WO2009091208A2 - Inter-cell interference relief method - Google Patents

Inter-cell interference relief method Download PDF

Info

Publication number
WO2009091208A2
WO2009091208A2 PCT/KR2009/000240 KR2009000240W WO2009091208A2 WO 2009091208 A2 WO2009091208 A2 WO 2009091208A2 KR 2009000240 W KR2009000240 W KR 2009000240W WO 2009091208 A2 WO2009091208 A2 WO 2009091208A2
Authority
WO
WIPO (PCT)
Prior art keywords
base station
data
group
terminal
groups
Prior art date
Application number
PCT/KR2009/000240
Other languages
French (fr)
Korean (ko)
Other versions
WO2009091208A3 (en
WO2009091208A9 (en
Inventor
Choong Il Yeh
Young Seog Song
Seung Joon Lee
Byung-Jae Kwak
Ji Hyung Kim
Dong Seung Kwon
Original Assignee
Electronics And Telecommunications Research Institute
Samsung Electronics Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020090003509A external-priority patent/KR101207570B1/en
Application filed by Electronics And Telecommunications Research Institute, Samsung Electronics Co., Ltd. filed Critical Electronics And Telecommunications Research Institute
Priority to US12/811,785 priority Critical patent/US8805283B2/en
Publication of WO2009091208A2 publication Critical patent/WO2009091208A2/en
Publication of WO2009091208A3 publication Critical patent/WO2009091208A3/en
Publication of WO2009091208A9 publication Critical patent/WO2009091208A9/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference

