WO2009092837A1 - Method and apparatus for digital filtering of signals - Google Patents

Method and apparatus for digital filtering of signals Download PDF

Info

Publication number
WO2009092837A1
WO2009092837A1 PCT/ES2009/000027 ES2009000027W WO2009092837A1 WO 2009092837 A1 WO2009092837 A1 WO 2009092837A1 ES 2009000027 W ES2009000027 W ES 2009000027W WO 2009092837 A1 WO2009092837 A1 WO 2009092837A1
Authority
WO
WIPO (PCT)
Prior art keywords
digital
filtering
filter
linear
deformed
Prior art date
Application number
PCT/ES2009/000027
Other languages
Spanish (es)
French (fr)
Other versions
WO2009092837A4 (en
Inventor
José Javier LOPEZ MONFORT
German Ramos Peinado
Original Assignee
Universidad Politecnica De Valencia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Politecnica De Valencia filed Critical Universidad Politecnica De Valencia
Publication of WO2009092837A1 publication Critical patent/WO2009092837A1/en
Publication of WO2009092837A4 publication Critical patent/WO2009092837A4/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H17/06Non-recursive filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H17/0248Filters characterised by a particular frequency response or filtering method
    • H03H17/0261Non linear filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H17/0283Filters characterised by the filter structure
    • H03H17/0286Combinations of filter structures

Definitions

  • the main object of the present invention is a method and an apparatus for digital signal filtering that combines linear digital filters with deformed linear filters (warped in English terminology).
  • Digital signal filtering is widely used in different fields, such as audio, video, communications, radar, seismology, etc.
  • a filter “equalization” whose objective is to improve or compensate for the non-ideal response of a system by filtering its complex response with the filter designed so that the filtered response resembles an objective response.
  • a specific part for example, a frequency band
  • system the device whose response you want to filter.
  • Examples of systems may be a speaker, a radar, communications channel, etc. The following equation relates
  • Linear digital filters achieve an excellent resolution at high frequencies, but deficient at low frequencies (with respect to the sampling frequency f s used) if high-order filters are not used, which puts a huge computational cost when the filter is implemented linear in the time domain.
  • the computational cost is lower if it is implemented in the frequency domain by means of a Fourier transform (FFT).
  • FFT Fourier transform
  • Warped or warped filters allow to achieve a non-linear resolution that, depending on the choice of a parameter, can be higher at low frequencies at the cost of losing it at high frequencies.
  • one of the major drawbacks of warped or warped filters is the increase in computational cost.
  • digital filters can be divided into FIR digital filters (Finite Impulse Response) and NR digital filters (Infinite Impulse Response).
  • FIR digital filters are easy to design and implement, they are always stable and can correct the response in magnitude and phase at the same time. Its design can be carried out in the frequency domain or in the time domain. In the frequency domain, the simplest filter design procedure is the inversion of the Fourier transform of the desired filter response. On the other hand, in the frequency domain, the least squares approach can be used (JN Mourjopoulos, "Digital Equalization of Room Acoustics", J. Audio Eng. Soc. VoI. 42, no. 11, pp. 884-900 , Nov. 1994).
  • the resolution of the linear filters is usually quite good at high frequencies (it depends mainly on the relationship between the sampling frequency and the order of the filter), while at low frequencies the resolution is usually too low, which results in a curl in the response of the filter at low frequencies that may be unacceptable, and that is attenuated as the order of the filter increases.
  • N is the order of the filter.
  • a warped or warped FIR digital filter is obtained when the unitary delay elements z "1 of a linear FIR digital filter are replaced by first-order step-all filters. Therefore, the transfer function of a filter FIR digital deformation is the following: z " '- ⁇
  • N is the order of the filter and ⁇ a parameter on which it depends that the deformation improves the resolution for high frequencies ( ⁇ > 0) or for low frequencies ( ⁇ ⁇ 0).
  • the unit delay elements z '1 are replaced by first-order step-filters and the coefficients a, by the new coefficients ⁇ ,:
  • a digital filtering method comprises applying a linear filtering combined with at least one deformed filtering to obtain an objective response to the response signal of a system, which is chosen based on each application.
  • the response signal of the system is first obtained.
  • the response of the loudspeaker could be calculated using techniques such as MLS (Maximum Length Sequence), logarithmic sinusoidal scanning or periodic noise.
  • MLS Maximum Length Sequence
  • logarithmic sinusoidal scanning or periodic noise.
  • the response signal of the system to be equalized has certain characteristics. For example, to provide different speakers with equalizations depending on the type of music played, the response signal of the speakers is not normally calculated, but rather a series of characteristics common to all speakers are assumed.
  • Still another possibility is to apply the digital filtering procedure to a transmitted signal, without knowing or having access to the system that originated the signal. Therefore, in this area the term "the response signal of a system" refers to all these possibilities.
  • the objective response is chosen depending on the application. For example, to equalize speakers specifically for jazz music, the objective response is chosen from the knowledge of the type of sounds that make up that type of music. In another example related to a communications channel, the objective response of the channel would be chosen taking into account the maximum distortion that that channel can support without loss of information.
  • the operation of performing a linear filtering combined with at least one deformed filtering comprises a of the following options:
  • a preferred application of the invention is directed to the filtering of acoustic systems, being understood as any device intended for sound reproduction, both in the final stage of reproduction and in any intermediate stage of treatment or amplification of the signal.
  • Preferred embodiments of the procedure aimed at acoustic systems would be the cases of their application to loudspeakers or hearing aids.
  • this also extends to computer programs, in particular computer programs contained in a carrier, adapted to carry out the operations of the described procedure.
  • the program can be in the form of a source code, object code or an intermediate code between the source code and the object code, as a partially compiled form, or in any other suitable way to implement the operations of the invention.
  • the carrier can be any device or entity capable of transporting the program.
  • the carrier can comprise a storage medium, such as a ROM, a CD ROM or any other magnetic storage medium, for example a floppy disk or a hard disk.
  • the carrier can be a transmission carrier, such as an electrical or optical signal that can be communicated through electric, optical, radio or any other way.
  • An apparatus for digital signal filtering is described, characterized in that it comprises:
  • the input means comprises a digital analog conversion means and / or a digital frame receiver (when the input data is already digitized previously).
  • the function of the digital frame receiver is to modify or adapt the format of the input signal to the processing medium.
  • a processing medium which receives the input signal from the input medium and performs a digital filtering that combines a linear filtering with at least one deformed filtering.
  • the processing medium can be of any type capable of carrying out the digital filtering process that combines a linear digital filtering with at least one deformed digital filtering, in accordance with the previously described herein, although according to preferred embodiments , it can be a DSP, an FPGA, an ASIC, a microprocessor or a microcontroller.
  • the processing medium is capable of performing the calculations required to extract the information from the analysis, such as calculating characteristics such as average, effective values, graphing, etc.
  • said apparatus further comprises an output means, which transmits the filtered signal from the medium. from processing to another device.
  • the output means comprises a digital-analog conversion means and / or a transmitter of the data in digital format to the outside.
  • the apparatus for digital signal filtering further comprises a communication medium.
  • He communications medium can be any means that allows the device to be connected to a computer or any other external system to transfer configuration parameters of the filtrate to be implemented, results or graphs calculated by the processing means or any other type of information.
  • the apparatus for digital signal filtering comprises a means of interface with the users, which allows them to modify parameters of the filtering.
  • Another function of the interface means may be the visualization of results or graphs calculated by the processing means.
  • the interface medium could be, for example, a touch screen or a keypad.
  • the apparatus for digital signal filtering also comprises a storage medium, where data relating to equalized signals or filtering parameters are stored.
  • the storage medium could be any of those known in the art, such as a hard disk, a CD 1 a DVD, etc.
  • the apparatus for digital signal filtering comprises a microcontroller, which controls the operation of the interface and communications means.
  • Figure 1 Graph showing the equalization of a speaker with FIR filters Linear orders 100, 250, 500 and 1000 (scaled from ten to ten decibels).
  • Figure 2. Graph showing the answers of the error (scaling of ten in ten decibels) and the value of e ] og _ dB of linear FIR filters.
  • Figure 5. Graph showing the effect of deformation as a function of parameter ⁇ , with a sampling frequency of 48 Hz.
  • Figure 6. Graph showing the resolution in deformed versus linear frequencies, with a sampling frequency of 48 Hz.
  • Figure 8. Graph showing the error responses and the value iog_ dB for the distorted FIR filters.
  • FIGS 9 and 10. Represent possible structures of the filter according to the present invention: in cascade and in parallel.
  • Figures 11 and 12. Graphs showing the resolution curves of the filters in octaves and in Q value.
  • Figure 15. Graph showing the values of ⁇ for the maximum resolution of Q as a function of the frequency for different sampling frequencies.
  • Figure 20 - Graph showing a comparison between error responses and values and Xog _ dB .
  • Figure 1 shows the results of the equalization of a passive speaker with an 8-inch woofer for low frequencies and a 3 -inch tweeter for high frequencies.
  • the linear FIR filters of this example have been designed using the least squares method in the time domain (JN Mourjopoulos, "Digital Equalization of Room Acoustics", J. Audio Eng. Soc. VoI. 42, no. 11, pp 884-900, Nov. 1994).
  • the upper graph, centered at 0 decibels (dB) shows the unfiltered speaker response H allav02 ( ⁇ ) and the objective response H ohjeUm ⁇ ) is shown by a thin line.
  • a lens consisting of a fourth order high-pass Butterworth filter at 55 Hz and a second order low-pass Butterworth filter at 18 kHz has been selected.
  • the objective response respects the natural pass-band response of the speaker, extending its response at low frequencies in a reasonable manner without introducing an excessive gain in the filter response.
  • the response to filters of order 100, 250, 500 and 1000, located at intervals of 10 dB are shown to avoid overlapping each other. It is observed that the equalization at high frequencies is excellent for any order, but deficient at low frequencies, although it improves with the order of the filter.
  • the low resolution observed in the logarithmic frequency axis at low frequencies of the linear FIR filters is due to the linear treatment of the frequency axis in the design and implementation of the filter, either in the time or frequency domain.
  • the frequency resolution of an FIR filter is defined approximately as follows: A Vfm - ⁇ - N (1)
  • Af F! R is the resolution in frequency
  • f s is the sampling frequency
  • N is the order of the filter.
  • Equation 2 which has a resolution of 1/48 octave, obtaining 576 frequencies between 5 Hz and 20 kHz, which is sufficient for equalization.
  • the error vector (equation 3) represents the difference between the objective response and the filtered loudspeaker response, all the quantities being evaluated in dB
  • Equation 4 which represents the average absolute error in dB between the objective response and the actual filtered response evaluated on a logarithmic frequency axis:
  • n t , « 7 are the ⁇ log indices at the initial and final frequencies where the error is evaluated; and ⁇ i og IA] represents the element k of the vector ⁇ log .
  • Figure 2 shows the error responses according to the definition from the equation above for the linear FIR filters shown in Figure 1, also scaled to 10 dB for clarity. To the right of each curve, the measured value of e log _ dB is shown . The upper curve is the difference between the objective response and the response of the original unfiltered speaker. The average unfiltered error e ] os _ dB is 3.09 dB. With a linear FIR filter of order 100 (the second curve), the error for high frequencies above 5 kHz is very small, but at low frequencies the error reaches up to 12 dB at 40 Hz. The value of e log _ dB Low to 2.02 dB.
  • the equalization is excellent for frequencies above 2 kHz, but at 40 Hz the error still reaches 8 dB, obtaining an error value e ⁇ o g -dB of 1.06 dB - With an order of 50 °. e ⁇ og -dB ba J up to 0.42 dB, obtaining a perfect equalization between 400 Hz and 20 kHz. Finally, with an order 1000, and log _ dB decreases to 0.23 dB, there is a residual error in the response at low frequencies that reaches a maximum of 1.95 dB. The problem of linear FIR filters consisting in the poor equalization of the low frequencies is clearly observed in the error responses.
  • Deformed digital filters are achieved by replacing the delay elements in the structure of a digital filter with first-order step-all filters.
  • Oppenheim et al. (AV Oppenheim, DH Jonson, and K. Steiglitz, "Computation of spectra with unequal resolution using the Fourier transform phase", Proc. IEEE, 89 (1971) 299-301) proposed for the first time the possibility of obtaining a frequency resolution not uniform with the Fourier transform.
  • step-all filters instead of the delay elements was proposed by first time by Strube (HW Strube, "Linear prediction on a warped frequency scale", J. Acoustic. Soc. America, 68 (4), 1980, 1071-1076).
  • the first-order step-all filter is defined by equation (5):
  • FIG. 3 The structure of a deformed FIR filter is shown in Figure 3, while Figure 4 shows the structure of the deformed FIR filter proposed by Karjalainen that saves memory and operations (M. Karjalainen, E. Piirilá, A.
  • Deformed filtering is not a method of designing filters, but a structure that produces the effect of distorting the frequency axis.
  • the filter could be designed using any of the known filter design methods.
  • Figure 5 shows the graph of correlation between frequencies due to the effect of deformation. For positive values of 0 ⁇ ⁇ 1, the frequency axis is compressed towards high frequencies, and for negative values -1 ⁇ ⁇ 0, it is compressed towards low frequencies.
  • Karjalainen proposed its use with FIR and HR filters (M. Karjalainen, A. Hármá, Ul, K. Laine, "Realizable warped NR filtres and their properties", Proceedings of ICASSP 97, 1997, 2205-2208), presenting an NR structure realizable, as well as Hármá (A. Hármá, “Implementation of frequency-warped recursive filtres", Elsevier Signal Processing, 80 (3), 2000, 543-548).
  • Kautz filters which can be interpreted as a generalization of deformed filters
  • speaker equalization M. Karjalainen, T. Paatero, "Equalization of loudspeaker and room responses using kautz filtres: direct”
  • least squares design ", AURASIP Journal on advances in signal processing, 2007, n ° 60949).
  • Tyril also mentions the use of filters for low frequency equalization (M. Tyril, JA Pedersen and P. Rubak, "Digital filters for low-frequency equalization", J. Audio Eng. Soc. 29 (1/2), 2001 , 36-43).
  • the frequency resolution obtained with the distorted FIR filters is obtained as the resolution of the equivalent linear FIR filter multiplied by the derivative of f wa ⁇ with respect to the frequency, as shown in the following equation:
  • Figure 6 shows the resolution in relative deformed frequency against
  • the linear resolution in frequency For positive ⁇ values, the resolution in frequency increases at low frequencies, but decreases at high frequencies. For negative ⁇ values the opposite effect occurs. By increasing the value of ⁇ approaching 1, an improvement of the resolution at low frequencies is obtained, but the loss of resolution at high frequencies begins very soon and is getting worse.
  • the frequency where the resolution of the deformed scale is the same as that of the linear scale is the crossover frequency, f t p, and its value is obtained by equation 9.
  • Smith and Abel developed an expression to determine the ⁇ value that best approximates the psychoacoustic scales of Bark and ERB (JO Smith, JS Abel, "Bark and ERB bilinear transform, IEEE", Tras. Speech Audio Processing, 7, 1999, 697-708).
  • deformed FIR filters require a higher computational cost with respect to a linear FIR filter of the same order.
  • its computational cost increases a factor between 3 and 4 with respect to a linear FIR filter.
  • deformed FIR filters can reduce the order of the filter by a factor of up to 5, and therefore their use could be efficient from a computational point of view.
  • a penalty factor of 3 the same equalizations of the linear FIR filters of Figure 1 have been made, but this time in distorted FIR filters of an order one third lower than that of the linear FIR filters to maintain the same cost computational
  • a value of ⁇ of 0.766 has been used to achieve a resolution close to the Bark scale.
  • the equalizations are shown in Figure 7 scaled ten dB for clarity, and the error responses and the value e log _ dB are shown in Figure 8.
  • the distorted FIR filter achieves an error value e ] 0S _ dB of 1.29 dB, better than the 2.02 dB obtained with the linear FIR filter of order 100.
  • the equalization at high frequencies is clearly worse due to the reduction in resolution, the equalization at low and medium frequencies it is better, as it can be seen in The error curves of Figures 2 and 8.
  • the error drops to 0.77 dB with an order 83, instead of the 1, 06 dB obtained with the FIR filter of order 250.
  • the error is within the band ⁇ 1 dB from 200 Hz to 20 kHz.
  • the value Xog_ dB is only 0.12 dB, even better than the equalization achieved with the linear FIR filter of order 1000 (0.23 dB).
  • the result is excellent, with a residual error of only 0.03 dB.
  • the maximum resolution of the distorted FIR filter around 2 kHz is obtained, getting worse for lower and higher frequencies.
  • linear FIR filters are combined with deformed FIR filters, as shown in Figures 9 and 10.
  • Figure 10 a parallel combination of several FIR digital filters deformed with a linear filter.
  • the equalization filter of FIG. 9 is obtained by cascading one or more deformed FIR filters of order N w ⁇ and deformation parameter ⁇ with a linear FIR filter of order N.
  • the linear FIR filter will equalize the high and medium frequencies , while deformed FIR filters will equalize the medium and low frequencies.
  • the frequency resolution of the proposed filter H f ⁇ tro (z) will be a combination of the linear resolution of the linear FIR filter H FIR (Z) and the non-linear resolution of the deformed FIR filter H WFI R (Z).
  • Figure 11 shows the frequency resolution of linear and distorted FIR filters in terms of the corresponding Q value. This Q value is defined as the ratio between the frequency to be considered and the resolution in frequency of the filter at that frequency:
  • Figure 12 shows another representation of the resolution, this time in terms of the bandwidth of the resolution in octaves (BW 0Ct ).
  • Figures 11 and 13 are evaluated in a logarithmic axis, both in abscissa and ordinates. In this way, the measurement obtained will take into account the natural behavior of the human ear and will serve to judge the resolution in frequency of the filters from a psycho-acoustic point of view.
  • the resolution of the distorted FIR filter corresponds to a distorted filter of order 480.
  • These resolutions are also compared with a constant resolution of one third octave, and with the resolution in frequency of the Bark scale. From a psycho-acoustic point of view, the comparison of the resolution of deformed filters with the Bark scale is interesting, since it follows the bandwidth of the resolution of the human auditory system using the concept of critical bands (JO Smith, JS Abel , "Bark and ERB bilinear transform, IEEE", Tras. Speech Audio Processing, 7, 1999, 697-708).
  • the resolution value Q (and its logarithmic resolution) increases with the frequency, as seen in Figures 11 and 12 for the linear case.
  • the thin dashed lines represent the resolution of a scale of one third octave, which is constant with the frequency. Its resolution value Q is 4.32, and its octave value is obviously 0.333. It is approximately the resolution obtained with a graphic equalizer of one third octave which, for frequencies below 430 Hz, is even better than that obtained with the linear FIR filter of order 480.
  • the shape of the Bark scale (with better resolution) is deduced, with a maximum resolution value Q close to 2 kHz, as shown in Figures 7 and 8.
  • the resolution at low frequencies has been multiplied by 4.5 in the second case, the same factor according to which the resolution at high frequencies has decreased.
  • the maximum resolution of the filter is now around 350 Hz, obtaining an error of less than 1 dB for 20 Hz up to 1.5 kHz with an order of only 33, which is equivalent to a computational cost equivalent to a linear FIR filter of order 100.
  • the error responses of the two equalizations are shown in Figure 14, where it can be seen how the maximum resolution of the filters changes with the two values of ⁇ .
  • the frequency of the maximum resolution Q is represented as a function of ⁇ for different sampling frequencies: 44.1, 48, 88.2 and 96 kHz.
  • the graphs in Figure 15 show these results between 20 Hz and 6 kHz for ⁇ values from 0.7 to 1.
  • the left-most curve corresponds to a fs of 44.1 kHz, and the one on the most right to 96 kHz With these graphs, it is easy to choose the value of ⁇ to adjust the stress of the distorted FIR filter in frequency.
  • the selection of the three parameters (order N of the linear FIR filter, order Nw of the deformed FIR filter and ⁇ value for the deformed FIR filter) for the specific equalization of a filter must be based on a compromise between the demand for equalization at low frequencies (for the selection of N w and K), and at medium and high frequencies (for N).
  • the design of the proposed equalization filter requires the joint design of the linear FIR filter of order N and the filter
  • the deformed FIR filter is designed first. This stage focuses on equalizing the low frequencies through an appropriate selection of the ⁇ parameter. This selection depends on two factors: the lowest frequency to be corrected (subwoofers) and the order of the second stage filter (the filter Linear FIR), which determines its resolution at low frequency and, therefore, the point of connection between both filters.
  • the linear FIR filter is designed based on the response of the loudspeaker filtered by the first stage. This second stage will correct the response of the distorted FIR filter of the first stage mainly at high frequencies. This linear FIR filter does not have to correct the low frequencies because they have been previously corrected by the deformed FIR filter.
  • the order of the two filters is related to the precision required in the equalization and is conditioned by the available computational cost.
  • Figure 2 shows that it is also possible to achieve an error below 1 dB at high frequencies (1.5 kHz to 20 kHz) with a linear FIR filter of order N between 100 and 150. According to the previous equation , an equivalent order NMA C filter of 200 to 250 will be obtained, with a residual equalization error of less than 1 dB in the entire audio frequency band.
  • the first operation in the design of the proposed filter is to design the deformed FIR filter with a ⁇ value selected so that sufficient equalization is achieved at low frequencies.
  • the linear FIR filter corrects the response at high frequencies up to 2.5 kHz in an excellent way, with an error curve below 0.1 dB. Between 700 Hz and 2.5 kHz, the equalization is somewhat worse, but the error is always less than 0.8 dB. This is the frequency band in which neither the linear FIR filter nor the deformed FIR filter achieve a sufficient resolution with the selected filter orders. However, from a practical point of view, the equalization obtained will not be distinguishable from a better one by most users, as can be seen from multiple experiments related to the human ear.
  • another speaker is equalized, consisting of a 5-inch woofer and a 3 -inch tweeter. Its frequency response is shown with a thick line in Figure 18 above the 0 dB level. The objective response that is represented with a thin line has been chosen.
  • the linear FIR filter of order 250 is represented on the line of -10 dB, getting an equalization error curve that is within ⁇ 1 dB from 200 Hz to 20 kHz, but at low frequencies the error reaches 7.5 dB at 40 Hz.
  • the value of ⁇ selected is 0.76, the maximum resolution of the filter being around 2 kHz.
  • the error is now below ⁇ 1 dB between 150 Hz and 10 kHz, but is greater at higher and lower frequencies.
  • the error curve is within ⁇ 1 dB from 20 Hz to 20 kHz, and even below ⁇ 0.5 dB between 20 Hz and 800 Hz and between 1.5 kHz and 20 kHz.
  • the proposed filter obtains a flatter equalization and a lower error value, thus requiring a lower order filter to achieve a value of the desired error in the equalization.
  • Figure 21 shows the scheme of an apparatus (1) for the digital filtering of signals according to the present invention, in which the different elements that compose it are appreciated.
  • the input signal to the device (1) already arrives in digital format, and therefore is received by the input means (11) through the digital frame receiver (2) .
  • the input means (11) in turn, sends it to the processing medium (6), which performs all the operations necessary to apply the digital filtering according to the invention.
  • the already filtered signal leaves the device (1) through the digital frame transmitter (3), which it is included in the outlet means (12).
  • the input and output means (11 and 12) of the apparatus (1) of this example further comprise analog / digital (4) and digital / analog converters (5), necessary when the signal to be filtered is initially in analog format or when I must send in that format.
  • the apparatus (1) comprises a memory unit (7) for storing results or characteristics of the input signal to the apparatus or of the filtered signal calculated by the processing means (6), a communications medium (8), which allows the sending of information, an interface means (10) for the interaction between the device (1) and the users, and a microcontroller (9) that manages the operation of the previous elements.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Physics (AREA)
  • Nonlinear Science (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Filters That Use Time-Delay Elements (AREA)

