poly (methyltetramethylene glycol) obtained by ring-opening polymerization of a cyclic ether in the presence of a polyol. , One or more of these can be used. Among them, non-adhesive, excellent melt moldability, excellent mechanical properties represented by tensile stress and tear strength, and thermoplastic polyurethane having excellent heat resistance. (Methyltetramethylene glycol) is preferably used.
 上記のポリカーボネートポリオールとしては、例えば、ポリオール成分とジアルキルカーボネート、アルキレンカーボネート、ジアリールカーボネート等のカーボネート化合物との反応により得られるものを挙げることができる。ポリカーボネートポリオールの製造に用いるポリオール成分としては、ポリエステルポリオールの製造に用いることができる成分として先に例示したポリオール成分を用いることができる。また、ジアルキルカーボネートとしてはジメチルカーボネート、ジエチルカーボネート等を挙げることができ、アルキレンカーボネートとしてはエチレンカーボネート等を挙げることができ、ジアリールカーボネートとしてはジフェニルカーボネート等を挙げることができる。 Examples of the polycarbonate polyol include those obtained by a reaction between a polyol component and a carbonate compound such as dialkyl carbonate, alkylene carbonate, or diaryl carbonate. As the polyol component used for the production of the polycarbonate polyol, the polyol components exemplified above as the components that can be used for the production of the polyester polyol can be used. Examples of the dialkyl carbonate include dimethyl carbonate and diethyl carbonate. Examples of the alkylene carbonate include ethylene carbonate. Examples of the diaryl carbonate include diphenyl carbonate.
 上記のポリエステルポリカーボネートポリオールとしては、例えば、ポリオール成分、ポリカルボン酸成分およびカーボネート化合物を同時に反応させて得られたもの、あるいは予め上記したポリエステルポリオールおよびポリカーボネートポリオールをそれぞれ合成し、次いでそれらをカーボネート化合物と反応させるか、またはポリオール成分およびポリカルボン酸成分と反応させることによって得られたものなどを挙げることができる。 As the above-mentioned polyester polycarbonate polyol, for example, those obtained by simultaneously reacting a polyol component, a polycarboxylic acid component and a carbonate compound, or previously synthesized polyester polyol and polycarbonate polyol, respectively, and then combining them with a carbonate compound. Examples thereof include those obtained by reacting or reacting with a polyol component and a polycarboxylic acid component.
 上記の高分子ポリオールの具体例としては、例えば、ポリ(1,4-テトラメチレン アジペート)ジオール、ポリ(3-メチル-1,5-ペンタメチレン アジペート)ジオール、ポリ(ε-カプロラクトン)ジオール、ポリテトラメチレングリコール等が挙げられる。 Specific examples of the polymer polyol include, for example, poly (1,4-tetramethylene adipate) diol, poly (3-methyl-1,5-pentamethylene adipate) diol, poly (ε-caprolactone) diol, poly Examples include tetramethylene glycol.
 高分子ポリオールの数平均分子量は500~8,000の範囲内であることが好ましく、600~5,000の範囲内であることがより好ましく、800~3,000の範囲内であることがさらに好ましい。当該範囲の数平均分子量を有する高分子ポリオールを用いることにより、非粘着性で、溶融成形性に優れ、引張応力や引裂強度で代表される力学的特性に優れ、耐熱性にも優れる熱可塑性ポリウレタンが得られる。なお、本明細書における高分子ポリオールの数平均分子量はJIS K 1557に準拠して測定された水酸基価に基づいて算出した数平均分子量である。 The number average molecular weight of the polymer polyol is preferably in the range of 500 to 8,000, more preferably in the range of 600 to 5,000, and further in the range of 800 to 3,000. preferable. By using a polymer polyol having a number average molecular weight in this range, a thermoplastic polyurethane that is non-adhesive, excellent in melt moldability, excellent in mechanical properties represented by tensile stress and tear strength, and excellent in heat resistance Is obtained. In addition, the number average molecular weight of the polymer polyol in this specification is a number average molecular weight calculated based on the hydroxyl value measured according to JIS K 1557.
 本発明において使用される有機ポリイソシアネートとしては、ポリウレタンの製造に従来から使用されているいずれの有機ポリイソシアネートも使用することができる。かかる有機ポリイソシアネートの例としては、例えば、4,4’-ジフェニルメタンジイソシアネート、トリレンジイソシアネート、フェニレンジイソシアネート、キシリレンジイソシアネート、1,5-ナフチレンジイソシアネート、3,3’-ジクロロ-4,4’-ジフェニルメタンジイソシアネート等の芳香族ジイソシアネート;ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、水素化キシリレンジイソシアネート等の脂肪族または脂環式ジイソシアネートなどを挙げることができる。これらの有機ポリイソシアネートは1種を単独で使用しても2種以上を併用してもよい。そのうちでも、非粘着性で、溶融成形性に優れ、引張応力や引裂強度で代表される力学的特性に優れ、耐熱性にも優れる熱可塑性ポリウレタンとなることから、4,4’-ジフェニルメタンジイソシアネートから主としてなる(好ましくは50モル%以上、より好ましくは80モル%以上、さらに好ましくは95モル%以上、特に好ましくは100モル%含む)ことが好ましい。 As the organic polyisocyanate used in the present invention, any organic polyisocyanate conventionally used in the production of polyurethane can be used. Examples of such organic polyisocyanates include, for example, 4,4′-diphenylmethane diisocyanate, tolylene diisocyanate, phenylene diisocyanate, xylylene diisocyanate, 1,5-naphthylene diisocyanate, 3,3′-dichloro-4,4′- Examples thereof include aromatic diisocyanates such as diphenylmethane diisocyanate; aliphatic or alicyclic diisocyanates such as hexamethylene diisocyanate, isophorone diisocyanate, 4,4′-dicyclohexylmethane diisocyanate, and hydrogenated xylylene diisocyanate. These organic polyisocyanates may be used alone or in combination of two or more. Among these, 4,4'-diphenylmethane diisocyanate is a non-adhesive, excellent melt moldability, excellent mechanical properties represented by tensile stress and tear strength, and thermoplastic polyurethane with excellent heat resistance. It is preferable that it mainly comprises (preferably 50 mol% or more, more preferably 80 mol% or more, further preferably 95 mol% or more, particularly preferably 100 mol%).
 本発明において使用される鎖伸長剤としては、ポリウレタンの製造に従来から使用されているいずれの鎖伸長剤も使用することができる。かかる鎖伸長剤の例としては、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、1,4-ビス(β-ヒドロキシエトキシ)ベンゼン、1,4-シクロヘキサンジオール、ビス(β-ヒドロキシエチル)テレフタレート、キシリレングリコール等のジオール類;ヒドラジン、エチレンジアミン、プロピレンジアミン、キシリレンジアミン、イソホロンジアミン、ピペラジンあるいはその誘導体、フェニレンジアミン、トリレンジアミン、キシレンジアミン、アジピン酸ジヒドラジド、イソフタル酸ジヒドラジド等のジアミン類;アミノエチルアルコール、アミノプロピルアルコール等のアミノアルコール類などを挙げることができる。これらの鎖伸長剤は1種を単独で使用しても2種以上を併用してもよい。これらのうちでも、非粘着性で、溶融成形性に優れ、引張応力や引裂強度で代表される力学的特性に優れ、耐熱性にも優れる熱可塑性ポリウレタンとなることから、鎖伸長剤は、炭素数2~10の脂肪族ジオールから主としてなる(好ましくは50モル%以上、より好ましくは80モル%以上、さらに好ましくは95モル%以上、特に好ましくは100モル%含む)ことが好ましく、1,4-ブタンジオールから主としてなる(好ましくは50モル%以上、より好ましくは80モル%以上、さらに好ましくは95モル%以上、特に好ましくは100モル%含む)ことがより好ましい。 As the chain extender used in the present invention, any chain extender conventionally used in the production of polyurethane can be used. Examples of such chain extenders include ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, 1,4-bis (β-hydroxyethoxy) benzene, 1,4-cyclohexanediol, bis Diols such as (β-hydroxyethyl) terephthalate and xylylene glycol; hydrazine, ethylenediamine, propylenediamine, xylylenediamine, isophoronediamine, piperazine or derivatives thereof, phenylenediamine, tolylenediamine, xylenediamine, adipic acid dihydrazide, isophthalate Examples include diamines such as acid dihydrazide; amino alcohols such as aminoethyl alcohol and aminopropyl alcohol. These chain extenders may be used alone or in combination of two or more. Among these, the chain extender is a non-adhesive, excellent melt moldability, excellent mechanical properties represented by tensile stress and tear strength, and excellent in heat resistance. It is preferably mainly composed of an aliphatic diol of several 2 to 10 (preferably containing 50 mol% or more, more preferably 80 mol% or more, further preferably 95 mol% or more, particularly preferably 100 mol%), More preferably, it is mainly composed of butanediol (preferably 50 mol% or more, more preferably 80 mol% or more, further preferably 95 mol% or more, particularly preferably 100 mol%).