Definitions

  • the present invention relates to an intercell interference mitigation method.
  • a frequency reuse factor may be defined as (k / N).
  • the interference mitigation algorithm between cells is changing from a scheme implemented at the receiver side to a fractional frequency reuse (FFR) scheme or a network multi-input multi-output (MIMO) scheme implemented at the transmitter side.
  • FFR fractional frequency reuse
  • MIMO network multi-input multi-output
  • the FFR method increases the spectrum usage efficiency by obtaining a large FRF value, and can be divided into two methods, a hard FFR and a soft FFR.
  • the hard FFR scheme does not allow neighboring cells to use the same frequency in the cell boundary region to mitigate inter-cell interference at the network level.
  • adjacent cells do not allocate the same subcarriers to terminals located in a cell boundary area in cooperation.
  • the soft FFR scheme permits the use of specific subcarriers.
  • the soft FFR scheme modulates the transmission power of specific subcarriers to mitigate interference by cooperation of adjacent cells to mitigate interference between cells at the network level.
  • antennas included in base stations of neighboring cells cooperatively transmit and receive MIMO to each other to improve interference mitigation or system performance.
  • a method for mitigating intercell interference at a base station includes grouping a plurality of terminals into a plurality of groups, transmitting first data to a first terminal belonging to a first group of the plurality of groups without cooperation with a neighboring base station, and collaborating with a neighboring base station And transmitting second data to a second terminal belonging to a second group among the plurality of groups through the second data.
  • a method for mitigating intercell interference in a terminal includes transmitting feedback information to a serving base station, when belonging to the first group by the feedback information, receiving first data from the serving base station without cooperation of an adjacent base station, and by the feedback information. If belonging to two groups, receiving second data in cooperation with the serving base station and the neighboring base station.
  • a method for mitigating intercell interference at a base station includes grouping a plurality of terminals into a plurality of groups, not applying a network MIMO scheme to a terminal belonging to a first group among the plurality of groups, and to a terminal belonging to a second group among the plurality of groups. And applying a MIMO scheme through cooperation with a neighbor base station.
  • inter-cell interference at a cell boundary may be mitigated by transmitting data through cooperation between base stations or data without cooperation between base stations according to the location and SINR of the terminal.
  • performance may be improved at a cell boundary by appropriately using a network MIMO scheme, an FFR scheme, etc. according to the position of the terminal.
  • FIG. 1 is a schematic diagram of a cellular system according to an embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of an inter-cell interference mitigation method according to an embodiment of the present invention.
  • 3 to 5 are diagrams illustrating a transmission method in radio resource allocation areas 1, 2, and 3 according to an embodiment of the present invention, respectively.
  • FIG. 6 is a diagram illustrating a transmission method using a network MIMO scheme.
  • FIG. 7 is a diagram illustrating a transmission method using the STC method.
  • FIGS. 8 and 9 are diagrams illustrating a resource scheduling method according to an embodiment of the present invention.
  • FIGS. 10 and 11 are diagrams illustrating a resource scheduling method according to another embodiment of the present invention.
  • a terminal may include a mobile station (MS), a mobile terminal (MT), a subscriber station (SS), a portable subscriber station (PSS), a user device (user). equipment (UE), an access terminal (AT), and the like, and may include all or some functions of a terminal, a mobile terminal, a subscriber station, a portable subscriber station, a user device, an access terminal, and the like.
  • a base station may include an access point (AP), a radio access station (RAS), a node B (node B), an advanced node B (evolved node B, eNodeB), and a transmission / reception base station (BS).
  • AP access point
  • RAS radio access station
  • node B node B
  • eNodeB advanced node B
  • BS transmission / reception base station
  • BTS base transceiver station
  • BSR mobile multihop relay base station
  • BSR mobile multihop relay
  • FIG. 1 is a schematic diagram of a cellular system according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a method for intercell interference mitigation according to an embodiment of the present invention.
  • the terminal 110 measures information to be fed back to the base station 120 and transmits the measured feedback information to the base station 120.
  • Such feedback information includes signal to interference plus noise ratio (SINR) and information of a preferred beam, and may further include information of an interference cell.
  • the interfering cell refers to a cell which interferes with the serving cell of the terminal 110 and is recognizable by the terminal 110, and information of the interfering cell is an index of the interfering cell and / or an interfering beam of the interfering cell. It may include an indes.
  • the preferred beam means a base station of the serving cell, that is, a beam most preferred by the terminal 110 among a plurality of beams that the serving base station 120 may transmit.
  • the base station 120 receives the feedback information from the terminal 110, cooperates with a neighboring base station (for example, 121-124) to determine a transmission method, and transmits data to the terminal 110 accordingly.
  • a neighboring base station for example, 121-124
  • the base station 120 may transmit an amble (hereinafter, referred to as "amble 1") capable of cell division so that the terminal 110 may measure an SINR and an interference cell.
  • the base station 120 may transmit another amble (hereinafter, referred to as "amble 2") so that the terminal 110 estimates a channel for each transmit antenna.
  • the base station 120 may transmit the amble 1 and the amble 2 using a large power so that the amble 1 and the amble 2 may also be received by the terminal of the neighbor cell.
  • the terminal 110 estimates a channel for each transmit antenna using the amble 2 received from the base station 120.
  • the channel estimation result h of each transmission antenna measured by the terminal 110 may be represented by a complex matrix of 1 ⁇ M ( h ⁇ C 1 ⁇ M , where C is a complex number), where M is the transmission of the base station 120. Number of antennas].
  • the terminal 110 calculates the direction of the channel by using the channel estimation result h as shown in Equation 1, and uses the direction of the channel and the codebook c n shared with the base station 120. Is determined.
  • L beam indices are represented by ⁇ 0,1,2,... , L-1 ⁇ , the preferred beam index m can be expressed as Equation 2.
  • the serving base station 120 and the neighboring base stations 121-124 transmit the amble 1 and the amble 2 (S210 and S220).
  • the base stations 120-124 may combine the amble 1 and the amble 2 and transmit the amble 1 into one amble.
  • the terminal 110 receives the amble 1 and the amble 2 from the serving base station 120 and the base stations 121-124 of the adjacent cell, respectively.
  • the terminal 110 measures SINR and neighbor cell information by using amble 1 and measures a preferred beam among transmission beams of the serving base station 120 by using amble 2 (S230). Report to the serving base station 120 (S240).
  • the terminal 110 may report to the serving base station 120 the beam index of the beam serving as the largest interference among the beams transmitted by the neighboring cell (interfering cell) together with the cell index of the corresponding interfering cell.
  • the base stations 120-124 share the feedback information reported by the terminal of the cell through cooperation (S250), and through this process, each base station 120-124 of the cellular system receives the position of each terminal and the received SINR for each terminal. Confirm the information, such as (S260). In this case, the base station may share feedback information through backhaul communication.
  • the base station 120-124 groups the plurality of terminals into a plurality of groups based on such information (S270), classifies radio resources into resources corresponding to the plurality of groups, allocates the resources corresponding to each group, and groups each group.
  • a transmission method corresponding to the control unit 20 is determined.
  • the base station 120 transmits data in a transmission scheme corresponding to the corresponding group by using the resources allocated to the group to which the terminal 110 belongs (S290).
  • the adjacent base stations 121-124 may transmit data to the terminal 110 in cooperation with the base station 120 (S291).
  • the SINR of the terminal 110 is high from the feedback information received by the base station 120 from the terminal 110, there is no interference cell for the terminal 110, and the preferred beam index of the terminal 110 is If it is determined that the number 6, the base station 120 may determine that the terminal 110 is located close to the base station 120 in the beam area 6 of the base station 120, as shown in FIG.
  • the SINR of the terminal 111 is low from the feedback information received by the base station 120 from the terminal 111, and the index of the interference cell with respect to the terminal 111 is 3 (index of the cell corresponding to the base station 122).
  • the base station 120 may determine that the terminal 111 is located close to cell 3 in the beam area 3 of the base station 120 as shown in FIG. 1.
  • radio resource allocation regions 1, 2, and 3 are called radio resource allocation regions 1, 2, and 3, respectively.
  • FIG. 3 is a diagram illustrating a transmission method in a radio resource allocation area 1 according to an embodiment of the present invention.
  • the base stations 321-323 allocate the radio resource allocation area 1 to the terminals 311a-313c which are weakly subjected to interference from neighbor cells and have a high reception SINR. These terminals 311a-313c may be located at the center of each cell.
  • the base stations 321-323 of each cell transmit data using only their own antennas without cooperating with the base station of the neighboring cell (that is, without using the antenna of the base station of the neighboring cell).
  • the base stations 321-323 may not use the FFR scheme. Accordingly, the base stations 321-323 of each cell can recycle the spectrum used by adjacent cells, and also multi-user MIMO (MU-MIMO) scheme or spatial multiplexing (SM).
  • MU-MIMO multi-user MIMO
  • SM spatial multiplexing
  • the FRF has a value greater than one.
  • the MU-MIMO method based on channel status information at transmitter side (CSIT) based on the MU-MIMO method, the MU-MIMO method based on linear or nonlinear full CSIT, etc. Can be applied.
  • An example of a partial CSIT-based MU-MIMO scheme is a codebook based MU-MIMO scheme.
  • the base stations 321-323 of three adjacent cells all use the same spectrum, and these base stations 321-323 each have a preferred beam index in an MU-MIMO scheme.
  • Data is transmitted to a plurality of terminals 311a-311c, 312a-312c, and 313a-313c which are different from each other.
  • the FRF is 3.
  • FIG. 4 is a diagram illustrating a transmission method in a radio resource allocation area 2 according to an embodiment of the present invention.
  • the base stations 421-423 allocate radio resource allocation area 2 to terminals 411-413 that have strong interference from adjacent cells, have low reception SINR, and are separated from each other. These terminals 411-413 may be located in the cell boundary region and are far enough apart that the inter-beam interference can be ignored. In this case, the base stations 421-423 may not apply the MU-MIMO scheme or the SM scheme that requires high SINR.
  • the terminals 411-413 having strong interference cells report the feedback information including the preferred beam index to the serving base stations 421-423, and the base station 421-423 cooperates with the feedback information.
  • each base station 421-423 can know the location of the terminal 411-413 of the neighbor cell using the promised beam position. Accordingly, each base station 421-423 may indirectly recognize its own beam index acting as an interference to the terminals 411-413 of the neighbor cell.
  • each base station 421-423 when the terminals 411-413 report the interference beam index of the neighboring cell together with the preferred beam index of the serving cell to the base stations 421-423, each base station 421-423 has cooperation with the base stations. Through this, it is possible to directly recognize its beam index acting as an interference to the terminals 411-413 of the neighbor cell.
  • the base stations 421-423 may coordinate with each other so that beams of adjacent cells using the same frequency do not collide with each other, thereby mitigating interference in the cell boundary region.
  • the base stations 421-423 may provide macro diversity to the terminals 411-413 using the network MIMO.
  • Such a network MIMO is a collaborative MIMO or cooperative MIMO (Co-MIMO).
  • Co-MIMO cooperative MIMO
  • the terminal reception performance is improved, but since the data payload is simultaneously transmitted to the serving base station and the neighbor base station in the network, the backhaul overhead may be increased. Therefore, whether to use network MIMO may be selected according to the environment.
  • the base stations 421 and 423 simultaneously transmit data payload 1 to the terminal 411, and the base stations 422 and 423 simultaneously transmit data payload 2 to the terminal 412.
  • the base stations 422 and 421 simultaneously transmit the data payload 3 to the terminal 413 so that the beams do not collide with each other using the same spectrum.
  • the two base stations use network MIMO.
  • one of the two base stations 421, 423 receives the data payload 1 at the terminal 411
  • one of the two base stations 422, 423 receives the data payload 2 at the terminal 412
  • the two base stations may deliver the data payload 3 to the terminal 413 using beamforming.
  • the base station may not use network MIMO.
  • the two base stations 421 and 423 may simultaneously transmit the data payload 1 to the terminal 411 using the same spectrum using a space time code (STC) method with beamforming applied thereto.
  • STC space time code
  • FIG. 5 is a diagram illustrating a transmission method in a radio resource allocation area 3 according to an embodiment of the present invention.
  • the base stations 521-523 allocate a radio resource allocation area 3 to terminals 511-513 that have strong interference from neighboring cells, have low reception SINR, and are bundled together.
  • the terminals 511-513 may be clustered in a cell boundary region.
  • the base stations 521-523 may simultaneously apply the network MIMO scheme and the FFR scheme to alleviate inter-cell interference, or may not apply the network MIMO scheme.
  • the base stations 521-523 use beams of the same frequency to one terminal 511 belonging to one group, respectively.
  • the same data payload can be transmitted (network MIMO method).
  • the base stations 521-523 do not use the spectrum (frequency) used for the terminal 511 for the other terminals 512 and 513 belonging to this group (FFR method).
  • the terminal 511 may obtain macro diversity by a network MIMO scheme.
  • the base station 521 provides a data payload to the terminal 511 using a beam, and the base stations 522 and 523 are each a terminal 611.
  • the data payload may be provided to the terminals 512 and 513 by using a resource different from that used in the (FFR method).
  • the base station receives feedback information from the terminal, groups the terminal into a plurality of groups according to the location through cooperation between the base stations, and uses a resource and a transmission scheme corresponding to each group. Since data is transmitted, inter-cell interference can be mitigated.
  • FIG. 6 is a diagram illustrating a transmission method using a network MIMO method
  • FIG. 7 is a diagram showing a transmission method using an STC method.
  • each base station 610 and 620 includes a plurality of antennas (for example, four antennas) 611-614 and 621-624.
  • the base station 610 is a serving base station of the terminal 630, and the two base stations 610 and 620 are classified into a group corresponding to the radio resource allocation area 2 based on the feedback information of the terminal 630.
  • the first beam of the base station 610 is the preferred beam of the terminal 630 and the fifth beam of the base station 620 is a beam that acts as a strong interference to the terminal 630.
  • the two base stations 610 and 620 according to the network MIMO scheme is the same data (S i, S i + 1) is transmitted by using a plurality of antennas (611-614, 621-624).
  • the base station 610 is a beam forming weight ([w bs1, a1, b1 w bs1, a2, b1 w bs1, a3, b1 w bs1, a4, ) of the first beam in the data (S i , S i + 1 ) b1 ] T ) and transmits them to the terminal 630 through the corresponding antennas 611-614.
  • the base station 620 is data (S i, S i + 1 ) 5 times beamforming weights ([w bs2 of the beam in, a1, b5 w bs2, a2 , b5 w bs2, a3, b5 w bs2, a4, b5 ] T ) and multiply them to the terminal 630 through the corresponding antennas (621-624).
  • the two base stations 610 and 620 can transmit the same data to the terminal using the same frequency resource through cooperation, a macro diversity effect can be obtained.
  • two base stations 610 and 620 transmit space-time encoded data using a plurality of antennas 611-614 and 621-624 according to the STC scheme to which beamforming is applied.
  • the base station 710 has data (S i, i + 1 -S *) 1 times the beam beamforming weights of the ([w bs1, a1, b1 w bs1, a2, b1 w bs1, a3, b1 w bs1, a4, b1 ] T ), and sequentially transmit them to the terminal 630 through the corresponding antennas 611-614.
  • the base station 620 transmits the beamforming weights of the fifth beam ([w bs2, a1, b5 w bs2, a2, b5 w bs2, a3, b5 w bs2, a4, ) to the data S * i and S i + 1 . b5 ] T ) and sequentially transmit them to the terminal 630 through the corresponding antennas 621-624.
  • the two base stations 610 and 620 may transmit the same data to the terminal 630 using the same frequency resource through cooperation, diversity effects according to space-time encoding may be obtained.
  • FIGS. 8 and 9 are diagrams illustrating a resource scheduling method according to an embodiment of the present invention
  • FIGS. 10 and 11 are diagrams illustrating a resource scheduling method according to another embodiment of the present invention.
  • one base station divides a radio resource into a plurality of groups, for example, three groups 811, 812, and 813 in time (that is, in a symbol index direction), and a plurality of groups. Radio resource allocation areas 1, 2, and 3 are allocated to 811, 812, and 813, respectively.
  • another base station also divides radio resources into a plurality of groups 821, 822, and 823 in time, and assigns a radio resource allocation area 1 to each of the plurality of groups 821, 822, and 823. Allocate 2 and 3.
  • the base station 1 divides a radio resource into a plurality of groups, for example, three groups 911, 912, and 913 in frequency (ie, in a subcarrier index direction), and the plurality of groups 911, Radio resource allocation areas 1, 2 and 3 are allocated to 912 and 913, respectively.
  • the base station 2 also divides radio resources into a plurality of groups 921, 922, and 923 in frequency, and allocates radio resource allocation regions 1, 2, and 3 to the plurality of groups 921, 922, and 923, respectively. Allocate
  • the radio resource allocation regions 1 and 2 may be used by the base stations 1 and 2 together, but the radio resource allocation region 3 to which the FFR scheme is applied is assigned to one base station (for example, base station 1) of the two base stations. Can only be used by the base stations 1 and 2 together, but the radio resource allocation region 3 to which the FFR scheme is applied is assigned to one base station (for example, base station 1) of the two base stations. Can only be used by the base stations 1 and 2 together, but the radio resource allocation region 3 to which the FFR scheme is applied is assigned to one base station (for example, base station 1) of the two base stations. Can only be used by the base station 1 and 2 together, but the radio resource allocation region 3 to which the FFR scheme is applied is assigned to one base station (for example, base station 1) of the two base stations. Can only be used by the base station 1 and 2 together, but the radio resource allocation region 3 to which the FFR scheme is applied is assigned to one base station (for example, base station 1) of the two base stations. Can only be used by the base station 1 and 2 together
  • the radio resources are distributed in time, and in FIG. 10 and FIG. 11, the radio resources are distributed in the frequency direction.
  • the radio resources may be two-dimensionally distributed in time and frequency.
  • the embodiments of the present invention described above are not only implemented through the apparatus and the method, but may be implemented through a program for realizing a function corresponding to the configuration of the embodiments of the present invention or a recording medium on which the program is recorded.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

In an inter-cell interference relief method, a plurality of terminals are grouped into a plurality of groups. A base station transmits data to a first terminal belonging to a first group among the plurality of groups, without the help of a neighbouring base station. Additionally, the base station transmits data to a second terminal belonging to a second group among the plurality of groups, with the help of a neighbouring base station.

