WO2009089751A1 - Procédé et dispositif permettant à un terminal d'accéder à un système cible depuis un système source - Google Patents

Procédé et dispositif permettant à un terminal d'accéder à un système cible depuis un système source Download PDF

Info

Publication number
WO2009089751A1
WO2009089751A1 PCT/CN2008/073799 CN2008073799W WO2009089751A1 WO 2009089751 A1 WO2009089751 A1 WO 2009089751A1 CN 2008073799 W CN2008073799 W CN 2008073799W WO 2009089751 A1 WO2009089751 A1 WO 2009089751A1
Authority
WO
WIPO (PCT)
Prior art keywords
network
information
terminal
location area
area information
Prior art date
Application number
PCT/CN2008/073799
Other languages
English (en)
French (fr)
Inventor
Xiaobo Wu
Xiaoqin Duan
Jian Zhang
Qingyu Li
Wei Guo
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Publication of WO2009089751A1 publication Critical patent/WO2009089751A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0022Control or signalling for completing the hand-off for data sessions of end-to-end connection for transferring data sessions between adjacent core network technologies
    • H04W36/00224Control or signalling for completing the hand-off for data sessions of end-to-end connection for transferring data sessions between adjacent core network technologies between packet switched [PS] and circuit switched [CS] network technologies, e.g. circuit switched fallback [CSFB]
    • H04W36/00226Control or signalling for completing the hand-off for data sessions of end-to-end connection for transferring data sessions between adjacent core network technologies between packet switched [PS] and circuit switched [CS] network technologies, e.g. circuit switched fallback [CSFB] wherein the core network technologies comprise IP multimedia system [IMS], e.g. single radio voice call continuity [SRVCC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/08Upper layer protocols
    • H04W80/10Upper layer protocols adapted for application session management, e.g. SIP [Session Initiation Protocol]