Abstract

Method and apparatus for digital filtering of signals that combines linear digital filters with warped linear filters.

Description

PROCEDIMIENTO Y APARATO PARA EL FILTRADO DIGITAL DE PROCEDURE AND APPLIANCE FOR DIGITAL FILTERING OF
SEÑALESSIGNS
D E S C R I P C I Ó ND E S C R I P C I Ó N
OBJETO DE LA INVENCIÓNOBJECT OF THE INVENTION
El objeto principal de Ia presente invención es un procedimiento y un aparato para el filtrado digital de señales que combina filtros digitales lineales con filtros lineales deformados (warped en terminología inglesa).The main object of the present invention is a method and an apparatus for digital signal filtering that combines linear digital filters with deformed linear filters (warped in English terminology).
ANTECEDENTES DE LA INVENCIÓNBACKGROUND OF THE INVENTION
El filtrado digital de señales es ampliamente empleado en diferentes campos, como audio, vídeo, comunicaciones, radar, sismología, etc. En el presente documento denominaremos "ecualización" a un filtrado cuyo objetivo es mejorar o compensar Ia respuesta no ideal de un sistema mediante el filtrado de su respuesta compleja con el filtro diseñado para que Ia respuesta filtrada se parezca a una respuesta objetivo. Por el contrario, cuando Io que se desea es aislar una parte concreta (por ejemplo, una banda de frecuencias) de una señal para obtener características determinadas de dicha señal, diremos que se trata de un "análisis".Digital signal filtering is widely used in different fields, such as audio, video, communications, radar, seismology, etc. In this document, we will call a filter “equalization” whose objective is to improve or compensate for the non-ideal response of a system by filtering its complex response with the filter designed so that the filtered response resembles an objective response. On the contrary, when what is desired is to isolate a specific part (for example, a frequency band) of a signal to obtain certain characteristics of said signal, we will say that it is an "analysis".
Por otro lado, en el presente documento llamaremos "sistema" al dispositivo cuya respuesta se desea filtrar. Ejemplos de sistemas pueden ser un altavoz, un radar, canal de comunicaciones, etc. La siguiente ecuación relacionaOn the other hand, in this document we will call "system" the device whose response you want to filter. Examples of systems may be a speaker, a radar, communications channel, etc. The following equation relates
Ia función de transferencia ideal del filtro a diseñar con Ia función de transferencia objetivo y Ia función de transferencia del sistema:The ideal transfer function of the filter to be designed with the objective transfer function and the system transfer function:
Hobjet¡wUω)H objet¡w Uω)
Hβllro(jω) = Cuando la función de transferencia del sistema no sea de fase mínima, su inversa será inestable, por Io que Ia función de transferencia del sistema filtrado podrá sólo aproximarse Ia función de transferencia objetivo.H βllro (jω) = When the transfer function of the system is not of a minimum phase, its inverse will be unstable, so that the transfer function of the filtered system may only approximate the objective transfer function.
En los últimos años se han desarrollado diversos métodos para el diseño de filtros digitales. Sin embargo, cuando Ia banda de frecuencias a ecualizar o analizar abarca un amplio rango de octavas (por ejemplo, tres o superior), todos estos métodos requieren de un elevado coste computacional para poder conseguir una resolución espectral en Ia ecualización adecuada en todo el rango de frecuencias.In recent years, various methods have been developed for the design of digital filters. However, when the frequency band to be equalized or analyzed covers a wide range of octaves (for example, three or higher), all these methods require a high computational cost in order to achieve a spectral resolution in the appropriate equalization throughout the range. of frequencies
Los filtros digitales lineales consiguen una excelente resolución en altas frecuencias, pero deficiente en bajas frecuencias (respecto a Ia frecuencia de muestreo fs empleada) si no se emplean filtros de alto orden, Io que su pone un enorme coste computacional cuando se implementa el filtro lineal en el dominio del tiempo. El coste computacional es menor si se implementa en el dominio de Ia frecuencia mediante transformada de Fourier (FFT, Fast Fourier Transform en inglés). Sin embargo, esta solución introduce una latencia, debida a los procesos de almacenamiento en búfer a Ia entrada y Ia salida, que puede limitar su uso en aplicaciones de tiempo real que requieran baja latencia. En aplicaciones de audio, por ejemplo, esta latencia puede resultar incómoda para los oyentes y músicos.Linear digital filters achieve an excellent resolution at high frequencies, but deficient at low frequencies (with respect to the sampling frequency f s used) if high-order filters are not used, which puts a huge computational cost when the filter is implemented linear in the time domain. The computational cost is lower if it is implemented in the frequency domain by means of a Fourier transform (FFT). However, this solution introduces a latency, due to the buffering processes at the input and output, which can limit its use in real-time applications that require low latency. In audio applications, for example, this latency can be uncomfortable for listeners and musicians.
Los filtros deformados o warped, por otro lado, permiten conseguir una resolución no lineal que, en función de Ia elección de un parámetro, puede ser mayor a bajas frecuencias a costa de perderla a altas frecuencias. Sin embargo, uno de los mayores inconvenientes de los filtros deformados o warped consiste en el aumento del coste computacional.Warped or warped filters, on the other hand, allow to achieve a non-linear resolution that, depending on the choice of a parameter, can be higher at low frequencies at the cost of losing it at high frequencies. However, one of the major drawbacks of warped or warped filters is the increase in computational cost.
Por tanto, existe una necesidad de un filtro digital que presente una buena resolución tanto a altas como a bajas frecuencias, y que no suponga un coste computacional excesivo ni introduzca latencias no permitidas. DESCRIPCIÓN DE LA INVENCIÓNTherefore, there is a need for a digital filter that has a good resolution at both high and low frequencies, and that does not involve excessive computational cost or introduce unauthorized latencies. DESCRIPTION OF THE INVENTION
De acuerdo con una segunda clasificación, los filtros digitales se pueden dividir en filtros digitales FIR (Respuesta al Impulso Finita) y filtros digitales NR (Respuesta al Impulso Infinita).According to a second classification, digital filters can be divided into FIR digital filters (Finite Impulse Response) and NR digital filters (Infinite Impulse Response).
Los filtros digitales FIR son fáciles de diseñar e implementar, son siempre estables y pueden corregir Ia respuesta en magnitud y fase al mismo tiempo. Su diseño se puede llevar a cabo en el dominio de Ia frecuencia o en el dominio del tiempo. En el dominio de Ia frecuencia, el procedimiento de diseño de filtros más sencillo es Ia inversión de Ia transformada de Fourier de Ia respuesta deseada del filtro. Por otro lado, en el dominio de Ia frecuencia se puede utilizar Ia aproximación por mínimos cuadrados (J. N. Mourjopoulos, "Digital Equalization of Room Acoustics", J. Audio Eng. Soc. VoI. 42, no. 11 , pp. 884-900, Nov. 1994). La resolución de los filtros lineales suele ser bastante buena a altas frecuencias (depende principalmente de Ia relación entre Ia frecuencia de muestreo y el orden del filtro), mientras que en bajas frecuencias Ia resolución suele ser demasiado baja, Io que se traduce en un rizado en Ia respuesta del filtro en frecuencias bajas que puede resultar inadmisible, y que se va atenuando a medida que aumenta el orden del filtro.FIR digital filters are easy to design and implement, they are always stable and can correct the response in magnitude and phase at the same time. Its design can be carried out in the frequency domain or in the time domain. In the frequency domain, the simplest filter design procedure is the inversion of the Fourier transform of the desired filter response. On the other hand, in the frequency domain, the least squares approach can be used (JN Mourjopoulos, "Digital Equalization of Room Acoustics", J. Audio Eng. Soc. VoI. 42, no. 11, pp. 884-900 , Nov. 1994). The resolution of the linear filters is usually quite good at high frequencies (it depends mainly on the relationship between the sampling frequency and the order of the filter), while at low frequencies the resolution is usually too low, which results in a curl in the response of the filter at low frequencies that may be unacceptable, and that is attenuated as the order of the filter increases.
La ecuación que define Ia función de transferencia de un filtro digital FIR lineal es Ia siguiente:The equation that defines the transfer function of a linear FIR digital filter is the following:
HuιmRíz) = ¿^b,(z-í) ,H uιmR íz ) = ¿^ b, (z- í ),
donde N es el orden del filtro.where N is the order of the filter.
Por otro lado, se obtiene un filtro digital FIR deformado o warped cuando se sustituyen los elementos unitarios de retardo z"1 de un filtro digital FIR lineal por filtros paso-todo de primer orden. Por Io tanto, Ia función de transferencia de un filtro digital FIR deformado es Ia siguiente: z"' -ΛOn the other hand, a warped or warped FIR digital filter is obtained when the unitary delay elements z "1 of a linear FIR digital filter are replaced by first-order step-all filters. Therefore, the transfer function of a filter FIR digital deformation is the following: z " '-Λ
HWΠR O) = ∑,=0 b, 1 - λ - z"1 H WΠR O) = ∑, = 0 b , 1 - λ - z "1
donde N es el orden del filtro y λ un parámetro del que depende que Ia deformación mejore Ia resolución para las altas frecuencias (λ>0) o para las bajas frecuencias (λ<0).where N is the order of the filter and λ a parameter on which it depends that the deformation improves the resolution for high frequencies (λ> 0) or for low frequencies (λ <0).
Con este tipo de filtros se obtiene una resolución en frecuencia no uniforme, que puede ser mayor a altas o a bajas frecuencias en función del signo del parámetro λ.With this type of filters a resolution in non-uniform frequency is obtained, which can be higher at high or low frequencies depending on the sign of the parameter λ.
En el caso de filtros digitales NR, Ia ecuación que define su función de transferencia se caracteriza por tener tanto polos como ceros:In the case of NR digital filters, the equation that defines its transfer function is characterized by having both poles and zeros:
H UR W-A + b, - z + b -2 + ... + b -(N-I)H UR W-A + b, - z + b -2 + ... + b - (N-I)
N-INEITHER
O0 + ax - z --1 + a2 - z~2 + ... + aM_λ . z-(M~λ) O 0 + a x - z --1 + a 2 - z ~ 2 + ... + a M _ λ . z - (M ~ λ)
Por otro lado, para obtener Ia función de transferencia de un filtro digital NR deformado, se sustituyen los elementos de retardo unitarios z'1 por filtros paso- todo de primer orden y los coeficientes a, por los nuevos coeficientes σ,:On the other hand, to obtain the transfer function of a deformed NR digital filter, the unit delay elements z '1 are replaced by first-order step-filters and the coefficients a, by the new coefficients σ ,:
σ, = ∑fl, -(-A)'-* -∑α, .(-λy ι-*k++22 \=k ι=k-\σ, = ∑ fl , - (- A) '- * -∑α,. (- λy ι- * k + + 2 2 \ = k ι = k- \
Por tanto, y de acuerdo con un aspecto de Ia presente invención, se proporciona un procedimiento de filtrado digital que comprende aplicar a Ia señal de respuesta de un sistema un filtrado lineal combinado con, al menos, un filtrado deformado para obtener una respuesta objetivo, que se elige en función de cada aplicación.Therefore, and in accordance with one aspect of the present invention, a digital filtering method is provided, which comprises applying a linear filtering combined with at least one deformed filtering to obtain an objective response to the response signal of a system, which is chosen based on each application.
Para ello, en primer lugar se obtiene Ia señal de respuesta del sistema. Por ejemplo, para Ia ecualización de un altavoz, se podría calcular Ia respuesta del mismo empleando técnicas como Ia MLS (Máximum Length Sequence) , barrido sinusoidal logarítmico o ruido periódico. Sin embargo, también es posible suponer, con base en Ia experiencia, que Ia señal de respuesta del sistema que se desea ecualizar posee unas determinadas características. Por ejemplo, para proporcionar a unos altavoces diferentes ecualizaciones en función del tipo de música reproducida normalmente no se calcula Ia señal respuesta de los altavoces, sino que se les supone una serie de características comunes a todos los altavoces. Aún una posibilidad más es aplicar el procedimiento de filtrado digital a una señal transmitida, sin que se conozca ni tenga acceso al sistema que originó Ia señal. Por tanto, en este ámbito el término "Ia señal de respuesta de un sistema" hace referencia a todas estas posibilidades.To do this, the response signal of the system is first obtained. By For example, for the equalization of a loudspeaker, the response of the loudspeaker could be calculated using techniques such as MLS (Maximum Length Sequence), logarithmic sinusoidal scanning or periodic noise. However, it is also possible to assume, based on experience, that the response signal of the system to be equalized has certain characteristics. For example, to provide different speakers with equalizations depending on the type of music played, the response signal of the speakers is not normally calculated, but rather a series of characteristics common to all speakers are assumed. Still another possibility is to apply the digital filtering procedure to a transmitted signal, without knowing or having access to the system that originated the signal. Therefore, in this area the term "the response signal of a system" refers to all these possibilities.
A continuación, se elige Ia respuesta objetivo en función de Ia aplicación. Por ejemplo, para ecualizar unos altavoces específicamente para música jazz, Ia respuesta objetivo se elige a partir del conocimiento del tipo de sonidos que componen ese tipo de música. En otro ejemplo relativo a un canal de comunicaciones, Ia respuesta objetivo del canal se elegiría teniendo en cuenta Ia distorsión máxima que puede soportar ese canal sin pérdida de información.Next, the objective response is chosen depending on the application. For example, to equalize speakers specifically for jazz music, the objective response is chosen from the knowledge of the type of sounds that make up that type of music. In another example related to a communications channel, the objective response of the channel would be chosen taking into account the maximum distortion that that channel can support without loss of information.