Description

셀 간 간섭 완화 방법Intercell Interference Mitigation Method
본 발명은 셀 간 간섭 완화 방법에 관한 것이다.The present invention relates to an intercell interference mitigation method.
N개의 셀로 이루어지는 무선 네트워크에서 동일한 주파수 자원을 사용하는 k개의 채널이 할당되는 경우, 주파수 재사용 인자(frequency reuse factor, FRF)는 (k/N)으로 정의될 수 있다.When k channels using the same frequency resources are allocated in a wireless network consisting of N cells, a frequency reuse factor (FRF) may be defined as (k / N).
셀룰러 시스템은 셀 간 간섭을 완화하기 위하여 무선 네트워크 구성 시 인접 셀들에게 동일 주파수를 할당하지 않는 형태(주로 FRF < 1/7)에서 인접 셀들에게도 동일 주파수를 할당하는 방법(FRF=1)로 변하고 있다. 또한 셀 간의 간섭 완화 알고리즘은 수신기 측에 구현되는 방식에서 송신기 측에 구현되는 부분 주파수 재사용(fractional frequency reuse, FFR) 방식 또는 네트워크 다중 입출력(multi-input multi-output, MIMO) 방식으로 변하고 있다.In order to alleviate inter-cell interference, a cellular system is changing from assigning the same frequency to neighboring cells in a wireless network configuration (mainly FRF <1/7), and assigning the same frequency to neighboring cells (FRF = 1). . In addition, the interference mitigation algorithm between cells is changing from a scheme implemented at the receiver side to a fractional frequency reuse (FFR) scheme or a network multi-input multi-output (MIMO) scheme implemented at the transmitter side.
FFR 방식은 큰 FRF 값을 얻어 스펙트럼 사용 효율을 높이는 것으로, 하드 FFR(hard FFR)과 소프트 FFR(soft FFR)의 2가지 방식으로 나눌 수 있다.The FFR method increases the spectrum usage efficiency by obtaining a large FRF value, and can be divided into two methods, a hard FFR and a soft FFR.
하드 FFR 방식은 네트워크 차원에서 셀 간의 간섭을 완화하기 위하여 인접 셀들이 셀 경계 지역에서 동일 주파수를 사용하는 것을 허용하지 않는 방식이다. 특히, 직교 주파수 분할 다중 접속(orthogonal frequency division multiplex access, OFDMA) 시스템에서는 인접 셀들이 협력으로 셀 경계 지역에 위치한 단말들에게 동일한 부반송파들을 할당하지 않는다. 소프트 FFR 방식은 하드 FFR 방식과 달리 특정 부반송파들의 사용을 허용하지만, 인접 셀들의 협력으로 간섭 완화가 되도록 특정 부반송파들의 송출 전력을 조절하여 네트워크 차원에서 셀 간의 간섭을 완화하는 방식이다.The hard FFR scheme does not allow neighboring cells to use the same frequency in the cell boundary region to mitigate inter-cell interference at the network level. In particular, in an orthogonal frequency division multiplex (OFDMA) system, adjacent cells do not allocate the same subcarriers to terminals located in a cell boundary area in cooperation. Unlike the hard FFR scheme, the soft FFR scheme permits the use of specific subcarriers. However, the soft FFR scheme modulates the transmission power of specific subcarriers to mitigate interference by cooperation of adjacent cells to mitigate interference between cells at the network level.
네트워크 MIMO 방식은 인접 셀들의 기지국들이 구비하고 있는 안테나들이 서로 협력적으로 MIMO 송수신을 함으로써 셀 간의 간섭 완화 또는 시스템 성능을 향상시키는 방식이다.In the network MIMO scheme, antennas included in base stations of neighboring cells cooperatively transmit and receive MIMO to each other to improve interference mitigation or system performance.
이러한 FFR 방식 및 네트워크 MIMO 방식이 셀룰러 시스템에 도입되려면 네트워크 차원의 협력 방법, 필요한 측정, 절차 등이 정의되어야 하지만, 아직 이들 방식은 서로 독립적으로 개념적 수준에서 제안되고 있다.In order for the FFR scheme and the network MIMO scheme to be introduced into the cellular system, network-wide cooperation methods, necessary measurements, and procedures have to be defined, but these schemes are still proposed at the conceptual level independently of each other.
본 발명이 이루고자 하는 기술적 과제는 FFR 방식 및 네트워크 MIMO 방식을 협력적으로 사용하여 셀 간 간섭을 완화하는 방법 및 장치를 제공하는 것이다.It is an object of the present invention to provide a method and apparatus for mitigating interference between cells by cooperatively using an FFR scheme and a network MIMO scheme.
본 발명의 한 실시예에 따르면, 기지국에서 셀 간 간섭을 완화하는 방법이 제공된다. 이 방법은, 복수의 단말을 복수의 그룹으로 그룹화하는 단계, 인접 기지국과의 협력 없이 상기 복수의 그룹 중 제1 그룹에 속한 제1 단말에 제1 데이터를 전송하는 단계, 그리고 인접 기지국과의 협력을 통하여 상기 복수의 그룹 중 제2 그룹에 속한 제2 단말에 제2 데이터를 전송하는 단계를 포함한다.According to an embodiment of the present invention, a method for mitigating intercell interference at a base station is provided. The method includes grouping a plurality of terminals into a plurality of groups, transmitting first data to a first terminal belonging to a first group of the plurality of groups without cooperation with a neighboring base station, and collaborating with a neighboring base station And transmitting second data to a second terminal belonging to a second group among the plurality of groups through the second data.
본 발명의 한 실시예에 따르면, 단말에서 셀 간 간섭을 완화하는 방법이 제공된다. 이 방법은, 피드백 정보를 서빙 기지국으로 전송하는 단계, 상기 피드백 정보에 의해 제1 그룹에 속하는 경우, 인접 기지국의 협력 없이 상기 서빙 기지국으로부터 제1 데이터를 수신하는 단계, 그리고 상기 피드백 정보에 의해 제2 그룹에 속하는 경우, 상기 서빙 기지국과 인접 기지국의 협력에 의해 제2 데이터를 수신하는 단계를 포함한다.According to an embodiment of the present invention, a method for mitigating intercell interference in a terminal is provided. The method includes transmitting feedback information to a serving base station, when belonging to the first group by the feedback information, receiving first data from the serving base station without cooperation of an adjacent base station, and by the feedback information. If belonging to two groups, receiving second data in cooperation with the serving base station and the neighboring base station.
본 발명의 한 실시예에 따르면, 기지국에서 셀 간 간섭을 완화하는 방법이 제공된다. 이 방법은, 복수의 단말을 복수의 그룹으로 그룹화하는 단계, 상기 복수의 그룹 중 제1 그룹에 속한 단말에 네트워크 MIMO 방식을 적용하지 않는 단계, 그리고 상기 복수의 그룹 중 제2 그룹에 속한 단말에 인접 기지국과의 협력을 통한 MIMO 방식을 적용하는 단계를 포함한다.According to an embodiment of the present invention, a method for mitigating intercell interference at a base station is provided. The method includes grouping a plurality of terminals into a plurality of groups, not applying a network MIMO scheme to a terminal belonging to a first group among the plurality of groups, and to a terminal belonging to a second group among the plurality of groups. And applying a MIMO scheme through cooperation with a neighbor base station.
본 발명의 한 실시 예에 따르면, 단말의 위치와 SINR에 따라 기지국 간의 협력을 통해서 데이터를 전송하거나 기지국 간의 협력 없이 데이터를 전송함으로써, 셀 경계에서의 셀 간 간섭을 완화할 수 있다.According to an embodiment of the present invention, inter-cell interference at a cell boundary may be mitigated by transmitting data through cooperation between base stations or data without cooperation between base stations according to the location and SINR of the terminal.
본 발명의 한 실시예에 따르면, 단말의 위치에 따라 네트워크 MIMO 방식, FFR 방식 등을 적절하게 사용함으로써 셀 경계에서 성능을 향상시킬 수 있다.According to an embodiment of the present invention, performance may be improved at a cell boundary by appropriately using a network MIMO scheme, an FFR scheme, etc. according to the position of the terminal.
도 1은 본 발명의 한 실시예에 따른 셀룰러 시스템의 개략적인 도면이다.1 is a schematic diagram of a cellular system according to an embodiment of the present invention.
도 2는 본 발명의 한 실시예에 따른 셀 간 간섭 완화 방법의 개략적인 흐름도이다.2 is a schematic flowchart of an inter-cell interference mitigation method according to an embodiment of the present invention.
도 3 내지 도 5는 각각 본 발명의 한 실시예에 따른 무선 자원 할당 영역 1, 2 및 3에서의 전송 방법을 나타내는 도면이다.3 to 5 are diagrams illustrating a transmission method in radio resource allocation areas 1, 2, and 3 according to an embodiment of the present invention, respectively.
도 6은 네트워크 MIMO 방식을 사용한 전송 방법을 나타내는 도면이다.6 is a diagram illustrating a transmission method using a network MIMO scheme.
도 7은 STC 방식을 사용한 전송 방법을 나타내는 도면이다.7 is a diagram illustrating a transmission method using the STC method.
도 8 및 도 9는 본 발명의 한 실시예에 따른 자원 스케줄링 방법을 나타내는 도면이다.8 and 9 are diagrams illustrating a resource scheduling method according to an embodiment of the present invention.
도 10 및 도 11은 본 발명의 다른 실시예에 따른 자원 스케줄링 방법을 나타내는 도면이다.10 and 11 are diagrams illustrating a resource scheduling method according to another embodiment of the present invention.
아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and like reference numerals designate like parts throughout the specification.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Throughout the specification, when a part is said to "include" a certain component, it means that it can further include other components, without excluding other components unless specifically stated otherwise.
명세서 전체에서, 단말(terminal)은 이동국(mobile station, MS), 이동 단말(mobile terminal, MT), 가입자국(subscriber station, SS), 휴대 가입자국(portable subscriber station, PSS), 사용자 장치(user equipment, UE), 접근 단말(access terminal, AT) 등을 지칭할 수도 있고, 단말, 이동 단말, 가입자국, 휴대 가입자국, 사용자 장치, 접근 단말 등의 전부 또는 일부의 기능을 포함할 수도 있다.Throughout the specification, a terminal may include a mobile station (MS), a mobile terminal (MT), a subscriber station (SS), a portable subscriber station (PSS), a user device (user). equipment (UE), an access terminal (AT), and the like, and may include all or some functions of a terminal, a mobile terminal, a subscriber station, a portable subscriber station, a user device, an access terminal, and the like.
또한, 기지국(base station, BS)은 접근점(access point, AP), 무선 접근국(radio access station, RAS), 노드B(node B), 고도화 노드B(evolved nodeB, eNodeB), 송수신 기지국(base transceiver station, BTS), 이동 멀티홉 중계 기지국[MMR(mobile multihop relay)-BS] 등을 지칭할 수도 있고, 접근점, 무선 접근국, 노드B, eNodeB, 송수신 기지국, MMR-BS 등의 전부 또는 일부의 기능을 포함할 수도 있다.In addition, a base station (BS) may include an access point (AP), a radio access station (RAS), a node B (node B), an advanced node B (evolved node B, eNodeB), and a transmission / reception base station (BS). a base transceiver station (BTS), a mobile multihop relay base station [mobile multihop relay (BSR) -BS], and the like. Or may include some functionality.
