WO2009090836A1 - Automatic transmission control device and control method - Google Patents

Automatic transmission control device and control method Download PDF

Info

Publication number
WO2009090836A1
WO2009090836A1 PCT/JP2008/073319 JP2008073319W WO2009090836A1 WO 2009090836 A1 WO2009090836 A1 WO 2009090836A1 JP 2008073319 W JP2008073319 W JP 2008073319W WO 2009090836 A1 WO2009090836 A1 WO 2009090836A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
shift
solenoids
automatic transmission
determined
Prior art date
Application number
PCT/JP2008/073319
Other languages
French (fr)
Japanese (ja)
Inventor
Kenji Niwa
Shun Minaki
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Publication of WO2009090836A1 publication Critical patent/WO2009090836A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H59/18Inputs being a function of torque or torque demand dependent on the position of the accelerator pedal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/38Inputs being a function of speed of gearing elements
    • F16H59/40Output shaft speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/38Inputs being a function of speed of gearing elements
    • F16H59/42Input shaft speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/44Inputs being a function of speed dependent on machine speed of the machine, e.g. the vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • F16H2061/1232Bringing the control into a predefined state, e.g. giving priority to particular actuators or gear ratios
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/68Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings
    • F16H61/684Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive
    • F16H61/686Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive with orbital gears