 前記の高分子ポリオール、有機ポリイソシアネートおよび鎖伸長剤を反応させて熱可塑性ポリウレタンを製造するに当たっては、各成分の混合比率は、目的とする熱可塑性ポリウレタンに付与すべき硬度、力学的性能などを考慮して適宜決定されるが、反応系に存在する活性水素原子:イソシアネート基のモル比が1:0.9~1.1の範囲内になるような割合で各成分を使用することが好ましく、1:0.95~1.05になるような割合で各成分を使用することがより好ましい。上記の割合で各成分を使用することにより、非粘着性で、溶融成形性に優れ、引張応力や引裂強度で代表される力学的特性に優れ、耐熱性にも優れた熱可塑性ポリウレタンを得ることができる。 In the production of a thermoplastic polyurethane by reacting the above-mentioned polymer polyol, organic polyisocyanate and chain extender, the mixing ratio of each component depends on the hardness, mechanical performance, etc. to be imparted to the desired thermoplastic polyurethane. Although it is appropriately determined in consideration, it is preferable to use each component in such a ratio that the molar ratio of active hydrogen atom: isocyanate group present in the reaction system is within the range of 1: 0.9 to 1.1. It is more preferable to use each component at a ratio of 1: 0.95 to 1.05. By using each component in the above proportion, a thermoplastic polyurethane that is non-adhesive, excellent in melt moldability, excellent in mechanical properties represented by tensile stress and tear strength, and excellent in heat resistance is obtained. Can do.
 熱可塑性ポリウレタンの製造方法は特に制限されず、高分子ポリオール、有機ポリイソシアネートおよび鎖伸長剤を使用して、公知のウレタン化反応技術のいずれを採用して行ってもよく、プレポリマー法またはワンショット法のいずれも採用することができる。これらの中でも、実質的に溶剤の不存在下に溶融重合することが好ましく、特に多軸スクリュー型押出機を用いる連続溶融重合法を採用することがより好ましい。溶融重合する際の重合温度としては180~280℃の範囲内であることが好ましい。 The method for producing the thermoplastic polyurethane is not particularly limited, and may be performed using any of the known urethanization reaction techniques using a polymer polyol, an organic polyisocyanate, and a chain extender. Any of the shot methods can be employed. Among these, it is preferable to perform melt polymerization substantially in the absence of a solvent, and it is more preferable to employ a continuous melt polymerization method using a multi-screw extruder. The polymerization temperature at the time of melt polymerization is preferably in the range of 180 to 280 ° C.
 上記した高分子ポリオール、有機ポリイソシアネートおよび鎖伸長剤を反応させて熱可塑性ポリウレタンを得るに際して、ウレタン化反応触媒を使用してもよい。当該ウレタン化反応触媒の種類は特に制限されず、熱可塑性ポリウレタンの製造に従来から使用されているウレタン化反応触媒のいずれも使用することができる。かかるウレタン化反応触媒の例としては、有機スズ系化合物、有機亜鉛系化合物、有機ビスマス系化合物、有機チタン系化合物、有機ジルコニウム系化合物、アミン系化合物から選ばれる少なくとも1種の化合物等を挙げることができる。ウレタン化反応触媒は1種を単独で使用しても2種以上を併用してもよい。 When the above-described polymer polyol, organic polyisocyanate and chain extender are reacted to obtain a thermoplastic polyurethane, a urethanization reaction catalyst may be used. The kind in particular of the said urethanation reaction catalyst is not restrict | limited, Any of the urethanation reaction catalysts conventionally used for manufacture of a thermoplastic polyurethane can be used. Examples of the urethanization reaction catalyst include at least one compound selected from organic tin compounds, organic zinc compounds, organic bismuth compounds, organic titanium compounds, organic zirconium compounds, and amine compounds. Can do. A urethanization reaction catalyst may be used individually by 1 type, or may use 2 or more types together.
 上記の熱可塑性ポリウレタンにおける、イソシアネート基由来の窒素原子の含有率は4.5質量%以上であることが好ましい。上記の範囲のイソシアネート基由来の窒素原子の含有率を有する熱可塑性ポリウレタンは、非粘着性で、溶融成形性に優れ、引張応力や引裂強度で代表される力学的特性に優れ、耐熱性にも優れたものとなる。熱可塑性ポリウレタンにおけるイソシアネート基由来の窒素原子の含有率は4.5~6.5質量%であることがより好ましく、4.6~6.0質量%であることがさらに好ましく、4.7~5.7質量%であることが特に好ましく、4.8~5.5質量%であることが最も好ましい。 In the above thermoplastic polyurethane, the content of nitrogen atoms derived from isocyanate groups is preferably 4.5% by mass or more. Thermoplastic polyurethane having a content of nitrogen atoms derived from isocyanate groups within the above range is non-adhesive, excellent in melt moldability, excellent in mechanical properties represented by tensile stress and tear strength, and also in heat resistance. It will be excellent. The content of nitrogen atoms derived from isocyanate groups in the thermoplastic polyurethane is more preferably 4.5 to 6.5% by mass, further preferably 4.6 to 6.0% by mass, and more preferably 4.7 to The amount is particularly preferably 5.7% by mass, and most preferably 4.8 to 5.5% by mass.
 上記の熱可塑性ポリウレタンの対数粘度は、N,N-ジメチルホルムアミド(DMF)に当該熱可塑性ポリウレタンを濃度0.5g/dlになるように溶解して得られる溶液を30℃で測定したときの値として、0.7~1.5dl/gであることが好ましく、0.8~1.4dl/gであることがより好ましく、0.9~1.3dl/gであることがさらに好ましい。上記の範囲の対数粘度を有する熱可塑性ポリウレタンを含有するフィルムは、非粘着性で、溶融成形性に優れ、引張応力や引裂強度で代表される力学的特性に優れ、耐熱性にも優れたものとなる。なお、本明細書における熱可塑性ポリウレタンの対数粘度(ηinh)は、以下の実施例において記載する方法により測定された値を意味する。 The logarithmic viscosity of the thermoplastic polyurethane is a value obtained by measuring a solution obtained by dissolving the thermoplastic polyurethane in N, N-dimethylformamide (DMF) to a concentration of 0.5 g / dl at 30 ° C. Is preferably from 0.7 to 1.5 dl / g, more preferably from 0.8 to 1.4 dl / g, and even more preferably from 0.9 to 1.3 dl / g. A film containing a thermoplastic polyurethane having a logarithmic viscosity in the above range is non-adhesive, excellent in melt moldability, excellent in mechanical properties represented by tensile stress and tear strength, and excellent in heat resistance It becomes. In addition, the logarithmic viscosity ((eta) inh ) of the thermoplastic polyurethane in this specification means the value measured by the method described in a following example.
 上記の熱可塑性ポリウレタンのASTM D硬度は52以上であることが好ましく、55以上であることがより好ましく、58以上であることがさらに好ましい。上記の範囲のASTM D硬度を有する熱可塑性ポリウレタンは、非粘着性で、溶融成形性に優れ、引張応力や引裂強度で代表される力学的特性に優れ、耐熱性にも優れたものとなる。なお、本明細書における熱可塑性ポリウレタンのASTM D硬度は、ASTM D2240に準拠して測定された値である。 The ASTM D hardness of the thermoplastic polyurethane is preferably 52 or more, more preferably 55 or more, and further preferably 58 or more. The thermoplastic polyurethane having ASTM D hardness in the above range is non-adhesive, excellent in melt moldability, excellent in mechanical properties represented by tensile stress and tear strength, and excellent in heat resistance. In addition, the ASTM D hardness of the thermoplastic polyurethane in this specification is a value measured according to ASTM D2240.
 本発明のキーパッド用フィルムは、上記の熱可塑性ポリウレタン単独からなるかまたは当該熱可塑性ポリウレタンから主としてなる熱可塑性ポリウレタン組成物からなる。熱可塑性ポリウレタン組成物における上記の熱可塑性ポリウレタンの含有率としては、50質量%以上であることが好ましく、80質量%以上であることがより好ましく、95質量%以上であることがさらに好ましい。 The keypad film of the present invention is composed of the above thermoplastic polyurethane alone or a thermoplastic polyurethane composition mainly composed of the thermoplastic polyurethane. The content of the thermoplastic polyurethane in the thermoplastic polyurethane composition is preferably 50% by mass or more, more preferably 80% by mass or more, and further preferably 95% by mass or more.
 上記の熱可塑性ポリウレタン組成物は、本発明の効果を損なわない範囲内で、必要に応じて、離型剤、補強剤、着色剤、難燃剤、紫外線吸収剤、酸化防止剤、耐候性改良剤、耐光性改良剤、耐加水分解性向上剤、防かび剤、抗菌剤、安定剤、ウレタン化反応触媒失活剤等の各種添加剤;ガラス繊維、ポリエステル繊維等の各種繊維;タルク、シリカ等の無機物;各種カップリング剤;上記の熱可塑性ポリウレタン以外の他の樹脂などの任意の成分を含有することができる。熱可塑性ポリウレタン組成物におけるこれらの任意の成分の含有率としては、50質量%以下であることが好ましく、20質量%以下であることがより好ましく、5質量%以下であることがさらに好ましい。 The thermoplastic polyurethane composition is within the range that does not impair the effects of the present invention, and if necessary, a mold release agent, a reinforcing agent, a colorant, a flame retardant, an ultraviolet absorber, an antioxidant, a weather resistance improver. , Light resistance improver, hydrolysis resistance improver, antifungal agent, antibacterial agent, stabilizer, urethanization catalyst deactivator, etc .; glass fiber, polyester fiber, etc .; talc, silica, etc. Inorganic components; various coupling agents; optional components such as resins other than the thermoplastic polyurethane described above can be contained. The content of these optional components in the thermoplastic polyurethane composition is preferably 50% by mass or less, more preferably 20% by mass or less, and still more preferably 5% by mass or less.