이제 본 발명의 실시예에 따른 셀 간 간섭 완화 방법에 대하여 도면을 참고로 하여 상세하게 설명한다.An intercell interference mitigation method according to an embodiment of the present invention will now be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 한 실시예에 따른 셀룰러 시스템의 개략적인 도면이며, 도 2는 본 발명의 한 실시예에 따른 셀 간 간섭 완화 방법의 개략적인 흐름도이다.1 is a schematic diagram of a cellular system according to an embodiment of the present invention, and FIG. 2 is a schematic flowchart of a method for intercell interference mitigation according to an embodiment of the present invention.
도 1을 참고하면, 단말(110)은 기지국(120)으로 피드백할 정보를 측정하고, 측정한 피드백 정보를 기지국(120)으로 전송한다. 이러한 피드백 정보는 신호 대 간섭 및 잡음 비(signal to interference plus noise ratio, SINR)와 선호 빔의 정보를 포함하며, 또한 간섭 셀의 정보를 더 포함할 수 있다. 여기서, 간섭 셀은 단말(110)의 서빙(serving) 셀에 간섭을 미치는 셀이면서 단말(110)이 인식 가능한 셀을 의미하며, 간섭 셀의 정보는 간섭 셀의 인덱스 및/또는 간섭 셀의 간섭 빔 인데스를 포함할 수 있다. 선호 빔은 서빙 셀의 기지국, 즉 서빙 기지국(120)이 송출할 수 있는 복수의 빔 중에서 단말(110)이 가장 선호하는 빔을 의미한다.Referring to FIG. 1, the terminal 110 measures information to be fed back to the base station 120 and transmits the measured feedback information to the base station 120. Such feedback information includes signal to interference plus noise ratio (SINR) and information of a preferred beam, and may further include information of an interference cell. Here, the interfering cell refers to a cell which interferes with the serving cell of the terminal 110 and is recognizable by the terminal 110, and information of the interfering cell is an index of the interfering cell and / or an interfering beam of the interfering cell. It may include an indes. The preferred beam means a base station of the serving cell, that is, a beam most preferred by the terminal 110 among a plurality of beams that the serving base station 120 may transmit.
기지국(120)은 단말(110)로부터 피드백 정보를 수신하고, 인접 기지국(예를 들면 121-124)과 협력하여 전송 방식을 결정하고, 이에 따라 단말(110)로 데이터를 전송한다.The base station 120 receives the feedback information from the terminal 110, cooperates with a neighboring base station (for example, 121-124) to determine a transmission method, and transmits data to the terminal 110 accordingly.
한편, 기지국(120)은 단말(110)이 SINR 및 간섭 셀을 측정할 수 있도록 셀 구분이 가능한 앰블(amble)(앞으로 "앰블 1"이라 함)을 전송할 수 있다. 또한, 기지국(120)은 송신 안테나 별로 단말(110)이 채널을 추정할 수 있도록 다른 앰블(앞으로 "앰블 2"라 함)을 전송할 수 있다. 기지국(120)은 앰블 1 및 앰블 2를 인접 셀의 단말도 수신할 수 있도록 큰 전력을 사용하여 앰블 1 및 앰블 2를 송출할 수 있다.Meanwhile, the base station 120 may transmit an amble (hereinafter, referred to as "amble 1") capable of cell division so that the terminal 110 may measure an SINR and an interference cell. In addition, the base station 120 may transmit another amble (hereinafter, referred to as "amble 2") so that the terminal 110 estimates a channel for each transmit antenna. The base station 120 may transmit the amble 1 and the amble 2 using a large power so that the amble 1 and the amble 2 may also be received by the terminal of the neighbor cell.
단말(110)은 기지국(120)으로부터 수신한 앰블 2를 이용하여 송신 안테나별 채널을 추정한다. 단말(110)이 측정한 송신 안테나 별 채널 추정 결과(h)는 1×M의 복소 행렬(h∈C1×M, C는 복소수)로 나타낼 수 있다[여기서, M은 기지국(120)의 송신 안테나의 개수임]. 단말(110)은 채널 추정 결과(h)를 이용하여 채널의 방향을 수학식 1처럼 계산하고, 채널의 방향 및 기지국(120)과 공유하고 있는 코드북(c n)을 이용하여 선호 빔 인덱스(m)를 결정한다. 코드북({c n∈CM×1|n=0,1,2,…,L-1})은 기지국(120)과 단말(110) 사이에 약속된 L개의 방향이 결정된 빔으로 이루어지며, L개의 빔 인덱스를 {0,1,2,…,L-1}이라 하면, 선호 빔 인덱스(m)는 수학식 2처럼 나타낼 수 있다.The terminal 110 estimates a channel for each transmit antenna using the amble 2 received from the base station 120. The channel estimation result h of each transmission antenna measured by the terminal 110 may be represented by a complex matrix of 1 × M ( h ∈C 1 × M , where C is a complex number), where M is the transmission of the base station 120. Number of antennas]. The terminal 110 calculates the direction of the channel by using the channel estimation result h as shown in Equation 1, and uses the direction of the channel and the codebook c n shared with the base station 120. Is determined. The codebook ({ c n ∈C M × 1 | n = 0,1,2,…, L-1}) is made up of beams in which L directions determined between the base station 120 and the terminal 110 are determined. L beam indices are represented by {0,1,2,... , L-1}, the preferred beam index m can be expressed as Equation 2.
수학식 1
Figure PCTKR2009000240-appb-M000001
Equation 1
Figure PCTKR2009000240-appb-M000001
수학식 2
Figure PCTKR2009000240-appb-M000002
Equation 2
Figure PCTKR2009000240-appb-M000002
그러면 본 발명의 한 실시예에 따른 셀룰러 시스템에서의 셀 간 간섭 완화 방법에 대하여 설명한다.Next, an intercell interference mitigation method in a cellular system according to an embodiment of the present invention will be described.
도 2를 참고하면, 서빙 기지국(120) 및 인접 기지국(121-124)이 앰블 1 및 앰블 2를 송출한다(S210, S220). 이와는 달리 기지국(120-124)이 앰블 1과 앰블 2를 합쳐 하나의 앰블로 송출할 수도 있다.Referring to FIG. 2, the serving base station 120 and the neighboring base stations 121-124 transmit the amble 1 and the amble 2 (S210 and S220). Alternatively, the base stations 120-124 may combine the amble 1 and the amble 2 and transmit the amble 1 into one amble.
단말(110)은 서빙 기지국(120) 및 인접 셀의 기지국(121-124)으로부터 앰블 1 및 앰블 2를 각각 수신한다. 단말(110)은 앰블 1을 이용하여 SINR과 인접 셀 정보를 측정하고, 앰블 2를 이용하여 서빙 기지국(120)의 송출 빔 중에서 선호하는 빔을 측정한 후(S230), 이들 정보를 피드백 정보로서 서빙 기지국(120)에 보고한다(S240). 또한 단말(110)은 인접 셀(간섭 셀)이 송출하는 빔 중에서 자신에게 가장 큰 간섭으로 작용하는 빔의 빔 인덱스를 해당 간섭 셀의 셀 인덱스와 함께 서빙 기지국(120)으로 보고할 수도 있다.The terminal 110 receives the amble 1 and the amble 2 from the serving base station 120 and the base stations 121-124 of the adjacent cell, respectively. The terminal 110 measures SINR and neighbor cell information by using amble 1 and measures a preferred beam among transmission beams of the serving base station 120 by using amble 2 (S230). Report to the serving base station 120 (S240). In addition, the terminal 110 may report to the serving base station 120 the beam index of the beam serving as the largest interference among the beams transmitted by the neighboring cell (interfering cell) together with the cell index of the corresponding interfering cell.
기지국(120-124)들은 협력을 통해서 해당 셀의 단말이 보고한 피드백 정보를 공유하고(S250), 이러한 과정을 통해서 셀룰러 시스템의 각 기지국(120-124)은 각 단말의 위치, 단말 별 수신 SINR 등의 정보를 확인한다(S260). 이 경우 기지국은 백홀(backhaul) 통신으로 피드백 정보를 공유할 수 있다.The base stations 120-124 share the feedback information reported by the terminal of the cell through cooperation (S250), and through this process, each base station 120-124 of the cellular system receives the position of each terminal and the received SINR for each terminal. Confirm the information, such as (S260). In this case, the base station may share feedback information through backhaul communication.
기지국(120-124)은 이러한 정보를 기초로 복수의 단말을 복수의 그룹으로 그룹화하고(S270), 무선 자원을 복수의 그룹에 대응하는 자원으로 분류하여 각 그룹에 해당하는 자원을 할당하고 각 그룹에 대응하는 전송 방식을 결정한다(S280). 그리고 기지국(120)은 단말(110)이 속하는 그룹에 할당된 자원을 이용하여 해당 그룹에 대응하는 전송 방식으로 데이터를 전송한다(S290). 이 경우, 인접 기지국(121-124)이 기지국(120)과 협력하여 단말(110)로 데이터를 전송할 수도 있다(S291).The base station 120-124 groups the plurality of terminals into a plurality of groups based on such information (S270), classifies radio resources into resources corresponding to the plurality of groups, allocates the resources corresponding to each group, and groups each group. In operation S280, a transmission method corresponding to the control unit 20 is determined. In addition, the base station 120 transmits data in a transmission scheme corresponding to the corresponding group by using the resources allocated to the group to which the terminal 110 belongs (S290). In this case, the adjacent base stations 121-124 may transmit data to the terminal 110 in cooperation with the base station 120 (S291).
예를 들면, 기지국(120)이 단말(110)로부터 수신한 피드백 정보로부터 단말(110)의 SINR이 높고, 단말(110)에 대한 간섭 셀이 존재하지 않으며, 단말(110)의 선호 빔 인덱스가 6인 것으로 판단한 경우, 기지국(120)은 도 1에 도시한 것처럼 단말(110)이 기지국(120)의 6번 빔 영역에서 기지국(120)에 가깝게 위치하는 것으로 판단할 수 있다. 또한 기지국(120)이 단말(111)로부터 수신한 피드백 정보로부터 단말(111)의 SINR이 낮고, 단말(111)에 대한 간섭 셀의 인덱스가 3[기지국(122)에 대응하는 셀의 인덱스]이고, 선호 빔 인덱스가 2인 것으로 판단한 경우, 기지국(120)은 도 1에 도시한 것처럼 단말(111)이 기지국(120)의 3번 빔 영역에서 3번 셀에 가깝게 위치하는 것으로 판단할 수 있다.For example, the SINR of the terminal 110 is high from the feedback information received by the base station 120 from the terminal 110, there is no interference cell for the terminal 110, and the preferred beam index of the terminal 110 is If it is determined that the number 6, the base station 120 may determine that the terminal 110 is located close to the base station 120 in the beam area 6 of the base station 120, as shown in FIG. In addition, the SINR of the terminal 111 is low from the feedback information received by the base station 120 from the terminal 111, and the index of the interference cell with respect to the terminal 111 is 3 (index of the cell corresponding to the base station 122). When determining that the preferred beam index is 2, the base station 120 may determine that the terminal 111 is located close to cell 3 in the beam area 3 of the base station 120 as shown in FIG. 1.
다음, 단말을 복수의 그룹으로 그룹화하는 방법에 대하여 도 3 내지 도 5를 참고로 하여 상세하게 설명한다. 아래에서는 단말을 3개의 그룹으로 그룹화하는 경우를 한 예로 설명하며, 3개의 그룹에 각각 할당된 무선 자원 할당 영역을 무선 자원 할당 영역 1, 2 및 3이라 한다.Next, a method of grouping terminals into a plurality of groups will be described in detail with reference to FIGS. 3 to 5. Hereinafter, a case in which the UE is grouped into three groups will be described as an example, and the radio resource allocation regions allocated to the three groups are called radio resource allocation regions 1, 2, and 3, respectively.