Definitions

  • the present invention relates to a shift control when a failure occurs in an automatic transmission, and more particularly to a technique for switching a fail-safe mode executed according to the speed of a vehicle when a failure occurs.
  • an automatic transmission that forms a gear that can be formed when an electric failure occurs in the automatic transmission and a desired gear cannot be formed is known.
  • an automatic transmission is known that can drive a vehicle by forming a predetermined gear position by stopping the operation of a solenoid.
  • Patent Document 1 discloses that when a malfunction of an automatic transmission device is detected, all solenoids of the hydraulic servo devices are turned off to prevent shifting without causing a shock.
  • a control device for an automatic transmission is disclosed.
  • a control device for an automatic transmission supplies a shift mechanism that shifts the rotation of an input shaft and outputs it to an output shaft, a plurality of engagement elements that are engaged and disengaged to establish each gear stage of the transmission mechanism, and a solenoid
  • a plurality of hydraulic servo devices for supplying and discharging output hydraulic pressure corresponding to the electric signal to be engaged and disengaged from each other, and at least one shift stage by turning off the supply of the electric signal to the solenoid
  • a failure detection means for detecting a failure in which at least one of the engagement elements becomes uncontrollable.
  • the solenoids are turned off in a predetermined order so that all the solenoids are shut off from the supply of electric signals to the solenoids so that the gear position of the transmission mechanism at the time when the failure detection means detects the failure does not change. It is characterized by doing.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a control device and a control method for an automatic transmission that forms a shift stage according to the speed of the vehicle when a failure occurs. It is.
  • An automatic transmission control device is an automatic transmission control device mounted on a vehicle.
  • the automatic transmission includes a plurality of friction engagement elements and a hydraulic circuit that supplies hydraulic pressure to the plurality of friction engagement elements.
  • the hydraulic circuit is provided with a plurality of solenoids for controlling the hydraulic pressure supplied to the plurality of friction engagement elements.
  • the hydraulic circuit is used to form a predetermined shift stage among the plurality of friction engagement elements such that when all the operations of the plurality of solenoids are stopped, a predetermined shift stage among the plurality of shift stages is formed.
  • the control device includes a state detection unit that detects a shift state of the automatic transmission, a speed detection unit that detects the speed of the vehicle, and a control unit that receives an output from the state detection unit and the speed detection unit.
  • the control unit determines whether any of the plurality of shift stages can be formed by operating the plurality of solenoids based on the detected shift state, and determines any of the plurality of shift stages.
  • a plurality of solenoids are controlled to shift to gears other than the gears determined not to be formed when it is determined that the gears cannot be formed and the detected vehicle speed is lower than a predetermined speed. When it is determined that any one of the plurality of shift speeds cannot be formed, and the detected vehicle speed is equal to or higher than a predetermined speed, the operation of the plurality of solenoids is stopped.
  • the operation of the plurality of solenoids is stopped, so that a predetermined shift stage is formed. Therefore, if a predetermined speed is set corresponding to a predetermined gear position, a sudden downshift, a sudden increase in the rotational speed of the input shaft of the automatic transmission, or a shift shock is suppressed. be able to.
  • the speed of the vehicle is lower than a predetermined speed, shifting to a speed corresponding to the traveling state of the vehicle out of speeds other than the speed determined to be not formed can be performed at an appropriate speed. And the driving force of the vehicle can be ensured. Therefore, it is possible to provide a control device and a control method for an automatic transmission that forms a gear position according to the speed of the vehicle when a failure occurs.
  • the predetermined shift speed is a high speed shift speed among a plurality of shift speeds.
  • the high-speed gear stage is formed by stopping the operation of the plurality of solenoids. Therefore, even if a failure occurs when the vehicle speed is equal to or higher than a predetermined speed, it is possible to suppress a sudden downshift, a sudden increase in the rotational speed of the input shaft of the automatic transmission, or a shift shock. .
  • the state detection unit detects the rotational speed on the input shaft side and the rotational speed on the output shaft side of the automatic transmission.
  • the control device further includes a traveling state detection unit for detecting the traveling state of the vehicle. The control unit determines a gear position based on the detected traveling state, controls a plurality of solenoids so that the determined gear position is formed, and detects the detected rotation speed on the input shaft side and the output shaft side. If the gear ratio based on the rotational speed does not correspond to the gear ratio of the determined gear, it is determined that the determined gear cannot be formed.
  • the present invention it is determined that the determined shift speed cannot be formed unless the speed ratio based on the rotational speed on the input shaft side and the rotational speed on the output shaft side of the automatic transmission corresponds to the determined speed ratio. To do. As a result, it is possible to accurately determine a gear position that cannot be formed.
  • the plurality of solenoids operate in response to reception of an electrical signal.
  • the control unit blocks an electric signal transmitted to the plurality of solenoids.
  • the operation of the plurality of solenoids can be stopped by blocking the electrical signals transmitted to the plurality of solenoids.
  • the plurality of solenoids are normally closed type solenoid valves provided corresponding to each of the plurality of friction engagement elements.
  • the automatic transmission includes an oil pump that generates hydraulic pressure supplied to a plurality of solenoids and a plurality of friction engagement elements, and a solenoid that is energized when forming a predetermined shift stage among the plurality of solenoids.
  • the solenoid is stopped, the first oil passage is connected to the friction engagement element.
  • a circuit is provided that shuts off the coupling element and connects the second oil passage to the frictional engagement element.
  • each of the plurality of friction engagement elements when no failure occurs, can be brought into either the engaged state or the released state by the operation of the solenoid.
  • each of the plurality of friction engagement elements can be brought into either the engaged state or the released state without passing through the solenoid by stopping the operation of the solenoid.
  • a predetermined shift stage among the plurality of shift stages can be formed when the operation of the plurality of solenoids is stopped.
  • This vehicle is an FF (Front engine Front drive) vehicle.
  • FF Front engine Front drive
  • a vehicle other than FF may be used.
  • the vehicle includes an engine 1000, an automatic transmission 2000, a planetary gear unit 3000 that forms part of the automatic transmission 2000, a hydraulic circuit 4000 that forms part of the automatic transmission 2000, a differential gear 5000, a drive shaft 6000, Includes front wheel 7000 and ECU (Electronic Control Unit) 8000.
  • the control apparatus for an automatic transmission according to the present invention is realized by ECU 8000.
  • Engine 1000 is an internal combustion engine that burns a mixture of fuel and air injected from an injector (not shown) in a combustion chamber of a cylinder. The piston in the cylinder is pushed down by the combustion, and the crankshaft is rotated.
  • the automatic transmission 2000 is connected to the engine 1000 via a torque converter 3200 that constitutes a part of the automatic transmission 2000.
  • Automatic transmission 2000 changes the rotational speed of the crankshaft to a desired rotational speed by forming a desired gear stage.
  • the output gear of automatic transmission 2000 meshes with differential gear 5000.
  • a drive shaft 6000 is connected to the differential gear 5000 by spline fitting or the like. Power is transmitted to the left and right front wheels 7000 via the drive shaft 6000.
  • the ECU 8000 includes a vehicle speed sensor 8002, a position switch 8006 of a shift lever 8004, an accelerator opening sensor 8010 of an accelerator pedal 8008, a stroke sensor 8014 of a brake pedal 8012, a throttle opening sensor 8018 of an electronic throttle valve 8016, An engine speed sensor 8020, an input shaft speed sensor 8022, and an output shaft speed sensor 8024 are connected via a harness or the like.
  • the vehicle speed sensor 8002 detects the rotational speed of the drive shaft 6000 and transmits a signal indicating the detection result to the ECU 8000.
  • ECU 8000 calculates the speed of the vehicle based on the received rotational speed of drive shaft 6000.
  • the position of shift lever 8004 is detected by position switch 8006, and a signal indicating the detection result is transmitted to ECU 8000.
  • the gear stage of the automatic transmission 2000 is automatically formed.
  • Accelerator opening sensor 8010 detects the opening of accelerator pedal 8008 and transmits a signal representing the detection result to ECU 8000.
  • Stroke sensor 8014 detects the stroke amount of brake pedal 8012 and transmits a signal representing the detection result to ECU 8000.
  • the throttle opening sensor 8018 detects the opening of the electronic throttle valve 8016 whose opening is adjusted by the actuator, and transmits a signal representing the detection result to the ECU 8000.
  • Electronic throttle valve 8016 adjusts the amount of air taken into engine 1000 (output of engine 1000).
  • Engine rotation speed sensor 8020 detects the rotation speed of the output shaft (crankshaft) of engine 1000 and transmits a signal representing the detection result to ECU 8000.
  • Input shaft rotational speed sensor 8022 detects input shaft rotational speed (hereinafter also referred to as turbine rotational speed) NT of automatic transmission 2000, and transmits a signal representing the detection result to ECU 8000.
  • Output shaft rotational speed sensor 8024 detects output shaft rotational speed NO of automatic transmission 2000 and transmits a signal representing the detection result to ECU 8000.
  • the rotational speed of the output shaft of engine 1000 is the torque.
  • the rotational speed is the same as the rotational speed of the input shaft of converter 3200.
  • the input shaft rotation speed of automatic transmission 2000 is the same as the rotation speed of the output shaft of torque converter 3200.
  • ECU 8000 is sent from vehicle speed sensor 8002, position switch 8006, accelerator opening sensor 8010, stroke sensor 8014, throttle opening sensor 8018, engine speed sensor 8020, input shaft speed sensor 8022, output shaft speed sensor 8024, and the like. Based on the received signal, a map stored in a ROM (Read Only Memory) and a program, the devices are controlled so that the vehicle is in a desired running state.
  • ROM Read Only Memory
  • ECU 8000 shifts 1st to 6th gears when D (drive) range is selected as the shift range of automatic transmission 2000 when shift lever 8004 is located at the D (drive) position.
  • Automatic transmission 2000 is controlled so that one of the gears is formed.
  • the automatic transmission 2000 can transmit the driving force to the front wheels 7000 by forming any one of the first to sixth gears.
  • the shift lever 8004 When the shift lever 8004 is in the N (neutral) position, when the N (neutral) range is selected as the shift range of the automatic transmission 2000, the automatic transmission 2000 is controlled so as to be in the neutral state (power transmission cut-off state). Is done.
  • Planetary gear unit 3000 is connected to a torque converter 3200 having an input shaft 3100 coupled to a crankshaft.
  • Planetary gear unit 3000 includes first set 3300 of planetary gear mechanisms, second set 3400 of planetary gear mechanisms, output gear 3500, B1 brake 3610, B2 brake 3620 and B3 brake 3630 fixed to gear case 3600, and C1.
  • Clutch 3640 and C2 clutch 3650, and one-way clutch F3660 are included.
  • the first set 3300 is a single pinion type planetary gear mechanism.
  • First set 3300 includes sun gear S (UD) 3310, pinion gear 3320, ring gear R (UD) 3330, and carrier C (UD) 3340.
  • Sun gear S (UD) 3310 is connected to output shaft 3210 of torque converter 3200.
  • Pinion gear 3320 is rotatably supported by carrier C (UD) 3340.
  • Pinion gear 3320 is in mesh with sun gear S (UD) 3310 and ring gear R (UD) 3330.
  • Ring gear R (UD) 3330 is fixed to gear case 3600 by B3 brake 3630.
  • Carrier C (UD) 3340 is fixed to gear case 3600 by B1 brake 3610.
  • the second set 3400 is a Ravigneaux type planetary gear mechanism.
  • the second set 3400 includes a sun gear S (D) 3410, a short pinion gear 3420, a carrier C (1) 3422, a long pinion gear 3430, a carrier C (2) 3432, a sun gear S (S) 3440, and a ring gear R. (1) (R (2)) 3450.
  • Sun gear S (D) 3410 is connected to carrier C (UD) 3340.
  • Short pinion gear 3420 is rotatably supported by carrier C (1) 3422.
  • Short pinion gear 3420 is in mesh with sun gear S (D) 3410 and long pinion gear 3430.
  • Carrier C (1) 3422 is coupled to output gear 3500.
  • the long pinion gear 3430 is rotatably supported by the carrier C (2) 3432.
  • Long pinion gear 3430 is in mesh with short pinion gear 3420, sun gear S (S) 3440, and ring gear R (1) (R (2)) 3450.
  • Carrier C (2) 3432 is coupled to output gear 3500.
  • Sun gear S (S) 3440 is connected to output shaft 3210 of torque converter 3200 by C1 clutch 3640.
  • Ring gear R (1) (R (2)) 3450 is fixed to gear case 3600 by B2 brake 3620 and connected to output shaft 3210 of torque converter 3200 by C2 clutch 3650.
  • the ring gear R (1) (R (2)) 3450 is connected to the one-way clutch F3660 and cannot rotate when the first gear is driven.
  • the one-way clutch F3660 is provided in parallel with the B2 brake 3620. That is, the outer race of the one-way clutch F3660 is fixed to the gear case 3600, and the inner race is connected to the ring gear R (1) (R (2)) 3450 via the rotation shaft.
  • the B1 brake 3610, the B2 brake 3620, the B3 brake 3630, the C1 clutch 3640, and the C2 clutch 3650 include an input-side friction member, an output-side friction member, a piston that applies a pressing force to the friction member, and hydraulic pressure to the piston.
  • An input side friction member and an output side friction member include, for example, a multi-plate clutch having a plurality of friction members on the input side and the output side, respectively.
  • FIG. 3 shows an operation table showing the relationship between each shift speed and the operation state of each clutch element and each brake element.
  • the C1 clutch 3640 is engaged in all the first to fourth gears. That is, it can be said that the C1 clutch 3640 is an input clutch in the first to fourth gears.
  • C2 clutch 3650 is engaged at the fifth speed and the sixth speed. That is, it can be said that C2 clutch 3650 is an input clutch at the fifth speed and the sixth speed.
  • the operation table shown in FIG. 3 is an example, and is not particularly limited to the combinations shown in the operation table.
  • the present invention is not particularly limited as long as it is an automatic transmission having one or more input clutches. Absent.
  • the main part of the hydraulic circuit 4000 will be described with reference to FIG.
  • the hydraulic circuit 4000 is not limited to the one described below.
  • the hydraulic circuit 4000 includes an oil pump 4004, a manual valve 4100, a solenoid modulator valve 4200, a primary regulator valve 4202, an SL1 linear solenoid (hereinafter referred to as SL (1)) 4210, and an SL2 linear solenoid (hereinafter referred to as “linear solenoid valve”). 4220, SL3 linear solenoid (hereinafter referred to as SL (3)) 4230, SL4 linear solenoid (hereinafter referred to as SL (4)) 4240, and SLT linear solenoid (hereinafter referred to as SL (2)). 4), a clutch control valve 4400, and a sequence valve 4500.
  • SL (1) linear solenoid
  • SL (2) SLT linear solenoid
  • Oil pump 4004 is connected to the crankshaft of engine 1000. As the crankshaft rotates, the oil pump 4004 is driven to generate hydraulic pressure. The hydraulic pressure generated by the oil pump 4004 is adjusted by the primary regulator valve 4202, and a line pressure is generated.
  • Primary regulator valve 4202 operates using the throttle pressure regulated by SLT 4300 as a pilot pressure. The higher the throttle pressure, the higher the line pressure. The line pressure is supplied to the manual valve 4100, the solenoid modulator valve 4200, and the SL (4) 4240 via the PL oil passage 4010.
  • Manual valve 4100 is connected to shift lever 8004.
  • the position of the spool of the manual valve 4100 is changed according to the position of the shift lever 8004.
  • the line pressure is supplied to the D range oil passage 4102.
  • the spool is in the reverse position (R)
  • the hydraulic pressure generated by the oil pump 4004 is supplied to the R range oil passage 4104.
  • the oil pressure supplied to the D-range pressure oil passage 4102 passes through the SL (1) 4210, SL (2) 4220, SL (3) 4230, and the oil passage 4106, and finally the B1 brake 3610 and the B2 brake. 3620, C1 clutch 3640 and C2 clutch 3650.
  • the hydraulic pressure supplied to the R range pressure oil passage 4104 is finally supplied to the B2 brake 3620.
  • Solenoid modulator valve 4200 adjusts the hydraulic pressure (solenoid modulator pressure) supplied to SLT 4300 to a constant pressure using the line pressure as the original pressure.
  • SL (1) 4210 is a normally closed type linear solenoid valve that shuts off hydraulic pressure when not energized.
  • SL (1) 4210 is connected to the D-range oil passage 4102 and is connected to the clutch control valve 4400 and the sequence valve 4500 via the SL1 oil passage 4212.
  • SL (1) 4210 controls the hydraulic pressure supplied to the servo of the C1 clutch 3640.
  • SL (2) 4220 is a normally closed type linear solenoid valve that shuts off hydraulic pressure when not energized.
  • SL (2) 4220 is connected to D range oil passage 4102 and is connected to clutch control valve 4400 and sequence valve 4500 via SL2 oil passage 4222.
  • SL (2) 4220 controls the hydraulic pressure supplied to the servo of C2 clutch 3650.
  • SL (3) 4230 is a normally closed type linear solenoid valve that shuts off hydraulic pressure when not energized.
  • SL (3) 4230 is connected to the D-range oil passage 4102.
  • SL (3) 4230 controls the hydraulic pressure supplied to the servo of the B1 brake 3610.
  • SL (4) 4240 is a normally closed type linear solenoid valve that shuts off hydraulic pressure when not energized.
  • SL (4) 4240 is connected to the PL oil passage 4010 and is connected to the sequence valve 4500 via the SL4 oil passage 4242.
  • SL (4) 4240 controls the hydraulic pressure supplied to the servo of the B3 brake 3630.
  • the SLT4300 is a normally open type linear solenoid valve that can supply hydraulic pressure when not energized.
  • the SLT 4300 adjusts the solenoid modulator pressure in accordance with the torque information generated based on the accelerator opening of the accelerator pedal 8006, the intake air amount of the engine 1000, the water temperature of the engine 1000, the rotational speed of the engine 1000, etc. To produce.
  • the throttle pressure adjusted by SLT 4300 is supplied to sequence valve 4500 and primary regulator valve 4202 via SLT oil passage 4302.
  • the throttle pressure is used as a pilot pressure for the primary regulator valve 4006.
  • Clutch control valve 4400 includes D port (C) 4410, low speed port (C) 4412, high speed port (C) 4414, SL1 port (C) 4420, SL2 port (C) 4422, and drain port. 4430, port 4440, and SL port (C) 4450.
  • D port (C) 4410 is connected to D range oil passage 4102.
  • the D port (C) 4410 communicates with either the low speed stage port (C) 4412 or the high speed stage port (C) 4414 by the spool of the clutch control valve 4400.
  • the low speed port (C) 4412 communicates with the D port (C) 4410 when the first to fourth speed stages are formed.
  • the low speed stage port (C) 4412 communicates with the drain port 4430 when the high speed stage port (C) 4414 communicates with the D port (C) 4410.
  • Low speed port (C) 4412 is connected to sequence valve 4500 via low speed oil passage 4416.
  • the high-speed port (C) 4414 communicates with the D port (C) 4410 when the 5th or 6th gear is formed.
  • High speed stage port (C) 4414 is connected to sequence valve 4500 via high speed stage oil passage 4418.
  • SL1 port (C) 4420 is connected to SL1 oil passage 4212.
  • the SL2 port (C) 4422 is connected to the SL2 oil passage 4222.
  • Port 4440 is connected to high-speed oil passage 4418. Port 4440 communicates with drain port 4430 when low speed port (C) 4412 communicates with D port (C) 4410.
  • Clutch control valve 4400 is controlled by the hydraulic pressure supplied to SL1 port (C) 4420, the hydraulic pressure supplied to SL2 port (C) 4422, the hydraulic pressure supplied to port 4440, and a spring.
  • SL port (C) 4450 is connected to sequence valve 4500 via SL oil passage 4452.
  • the hydraulic pressure adjusted by the SL (1) 4210 is supplied to the SL oil passage 4452 via the SL port (C) 4450.
  • the hydraulic pressure adjusted by the SL (2) 4220 is supplied to the SL oil passage 4452 via the SL port (C) 4450.
  • the sequence valve 4500 includes an SL1 port (S) 4510, a low speed stage port (S) 4512, a C1 port 4514, an SL2 (S) port 4520, a high speed stage port (S) 4522, a C2 port 4524, and an SL4.
  • Port 4530, D port (S) 4532, B3 port 4534, SLT port 4540, modulator port 4542, and SL port (S) 4544 are included.
  • the SL1 port (S) 4510 is connected to the SL1 oil passage 4212.
  • the low speed stage port (S) 4512 is connected to the low speed stage oil passage 4416.
  • C1 port 4514 is connected to the servo of C1 clutch 3640 via C1 oil passage 4516.
  • the C1 port 4514 communicates with either the SL1 port (S) 4510 or the low speed stage port (S) 4512 by the spool of the sequence valve 4500.
  • SL2 port (S) 4520 is connected to SL2 oil passage 4222.
  • the high speed port (S) 4522 is connected to the high speed oil passage 4418.
  • C2 port 4524 is connected to the servo of C2 clutch 3650 via C2 oil passage 4526.
  • C2 port 4524 communicates with either SL2 port (S) 4520 or high-speed port (S) 4522 by the spool of sequence valve 4500.
  • SL4 port 4530 is connected to SL4 oil passage 4242.
  • D port (S) 4532 is connected to D range oil passage 4102.
  • the B3 port 4534 is connected to the servo of the B3 brake 3630 via the B3 oil passage 4536.
  • the B3 port 4534 communicates with either the SL4 port 4530 or the D port (S) 4532 by the spool of the sequence valve 4500.
  • the SLT port 4540 is connected to the SLT oil passage 4302.
  • Modulator port 4542 is connected to solenoid modulator valve 4200.
  • SL port (S) 4544 is connected to SL oil passage 4452.
  • the sequence valve 4500 includes a hydraulic pressure (throttle pressure) supplied to the SLT port 4540, a hydraulic pressure supplied to the modulator port 4542 (solenoid modulator pressure), and a hydraulic pressure supplied to the SL port (S) 4544 (SL (1) 4210 or SL (2) oil pressure adjusted by 4220) and a spring.
  • a hydraulic pressure throttle pressure
  • modulator port 4542 solenoid modulator pressure
  • S hydraulic pressure supplied to the SL port (S) 4544
  • SL (1) 4210 or SL (2) oil pressure adjusted by 4220 SL (1) 4210 or SL (2) oil pressure adjusted by 4220
  • the sequence valve 4500 uses the hydraulic pressure adjusted by SL (1) 4210 or SL (2) 4220 as the opposing force of the throttle pressure. Therefore, the sensitivity of the sequence valve 4500 to the throttle pressure is lowered, and the sequence valve 4500 is prevented from being unnecessarily switched during the control of the throttle pressure.
  • a drain port may be provided instead of the modulator port 4542 so that the hydraulic pressure is discharged from the drain port.
  • ECU 8000 determines a gear position corresponding to the traveling state of the vehicle based on the speed of the vehicle, the accelerator opening, and the shift diagram stored in the memory of ECU 8000.
  • the ECU 8000 performs SL (1) 4210, SL (2) 4220, SL (3) 4230, and SL (4) 4240 (hereinafter simply referred to as SL (1) to (4) so that the determined shift speed is formed. Control).
  • the shift diagram is, for example, a diagram corresponding to the accelerator opening and the vehicle speed, and an upshift line and a downshift line corresponding to each shift stage are set in advance.
  • the shift diagram may be a diagram corresponding to the throttle opening or accelerator opening and the output shaft rotational speed NO or the vehicle speed.
  • ECU 8000 determines the gear position based on the position on the shift map based on the accelerator opening and the vehicle speed.
  • hydraulic circuit 4000 has a plurality of shift stages such that a predetermined shift stage among the plurality of shift stages is formed when the operation of SL (1) to SL (4) and SLT 4300 is stopped.
  • a circuit is provided that engages at least one of the friction engagement elements.
  • the predetermined shift speed is a high speed shift speed among a plurality of shift speeds, and is the fifth speed speed in the present embodiment.
  • SL (2) 4220 supplies hydraulic pressure to C2 clutch 3650 in automatic transmission 2000 (that is, in the case where the fifth speed stage or the sixth speed stage is formed).
  • the clutch control valve 4400 is in the state on the right side of FIG. That is, the D range pressure supplied to the D port (C) 4410 is supplied from the high speed stage port (C) 4414 to the port 4440. Therefore, even if the operation of SL (1) to SL (4) is stopped, as long as the supply of the D range pressure to the port 4440 continues, the clutch control valve 4400 maintains the state on the right side of FIG.
  • the sequence valve 4500 is in the state on the left side of FIG. Further, since the high speed stage port 4522 (S) is in communication with the C2 port 4524, the D range pressure supplied to the high speed stage port 4522 (S) is supplied to the C2 clutch 3650.
  • the B3 port 4534 and the D port (S) 4532 communicate with each other, so that the D range pressure supplied to the D port (S) 4532 is B3 It is supplied to the brake 3630.
  • the fifth gear is Will be formed.
  • the present invention provides the ECU 8000 with any one of a plurality of shift speeds by operating SL (1) to (4) based on the shift state of the automatic transmission 2000. It is determined whether or not such a shift stage can be formed, and if the vehicle speed is lower than a predetermined speed, SL (1) is selected so that the speed is changed to a shift stage other than the shift stage that is determined not to be formed. Controlling SL (4), the feature is that the operation of SL (1) to (4) and SLT 4300 is stopped when the vehicle speed is equal to or higher than a predetermined speed.
  • ECU 8000 determines that the determined gear stage cannot be formed unless the gear ratio based on the rotational speed on the input shaft side and the rotational speed on the output shaft side of automatic transmission 2000 corresponds to the determined gear ratio. . Specifically, ECU 8000 determines that the determined shift speed cannot be formed if a state in which the determined shift speed is not formed continues for a predetermined time after the shift speed is determined.
  • FIG. 5 shows an operation table showing the relationship between each gear position and the operation state of each linear solenoid, each clutch, and each brake.
  • the operation table of each clutch and each brake (the table on the right side in FIG. 6) is the same as the operation table shown in FIG.
  • each linear solenoid In the operation table of each linear solenoid, “Mull” indicates energization. “X” represents non-energization.
  • FIG. 6 shows a functional block diagram of ECU 8000 which is a vehicle control apparatus according to the present embodiment.
  • ECU 8000 includes an input interface (hereinafter referred to as an input I / F) 300, an arithmetic processing unit 400, a storage unit 500, and an output interface (hereinafter referred to as an output I / F) 600.
  • an input I / F input interface
  • an arithmetic processing unit 400 arithmetic processing unit 400
  • a storage unit 500 a storage unit 500
  • an output I / F 600 an output interface
  • Input I / F 300 includes a vehicle speed signal from vehicle speed sensor 8002, an accelerator position signal from accelerator position sensor 8010, a turbine speed signal from input shaft speed sensor 8022, and an output shaft speed sensor 8024.
  • the output shaft speed signal is received and transmitted to the arithmetic processing unit 400. Note that the signal input to the input I / F 300 is not limited to the above-described signal.
  • the arithmetic processing unit 400 includes a shift impossible determination unit 402, a vehicle speed determination unit 404, a fail safe processing unit (1) 406, and a fail safe processing unit (2) 408.
  • the shift impossible determination unit 402 determines whether or not the gear position determined based on the accelerator opening and the vehicle speed can be formed. Specifically, the shift impossible determination unit 402 separates the shift ratio corresponding to the determined shift speed and the shift ratio based on the turbine rotation speed NT and the output shaft rotation speed NO by a predetermined value or more. If the state continues for a predetermined time after the shift speed is determined, it is determined that the determined shift speed cannot be formed.
  • the shift impossible determination unit 402 determines that the determined shift stage cannot be formed, the shift stage that cannot be formed is stored in the storage unit 500.
  • the shift impossible determination unit 402 may turn on a determination flag indicating that the determined shift speed cannot be formed.
  • the vehicle speed determination unit 404 determines whether or not the vehicle speed is lower than a predetermined speed ⁇ . For example, when it is determined that the vehicle cannot be formed at the determined shift speed, the vehicle speed determination unit 404 determines whether or not the vehicle speed is lower than a predetermined speed ⁇ , and the vehicle speed is determined in advance. If the speed is lower than the given speed ⁇ , the vehicle speed determination flag may be turned on.
  • the “predetermined speed ⁇ ” is a speed set corresponding to a predetermined shift speed formed by stopping the operation of at least SL (1) to SL (4) and SLT 4300. That is, the predetermined speed ⁇ is set so as to be in a speed region in which a sudden downshift does not occur even when a predetermined shift speed is formed. In the present embodiment, the predetermined speed ⁇ is set in conformity with experiments or design corresponding to the fifth gear.
  • the fail-safe processing unit (1) 406 prohibits a shift to a shift stage that cannot be formed when the vehicle speed is lower than a predetermined speed ⁇ , and shifts any of the shift stages that can be formed normally. Permits shifting to a stage. Therefore, for example, if it is determined by the shift impossible determination unit 402 that a shift to the fifth speed cannot be established, a speed other than the fifth speed is selected according to the vehicle running state (for example, the accelerator opening and the vehicle speed). Shift control is executed so that the shift speed is reached.
  • Fail-safe processing unit (2) 408 passes through output I / F 600 to stop the operations of SL (1) to SL (4) and SLT 4300 when the vehicle speed is equal to or higher than a predetermined speed ⁇ . Then, the electric signals (solenoid control signals) transmitted to SL (1) to SL (4) and SLT 4300 are cut off.
  • shift disable determination unit 402 vehicle speed determination unit 404, fail safe processing unit (1) 406, and fail safe processing unit (2) 408 are all arithmetic processing unit 400.
  • a CPU Central Processing Unit
  • functions as software which is realized by executing a program stored in the storage unit 500, it may be realized by hardware.
  • Such a program is recorded on a storage medium and mounted on the vehicle.
  • the storage unit 500 stores various information, programs, threshold values, maps, and the like, and data is read or stored from the arithmetic processing unit 400 as necessary.
  • ECU 8000 which is the control device for the automatic transmission according to the present embodiment will be described.
  • step (hereinafter, step is referred to as S) 100 ECU 8000 determines whether or not it is impossible to form a gear determined based on the running state of the vehicle. If formation of the determined gear position is impossible (YES in S100), the process proceeds to S102. If not (NO in S100), the process returns to S100.
  • ECU 8000 determines whether or not the speed of the vehicle is lower than a predetermined speed ⁇ . If the vehicle speed is lower than predetermined speed ⁇ (YES in S102), the process proceeds to S104. If not (NO in S102), the process proceeds to S106.
  • ECU 8000 prohibits shifting to a shift stage that is determined to be impossible among a plurality of shift stages, and instructs the formation of a shift stage capable of normal output corresponding to the running state of the vehicle. .
  • ECU 8000 stops (turns off) all the operations of SL (1) to SL (4) and SLT 4300.
  • ECU 8000 that is the control device for the automatic transmission according to the present embodiment based on the above-described structure and flowchart will be described.
  • a shift is performed at speeds other than the fourth speed determined that formation is impossible (S104). For example, when the third speed is determined according to the traveling state of the vehicle, the command values for SL (1) 4210 corresponding to the C1 clutch 3640 and SL (3) 4230 corresponding to the B3 brake 3630 increase, and the third speed A step is formed.
  • any one of the plurality of shift stages cannot be formed, and the speed of the vehicle is determined in advance.
  • the speed is equal to or higher than ⁇
  • the operations of SL (1) to SL (4) and SLT are stopped, and therefore, a high-speed fifth speed stage that is a predetermined speed stage is formed. Therefore, if the predetermined speed ⁇ is set corresponding to the fifth gear, it is possible to suppress sudden downshift, sudden increase in the rotational speed of the input shaft of the automatic transmission, or shift shock. it can.
  • the hydraulic circuit in which the fifth gear is formed when the hydraulic pressure is supplied to the C2 clutch by SL (2), if the operation of SL (1) to SL (2) and SLT is stopped, the hydraulic circuit in which the fifth gear is formed.
  • it is not particularly limited to the fifth speed stage, and the operation of SL (1) to SL (2) and SLT is performed regardless of the operation state of SL (1) to SL (2) and SLT.
  • a hydraulic circuit in which a predetermined gear position is formed may be used.