 本発明のキーパッド用フィルムの引張応力(M100)は18MPa以上であることが必要である。キーパッド用フィルムが上記の範囲の引張応力(M100)を有することにより、加熱処理によっても反りや収縮等の不良現象やフィルム同士の膠着などが生じないものとなり、また補強材を使用しなくても形状を保持することができるキーパッドやキーシートを与えるものとなる。キーパッド用フィルムの引張応力(M100)は18~30MPaであることが好ましく、18~25MPaであることがより好ましい。なお、本明細書でいう引張応力(M100)はJIS K 7311-1995に準拠して測定された値である。 The tensile stress (M 100 ) of the keypad film of the present invention is required to be 18 MPa or more. When the keypad film has a tensile stress (M 100 ) in the above range, the heat treatment does not cause defects such as warping or shrinkage, or sticking between films, and no reinforcing material is used. Even so, a keypad or a key sheet that can retain the shape is provided. The tensile stress (M 100 ) of the keypad film is preferably 18 to 30 MPa, more preferably 18 to 25 MPa. The tensile stress (M 100 ) in the present specification is a value measured according to JIS K 7311-1995.
 キーパッド用フィルムを構成する上記熱可塑性ポリウレタンとして所定の引張応力(M100)を有するものを使用することにより、本発明のキーパッド用フィルムの引張応力(M100)を容易に上記範囲とすることができる。すなわち、本発明のキーパッド用フィルムを上記の熱可塑性ポリウレタン単独から構成する場合には、キーパッド用フィルムに付与すべき引張応力(M100)と同じ引張応力(M100)を有する熱可塑性ポリウレタンを使用すればよい。当該熱可塑性ポリウレタンとしては、上述したとおり高分子ポリオール、有機ポリイソシアネートおよび鎖伸長剤を反応させて得られるものであって、かつその引張応力(M100)が上記範囲となるものであれば特に制限はないが、熱可塑性ポリウレタン、ひいては得られるキーパッド用フィルムの引張応力(M100)をより確実に上記範囲とするために、使用される熱可塑性ポリウレタンの具体例としては、(i)ポリ(1,4-テトラメチレン アジペート)ジオール、4,4’-ジフェニルメタンジイソシアネートおよび1,4-ブタンジオールを反応させることにより得られる、イソシアネート基由来の窒素原子の含有率が4.8質量%以上である熱可塑性ポリウレタン、(ii)ポリ(3-メチル-1,5-ペンタメチレン アジペート)ジオール、4,4’-ジフェニルメタンジイソシアネートおよび1,4-ブタンジオールを反応させることにより得られる、イソシアネート基由来の窒素原子の含有率が4.7質量%以上である熱可塑性ポリウレタン、(iii)ポリ(ε-カプロラクトン)ジオール、4,4’-ジフェニルメタンジイソシアネートおよび1,4-ブタンジオールを反応させることにより得られる、イソシアネート基由来の窒素原子の含有率が4.9質量%以上である熱可塑性ポリウレタン、ならびに(iv)ポリテトラメチレングリコール、4,4’-ジフェニルメタンジイソシアネートおよび1,4-ブタンジオールを反応させることにより得られる、イソシアネート基由来の窒素原子の含有率が5.1質量%以上である熱可塑性ポリウレタンからなる群から選ばれる少なくとも1種の熱可塑性ポリウレタンなどが挙げられる。
 また、本発明のキーパッド用フィルムを上記の熱可塑性ポリウレタン組成物から構成する場合には、上記した任意の成分の種類や配合量を考慮して所定の引張応力(M100)を有する熱可塑性ポリウレタンを使用することにより、キーパッド用フィルムの引張応力(M100)を容易に上記範囲とすることができる。
By using those having a predetermined tensile stress (M 100) as the thermoplastic polyurethanes that constitute the keypad film, tensile stress of keypad film of the present invention (M 100) easily in the above range be able to. That is, when the keypad film of the present invention consist above thermoplastic polyurethane alone, thermoplastic polyurethane having a tensile to be assigned to keypad film stress (M 100) to the same tensile stress (M 100) Can be used. As the thermoplastic polyurethane, as described above, it can be obtained by reacting a polymer polyol, an organic polyisocyanate, and a chain extender, and the tensile stress (M 100 ) is within the above range. Although there is no limitation, in order to ensure that the tensile stress (M 100 ) of the thermoplastic polyurethane, and thus the obtained keypad film, is within the above range, specific examples of the thermoplastic polyurethane used include (i) poly The content of nitrogen atoms derived from isocyanate groups obtained by reacting (1,4-tetramethylene adipate) diol, 4,4′-diphenylmethane diisocyanate and 1,4-butanediol is 4.8% by mass or more. A thermoplastic polyurethane, (ii) poly (3-methyl-1,5-pentamethylene A thermoplastic polyurethane obtained by reacting diol, 4,4′-diphenylmethane diisocyanate and 1,4-butanediol, wherein the content of nitrogen atoms derived from isocyanate groups is 4.7% by mass or more; iii) The content of nitrogen atoms derived from isocyanate groups obtained by reacting poly (ε-caprolactone) diol, 4,4′-diphenylmethane diisocyanate and 1,4-butanediol is 4.9% by mass or more. The content of nitrogen atoms derived from isocyanate groups obtained by reacting thermoplastic polyurethane and (iv) polytetramethylene glycol, 4,4′-diphenylmethane diisocyanate and 1,4-butanediol is 5.1% by mass. Is it a group consisting of thermoplastic polyurethane Such as at least one thermoplastic polyurethane chosen may be mentioned.
Further, when the keypad film of the present invention is composed of the above-mentioned thermoplastic polyurethane composition, the thermoplastic resin having a predetermined tensile stress (M 100 ) in consideration of the types and blending amounts of the above optional components. By using polyurethane, the tensile stress (M 100 ) of the keypad film can be easily within the above range.
 本発明のキーパッド用フィルムの製造方法は特に制限されず、高分子ポリオール、有機ポリイソシアネートおよび鎖伸長剤を反応させて得られた熱可塑性ポリウレタンを使用して、公知のフィルム化製造技術のいずれを採用して行ってもよく、例えば、押出成形、射出成形、インフレーション成形、カレンダー成形またはプレス成形等のいずれも採用することができる。これらの中でも、押出成形またはインフレーション成形を採用することが好ましく、特に単軸スクリュー型押出機を用いる押出成形またはインフレーション成形を採用することがより好ましい。この場合に、単軸スクリュー型押出機のシリンダー温度としては、180~230℃の範囲内であることが好ましい。 The method for producing the keypad film of the present invention is not particularly limited, and any of the known film-forming production techniques using a thermoplastic polyurethane obtained by reacting a polymer polyol, an organic polyisocyanate and a chain extender. For example, any of extrusion molding, injection molding, inflation molding, calendar molding, press molding, and the like can be employed. Among these, it is preferable to employ extrusion molding or inflation molding, and it is more preferable to employ extrusion molding or inflation molding using a single screw extruder. In this case, the cylinder temperature of the single-screw extruder is preferably in the range of 180 to 230 ° C.
 本発明のキーパッド用フィルムの厚さは特に制限されず、熱可塑性ポリウレタンにおけるイソシアネート基由来の窒素原子の含有率や当該熱可塑性ポリウレタンの硬度、あるいは得られるキーパッド用フィルムの引張応力(M100)などの値に応じて調節し得るが、フィルムの製造の容易性、耐熱性、後加工の工程通過性などの観点から20~300μmであることが好ましく、30~200μmであることがより好ましく、40~150μmであることがさらに好ましい。 Key pad thickness film of the present invention is not particularly limited, the thermoplastic content or the thermoplastic polyurethane hardness nitrogen atom derived from the isocyanate groups of the polyurethane or obtained keypad film for tensile stress, (M 100 However, it is preferably 20 to 300 μm, more preferably 30 to 200 μm from the viewpoints of film production ease, heat resistance, and post-processing passability. 40 to 150 μm is more preferable.
 本発明のキーパッド用フィルムは、そのまま使用して当該キーパッド用フィルムよりなる単独層から構成されるキーパッドとすることができるが、本発明のキーパッド用フィルムと他の層とが積層された積層体からキーパッドを構成してもよい。当該他の層を構成する素材としては、ポリエステル、ポリアミド、ポリカーボネート、シリコーン、熱可塑性ポリウレタン、熱硬化性ポリウレタン、ポリオレフィン等の樹脂;金属;紙;綿布などが挙げられる。また、上記キーパッドは、塗料、インキにより構成される層や、接着剤、プライマーにより構成される層などを上記他の層として有していてもよい。
 上記の塗料、インキにより構成される層や、接着剤やプライマーにより構成される層を形成する際などには、加熱処理を施すことが好ましい。当該加熱処理の温度としては、例えば、40~120℃が例示される。また加熱処理の時間としては、例えば、10秒~3時間が例示される。
The keypad film of the present invention can be used as it is to make a keypad composed of a single layer made of the keypad film, but the keypad film of the present invention and other layers are laminated. A keypad may be formed from the stacked body. Examples of the material constituting the other layer include resins such as polyester, polyamide, polycarbonate, silicone, thermoplastic polyurethane, thermosetting polyurethane, and polyolefin; metal; paper; cotton cloth and the like. The keypad may have a layer composed of paint or ink, a layer composed of an adhesive, a primer, or the like as the other layer.
When forming a layer composed of the above-mentioned paint or ink, or a layer composed of an adhesive or a primer, it is preferable to perform heat treatment. Examples of the temperature of the heat treatment include 40 to 120 ° C. Examples of the heat treatment time include 10 seconds to 3 hours.