도 3은 본 발명의 한 실시예에 따른 무선 자원 할당 영역 1에서의 전송 방법을 나타내는 도면이다.3 is a diagram illustrating a transmission method in a radio resource allocation area 1 according to an embodiment of the present invention.
도 3을 참고하면, 기지국(321-323)은 인접 셀로부터의 간섭을 미약하게 받고 수신 SINR이 높은 단말(311a-313c)에는 무선 자원 할당 영역 1을 할당한다. 이러한 단말(311a-313c)은 각 셀의 중앙에 위치할 수 있다. 무선 자원 할당 영역 1에서 각 셀의 기지국(321-323)은 인접 셀의 기지국과 협력하지 않고(즉, 인접 셀의 기지국의 안테나를 사용하지 않고), 자신의 안테나만을 사용하여 데이터를 송신한다. 그리고 기지국(321-323)은 FFR 방식도 사용하지 않을 수 있다. 이에 따라, 각 셀의 기지국(321-323)은 인접 셀에서 사용하는 스펙트럼(spectrum)을 재활용할 수 있으며, 또한 다중 사용자(multi user) MIMO(MU-MIMO) 방식 또는 공간 다중화(spatial multiplexing, SM) 방식을 셀 별로 적용할 수 있으므로, FRF는 1보다 큰 값을 가진다. 이 경우, MU-MIMO 방식으로 부분(partial) 송신측 채널 상태 정보(channel status information at transmitter side, CSIT) 기반의 MU-MIMO 방식, 선형 또는 비선형의 풀(full) CSIT 기반의 MU-MIMO 방식 등을 적용할 수 있다. 부분 CSIT 기반의 MU-MIMO 방식의 한 예로 코드북(codebook) 기반의 MU-MIMO 방식이 있다.Referring to FIG. 3, the base stations 321-323 allocate the radio resource allocation area 1 to the terminals 311a-313c which are weakly subjected to interference from neighbor cells and have a high reception SINR. These terminals 311a-313c may be located at the center of each cell. In the radio resource allocation region 1, the base stations 321-323 of each cell transmit data using only their own antennas without cooperating with the base station of the neighboring cell (that is, without using the antenna of the base station of the neighboring cell). The base stations 321-323 may not use the FFR scheme. Accordingly, the base stations 321-323 of each cell can recycle the spectrum used by adjacent cells, and also multi-user MIMO (MU-MIMO) scheme or spatial multiplexing (SM). ) Can be applied cell-by-cell, so the FRF has a value greater than one. In this case, the MU-MIMO method based on channel status information at transmitter side (CSIT) based on the MU-MIMO method, the MU-MIMO method based on linear or nonlinear full CSIT, etc. Can be applied. An example of a partial CSIT-based MU-MIMO scheme is a codebook based MU-MIMO scheme.
예를 들면, 도 3에 도시한 바와 같이, 3개의 인접 셀의 기지국(321-323)은 모두 동일한 스펙트럼을 사용하고 있으며, 이들 기지국(321-323)은 각각 MU-MIMO 방식으로 선호 빔 인덱스가 서로 다른 복수의 단말(311a-311c, 312a-312c, 313a-313c)에게 데이터를 전송하고 있다. 이 경우 FRF는 3이다.For example, as shown in FIG. 3, the base stations 321-323 of three adjacent cells all use the same spectrum, and these base stations 321-323 each have a preferred beam index in an MU-MIMO scheme. Data is transmitted to a plurality of terminals 311a-311c, 312a-312c, and 313a-313c which are different from each other. In this case the FRF is 3.
도 4는 본 발명의 한 실시예에 따른 무선 자원 할당 영역 2에서의 전송 방법을 나타내는 도면이다.4 is a diagram illustrating a transmission method in a radio resource allocation area 2 according to an embodiment of the present invention.
도 4를 참고하면, 기지국(421-423)은, 인접 셀로부터의 간섭이 강하며 수신 SINR이 낮고 서로 떨어져 있는 단말(411-413)들에 무선 자원 할당 영역 2를 할당한다. 이러한 단말(411-413)은 셀 경계 영역에 위치할 수 있으며, 빔 간 간섭이 무시될 수 있을 정도로 충분히 떨어져 있다. 이 경우 기지국(421-423)은 높은 SINR을 요구하는 MU-MIMO 방식 또는 SM 방식을 적용하지 않을 수 있다.Referring to FIG. 4, the base stations 421-423 allocate radio resource allocation area 2 to terminals 411-413 that have strong interference from adjacent cells, have low reception SINR, and are separated from each other. These terminals 411-413 may be located in the cell boundary region and are far enough apart that the inter-beam interference can be ignored. In this case, the base stations 421-423 may not apply the MU-MIMO scheme or the SM scheme that requires high SINR.
앞서 설명한 것처럼, 강한 간섭 셀을 가진 단말(411-413)이 서빙 기지국(421-423)으로 선호 빔 인덱스를 포함하는 피드백 정보를 보고하고, 이 피드백 정보를 기지국(421-423)이 협력을 통해서 공유하면, 각 기지국(421-423)은 약속된 빔 위치를 이용하여 인접 셀의 단말(411-413)의 위치를 알 수 있다. 이에 따라, 각 기지국(421-423)은 인접 셀의 단말(411-413)에 간섭으로 작용하는 자신의 빔 인덱스를 간접적으로 인지할 수 있다. 이와는 달리, 단말(411-413)이 서빙 셀의 선호 빔 인덱스와 함께 인접 셀의 간섭 빔 인덱스를 기지국(421-423)에 보고하는 경우에, 각 기지국(421-423)은 기지국 사이의 협력을 통해서 인접 셀의 단말(411-413)에 간섭으로 작용하는 자신의 빔 인덱스를 직접적으로 인지할 수 있다.As described above, the terminals 411-413 having strong interference cells report the feedback information including the preferred beam index to the serving base stations 421-423, and the base station 421-423 cooperates with the feedback information. When shared, each base station 421-423 can know the location of the terminal 411-413 of the neighbor cell using the promised beam position. Accordingly, each base station 421-423 may indirectly recognize its own beam index acting as an interference to the terminals 411-413 of the neighbor cell. In contrast, when the terminals 411-413 report the interference beam index of the neighboring cell together with the preferred beam index of the serving cell to the base stations 421-423, each base station 421-423 has cooperation with the base stations. Through this, it is possible to directly recognize its beam index acting as an interference to the terminals 411-413 of the neighbor cell.
이 경우, 기지국(421-423)은 협력을 통하여 동일 주파수를 사용하는 인접 셀의 빔들이 서로 충돌하지 않도록 조절하며, 이에 따라 셀 경계 영역에서 간섭을 완화시킬 수 있다. 또한 기지국(421-423)은 네트워크 MIMO를 사용하여 단말(411-413)에게 매크로 다이버시티(macro diversity)를 제공할 수 있다. 이러한 네트워크 MIMO로 협력 MIMO(collaborative MIMO or cooperative MIMO, Co-MIMO)가 있다. 다만, 네트워크 MIMO를 사용하는 경우 단말 수신 성능은 개선되지만 망에서 서빙 기지국과 인접 기지국에 동시에 데이터 페이로드가 전달되므로, 백홀 오버헤드가 증가될 수 있다. 그러므로 네트워크 MIMO의 사용 여부는 환경에 따라 선택될 수 있다.In this case, the base stations 421-423 may coordinate with each other so that beams of adjacent cells using the same frequency do not collide with each other, thereby mitigating interference in the cell boundary region. In addition, the base stations 421-423 may provide macro diversity to the terminals 411-413 using the network MIMO. Such a network MIMO is a collaborative MIMO or cooperative MIMO (Co-MIMO). However, when the network MIMO is used, the terminal reception performance is improved, but since the data payload is simultaneously transmitted to the serving base station and the neighbor base station in the network, the backhaul overhead may be increased. Therefore, whether to use network MIMO may be selected according to the environment.
예를 들면, 도 4에 도시한 바와 같이, 기지국(421, 423)은 단말(411)에 동시에 데이터 페이로드 1을, 기지국(422, 423)은 단말(412)에 동시에 데이터 페이로드 2를, 기지국(422, 421)은 단말(413)에 동시에 데이터 페이로드 3를, 동일 스펙트럼을 사용하여 빔이 서로 충돌되지 않도록 전달하고 있다. 이를 위해 두 기지국은 네트워크 MIMO을 사용한다.For example, as shown in FIG. 4, the base stations 421 and 423 simultaneously transmit data payload 1 to the terminal 411, and the base stations 422 and 423 simultaneously transmit data payload 2 to the terminal 412. The base stations 422 and 421 simultaneously transmit the data payload 3 to the terminal 413 so that the beams do not collide with each other using the same spectrum. To this end, the two base stations use network MIMO.
다른 실시예로, 두 기지국(421, 423) 중 하나가 단말(411)에 데이터 페이로드 1를, 두 기지국(422, 423) 중 하나가 단말(412)에 데이터 페이로드 2를, 두 기지국(422, 421) 중 하나가 단말(413)에 데이터 페이로드 3을 빔형성(beamforming)을 사용하여 전달할 수도 있다. 이 경우, 기지국은 네트워크 MIMO을 사용하지 않을 수 있다.In another embodiment, one of the two base stations 421, 423 receives the data payload 1 at the terminal 411, one of the two base stations 422, 423 receives the data payload 2 at the terminal 412, and the two base stations ( One of 422 and 421 may deliver the data payload 3 to the terminal 413 using beamforming. In this case, the base station may not use network MIMO.
또 다른 실시예로, 두 기지국(421, 423)이 동일 스펙트럼을 사용하여 단말(411)에 동시에 데이터 페이로드 1을 빔형성이 적용된 시공간 부호화(space time code, STC) 방식을 사용하여 전송할 수도 있다.In another embodiment, the two base stations 421 and 423 may simultaneously transmit the data payload 1 to the terminal 411 using the same spectrum using a space time code (STC) method with beamforming applied thereto. .
도 5는 본 발명의 한 실시예에 따른 무선 자원 할당 영역 3에서의 전송 방법을 나타내는 도면이다.5 is a diagram illustrating a transmission method in a radio resource allocation area 3 according to an embodiment of the present invention.
도 5를 참고하면, 기지국(521-523)은, 인접 셀로부터의 간섭이 강하며 수신 SINR이 낮고 서로 뭉쳐 있는 단말(511-513)들에 무선 자원 할당 영역 3을 할당한다. 이러한 단말(511-513)은 셀 경계 영역에서 뭉쳐 있을 수 있다. 이 경우 기지국(521-523)은 셀 간 간섭 완화를 위해서 네트워크 MIMO 방식과 FFR 방식을 동시에 적용할 수 있으며, 또는 네트워크 MIMO 방식은 적용하지 않을 수도 있다.Referring to FIG. 5, the base stations 521-523 allocate a radio resource allocation area 3 to terminals 511-513 that have strong interference from neighboring cells, have low reception SINR, and are bundled together. The terminals 511-513 may be clustered in a cell boundary region. In this case, the base stations 521-523 may simultaneously apply the network MIMO scheme and the FFR scheme to alleviate inter-cell interference, or may not apply the network MIMO scheme.
예를 들면, 도 5에 도시한 바와 같이, 셀 경계 영역에서 뭉쳐 있는 단말들의 그룹이 있는 경우, 기지국(521-523)이 각각 한 그룹에 속한 하나의 단말(511)에 동일 주파수의 빔을 이용하여 동일 데이터 페이로드를 전송할 수 있다(네트워크 MIMO 방식). 이 경우 기지국(521-523)은 이 그룹에 속한 다른 단말(512, 513)에는 단말(511)에 사용한 스펙트럼(주파수)을 사용하지 않는다(FFR 방식). 그러면 단말(511)은 네트워크 MIMO 방식에 의해 매크로 다이버시티를 얻을 수 있다.For example, as shown in FIG. 5, when there are groups of terminals clustered in a cell boundary region, the base stations 521-523 use beams of the same frequency to one terminal 511 belonging to one group, respectively. The same data payload can be transmitted (network MIMO method). In this case, the base stations 521-523 do not use the spectrum (frequency) used for the terminal 511 for the other terminals 512 and 513 belonging to this group (FFR method). Then, the terminal 511 may obtain macro diversity by a network MIMO scheme.