Abstract

An ECU executes a program as follows. When a solenoid has failed and no transmission step decided according to a vehicle travel state can be formed (Yes in S100), a step (S104) instructs a speed change to a transmission step capable of performing a normal output if the vehicle velocity V is lower than a predetermined velocity α (Yes in S102) or a step (S106) stops operation of all the solenoids if the vehicle velocity V is not lower than the predetermined velocity α (No in S102).

Description

自動変速機の制御装置および制御方法Control device and control method for automatic transmission
 本発明は、自動変速機のフェール発生時の変速制御に関し、特に、フェール発生時に車両の速度に応じて実行されるフェールセーフの態様を切換える技術に関する。 The present invention relates to a shift control when a failure occurs in an automatic transmission, and more particularly to a technique for switching a fail-safe mode executed according to the speed of a vehicle when a failure occurs.
 従来より、自動変速機において電気的なフェールが発生し、所望の変速段を形成できない場合に、形成可能な変速段を形成する自動変速機が公知である。また、フェールにより自動変速機を電気的に制御できない場合には、ソレノイドの作動を停止することにより予め定められた変速段を形成して車両を走行させることができる自動変速機が公知である。 2. Description of the Related Art Conventionally, an automatic transmission that forms a gear that can be formed when an electric failure occurs in the automatic transmission and a desired gear cannot be formed is known. In addition, when the automatic transmission cannot be electrically controlled by a failure, an automatic transmission is known that can drive a vehicle by forming a predetermined gear position by stopping the operation of a solenoid.
 たとえば、特開2003-301939号公報(特許文献1)は、自動変速装置の故障が検出されたとき、ショックを生じることなく全ての油圧サーボ装置のソレノイドをオフ状態にして変速ができないようにする自動変速機の制御装置を開示する。自動変速機の制御装置は、入力軸の回転を変速して出力軸に出力する変速機構と、変速機構の各変速段を成立するために係脱される複数の係合要素と、ソレノイドに供給される電気信号に応じた出力油圧を給排して係合要素を夫々係脱させる複数の油圧サーボ装置と、ソレノイドへの電気信号の供給を遮断するオフ状態にすることによって少なくとも1つの変速段を達成可能なフェールセーフ手段と、係合要素の少なくとも1つが制御不能となる故障を検出する故障検出手段とを備える。この制御装置は、故障検出手段が故障を検出した時点での変速機構の変速段が変わらないようにソレノイドを所定の順番で、全てのソレノイドをソレノイドへの電気信号の供給を遮断するオフ状態にすることを特徴とする。 For example, Japanese Patent Application Laid-Open No. 2003-301939 (Patent Document 1) discloses that when a malfunction of an automatic transmission device is detected, all solenoids of the hydraulic servo devices are turned off to prevent shifting without causing a shock. A control device for an automatic transmission is disclosed. A control device for an automatic transmission supplies a shift mechanism that shifts the rotation of an input shaft and outputs it to an output shaft, a plurality of engagement elements that are engaged and disengaged to establish each gear stage of the transmission mechanism, and a solenoid A plurality of hydraulic servo devices for supplying and discharging output hydraulic pressure corresponding to the electric signal to be engaged and disengaged from each other, and at least one shift stage by turning off the supply of the electric signal to the solenoid And a failure detection means for detecting a failure in which at least one of the engagement elements becomes uncontrollable. In this control device, the solenoids are turned off in a predetermined order so that all the solenoids are shut off from the supply of electric signals to the solenoids so that the gear position of the transmission mechanism at the time when the failure detection means detects the failure does not change. It is characterized by doing.
 上述した公報に開示された自動変速機の制御装置によると、ソレノイドをオフ状態にする過程でダウンシフトすることを確実に防止することができる。
特開2003-301939号公報
According to the automatic transmission control device disclosed in the above publication, it is possible to reliably prevent downshifting in the process of turning off the solenoid.
JP 2003-301939 A
 しかしながら、フェール発生時に車両の速度が形成可能な変速段において許容される速度よりも高い場合、形成可能な変速段への変速が実行されると急なダウンシフトによる変速機の入力軸回転数の急上昇およびそれに伴なう変速ショックが発生するという問題がある。そのため、車両の速度が低下するまで形成可能な変速段への変速を遅延する必要があるという問題がある。 However, if the speed of the vehicle is higher than the allowable speed at a speed that can be formed when a failure occurs, the input shaft speed of the transmission due to a sudden downshift is reduced when a shift to the speed that can be formed is executed. There is a problem that a sudden rise and the accompanying shift shock occur. Therefore, there is a problem that it is necessary to delay the shift to the shift speed that can be formed until the vehicle speed decreases.
 また、上述した公報に開示された自動変速機の制御装置のように、ソレノイドに故障が発生すると全てのソレノイドへの電気信号の供給を遮断することも考えられるが、全てのソレノイドへの電気信号の供給の遮断により形成される変速段が車両の速度の全領域に対応するものではないため、たとえば、高速側の変速段を形成するようにすると、車両の速度が低い場合には適切な変速段を形成することができない可能性がある。 In addition, as in the automatic transmission control device disclosed in the above-mentioned publication, it may be possible to shut off the supply of electrical signals to all solenoids when a failure occurs in the solenoids. For example, if the high speed side gear stage is formed, an appropriate speed change can be achieved when the vehicle speed is low. The step may not be formed.
 本発明は、上述した課題を解決するためになされたものであって、その目的は、フェール発生時に車両の速度に応じた変速段を形成する自動変速機の制御装置および制御方法を提供することである。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a control device and a control method for an automatic transmission that forms a shift stage according to the speed of the vehicle when a failure occurs. It is.
 この発明のある局面に係る自動変速機の制御装置は、車両に搭載された自動変速機の制御装置である。自動変速機は、複数の摩擦係合要素と、複数の摩擦係合要素に油圧を供給する油圧回路とを含む。油圧回路には、複数の摩擦係合要素に供給される油圧を制御する複数のソレノイドが設けられる。油圧回路は、複数のソレノイドのすべての作動を停止すると複数の変速段のうちの予め定められた変速段を形成するように複数の摩擦係合要素のうち予め定められた変速段の形成に用いられる摩擦係合要素に油圧を供給する回路を含む。この制御装置は、自動変速機の変速状態を検出する状態検出ユニットと、車両の速度を検出する速度検出ユニットと、状態検出ユニットおよび速度検出ユニットから出力を受ける制御ユニットとを含む。制御ユニットは、検出された変速状態に基づいて複数のソレノイドの作動により複数の変速段のうちのいずれかの変速段が形成できるか否かを判定し、複数の変速段のうちのいずれかの変速段が形成できないと判定され、かつ、検出された車両の速度が予め定められた速度よりも低いと形成できないと判定された変速段以外の変速段に変速するように複数のソレノイドを制御し、複数の変速段のうちのいずれかの変速段が形成できないと判定され、かつ、検出された車両の速度が予め定められた速度以上であると複数のソレノイドの作動を停止する。 An automatic transmission control device according to an aspect of the present invention is an automatic transmission control device mounted on a vehicle. The automatic transmission includes a plurality of friction engagement elements and a hydraulic circuit that supplies hydraulic pressure to the plurality of friction engagement elements. The hydraulic circuit is provided with a plurality of solenoids for controlling the hydraulic pressure supplied to the plurality of friction engagement elements. The hydraulic circuit is used to form a predetermined shift stage among the plurality of friction engagement elements such that when all the operations of the plurality of solenoids are stopped, a predetermined shift stage among the plurality of shift stages is formed. A circuit for supplying hydraulic pressure to the frictional engagement element. The control device includes a state detection unit that detects a shift state of the automatic transmission, a speed detection unit that detects the speed of the vehicle, and a control unit that receives an output from the state detection unit and the speed detection unit. The control unit determines whether any of the plurality of shift stages can be formed by operating the plurality of solenoids based on the detected shift state, and determines any of the plurality of shift stages. A plurality of solenoids are controlled to shift to gears other than the gears determined not to be formed when it is determined that the gears cannot be formed and the detected vehicle speed is lower than a predetermined speed. When it is determined that any one of the plurality of shift speeds cannot be formed, and the detected vehicle speed is equal to or higher than a predetermined speed, the operation of the plurality of solenoids is stopped.
 この発明によると、車両の速度が予め定められた速度以上であると、複数のソレノイドの作動が停止されるため、予め定められた変速段が形成される。そのため、予め定められた速度を予め定められた変速段に対応して設定しておくようにすると、急なダウンシフト、自動変速機の入力軸の回転数の急上昇または変速ショックの発生を抑制することができる。一方、車両の速度が予め定められた速度よりも低いと、形成できないと判定された変速段以外の変速段のうち車両の走行状態に対応した変速段に変速するようにすると、適切な変速段を形成して車両の駆動力を確保することができる。したがって、フェール発生時に車両の速度に応じた変速段を形成する自動変速機の制御装置および制御方法を提供することができる。 According to the present invention, when the speed of the vehicle is equal to or higher than a predetermined speed, the operation of the plurality of solenoids is stopped, so that a predetermined shift stage is formed. Therefore, if a predetermined speed is set corresponding to a predetermined gear position, a sudden downshift, a sudden increase in the rotational speed of the input shaft of the automatic transmission, or a shift shock is suppressed. be able to. On the other hand, if the speed of the vehicle is lower than a predetermined speed, shifting to a speed corresponding to the traveling state of the vehicle out of speeds other than the speed determined to be not formed can be performed at an appropriate speed. And the driving force of the vehicle can be ensured. Therefore, it is possible to provide a control device and a control method for an automatic transmission that forms a gear position according to the speed of the vehicle when a failure occurs.
 好ましくは、予め定められた変速段は、複数の変速段のうちの高速側の変速段である。
 この発明によると、複数のソレノイドの作動を停止することにより高速側の変速段が形成される。そのため、車両の速度が予め定められた速度以上であるときにフェールが発生しても、急なダウンシフト、自動変速機の入力軸の回転数の急上昇または変速ショックの発生を抑制することができる。
Preferably, the predetermined shift speed is a high speed shift speed among a plurality of shift speeds.
According to the present invention, the high-speed gear stage is formed by stopping the operation of the plurality of solenoids. Therefore, even if a failure occurs when the vehicle speed is equal to or higher than a predetermined speed, it is possible to suppress a sudden downshift, a sudden increase in the rotational speed of the input shaft of the automatic transmission, or a shift shock. .
 さらに好ましくは、状態検出ユニットは、自動変速機の入力軸側の回転数と出力軸側の回転数とを検出する。制御装置は、車両の走行状態を検出するための走行状態検出ユニットをさらに含む。制御ユニットは、検出された走行状態に基づいて変速段を決定し、決定された変速段が形成されるように複数のソレノイドを制御し、検出された入力軸側の回転数と出力軸側の回転数とに基づく変速比が決定された変速段の変速比に対応しないと決定された変速段が形成できないと判定する。 More preferably, the state detection unit detects the rotational speed on the input shaft side and the rotational speed on the output shaft side of the automatic transmission. The control device further includes a traveling state detection unit for detecting the traveling state of the vehicle. The control unit determines a gear position based on the detected traveling state, controls a plurality of solenoids so that the determined gear position is formed, and detects the detected rotation speed on the input shaft side and the output shaft side. If the gear ratio based on the rotational speed does not correspond to the gear ratio of the determined gear, it is determined that the determined gear cannot be formed.
 この発明によると、自動変速機の入力軸側の回転数と出力軸側の回転数とに基づく変速比が決定された変速段の変速比に対応しないと決定された変速段が形成できないと判定する。これにより、形成できない変速段を精度よく判定することができる。 According to the present invention, it is determined that the determined shift speed cannot be formed unless the speed ratio based on the rotational speed on the input shaft side and the rotational speed on the output shaft side of the automatic transmission corresponds to the determined speed ratio. To do. As a result, it is possible to accurately determine a gear position that cannot be formed.
 さらに好ましくは、複数のソレノイドは、電気信号の受信に応じて作動する。制御ユニットは、複数のソレノイドに送信される電気信号を遮断する。 More preferably, the plurality of solenoids operate in response to reception of an electrical signal. The control unit blocks an electric signal transmitted to the plurality of solenoids.
 この発明によると、複数のソレノイドに送信される電気信号を遮断することにより複数のソレノイドの作動を停止することができる。 According to the present invention, the operation of the plurality of solenoids can be stopped by blocking the electrical signals transmitted to the plurality of solenoids.
 さらに好ましくは、複数のソレノイドは、複数の摩擦係合要素のそれぞれに対応して設けられたノーマルクローズタイプの電磁弁である。自動変速機には、複数のソレノイドおよび複数の摩擦係合要素に供給される油圧を発生するオイルポンプと、複数のソレノイドのうち、予め定められた変速段を形成する場合に通電されるソレノイドに接続された第1の油路と、オイルポンプに接続された、第1の油路とは異なる第2の油路と、ソレノイドの作動時において、第1の油路を複数の摩擦係合要素のうち予め定められた変速段の形成に用いられる摩擦係合要素に接続するとともに第2の油路を摩擦係合要素から遮断し、ソレノイドの作動停止時において、第1の油路を摩擦係合要素から遮断するとともに第2の油路を摩擦係合要素に接続する回路とが設けられる。 More preferably, the plurality of solenoids are normally closed type solenoid valves provided corresponding to each of the plurality of friction engagement elements. The automatic transmission includes an oil pump that generates hydraulic pressure supplied to a plurality of solenoids and a plurality of friction engagement elements, and a solenoid that is energized when forming a predetermined shift stage among the plurality of solenoids. The first oil passage connected, the second oil passage connected to the oil pump, the second oil passage different from the first oil passage, and when the solenoid is operated, the first oil passage is connected to a plurality of friction engagement elements. Are connected to a frictional engagement element used to form a predetermined shift stage, and the second oil passage is shut off from the frictional engagement element. When the solenoid is stopped, the first oil passage is connected to the friction engagement element. A circuit is provided that shuts off the coupling element and connects the second oil passage to the frictional engagement element.
 この発明によると、フェールが発生していない場合において、ソレノイドの作動により複数の摩擦係合要素の各々を係合状態および解放状態のうちのいずれかの状態にすることができる。フェールが発生した場合において、ソレノイドの作動の停止によりソレノイドを経由せずに複数の摩擦係合要素の各々を係合状態および解放状態のうちのいずれかの状態にすることができる。これにより、複数のソレノイドの作動を停止したときに複数の変速段のうちの予め定められた変速段を形成することができる。 According to the present invention, when no failure occurs, each of the plurality of friction engagement elements can be brought into either the engaged state or the released state by the operation of the solenoid. When a failure occurs, each of the plurality of friction engagement elements can be brought into either the engaged state or the released state without passing through the solenoid by stopping the operation of the solenoid. As a result, a predetermined shift stage among the plurality of shift stages can be formed when the operation of the plurality of solenoids is stopped.
本実施の形態に係る自動変速機の制御装置であるECUにより制御されるパワートレーンを示す概略構成図である。It is a schematic block diagram which shows the power train controlled by ECU which is a control apparatus of the automatic transmission which concerns on this Embodiment. オートマチックトランスミッションにおけるギヤトレーンを示すスケルトン図である。It is a skeleton figure which shows the gear train in an automatic transmission. オートマチックトランスミッションの作動表を示す図である。It is a figure which shows the operation | movement table | surface of an automatic transmission. オートマチックトランスミッションにおける油圧回路の要部を示す図である。It is a figure which shows the principal part of the hydraulic circuit in an automatic transmission. 各ギヤ段と、各リニアソレノイド、各ブレーキおよび各クラッチの対応を表した作動表を示す図である。It is a figure which shows the action | operation table | surface showing each gear stage, each linear solenoid, each brake, and each clutch. 本実施の形態に係る車両の制御装置であるECUの機能ブロック図である。It is a functional block diagram of ECU which is a control device of vehicles concerning this embodiment. 本実施の形態に係る車両の制御装置であるECUで実行されるプログラムの制御構造を示すフローチャートである。It is a flowchart which shows the control structure of the program performed with ECU which is the control apparatus of the vehicle which concerns on this Embodiment.
符号の説明Explanation of symbols
 300 入力I/F、400 演算処理部、402 変速不可判定部、404 車速判定部、406,408 フェールセーフ処理部、500 記憶部、600 出力I/F、1000 エンジン、2000 オートマチックトランスミッション、3000 プラネタリギヤユニット、3100 入力軸、3200 トルクコンバータ、3210 出力軸、3610 B1ブレーキ、3620 B2ブレーキ、3630 B3ブレーキ、3640 C1クラッチ、3650 C2クラッチ、3660 ワンウェイクラッチF、4000 油圧回路、4004 オイルポンプ、4006 プライマリレギュレータバルブ、4100 マニュアルバルブ、4200 ソレノイドモジュレータバルブ、4210 SL1リニアソレノイド、4220 SL2リニアソレノイド、4230 SL3リニアソレノイド、4240 SL4リニアソレノイド、4300 SLTリニアソレノイド、4500 B2コントロールバルブ、5000 ディファレンシャルギヤ、6000 ドライブシャフト、7000 前輪、8000 ECU、8002 車速センサ、8004 シフトレバー、8006 ポジションスイッチ、8008 アクセルペダル、8010 アクセル開度センサ、8012 ブレーキペダル、8014 ストロークセンサ、8016 電子スロットルバルブ、8018 スロットル開度センサ、8020 エンジン回転数センサ、8022 入力軸回転数センサ、8024 出力軸回転数センサ。 300 input I / F, 400 arithmetic processing unit, 402 shift impossible determination unit, 404 vehicle speed determination unit, 406, 408 fail safe processing unit, 500 storage unit, 600 output I / F, 1000 engine, 2000 automatic transmission, 3000 planetary gear unit 3100 input shaft, 3200 torque converter, 3210 output shaft, 3610 B1 brake, 3620 B2 brake, 3630 B3 brake, 3640 C1 clutch, 3650 C2 clutch, 3660 one-way clutch F, 4000 hydraulic circuit, 4004 oil pump, 4006 primary regulator valve 4100 Manual valve, 4200 Solenoid modulator valve, 4210 SL1 linear solenoid, 422 SL2 linear solenoid, 4230 SL3 linear solenoid, 4240 SL4 linear solenoid, 4300 SLT linear solenoid, 4500 B2 control valve, 5000 differential gear, 6000 drive shaft, 7000 front wheel, 8000 ECU, 8002 vehicle speed sensor, 8004 shift lever, 8006 position switch, 8008 Accelerator pedal, 8010 Accelerator opening sensor, 8012 Brake pedal, 8014 Stroke sensor, 8016 Electronic throttle valve, 8018 Throttle opening sensor, 8020 Engine speed sensor, 8022 Input shaft speed sensor, 8024 Output shaft speed sensor.