El procedimiento, además de producir un ahorro computacional importante con respecto a procedimientos de filtrado conocidos, es eficaz tanto a bajas como a altas frecuencias, pero para obtener unos resultados óptimos se debe aplicar a señales que abarquen un rango de octavas en torno a tres o superior. Por otro lado, es evidente para un experto en Ia materia que una combinación, en cascada o en paralelo, de filtros digitales lineales se puede simplificar en un solo filtro digital lineal. Por este motivo, el término "un filtro lineal" o a "un filtrado lineal" utilizado en el presente documento abarca también combinaciones de filtros lineales.The procedure, in addition to producing significant computational savings with respect to known filtering procedures, is effective at both low and high frequencies, but to obtain optimal results it should be applied to signals that span a range of octaves around three or higher. On the other hand, it is evident to one skilled in the art that a combination, in cascade or in parallel, of linear digital filters can be simplified in a single linear digital filter. For this reason, the term "a linear filter" or "a linear filter" used herein also encompasses combinations of linear filters.
En otras realizaciones preferidas de Ia invención, Ia operación de realizar un filtrado lineal combinado con, al menos, un filtrado deformado comprende una de las siguientes opciones:In other preferred embodiments of the invention, the operation of performing a linear filtering combined with at least one deformed filtering comprises a of the following options:
- Ia combinación en cascada de un filtrado lineal y, al menos, un filtrado deformado- the cascade combination of a linear filtrate and at least one deformed filtrate
- Ia combinación en paralelo de un filtrado lineal y, al menos, un filtrado deformado.- The parallel combination of a linear filtrate and at least one deformed filtrate.
Una aplicación preferida de Ia invención está dirigida al filtrado de sistemas acústicos, entendiéndose como tal cualquier dispositivo destinado a Ia reproducción sonora, tanto en Ia etapa final de reproducción como en cualquier etapa intermedia de tratamiento o amplificación de Ia señal. Realizaciones preferidas del procedimiento dirigido a sistemas acústicos serían los casos de su aplicación a altavoces o audífonos.A preferred application of the invention is directed to the filtering of acoustic systems, being understood as any device intended for sound reproduction, both in the final stage of reproduction and in any intermediate stage of treatment or amplification of the signal. Preferred embodiments of the procedure aimed at acoustic systems would be the cases of their application to loudspeakers or hearing aids.
De acuerdo con otro aspecto de Ia invención, ésta se extiende también a programas de ordenador, en particular programas de ordenador en contenidos en una portadora, adaptados para llevar a cabo las operaciones del procedimiento descrito. El programa puede estar en forma de código fuente, código objeto o un código intermedio entre el código fuente y el código objeto, como una forma parcialmente compilada, o de cualquier otra forma adecuada para implementar las operaciones de Ia invención.According to another aspect of the invention, this also extends to computer programs, in particular computer programs contained in a carrier, adapted to carry out the operations of the described procedure. The program can be in the form of a source code, object code or an intermediate code between the source code and the object code, as a partially compiled form, or in any other suitable way to implement the operations of the invention.
La portadora puede ser cualquier dispositivo o entidad capaz de transportar el programa. Por ejemplo, Ia portadora puede comprender un medio de almacenamiento, como una ROM, un CD ROM o cualquier otro medio de almacenamiento magnético, por ejemplo un disquete o un disco duro. Además, Ia portadora puede ser una portadora de transmisión, como una señal eléctrica u óptica que se pueda comunicar a través de cable eléctrico, óptico, por radio o de cualquier otro modo.The carrier can be any device or entity capable of transporting the program. For example, the carrier can comprise a storage medium, such as a ROM, a CD ROM or any other magnetic storage medium, for example a floppy disk or a hard disk. In addition, the carrier can be a transmission carrier, such as an electrical or optical signal that can be communicated through electric, optical, radio or any other way.
Por otro lado, de acuerdo con otro aspecto más de Ia presente invención, se describe un aparato para el filtrado digital de señales, caracterizado porque comprende:On the other hand, according to another aspect of the present invention, An apparatus for digital signal filtering is described, characterized in that it comprises:
- Un medio de entrada, que transmite una señal de entrada a un medio de procesamiento. El medio de entrada, de acuerdo con una realización preferente de Ia invención, comprende un medio de conversión analógico digital y/o un receptor de tramas digitales (cuando los datos de entrada ya están digitalizados previamente). La función del receptor de tramas digitales es modificar o adecuar el formato de Ia señal de entrada al medio de procesamiento.- An input medium, which transmits an input signal to a processing medium. The input means, according to a preferred embodiment of the invention, comprises a digital analog conversion means and / or a digital frame receiver (when the input data is already digitized previously). The function of the digital frame receiver is to modify or adapt the format of the input signal to the processing medium.
- Un medio de procesamiento, que recibe Ia señal de entrada del medio de entrada y efectúa un filtrado digital que combina un filtrado lineal con, al menos, un filtrado deformado. El medio de procesamiento puede ser de cualquier tipo capaz de llevar a cabo el procedimiento de filtrado digital que combina un filtrado digital lineal con, al menos, un filtrado digital deformado, de acuerdo con Io descrito previamente en el presente documento, aunque según realizaciones preferentes, puede ser un DSP, una FPGA, un ASIC, un microprocesador o un microcontrolador. Además, en caso de aplicaciones en análisis de señal, el medio de procesamiento es capaz de realizar los cálculos requeridos para extraer Ia información del análisis, como por ejemplo calcular características como valores medios, efectivos, elaboración de gráficas, etc.- A processing medium, which receives the input signal from the input medium and performs a digital filtering that combines a linear filtering with at least one deformed filtering. The processing medium can be of any type capable of carrying out the digital filtering process that combines a linear digital filtering with at least one deformed digital filtering, in accordance with the previously described herein, although according to preferred embodiments , it can be a DSP, an FPGA, an ASIC, a microprocessor or a microcontroller. In addition, in the case of applications in signal analysis, the processing medium is capable of performing the calculations required to extract the information from the analysis, such as calculating characteristics such as average, effective values, graphing, etc.
En caso de aplicar el aparato para el filtrado digital de señales de Ia presente invención para Ia ecualización de señales, y de acuerdo con una realización preferente de Ia invención, dicho aparato comprende además un medio de salida, que transmite Ia señal filtrada desde el medio de procesamiento hasta otro aparato. En otras realizaciones preferidas de Ia invención, el medio de salida comprende un medio de conversión digital-analógico y/o un transmisor de los datos en formato digital hacia el exterior.In case of applying the apparatus for the digital filtering of signals of the present invention for the equalization of signals, and in accordance with a preferred embodiment of the invention, said apparatus further comprises an output means, which transmits the filtered signal from the medium. from processing to another device. In other preferred embodiments of the invention, the output means comprises a digital-analog conversion means and / or a transmitter of the data in digital format to the outside.
De acuerdo con realizaciones preferentes de Ia invención, el aparato para el filtrado digital de señales comprende además un medio de comunicaciones. El medio de comunicaciones puede ser cualquier medio que permita conectar el aparato a un ordenador o cualquier otro sistema externo para transferir parámetros de configuración del filtrado a implementar, resultados o gráficas calculados por el medio de procesamiento o cualquier otro tipo de información.In accordance with preferred embodiments of the invention, the apparatus for digital signal filtering further comprises a communication medium. He communications medium can be any means that allows the device to be connected to a computer or any other external system to transfer configuration parameters of the filtrate to be implemented, results or graphs calculated by the processing means or any other type of information.
De acuerdo con una realización preferente más de Ia invención, el aparato para el filtrado digital de señales comprende un medio de interfaz con los usuarios, que permite que éstos modifiquen parámetros del filtrado. Otra función del medio de interfaz puede ser Ia visualización de resultados o gráficas calculados por el medio de procesamiento. El medio de interfaz podría ser, por ejemplo, una pantalla táctil o una botonera.In accordance with a further preferred embodiment of the invention, the apparatus for digital signal filtering comprises a means of interface with the users, which allows them to modify parameters of the filtering. Another function of the interface means may be the visualization of results or graphs calculated by the processing means. The interface medium could be, for example, a touch screen or a keypad.
De acuerdo con otra realización preferente de Ia invención, el aparato para el filtrado digital de señales comprende además un medio de almacenamiento, donde se almacenan datos relativos a las señales ecualizadas o a los parámetros de filtrado. El medio de almacenamiento podría ser cualquiera de los conocidos en Ia técnica, como por ejemplo un disco duro, un CD1 un DVD, etc.In accordance with another preferred embodiment of the invention, the apparatus for digital signal filtering also comprises a storage medium, where data relating to equalized signals or filtering parameters are stored. The storage medium could be any of those known in the art, such as a hard disk, a CD 1 a DVD, etc.
Finalmente, de acuerdo con una realización preferente más de Ia presente invención, el aparato para el filtrado digital de señales comprende un microcontrolador, que controla el funcionamiento de los medios de interfaz y comunicaciones.Finally, in accordance with a further preferred embodiment of the present invention, the apparatus for digital signal filtering comprises a microcontroller, which controls the operation of the interface and communications means.
DESCRIPCIÓN DE LOS DIBUJOSDESCRIPTION OF THE DRAWINGS
Para complementar Ia descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de Ia invención, de acuerdo con un ejemplo preferente de realización práctica de Ia misma, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado Io siguiente:To complement the description that is being made and in order to help a better understanding of the characteristics of the invention, according to a preferred example of practical implementation thereof, a set of drawings is attached as an integral part of said description. where, for the purposes of illustration and not limitation, the following has been represented:
Figura 1.- Gráfica que muestra Ia ecualización de un altavoz con filtros FIR lineales de órdenes 100, 250, 500 y 1000 (escalados de diez en diez decibelios).Figure 1.- Graph showing the equalization of a speaker with FIR filters Linear orders 100, 250, 500 and 1000 (scaled from ten to ten decibels).
Figura 2.- Gráfica que muestra las respuestas del error (escaladas de diez en diez decibelios) y el valor de e]og_dB de filtros FIR lineales.Figure 2.- Graph showing the answers of the error (scaling of ten in ten decibels) and the value of e ] og _ dB of linear FIR filters.
Figura 3.- Gráfica que muestra Ia estructuras de los filtros FIR deformados.Figure 3.- Graph showing the structures of the deformed FIR filters.
Figura 4.- Gráfica que muestra una estructura optimizada de los filtros FIR deformados.Figure 4.- Graph showing an optimized structure of deformed FIR filters.
Figura 5.- Gráfica que muestra el efecto de Ia deformación en función del parámetro λ, con una frecuencia de muestreo de 48 Hz.Figure 5.- Graph showing the effect of deformation as a function of parameter λ, with a sampling frequency of 48 Hz.
Figura 6.- Gráfica que muestra Ia resolución en frecuencias deformada contra lineal, con una frecuencia de muestreo de 48 Hz.Figure 6.- Graph showing the resolution in deformed versus linear frequencies, with a sampling frequency of 48 Hz.
Figura 7.- Gráfica que muestra Ia ecualización con filtros FIR deformados de orden un tercio menor que los filtros FIR lineales respectivos, con λ=0,766 y fs=48 kHz.Figure 7.- Graph showing the equalization with distorted FIR filters of order one third smaller than the respective linear FIR filters, with λ = 0.766 and f s = 48 kHz.
Figura 8.- Gráfica que muestra las respuestas del error y el valor eiog_dB para los filtros FIR deformados.Figure 8.- Graph showing the error responses and the value iog_ dB for the distorted FIR filters.
Figuras 9 y 10.- Representan estructuras posibles del filtro de acuerdo con Ia presente invención: en cascada y en paralelo.Figures 9 and 10.- Represent possible structures of the filter according to the present invention: in cascade and in parallel.
Figuras 11 y 12.- Gráficas que muestran las curvas de resolución de los filtros en octavas y en valor Q.Figures 11 and 12.- Graphs showing the resolution curves of the filters in octaves and in Q value.
Figura 13.- Gráfica que muestra Ia respuesta a Ia ecualización con filtrosFigure 13.- Graph showing the response to equalization with filters
FIR deformados de orden 33 para dos valores de λ. Figura 14.- Gráfica que muestra Ia respuesta del error relativa a los filtros de Ia gráfica anterior.Deformed FIR of order 33 for two values of λ. Figure 14.- Graph showing the response of the error related to the filters of the previous graph.
Figura 15.- Gráfica que muestra los valores de λ para Ia máxima resolución de Q en función de Ia frecuencia para diferentes frecuencias de muestreo.Figure 15.- Graph showing the values of λ for the maximum resolution of Q as a function of the frequency for different sampling frequencies.
Figura 16.- Gráfica que muestra Ia ecualización obtenida con Ia estructura de filtro propuesta para NMAC=250 y 100.Figure 16.- Graph showing the equalization obtained with the proposed filter structure for N M A C = 250 and 100.
Figura 17.- Gráfica que muestra las respuestas del error y los valores e \og-dB obtenidos con Ia estructura del filtro de acuerdo con Ia presente invención para NMAC=250 y 100.Figure 17. Graph showing the responses and the error values and \ og - dB obtained with the structure of the filter according to the present invention for NMA C = 250 and 100.
Figura 18.- Gráfica que muestra Ia ecualización del altavoz 2 con NMAC=250.Figure 18.- Graph showing the equalization of speaker 2 with N MA C = 250.
Figura 19.- Gráfica comparativa que muestra Ia ecualización obtenida con el mismo coste computacional.Figure 19.- Comparative graph that shows the equalization obtained with the same computational cost.
Figura 20.- Gráfica que muestra una comparativa entre respuestas de error y valores eXog_dB .Figure 20.- Graph showing a comparison between error responses and values and Xog _ dB .
REALIZACIÓN PREFERENTE DE LA INVENCIÓNPREFERRED EMBODIMENT OF THE INVENTION