한편, 백홀 오버헤드를 감소시키기 위해서 네트워크 MIMO 방식을 사용하지 않는 경우, 기지국(521)은 빔을 이용하여 단말(511)에 데이터 페이로드를 제공하고, 기지국(522, 523)은 각각 단말(611)에 사용된 자원과 다른 자원을 이용하여 단말(512, 513)에 데이터 페이로드를 제공할 수 있다(FFR 방식).On the other hand, when the network MIMO scheme is not used to reduce the backhaul overhead, the base station 521 provides a data payload to the terminal 511 using a beam, and the base stations 522 and 523 are each a terminal 611. The data payload may be provided to the terminals 512 and 513 by using a resource different from that used in the (FFR method).
이와 같이, 본 발명의 한 실시예에 따르면 기지국이 단말로부터 피드백 정보를 수신하고, 기지국 간의 협력을 통해서 단말을 위치에 따라 복수의 그룹으로 그룹화하고, 각 그룹에 대응하는 자원 및 전송 방식을 이용하여 데이터를 전송하므로, 셀 간 간섭을 완화할 수 있다.As described above, according to an embodiment of the present invention, the base station receives feedback information from the terminal, groups the terminal into a plurality of groups according to the location through cooperation between the base stations, and uses a resource and a transmission scheme corresponding to each group. Since data is transmitted, inter-cell interference can be mitigated.
다음, 네트워크 MIMO 방식 및 STC 방식을 사용하여 데이터를 전송하는 방법에 대하여 도 6 및 도 7을 참고로 하여 설명한다.Next, a method of transmitting data using the network MIMO scheme and the STC scheme will be described with reference to FIGS. 6 and 7.
도 6은 네트워크 MIMO 방식을 사용한 전송 방법을 나타내는 도면이고, 도 7은 STC 방식을 사용한 전송 방법을 나타내는 도면이다.6 is a diagram illustrating a transmission method using a network MIMO method, and FIG. 7 is a diagram showing a transmission method using an STC method.
도 6 및 도 7을 참고하면, 각 기지국(610, 620)은 복수의 안테나(예를 들면, 4개의 안테나)(611-614, 621-624)를 포함한다.6 and 7, each base station 610 and 620 includes a plurality of antennas (for example, four antennas) 611-614 and 621-624.
한편, 기지국(610)이 단말(630)의 서빙 기지국이고, 두 기지국(610, 620)은 단말(630)의 피드백 정보를 기초로 단말(630)이 무선 자원 할당 영역 2에 해당하는 그룹으로 분류하고, 기지국(610)의 1번 빔이 단말(630)의 선호 빔이고 기지국(620)의 5번 빔이 단말(630)에게 강한 간섭으로 작용하는 빔인 것으로 가정한다.Meanwhile, the base station 610 is a serving base station of the terminal 630, and the two base stations 610 and 620 are classified into a group corresponding to the radio resource allocation area 2 based on the feedback information of the terminal 630. In addition, it is assumed that the first beam of the base station 610 is the preferred beam of the terminal 630 and the fifth beam of the base station 620 is a beam that acts as a strong interference to the terminal 630.
도 6을 참고하면, 네트워크 MIMO 방식에 따라 두 기지국(610, 620)은 동일한 데이터(Si, Si+1)를 복수의 안테나(611-614, 621-624)를 사용하여 전송한다. 이때, 기지국(610)은 데이터(Si, Si+1)에 1번 빔의 빔형성 가중치([wbs1,a1,b1 wbs1,a2,b1 wbs1,a3,b1 wbs1,a4,b1]T)를 곱해서 이들을 해당하는 안테나(611-614)를 통해 단말(630)로 전송한다. 또한 기지국(620)은 데이터(Si, Si+1)에 5번 빔의 빔형성 가중치([wbs2,a1,b5 wbs2,a2,b5 wbs2,a3,b5 wbs2,a4,b5]T)을 곱해서 이들을 해당하는 안테나(621-624)를 통해 단말(630)로 전송한다. 이와 같이 두 기지국(610, 620)이 협력을 통하여 동일 주파수 자원을 사용하여 동일 데이터를 단말에 전송할 수 있으므로, 매크로 다이버시티 효과를 얻을 수 있다.Referring to Figure 6, the two base stations 610 and 620 according to the network MIMO scheme is the same data (S i, S i + 1) is transmitted by using a plurality of antennas (611-614, 621-624). At this time, the base station 610 is a beam forming weight ([w bs1, a1, b1 w bs1, a2, b1 w bs1, a3, b1 w bs1, a4, ) of the first beam in the data (S i , S i + 1 ) b1 ] T ) and transmits them to the terminal 630 through the corresponding antennas 611-614. In addition, the base station 620 is data (S i, S i + 1 ) 5 times beamforming weights ([w bs2 of the beam in, a1, b5 w bs2, a2 , b5 w bs2, a3, b5 w bs2, a4, b5 ] T ) and multiply them to the terminal 630 through the corresponding antennas (621-624). As described above, since the two base stations 610 and 620 can transmit the same data to the terminal using the same frequency resource through cooperation, a macro diversity effect can be obtained.
도 7을 참고하면, 빔형성이 적용된 STC 방식에 따라 두 기지국(610, 620)은 시공간 부호화된 데이터를 복수의 안테나(611-614, 621-624)를 사용하여 전송한다. 이때, 기지국(710)은 데이터(Si, -S* i+1)에 1번 빔의 빔형성 가중치([wbs1,a1,b1 wbs1,a2,b1 wbs1,a3,b1 wbs1,a4,b1]T)를 곱하고, 이들을 차례로 해당하는 안테나(611-614)를 통해 단말(630)로 전송한다. 또한 기지국(620)은 데이터(S* i, Si+1)에 5번 빔의 빔형성 가중치([wbs2,a1,b5 wbs2,a2,b5 wbs2,a3,b5 wbs2,a4,b5]T)을 곱하고, 이들을 차례로 해당하는 안테나(621-624)를 통해 단말(630)로 전송한다. 이와 같이 두 기지국(610, 620)이 협력을 통하여 동일 주파수 자원을 사용하여 동일 데이터를 단말(630)에 전송할 수 있으므로, 시공간 부호화에 따른 다이버시티 효과를 얻을 수 있다.Referring to FIG. 7, two base stations 610 and 620 transmit space-time encoded data using a plurality of antennas 611-614 and 621-624 according to the STC scheme to which beamforming is applied. At this time, the base station 710 has data (S i, i + 1 -S *) 1 times the beam beamforming weights of the ([w bs1, a1, b1 w bs1, a2, b1 w bs1, a3, b1 w bs1, a4, b1 ] T ), and sequentially transmit them to the terminal 630 through the corresponding antennas 611-614. Also, the base station 620 transmits the beamforming weights of the fifth beam ([w bs2, a1, b5 w bs2, a2, b5 w bs2, a3, b5 w bs2, a4, ) to the data S * i and S i + 1 . b5 ] T ) and sequentially transmit them to the terminal 630 through the corresponding antennas 621-624. As such, since the two base stations 610 and 620 may transmit the same data to the terminal 630 using the same frequency resource through cooperation, diversity effects according to space-time encoding may be obtained.
다음, 본 발명의 한 실시예에 따른 자원 스케줄링 방법에 대하여 도 8, 도 9, 도 10 및 도 11을 참고하여 설명한다.Next, a resource scheduling method according to an embodiment of the present invention will be described with reference to FIGS. 8, 9, 10, and 11.
도 8 및 도 9는 본 발명의 한 실시예에 따른 자원 스케줄링 방법을 나타내는 도면이고, 도 10 및 도 11은 본 발명의 다른 실시예에 따른 자원 스케줄링 방법을 나타내는 도면이다.8 and 9 are diagrams illustrating a resource scheduling method according to an embodiment of the present invention, and FIGS. 10 and 11 are diagrams illustrating a resource scheduling method according to another embodiment of the present invention.
도 8을 참고하면, 한 기지국(기지국 1)은 무선 자원을 시간적으로(즉, 심볼 인덱스 방향으로) 복수의 그룹, 예를 들면 3개의 그룹(811, 812, 813)으로 분할하고, 복수의 그룹(811, 812, 813)에 각각 무선 자원 할당 영역 1, 2 및 3을 할당한다. 도 9를 참고하면, 다른 기지국(기지국 2)도 무선 자원을 시간적으로 복수의 그룹(821, 822, 823)으로 분할하고, 복수의 그룹(821, 822, 823)에 각각 무선 자원 할당 영역 1, 2 및 3을 할당한다.Referring to FIG. 8, one base station (base station 1) divides a radio resource into a plurality of groups, for example, three groups 811, 812, and 813 in time (that is, in a symbol index direction), and a plurality of groups. Radio resource allocation areas 1, 2, and 3 are allocated to 811, 812, and 813, respectively. Referring to FIG. 9, another base station (base station 2) also divides radio resources into a plurality of groups 821, 822, and 823 in time, and assigns a radio resource allocation area 1 to each of the plurality of groups 821, 822, and 823. Allocate 2 and 3.
도 10을 참고하면, 기지국 1은 무선 자원을 주파수적으로(즉, 부반송파 인덱스 방향으로) 복수의 그룹, 예를 들면 3개의 그룹(911, 912, 913)으로 분할하고, 복수의 그룹(911, 912, 913)에 각각 무선 자원 할당 영역 1, 2 및 3을 할당한다. 도 11을 참고하면, 기지국 2도 무선 자원을 주파수적으로 복수의 그룹(921, 922, 923)으로 분할하고, 복수의 그룹(921, 922, 923)에 각각 무선 자원 할당 영역 1, 2 및 3을 할당한다.Referring to FIG. 10, the base station 1 divides a radio resource into a plurality of groups, for example, three groups 911, 912, and 913 in frequency (ie, in a subcarrier index direction), and the plurality of groups 911, Radio resource allocation areas 1, 2 and 3 are allocated to 912 and 913, respectively. Referring to FIG. 11, the base station 2 also divides radio resources into a plurality of groups 921, 922, and 923 in frequency, and allocates radio resource allocation regions 1, 2, and 3 to the plurality of groups 921, 922, and 923, respectively. Allocate
도 8 내지 도 11에서, 무선 자원 할당 영역 1 및 2는 기지국 1 및 2가 같이 사용할 수 있지만, FFR 방식이 적용되는 무선 자원 할당 영역 3은 두 기지국 중 하나의 기지국(예를 들면 기지국 1)에 의해서만 사용될 수 있다.8 to 11, the radio resource allocation regions 1 and 2 may be used by the base stations 1 and 2 together, but the radio resource allocation region 3 to which the FFR scheme is applied is assigned to one base station (for example, base station 1) of the two base stations. Can only be used by
이와 같이, 도 8 및 도 9에서는 무선 자원을 시간적으로 분배하고, 도 10 및 도 11에서는 무선 자원을 주파수 방향으로 분배하는 것으로 설명하였지만, 이와는 달리 시간 및 주파수의 2차원적으로 분배할 수도 있다.As described above, in FIG. 8 and FIG. 9, the radio resources are distributed in time, and in FIG. 10 and FIG. 11, the radio resources are distributed in the frequency direction. Alternatively, the radio resources may be two-dimensionally distributed in time and frequency.
이상에서 설명한 본 발명의 실시예는 장치 및 방법을 통해서만 구현이 되는 것은 아니며, 본 발명의 실시예의 구성에 대응하는 기능을 실현하는 프로그램 또는 그 프로그램이 기록된 기록 매체를 통해 구현될 수도 있다. The embodiments of the present invention described above are not only implemented through the apparatus and the method, but may be implemented through a program for realizing a function corresponding to the configuration of the embodiments of the present invention or a recording medium on which the program is recorded.
이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.Although the embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and improvements of those skilled in the art using the basic concepts of the present invention defined in the following claims are also provided. It belongs to the scope of rights.