 本発明のキーパッド用フィルムの単独層や本発明のキーパッド用フィルムと他の層とが積層された積層体に対して、必要に応じて、裁断、打ち抜き、切削などにより所望の寸法、形状に加工することにより、キーパッドを製造することができる。また、キーパッドには、研削やレーザーなどにより所望の溝や穴などを形成してもよい。この他、キーパッドにはキートップが配設されるための凹凸;キーシートの下面に設置されたキースイッチを押すための押し子が配設されるための凹凸;キーパッド自体がキートップや押し子などの機能を有することができるようにするための凹凸などの各種凹凸が設けられていてもよい。これらの凹凸は本発明のキーパッド用フィルムの単独層や本発明のキーパッド用フィルムと他の層とが積層された積層体に対して、圧縮成形(プレス成形)、真空成形などを施すことにより形成することができる。 A single layer of the keypad film of the present invention or a laminate in which the keypad film of the present invention and other layers are laminated, if necessary, by cutting, punching, cutting, or the like to have desired dimensions and shapes. By processing into a keypad, a keypad can be manufactured. Further, a desired groove or hole may be formed on the keypad by grinding or laser. In addition, the keypad has an irregularity for arranging the key top; an irregularity for arranging the pusher for pressing the key switch installed on the lower surface of the key sheet; Various irregularities such as irregularities for enabling the pusher to have a function may be provided. These irregularities are subjected to compression molding (press molding), vacuum molding, etc. on a single layer of the keypad film of the present invention or a laminate in which the keypad film of the present invention and other layers are laminated. Can be formed.
 上記のキーパッドの所定の位置にボタンキー等のキートップなどを配設することにより、上記のキーパッドおよびキートップを有するキーシートとすることができる。また、キーシートは上記キートップ以外にも、押し子などを有していてもよい。キーパッドへのキートップや押し子などの配設は化学反応形接着剤(シアノアクリレートを成分とする接着剤等)やUV接着剤などの接着剤を用いて行うことができる。 By arranging a key top such as a button key at a predetermined position of the keypad, a key sheet having the keypad and the keytop can be obtained. The key sheet may have a pusher in addition to the key top. Arrangement of key tops and pressers on the keypad can be performed using an adhesive such as a chemically reactive adhesive (such as an adhesive containing cyanoacrylate) or a UV adhesive.
 本発明のキーパッド用フィルムを使用して得られたキーパッドやキーシートは、携帯電話等の通信端末、各種計器、パソコン入力用キーボード、リモコンなどの操作部を構成する部材として好ましく使用することができる。 The keypad or key sheet obtained by using the keypad film of the present invention is preferably used as a member constituting an operation unit of a communication terminal such as a mobile phone, various instruments, a keyboard for personal computer input, a remote control, etc. Can do.
 以下に、本発明を実施例により具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。なお実施例および比較例における、熱可塑性ポリウレタンの溶融粘度、対数粘度およびASTM D硬度、ならびにキーパッド用フィルムの引張応力(M100)および耐熱性は、以下の方法により測定または評価した。 EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. In the examples and comparative examples, the melt viscosity, logarithmic viscosity, and ASTM D hardness of the thermoplastic polyurethane, and the tensile stress (M 100 ) and heat resistance of the keypad film were measured or evaluated by the following methods.
熱可塑性ポリウレタンの溶融粘度
 高化式フローテスター(株式会社島津製作所製)を使用して、80℃で2時間減圧乾燥(10torr以下)した熱可塑性ポリウレタンの溶融粘度を、荷重490.3N(50kgf)、ノズル寸法=直径1mm×長さ10mm、温度200℃の条件下で測定した。
The melt viscosity of the thermoplastic polyurethane, which was dried under reduced pressure (less than 10 torr) at 80 ° C. for 2 hours using a flow tester (manufactured by Shimadzu Corporation) with a melt viscosity of thermoplastic polyurethane, was 490.3 N (50 kgf). Nozzle size = diameter 1 mm × length 10 mm, measured at a temperature of 200 ° C.
熱可塑性ポリウレタンの対数粘度
 下記の実施例または比較例により得られたキーパッド用フィルム1g当たり200mlのN,N-ジメチルホルムアミド(DMF)を加えて、室温で24時間撹拌した後、濾過分別してDMF溶液を回収した。不溶物が生じた場合には、当該不溶物に対してさらに200mlのDMFを加えて1時間撹拌して濾過分別する操作を3回繰り返した。回収した濾液を一緒にし、濾液からDMFを留去した後、室温で24時間真空乾燥し、得られたポリウレタン成分の質量を測定して、キーパッド用フィルムに含まれている熱可塑性ポリウレタンのほぼ100%が抽出されていることを確認した。なお抽出率がほぼ100%に満たない場合は、抽出されなかった部分は熱可塑性ポリウレタンの分子量が十分に高いためにDMFに不溶であったものと判断して、対数粘度の測定対象から外した。
 抽出された熱可塑性ポリウレタンを濃度0.5g/dlになるように再びDMFに溶解し、ウベローデ型粘度計を用いて、その熱可塑性ポリウレタンのDMF溶液の30℃における流下時間を測定し、下記の式により熱可塑性ポリウレタンの対数粘度(ηinh)を求めた。
  熱可塑性ポリウレタンの対数粘度(ηinh)=[ln(t/t)]/c
[式中、tは熱可塑性ポリウレタンのDMF溶液の流下時間(秒)、tは溶媒(DMF)の流下時間(秒)およびcは熱可塑性ポリウレタンのDMF溶液の濃度(g/dl)を表す。]
Logarithmic viscosity of thermoplastic polyurethane 200 ml of N, N-dimethylformamide (DMF) per gram of keypad film obtained in the following examples or comparative examples was added and stirred at room temperature for 24 hours, followed by filtration to separate DMF. The solution was collected. When an insoluble material was generated, an operation of adding 200 ml of DMF to the insoluble material, stirring for 1 hour and separating by filtration was repeated 3 times. The collected filtrates were combined, and DMF was distilled off from the filtrate, followed by vacuum drying at room temperature for 24 hours. The mass of the obtained polyurethane component was measured, and almost all of the thermoplastic polyurethane contained in the keypad film was measured. It was confirmed that 100% was extracted. When the extraction rate was less than 100%, it was judged that the part that was not extracted was insoluble in DMF because the molecular weight of the thermoplastic polyurethane was sufficiently high, and was excluded from the log viscosity measurement target. .
The extracted thermoplastic polyurethane was dissolved again in DMF to a concentration of 0.5 g / dl, and the flow time at 30 ° C. of the DMF solution of the thermoplastic polyurethane was measured using an Ubbelohde viscometer. The logarithmic viscosity (η inh ) of the thermoplastic polyurethane was determined by the equation.
Logarithmic viscosity of thermoplastic polyurethane (η inh ) = [ln (t / t 0 )] / c
[Wherein, t represents the flow time (second) of the DMF solution of thermoplastic polyurethane, t 0 represents the flow time (second) of the solvent (DMF), and c represents the concentration (g / dl) of the DMF solution of thermoplastic polyurethane. . ]
熱可塑性ポリウレタンのASTM D硬度
 表面を鏡面仕上げした金型を用いて、下記の実施例または比較例において製造された熱可塑性ポリウレタンを射出成形して(シリンダー温度185~210℃、金型温度30℃)、円板状の成形品(直径120mm、厚さ2mm)を製造し、得られた円板状の成形品を3枚重ね合わせたものを用いて、ASTM D2240に準じて、成形品(熱可塑性ポリウレタン)のASTM D硬度を測定した。
A thermoplastic polyurethane produced in the following examples or comparative examples was injection-molded using a mold having a mirror finished ASTM D hardness surface of thermoplastic polyurethane (cylinder temperature 185 to 210 ° C., mold temperature 30 ° C. ), A disk-shaped molded product (diameter 120 mm, thickness 2 mm), and a product obtained by superimposing three obtained disk-shaped molded products in accordance with ASTM D2240. The ASTM D hardness of the plastic polyurethane) was measured.
キーパッド用フィルムの引張応力(M 100
 下記の実施例または比較例により得られたキーパッド用フィルムからJIS K 7311-1995に規定されたダンベル状試験片(中央部の幅5mm)を作製した。インストロン ジャパン カンパニイ リミテッド社製「インストロン5566」を使用して、温度23℃および引張速度300mm/分の条件下で上記ダンベル状試験片を100%伸長した際の引張応力を測定し、これをキーパッド用フィルムの引張応力(M100)とした。
Tensile stress of keypad film (M 100 )
A dumbbell-shaped test piece (5 mm in width at the center) defined in JIS K 7311-1995 was produced from a keypad film obtained in the following examples or comparative examples. Using “Instron 5566” manufactured by Instron Japan Company Limited, the tensile stress when the dumbbell-shaped test piece was stretched 100% under the conditions of a temperature of 23 ° C. and a tensile speed of 300 mm / min was measured. The tensile stress (M 100 ) of the keypad film was used.
キーパッド用フィルムの耐熱性