 以下、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがってそれらについての詳細な説明は繰返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the same parts are denoted by the same reference numerals. Their names and functions are also the same. Therefore, detailed description thereof will not be repeated.
 図1を参照して、本発明の実施の形態に係る制御装置を搭載した車両について説明する。この車両は、FF(Front engine Front drive)車両である。なお、FF以外の車両であってもよい。 A vehicle equipped with a control device according to an embodiment of the present invention will be described with reference to FIG. This vehicle is an FF (Front engine Front drive) vehicle. A vehicle other than FF may be used.
 車両は、エンジン1000と、オートマチックトランスミッション2000と、オートマチックトランスミッション2000の一部を構成するプラネタリギヤユニット3000と、オートマチックトランスミッション2000の一部を構成する油圧回路4000と、ディファレンシャルギヤ5000と、ドライブシャフト6000と、前輪7000と、ECU(Electronic Control Unit)8000とを含む。本発明に係る自動変速機の制御装置は、ECU8000により実現される。 The vehicle includes an engine 1000, an automatic transmission 2000, a planetary gear unit 3000 that forms part of the automatic transmission 2000, a hydraulic circuit 4000 that forms part of the automatic transmission 2000, a differential gear 5000, a drive shaft 6000, Includes front wheel 7000 and ECU (Electronic Control Unit) 8000. The control apparatus for an automatic transmission according to the present invention is realized by ECU 8000.
 エンジン1000は、インジェクタ(図示せず)から噴射された燃料と空気との混合気を、シリンダの燃焼室内で燃焼させる内燃機関である。燃焼によりシリンダ内のピストンが押し下げられて、クランクシャフトが回転させられる。 Engine 1000 is an internal combustion engine that burns a mixture of fuel and air injected from an injector (not shown) in a combustion chamber of a cylinder. The piston in the cylinder is pushed down by the combustion, and the crankshaft is rotated.
 オートマチックトランスミッション2000は、オートマチックトランスミッション2000の一部を構成するトルクコンバータ3200を介してエンジン1000に連結される。オートマチックトランスミッション2000は、所望の変速段を形成することにより、クランクシャフトの回転数を所望の回転数に変速する。 The automatic transmission 2000 is connected to the engine 1000 via a torque converter 3200 that constitutes a part of the automatic transmission 2000. Automatic transmission 2000 changes the rotational speed of the crankshaft to a desired rotational speed by forming a desired gear stage.
 オートマチックトランスミッション2000の出力ギヤは、ディファレンシャルギヤ5000と噛合っている。ディファレンシャルギヤ5000にはドライブシャフト6000がスプライン嵌合などによって連結される。ドライブシャフト6000を介して、左右の前輪7000に動力が伝達される。 The output gear of automatic transmission 2000 meshes with differential gear 5000. A drive shaft 6000 is connected to the differential gear 5000 by spline fitting or the like. Power is transmitted to the left and right front wheels 7000 via the drive shaft 6000.
 ECU8000には、車速センサ8002と、シフトレバー8004のポジションスイッチ8006と、アクセルペダル8008のアクセル開度センサ8010と、ブレーキペダル8012のストロークセンサ8014と、電子スロットルバルブ8016のスロットル開度センサ8018と、エンジン回転数センサ8020と、入力軸回転数センサ8022と、出力軸回転数センサ8024とがハーネスなどを介在させて接続されている。 The ECU 8000 includes a vehicle speed sensor 8002, a position switch 8006 of a shift lever 8004, an accelerator opening sensor 8010 of an accelerator pedal 8008, a stroke sensor 8014 of a brake pedal 8012, a throttle opening sensor 8018 of an electronic throttle valve 8016, An engine speed sensor 8020, an input shaft speed sensor 8022, and an output shaft speed sensor 8024 are connected via a harness or the like.
 車速センサ8002は、ドライブシャフト6000の回転数を検出し、検出結果を表す信号をECU8000に送信する。ECU8000は、受信したドライブシャフト6000の回転数に基づいて車両の速度を演算する。シフトレバー8004の位置は、ポジションスイッチ8006により検出され、検出結果を表す信号がECU8000に送信される。シフトレバー8004の位置に対応して、オートマチックトランスミッション2000の変速段が自動で形成される。 The vehicle speed sensor 8002 detects the rotational speed of the drive shaft 6000 and transmits a signal indicating the detection result to the ECU 8000. ECU 8000 calculates the speed of the vehicle based on the received rotational speed of drive shaft 6000. The position of shift lever 8004 is detected by position switch 8006, and a signal indicating the detection result is transmitted to ECU 8000. Corresponding to the position of the shift lever 8004, the gear stage of the automatic transmission 2000 is automatically formed.
 アクセル開度センサ8010は、アクセルペダル8008の開度を検出し、検出結果を表す信号をECU8000に送信する。ストロークセンサ8014は、ブレーキペダル8012のストローク量を検出し、検出結果を表す信号をECU8000に送信する。 Accelerator opening sensor 8010 detects the opening of accelerator pedal 8008 and transmits a signal representing the detection result to ECU 8000. Stroke sensor 8014 detects the stroke amount of brake pedal 8012 and transmits a signal representing the detection result to ECU 8000.
 スロットル開度センサ8018は、アクチュエータにより開度が調整される電子スロットルバルブ8016の開度を検出し、検出結果を表す信号をECU8000に送信する。電子スロットルバルブ8016により、エンジン1000に吸入される空気量(エンジン1000の出力)が調整される。 The throttle opening sensor 8018 detects the opening of the electronic throttle valve 8016 whose opening is adjusted by the actuator, and transmits a signal representing the detection result to the ECU 8000. Electronic throttle valve 8016 adjusts the amount of air taken into engine 1000 (output of engine 1000).
 エンジン回転数センサ8020は、エンジン1000の出力軸(クランクシャフト)の回転数を検出し、検出結果を表す信号をECU8000に送信する。入力軸回転数センサ8022は、オートマチックトランスミッション2000の入力軸回転数(以下、タービン回転数ともいう)NTを検出し、検出結果を表す信号をECU8000に送信する。出力軸回転数センサ8024は、オートマチックトランスミッション2000の出力軸回転数NOを検出し、検出結果を表す信号をECU8000に送信する。 Engine rotation speed sensor 8020 detects the rotation speed of the output shaft (crankshaft) of engine 1000 and transmits a signal representing the detection result to ECU 8000. Input shaft rotational speed sensor 8022 detects input shaft rotational speed (hereinafter also referred to as turbine rotational speed) NT of automatic transmission 2000, and transmits a signal representing the detection result to ECU 8000. Output shaft rotational speed sensor 8024 detects output shaft rotational speed NO of automatic transmission 2000 and transmits a signal representing the detection result to ECU 8000.
 なお、エンジン1000の出力軸は、トルクコンバータ3200の入力軸に接続され、トルクコンバータ3200の出力軸は、オートマチックトランスミッション2000の入力軸に接続されるため、エンジン1000の出力軸の回転数は、トルクコンバータ3200の入力軸の回転数と同じ回転数となる。また、オートマチックトランスミッション2000の入力軸回転数は、トルクコンバータ3200の出力軸の回転数と同じ回転数である。 Since the output shaft of engine 1000 is connected to the input shaft of torque converter 3200 and the output shaft of torque converter 3200 is connected to the input shaft of automatic transmission 2000, the rotational speed of the output shaft of engine 1000 is the torque. The rotational speed is the same as the rotational speed of the input shaft of converter 3200. Further, the input shaft rotation speed of automatic transmission 2000 is the same as the rotation speed of the output shaft of torque converter 3200.
 ECU8000は、車速センサ8002、ポジションスイッチ8006、アクセル開度センサ8010、ストロークセンサ8014、スロットル開度センサ8018、エンジン回転数センサ8020、入力軸回転数センサ8022、出力軸回転数センサ8024などから送られてきた信号、ROM(Read Only Memory)に記憶されたマップおよびプログラムに基づいて、車両が所望の走行状態となるように、機器類を制御する。 ECU 8000 is sent from vehicle speed sensor 8002, position switch 8006, accelerator opening sensor 8010, stroke sensor 8014, throttle opening sensor 8018, engine speed sensor 8020, input shaft speed sensor 8022, output shaft speed sensor 8024, and the like. Based on the received signal, a map stored in a ROM (Read Only Memory) and a program, the devices are controlled so that the vehicle is in a desired running state.
 本実施の形態において、ECU8000は、シフトレバー8004がD(ドライブ)ポジションに位置することにより、オートマチックトランスミッション2000のシフトレンジにD(ドライブ)レンジが選択された場合、1速~6速段の変速段のうちのいずれかの変速段が形成されるように、オートマチックトランスミッション2000を制御する。1速~6速段のうちのいずれかの変速段が形成されることにより、オートマチックトランスミッション2000は前輪7000に駆動力を伝達し得る。 In the present embodiment, ECU 8000 shifts 1st to 6th gears when D (drive) range is selected as the shift range of automatic transmission 2000 when shift lever 8004 is located at the D (drive) position. Automatic transmission 2000 is controlled so that one of the gears is formed. The automatic transmission 2000 can transmit the driving force to the front wheels 7000 by forming any one of the first to sixth gears.
 シフトレバー8004がN(ニュートラル)ポジションであることにより、オートマチックトランスミッション2000のシフトレンジにN(ニュートラル)レンジが選択された場合、ニュートラル状態(動力伝達遮断状態)になるように、オートマチックトランスミッション2000が制御される。 When the shift lever 8004 is in the N (neutral) position, when the N (neutral) range is selected as the shift range of the automatic transmission 2000, the automatic transmission 2000 is controlled so as to be in the neutral state (power transmission cut-off state). Is done.
 図2を参照して、オートマチックトランスミッション2000内に設けられたプラネタリギヤユニット3000について説明する。プラネタリギヤユニット3000は、クランクシャフトに連結された入力軸3100を有するトルクコンバータ3200に接続されている。プラネタリギヤユニット3000は、遊星歯車機構の第1セット3300と、遊星歯車機構の第2セット3400と、出力ギヤ3500と、ギヤケース3600に固定されたB1ブレーキ3610、B2ブレーキ3620およびB3ブレーキ3630と、C1クラッチ3640およびC2クラッチ3650と、ワンウェイクラッチF3660とを含む。 The planetary gear unit 3000 provided in the automatic transmission 2000 will be described with reference to FIG. Planetary gear unit 3000 is connected to a torque converter 3200 having an input shaft 3100 coupled to a crankshaft. Planetary gear unit 3000 includes first set 3300 of planetary gear mechanisms, second set 3400 of planetary gear mechanisms, output gear 3500, B1 brake 3610, B2 brake 3620 and B3 brake 3630 fixed to gear case 3600, and C1. Clutch 3640 and C2 clutch 3650, and one-way clutch F3660 are included.
 第1セット3300は、シングルピニオン型の遊星歯車機構である。第1セット3300は、サンギヤS(UD)3310と、ピニオンギヤ3320と、リングギヤR(UD)3330と、キャリアC(UD)3340とを含む。 The first set 3300 is a single pinion type planetary gear mechanism. First set 3300 includes sun gear S (UD) 3310, pinion gear 3320, ring gear R (UD) 3330, and carrier C (UD) 3340.
 サンギヤS(UD)3310は、トルクコンバータ3200の出力軸3210に連結されている。ピニオンギヤ3320は、キャリアC(UD)3340に回転自在に支持されている。ピニオンギヤ3320は、サンギヤS(UD)3310およびリングギヤR(UD)3330と噛合している。 Sun gear S (UD) 3310 is connected to output shaft 3210 of torque converter 3200. Pinion gear 3320 is rotatably supported by carrier C (UD) 3340. Pinion gear 3320 is in mesh with sun gear S (UD) 3310 and ring gear R (UD) 3330.
 リングギヤR(UD)3330は、B3ブレーキ3630によりギヤケース3600に固定される。キャリアC(UD)3340は、B1ブレーキ3610によりギヤケース3600に固定される。 Ring gear R (UD) 3330 is fixed to gear case 3600 by B3 brake 3630. Carrier C (UD) 3340 is fixed to gear case 3600 by B1 brake 3610.
 第2セット3400は、ラビニヨ型の遊星歯車機構である。第2セット3400は、サンギヤS(D)3410と、ショートピニオンギヤ3420と、キャリアC(1)3422と、ロングピニオンギヤ3430と、キャリアC(2)3432と、サンギヤS(S)3440と、リングギヤR(1)(R(2))3450とを含む。 The second set 3400 is a Ravigneaux type planetary gear mechanism. The second set 3400 includes a sun gear S (D) 3410, a short pinion gear 3420, a carrier C (1) 3422, a long pinion gear 3430, a carrier C (2) 3432, a sun gear S (S) 3440, and a ring gear R. (1) (R (2)) 3450.
 サンギヤS(D)3410は、キャリアC(UD)3340に連結されている。ショートピニオンギヤ3420は、キャリアC(1)3422に回転自在に支持されている。ショートピニオンギヤ3420は、サンギヤS(D)3410およびロングピニオンギヤ3430と噛合している。キャリアC(1)3422は、出力ギヤ3500に連結されている。 Sun gear S (D) 3410 is connected to carrier C (UD) 3340. Short pinion gear 3420 is rotatably supported by carrier C (1) 3422. Short pinion gear 3420 is in mesh with sun gear S (D) 3410 and long pinion gear 3430. Carrier C (1) 3422 is coupled to output gear 3500.
 ロングピニオンギヤ3430は、キャリアC(2)3432に回転自在に支持されている。ロングピニオンギヤ3430は、ショートピニオンギヤ3420、サンギヤS(S)3440およびリングギヤR(1)(R(2))3450と噛合している。キャリアC(2)3432は、出力ギヤ3500に連結されている。 The long pinion gear 3430 is rotatably supported by the carrier C (2) 3432. Long pinion gear 3430 is in mesh with short pinion gear 3420, sun gear S (S) 3440, and ring gear R (1) (R (2)) 3450. Carrier C (2) 3432 is coupled to output gear 3500.
 サンギヤS(S)3440は、C1クラッチ3640によりトルクコンバータ3200の出力軸3210に連結される。リングギヤR(1)(R(2))3450は、B2ブレーキ3620により、ギヤケース3600に固定され、C2クラッチ3650によりトルクコンバータ3200の出力軸3210に連結される。また、リングギヤR(1)(R(2))3450は、ワンウェイクラッチF3660に連結されており、1速段の駆動時に回転不能となる。 Sun gear S (S) 3440 is connected to output shaft 3210 of torque converter 3200 by C1 clutch 3640. Ring gear R (1) (R (2)) 3450 is fixed to gear case 3600 by B2 brake 3620 and connected to output shaft 3210 of torque converter 3200 by C2 clutch 3650. The ring gear R (1) (R (2)) 3450 is connected to the one-way clutch F3660 and cannot rotate when the first gear is driven.
 ワンウェイクラッチF3660は、B2ブレーキ3620と並列に設けられる。すなわち、ワンウェイクラッチF3660のアウターレースはギヤケース3600に固定され、インナーレースはリングギヤR(1)(R(2))3450に回転軸を介して連結される。 The one-way clutch F3660 is provided in parallel with the B2 brake 3620. That is, the outer race of the one-way clutch F3660 is fixed to the gear case 3600, and the inner race is connected to the ring gear R (1) (R (2)) 3450 via the rotation shaft.
 B1ブレーキ3610、B2ブレーキ3620、B3ブレーキ3630、C1クラッチ3640およびC2クラッチ3650は、入力側の摩擦部材と、出力側の摩擦部材と、摩擦部材に押圧力を付与するピストンと、油圧をピストンに付与する油圧室とを含む摩擦係合要素であって、入力側の摩擦部材および出力側の摩擦部材は、たとえば、入力側および出力側にそれぞれ複数の摩擦部材を有する多板クラッチを含む。 The B1 brake 3610, the B2 brake 3620, the B3 brake 3630, the C1 clutch 3640, and the C2 clutch 3650 include an input-side friction member, an output-side friction member, a piston that applies a pressing force to the friction member, and hydraulic pressure to the piston. An input side friction member and an output side friction member include, for example, a multi-plate clutch having a plurality of friction members on the input side and the output side, respectively.
 図3に、各変速段と、各クラッチ要素および各ブレーキ要素の作動状態との関係を表した作動表を示す。この作動表に示された組み合わせで各ブレーキ要素および各クラッチ要素を作動させることにより、1速~6速の前進側の変速段と、後進側の変速段とが形成される。 FIG. 3 shows an operation table showing the relationship between each shift speed and the operation state of each clutch element and each brake element. By operating each brake element and each clutch element in the combination shown in this operation table, a forward speed stage of 1st to 6th speed and a reverse speed stage are formed.
 図3に示すように、C1クラッチ3640は、1速段~4速段の全ての変速段において係合される。すなわち、C1クラッチ3640は、1速段~4速段における入力クラッチであるといえる。C2クラッチ3650は、5速段および6速段において係合される。すなわち、C2クラッチ3650は、5速段および6速段における入力クラッチであるといえる。なお、図3に示す作動表は、一例であって、特に作動表に示された組合せに限定されるものではない。 As shown in FIG. 3, the C1 clutch 3640 is engaged in all the first to fourth gears. That is, it can be said that the C1 clutch 3640 is an input clutch in the first to fourth gears. C2 clutch 3650 is engaged at the fifth speed and the sixth speed. That is, it can be said that C2 clutch 3650 is an input clutch at the fifth speed and the sixth speed. The operation table shown in FIG. 3 is an example, and is not particularly limited to the combinations shown in the operation table.
 なお、本実施の形態においては、2つの入力クラッチを有する自動変速機に本発明を適用する場合について説明するが、1つ以上の入力クラッチを有する自動変速機であれば特に限定されるものではない。 In the present embodiment, the case where the present invention is applied to an automatic transmission having two input clutches will be described. However, the present invention is not particularly limited as long as it is an automatic transmission having one or more input clutches. Absent.
 図4を参照して、油圧回路4000の要部について説明する。なお、油圧回路4000は、以下に説明するものに限られない。 The main part of the hydraulic circuit 4000 will be described with reference to FIG. The hydraulic circuit 4000 is not limited to the one described below.
 油圧回路4000は、オイルポンプ4004と、マニュアルバルブ4100と、ソレノイドモジュレータバルブ4200と、プライマリレギュレータバルブ4202と、SL1リニアソレノイド(以下、SL(1)と記載する)4210と、SL2リニアソレノイド(以下、SL(2)と記載する)4220と、SL3リニアソレノイド(以下、SL(3)と記載する)4230と、SL4リニアソレノイド(以下、SL(4)と記載する)4240と、SLTリニアソレノイド(以下、SLTと記載する)4300と、クラッチコントロールバルブ4400と、シーケンスバルブ4500とを含む。 The hydraulic circuit 4000 includes an oil pump 4004, a manual valve 4100, a solenoid modulator valve 4200, a primary regulator valve 4202, an SL1 linear solenoid (hereinafter referred to as SL (1)) 4210, and an SL2 linear solenoid (hereinafter referred to as “linear solenoid valve”). 4220, SL3 linear solenoid (hereinafter referred to as SL (3)) 4230, SL4 linear solenoid (hereinafter referred to as SL (4)) 4240, and SLT linear solenoid (hereinafter referred to as SL (2)). 4), a clutch control valve 4400, and a sequence valve 4500.
 オイルポンプ4004は、エンジン1000のクランクシャフトに連結されている。クランクシャフトが回転することにより、オイルポンプ4004が駆動し、油圧を発生する。オイルポンプ4004で発生した油圧は、プライマリレギュレータバルブ4202により調整され、ライン圧が生成される。 Oil pump 4004 is connected to the crankshaft of engine 1000. As the crankshaft rotates, the oil pump 4004 is driven to generate hydraulic pressure. The hydraulic pressure generated by the oil pump 4004 is adjusted by the primary regulator valve 4202, and a line pressure is generated.