Según Io explicado anteriormente en el presente documento, se muestra ahora un ejemplo en el que se aplica el procedimiento de Ia presente invención a Ia ecualización de altavoces, utilizando una combinación de filtros digitales FIR lineales y deformados, demostrándose que Ia combinación de ambos ofrece unos resultados óptimos para Ia ecualización de señales de audio, empleando para ello un bajo coste computacional sin introducir latencia en Ia operación. Estos resultados se presentan aquí meramente a modo de ejemplo, y en ningún caso pretenden limitar el alcance de Ia presente invención, que se extiende a combinaciones de filtros digitales lineales y deformados, no necesariamente del tipo FIR. Concretamente, en este ejemplo se ha utilizado un bafle de Ia marca RAMSA (Panasonic) que tiene un altavoz de graves de 8 pulgadas en configuración de bass-reflex, y un tweeter de 3/4 de pulgada para los agudos.As explained earlier in this document, an example is now shown in which the procedure of the present invention is applied to the equalization of loudspeakers, using a combination of linear and deformed digital FIR filters, demonstrating that the combination of both offers some Optimum results for the equalization of audio signals, using a low computational cost without introducing latency in the operation. These results are presented here by way of example only, and in no case are they intended to limit the scope of the present invention, which extends to combinations of linear and deformed digital filters, not necessarily FIR type. Specifically, in this example a loudspeaker of the RAMSA brand (Panasonic) has been used, which has an 8-inch bass speaker in bass-reflex configuration, and a 3/4 inch tweeter for the treble.
Filtros digitales FIR linealesLinear FIR digital filters
En primer lugar, se muestra el comportamiento de los filtros digitales FIR lineales. La Figura 1 muestra los resultados de Ia ecualización de un altavoz pasivo con un woofer de 8 pulgadas para las frecuencias bajas y un tweeter de 3A de pulgada para las frecuencias altas. Los filtros FIR lineales de este ejemplo se han diseñado mediante el método de los mínimos cuadrados en el dominio del tiempo (J. N. Mourjopoulos, "Digital Equalization of Room Acoustics", J. Audio Eng. Soc. VoI. 42, no. 11, pp. 884-900, Nov. 1994). El gráfico superior, centrado en 0 decibelios (dB) muestra Ia respuesta del altavoz sin filtrar Hallav02(ω) y Ia respuesta objetivo HohjeUm{ω) se muestra mediante una línea delgada. En este caso se ha seleccionado un objetivo compuesto por un filtro Butterworth paso-alto de cuarto orden a 55 Hz y un filtro Butterworth paso bajo de segundo orden a 18 kHz. La respuesta objetivo respeta Ia respuesta natural paso-banda del altavoz, extendiendo su respuesta a bajas frecuencias de un modo razonable sin introducir una ganancia excesiva en Ia respuesta del filtro. Se muestran Ia respuesta a filtros de orden 100, 250, 500 y 1000, ubicadas a intervalos de 10 dB para evitar que se superpongan unas a otras. Se observa que Ia ecualización a altas frecuencias es excelente para cualquier orden, pero deficiente a bajas frecuencias, aunque mejora con el orden del filtro.First, the behavior of linear FIR digital filters is shown. Figure 1 shows the results of the equalization of a passive speaker with an 8-inch woofer for low frequencies and a 3 -inch tweeter for high frequencies. The linear FIR filters of this example have been designed using the least squares method in the time domain (JN Mourjopoulos, "Digital Equalization of Room Acoustics", J. Audio Eng. Soc. VoI. 42, no. 11, pp 884-900, Nov. 1994). The upper graph, centered at 0 decibels (dB) shows the unfiltered speaker response H allav02 (ω) and the objective response H ohjeUm {ω) is shown by a thin line. In this case, a lens consisting of a fourth order high-pass Butterworth filter at 55 Hz and a second order low-pass Butterworth filter at 18 kHz has been selected. The objective response respects the natural pass-band response of the speaker, extending its response at low frequencies in a reasonable manner without introducing an excessive gain in the filter response. The response to filters of order 100, 250, 500 and 1000, located at intervals of 10 dB are shown to avoid overlapping each other. It is observed that the equalization at high frequencies is excellent for any order, but deficient at low frequencies, although it improves with the order of the filter.
La baja resolución observada en el eje de frecuencias logarítmico a bajas frecuencias de los filtros FIR lineales es debida al tratamiento lineal del eje de frecuencias en el diseño e implementación del filtro, bien en el dominio del tiempo o de Ia frecuencia. La resolución en frecuencia de un filtro FIR se define aproximadamente como sigue: A Vfm - ~N (1)The low resolution observed in the logarithmic frequency axis at low frequencies of the linear FIR filters is due to the linear treatment of the frequency axis in the design and implementation of the filter, either in the time or frequency domain. The frequency resolution of an FIR filter is defined approximately as follows: A Vfm - ~ - N (1)
donde AfF!R es Ia resolución en frecuencia; fs es Ia frecuencia de muestreo; y N es el orden del filtro.where Af F! R is the resolution in frequency; f s is the sampling frequency; and N is the order of the filter.
Con una frecuencia de muestreo de 48 kHz, para un orden de 100 se obtiene una resolución de 480 Hz, para 250 se obtiene 192 Hz, para 500 se obtiene 96 Hz, y para 1000 se obtiene 48 Hz. Estas resoluciones son suficientes para Ia ecualización de altavoces a altas frecuencias, pero no para bajas frecuencias en las que se requieren resoluciones de hasta 5 Hz o incluso menores en Ia ecualización y colocación de subgraves. Sería necesario diseñar filtros FIR lineales de órdenes superiores a 10000 para conseguir esta resolución, con el inmenso coste computacional que ello requiere si se implementan en el dominio del tiempo. Para reducir el coste computacional, es posible efectuar el filtrado en el dominio de Ia frecuencia mediante FFT, pero a expensas de aumentar Ia latencia hasta extremos no admisibles en aplicaciones en las que retardos de más de 10 milisegundos son molestos para los músicos u oradores (S. E. Olive, F. E. Toóle, "The detection of reflections in typical rooms", J. Audio Eng. Soc. 37 (7/8), 1989, 539-553).With a sampling frequency of 48 kHz, for an order of 100 a resolution of 480 Hz is obtained, for 250, 192 Hz is obtained, for 500, 96 Hz is obtained, and for 1000, 48 Hz is obtained. These resolutions are sufficient for Ia Equalization of loudspeakers at high frequencies, but not for low frequencies where resolutions of up to 5 Hz or even lower are required in the equalization and subwoofer placement. It would be necessary to design linear FIR filters of orders greater than 10,000 to achieve this resolution, with the immense computational cost that this requires if they are implemented in the time domain. To reduce the computational cost, it is possible to perform the filtering in the frequency domain by means of FFT, but at the expense of increasing the latency to extremes not admissible in applications in which delays of more than 10 milliseconds are annoying for musicians or speakers ( SE Olive, FE Toóle, "The detection of reflections in typical rooms", J. Audio Eng. Soc. 37 (7/8), 1989, 539-553).
Desde un punto de vista subjetivo y psico-acústico, el tratamiento lineal del eje de frecuencias de los filtros FIR lineales no es una buena elección, debido a que el oído humano se comporta de modo logarítmico, tanto sobre el eje de frecuencias como sobre el eje de magnitudes. Hablando subjetivamente, Ia distancia espectral (diferencia entre Ia respuesta objetivo y Ia respuesta filtrada del altavoz) entre 1 kHz y 2 kHz tiene un significado similar a una entre 10 kHz y 20 kHz. Teniendo en cuenta este comportamiento, se han desarrollado escalas psico-acústicas como Ia Bark y ERB (M. Karjalainen, E. Piirilá, A. Járvinen y J. Huopaniemi. "Comparison of loudspeaker equalization methods based on DSP techniques", J. Audio Eng. Soc. 47 (1/2), 1999, 14-31), y para frecuencias por encima de 500 Hz su comportamiento es más similar a una curva logarítmica que a una curva lineal. Para medir Ia distancia espectral psico-acústicamente y evaluar subjetivamente Ia calidad de Ia ecualización, se ha definido un estimador eιog-dB (G- Ramos, J. J. López, "Filter design method for loudspeaker equalization base don NR parametric filtres", J. Audio Eng. Soc. 54 (12), 2006, 1162-1178). Se discretiza el eje de frecuencias logarítmicamente para formar el vector ωlog From a subjective and psycho-acoustic point of view, linear treatment of the frequency axis of linear FIR filters is not a good choice, because the human ear behaves logarithmically, both on the frequency axis and on the frequency axis. axis of magnitudes. Subjectively speaking, the spectral distance (difference between the objective response and the filtered response of the speaker) between 1 kHz and 2 kHz has a meaning similar to one between 10 kHz and 20 kHz. Taking into account this behavior, psycho-acoustic scales such as Ia Bark and ERB have been developed (M. Karjalainen, E. Piirilá, A. Járvinen and J. Huopaniemi. "Comparison of loudspeaker equalization methods based on DSP techniques", J. Audio Eng. Soc. 47 (1/2), 1999, 14-31), and for frequencies by above 500 Hz its behavior is more similar to a logarithmic curve than to a linear curve. To measure the psycho-acoustically spectral distance and subjectively evaluate the quality of the equalization, an estimator e ι og - dB has been defined (G-Ramos, JJ López, "Filter design method for loudspeaker equalization base don NR parametric filtres", J Audio Eng. Soc. 54 (12), 2006, 1162-1178). The frequency axis is logarithmically discretized to form the ω log vector
(ecuación 2), que tiene una resolución de 1/48 de octava, obteniéndose 576 frecuencias entre 5 Hz y 20 kHz, Io que es suficiente para Ia ecualización.(Equation 2), which has a resolution of 1/48 octave, obtaining 576 frequencies between 5 Hz and 20 kHz, which is sufficient for equalization.
ω,og = [(O0G)1(O2(O3 ... ωN_λ ] (2)ω, og = [(O 0 G) 1 (O 2 (O 3 ... ω N _ λ ] (2)
El vector de error (ecuación 3) representa Ia diferencia entre Ia respuesta objetivo y Ia respuesta del altavoz filtrado, estando todas las magnitudes evaluadas en dBThe error vector (equation 3) represents the difference between the objective response and the filtered loudspeaker response, all the quantities being evaluated in dB
eVωiog )[dB] = H objetivo Vωiog )[dB] ~ H altavoz lωiog )[dB] ~ Hf litro V09IOg )[dB] W/ e V ω iog) [ dB ] = H target V ω iog) [ dB ] ~ H speaker l ω iog) [ dB ] ~ Hf liter V 09 IOg) [ dB ] W /
A continuación se muestra Ia expresión que define el estimador e]os_dB The expression that defines the estimator e ] os _ dB is shown below
(ecuación 4), que representa el error absoluto medio en dB entre Ia respuesta objetivo y Ia respuesta real filtrada evaluado sobre un eje de frecuencias logarítmico:(Equation 4), which represents the average absolute error in dB between the objective response and the actual filtered response evaluated on a logarithmic frequency axis:
Figure imgf000014_0001
Figure imgf000014_0001
donde nt , «7son los índices de ωlog a las frecuencias inicial y final donde se evalúa el error; y ωiog IA] representa el elemento k del vector ωlog .where n t , « 7 are the ω log indices at the initial and final frequencies where the error is evaluated; and ωi og IA] represents the element k of the vector ω log .
La Figura 2 muestra las respuestas del error de acuerdo con Ia definición de la ecuación de arriba para los filtros FIR lineales mostrados en Ia figura 1 , escalados también a 10 dB por claridad. A Ia derecha de cada curva, se muestra el valor medido de elog_dB . La curva superior es Ia diferencia entre Ia respuesta objetivo y Ia respuesta del altavoz original sin filtrar. El error medio sin filtrar e]os_dB es 3,09 dB. Con un filtro FIR lineal de orden 100 (Ia segunda curva), el error para las altas frecuencias por encima de 5 kHz es muy pequeño, pero a bajas frecuencias el error llega hasta 12 dB a 40 Hz. El valor de elog_dB baja hasta 2,02 dB. Con orden 250, Ia ecualización es excelente para frecuencias por encima de 2 kHz, pero a 40 Hz el error todavía alcanza 8 dB, obteniéndose un valor del error e\og-dB de 1.06 dB- Con un orden de 50°. eιog-dB baJa hasta los 0,42 dB, obteniéndose una ecualización perfecta entre 400 Hz y 20 kHz. Finalmente, con un orden 1000, elog_dB disminuye hasta 0,23 dB, existiendo un error residual en Ia respuesta a bajas frecuencias que alcanza un máximo de 1,95 dB. El problema de los filtros FIR lineales consistente en Ia pobre ecualización de las frecuencias bajas se observa claramente en las respuestas del error. Estudios psico-acústicos acerca de Ia percepción (F. E. Toóle, S. E. Olive, "The modification of timpre by resonantes: perception and measurement", J. Audio Eng. Soc. 36 (3), 1988, 122- 142) han determinado que un error menor de 1 dB a partir de Ia respuesta objetivo no es detectable por Ia mayoría de los humanos al escuchar música o voces. En este ejemplo, incluso con un orden 1000, no se alcanza una desviación del objetivo menor de 1 dB.Figure 2 shows the error responses according to the definition from the equation above for the linear FIR filters shown in Figure 1, also scaled to 10 dB for clarity. To the right of each curve, the measured value of e log _ dB is shown . The upper curve is the difference between the objective response and the response of the original unfiltered speaker. The average unfiltered error e ] os _ dB is 3.09 dB. With a linear FIR filter of order 100 (the second curve), the error for high frequencies above 5 kHz is very small, but at low frequencies the error reaches up to 12 dB at 40 Hz. The value of e log _ dB Low to 2.02 dB. With order 250, the equalization is excellent for frequencies above 2 kHz, but at 40 Hz the error still reaches 8 dB, obtaining an error value e \ o g -dB of 1.06 dB - With an order of 50 °. e ι og -dB ba J up to 0.42 dB, obtaining a perfect equalization between 400 Hz and 20 kHz. Finally, with an order 1000, and log _ dB decreases to 0.23 dB, there is a residual error in the response at low frequencies that reaches a maximum of 1.95 dB. The problem of linear FIR filters consisting in the poor equalization of the low frequencies is clearly observed in the error responses. Psycho-acoustic studies about perception (FE Toóle, SE Olive, "The modification of timpre by resonantes: perception and measurement", J. Audio Eng. Soc. 36 (3), 1988, 122-142) have determined that a Error less than 1 dB from the objective response is not detectable by most humans when listening to music or voices. In this example, even with a 1000 order, a target deviation of less than 1 dB is not achieved.
Filtros digitales FIR deformadosDeformed FIR digital filters