 下記の実施例または比較例により得られたキーパッド用フィルムから試験片(縦100mm×横100mm)を50枚作製した。これらの50枚の試験片のそれぞれについて、中央部に縦50mm×横50mmの正方形状にスクリーンインキ(帝国インキ製造株式会社製「IPXスクリーンインキ」)を塗布し、90℃の熱風乾燥機の中で1時間放置した。熱風乾燥処理後の試験片の状態を観察して下記の判定基準で試験片の耐熱性を評価し、これをキーパッド用フィルムの耐熱性とした。
[耐熱性の評価基準]
3:試験片の全数(50枚)において、スクリーンインキ塗布部は何ら反りや収縮が生じておらず、平滑性が維持されていた。
2:スクリーンインキ塗布部において反りや収縮が生じておらず平滑性が維持されている試験片の枚数が46~49枚であった。(1~4枚の試験片において、スクリーンインキ塗布部における反りや収縮が見られた。)
1:スクリーンインキ塗布部において反りや収縮が生じておらず平滑性が維持されている試験片の枚数が45枚以下であった。(5枚以上の試験片において、スクリーンインキ塗布部における反りや収縮が見られた。)
Heat Resistance of Keypad Film Fifty test pieces (length 100 mm × width 100 mm) were produced from the keypad film obtained in the following examples or comparative examples. For each of these 50 test pieces, screen ink (“IPX screen ink” manufactured by Teikoku Ink Manufacturing Co., Ltd.) was applied in a square shape of 50 mm in length and 50 mm in width at the center, And left for 1 hour. The state of the test piece after the hot air drying treatment was observed and the heat resistance of the test piece was evaluated according to the following criteria, and this was regarded as the heat resistance of the keypad film.
[Evaluation criteria for heat resistance]
3: In the total number of test pieces (50 sheets), the screen ink application part was not warped or contracted at all, and the smoothness was maintained.
2: The number of test pieces in which the smoothness was maintained without warping or shrinkage in the screen ink application part was 46 to 49. (In 1 to 4 test pieces, warpage and shrinkage were observed in the screen ink application part.)
1: The number of test pieces in which the smoothness was maintained without warping or shrinkage in the screen ink application portion was 45 or less. (In five or more test pieces, warpage and shrinkage were observed in the screen ink application part.)
 実施例および比較例において使用した各成分の略号を以下に示す。
[高分子ポリオール]
 POH-1:3-メチル-1,5-ペンタンジオールとアジピン酸を反応させて製造した、1分子当たりの水酸基数が2.00で、数平均分子量が1,500であるポリエステルジオール
 POH-2:1,4-ブタンジオールとアジピン酸を反応させて製造した、1分子当たりの水酸基数が2.00で、数平均分子量が1,000であるポリエステルジオール
 POH-3:1,4-ブタンジオールとアジピン酸を反応させて製造した、1分子当たりの水酸基数が2.00で、数平均分子量が2,000であるポリエステルジオール
 POH-4:1分子当たりの水酸基数が2.00で、数平均分子量が1,000であるポリテトラメチレングリコール
 POH-5:1分子当たりの水酸基数が2.00で、数平均分子量が1,000であるポリ(ε-カプロラクトン)ジオール
 POH-6:3-メチル-1,5-ペンタンジオールと1,6-ヘキサンジオールの混合物([3-メチル-1,5-ペンタンジオールのモル数]:[1,6-ヘキサンジオールのモル数]=9:1)をポリオール成分とする、1分子当たりの水酸基数が2.00で、数平均分子量が1,000であるポリカーボネートジオール
[有機ポリイソシアネート]
 MDI:4,4’-ジフェニルメタンジイソシアネート
 HDI:ヘキサメチレンジイソシアネート
[鎖伸長剤]
 BD:1,4-ブタンジオール
Abbreviations for each component used in the examples and comparative examples are shown below.
[Polymer polyol]
POH-1 : Polyester diol POH-2 produced by reacting 3-methyl-1,5-pentanediol with adipic acid and having a number of hydroxyl groups per molecule of 2.00 and a number average molecular weight of 1,500 : Polyester diol POH-3 produced by reacting 1,4-butanediol and adipic acid and having a number of hydroxyl groups per molecule of 2.00 and a number average molecular weight of 1,000: 1,4-butanediol Polyester diol POH-4 having a number of hydroxyl groups per molecule of 2.00 and a number average molecular weight of 2,000 produced by reacting adipic acid with adipic acid: 2.00 hydroxyl groups per molecule average molecular weight of polytetramethylene glycol POH-5 1,000: 1 hydroxyl group per molecule is 2.00, positive number average molecular weight of 1,000 (.Epsilon.-caprolactone) diol POH-6: a mixture of 3-methyl-1,5-pentanediol and 1,6-hexanediol ([the number of moles of 3-methyl-1,5-pentanediol: [1,6 -Mole number of hexanediol] = 9: 1) Polycarbonate diol having a number of hydroxyl groups per molecule of 2.00 and a number average molecular weight of 1,000 [organic polyisocyanate]
MDI : 4,4′-diphenylmethane diisocyanate HDI : hexamethylene diisocyanate [chain extender]
BD : 1,4-butanediol
[実施例1]
(1)熱可塑性ポリウレタン(PU-1)の製造
 高分子ポリオール(POH-1)、有機ポリイソシアネート(MDI)および鎖伸長剤(BD)を、POH-1:MDI:BDのモル比が1.0:6.1:5.1(イソシアネート基由来の窒素原子の含有率は4.9質量%)で、かつこれらの合計供給量が200g/分となるようにして同軸方向に回転する二軸スクリュー型押出機(単径30mmφ、L/D=36;加熱ゾーンは前部、中央部、後部の3つの帯域に分けた)の加熱ゾーンの前部に連続供給して、重合温度260℃の条件下に連続溶融重合を行ってポリウレタン形成反応を実施した。得られた溶融物をストランド状に水中に連続的に押し出し、次いでペレタイザーで切断してペレットを得た。得られたペレットを95℃で4時間除湿乾燥することにより、熱可塑性ポリウレタン(PU-1)を得た。得られた熱可塑性ポリウレタン(PU-1)の溶融粘度およびASTM D硬度を上記した方法で測定した。結果を表1に示す。
(2)キーパッド用フィルムの製造
 上記(1)で得られた熱可塑性ポリウレタン(PU-1)をT-ダイを装着した単軸スクリュー型押出機(シリンダー径25mmφ、シリンダー温度180~200℃、ダイス温度200℃)の供給口に供給して、T-ダイより30℃の冷却ロール上にフィルム状に押し出し、冷却した後に巻き取って厚さ100μmのキーパッド用フィルムを製造した。得られたキーパッド用フィルムを用いて、それに含まれる熱可塑性ポリウレタンの対数粘度、当該キーパッド用フィルムの引張応力(M100)および耐熱性を上記した方法で測定した。結果を表1に示す。
[Example 1]
(1) Production of thermoplastic polyurethane (PU-1) A polymer polyol (POH-1), an organic polyisocyanate (MDI) and a chain extender (BD) are mixed at a molar ratio of POH-1: MDI: BD of 1. 0: 6.1: 5.1 (the content of the nitrogen atom derived from the isocyanate group is 4.9% by mass), and these two axes rotate in the coaxial direction so that the total supply amount thereof is 200 g / min. Continuously fed to the front of the heating zone of a screw type extruder (single diameter 30 mmφ, L / D = 36; heating zone divided into three zones: front, center and rear), polymerization temperature of 260 ° C. Polyurethane formation reaction was carried out by continuous melt polymerization under the conditions. The obtained melt was continuously extruded into water as a strand, and then cut with a pelletizer to obtain pellets. The obtained pellets were dehumidified and dried at 95 ° C. for 4 hours to obtain thermoplastic polyurethane (PU-1). The melt viscosity and ASTM D hardness of the obtained thermoplastic polyurethane (PU-1) were measured by the methods described above. The results are shown in Table 1.
(2) Manufacture of keypad film Single-screw type extruder (cylinder diameter: 25 mmφ, cylinder temperature: 180 to 200 ° C., equipped with T-die) thermoplastic polyurethane (PU-1) obtained in (1) above Then, the film was extruded from a T-die onto a 30 ° C. cooling roll, cooled, and wound up to produce a keypad film having a thickness of 100 μm. Using the obtained keypad film, the logarithmic viscosity of the thermoplastic polyurethane contained therein, the tensile stress (M 100 ) of the keypad film, and the heat resistance were measured by the methods described above. The results are shown in Table 1.
[実施例2~5]
(1)熱可塑性ポリウレタン(PU-2~PU-5)の製造
 高分子ポリオール(POH-2~POH-5)、有機ポリイソシアネート(MDI)および鎖伸長剤(BD)を下記の表1に示す割合で使用したこと以外は実施例1と同様の方法により熱可塑性ポリウレタン(PU-2~PU-5)を製造した。得られた熱可塑性ポリウレタン(PU-2~PU-5)それぞれについて、溶融粘度およびASTM D硬度を上記した方法で測定した。結果を表1に示す。
(2)キーパッド用フィルムの製造
 上記(1)で得られた熱可塑性ポリウレタン(PU-2~PU-5)を用いて、実施例1と同様の方法により厚さ100μmのキーパッド用フィルムを製造した。得られたキーパッド用フィルムを用いて、それに含まれる熱可塑性ポリウレタンの対数粘度、当該キーパッド用フィルムの引張応力(M100)および耐熱性を上記した方法で測定した。結果を表1に示す。
[Examples 2 to 5]
(1) Production of thermoplastic polyurethane (PU-2 to PU-5) Polymer polyol (POH-2 to POH-5), organic polyisocyanate (MDI) and chain extender (BD) are shown in Table 1 below. Thermoplastic polyurethanes (PU-2 to PU-5) were produced in the same manner as in Example 1 except that they were used in proportions. With respect to each of the obtained thermoplastic polyurethanes (PU-2 to PU-5), the melt viscosity and ASTM D hardness were measured by the methods described above. The results are shown in Table 1.