 プライマリレギュレータバルブ4202は、SLT4300により調圧されたスロットル圧をパイロット圧として作動する。スロットル圧が高くなるほど、ライン圧は高くなる。ライン圧はPL油路4010を介して、マニュアルバルブ4100、ソレノイドモジュレータバルブ4200およびSL(4)4240に供給される。 Primary regulator valve 4202 operates using the throttle pressure regulated by SLT 4300 as a pilot pressure. The higher the throttle pressure, the higher the line pressure. The line pressure is supplied to the manual valve 4100, the solenoid modulator valve 4200, and the SL (4) 4240 via the PL oil passage 4010.
 マニュアルバルブ4100は、シフトレバー8004に連結されている。シフトレバー8004の位置に応じて、マニュアルバルブ4100のスプールの位置が変更される。スプールがドライブ位置(D)にある場合、ライン圧は、Dレンジ油路4102に供給される。スプールがリバース位置(R)にある場合、オイルポンプ4004で発生した油圧は、Rレンジ油路4104に供給される。 Manual valve 4100 is connected to shift lever 8004. The position of the spool of the manual valve 4100 is changed according to the position of the shift lever 8004. When the spool is in the drive position (D), the line pressure is supplied to the D range oil passage 4102. When the spool is in the reverse position (R), the hydraulic pressure generated by the oil pump 4004 is supplied to the R range oil passage 4104.
 Dレンジ圧油路4102に供給された油圧は、SL(1)4210、SL(2)4220、SL(3)4230および油路4106を経由して、最終的には、B1ブレーキ3610、B2ブレーキ3620、C1クラッチ3640およびC2クラッチ3650に供給される。Rレンジ圧油路4104に供給された油圧は、最終的には、B2ブレーキ3620に供給される。 The oil pressure supplied to the D-range pressure oil passage 4102 passes through the SL (1) 4210, SL (2) 4220, SL (3) 4230, and the oil passage 4106, and finally the B1 brake 3610 and the B2 brake. 3620, C1 clutch 3640 and C2 clutch 3650. The hydraulic pressure supplied to the R range pressure oil passage 4104 is finally supplied to the B2 brake 3620.
 ソレノイドモジュレータバルブ4200は、ライン圧を元圧とし、SLT4300に供給する油圧(ソレノイドモジュレータ圧)を一定の圧力に調圧する。 Solenoid modulator valve 4200 adjusts the hydraulic pressure (solenoid modulator pressure) supplied to SLT 4300 to a constant pressure using the line pressure as the original pressure.
 SL(1)4210は、非通電時に油圧を遮断するノーマルクローズタイプのリニアソレノイドバルブである。SL(1)4210は、Dレンジ油路4102に接続され、SL1油路4212を介してクラッチコントロールバルブ4400およびシーケンスバルブ4500に接続されている。SL(1)4210は、C1クラッチ3640のサーボに供給される油圧を制御する。 SL (1) 4210 is a normally closed type linear solenoid valve that shuts off hydraulic pressure when not energized. SL (1) 4210 is connected to the D-range oil passage 4102 and is connected to the clutch control valve 4400 and the sequence valve 4500 via the SL1 oil passage 4212. SL (1) 4210 controls the hydraulic pressure supplied to the servo of the C1 clutch 3640.
 SL(2)4220は、非通電時に油圧を遮断するノーマルクローズタイプのリニアソレノイドバルブである。SL(2)4220は、Dレンジ油路4102に接続され、SL2油路4222を介してクラッチコントロールバルブ4400およびシーケンスバルブ4500に接続されている。SL(2)4220は、C2クラッチ3650のサーボに供給される油圧を制御する。 SL (2) 4220 is a normally closed type linear solenoid valve that shuts off hydraulic pressure when not energized. SL (2) 4220 is connected to D range oil passage 4102 and is connected to clutch control valve 4400 and sequence valve 4500 via SL2 oil passage 4222. SL (2) 4220 controls the hydraulic pressure supplied to the servo of C2 clutch 3650.
 SL(3)4230は、非通電時に油圧を遮断するノーマルクローズタイプのリニアソレノイドバルブである。SL(3)4230は、Dレンジ油路4102に接続されている。SL(3)4230は、B1ブレーキ3610のサーボに供給される油圧を制御する。 SL (3) 4230 is a normally closed type linear solenoid valve that shuts off hydraulic pressure when not energized. SL (3) 4230 is connected to the D-range oil passage 4102. SL (3) 4230 controls the hydraulic pressure supplied to the servo of the B1 brake 3610.
 SL(4)4240は、非通電時に油圧を遮断するノーマルクローズタイプのリニアソレノイドバルブである。SL(4)4240は、PL油路4010に接続され、SL4油路4242を介してシーケンスバルブ4500に接続されている。SL(4)4240は、B3ブレーキ3630のサーボに供給される油圧を制御する。 SL (4) 4240 is a normally closed type linear solenoid valve that shuts off hydraulic pressure when not energized. SL (4) 4240 is connected to the PL oil passage 4010 and is connected to the sequence valve 4500 via the SL4 oil passage 4242. SL (4) 4240 controls the hydraulic pressure supplied to the servo of the B3 brake 3630.
 SLT4300は、非通電時に油圧を供給可能なノーマルオープンタイプのリニアソレノイドバルブである。SLT4300は、アクセルペダル8006のアクセル開度、エンジン1000の吸入空気量、エンジン1000の水温およびエンジン1000の回転数などに基づいて生成されたトルク情報に応じて、ソレノイドモジュレータ圧を調整し、スロットル圧を作り出す。SLT4300で調整されたスロットル圧は、SLT油路4302を経由してシーケンスバルブ4500およびプライマリレギュレータバルブ4202に供給される。スロットル圧は、プライマリレギュレータバルブ4006のパイロット圧として利用される。 The SLT4300 is a normally open type linear solenoid valve that can supply hydraulic pressure when not energized. The SLT 4300 adjusts the solenoid modulator pressure in accordance with the torque information generated based on the accelerator opening of the accelerator pedal 8006, the intake air amount of the engine 1000, the water temperature of the engine 1000, the rotational speed of the engine 1000, etc. To produce. The throttle pressure adjusted by SLT 4300 is supplied to sequence valve 4500 and primary regulator valve 4202 via SLT oil passage 4302. The throttle pressure is used as a pilot pressure for the primary regulator valve 4006.
 クラッチコントロールバルブ4400は、Dポート(C)4410と、低速段ポート(C)4412と、高速段ポート(C)4414と、SL1ポート(C)4420と、SL2ポート(C)4422と、ドレンポート4430と、ポート4440と、SLポート(C)4450とを含む。 Clutch control valve 4400 includes D port (C) 4410, low speed port (C) 4412, high speed port (C) 4414, SL1 port (C) 4420, SL2 port (C) 4422, and drain port. 4430, port 4440, and SL port (C) 4450.
 Dポート(C)4410は、Dレンジ油路4102に接続されている。Dポート(C)4410は、クラッチコントロールバルブ4400のスプールにより、低速段ポート(C)4412および高速段ポート(C)4414のいずれか一方と連通する。 D port (C) 4410 is connected to D range oil passage 4102. The D port (C) 4410 communicates with either the low speed stage port (C) 4412 or the high speed stage port (C) 4414 by the spool of the clutch control valve 4400.
 低速段ポート(C)4412は、1~4速段が形成されている場合、Dポート(C)4410と連通する。低速段ポート(C)4412は、高速段ポート(C)4414がDポート(C)4410と連通している場合、ドレンポート4430と連通する。低速段ポート(C)4412は、低速段油路4416を経由してシーケンスバルブ4500に接続されている。 The low speed port (C) 4412 communicates with the D port (C) 4410 when the first to fourth speed stages are formed. The low speed stage port (C) 4412 communicates with the drain port 4430 when the high speed stage port (C) 4414 communicates with the D port (C) 4410. Low speed port (C) 4412 is connected to sequence valve 4500 via low speed oil passage 4416.
 高速段ポート(C)4414は、5または6速段が形成されている場合、Dポート(C)4410と連通する。高速段ポート(C)4414は、高速段油路4418を経由してシーケンスバルブ4500に接続されている。 The high-speed port (C) 4414 communicates with the D port (C) 4410 when the 5th or 6th gear is formed. High speed stage port (C) 4414 is connected to sequence valve 4500 via high speed stage oil passage 4418.
 SL1ポート(C)4420は、SL1油路4212に接続されている。SL2ポート(C)4422は、SL2油路4222に接続されている。ポート4440は、高速段油路4418に接続されている。ポート4440は、低速段ポート(C)4412がDポート(C)4410と連通している場合、ドレンポート4430と連通する。 SL1 port (C) 4420 is connected to SL1 oil passage 4212. The SL2 port (C) 4422 is connected to the SL2 oil passage 4222. Port 4440 is connected to high-speed oil passage 4418. Port 4440 communicates with drain port 4430 when low speed port (C) 4412 communicates with D port (C) 4410.
 クラッチコントロールバルブ4400は、SL1ポート(C)4420に供給された油圧、SL2ポート(C)4422に供給された油圧、ポート4440に供給された油圧およびスプリングにより制御される。 Clutch control valve 4400 is controlled by the hydraulic pressure supplied to SL1 port (C) 4420, the hydraulic pressure supplied to SL2 port (C) 4422, the hydraulic pressure supplied to port 4440, and a spring.
 SLポート(C)4450は、SL油路4452を介してシーケンスバルブ4500に接続されている。1~4速段が形成されている場合、SL油路4452には、SLポート(C)4450を介して、SL(1)4210により調整された油圧が供給される。5または6速段が形成されている場合、SL油路4452には、SLポート(C)4450を介して、SL(2)4220により調整された油圧が供給される。 SL port (C) 4450 is connected to sequence valve 4500 via SL oil passage 4452. When the first to fourth gears are formed, the hydraulic pressure adjusted by the SL (1) 4210 is supplied to the SL oil passage 4452 via the SL port (C) 4450. When the fifth or sixth gear is formed, the hydraulic pressure adjusted by the SL (2) 4220 is supplied to the SL oil passage 4452 via the SL port (C) 4450.
 シーケンスバルブ4500は、SL1ポート(S)4510と、低速段ポート(S)4512と、C1ポート4514と、SL2(S)ポート4520と、高速段ポート(S)4522と、C2ポート4524と、SL4ポート4530と、Dポート(S)4532と、B3ポート4534と、SLTポート4540と、モジュレータポート4542と、SLポート(S)4544とを含む。 The sequence valve 4500 includes an SL1 port (S) 4510, a low speed stage port (S) 4512, a C1 port 4514, an SL2 (S) port 4520, a high speed stage port (S) 4522, a C2 port 4524, and an SL4. Port 4530, D port (S) 4532, B3 port 4534, SLT port 4540, modulator port 4542, and SL port (S) 4544 are included.
 SL1ポート(S)4510は、SL1油路4212に接続されている。低速段ポート(S)4512は、低速段油路4416に接続されている。C1ポート4514は、C1油路4516を介してC1クラッチ3640のサーボに接続されている。C1ポート4514は、シーケンスバルブ4500のスプールにより、SL1ポート(S)4510および低速段ポート(S)4512のいずれか一方と連通する。 The SL1 port (S) 4510 is connected to the SL1 oil passage 4212. The low speed stage port (S) 4512 is connected to the low speed stage oil passage 4416. C1 port 4514 is connected to the servo of C1 clutch 3640 via C1 oil passage 4516. The C1 port 4514 communicates with either the SL1 port (S) 4510 or the low speed stage port (S) 4512 by the spool of the sequence valve 4500.
 SL2ポート(S)4520は、SL2油路4222に接続されている。高速段ポート(S)4522は、高速段油路4418に接続されている。C2ポート4524は、C2油路4526を介してC2クラッチ3650のサーボに接続されている。C2ポート4524は、シーケンスバルブ4500のスプールにより、SL2ポート(S)4520および高速段ポート(S)4522のいずれか一方と連通する。 SL2 port (S) 4520 is connected to SL2 oil passage 4222. The high speed port (S) 4522 is connected to the high speed oil passage 4418. C2 port 4524 is connected to the servo of C2 clutch 3650 via C2 oil passage 4526. C2 port 4524 communicates with either SL2 port (S) 4520 or high-speed port (S) 4522 by the spool of sequence valve 4500.
 SL4ポート4530は、SL4油路4242と接続されている。Dポート(S)4532は、Dレンジ油路4102と接続されている。B3ポート4534は、B3油路4536を介してB3ブレーキ3630のサーボに接続されている。B3ポート4534は、シーケンスバルブ4500のスプールにより、SL4ポート4530およびDポート(S)4532のいずれか一方と連通する。 SL4 port 4530 is connected to SL4 oil passage 4242. D port (S) 4532 is connected to D range oil passage 4102. The B3 port 4534 is connected to the servo of the B3 brake 3630 via the B3 oil passage 4536. The B3 port 4534 communicates with either the SL4 port 4530 or the D port (S) 4532 by the spool of the sequence valve 4500.
 SLTポート4540は、SLT油路4302に接続されている。モジュレータポート4542は、ソレノイドモジュレータバルブ4200に接続されている。SLポート(S)4544は、SL油路4452に接続されている。 The SLT port 4540 is connected to the SLT oil passage 4302. Modulator port 4542 is connected to solenoid modulator valve 4200. SL port (S) 4544 is connected to SL oil passage 4452.
 シーケンスバルブ4500は、SLTポート4540に供給された油圧(スロットル圧)、モジュレータポート4542に供給された油圧(ソレノイドモジュレータ圧)、SLポート(S)4544に供給された油圧(SL(1)4210またはSL(2)4220により調整された油圧)およびスプリングにより制御される。これにより、シーケンスバルブ4500には、スロットル圧の対向力として、SL(1)4210またはSL(2)4220により調整された油圧が用いられる。そのため、シーケンスバルブ4500の、スロットル圧に対する感度が下げられ、スロットル圧の制御中に、シーケンスバルブ4500が不必要に切換わることが抑制される。 The sequence valve 4500 includes a hydraulic pressure (throttle pressure) supplied to the SLT port 4540, a hydraulic pressure supplied to the modulator port 4542 (solenoid modulator pressure), and a hydraulic pressure supplied to the SL port (S) 4544 (SL (1) 4210 or SL (2) oil pressure adjusted by 4220) and a spring. As a result, the sequence valve 4500 uses the hydraulic pressure adjusted by SL (1) 4210 or SL (2) 4220 as the opposing force of the throttle pressure. Therefore, the sensitivity of the sequence valve 4500 to the throttle pressure is lowered, and the sequence valve 4500 is prevented from being unnecessarily switched during the control of the throttle pressure.
 また、モジュレータポート4542にソレノイドモジュレータバルブ4200から油圧を供給することにより、スプリングの荷重を下げ、スプリングを小さく構成し、シーケンスバルブ4500を小型化することができる。なお、モジュレータポート4542の代わりにドレンポートを設け、ドレンポートから油圧を排出するように構成してもよい。 Further, by supplying hydraulic pressure to the modulator port 4542 from the solenoid modulator valve 4200, the load of the spring can be reduced, the spring can be made smaller, and the sequence valve 4500 can be reduced in size. Note that a drain port may be provided instead of the modulator port 4542 so that the hydraulic pressure is discharged from the drain port.
 本実施の形態において、ECU8000は、車両の速度とアクセル開度とECU8000のメモリに記憶される変速線図とに基づいて車両の走行状態に対応した変速段を決定する。ECU8000は、決定された変速段が形成されるようにSL(1)4210、SL(2)4220、SL(3)4230およびSL(4)4240(以下、単に、SL(1)~(4)と記載する)を制御する。 In the present embodiment, ECU 8000 determines a gear position corresponding to the traveling state of the vehicle based on the speed of the vehicle, the accelerator opening, and the shift diagram stored in the memory of ECU 8000. The ECU 8000 performs SL (1) 4210, SL (2) 4220, SL (3) 4230, and SL (4) 4240 (hereinafter simply referred to as SL (1) to (4) so that the determined shift speed is formed. Control).
 変速線図は、たとえば、アクセル開度と車両の速度とに対応した線図であって、各変速段に対応したアップシフト線およびダウンシフト線が予め設定される。なお、変速線図は、スロットル開度またはアクセル開度と出力軸回転数NOまたは車両の速度とに対応する線図であればよい。ECU8000は、アクセル開度と車両の速度とに基づく変速線図上の位置に基づいて変速段を決定する。 The shift diagram is, for example, a diagram corresponding to the accelerator opening and the vehicle speed, and an upshift line and a downshift line corresponding to each shift stage are set in advance. The shift diagram may be a diagram corresponding to the throttle opening or accelerator opening and the output shaft rotational speed NO or the vehicle speed. ECU 8000 determines the gear position based on the position on the shift map based on the accelerator opening and the vehicle speed.
 また、本実施の形態において油圧回路4000には、SL(1)~SL(4)およびSLT4300の作動を停止すると複数の変速段のうちの予め定められた変速段が形成されるように複数の摩擦係合要素のうちの少なくともいずれか一つを係合状態にする回路が設けられる。 In the present embodiment, hydraulic circuit 4000 has a plurality of shift stages such that a predetermined shift stage among the plurality of shift stages is formed when the operation of SL (1) to SL (4) and SLT 4300 is stopped. A circuit is provided that engages at least one of the friction engagement elements.
 予め定められた変速段は、複数の変速段のうちの高速側の変速段であって、本実施の形態においては、5速段である。 The predetermined shift speed is a high speed shift speed among a plurality of shift speeds, and is the fifth speed speed in the present embodiment.
 より具体的には、たとえば、オートマチックトランスミッション2000においてSL(2)4220がC2クラッチ3650に対して油圧を供給している場合においては(すなわち、5速段もしくは6速段が形成されている場合においては)、クラッチコントロールバルブ4400は、図4の右側の状態になる。すなわち、Dポート(C)4410に供給されるDレンジ圧は、高速段ポート(C)4414からポート4440に供給される。そのため、SL(1)~SL(4)の作動が停止されても、ポート4440へのDレンジ圧の供給が継続する限り、クラッチコントロールバルブ4400は、図4の右側の状態を維持する。 More specifically, for example, in the case where SL (2) 4220 supplies hydraulic pressure to C2 clutch 3650 in automatic transmission 2000 (that is, in the case where the fifth speed stage or the sixth speed stage is formed). The clutch control valve 4400 is in the state on the right side of FIG. That is, the D range pressure supplied to the D port (C) 4410 is supplied from the high speed stage port (C) 4414 to the port 4440. Therefore, even if the operation of SL (1) to SL (4) is stopped, as long as the supply of the D range pressure to the port 4440 continues, the clutch control valve 4400 maintains the state on the right side of FIG.
 また、SLT4300の作動が停止された場合には、SLT4300がノーマルオープンであるため、SLTポート4540には、最高値のスロットル圧が供給される。そのため、シーケンスバルブ4500は、図4の左側の状態になる。また、高速段ポート4522(S)は、C2ポート4524と連通状態になるため、高速段ポート4522(S)に供給されるDレンジ圧は、C2クラッチ3650に供給される。 Further, when the operation of the SLT 4300 is stopped, since the SLT 4300 is normally open, the maximum throttle pressure is supplied to the SLT port 4540. Therefore, the sequence valve 4500 is in the state on the left side of FIG. Further, since the high speed stage port 4522 (S) is in communication with the C2 port 4524, the D range pressure supplied to the high speed stage port 4522 (S) is supplied to the C2 clutch 3650.
 さらに、シーケンスバルブ4500が図4の左側の状態である場合において、B3ポート4534と、Dポート(S)4532とが連通するため、Dポート(S)4532に供給されるDレンジ圧は、B3ブレーキ3630に供給される。 Further, in the case where the sequence valve 4500 is in the state on the left side of FIG. 4, the B3 port 4534 and the D port (S) 4532 communicate with each other, so that the D range pressure supplied to the D port (S) 4532 is B3 It is supplied to the brake 3630.
 このように、たとえば、5速段および6速段が形成されるような車両の速度が高い領域においては、SL(1)~SL(4)およびSLT4300の作動が停止されると5速段が形成されることとなる。 Thus, for example, in a region where the speed of the vehicle is high such that the fifth gear and the sixth gear are formed, when the operations of SL (1) to SL (4) and SLT 4300 are stopped, the fifth gear is Will be formed.
 以上のような自動変速機が搭載される車両において、本発明は、ECU8000が、オートマチックトランスミッション2000の変速状態に基づいて、SL(1)~(4)の作動により複数の変速段のうちのいずれかの変速段が形成できるか否かを判定して、車両の速度が予め定められた速度よりも低いと、形成できないと判定された変速段以外の変速段に変速するようにSL(1)~SL(4)を制御し、車両の速度が予め定められた速度以上であるとSL(1)~(4)およびSLT4300の作動を停止する点に特徴を有する。 In a vehicle equipped with the automatic transmission as described above, the present invention provides the ECU 8000 with any one of a plurality of shift speeds by operating SL (1) to (4) based on the shift state of the automatic transmission 2000. It is determined whether or not such a shift stage can be formed, and if the vehicle speed is lower than a predetermined speed, SL (1) is selected so that the speed is changed to a shift stage other than the shift stage that is determined not to be formed. Controlling SL (4), the feature is that the operation of SL (1) to (4) and SLT 4300 is stopped when the vehicle speed is equal to or higher than a predetermined speed.