Los filtros digitales deformados se consiguen al reemplazar los elementos de retardo en Ia estructura de un filtro digital por filtros paso-todo de primer orden. Oppenheim et al. (A. V. Oppenheim, D. H. Jonson, y K. Steiglitz, "Computation of spectra with unequal resolution using the fase Fourier transform", Proc. IEEE, 89 (1971) 299-301) propuso por primera vez Ia posibilidad de obtener una resolución en frecuencia no uniforme con Ia transformada de Fourier. En los filtros digitales, el uso de filtros paso-todo en lugar de los elementos de retardo fue propuesto por primera vez por Strube (H. W. Strube, "Linear prediction on a warped frequency scale", J. Acoustic. Soc. America, 68 (4), 1980, 1071-1076). El filtro paso-todo de primer orden se define mediante Ia ecuación (5):Deformed digital filters are achieved by replacing the delay elements in the structure of a digital filter with first-order step-all filters. Oppenheim et al. (AV Oppenheim, DH Jonson, and K. Steiglitz, "Computation of spectra with unequal resolution using the Fourier transform phase", Proc. IEEE, 89 (1971) 299-301) proposed for the first time the possibility of obtaining a frequency resolution not uniform with the Fourier transform. In digital filters, the use of step-all filters instead of the delay elements was proposed by first time by Strube (HW Strube, "Linear prediction on a warped frequency scale", J. Acoustic. Soc. America, 68 (4), 1980, 1071-1076). The first-order step-all filter is defined by equation (5):
A(z) = ^-≠τ (5)A (z) = ^ - ≠ τ (5)
1 — A z1 - A z
donde λ es el parámetro de deformación.where λ is the deformation parameter.
La estructura de un filtro FIR deformado se muestra en Ia figura 3, mientras que Ia figura 4 muestra Ia estructura de filtro FIR deformado propuesta por Karjalainen que ahorra memoria y operaciones (M. Karjalainen, E. Piirilá, A.The structure of a deformed FIR filter is shown in Figure 3, while Figure 4 shows the structure of the deformed FIR filter proposed by Karjalainen that saves memory and operations (M. Karjalainen, E. Piirilá, A.
Járvinen y J. Huopaniemi. "Comparison of loudspeaker equalization methods based on DSP techniques", J. Audio Eng. Soc. 47 (1/2), 1999, 14-31). La función de transferencia de un filtro FIR deformado es:Járvinen and J. Huopaniemi. "Comparison of loudspeaker equalization methods based on DSP techniques", J. Audio Eng. Soc. 47 (1/2), 1999, 14-31). The transfer function of a deformed FIR filter is:
Figure imgf000016_0001
Figure imgf000016_0001
El filtrado deformado no es un método para diseñar filtros, sino una estructura que produce el efecto de deformar el eje de frecuencias. El filtro se podría diseñar utilizando cualquiera de los métodos de diseño de filtros conocidos.Deformed filtering is not a method of designing filters, but a structure that produces the effect of distorting the frequency axis. The filter could be designed using any of the known filter design methods.
La sustitución de z"1 por A(z) genera Ia deformación del eje de frecuencias, que es una función de Ia respuesta en fase de A(z). Para una frecuencia de muestreo fs dada, el nuevo eje de frecuencias después de Ia deformación es:The substitution of z "1 for A (z) generates the deformation of the frequency axis, which is a function of the phase response of A (z). For a given sampling frequency f s , the new frequency axis after The deformation is:
LaΛfJsΛ) (7)
Figure imgf000016_0002
La figura 5 muestra Ia gráfica de correlación entre frecuencias debido al efecto de Ia deformación. Para valores positivos de 0<λ<1 , el eje de frecuencias está comprimido hacia las altas frecuencias, y para valores negativos -1< λ<0, está comprimido hacia las frecuencias bajas.
L a ΛfJ s Λ) (7)
Figure imgf000016_0002
Figure 5 shows the graph of correlation between frequencies due to the effect of deformation. For positive values of 0 <λ <1, the frequency axis is compressed towards high frequencies, and for negative values -1 <λ <0, it is compressed towards low frequencies.
Para contrarrestar Ia falta de resolución a bajas frecuencias de filtros FIR lineales, se han empleado filtros deformados para Ia ecualización de altavoces con valores positivos de λ para desplazar hacia arriba las altas frecuencias y conseguir así una mejor resolución. Karjalainen propuso su utilización con filtros FIR y HR (M. Karjalainen, A. Hármá, Ul, K. Laine, "Realizable warped NR filtres and their properties", Proceedings of ICASSP 97, 1997, 2205-2208), presentando una estructura NR realizable, así como Hármá (A. Hármá, "Implementation of frequency-warped recursive filtres", Elsevier Signal Processing, 80 (3), 2000, 543- 548). Recientemente, también se ha propuesto el uso de filtros Kautz (que se pueden interpretar como una generalización de los filtros deformados) para Ia ecualización de altavoces (M. Karjalainen, T. Paatero, "Equalization of loudspeaker and room responses using kautz filtres: direct least squares design", AURASIP Journal on advances in signal processing, 2007, n° 60949). También Tyril menciona el uso de filtros para Ia ecualización a bajas frecuencias (M. Tyril, J. A. Pedersen y P. Rubak, "Digital filtres for low-frequency equalization", J. Audio Eng. Soc. 29 (1/2), 2001 , 36-43).To counteract the lack of resolution at low frequencies of linear FIR filters, deformed filters have been used for equalizing speakers with positive values of λ to shift the high frequencies up and thus achieve a better resolution. Karjalainen proposed its use with FIR and HR filters (M. Karjalainen, A. Hármá, Ul, K. Laine, "Realizable warped NR filtres and their properties", Proceedings of ICASSP 97, 1997, 2205-2208), presenting an NR structure realizable, as well as Hármá (A. Hármá, "Implementation of frequency-warped recursive filtres", Elsevier Signal Processing, 80 (3), 2000, 543-548). Recently, the use of Kautz filters (which can be interpreted as a generalization of deformed filters) for speaker equalization (M. Karjalainen, T. Paatero, "Equalization of loudspeaker and room responses using kautz filtres: direct") has also been proposed. least squares design ", AURASIP Journal on advances in signal processing, 2007, n ° 60949). Tyril also mentions the use of filters for low frequency equalization (M. Tyril, JA Pedersen and P. Rubak, "Digital filters for low-frequency equalization", J. Audio Eng. Soc. 29 (1/2), 2001 , 36-43).
La resolución en frecuencia que se obtiene con los filtros FIR deformados se obtiene como Ia resolución del filtro FIR lineal equivalente multiplicada por Ia derivada de fwaφ con respecto de Ia frecuencia, como muestra Ia siguiente ecuación:The frequency resolution obtained with the distorted FIR filters is obtained as the resolution of the equivalent linear FIR filter multiplied by the derivative of f waφ with respect to the frequency, as shown in the following equation:
Figure imgf000017_0001
Figure imgf000017_0001
La figura 6 muestra Ia resolución en frecuencia deformada relativa contraFigure 6 shows the resolution in relative deformed frequency against
Ia resolución lineal en frecuencia. Para valores de λ positivos, Ia resolución en frecuencia aumenta a bajas frecuencias, pero disminuye a frecuencias altas. Para valores de λ negativos se produce el efecto opuesto. Al aumentar el valor de λ acercándose a 1 , se obtiene una mejora de Ia resolución a bajas frecuencias, pero Ia pérdida de resolución a altas frecuencias comienza muy pronto y va empeorando. La frecuencia donde Ia resolución de Ia escala deformada es igual que Ia de Ia escala lineal es Ia frecuencia de cruce, ftp, y su valor se obtiene mediante Ia ecuación 9. Smith y Abel desarrollaron una expresión para determinar el valor λ que mejor aproxima las escalas psicoacústicas de Bark y ERB (J. O. Smith, J. S. Abel, "Bark and ERB bilinear transform, IEEE", Tras. Speech Audio Processing, 7, 1999, 697-708).The linear resolution in frequency. For positive λ values, the resolution in frequency increases at low frequencies, but decreases at high frequencies. For negative λ values the opposite effect occurs. By increasing the value of λ approaching 1, an improvement of the resolution at low frequencies is obtained, but the loss of resolution at high frequencies begins very soon and is getting worse. The frequency where the resolution of the deformed scale is the same as that of the linear scale is the crossover frequency, f t p, and its value is obtained by equation 9. Smith and Abel developed an expression to determine the λ value that best approximates the psychoacoustic scales of Bark and ERB (JO Smith, JS Abel, "Bark and ERB bilinear transform, IEEE", Tras. Speech Audio Processing, 7, 1999, 697-708).
Λ, = ^- arccos(λ) (9)Λ, = ^ - arccos (λ) (9)
L - KL - K
Como se puede observar en Ia figura 3, los filtros FIR deformados requieren un mayor coste computacional con respecto de un filtro FIR lineal del mismo orden. Dependiendo de Ia arquitectura del DSP o microprocesador empleado, su coste computacional aumenta un factor entre 3 y 4 con respecto de un filtro FIR lineal. Sin embargo, los filtros FIR deformados pueden reducir el orden del filtro un factor de hasta 5, y por Io tanto su uso podría ser eficiente desde un punto de vista computacional. Suponiendo únicamente un factor de penalización de 3, se han efectuado las mismas ecualizaciones de los filtros FIR lineales de Ia figura 1, pero esta vez en filtros FIR deformados de un orden un tercio menor que el de los filtros FIR lineales para mantener el mismo coste computacional. En este caso, se ha empleado un valor de λ de 0,766 para conseguir una resolución cercana a Ia escala Bark. Las ecualizaciones se muestran en Ia figura 7 escaladas diez dB por claridad, y las respuestas del error y el valor elog_dB se muestran en Ia figura 8. Con un orden de 33, el filtro FIR deformado consigue un valor del error e]0S_dB de 1 ,29 dB, mejor que el de 2,02 dB obtenido con el filtro FIR lineal de orden 100. Aunque Ia ecualización a altas frecuencias es claramente peor debido a Ia reducción en resolución, Ia ecualización a frecuencias bajas y medias es mejor, ya que se puede observar en las curvas de error de las figuras 2 y 8. El error baja hasta los 0,77 dB con un orden 83, en lugar del 1 ,06 dB obtenidos con el filtro FIR de orden 250. El error está dentro de Ia banda ±1 dB desde 200 Hz hasta 20 kHz. Para un orden de 167, el valor eXog_dB es sólo de 0,12 dB, incluso mejor que Ia ecualización conseguida con el filtro FIR lineal de orden 1000 (0,23 dB). Finalmente, con un orden de 333, el resultado es excelente, con un error residual de sólo 0,03 dB. Para el valor λ seleccionado, se obtiene Ia máxima resolución del filtro FIR deformado alrededor de 2 kHz, empeorando para frecuencias inferiores y superiores.As can be seen in Figure 3, deformed FIR filters require a higher computational cost with respect to a linear FIR filter of the same order. Depending on the architecture of the DSP or microprocessor used, its computational cost increases a factor between 3 and 4 with respect to a linear FIR filter. However, deformed FIR filters can reduce the order of the filter by a factor of up to 5, and therefore their use could be efficient from a computational point of view. Assuming only a penalty factor of 3, the same equalizations of the linear FIR filters of Figure 1 have been made, but this time in distorted FIR filters of an order one third lower than that of the linear FIR filters to maintain the same cost computational In this case, a value of λ of 0.766 has been used to achieve a resolution close to the Bark scale. The equalizations are shown in Figure 7 scaled ten dB for clarity, and the error responses and the value e log _ dB are shown in Figure 8. With an order of 33, the distorted FIR filter achieves an error value e ] 0S _ dB of 1.29 dB, better than the 2.02 dB obtained with the linear FIR filter of order 100. Although the equalization at high frequencies is clearly worse due to the reduction in resolution, the equalization at low and medium frequencies it is better, as it can be seen in The error curves of Figures 2 and 8. The error drops to 0.77 dB with an order 83, instead of the 1, 06 dB obtained with the FIR filter of order 250. The error is within the band ± 1 dB from 200 Hz to 20 kHz. For an order of 167, the value Xog_ dB is only 0.12 dB, even better than the equalization achieved with the linear FIR filter of order 1000 (0.23 dB). Finally, with an order of 333, the result is excellent, with a residual error of only 0.03 dB. For the selected λ value, the maximum resolution of the distorted FIR filter around 2 kHz is obtained, getting worse for lower and higher frequencies.
Con esta comparación, está claro que el uso de filtros deformados para Ia ecualización de altavoces puede ser computacionalmente eficiente, expandiendo Ia resolución del filtro diseñado teniendo en cuenta aspectos psico-acústicos del oído humano. Por el mismo coste computacional, se podrían conseguir mejores ecualizaciones con el uso de estructuras deformadas, o se necesitaría un menos coste computacional para Ia misma calidad de Ia ecualización.With this comparison, it is clear that the use of deformed filters for speaker equalization can be computationally efficient, expanding the resolution of the filter designed taking into account psycho-acoustic aspects of the human ear. For the same computational cost, better equalizations could be achieved with the use of deformed structures, or a less computational cost would be needed for the same quality of equalization.
Así, tras el análisis de los resultados mostrados en los párrafos anteriores, en el presente ejemplo se combinan filtros FIR lineales con filtros FIR deformados, como se muestra en las figuras 9 y 10. En Ia figura 10 se muestra una combinación en paralelo de varios filtros digitales FIR deformados con un filtro lineal. En este ejemplo se analizará únicamente Ia estructura en cascada de Ia figura 9, en concreto para filtros FIR, aunque los resultados son también válidos para filtros HR. El filtro de ecualización de Ia figura 9 se obtiene de combinar en cascada uno o varios filtros FIR deformados de orden Nw¡ y parámetro de deformación λ¡ con un filtro FIR lineal de orden N. El filtro FIR lineal ecualizará las frecuencias altas y medias, mientras que los filtros FIR deformados ecualizarán las frecuencias medias y bajas. Para conseguir esto, se debe realizar una selección correcta de los valores de λ¡ para maximizar Ia resolución del filtro combinado en toda Ia banda de frecuencias. En el caso más simple de utilizar sólo un filtro deformado, el orden equivalente del filtro NMAC (en términos de coste computacional o MACS) se podría aproximar como:
Figure imgf000020_0001
Thus, after the analysis of the results shown in the previous paragraphs, in the present example linear FIR filters are combined with deformed FIR filters, as shown in Figures 9 and 10. In Figure 10 a parallel combination of several FIR digital filters deformed with a linear filter. In this example, only the cascade structure of Figure 9 will be analyzed, specifically for FIR filters, although the results are also valid for HR filters. The equalization filter of FIG. 9 is obtained by cascading one or more deformed FIR filters of order N w ¡and deformation parameter λ¡ with a linear FIR filter of order N. The linear FIR filter will equalize the high and medium frequencies , while deformed FIR filters will equalize the medium and low frequencies. To achieve this, a correct selection of the values of λ¡ must be made to maximize the resolution of the combined filter in the entire frequency band. In the simplest case of using only a distorted filter, the equivalent order of the NMAC filter (in terms of computational cost or MACS) could be approximated as:
Figure imgf000020_0001
donde se ha tomado un factor de penalización de 3 para el filtro FIR deformado. Para reducir el coste computacional del filtro, el orden del filtro FIR deformado debe ser Io más bajo posible, ya que requiere tres veces el número de MACS que el filtro FIR lineal.where a penalty factor of 3 has been taken for the deformed FIR filter. To reduce the computational cost of the filter, the order of the deformed FIR filter must be as low as possible, since it requires three times the number of MACS than the linear FIR filter.