(2) Production of keypad film Using the thermoplastic polyurethane (PU-2 to PU-5) obtained in (1) above, a keypad film having a thickness of 100 μm was prepared in the same manner as in Example 1. Manufactured. Using the obtained keypad film, the logarithmic viscosity of the thermoplastic polyurethane contained therein, the tensile stress (M 100 ) of the keypad film, and the heat resistance were measured by the methods described above. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[比較例1~4]
(1)熱可塑性ポリウレタン(PU-6~PU-9)の製造
 高分子ポリオール(POH-1、POH-2またはPOH-4)、有機ポリイソシアネート(MDI)および鎖伸長剤(BD)を、下記の表2に示す割合で使用したこと以外は実施例1と同様の方法により熱可塑性ポリウレタン(PU-6~PU-9)を製造した。得られた熱可塑性ポリウレタン(PU-6~PU-9)それぞれについて、溶融粘度およびASTM D硬度を上記した方法で測定した。結果を表2に示す。
(2)キーパッド用フィルムの製造
 上記(1)で得られた熱可塑性ポリウレタン(PU-6~PU-9)を用いて、実施例1と同様の方法により厚さ100μmのキーパッド用フィルムを製造した。得られたキーパッド用フィルムを用いて、それに含まれる熱可塑性ポリウレタンの対数粘度、当該キーパッド用フィルムの引張応力(M100)および耐熱性を上記した方法で測定した。結果を表2に示す。
[Comparative Examples 1 to 4]
(1) Production of thermoplastic polyurethane (PU-6 to PU-9) Polymer polyol (POH-1, POH-2 or POH-4), organic polyisocyanate (MDI) and chain extender (BD) Thermoplastic polyurethanes (PU-6 to PU-9) were produced in the same manner as in Example 1 except that the proportions shown in Table 2 were used. With respect to each of the obtained thermoplastic polyurethanes (PU-6 to PU-9), the melt viscosity and ASTM D hardness were measured by the methods described above. The results are shown in Table 2.
(2) Production of keypad film Using the thermoplastic polyurethane (PU-6 to PU-9) obtained in (1) above, a 100 μm thick keypad film was prepared in the same manner as in Example 1. Manufactured. Using the obtained keypad film, the logarithmic viscosity of the thermoplastic polyurethane contained therein, the tensile stress (M 100 ) of the keypad film, and the heat resistance were measured by the methods described above. The results are shown in Table 2.
[比較例5]
(1)熱可塑性ポリウレタン(PU-10)の製造
 高分子ポリオール(POH-6)、有機ポリイソシアネート(HDI)および鎖伸長剤(BD)を、POH-6:HDI:BDのモル比が1.0:4.2:3.2(イソシアネート基由来の窒素原子の含有率は5.9質量%)で、かつこれらの合計供給量が78g/分となるようにして同軸方向に回転する二軸スクリュー型押出機(単径30mmφ、L/D=36;加熱ゾーンは前部、中央部、後部の3つの帯域に分けた)の加熱ゾーンの前部に連続供給して、重合温度190℃の条件下に連続溶融重合を行ってポリウレタン形成反応を実施した。得られた溶融物をストランド状に水中に連続的に押し出し、次いでペレタイザーで切断してペレットを得た。得られたペレットを60℃で4時間除湿乾燥することにより、熱可塑性ポリウレタン(PU-10)を得た。得られた熱可塑性ポリウレタン(PU-10)の溶融粘度およびASTM D硬度を上記した方法で測定した。結果を表2に示す。なお、当該熱可塑性ポリウレタン(PU-10)を使用して、熱可塑性ポリウレタンのASTM D硬度の測定方法の項目において上記したのと同様にして円板状の成形品(直径120mm、厚さ2mm)を製造し、得られた円板状の成形品を3枚重ね合わせたものを用いて、JIS K 7311-1995に準じてタイプAデュロメータを用いた硬さ試験を行ったところ98であった。
(2)キーパッド用フィルムの製造
 上記(1)で得られた熱可塑性ポリウレタン(PU-10)を用いて、実施例1と同様の方法により厚さ100μmのキーパッド用フィルムを製造した。得られたキーパッド用フィルムを用いて、それに含まれる熱可塑性ポリウレタンの対数粘度、当該キーパッド用フィルムの引張応力(M100)および耐熱性を上記した方法で測定した。結果を表2に示す。
[Comparative Example 5]
(1) Production of thermoplastic polyurethane (PU-10) Polymer polyol (POH-6), organic polyisocyanate (HDI) and chain extender (BD) are mixed at a molar ratio of POH-6: HDI: BD of 1. 0: 4.2: 3.2 (the content of the nitrogen atom derived from the isocyanate group is 5.9% by mass), and these two axes rotate in the coaxial direction so that the total supply amount is 78 g / min. Continuously fed to the front of the heating zone of a screw type extruder (single diameter 30 mmφ, L / D = 36; heating zone divided into three zones: front, center and rear), polymerization temperature of 190 ° C. Polyurethane formation reaction was carried out by continuous melt polymerization under the conditions. The obtained melt was continuously extruded into water as a strand, and then cut with a pelletizer to obtain pellets. The obtained pellets were dehumidified and dried at 60 ° C. for 4 hours to obtain thermoplastic polyurethane (PU-10). The melt viscosity and ASTM D hardness of the obtained thermoplastic polyurethane (PU-10) were measured by the methods described above. The results are shown in Table 2. Using the thermoplastic polyurethane (PU-10), a disk-shaped molded product (diameter: 120 mm, thickness: 2 mm) in the same manner as described above in the section of the ASTM D hardness measurement method for thermoplastic polyurethane. A hardness test using a type A durometer in accordance with JIS K 7311-1995 was conducted using a product obtained by superimposing three obtained disk-shaped molded articles.
(2) Production of Keypad Film A keypad film having a thickness of 100 μm was produced in the same manner as in Example 1 using the thermoplastic polyurethane (PU-10) obtained in (1) above. Using the obtained keypad film, the logarithmic viscosity of the thermoplastic polyurethane contained therein, the tensile stress (M 100 ) of the keypad film, and the heat resistance were measured by the methods described above. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1および2から明らかなように、引張応力(M100)が本発明の規定を満たす実施例1~5のキーパッド用フィルムは、スクリーンインキ塗布後の90℃、1時間の熱風乾燥処理によってもスクリーンインキ塗布部には何ら反りや収縮が生じておらず平滑性が維持されており、キーパッド用フィルムに要求される優れた耐熱性を有することが分かる。これに対して、引張応力(M100)が本発明の規定を満たさない比較例1~5のキーパッド用フィルムは、スクリーンインキ塗布後の90℃、1時間の熱風乾燥処理によって、多数の試験片において、スクリーンインキ塗布部における反りや収縮が見られ、キーパッド用フィルムに要求される優れた耐熱性を有さないことが分かる。 As is clear from Tables 1 and 2, the keypad films of Examples 1 to 5 whose tensile stress (M 100 ) satisfies the provisions of the present invention were obtained by hot air drying at 90 ° C. for 1 hour after application of the screen ink. However, the screen ink application part is not warped or contracted, and the smoothness is maintained, and it can be seen that the screen ink application part has excellent heat resistance required for a keypad film. On the other hand, the keypad films of Comparative Examples 1 to 5 whose tensile stress (M 100 ) does not satisfy the provisions of the present invention were subjected to a number of tests by hot air drying treatment at 90 ° C. for 1 hour after application of the screen ink. In the strip, warping and shrinkage are observed in the screen ink application part, and it can be seen that it does not have the excellent heat resistance required for the keypad film.
 本発明によれば、非粘着性、取り扱い性、耐熱性および寸法精度の安定性に優れるとともに、特に接着剤や印刷インキを固化または定着させる際などに施される加熱処理によっても反りや収縮等の不良現象やフィルム同士の膠着などの問題が生じないキーパッド用フィルムが提供される。本発明のキーパッド用フィルムによれば、キーシートを携帯電話等の最終製品の所定位置に配置する際などに人手によりこれを平坦にした後嵌め込んだり特殊な装置が要求されるなどして最終製品の生産性が低下するといった問題や、キーシートやキーパッドとして使用することができない不良品が多く発生することにより歩留まりが低下するといった問題を解決することができ、キーシートやキーパッドの薄型化も達成することができる。また本発明のキーパッド用フィルムによればフレームシート等の補強材を使用しなくても形状を保持することができるキーパッドやキーシートを与えることから、最終製品の軽量化や縮小化を達成し製造工程も簡略化することができる。 According to the present invention, it is excellent in non-tackiness, handleability, heat resistance, and dimensional accuracy stability, and also warps, shrinks, etc. even by heat treatment applied particularly when an adhesive or printing ink is solidified or fixed. There is provided a keypad film that does not cause problems such as the above-mentioned defective phenomenon and film sticking. According to the keypad film of the present invention, when a key sheet is placed at a predetermined position of a final product such as a mobile phone, the key sheet is flattened manually, or a special device is required. It can solve the problem that the productivity of the final product is reduced and the problem that the yield is reduced due to the occurrence of many defective products that cannot be used as key sheets or keypads. Thinning can also be achieved. In addition, according to the keypad film of the present invention, a keypad and a key sheet that can retain the shape without using a reinforcing material such as a frame sheet are provided, thereby reducing the weight and size of the final product. In addition, the manufacturing process can be simplified.