 ECU8000は、オートマチックトランスミッション2000の入力軸側の回転数と出力軸側の回転数とに基づく変速比が決定された変速段の変速比に対応しないと、決定された変速段が形成できないと判定する。具体的には、ECU8000は、変速段が決定された後に、決定された変速段が形成されない状態が予め定められた時間継続すると、決定された変速段が形成できないと判定する。 ECU 8000 determines that the determined gear stage cannot be formed unless the gear ratio based on the rotational speed on the input shaft side and the rotational speed on the output shaft side of automatic transmission 2000 corresponds to the determined gear ratio. . Specifically, ECU 8000 determines that the determined shift speed cannot be formed if a state in which the determined shift speed is not formed continues for a predetermined time after the shift speed is determined.
 図5に、各変速ギヤ段と、各リニアソレノイド、各クラッチおよび各ブレーキの作動状態との関係を表した作動表を示す。各クラッチおよび各ブレーキの作動表(図6において右側の表)は、図3に示された作動表と同じである。 FIG. 5 shows an operation table showing the relationship between each gear position and the operation state of each linear solenoid, each clutch, and each brake. The operation table of each clutch and each brake (the table on the right side in FIG. 6) is the same as the operation table shown in FIG.
 各リニアソレノイドの作動表において、「マル印」は通電を表している。「X印」は非通電を表している。この作動表に示された組合わせで各リニアソレノイドを作動させることにより、各クラッチおよび各ブレーキが係合し、1速~6速の前進ギヤ段と、後進ギヤ段が形成される。 In the operation table of each linear solenoid, “Mull” indicates energization. “X” represents non-energization. By operating each linear solenoid with the combination shown in this operation table, each clutch and each brake are engaged, and a forward gear stage of 1st to 6th speed and a reverse gear stage are formed.
 図6に、本実施の形態に係る車両の制御装置であるECU8000の機能ブロック図を示す。 FIG. 6 shows a functional block diagram of ECU 8000 which is a vehicle control apparatus according to the present embodiment.
 ECU8000は、入力インターフェース(以下、入力I/Fと記載する)300と、演算処理部400と、記憶部500と、出力インターフェース(以下、出力I/Fと記載する)600とを含む。 ECU 8000 includes an input interface (hereinafter referred to as an input I / F) 300, an arithmetic processing unit 400, a storage unit 500, and an output interface (hereinafter referred to as an output I / F) 600.
 入力I/F300は、車速センサ8002からの車速信号と、アクセル開度センサ8010からのアクセル開度信号と、入力軸回転数センサ8022からのタービン回転数信号と、出力軸回転数センサ8024からの出力軸回転数信号とを受信して、演算処理部400に送信する。なお、入力I/F300に入力される信号は、上述の信号に限定されるものではない。 Input I / F 300 includes a vehicle speed signal from vehicle speed sensor 8002, an accelerator position signal from accelerator position sensor 8010, a turbine speed signal from input shaft speed sensor 8022, and an output shaft speed sensor 8024. The output shaft speed signal is received and transmitted to the arithmetic processing unit 400. Note that the signal input to the input I / F 300 is not limited to the above-described signal.
 演算処理部400は、変速不可判定部402と、車速判定部404と、フェールセーフ処理部(1)406と、フェールセーフ処理部(2)408とを含む。 The arithmetic processing unit 400 includes a shift impossible determination unit 402, a vehicle speed determination unit 404, a fail safe processing unit (1) 406, and a fail safe processing unit (2) 408.
 変速不可判定部402は、アクセル開度および車両の速度に基づいて決定された変速段を形成できるか否かを判定する。具体的には、変速不可判定部402は、決定された変速段に対応する変速比と、タービン回転数NTと出力軸回転数NOとに基づく変速比とが予め定められた値以上に離隔した状態が、変速段が決定されてから予め定められた時間継続すると、決定された変速段が形成できないと判定する。 The shift impossible determination unit 402 determines whether or not the gear position determined based on the accelerator opening and the vehicle speed can be formed. Specifically, the shift impossible determination unit 402 separates the shift ratio corresponding to the determined shift speed and the shift ratio based on the turbine rotation speed NT and the output shaft rotation speed NO by a predetermined value or more. If the state continues for a predetermined time after the shift speed is determined, it is determined that the determined shift speed cannot be formed.
 また、変速不可判定部402は、決定された変速段が形成できないと判定すると記憶部500に形成できない変速段を記憶させる。 Further, if the shift impossible determination unit 402 determines that the determined shift stage cannot be formed, the shift stage that cannot be formed is stored in the storage unit 500.
 なお、変速不可判定部402は、たとえば、決定された変速段が形成できないと判定すると、決定された変速段が形成できないことを示す判定フラグをオンするようにしてもよい。 It should be noted that if it is determined that the determined shift speed cannot be formed, for example, the shift impossible determination unit 402 may turn on a determination flag indicating that the determined shift speed cannot be formed.
 車速判定部404は、車両の速度が予め定められた速度αよりも低いか否かを判定する。なお、車速判定部404は、たとえば、決定された変速段に形成できないと判定されると、車両の速度が予め定められた速度αよりも低いか否かを判定し、車両の速度が予め定められた速度αよりも低いと車速判定フラグをオンするようにしてもよい。 The vehicle speed determination unit 404 determines whether or not the vehicle speed is lower than a predetermined speed α. For example, when it is determined that the vehicle cannot be formed at the determined shift speed, the vehicle speed determination unit 404 determines whether or not the vehicle speed is lower than a predetermined speed α, and the vehicle speed is determined in advance. If the speed is lower than the given speed α, the vehicle speed determination flag may be turned on.
 「予め定められた速度α」は、少なくともSL(1)~SL(4)およびSLT4300の作動停止することにより形成される予め定められた変速段に対応して設定される速度である。すなわち、予め定められた速度αは、予め定められた変速段が形成されても急なダウンシフトにならない速度領域になるように設定される。本実施の形態においては、予め定められた速度αは、5速段に対応して実験的あるいは設計的に適合して設定される。 The “predetermined speed α” is a speed set corresponding to a predetermined shift speed formed by stopping the operation of at least SL (1) to SL (4) and SLT 4300. That is, the predetermined speed α is set so as to be in a speed region in which a sudden downshift does not occur even when a predetermined shift speed is formed. In the present embodiment, the predetermined speed α is set in conformity with experiments or design corresponding to the fifth gear.
 フェールセーフ処理部(1)406は、車両の速度が予め定められた速度αよりも低いと、形成できない変速段への変速を禁止し、正常に形成可能な変速段のうちのいずれかの変速段に変速することを許可する。そのため、たとえば、変速不可判定部402にて、5速段への変速が形成できないと判定されると、車両の走行状態(たとえば、アクセル開度および車両の速度)に応じて5速段以外の変速段になるように変速制御が実行される。 The fail-safe processing unit (1) 406 prohibits a shift to a shift stage that cannot be formed when the vehicle speed is lower than a predetermined speed α, and shifts any of the shift stages that can be formed normally. Permits shifting to a stage. Therefore, for example, if it is determined by the shift impossible determination unit 402 that a shift to the fifth speed cannot be established, a speed other than the fifth speed is selected according to the vehicle running state (for example, the accelerator opening and the vehicle speed). Shift control is executed so that the shift speed is reached.
 フェールセーフ処理部(2)408は、車両の速度が予め定められた速度α以上であると、SL(1)~SL(4)およびSLT4300の作動を停止するように、出力I/F600を経由してSL(1)~SL(4)およびSLT4300に送信される電気信号(ソレノイド制御信号)を遮断する。 Fail-safe processing unit (2) 408 passes through output I / F 600 to stop the operations of SL (1) to SL (4) and SLT 4300 when the vehicle speed is equal to or higher than a predetermined speed α. Then, the electric signals (solenoid control signals) transmitted to SL (1) to SL (4) and SLT 4300 are cut off.
 また、本実施の形態において、変速不可判定部402と、車速判定部404と、フェールセーフ処理部(1)406と、フェールセーフ処理部(2)408とは、いずれも演算処理部400であるCPU(Central Processing Unit)が記憶部500に記憶されたプログラムを実行することにより実現される、ソフトウェアとして機能するものとして説明するが、ハードウェアにより実現されるようにしてもよい。なお、このようなプログラムは記憶媒体に記録されて車両に搭載される。 Further, in the present embodiment, shift disable determination unit 402, vehicle speed determination unit 404, fail safe processing unit (1) 406, and fail safe processing unit (2) 408 are all arithmetic processing unit 400. Although a description will be given assuming that a CPU (Central Processing Unit) functions as software, which is realized by executing a program stored in the storage unit 500, it may be realized by hardware. Such a program is recorded on a storage medium and mounted on the vehicle.
 記憶部500には、各種情報、プログラム、しきい値、マップ等が記憶され、必要に応じて演算処理部400からデータが読み出されたり、格納されたりする。 The storage unit 500 stores various information, programs, threshold values, maps, and the like, and data is read or stored from the arithmetic processing unit 400 as necessary.
 以下、図7を参照して、本実施の形態に係る自動変速機の制御装置であるECU8000で実行されるプログラムの制御構造について説明する。 Hereinafter, with reference to FIG. 7, a control structure of a program executed by ECU 8000 which is the control device for the automatic transmission according to the present embodiment will be described.
 ステップ(以下、ステップをSと記載する)100にて、ECU8000は、車両の走行状態に基づいて決定された変速段の形成が不可であるか否かを判定する。決定された変速段の形成が不可であると(S100にてYES)、処理はS102に移される。もしそうでないと(S100にてNO)、処理はS100に戻される。 In step (hereinafter, step is referred to as S) 100, ECU 8000 determines whether or not it is impossible to form a gear determined based on the running state of the vehicle. If formation of the determined gear position is impossible (YES in S100), the process proceeds to S102. If not (NO in S100), the process returns to S100.
 S102にて、ECU8000は、車両の速度が予め定められた速度αよりも低いか否かを判定する。車両の速度が予め定められた速度αよりも低いと(S102にてYES)、処理はS104に移される。もしそうでないと(S102にてNO)、S106に移される。 In S102, ECU 8000 determines whether or not the speed of the vehicle is lower than a predetermined speed α. If the vehicle speed is lower than predetermined speed α (YES in S102), the process proceeds to S104. If not (NO in S102), the process proceeds to S106.
 S104にて、ECU8000は、複数の変速段のうち形成が不可と判定された変速段への変速を禁止して、車両の走行状態に対応した、正常出力が可能な変速段の形成を指示する。S106にて、ECU8000は、SL(1)~SL(4)およびSLT4300の作動を全て停止(オフ)する。 In S104, ECU 8000 prohibits shifting to a shift stage that is determined to be impossible among a plurality of shift stages, and instructs the formation of a shift stage capable of normal output corresponding to the running state of the vehicle. . In S106, ECU 8000 stops (turns off) all the operations of SL (1) to SL (4) and SLT 4300.
 以上のような構造およびフローチャートに基づく本実施の形態に係る自動変速機の制御装置であるECU8000の動作について説明する。 The operation of ECU 8000 that is the control device for the automatic transmission according to the present embodiment based on the above-described structure and flowchart will be described.
 <車両が予め定められた速度α以上の速度で走行している場合>
 たとえば、車両が予め定められた速度α以上の速度で走行している場合を想定する。このとき、オートマチックトランスミッション2000においては5速段が形成されているとする。車両の走行状態に応じて、6速段の形成が決定されると、B3ブレーキ3630に供給される油圧が低下するようにSL(4)4240への指令値が低下するとともに、B1ブレーキ3610に供給される油圧が上昇するようにSL(3)4230への指令値が上昇する。
<When the vehicle is traveling at a speed equal to or higher than a predetermined speed α>
For example, it is assumed that the vehicle is traveling at a speed equal to or higher than a predetermined speed α. At this time, it is assumed that automatic transmission 2000 has a fifth gear. When the formation of the sixth gear is determined according to the traveling state of the vehicle, the command value to SL (4) 4240 is lowered so that the hydraulic pressure supplied to the B3 brake 3630 is lowered, and the B1 brake 3610 is The command value to SL (3) 4230 increases so that the supplied hydraulic pressure increases.
 たとえば、SL(2)4220において断線が発生したことによりECU8000からの電気信号が受信できないとC2クラッチ3650に油圧を供給することができない。その結果、6速段を形成することができない。B1ブレーキ3610のみ係合した状態になるとタービン回転数NTが上昇する。そのため、6速段の形成が不可であると判定される(S100にてYES)。 For example, hydraulic pressure cannot be supplied to the C2 clutch 3650 unless an electric signal can be received from the ECU 8000 due to a disconnection in the SL (2) 4220. As a result, the sixth gear cannot be formed. When only the B1 brake 3610 is engaged, the turbine speed NT increases. Therefore, it is determined that the sixth gear cannot be formed (YES in S100).
 車両の速度が予め定められた速度α以上であると(S102にてNO)、SL(1)~SL(4)およびSLT4300の作動が全て停止される(S106)。そのため、Dレンジ圧がC2クラッチ3650およびB3ブレーキ3630に供給されて、それぞれが係合することにより5速段が形成される。 If the vehicle speed is equal to or higher than a predetermined speed α (NO in S102), the operations of SL (1) to SL (4) and SLT 4300 are all stopped (S106). Therefore, the D range pressure is supplied to the C2 clutch 3650 and the B3 brake 3630, and the fifth gear is formed by engaging each other.
 <車両が予め定められた速度αよりも低い速度で走行している場合>
 オートマチックトランスミッション2000において3速段が形成されているとする。車両の走行状態に応じて、4速段の形成が決定されると、B3ブレーキ3630に供給される油圧が低下するようにSL(4)4240への指令値が低下するとともに、C2クラッチ3650に供給される油圧が上昇するようにSL(2)4220への指令値が上昇する。
<When the vehicle is traveling at a speed lower than a predetermined speed α>
Assume that automatic transmission 2000 has a third gear. When the formation of the fourth gear is determined according to the traveling state of the vehicle, the command value to SL (4) 4240 is lowered so that the hydraulic pressure supplied to the B3 brake 3630 is lowered, and the C2 clutch 3650 is The command value to SL (2) 4220 increases so that the supplied hydraulic pressure increases.
 たとえば、SL(2)4220において断線が発生したことによりECU8000からの電気信号が受信できないとC2クラッチ3650に油圧を供給することができない。その結果、4速段を形成することができない。C1クラッチ3640のみ係合した状態になるとタービン回転数NTが上昇する。そのため、4速段の形成が不可であると判定される(S100にてYES)。 For example, hydraulic pressure cannot be supplied to the C2 clutch 3650 unless an electric signal can be received from the ECU 8000 due to a disconnection in the SL (2) 4220. As a result, the fourth gear cannot be formed. When only the C1 clutch 3640 is engaged, the turbine speed NT increases. Therefore, it is determined that formation of the fourth gear is impossible (YES in S100).
 車両の速度が予め定められた速度αよりも低いと(S102にてYES)、形成が不可であると判定された4速段以外で変速が行なわれる(S104)。たとえば、車両の走行状態に応じて3速段が決定されるとC1クラッチ3640に対応するSL(1)4210およびB3ブレーキ3630に対応するSL(3)4230に対する指令値が上昇して、3速段が形成される。 If the speed of the vehicle is lower than a predetermined speed α (YES in S102), a shift is performed at speeds other than the fourth speed determined that formation is impossible (S104). For example, when the third speed is determined according to the traveling state of the vehicle, the command values for SL (1) 4210 corresponding to the C1 clutch 3640 and SL (3) 4230 corresponding to the B3 brake 3630 increase, and the third speed A step is formed.
 以上のようにして、本実施の形態に係る自動変速機の制御装置によると、複数の変速段のうちのいずれかの変速段が形成不可であって、かつ、車両の速度が予め定められた速度α以上であると、SL(1)~SL(4)およびSLTの作動が停止されるため、予め定められた変速段である高速側の5速段が形成される。そのため、予め定められた速度αを5速段に対応して設定しておくようにすると、急なダウンシフト、自動変速機の入力軸の回転数の急上昇または変速ショックの発生を抑制することができる。一方、車両の速度が予め定められた速度αよりも低いと、形成できないと判定された変速段以外の変速段のうち車両の走行状態に対応した変速段に変速するようにすると、適切な変速段を形成して車両の駆動力を確保することができる。したがって、フェール発生時に車両の速度に応じた変速段を形成する自動変速機の制御装置および制御方法を提供することができる。 As described above, according to the control device for the automatic transmission according to the present embodiment, any one of the plurality of shift stages cannot be formed, and the speed of the vehicle is determined in advance. When the speed is equal to or higher than α, the operations of SL (1) to SL (4) and SLT are stopped, and therefore, a high-speed fifth speed stage that is a predetermined speed stage is formed. Therefore, if the predetermined speed α is set corresponding to the fifth gear, it is possible to suppress sudden downshift, sudden increase in the rotational speed of the input shaft of the automatic transmission, or shift shock. it can. On the other hand, if the speed of the vehicle is lower than a predetermined speed α, an appropriate shift can be achieved by shifting to a speed corresponding to the running state of the vehicle among speeds other than the speed determined to be not formed. A step can be formed to ensure the driving force of the vehicle. Therefore, it is possible to provide a control device and a control method for an automatic transmission that forms a gear position according to the speed of the vehicle when a failure occurs.
 なお、本実施の形態において、SL(2)によりC2クラッチに油圧が供給されるときにSL(1)~SL(2)およびSLTの作動を停止すると、5速段が形成される油圧回路について説明したが、特に5速段に限定されるものではなく、また、SL(1)~SL(2)およびSLTの作動の状態に関わらず、SL(1)~SL(2)およびSLTの作動を停止すると、予め定められた変速段が形成される油圧回路であってもよい。 In the present embodiment, when the hydraulic pressure is supplied to the C2 clutch by SL (2), if the operation of SL (1) to SL (2) and SLT is stopped, the hydraulic circuit in which the fifth gear is formed. Although described, it is not particularly limited to the fifth speed stage, and the operation of SL (1) to SL (2) and SLT is performed regardless of the operation state of SL (1) to SL (2) and SLT. When the operation is stopped, a hydraulic circuit in which a predetermined gear position is formed may be used.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