La resolución en frecuencia del filtro propuesto Hf¡ιtro(z) será una combinación de Ia resolución lineal del filtro FIR lineal HFIR(Z) y Ia resolución no lineal del filtro FIR deformado HWFIR(Z). La figura 11 muestra Ia resolución en frecuencia de filtros FIR lineales y deformados en términos del valor Q correspondiente. Este valor Q se define como el cociente entre Ia frecuencia a considerar y Ia resolución en frecuencia del filtro a esa frecuencia:The frequency resolution of the proposed filter H f ι tro (z) will be a combination of the linear resolution of the linear FIR filter H FIR (Z) and the non-linear resolution of the deformed FIR filter H WFI R (Z). Figure 11 shows the frequency resolution of linear and distorted FIR filters in terms of the corresponding Q value. This Q value is defined as the ratio between the frequency to be considered and the resolution in frequency of the filter at that frequency:
Q-if (11> Q -i f (11 >
Así, para los filtros digitales FIR lineal (ecuación 12) y deformado (ecuación 13), el valor de Ia resolución Q se obtiene:Thus, for digital filters linear linear (equation 12) and deformed (equation 13), the value of the resolution Q is obtained:
ií LlJNFIR ~ f / \ ' ¿)i llJJFF ~ f / \ '¿)
/N/ N
Figure imgf000020_0002
Figure imgf000020_0002
En Ia figura 12 se muestra otra representación de Ia resolución, esta vez en términos del ancho de banda de Ia resolución en octavas (BW0Ct). El ancho de banda en octavas se relaciona con Q a través de Ia siguiente expresión (ecuación 14), válida para valores de Q altos: BW^ = (14)Figure 12 shows another representation of the resolution, this time in terms of the bandwidth of the resolution in octaves (BW 0Ct ). The bandwidth in octaves is related to Q through the following expression (equation 14), valid for high Q values: BW ^ = (14)
Q Λn{2)Q Λn {2)
Las figuras 11 y 13 se evalúan en un eje logarítmico, tanto en abscisas como en ordenadas. De este modo, Ia medida obtenida tendrá en cuenta el comportamiento natural del oído humano y servirá para juzgar Ia resolución en frecuencia de los filtros desde un punto de vista psico-acústico.Figures 11 and 13 are evaluated in a logarithmic axis, both in abscissa and ordinates. In this way, the measurement obtained will take into account the natural behavior of the human ear and will serve to judge the resolution in frequency of the filters from a psycho-acoustic point of view.
La resolución del filtro FIR lineal, como se muestra en Ia figura 12, es constante con un ancho de banda de 100 Hz que corresponde a un orden de filtro de 480 cuando se utiliza una frecuencia de muestreo de fs=48kHz. La resolución del filtro FIR deformado corresponde a un filtro deformado de orden 480. Estas resoluciones también se comparan con una resolución constante de un tercio de octava, y con Ia resolución en frecuencia de Ia escala Bark. Desde un punto de vista psico-acústico, Ia comparación de Ia resolución de filtros deformados con Ia escala Bark es interesante, ya que sigue el ancho de banda de Ia resolución del sistema auditivo humano utilizando el concepto de bandas críticas (J. O. Smith, J. S. Abel, "Bark and ERB bilinear transform, IEEE", Tras. Speech Audio Processing, 7, 1999, 697-708).The resolution of the linear FIR filter, as shown in Figure 12, is constant with a bandwidth of 100 Hz corresponding to a filter order of 480 when a sampling frequency of f s = 48kHz is used. The resolution of the distorted FIR filter corresponds to a distorted filter of order 480. These resolutions are also compared with a constant resolution of one third octave, and with the resolution in frequency of the Bark scale. From a psycho-acoustic point of view, the comparison of the resolution of deformed filters with the Bark scale is interesting, since it follows the bandwidth of the resolution of the human auditory system using the concept of critical bands (JO Smith, JS Abel , "Bark and ERB bilinear transform, IEEE", Tras. Speech Audio Processing, 7, 1999, 697-708).
Para el filtro FIR lineal, el valor de resolución Q (y su resolución logarítmica) aumenta con Ia frecuencia, como se observa en las figuras 11 y 12 para el caso lineal. Las líneas discontinuas delgadas representan Ia resolución de una escala de un tercio de octava, que es constante con Ia frecuencia. Su valor de resolución Q es 4,32, y su valor de octava es obviamente un 0,333. Es aproximadamente Ia resolución obtenida con un ecualizador gráfico de un tercio de octava que, para frecuencias por debajo de 430 Hz, es incluso mejor que el que se obtiene con el filtro FIR lineal de orden 480. Las líneas discontinuas de puntos son las resoluciones de Ia escala Bark calculada a partir de las frecuencias publicadas. Hasta 500 Hz, su resolución es constante e igual a 100 Hz, como el filtro FIR del ejemplo. Por encima de 500 Hz su comportamiento es más logarítmico, similar al de un tercio de octava, llegando hasta una resolución máxima cercana a un quinto de octava (Q=6,3) a 2 kHz.For the linear FIR filter, the resolution value Q (and its logarithmic resolution) increases with the frequency, as seen in Figures 11 and 12 for the linear case. The thin dashed lines represent the resolution of a scale of one third octave, which is constant with the frequency. Its resolution value Q is 4.32, and its octave value is obviously 0.333. It is approximately the resolution obtained with a graphic equalizer of one third octave which, for frequencies below 430 Hz, is even better than that obtained with the linear FIR filter of order 480. The dashed dotted lines are the resolutions of The Bark scale calculated from the published frequencies. Up to 500 Hz, its resolution is constant and equal to 100 Hz, as the FIR filter in the example. Above 500 Hz, its behavior is more logarithmic, similar to one third octave, reaching a resolution maximum close to a fifth octave (Q = 6.3) at 2 kHz.
La línea continua gruesa representa Ia resolución en frecuencia del filtro FIR deformado de orden 480 con un valor λ de 0,76 que corresponde al valor que mejor se ajusta a Ia escala Bark (para fs=48 kHz), y es el que se utiliza en las ecualizaciones del filtro FIR deformado de Ia figura 7. Se deduce Ia forma de Ia escala Bark (con mejor resolución), con un valor de resolución Q máximo cercano a 2 kHz, como se muestra en las figuras 7 y 8. Finalmente, Ia línea discontinua gruesa representa Ia resolución del mismo filtro FIR deformado de orden 480 pero con λ=0,95. Para ambos filtros deformados, el Q máximo es el mismo, pero Ia frecuencia con mayor resolución disminuye desde 2 kHz (λ=0,76) hasta 350 Hz (λ=0,95). También, Ia resolución a bajas frecuencias se ha multiplicado por 4,5 en el segundo caso, el mismo factor según el cual ha disminuido Ia resolución a altas frecuencias.The thick continuous line represents the frequency resolution of the distorted FIR filter of order 480 with a value λ of 0.76 that corresponds to the value that best fits the Bark scale (for f s = 48 kHz), and is the one that is used in the equalizations of the distorted FIR filter of Figure 7. The shape of the Bark scale (with better resolution) is deduced, with a maximum resolution value Q close to 2 kHz, as shown in Figures 7 and 8. Finally , The thick dashed line represents the resolution of the same distorted FIR filter of order 480 but with λ = 0.95. For both deformed filters, the maximum Q is the same, but the frequency with higher resolution decreases from 2 kHz (λ = 0.76) to 350 Hz (λ = 0.95). Also, the resolution at low frequencies has been multiplied by 4.5 in the second case, the same factor according to which the resolution at high frequencies has decreased.
Los dos gráficos de las figuras 11 y 12 demuestran que con una selección adecuada del valor λ es posible seleccionar Ia banda de frecuencias donde el filtro FIR deformado consigue Ia mejor resolución. En otras palabras, es posible ajustar Ia resolución del filtro. En Ia estructura de filtro propuesta en Ia presente solicitud de patente para Ia ecualización de altavoces, el uso de filtros digitales FIR deformados de órdenes bajos es efectivo para reducir el coste computacional, con valores de λ mayores de 0,9 para conseguir resolución a bajas frecuencias.The two graphs of Figures 11 and 12 demonstrate that with an appropriate selection of the λ value it is possible to select the frequency band where the distorted FIR filter achieves the best resolution. In other words, it is possible to adjust the resolution of the filter. In the filter structure proposed in this patent application for the equalization of loudspeakers, the use of deformed FIR digital filters of low orders is effective to reduce the computational cost, with values of λ greater than 0.9 to achieve resolution at low frequencies
Para comprender mejor el efecto de Ia variación del parámetro λ, se muestra a continuación un ejemplo. El altavoz utilizado previamente se ha ecualizado con dos filtros de orden Nw=33 y valores λ de 0,76 y 0,95. Se muestran sus resultados en Ia figura 13. Como se ha mencionado anteriormente, con λ=0,76 Ia máxima resolución del filtro es de aproximadamente 2 kHz, obteniéndose una pobre ecualización a frecuencias bajas y altas. Cuando se emplea λ=0,95 (centrado en -10 dB por claridad), Ia ecualización de las bajas frecuencias se mejora a expensas de empeorar Ia ecualización de las frecuencias altas. La máxima resolución del filtro es ahora de alrededor de 350 Hz, obteniéndose un error menor de 1 dB para 20 Hz hasta 1 ,5 kHz con un orden de sólo 33, Io que equivale a un coste computacional equivalente a un filtro FIR lineal de orden 100. Las respuestas del error de las dos ecualizaciones se muestran en Ia figura 14, donde se puede apreciar cómo Ia máxima resolución de los filtros cambia con los dos valores de λ.To better understand the effect of the variation of the parameter λ, an example is shown below. The previously used speaker has been equalized with two filters of order N w = 33 and λ values of 0.76 and 0.95. Their results are shown in Figure 13. As mentioned above, with λ = 0.76 the maximum resolution of the filter is approximately 2 kHz, obtaining a poor equalization at low and high frequencies. When λ = 0.95 (centered on -10 dB for clarity) is used, the equalization of the low frequencies is improved at the expense of worsening the equalization of the frequencies high. The maximum resolution of the filter is now around 350 Hz, obtaining an error of less than 1 dB for 20 Hz up to 1.5 kHz with an order of only 33, which is equivalent to a computational cost equivalent to a linear FIR filter of order 100. The error responses of the two equalizations are shown in Figure 14, where it can be seen how the maximum resolution of the filters changes with the two values of λ.
Para facilitar Ia selección del valor λ adecuado, se representa Ia frecuencia de Ia máxima resolución Q como una función de λ para diferentes frecuencias de muestreo: 44,1 , 48, 88,2 y 96 kHz. Las gráficas de Ia figura 15 muestran esos resultados entre 20 Hz y 6 kHz para valores λ desde 0,7 hasta 1. La curva más a Ia izquierda corresponde a una fs de 44,1 kHz, y Ia de más a Ia derecha a 96 kHz. Con estos gráficos, es fácil elegir el valor de λ para ajustar en frecuencia el esfuerzo del filtro FIR deformado.To facilitate the selection of the appropriate λ value, the frequency of the maximum resolution Q is represented as a function of λ for different sampling frequencies: 44.1, 48, 88.2 and 96 kHz. The graphs in Figure 15 show these results between 20 Hz and 6 kHz for λ values from 0.7 to 1. The left-most curve corresponds to a fs of 44.1 kHz, and the one on the most right to 96 kHz With these graphs, it is easy to choose the value of λ to adjust the stress of the distorted FIR filter in frequency.
La selección de los tres parámetros (orden N del filtro FIR lineal, orden Nw del filtro FIR deformado y valor λ para el filtro FIR deformado) para Ia ecualización específica de un filtro se debe basar en un compromiso entre Ia demanda de ecualización a bajas frecuencias (para Ia selección de Nw y K), y a medias y altas frecuencias (para N).The selection of the three parameters (order N of the linear FIR filter, order Nw of the deformed FIR filter and λ value for the deformed FIR filter) for the specific equalization of a filter must be based on a compromise between the demand for equalization at low frequencies (for the selection of N w and K), and at medium and high frequencies (for N).
De acuerdo con todo Io anterior, el diseño del filtro de ecualización propuesto requiere el diseño conjunto del filtro FIR lineal de orden N y del filtroIn accordance with all of the above, the design of the proposed equalization filter requires the joint design of the linear FIR filter of order N and the filter
FIR deformado de orden Nw y parámetro de deformación λ. Para mantener el requerimiento de bajo coste computacional, el orden del filtro deformado debe serDeformed FIR of order N w and deformation parameter λ. To maintain the requirement of low computational cost, the order of the deformed filter must be
Io más bajo posible.The lowest possible.
Así, para el diseño de un filtro en cascada en el que un filtro FIR lineal sigue a un filtro FIR deformado, en primer lugar se diseña el filtro FIR deformado. Esta etapa se centra en ecualizar las frecuencias bajas a través de una selección adecuada del parámetro λ. Esta selección depende de dos factores: Ia frecuencia más baja a corregir (subwoofers) y el orden del filtro de Ia segunda etapa (el filtro FIR lineal), que condiciona su resolución a baja frecuencia y, por tanto, el punto de enlace entre ambos filtros.Thus, for the design of a cascade filter in which a linear FIR filter follows a deformed FIR filter, the deformed FIR filter is designed first. This stage focuses on equalizing the low frequencies through an appropriate selection of the λ parameter. This selection depends on two factors: the lowest frequency to be corrected (subwoofers) and the order of the second stage filter (the filter Linear FIR), which determines its resolution at low frequency and, therefore, the point of connection between both filters.
En segundo lugar, se diseña el filtro FIR lineal a partir de Ia respuesta del altavoz filtrada por Ia primera etapa. Esta segunda etapa corregirá Ia respuesta del filtro FIR deformado de Ia primera etapa fundamentalmente en las altas frecuencias. Este filtro FIR lineal no tiene que corregir las frecuencias bajas debido a que ya han sido corregidas previamente por el filtro FIR deformado.Secondly, the linear FIR filter is designed based on the response of the loudspeaker filtered by the first stage. This second stage will correct the response of the distorted FIR filter of the first stage mainly at high frequencies. This linear FIR filter does not have to correct the low frequencies because they have been previously corrected by the deformed FIR filter.