Claims (8)

  1.  高分子ポリオール、有機ポリイソシアネートおよび鎖伸長剤を反応させて得られる熱可塑性ポリウレタン単独からなるかまたは当該熱可塑性ポリウレタンから主としてなる熱可塑性ポリウレタン組成物からなり、23℃における100%伸長時の引張応力(M100)が18MPa以上であるキーパッド用フィルム。 Tensile stress at 100% elongation at 23 ° C. consisting of a thermoplastic polyurethane alone or a thermoplastic polyurethane composition mainly composed of the thermoplastic polyurethane obtained by reacting a polymer polyol, an organic polyisocyanate and a chain extender A film for a keypad having (M 100 ) of 18 MPa or more.
  2.  上記熱可塑性ポリウレタンにおけるイソシアネート基由来の窒素原子の含有率が4.5質量%以上である請求項1に記載のキーパッド用フィルム。 The keypad film according to claim 1, wherein the content of nitrogen atoms derived from isocyanate groups in the thermoplastic polyurethane is 4.5% by mass or more.
  3.  上記有機ポリイソシアネートが4,4’-ジフェニルメタンジイソシアネートから主としてなる請求項1または2に記載のキーパッド用フィルム。 The keypad film according to claim 1 or 2, wherein the organic polyisocyanate mainly comprises 4,4'-diphenylmethane diisocyanate.
  4.  上記鎖伸長剤が1,4-ブタンジオールから主としてなる請求項1~3のいずれかに記載のキーパッド用フィルム。 The keypad film according to any one of claims 1 to 3, wherein the chain extender mainly comprises 1,4-butanediol.
  5.  上記高分子ポリオールの数平均分子量が500~8,000である請求項1~4のいずれかに記載のキーパッド用フィルム。 5. The keypad film according to claim 1, wherein the polymer polyol has a number average molecular weight of 500 to 8,000.
  6.  厚さが20~300μmである請求項1~5のいずれかに記載のキーパッド用フィルム。 6. The keypad film according to claim 1, wherein the film has a thickness of 20 to 300 μm.
  7.  請求項1~6のいずれかに記載のキーパッド用フィルムよりなる層を少なくとも含むキーパッド。 A keypad comprising at least a layer made of the keypad film according to any one of claims 1 to 6.
  8.  請求項7に記載のキーパッドおよびキートップを少なくとも有するキーシート。 A key sheet having at least the keypad and keytop according to claim 7.
PCT/JP2009/050062 2008-01-23 2009-01-07 Film for keypad, keypad, and key sheet WO2009093480A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009513499A JPWO2009093480A1 (en) 2008-01-23 2009-01-07 Keypad film, keypad and key sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-012526 2008-01-23
JP2008012526 2008-01-23