Claims (10)

  1.  車両に搭載された自動変速機(2000)の制御装置であって、前記自動変速機(20000)は、複数の摩擦係合要素(3610,3620,3630,3640,3650)と、前記複数の摩擦係合要素(3610,3620,3630,3640,3650)に油圧を供給する油圧回路(4000)とを含み、前記油圧回路(4000)には、前記複数の摩擦係合要素(3610,3620,3630,3640,3650)に供給される油圧を制御する複数のソレノイド(4210,4220,4230,4240,4300)が設けられ、前記油圧回路(4000)は、前記複数のソレノイド(4210,4220,4230,4240,4300)のすべての作動を停止すると複数の変速段のうちの予め定められた変速段を形成するように前記複数の摩擦係合要素(3610,3620,3630,3640,3650)のうち前記予め定められた変速段の形成に用いられる摩擦係合要素に油圧を供給する回路を含み、
     前記制御装置は、
     前記自動変速機(2000)の変速状態を検出する状態検出ユニット(8022,8024)と、
     前記車両の速度を検出する速度検出ユニット(8002)と、
     前記状態検出ユニット(8022,8024)および前記速度検出ユニット(8022)から出力を受ける制御ユニット(8000)とを含み、
     前記制御ユニット(8000)は、
     前記検出された変速状態に基づいて前記複数のソレノイド(4210,4220,4230,4240,4300)の作動により前記複数の変速段のうちのいずれかの変速段が形成できるか否かを判定し、
     前記複数の変速段のうちのいずれかの変速段が形成できないと判定され、かつ、前記検出された車両の速度が予め定められた速度よりも低いと前記形成できないと判定された変速段以外の変速段に変速するように前記複数のソレノイド(4210,4220,4230,4240,4300)を制御し、
     前記複数の変速段のうちのいずれかの変速段が形成できないと判定され、かつ、前記検出された車両の速度が予め定められた速度以上であると前記複数のソレノイド(4210,4220,4230,4240,4300)の作動を停止する、自動変速機の制御装置。
    A control device for an automatic transmission (2000) mounted on a vehicle, wherein the automatic transmission (20000) includes a plurality of friction engagement elements (3610, 3620, 3630, 3640, 3650) and the plurality of frictions. A hydraulic circuit (4000) for supplying hydraulic pressure to the engagement elements (3610, 3620, 3630, 3640, 3650), and the hydraulic circuit (4000) includes the plurality of friction engagement elements (3610, 3620, 3630). , 3640, 3650) are provided with a plurality of solenoids (4210, 4220, 4230, 4240, 4300) for controlling the hydraulic pressure, and the hydraulic circuit (4000) includes the plurality of solenoids (4210, 4220, 4230, 4240, 4300) is stopped, a predetermined shift stage among a plurality of shift stages is formed. Includes a circuit for supplying hydraulic pressure to the frictional engagement elements used to form the predetermined gear stage among the plurality of frictional engagement elements so that (3610,3620,3630,3640,3650),
    The controller is
    State detection units (8022, 8024) for detecting a shift state of the automatic transmission (2000);
    A speed detection unit (8002) for detecting the speed of the vehicle;
    A state detection unit (8022, 8024) and a control unit (8000) receiving an output from the speed detection unit (8022),
    The control unit (8000)
    Based on the detected shift state, it is determined whether any of the plurality of shift stages can be formed by the operation of the plurality of solenoids (4210, 4220, 4230, 4240, 4300);
    It is determined that any one of the plurality of shift speeds cannot be formed, and other than the shift speeds that are determined not to be formed when the detected vehicle speed is lower than a predetermined speed. Controlling the plurality of solenoids (4210, 4220, 4230, 4240, 4300) so as to shift to a shift stage;
    If it is determined that any one of the plurality of shift stages cannot be formed, and the detected vehicle speed is equal to or higher than a predetermined speed, the plurality of solenoids (4210, 4220, 4230, 4240, 4300) to stop the operation of the automatic transmission.
  2.  前記予め定められた変速段は、前記複数の変速段のうちの高速側の変速段である、請求の範囲第1項に記載の自動変速機の制御装置。 2. The automatic transmission control device according to claim 1, wherein the predetermined shift speed is a high speed shift speed among the plurality of shift speeds.
  3.  前記状態検出ユニット(8022,8024)は、前記自動変速機(2000)の入力軸側の回転数と出力軸側の回転数とを検出し、
     前記制御装置は、前記車両の走行状態を検出するための走行状態検出ユニットをさらに含み、
     前記制御ユニット(8000)は、
     前記検出された走行状態に基づいて変速段を決定し、
     前記決定された変速段が形成されるように前記複数のソレノイド(4210,4220,4230,4240,4300)を制御し、
     前記検出された入力軸側の回転数と出力軸側の回転数とに基づく変速比が前記決定された変速段の変速比に対応しないと前記決定された変速段が形成できないと判定する、請求の範囲第1項に記載の自動変速機の制御装置。
    The state detection units (8022, 8024) detect the rotational speed on the input shaft side and the rotational speed on the output shaft side of the automatic transmission (2000),
    The control device further includes a traveling state detection unit for detecting a traveling state of the vehicle,
    The control unit (8000)
    Determine a gear position based on the detected running state,
    Controlling the plurality of solenoids (4210, 4220, 4230, 4240, 4300) so as to form the determined gear position;
    It is determined that the determined shift speed cannot be formed unless a speed ratio based on the detected rotation speed on the input shaft side and output speed on the output shaft side corresponds to the speed ratio of the determined shift speed. The control device for an automatic transmission according to claim 1, wherein
  4.  前記複数のソレノイド(4210,4220,4230,4240,4300)は、電気信号の受信に応じて作動し、
     前記制御ユニット(8000)は、前記複数のソレノイド(4210,4220,4230,4240,4300)に送信される電気信号を遮断して作動を停止する、請求の範囲第1項に記載の自動変速機の制御装置。
    The plurality of solenoids (4210, 4220, 4230, 4240, 4300) operate in response to reception of an electrical signal,
    2. The automatic transmission according to claim 1, wherein the control unit (8000) cuts off an electric signal transmitted to the plurality of solenoids (4210, 4220, 4230, 4240, 4300) and stops its operation. Control device.
  5.  前記複数のソレノイド(4210,4220,4230,4240,4300)は、前記複数の摩擦係合要素(3610,3620,3630,3640,3650)のそれぞれに対応して設けられたノーマルクローズタイプの電磁弁であって、
     前記自動変速機(2000)には、前記複数のソレノイド(4210,4220,4230,4240,4300)および前記複数の摩擦係合要素(3610,3620,3630,3640,3650)に供給される油圧を発生するオイルポンプ(4004)と、
     前記複数のソレノイド(4210,4220,4230,4240,4300)のうち、予め定められた変速段を形成する場合に通電されるソレノイド(4220,4240)に接続された第1の油路(4222,4242)と、
     前記オイルポンプ(4004)に接続された、前記第1の油路(4222,4242)とは異なる第2の油路(4102)と、
     前記ソレノイド(4220,4240)の作動時において、前記第1の油路(4222,4242)を前記複数の摩擦係合要素(3610,3620,3630,3640,3650)のうち前記予め定められた変速段の形成に用いられる摩擦係合要素(3630,3650)に接続するとともに前記第2の油路(4102)を前記摩擦係合要素(3630,3650)から遮断し、前記ソレノイド(4220,4240)の作動停止時において、前記第1の油路(4222,4242)を前記摩擦係合要素(3630,3650)から遮断するとともに前記第2の油路(4102)を前記摩擦係合要素(3630,3650)に接続する回路とが設けられる、請求の範囲第1項~第4項のいずれかに記載の自動変速機の制御装置。
    The plurality of solenoids (4210, 4220, 4230, 4240, 4300) are normally closed electromagnetic valves provided corresponding to the plurality of friction engagement elements (3610, 3620, 3630, 3640, 3650), respectively. Because
    The automatic transmission (2000) has hydraulic pressure supplied to the plurality of solenoids (4210, 4220, 4230, 4240, 4300) and the plurality of friction engagement elements (3610, 3620, 3630, 3640, 3650). The generated oil pump (4004),
    Of the plurality of solenoids (4210, 4220, 4230, 4240, 4300), a first oil passage (4222, 4240) connected to a solenoid (4220, 4240) that is energized when a predetermined shift speed is formed. 4242),
    A second oil passage (4102) connected to the oil pump (4004) and different from the first oil passage (4222, 4242);
    During the operation of the solenoid (4220, 4240), the first oil passage (4222, 4242) is moved through the predetermined shift among the plurality of friction engagement elements (3610, 3620, 3630, 3640, 3650). Connected to the frictional engagement elements (3630, 3650) used to form the step and shuts off the second oil passage (4102) from the frictional engagement elements (3630, 3650), the solenoids (4220, 4240) When the operation is stopped, the first oil passage (4222, 4242) is blocked from the friction engagement element (3630, 3650) and the second oil passage (4102) is disconnected from the friction engagement element (3630, The automatic transmission control device according to any one of claims 1 to 4, further comprising a circuit connected to 3650).
  6.  車両に搭載された自動変速機(2000)の制御方法であって、前記自動変速機(2000)は、複数の摩擦係合要素(3610,3620,3630,3640,3650)と、前記複数の摩擦係合要素(3610,3620,3630,3640,3650)に油圧を供給する油圧回路(4000)とを含み、前記油圧回路(4000)には、前記複数の摩擦係合要素(3610,3620,3630,3640,3650)に供給される油圧を制御する複数のソレノイド(4210,4220,4230,4240,4300)が設けられ、前記油圧回路(4000)は、前記複数のソレノイド(4210,4220,4230,4240,4300)のすべての作動を停止すると複数の変速段のうちの予め定められた変速段を形成するように前記複数の摩擦係合要素(3610,3620,3630,3640,3650)のうち前記予め定められた変速段の形成に用いられる摩擦係合要素に油圧を供給する回路を含み、
     前記制御方法は、
     前記自動変速機(2000)の変速状態を検出するステップと、
     前記車両の速度を検出するステップと、
     前記検出された変速状態に基づいて前記複数のソレノイド(4210,4220,4230,4240,4300)の作動により前記複数の変速段のうちのいずれかの変速段が形成できるか否かを判定するステップと、
     前記複数の変速段のうちのいずれかの変速段が形成できないと判定され、かつ、前記検出された車両の速度が予め定められた速度よりも低いと前記形成できないと判定された変速段以外の変速段に変速するように前記複数のソレノイド(4210,4220,4230,4240,4300)を制御するステップと、
     前記複数の変速段のうちのいずれかの変速段が形成できないと判定され、かつ、前記検出された車両の速度が予め定められた速度以上であると前記複数のソレノイド(4210,4220,4230,4240,4300)の作動を停止するステップとを含む、自動変速機の制御方法。
    A method of controlling an automatic transmission (2000) mounted on a vehicle, wherein the automatic transmission (2000) includes a plurality of friction engagement elements (3610, 3620, 3630, 3640, 3650) and the plurality of frictions. A hydraulic circuit (4000) for supplying hydraulic pressure to the engagement elements (3610, 3620, 3630, 3640, 3650), and the hydraulic circuit (4000) includes the plurality of friction engagement elements (3610, 3620, 3630). , 3640, 3650) are provided with a plurality of solenoids (4210, 4220, 4230, 4240, 4300) for controlling the hydraulic pressure, and the hydraulic circuit (4000) includes the plurality of solenoids (4210, 4220, 4230, 4240, 4300) are stopped, a predetermined shift stage among a plurality of shift stages is formed. Includes a circuit for supplying hydraulic pressure to the plurality of friction engagement elements used for forming the predetermined gear stage among the friction engagement elements (3610,3620,3630,3640,3650) As,
    The control method is:
    Detecting a shift state of the automatic transmission (2000);
    Detecting the speed of the vehicle;
    A step of determining whether one of the plurality of shift stages can be formed by the operation of the plurality of solenoids (4210, 4220, 4230, 4240, 4300) based on the detected shift state. When,
    It is determined that any one of the plurality of shift speeds cannot be formed, and other than the shift speeds that are determined not to be formed when the detected vehicle speed is lower than a predetermined speed. Controlling the plurality of solenoids (4210, 4220, 4230, 4240, 4300) to shift to a shift stage;
    If it is determined that any one of the plurality of shift stages cannot be formed, and the detected vehicle speed is equal to or higher than a predetermined speed, the plurality of solenoids (4210, 4220, 4230, 4240, 4300), and a step of stopping the operation of the automatic transmission.
  7.  前記予め定められた変速段は、前記複数の変速段のうちの高速側の変速段である、請求の範囲第6項に記載の自動変速機の制御方法。 The method for controlling an automatic transmission according to claim 6, wherein the predetermined shift speed is a high speed shift speed among the plurality of shift speeds.
  8.  前記制御方法は、
     前記車両の走行状態を検出するステップと、
     前記検出された走行状態に基づいて変速段を決定するステップと、
     前記決定された変速段が形成されるように前記複数のソレノイド(4210,4220,4230,4240,4300)を制御するステップとをさらに含み、
     前記変速状態を検出するステップは、前記自動変速機(2000)の入力軸側の回転数と出力軸側の回転数とを検出し、
     前記複数の変速段のうちのいずれかの変速段が形成できるか否かを判定するステップは、前記検出された入力軸側の回転数と出力軸側の回転数とに基づく変速比が前記決定された変速段の変速比に対応しないと前記決定された変速段が形成できないと判定する、請求の範囲第6項に記載の自動変速機の制御方法。
    The control method is:
    Detecting the running state of the vehicle;
    Determining a gear position based on the detected running state;
    Further controlling the plurality of solenoids (4210, 4220, 4230, 4240, 4300) such that the determined shift speed is formed,
    The step of detecting the shift state detects a rotation speed on the input shaft side and a rotation speed on the output shaft side of the automatic transmission (2000),
    In the step of determining whether or not any one of the plurality of shift speeds can be formed, a speed ratio based on the detected rotation speed on the input shaft side and rotation speed on the output shaft side is determined. 7. The method of controlling an automatic transmission according to claim 6, wherein it is determined that the determined shift speed cannot be formed unless it corresponds to the speed ratio of the determined shift speed.
  9.  前記複数のソレノイド(4210,4220,4230,4240,4300)は、電気信号の受信に応じて作動し、
     前記複数のソレノイド(4210,4220,4230,4240,4300)の作動を停止するステップは、前記複数のソレノイド(4210,4220,4230,4240,4300)に送信される電気信号を遮断する、請求の範囲第6項に記載の自動変速機の制御方法。
    The plurality of solenoids (4210, 4220, 4230, 4240, 4300) operate in response to reception of an electrical signal,
    The step of stopping the operation of the plurality of solenoids (4210, 4220, 4230, 4240, 4300) blocks an electrical signal transmitted to the plurality of solenoids (4210, 4220, 4230, 4240, 4300). The method for controlling an automatic transmission according to claim 6.
  10.  前記複数のソレノイド(4210,4220,4230,4240,4300)は、前記複数の摩擦係合要素(3610,3620,3630,3640,3650)のそれぞれに対応して設けられたノーマルクローズタイプの電磁弁であって、
     前記自動変速機(2000)には、前記複数のソレノイド(4210,4220,4230,4240,4300)および前記複数の摩擦係合要素(3610,3620,3630,3640,3650)に供給される油圧を発生するオイルポンプ(4004)と、
     前記複数のソレノイド(4210,4220,4230,4240,4300)のうち、予め定められた変速段を形成する場合に通電されるソレノイド(4220,4240)に接続された第1の油路(4222,4242)と、
     前記オイルポンプ(4004)に接続された、前記第1の油路(4222,4242)とは異なる第2の油路(4102)と、
     前記ソレノイド(4220,4240)の作動時において、前記第1の油路(4222,4242)を前記複数の摩擦係合要素(3610,3620,3630,3640,3650)のうち前記予め定められた変速段の形成に用いられる摩擦係合要素(3630,3650)に接続するとともに前記第2の油路(4102)を前記摩擦係合要素(3630,3650)から遮断し、前記ソレノイド(4220,4240)の作動停止時において、前記第1の油路(4222,4242)を前記摩擦係合要素(3630,3650)から遮断するとともに前記第2の油路(4102)を前記摩擦係合要素(3630,3650)に接続する回路とが設けられる、請求の範囲第6項~第9項のいずれかに記載の自動変速機の制御方法。
    The plurality of solenoids (4210, 4220, 4230, 4240, 4300) are normally closed electromagnetic valves provided corresponding to the plurality of friction engagement elements (3610, 3620, 3630, 3640, 3650), respectively. Because
    The automatic transmission (2000) has hydraulic pressure supplied to the plurality of solenoids (4210, 4220, 4230, 4240, 4300) and the plurality of friction engagement elements (3610, 3620, 3630, 3640, 3650). The generated oil pump (4004),
    Of the plurality of solenoids (4210, 4220, 4230, 4240, 4300), a first oil passage (4222, 4240) connected to a solenoid (4220, 4240) that is energized when a predetermined shift speed is formed. 4242),
    A second oil passage (4102) connected to the oil pump (4004) and different from the first oil passage (4222, 4242);
    During the operation of the solenoid (4220, 4240), the first oil passage (4222, 4242) is moved through the predetermined shift among the plurality of friction engagement elements (3610, 3620, 3630, 3640, 3650). Connected to the frictional engagement elements (3630, 3650) used to form the step and shuts off the second oil passage (4102) from the frictional engagement elements (3630, 3650), the solenoids (4220, 4240) When the operation is stopped, the first oil passage (4222, 4242) is blocked from the friction engagement element (3630, 3650) and the second oil passage (4102) is disconnected from the friction engagement element (3630, A method for controlling an automatic transmission according to any one of claims 6 to 9, wherein a circuit connected to 3650) is provided.
PCT/JP2008/073319 2008-01-18 2008-12-22 Automatic transmission control device and control method WO2009090836A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008009209A JP2009168214A (en) 2008-01-18 2008-01-18 Control device and control method of automatic transmission, program to implement the method on computer, and recording medium with the program recorded thereon
JP2008-009209 2008-01-18