El orden de los dos filtros se relaciona con Ia precisión requerida en Ia ecualización y está condicionado por el coste computacional disponible. La figura 13 muestra los resultados que se pueden conseguir en el altavoz del ejemplo utilizando un FIR deformado. Utilizando Nw=33 y λ=0,95 es posible conseguir un error de menos de 1 dB hasta 1 ,5 kHz. En Ia Figura 2 se muestra que también es posible conseguir un error por debajo de 1 dB en las altas frecuencias (1 ,5 kHz hasta 20 kHz) con un filtro FIR lineal de orden N entre 100 y 150. De acuerdo con Ia ecuación anterior, se obtendrá como resultado un filtro de orden equivalente NMAC de 200 a 250, con un error de ecualización residual menor de 1 dB en toda Ia banda de frecuencias de audio. Para conseguir este nivel de ecualización, se necesita un filtro FIR lineal de más de un orden mayor de 1000, como se desprende de Ia figura 2. Si se utiliza un filtro FIR deformado, se necesita un orden Nw=167 (NMAC=500), como se observa en Ia figura 8. Por tanto, se puede ahorrar coste computacional utilizando Ia topología propuesta, en comparación con las topologías existentes que utilizan sólo filtros FIR lineales o filtros FIR deformados.The order of the two filters is related to the precision required in the equalization and is conditioned by the available computational cost. Figure 13 shows the results that can be achieved in the example speaker using a distorted FIR. Using N w = 33 and λ = 0.95 it is possible to achieve an error of less than 1 dB up to 1.5 kHz. Figure 2 shows that it is also possible to achieve an error below 1 dB at high frequencies (1.5 kHz to 20 kHz) with a linear FIR filter of order N between 100 and 150. According to the previous equation , an equivalent order NMA C filter of 200 to 250 will be obtained, with a residual equalization error of less than 1 dB in the entire audio frequency band. To achieve this level of equalization, a linear FIR filter of more than an order greater than 1000 is needed, as shown in Figure 2. If a deformed FIR filter is used, an order Nw = 167 (N MA C = 500), as seen in Figure 8. Therefore, computational cost can be saved using the proposed topology, compared to existing topologies that use only linear FIR filters or deformed FIR filters.
Por ejemplo, se desea ecualizar el altavoz cuya salida se muestra en Ia figura 16 sobre Ia línea de 0 dB. Se representa también sobre el nivel 0 dB Ia respuesta en frecuencia objetivo HObjet¡vo(ω). La respuesta del error original se representa en Ia figura 17, siendo el error inicial eXo&_dB de 3,09 dB. Su error máximo es de 12 dB a 40 Hz y tiene varios picos y valles de más de 4 dB por toda Ia banda de frecuencias de audio. Los resultados de las ecualizaciones se muestran en Ia figura 16, y las gráficas de error y los valores de eXoa_dB se muestran en Ia figura 17.For example, it is desired to equalize the speaker whose output is shown in Figure 16 on the 0 dB line. It also represents the level 0 dB Ia target frequency response H Objet vo (ω). The response of the original error is represented in Figure 17, the initial error being Xo & _ dB of 3.09 dB. Its maximum error is 12 dB at 40 Hz and it has several peaks and valleys of more than 4 dB throughout the entire audio frequency band. The results of the equalizations are shown in Figure 16, and the error graphs and values of Xoa_ dB are shown in Figure 17.
Ejemplo 1Example 1
Utilizando Ia estructura propuesta, se diseñará un filtro de un orden equivalente NMAC=250, compuesto de un filtro FIR deformado de orden Nw=33 y un filtro FIR de orden N=151. La primera operación en el diseño del filtro propuesto es diseñar el filtro FIR deformado con un valor λ seleccionado de forma que se consiga una ecualización suficiente a bajas frecuencias. En este caso, se ha utilizado un valor de λ=0,98, que corresponde a una frecuencia con una máxima resolución de 150 Hz cuando se emplea una frecuencia de muestreo fs=0,48, como se puede observar en Ia figura 15. Con estos valores de Nw y λ, Ia ecualización que se consigue es Ia que se muestra en Ia figura 16 sobre el nivel de -10 dB, que es bastante buena hasta los 700 Hz (con un orden de sólo Nw=33). La curva de error se muestra en Ia figura 17 y está por debajo de 0,4 dB hasta los 700 Hz, y e[og_dB = 0,98 dB. Una vez se ha diseñado el filtro FIR deformado, se diseña el filtro FIR lineal de orden N=151 a partir de Ia respuesta filtrada por el FIR deformado. La ecualización combinada que se consigue se muestra sobre el nivel de -20 dB en Ia figura 16, y el error residual en Ia figura 17, con un valor de error eXog_dB = 0,08 dB. El filtro FIR lineal corrige Ia respuesta a altas frecuencias hasta 2,5 kHz de forma excelente, con una curva de error por debajo de 0,1 dB. Entre 700 Hz y 2,5 kHz, Ia ecualización es algo peor, pero el error siempre es menor de 0,8 dB. Esta es Ia banda de frecuencias en Ia que ni el filtro FIR lineal ni el filtro FIR deformado consiguen una resolución suficiente con los órdenes de filtro seleccionados. Sin embargo, desde un punto de vista práctico, Ia ecualización obtenida no será distinguible de otra mejor por Ia mayoría de usuarios, como se desprende de múltiples experimentos relacionados con el oído humano.Using the proposed structure, a filter of an equivalent order NM A C = 250 will be designed, composed of a deformed FIR filter of order N w = 33 and a FIR filter of order N = 151. The first operation in the design of the proposed filter is to design the deformed FIR filter with a λ value selected so that sufficient equalization is achieved at low frequencies. In this case, a value of λ = 0.98 has been used, which corresponds to a frequency with a maximum resolution of 150 Hz when a sampling frequency fs = 0.48 is used, as can be seen in Figure 15. With these values of N w and λ, the equalization that is achieved is the one shown in Figure 16 on the level of -10 dB, which is quite good up to 700 Hz (with an order of only N w = 33) . The error curve is shown in Figure 17 and is below 0.4 dB up to 700 Hz, and [og _ dB = 0.98 dB. Once the deformed FIR filter has been designed, the linear FIR filter of order N = 151 is designed from the response filtered by the deformed FIR. The combined equalization that is achieved is shown on the level of -20 dB in Figure 16, and the residual error in Figure 17, with an error value e Xog _ dB = 0.08 dB. The linear FIR filter corrects the response at high frequencies up to 2.5 kHz in an excellent way, with an error curve below 0.1 dB. Between 700 Hz and 2.5 kHz, the equalization is somewhat worse, but the error is always less than 0.8 dB. This is the frequency band in which neither the linear FIR filter nor the deformed FIR filter achieve a sufficient resolution with the selected filter orders. However, from a practical point of view, the equalization obtained will not be distinguishable from a better one by most users, as can be seen from multiple experiments related to the human ear.
Si suponemos que una curva de error por debajo de 1 dB en toda Ia banda de audio (de 20 Hz a 20 kHz) es aceptable para una ecualización, el orden equivalente del filtro NMAC se podría reducir incluso hasta 100, con Nw=11 y N=77. La ecualización obtenida y las respuestas de error se encuentran por encima de las líneas de -30 dB en las figuras 16 y 17, con un e]og_dB = 0,28 dB.If we assume that an error curve below 1 dB in the entire audio band (from 20 Hz to 20 kHz) is acceptable for equalization, the order equivalent of the NMA C filter could be reduced even up to 100, with N w = 11 and N = 77. The equalization obtained and the error responses are above the -30 dB lines in Figures 16 and 17, with an e ] og _ dB = 0.28 dB.
Con el filtro propuesto, es posible conseguir ese grado de ecualización con un coste computacional de sólo 100 MACS, obteniéndose una resolución en frecuencia más uniforme, cuando se evalúa sobre un eje de frecuencias logarítmico, que Ia obtenida cuando se emplean sólo filtros FIR lineales o filtros FIR deformados.With the proposed filter, it is possible to achieve that level of equalization with a computational cost of only 100 MACS, obtaining a more uniform frequency resolution, when evaluated on a logarithmic frequency axis, than that obtained when only linear FIR filters are used or deformed FIR filters.
Ejemplo 2Example 2
En este ejemplo se ecualiza otro altavoz, compuesto de un woofer de 5 pulgadas y un tweeter de 3A de pulgada. Su respuesta en frecuencia se muestra con una línea gruesa en Ia figura 18 sobre el nivel de 0 dB. Se ha elegido Ia respuesta objetivo que se representa con una línea delgada. La ecualización obtenida con NMAC=250 (NW=33, N=151, λ=0,96) se muestra centrada sobre el nivel de -10 dB. La curva de error está siempre por debajo de ±0,5 dB desde 40 Hz hasta 20 kHz.In this example, another speaker is equalized, consisting of a 5-inch woofer and a 3 -inch tweeter. Its frequency response is shown with a thick line in Figure 18 above the 0 dB level. The objective response that is represented with a thin line has been chosen. The equalization obtained with NMAC = 250 (N W = 33, N = 151, λ = 0.96) is shown centered on the level of -10 dB. The error curve is always below ± 0.5 dB from 40 Hz to 20 kHz.
ComparaciónComparison
A continuación se comparan los resultados obtenidos al ecualizar el altavoz del primer ejemplo utilizando el filtro propuesto con los resultados cuando se utiliza un filtro FIR lineal o un filtro FIR deformado por separado. La comparación se lleva a cabo utilizando el mismo coste computacional para los tres filtros, en este caso 250 MAC. En Ia figura 19 se representan Ia respuesta en frecuencia del altavoz, Ia respuesta objetivo y las respuestas después de las ecualizaciones, escaladas de diez en diez dB por claridad. Las respuestas del error elog_dB respectivas se muestran en Ia figura 20, con un valor del error original de eM = 3,09 dB.The results obtained by equalizing the loudspeaker of the first example are then compared using the proposed filter with the results when a linear FIR filter or a separately deformed FIR filter is used. The comparison is carried out using the same computational cost for the three filters, in this case 250 MAC. Figure 19 shows the frequency response of the speaker, the objective response and the responses after equalization, scaled from ten to ten dB for clarity. The respective error and log _ dB responses are shown in Figure 20, with an original error value of e M = 3.09 dB.
El filtro FIR lineal de orden 250 se representa sobre Ia línea de -10 dB, consiguiendo una curva del error de Ia ecualización que está dentro de ±1 dB desde los 200 Hz a 20 kHz, pero a bajas frecuencias el error alcanza los 7,5 dB a 40 Hz. El valor del error resultante es de eλog_dB = 1,06 dB.The linear FIR filter of order 250 is represented on the line of -10 dB, getting an equalization error curve that is within ± 1 dB from 200 Hz to 20 kHz, but at low frequencies the error reaches 7.5 dB at 40 Hz. The resulting error value is e λog _ dB = 1.06 dB.
El filtro FIR deformado, que se muestra sobre Ia línea de -20 dB, tiene un orden Nw=83, que corresponde a un orden equivalente NMAC=250 (suponiendo un factor de penalización de 3 para Ia implementación deformada del filtro). En este caso, el valor de λ seleccionado es 0,76, encontrándose Ia máxima resolución del filtro alrededor de 2 kHz. El error está ahora por debajo de ±1 dB entre 150 Hz y 10 kHz, pero es mayor a frecuencias mayores y menores. El valor del error es mejor que con el filtro FIR lineal, eiog_dB = 0,77 dB.The deformed FIR filter, shown on the line of -20 dB, has an order Nw = 83, which corresponds to an equivalent order NMA C = 250 (assuming a penalty factor of 3 for the deformed implementation of the filter). In this case, the value of λ selected is 0.76, the maximum resolution of the filter being around 2 kHz. The error is now below ± 1 dB between 150 Hz and 10 kHz, but is greater at higher and lower frequencies. The error value is better than with the linear FIR filter, and iog _ dB = 0.77 dB.
Por último, Ia ecualización con Ia estructura de filtro propuesta se representa sobre Ia línea de -30 dB. Tiene NMAC=250, con un filtro FIR deformado de Nw=33 con λ=0,98 y un filtro FIR lineal con N=151. La curva de error está dentro de ± 1 dB desde 20 Hz hasta 20 kHz, e incluso por debajo de ± 0,5 dB entre 20 Hz y 800 Hz y entre 1 ,5 kHz y 20 kHz. El valor del error es de sólo eioS-dβ = °'08 dB, Io que indica que desde un punto de vista psico-acústico, el error percibido será el menor de los tres filtros. Con el mismo coste computacional, el filtro propuesto obtiene una ecualización más plana y un valor del error menor, requiriéndose así un filtro de orden menor para conseguir un valor del error deseado en Ia ecualización.Finally, the equalization with the proposed filter structure is represented on the -30 dB line. It has NMAC = 250, with a distorted FIR filter of N w = 33 with λ = 0.98 and a linear FIR filter with N = 151. The error curve is within ± 1 dB from 20 Hz to 20 kHz, and even below ± 0.5 dB between 20 Hz and 800 Hz and between 1.5 kHz and 20 kHz. The error value is only e i oS - d β = ° '08 dB, which indicates that from a psycho-acoustic point of view, the perceived error will be the smallest of the three filters. With the same computational cost, the proposed filter obtains a flatter equalization and a lower error value, thus requiring a lower order filter to achieve a value of the desired error in the equalization.
Finalmente, Ia figura 21 muestra el esquema de un aparato (1) para el filtrado digital de señales de acuerdo con Ia presente invención, en el que se aprecian los diferentes elementos que Io componen. En un ejemplo de ecualización de altavoces (no mostrados), Ia señal de entrada al aparato (1) llega ya en formato digital, y por tanto es recibida por el medio de entrada (11) a través del receptor de tramas digitales (2). El medio de entrada (11), a su vez, Ia envía al medio de procesamiento (6), que realiza todas las operaciones necesarias para aplicar el filtrado digital de acuerdo con Ia invención. Finalmente Ia señal ya filtrada sale del aparato (1) a través del transmisor de tramas digitales (3), que está comprendido en el medio de salida (12).Finally, Figure 21 shows the scheme of an apparatus (1) for the digital filtering of signals according to the present invention, in which the different elements that compose it are appreciated. In an example of speaker equalization (not shown), the input signal to the device (1) already arrives in digital format, and therefore is received by the input means (11) through the digital frame receiver (2) . The input means (11), in turn, sends it to the processing medium (6), which performs all the operations necessary to apply the digital filtering according to the invention. Finally, the already filtered signal leaves the device (1) through the digital frame transmitter (3), which it is included in the outlet means (12).
Los medios de entrada y salida (11 y 12) del aparato (1) de este ejemplo comprenden además conversores analógico/digital (4) y digital/analógico (5), necesarios cuando Ia señal a filtrar esté inicialmente en formato analógico o cuando se deba enviar en ese formato. Adicionalmente, el aparato (1) comprende una unidad de memoria (7) para almacenar resultados o características de Ia señal de entrada al aparato o de Ia señal filtrada calculadas por el medio de procesamiento (6), un medio de comunicaciones (8), que permite el envío de información, un medio de interfaz (10) para Ia interacción entre el aparato (1) y los usuarios, y un microcontrolador (9) que gestiona el funcionamiento de los elementos anteriores. The input and output means (11 and 12) of the apparatus (1) of this example further comprise analog / digital (4) and digital / analog converters (5), necessary when the signal to be filtered is initially in analog format or when I must send in that format. Additionally, the apparatus (1) comprises a memory unit (7) for storing results or characteristics of the input signal to the apparatus or of the filtered signal calculated by the processing means (6), a communications medium (8), which allows the sending of information, an interface means (10) for the interaction between the device (1) and the users, and a microcontroller (9) that manages the operation of the previous elements.