Publications (1)

Publication Number Publication Date
WO2009093480A1 true WO2009093480A1 (en) 2009-07-30

Family

ID=40900988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050062 WO2009093480A1 (en) 2008-01-23 2009-01-07 Film for keypad, keypad, and key sheet

Country Status (3)

Country Link
JP (1) JPWO2009093480A1 (en)
TW (1) TW200937472A (en)
WO (1) WO2009093480A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011249756A (en) * 2010-04-29 2011-12-08 Mitsubishi Plastics Inc Laminated polyester film for solar battery backside protective member
CN117519429A (en) * 2024-01-05 2024-02-06 荣耀终端有限公司 Keyboard film, keyboard and electronic equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI835160B (en) * 2022-06-08 2024-03-11 勤倫股份有限公司 Thermoplastic wear-resistant molding film and its moldings

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03185062A (en) * 1989-12-14 1991-08-13 Nisshinbo Ind Inc Production of thermoplastic polyurethane film
JP2004202916A (en) * 2002-12-26 2004-07-22 Polymatech Co Ltd Decorative molded body having display part for characters, patterns or the like
JP2005025960A (en) * 2003-06-30 2005-01-27 Kurabo Ind Ltd Surfacing material for keypad
JP2005068241A (en) * 2003-08-21 2005-03-17 Sumitomo Bakelite Co Ltd Transparent plastic composite sheet and display element using the same
WO2007055157A1 (en) * 2005-11-08 2007-05-18 Shin-Etsu Polymer Co., Ltd. Covering member for push-button switch
JP2007213874A (en) * 2006-02-07 2007-08-23 Sunarrow Ltd Key base, key sheet and method for forming key base

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3207894B2 (en) * 1990-10-24 2001-09-10 日本電気化学株式会社 Panel switch plate and method of manufacturing the same
JP2004066617A (en) * 2002-08-06 2004-03-04 Teijin Dupont Films Japan Ltd Biaxially oriented polyester film
JP2007230763A (en) * 2006-03-03 2007-09-13 Nitta Ind Corp Flat belt containing mica

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03185062A (en) * 1989-12-14 1991-08-13 Nisshinbo Ind Inc Production of thermoplastic polyurethane film
JP2004202916A (en) * 2002-12-26 2004-07-22 Polymatech Co Ltd Decorative molded body having display part for characters, patterns or the like
JP2005025960A (en) * 2003-06-30 2005-01-27 Kurabo Ind Ltd Surfacing material for keypad
JP2005068241A (en) * 2003-08-21 2005-03-17 Sumitomo Bakelite Co Ltd Transparent plastic composite sheet and display element using the same
WO2007055157A1 (en) * 2005-11-08 2007-05-18 Shin-Etsu Polymer Co., Ltd. Covering member for push-button switch
JP2007213874A (en) * 2006-02-07 2007-08-23 Sunarrow Ltd Key base, key sheet and method for forming key base

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Hyojunhin E-type Tokusei Ichiran no Ko", TYPE-BETSU CATALOG, 4 February 2009 (2009-02-04), Retrieved from the Internet <URL:http://www.miractran.co.jp/product/catalog.html> *
PLASTIC SEIKEI ZAIRYO SHOTORIHIKI BINRAN EDITION OF THE YEAR 2007, 29 August 2006 (2006-08-29), pages 366 - 381 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011249756A (en) * 2010-04-29 2011-12-08 Mitsubishi Plastics Inc Laminated polyester film for solar battery backside protective member
CN117519429A (en) * 2024-01-05 2024-02-06 荣耀终端有限公司 Keyboard film, keyboard and electronic equipment
CN117519429B (en) * 2024-01-05 2024-06-11 荣耀终端有限公司 Keyboard film, keyboard and electronic equipment

Also Published As

Publication number Publication date
JPWO2009093480A1 (en) 2011-05-26
TW200937472A (en) 2009-09-01

Similar Documents

Publication Publication Date Title
KR20100075668A (en) Polyurethane composition
KR100637646B1 (en) Thermoplastic polymer composition
EP2129700B1 (en) Low haze thermoplastic polyurethane using mixture of chain extenders including 1,3-and 1,4-cyclohexanedimethanol
US7361297B2 (en) Process for making a decorated laminate
JP2000017041A5 (en)
TW201038606A (en) Thermoplastic polyurethane with reduced tendency to bloom
MXPA01004134A (en) Aliphatic thermoplastic polyurethanes and use thereof.
TWI648340B (en) Thermoplastic polyurethanes, production thereof and use
KR101306611B1 (en) Thermoplastic polyurethane elastomer composition for vacuum forming and a method for preparing thereof
WO2009093480A1 (en) Film for keypad, keypad, and key sheet
JP4904703B2 (en) Heat resistant polyurethane film
KR20100001723A (en) Thermoplastic polyurethane elastomer composition for vacuum forming
EP2279218B1 (en) Thermoplastic polyurethanes with good fuel resistance
WO2010113907A1 (en) Composite molded body, method for producing same, and use of the composite molded body
JP4736378B2 (en) Artificial leather or synthetic leather
WO2011010588A1 (en) Polyurethane film for keypads
JP2003026755A (en) Thermoplastic polyurethane resin and its manufacturing method
JP5536497B2 (en) Method for producing thermoplastic resin composition and composite molded body including member comprising thermoplastic resin composition
KR101820918B1 (en) Thermoplastic Polyurethane-urea Resin For Hot-Melt Adhesive
JP2001048949A (en) Thermoplastic polyurethane
JP2001187811A (en) Polyurethane resin and method for producing the same, and resin composition and sheet shape article produced by using the same
JP2001064506A (en) Thermoplastic polyurethane composition
JP3887038B2 (en) Resin composition
JP2011183573A (en) Composite molded object
JP4421067B2 (en) Thermoplastic polyurethane resin composition

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2009513499

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09704643

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09704643

Country of ref document: EP

Kind code of ref document: A1