Publications (1)

Publication Number Publication Date
WO2009090836A1 true WO2009090836A1 (en) 2009-07-23

Family

ID=40885234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/073319 WO2009090836A1 (en) 2008-01-18 2008-12-22 Automatic transmission control device and control method

Country Status (2)

Country Link
JP (1) JP2009168214A (en)
WO (1) WO2009090836A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5212408B2 (en) 2010-03-12 2013-06-19 アイシン・エィ・ダブリュ株式会社 Hydraulic control device for automatic transmission

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH084864A (en) * 1994-06-14 1996-01-12 Aisin Seiki Co Ltd Controller of continuously variable transmission
JPH11280898A (en) * 1998-03-30 1999-10-15 Mazda Motor Corp Control device for automatic transmission
JP2001012591A (en) * 1999-06-25 2001-01-16 Jatco Transtechnology Ltd Control device for automatic transmission
JP2003301939A (en) * 2002-04-09 2003-10-24 Aisin Aw Co Ltd Control device for automatic transmission

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH084864A (en) * 1994-06-14 1996-01-12 Aisin Seiki Co Ltd Controller of continuously variable transmission
JPH11280898A (en) * 1998-03-30 1999-10-15 Mazda Motor Corp Control device for automatic transmission
JP2001012591A (en) * 1999-06-25 2001-01-16 Jatco Transtechnology Ltd Control device for automatic transmission
JP2003301939A (en) * 2002-04-09 2003-10-24 Aisin Aw Co Ltd Control device for automatic transmission

Also Published As

Publication number Publication date
JP2009168214A (en) 2009-07-30

Similar Documents

Publication Publication Date Title
US8100804B2 (en) Hydraulic control system and method for automatic transmission for a vehicle
JP4506655B2 (en) Hydraulic control device for automatic transmission for vehicle
JP4337812B2 (en) Failure determination device for hydraulic control circuit
US7402123B2 (en) Automatic transmission control method and system having fail-safe function
JP4211646B2 (en) Hydraulic control device for automatic transmission
JP3849609B2 (en) Hydraulic control device for automatic transmission for vehicle
JP4490172B2 (en) Hydraulic control device for automatic transmission for vehicle
JP4206852B2 (en) Hydraulic control circuit for automatic transmission for vehicles
JP4893460B2 (en) Transmission control device
JP2008064176A (en) Vehicular control device
JP2016169839A (en) Control device of power transmission device
JP5633579B2 (en) Control device for automatic transmission for vehicle
JP6020430B2 (en) Vehicle control device
WO2009090836A1 (en) Automatic transmission control device and control method
JP4798173B2 (en) Shift control device for automatic transmission for vehicle
JP5135680B2 (en) Automatic transmission abnormality determination device
JP2009281578A (en) Vehicle travel control device
JP4983218B2 (en) Vehicle hydraulic control device
JP5124944B2 (en) Control device for automatic transmission
JP2010121730A (en) Variable speed control device of automatic transmission
JP2007146979A (en) Hydraulic controller for automatic transmission for vehicle
JP2016200250A (en) Control device of power transmission device
JP5029394B2 (en) Control device for automatic transmission, control method, program for causing computer to realize the method, and recording medium recording the program
JP4919828B2 (en) Hydraulic control device for automatic transmission for vehicle
JP2009228807A (en) Control device and control method of automatic transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08870604

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08870604

Country of ref document: EP

Kind code of ref document: A1