Claims (21)

  1. 기지국에서 셀 간 간섭을 완화하는 방법으로서,In the base station to mitigate inter-cell interference,
    복수의 단말을 복수의 그룹으로 그룹화하는 단계,Grouping a plurality of terminals into a plurality of groups,
    인접 기지국과의 협력 없이 상기 복수의 그룹 중 제1 그룹에 속한 제1 단말에 제1 데이터를 전송하는 단계, 그리고Transmitting first data to a first terminal belonging to a first group of the plurality of groups without cooperation with an adjacent base station, and
    인접 기지국과의 협력을 통하여 상기 복수의 그룹 중 제2 그룹에 속한 제2 단말에 제2 데이터를 전송하는 단계Transmitting second data to a second terminal belonging to a second group of the plurality of groups through cooperation with an adjacent base station;
    를 포함하는 셀 간 간섭 완화 방법.Inter-cell interference mitigation method comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 제2 데이터를 전송하는 단계는, 상기 인접 기지국과 동일한 자원을 사용하여 상기 제2 데이터를 전송하는 단계를 포함하며,The transmitting of the second data includes transmitting the second data using the same resources as the neighboring base station,
    상기 제2 데이터는 상기 인접 기지국이 전송하는 데이터와 동일한 The second data is the same as the data transmitted by the neighbor base station
    셀 간 간섭 완화 방법.Inter-cell interference mitigation method.
  3. 제2항에 있어서,The method of claim 2,
    상기 제2 데이터를 전송하는 단계는, 상기 인접 기지국과의 협력을 통하여 빔형성이 적용된 시공간 다중화(space time code, STC) 방식을 사용하여 상기 제2 데이터를 전송하는 셀 간 간섭 완화 방법.The transmitting of the second data may include transmitting the second data using a space time code (STC) method in which beamforming is applied in cooperation with the adjacent base station.
  4. 제1항에 있어서,The method of claim 1,
    다른 인접 기지국과의 협력을 통하여 상기 복수의 그룹 중 제2 그룹에 속한 제3 단말에 제3 데이터를 전송하는 단계를 더 포함하며,Transmitting third data to a third terminal belonging to a second group of the plurality of groups through cooperation with another neighboring base station;
    상기 기지국은 동일한 자원과 서로 다른 빔을 이용하여 상기 제2 데이터 및 상기 제3 데이터를 각각 전송하는 The base station transmits the second data and the third data by using the same resource and different beams, respectively.
    셀 간 간섭 완화 방법.Inter-cell interference mitigation method.
  5. 제1항에 있어서,The method of claim 1,
    인접 기지국이 빔형성(beamforming) 방식을 사용하여 상기 제2 그룹에 속한 제3 단말에 제3 데이터를 전송하는 동안, 상기 인접 기지국과의 협력 없이 빔형성 방식을 사용하여 상기 제2 그룹에 속한 제4 단말에 제4 데이터를 전송하는 단계를 더 포함하는 셀 간 간섭 완화 방법.While the neighboring base station transmits the third data to the third terminal belonging to the second group using the beamforming scheme, the first base station belongs to the second group using the beamforming scheme without cooperation with the neighboring base station. 4. The method of claim 1, further comprising transmitting fourth data to the UE.
  6. 제1항에 있어서,The method of claim 1,
    인접 기지국과의 협력을 통하여 상기 복수의 그룹 중 제3 그룹에 속한 제3 단말에 제3 데이터를 전송하는 단계, 그리고Transmitting third data to a third terminal belonging to a third group of the plurality of groups through cooperation with an adjacent base station; and
    제1 자원을 사용하여 상기 제3 데이터를 전송하는 동안, 인접 기지국과의 협력을 통하여 상기 복수의 그룹 중 제3 그룹에 속한 제4 단말에 상기 제1 자원과 다른 제2 자원을 사용하여 제4 데이터를 전송하는 단계While transmitting the third data using a first resource, a fourth terminal using a second resource different from the first resource to a fourth terminal belonging to a third group of the plurality of groups through cooperation with an adjacent base station. Steps to Transfer Data
    를 더 포함하는 셀 간 간섭 완화 방법.Inter-cell interference mitigation method further comprising.
  7. 제1항에 있어서,The method of claim 1,
    자원을 시간 방향 및 주파수 방향 중 적어도 하나의 방향으로 분배하여 상기 복수의 그룹에 각각 할당하는 단계를 더 포함하는 셀 간 간섭 완화 방법.And distributing resources in at least one of a time direction and a frequency direction and allocating the resources to the plurality of groups, respectively.
  8. 제1항에 있어서,The method of claim 1,
    상기 복수의 단말로부터 피드백 정보를 각각 수신하는 단계를 더 포함하며,And receiving feedback information from the plurality of terminals, respectively.
    상기 그룹화하는 단계는, 상기 피드백 정보를 기초로 상기 복수의 단말을 상기 복수의 그룹으로 그룹화하는 단계를 포함하는The grouping may include grouping the plurality of terminals into the plurality of groups based on the feedback information.
    셀 간 간섭 완화 방법. Inter-cell interference mitigation method.
  9. 제8항에 있어서,The method of claim 8,
    상기 피드백 정보를 인접 기지국과 공유하는 단계를 더 포함하는 셀 간 간섭 완화 방법.And sharing the feedback information with a neighbor base station.
  10. 제8항에 있어서,The method of claim 8,
    각 단말의 상기 피드백 정보는 신호 대 간섭 및 잡음 비(signal to interference plus noise ratio, SINR) 및 서빙 기지국의 복수의 빔 중 선호 빔의 정보를 포함하는 셀 간 간섭 완화 방법.The feedback information of each terminal includes signal to interference and noise ratio (signal to interference plus noise ratio (SINR)) and information of the preferred beam of the plurality of beams of the serving base station.
  11. 제10항에 있어서,The method of claim 10,
    상기 피드백 정보는 간섭 셀의 인덱스 및 간섭 셀의 간섭 빔 인덱스 중 적어도 하나를 포함하는 셀 간 간섭 완화 방법.And the feedback information comprises at least one of an index of an interfering cell and an interfering beam index of an interfering cell.
  12. 제10항에 있어서,The method of claim 10,
    상기 제1 그룹은 상기 제2 그룹보다 SINR이 높은 셀 간 간섭 완화 방법.And wherein the first group has a higher SINR than the second group.
  13. 단말에서 셀 간 간섭을 완화하는 방법으로서,As a method for mitigating interference between cells in a terminal,
    피드백 정보를 서빙 기지국으로 전송하는 단계,Transmitting the feedback information to the serving base station,
    상기 피드백 정보에 의해 제1 그룹에 속하는 경우, 인접 기지국의 협력 없이 상기 서빙 기지국으로부터 제1 데이터를 수신하는 단계, 그리고When belonging to the first group by the feedback information, receiving first data from the serving base station without cooperation of an adjacent base station, and
    상기 피드백 정보에 의해 제2 그룹에 속하는 경우, 상기 서빙 기지국과 인접 기지국의 협력에 의해 제2 데이터를 수신하는 단계If belonging to the second group by the feedback information, receiving second data by cooperation of the serving base station and the neighboring base station;
    를 포함하는 셀 간 간섭 완화 방법.Inter-cell interference mitigation method comprising a.
  14. 제13항에 있어서,The method of claim 13,
    상기 제2 데이터를 수신하는 단계는, 상기 서빙 기지국 및 상기 인접 기지국에서 동일한 자원을 사용하여 송신되는 상기 제2 데이터를 수신하는 단계를 포함하는 셀 간 간섭 완화 방법.Receiving the second data comprises receiving the second data transmitted using the same resources at the serving base station and the neighboring base station.
  15. 제13항에 있어서,The method of claim 13,
    상기 동일한 자원은, 상기 단말이 상기 제2 데이터를 수신하는 동안 상기 제2 그룹에 속하는 다른 단말이 데이터를 수신하는 데 사용되는 자원과 동일한 셀 간 간섭 완화 방법.And the same resource is the same as a resource used by another terminal belonging to the second group to receive data while the terminal receives the second data.
  16. 제13항에 있어서,The method of claim 13,
    상기 동일한 자원은, 상기 단말이 상기 제2 데이터를 수신하는 동안 상기 제2 그룹에 속하는 다른 단말이 데이터를 수신하는 데 사용되지 않는 자원인 셀 간 간섭 완화 방법.The same resource, the inter-cell interference mitigation method is a resource that is not used to receive data by other terminals belonging to the second group while the terminal receives the second data.
  17. 제13항에 있어서,The method of claim 13,
    상기 피드백 정보는 신호 대 간섭 및 잡음 비(signal to interference plus noise ratio, SINR), 상기 서빙 기지국의 복수의 빔 중 선호 빔의 정보 및 간섭 셀의 정보 중 적어도 하나를 포함하는 셀 간 간섭 완화 방법.The feedback information includes at least one of a signal to interference plus noise ratio (SINR), information of a preferred beam of the plurality of beams of the serving base station and information of the interfering cell.
  18. 제17항에 있어서,The method of claim 17,
    상기 제1 그룹은 상기 제2 그룹보다 SINR이 높은 셀 간 간섭 완화 방법.And wherein the first group has a higher SINR than the second group.
  19. 기지국에서 셀 간 간섭을 완화하는 방법으로서,In the base station to mitigate inter-cell interference,
    복수의 단말을 복수의 그룹으로 그룹화하는 단계,Grouping a plurality of terminals into a plurality of groups,
    상기 복수의 그룹 중 제1 그룹에 속한 단말에 네트워크 다중 입출력(multi-input multi-output, MIMO) 방식을 적용하지 않는 단계, 그리고Not applying a network multi-input multi-output (MIMO) scheme to a terminal belonging to a first group of the plurality of groups, and
    상기 복수의 그룹 중 제2 그룹에 속한 단말에 인접 기지국과의 협력을 통한 MIMO 방식을 적용하는 단계Applying a MIMO scheme to a UE belonging to a second group among the plurality of groups through cooperation with an adjacent base station;
    를 포함하는 셀 간 간섭 완화 방법.Inter-cell interference mitigation method comprising a.
  20. 제19항에 있어서,The method of claim 19,
    상기 복수의 그룹 중 제3 그룹에 속한 단말에 인접 기지국과의 협력을 통한 MIMO 방식과 부분 주파수 재사용(fractional frequency reuse, FFR) 방식을 적용하는 단계Applying a MIMO scheme and a fractional frequency reuse (FFR) scheme to a UE belonging to a third group among the plurality of groups through cooperation with an adjacent base station;
    를 더 포함하는 셀 간 간섭 완화 방법.Inter-cell interference mitigation method further comprising.
  21. 제19항에 있어서,The method of claim 19,
    상기 복수의 단말로부터 피드백 정보를 각각 수신하는 단계를 더 포함하며,And receiving feedback information from the plurality of terminals, respectively.
    상기 그룹화하는 단계는 상기 피드백 정보에 기초하여 상기 복수의 단말을 상기 복수의 그룹으로 그룹화하는 단계를 포함하고,The grouping may include grouping the plurality of terminals into the plurality of groups based on the feedback information.
    상기 피드백 정보는 신호 대 간섭 및 잡음 비(signal to interference plus noise ratio, SINR), 상기 기지국의 복수의 빔 중 선호 빔의 정보 및 간섭 셀의 정보 중 적어도 하나를 포함하는 The feedback information includes at least one of a signal to interference plus noise ratio (SINR), information of a preferred beam of a plurality of beams of the base station, and information of an interference cell.
    셀 간 간섭 완화 방법.Inter-cell interference mitigation method.
PCT/KR2009/000240 2008-01-16 2009-01-16 Inter-cell interference relief method WO2009091208A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/811,785 US8805283B2 (en) 2008-01-16 2009-01-16 Inter-cell interference relief method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2008-0004712 2008-01-16
KR20080004712 2008-01-16
KR1020090003509A KR101207570B1 (en) 2008-01-16 2009-01-15 Method of mitigating inter-cell interference
KR10-2009-0003509 2009-01-15