Claims

R E I V I N D I C A C I O N E S
1. Procedimiento de filtrado digital de señales caracterizado porque comprende aplicar a una señal de respuesta de un sistema un filtrado digital lineal combinado con, al menos, un filtrado digital deformado para obtener una respuesta objetivo.1. Digital signal filtering method characterized in that it comprises applying a linear digital filtering combined with at least one deformed digital filtering to obtain an objective response to a response signal of a system.
2. Procedimiento de filtrado digital de señales de acuerdo con Ia reivindicación 1 , caracterizado porque Ia operación de aplicar a Ia señal de respuesta del sistema un filtrado digital lineal combinado con, al menos, un filtrado digital deformado, se realiza según un esquema en cascada.2. Digital signal filtering method according to claim 1, characterized in that the operation of applying a linear digital filtering combined with at least one deformed digital filtering is performed according to a cascade scheme .
3. Procedimiento de filtrado digital de señales de acuerdo con Ia reivindicación 1 , caracterizado porque Ia operación de aplicar a Ia señal de respuesta del sistema un filtrado digital lineal combinado con, al menos, un filtrado digital deformado, se realiza según un esquema paralelo.3. Digital signal filtering process according to claim 1, characterized in that the operation of applying a linear digital filtering combined with at least one deformed digital filtering is performed according to a parallel scheme.
4. Procedimiento de filtrado digital de señales de acuerdo con cualquiera de las reivindicaciones anteriores, caracterizado porque el sistema es un sistema acústico.4. Digital signal filtering method according to any of the preceding claims, characterized in that the system is an acoustic system.
5. Procedimiento de filtrado digital de señales de acuerdo con Ia reivindicación 4, caracterizado porque el sistema acústico es un altavoz.5. Digital signal filtering process according to claim 4, characterized in that the acoustic system is a loudspeaker.
6. Procedimiento de filtrado digital de señales de acuerdo con Ia reivindicación 4, caracterizado porque el sistema acústico es un audífono.6. Digital signal filtering method according to claim 4, characterized in that the acoustic system is a hearing aid.
7. Programa de ordenador que comprende instrucciones de programa que provocan que un ordenador lleve a cabo las operaciones del procedimiento de acuerdo con cualquiera de las reivindicaciones anteriores.7. Computer program comprising program instructions that cause a computer to carry out the operations of the method according to any of the preceding claims.
8. Programa de ordenador de acuerdo con Ia reivindicación 7, caracterizado porque está almacenado en unos medios de almacenamiento.8. Computer program according to claim 7, characterized because it is stored in storage media.
9. Programa de ordenador de acuerdo con Ia reivindicación 7, caracterizado porque se transmite a través de una señal portadora.9. Computer program according to claim 7, characterized in that it is transmitted through a carrier signal.
10. Aparato (1) para el filtrado digital de señales, caracterizado porque comprende:10. Apparatus (1) for digital signal filtering, characterized in that it comprises:
un medio de entrada (11), que transmite una señal de entrada a un medio de procesamiento (6);an input means (11), which transmits an input signal to a processing means (6);
un medio de procesamiento (6), que recibe Ia señal de entrada del medio de entrada (11) y Ie aplica un filtrado digital que combina un filtrado lineal con, al menos, un filtrado deformado, obteniendo una señal objetivo.a processing means (6), which receives the input signal from the input means (11) and Ie applies a digital filtering that combines a linear filtering with at least one deformed filtering, obtaining an objective signal.
11. Aparato (1) para el filtrado digital de señales de acuerdo con Ia reivindicación 10, caracterizado porque el medio de procesamiento (6) se elige de entre Ia siguiente lista: un ordenador, un DSP, una FPGA, un ASIC, un microprocesador y un microcontrolador.11. Apparatus (1) for digital signal filtering according to claim 10, characterized in that the processing medium (6) is chosen from the following list: a computer, a DSP, an FPGA, an ASIC, a microprocessor and a microcontroller.
12. Aparato (1) para el filtrado digital de señales de acuerdo con cualquiera de las reivindicaciones 10 u 11 , caracterizado porque comprende además un medio de salida (12), que transmite al exterior Ia señal objetivo desde el medio de procesamiento (6).12. Apparatus (1) for digital filtering of signals according to any of claims 10 or 11, characterized in that it further comprises an output means (12), which transmits the target signal from the processing medium (6) to the outside .
13. Aparato (1) para el filtrado digital de señales de acuerdo con cualquiera de las reivindicaciones 10-12, caracterizado porque los medios de entrada y salida (11 , 12) comprenden, respectivamente, medios de conversión analógico-digital (4) y digital-analógico (5) y/o un receptor (2) y un transmisor (3) de datos digitales.13. Apparatus (1) for digital signal filtering according to any of claims 10-12, characterized in that the input and output means (11, 12) respectively comprise analog-digital conversion means (4) and digital-analog (5) and / or a receiver (2) and a digital data transmitter (3).
14. Aparato (1) para el filtrado digital de señales de acuerdo con cualquiera de las reivindicaciones 10-13, caracterizado porque comprende además un medio de comunicaciones (8).14. Apparatus (1) for digital filtering of signals according to any of claims 10-13, characterized in that it further comprises a means of communications (8).
15. Aparato (1) para el filtrado digital de señales de acuerdo con cualquiera de las reivindicaciones 10-14, caracterizado porque comprende además un medio de interfaz (10) con los usuarios.15. Apparatus (1) for digital signal filtering according to any of claims 10-14, characterized in that it further comprises an interface means (10) with the users.
16. Aparato (1) para el filtrado digital de señales de acuerdo con cualquiera de las reivindicaciones 10-15, caracterizado porque además comprende un medio de almacenamiento (7).16. Apparatus (1) for digital filtering of signals according to any of claims 10-15, characterized in that it further comprises a storage medium (7).
17. Aparato (1) para el filtrado digital de señales de acuerdo con cualquiera de las reivindicaciones 10-16, caracterizado porque además comprende un microcontrolador (9). 17. Apparatus (1) for digital signal filtering according to any of claims 10-16, characterized in that it further comprises a microcontroller (9).
PCT/ES2009/000027 2008-01-23 2009-01-21 Method and apparatus for digital filtering of signals WO2009092837A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200800229 2008-01-23
ES200800229A ES2341200B2 (en) 2008-01-23 2008-01-23 PROCEDURE AND APPLIANCE FOR DIGITAL SIGNAL FILTERING.

Publications (2)

Publication Number Publication Date
WO2009092837A1 true WO2009092837A1 (en) 2009-07-30
WO2009092837A4 WO2009092837A4 (en) 2009-10-15

Family

ID=40900788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2009/000027 WO2009092837A1 (en) 2008-01-23 2009-01-21 Method and apparatus for digital filtering of signals

Country Status (2)

Country Link
ES (1) ES2341200B2 (en)
WO (1) WO2009092837A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201800003311A1 (en) * 2018-03-06 2019-09-06 Outline S R L METHOD AND DEVICE FOR ADJUSTING THE FREQUENCY RESPONSE OF A DIGITAL FILTER
IT201800004143A1 (en) 2018-03-30 2019-09-30 Outline S R L DEVICE FOR MANAGING DIGITAL AUDIO SIGNALS

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4843583A (en) * 1985-10-15 1989-06-27 Rockwell International Corporation Nonlinear adaptive filter
US7026539B2 (en) * 2001-01-05 2006-04-11 Harman International Industries, Incorporated Musical effect customization system
US20070094319A1 (en) * 2003-03-04 2007-04-26 Oticon A/S Digital filter and listening device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4843583A (en) * 1985-10-15 1989-06-27 Rockwell International Corporation Nonlinear adaptive filter
US7026539B2 (en) * 2001-01-05 2006-04-11 Harman International Industries, Incorporated Musical effect customization system
US20070094319A1 (en) * 2003-03-04 2007-04-26 Oticon A/S Digital filter and listening device

Also Published As

Publication number Publication date
ES2341200B2 (en) 2011-06-01
WO2009092837A4 (en) 2009-10-15
ES2341200A1 (en) 2010-06-16

Similar Documents

Publication Publication Date Title
US10666216B2 (en) System and method for digital signal processing
Välimäki et al. All about audio equalization: Solutions and frontiers
CN109600698B (en) Noise reduced sound reproduction system and method
CN106664473B (en) Information processing apparatus, information processing method, and program
US9413321B2 (en) System and method for digital signal processing
US20180091109A1 (en) System and method for digital signal processing
JP6351538B2 (en) Multiband signal processor for digital acoustic signals.
KR102573843B1 (en) Low complexity multi-channel smart loudspeaker with voice control
US20140177870A1 (en) System and method for digital signal processing
US9749743B2 (en) Adaptive filtering
JP2017514360A (en) Sonic wave field generation
JP3505085B2 (en) Audio equipment
Liski et al. Adaptive equalization of acoustic transparency in an augmented-reality headset
ES2341200B2 (en) PROCEDURE AND APPLIANCE FOR DIGITAL SIGNAL FILTERING.
JP6589437B2 (en) Out-of-head localization processing apparatus, out-of-head localization processing method, program
JP2010068080A (en) Sound volume control apparatus
WO2020044377A1 (en) Personal communication device as a hearing aid with real-time interactive user interface
US20170006380A1 (en) Front Enclosed In-Ear Earbuds
US10848118B2 (en) System and method for digital signal processing
JP6434333B2 (en) Phase control signal generation apparatus, phase control signal generation method, and phase control signal generation program
US9924269B1 (en) Filter gain compensation method for specific frequency band using difference between windowed filters
Vashkevich et al. Petralex: A smartphone-based real-time digital hearing aid with combined noise reduction and acoustic feedback suppression
Rämö Equalization techniques for headphone listening
Zotter et al. Higher-order ambisonic microphones and the wave equation (linear, lossless)
US20170048614A1 (en) Corrections for Transducer Deficiencies

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09704128

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09704128

Country of ref document: EP

Kind code of ref document: A1