Publications (3)

Publication Number Publication Date
WO2009091208A2 true WO2009091208A2 (en) 2009-07-23
WO2009091208A3 WO2009091208A3 (en) 2010-11-25
WO2009091208A9 WO2009091208A9 (en) 2011-01-27

Family

ID=40885811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/000240 WO2009091208A2 (en) 2008-01-16 2009-01-16 Inter-cell interference relief method

Country Status (1)

Country Link
WO (1) WO2009091208A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015174701A1 (en) * 2014-05-11 2015-11-19 엘지전자 주식회사 Method and device for receiving signal in wireless access system supporting fdr transmission
US10123338B2 (en) 2014-03-26 2018-11-06 Lg Electronics Inc. Method and apparatus for allocating resources in wireless access system supporting FDR transmission

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070040704A1 (en) * 2005-08-22 2007-02-22 Smee John E Reverse link interference cancellation
EP1804395A1 (en) * 2005-12-29 2007-07-04 Alcatel Lucent Method and device for cancelling interference in wireless communication system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070040704A1 (en) * 2005-08-22 2007-02-22 Smee John E Reverse link interference cancellation
EP1804395A1 (en) * 2005-12-29 2007-07-04 Alcatel Lucent Method and device for cancelling interference in wireless communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MARC C. NECKER ET AL.: 'Coordinated Fractional Frequency Reuse' PROC. ACM MSWIM October 2007, CHANIA, CRETE ISLAND, GREECE, *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10123338B2 (en) 2014-03-26 2018-11-06 Lg Electronics Inc. Method and apparatus for allocating resources in wireless access system supporting FDR transmission
WO2015174701A1 (en) * 2014-05-11 2015-11-19 엘지전자 주식회사 Method and device for receiving signal in wireless access system supporting fdr transmission

Also Published As

Publication number Publication date
WO2009091208A3 (en) 2010-11-25
WO2009091208A9 (en) 2011-01-27

Similar Documents

Publication Publication Date Title
KR101207570B1 (en) Method of mitigating inter-cell interference
WO2012096449A2 (en) Method and apparatus for multi-cell cooperative transmission
WO2011040773A2 (en) Method for transmitting comp feedback information in wireless communication system and terminal apparatus
WO2009134093A2 (en) Method for allocating resources for edge-users using cooperative mimo
EP2413514B1 (en) Radio communication apparatus and radio communication method
WO2011037413A2 (en) Method and device for managing interference in neighbouring cells having multiple sending and receiving nodes
WO2010123295A2 (en) Cooperative communication method in cellular wireless communication system and terminal for performing the method
WO2010050718A2 (en) Cooperative beamforming apparatus and method in wireless communication system
WO2010079926A2 (en) Method and apparatus for determining cell for executing comp in multi-cell environment
WO2016163832A1 (en) Method and device for controlling transmission power in wireless communication system using multiple antennas
WO2009136736A2 (en) Method for transmitting and receiving data in a cooperative multiple-input multiple-output mobile communication system
WO2016036174A1 (en) Method and apparatus for channel quality estimation in consideration of interference control and coordinated communication in cellular system
WO2010005221A2 (en) Apparatus and method for inter-cell interference cancellation in mimo wireless communication system
WO2010120024A1 (en) Method of coordinating precoding matrixes in a wireless communication system
WO2010005162A1 (en) Collaborative mimo using sounding channel in multi-cell environment
WO2013100579A1 (en) Channel state information feedback apparatus and method in wireless communication system operating in fdd mode
WO2013100565A1 (en) Method and apparatus for transmitting/receiving csi-rs in massive mimo system operating in fdd mode
WO2010095890A2 (en) Method of transmitting and receiving feedback information and mobile station/base station apparatus therefor
WO2013157785A1 (en) Hierarchical channel sounding and channel state information feedback in massive mimo systems
WO2010101352A2 (en) Method for setting control multi point in wireless communication system and apparatus thereof
WO2012096531A2 (en) Method and apparatus for coordinating between cells in wireless communication system
WO2009093851A1 (en) Method and apparatus for allocating feedback channel in multiple antenna communication system
WO2010064856A2 (en) Method and apparatus of scheduling in multi-cell cooperative wireless communication system
WO2010076949A1 (en) Method of transmitting data in multi-cell cooperative wireless communication system
WO2012153988A2 (en) Method for receiving reference signal and user equipment, and method for transmitting reference signal and base station

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09702926

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 12811785

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09702926

Country of ref document: EP

Kind code of ref document: A2