Definitions

  • the present invention relates to the field of mobile communications, and in particular, to a method and a device for a terminal to access a target system from a source system. Background technique
  • the Universal Mobile Telecommunications System is a third-generation mobile communication system using Wideband Code Division Multiple Access (WCDMA) air interface technology. It is also commonly referred to as UMTS system as WCDMA communication. system.
  • the UMTS system adopts a structure similar to that of the second generation mobile communication system, including a Radio Access Network (RAN) and a Core Network (CN).
  • the wireless access network is used to handle all wireless related functions, and the CN handles user location management, service management and other functions in the UMTS system, and implements switching and routing functions with the external network.
  • the CN is logically divided into a Circuit Switched Domain (CS) and a Packet Switched Domain (PS).
  • CS Circuit Switched Domain
  • PS Packet Switched Domain
  • the UTRAN Universal Terrestrial Radio Access Network
  • UE User Equipment
  • FIG. 1 is a schematic diagram of a conventional scheme for implementing voice call continuity using Dual Radio.
  • Dual Radio generally means that between 3GPP and Non-3GPP, the UE can simultaneously receive two types of wireless signals at the same time.
  • the CS voice call is anchored to the VCC AS (Voice Call Continuity Application Server).
  • VCC AS Voice Call Continuity Application Server
  • UE A initiates an IMS voice call through the WLAN network and anchors the IMS voice call to the VCC AS.
  • the CS signaling and voice bearer between UE A and VCC AS are replaced by IMS signaling between UE A and VCC AS and its attached VoIP bearer.
  • the technical problem to be solved by the embodiments of the present invention is to provide a method for the terminal to access the target system from the source system and a terminal device, which can enable the terminal device to seamlessly access from the source system to the target system.
  • the terminal When the terminal is in an IP network, the terminal obtains location area information of the CS network;
  • the terminal obtains location information of the corresponding interconnected functional entity according to the location area information of the CS network or the location area information of the IP network;
  • the terminal accesses the CS network through the interconnecting functional entity.
  • the embodiment of the present invention provides a method for implementing a terminal to access an IP network from a CS network, including the following steps:
  • the terminal When the terminal is in the CS network, the terminal obtains location area information of the IP network;
  • the terminal obtains location information of the corresponding interconnected function entity according to the location area information of the CS network or the IP network;
  • the terminal accesses the IP network through the interconnecting functional entity.
  • an embodiment of the present invention provides a method for implementing a terminal accessing an IP network from a roaming CS network, including the following steps:
  • the terminal accesses the IP network through the logical channel.
  • an embodiment of the present invention provides a terminal device, including:
  • a target system location area information obtaining unit configured to obtain location area information of the target system when the terminal is located in the source system
  • An interconnection function entity obtaining unit configured to obtain location area information of the target system obtained by the unit according to the target system location area information or obtain location information of the corresponding interconnection function entity according to the location area information of the source system;
  • An access requesting unit configured to request access to the target system by using the interconnecting functional entity.
  • the terminal device obtains the location area information of the target system according to the location information of the source system, and accesses the target system through a corresponding interconnection function entity, thereby implementing the source source. Voice call continuity from the system to the target system.
  • FIG. 1 is a schematic diagram of a schematic diagram of a scheme for implementing voice call continuity using Dual Radio in the prior art
  • FIG. 2 is a schematic diagram of an embodiment of a system architecture of a system architecture evolution network
  • FIG. 3 is a schematic diagram of a network architecture including an interconnection function being an entity according to an embodiment of the present invention
  • HLR Home Location Register
  • FIG. 5 is a schematic diagram of a network architecture for establishing a USSD channel directly connected to a Mobile Switch Center (MSC);
  • MSC Mobile Switch Center
  • FIG. 6 is a schematic structural diagram of an embodiment of the terminal device in FIG. 3;
  • FIG. 7 is a schematic structural diagram of an embodiment of an interconnection function entity obtaining unit in FIG. 6.
  • FIG. 8 is a schematic structural diagram of another embodiment of the interconnection function entity obtaining unit in FIG. 6.
  • FIG. 9 is a terminal slave system of the present invention.
  • FIG. 10 is a schematic diagram of a second embodiment of a method for a terminal to access a target system from a source system according to the present invention;
  • FIG. 11 is a SAE/LTE network, and the target system is 2G.
  • CS network, UP, interface based on IP to achieve a schematic diagram of the terminal accessing the target system from the source system;
  • FIG. 12 is a schematic diagram of obtaining LA information by using a neighbor cell list
  • Figure 13 is an example of network partitioning
  • 14 is a schematic diagram of a method in which a source system is a SAE/LTE network, a target system is a 2G CS network, and a UP' interface is based on a NAS to implement a terminal accessing a target system from a source system;
  • 15 is a schematic diagram of a source system in which the source network is a 2G CS network, and the target network is a SAE LTE network, and the UP' interface is based on the USSD to implement a method for the terminal to access the target system from the source system;
  • 16 is a schematic diagram of obtaining TA information by using a neighbor cell list
  • FIG. 17 is a schematic diagram of another embodiment of a method in which the source system is a 2G CS network and the target network is a SAE LTE network, and the UP' interface is based on the USSD to implement the terminal accessing the target system from the source system.
  • FIG. 18 is a schematic diagram of the source system.
  • the source network is a 2G CS network
  • the target network is a SAE/LTE network
  • the UP' interface is based on USSD to implement a method for the terminal to access the target system from the source system.
  • FIG. 19 is a source system for the source network as 2G CS.
  • the target network is a SAE/LTE network
  • the UP' interface is based on the USSD to implement a schematic diagram of another embodiment of the method for the terminal to access the target system from the source system.
  • FIG. 20 is a schematic diagram of mobility management in the active state in the present invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS Fig. 21 is a diagram showing another embodiment of mobility management in an active state in the present invention. detailed description
  • FIG. 2 it is a schematic diagram of an embodiment of a system architecture of a System Architecture Evolution (SAE);
  • SAE System Architecture Evolution
  • the UE is a user equipment, that is, a terminal; EUTRAN is an evolved radio access network, in which an evolved Node B, called an eNB, and possibly other nodes, we replace these nodes with an eNB.
  • the MME Mobility Management Entity
  • the MME is a mobility management entity with control plane functions, such as control plane message processing with the UE, mobility management (recording UE location information), paging, authentication, and the like.
  • the Serving SAE Gateway, the service gateway has a user plane function, transmits UE data, and has an S1-U interface with the radio access network.
  • the MME and the serving gateway are combined like a traditional SGSN (Serving GPRS Support Node).
  • PDN GW Packet Data Network SAE Gateway
  • GGSN Gateway GPRS Support Node, Gateway GPRS Support Node;
  • PCRF Policy Control and Charging Rules Function
  • S3 interface is an interface between the MME and the SGSN of the 2G/3G, which is based on the GTP protocol
  • S4 is an interface between the serving gateway and the SGSN.
  • the serving gateway and the PDN gateway may be on the same physical node or on different physical nodes.
  • the MME and the serving gateway may also be the same physical node or separate physical nodes.
  • SAE/LTE is defined as a pure packet switching system, which means that voice services can only be transmitted on bearer switched bearers in this system.
  • voice service data is generally controlled by IMS, so voice service in SAE/LTE is generally called VoIP voice service.
  • VoIP voice service For traditional voice services, they are generally carried on CS TDM (Time Division Multiplexing).
  • CS TDM Time Division Multiplexing
  • Voice Call Continuity generally refers to the voice of a UE when it moves between a network that supports Voice Over IP (VoIP) services and a network that does not support VoIP services.
  • VoIP Voice Over IP
  • the service must be continuous, and the voice service of the VoIP carried in the source system is smoothly switched to the target system CS domain, and vice versa.
  • 3 is a schematic diagram of a network architecture including an Interworking Function (IFF) in an embodiment of the present invention. As shown in FIG. 3, the network includes a source system, a target system, and an interconnected functional entity.
  • IFF Interworking Function
  • the source system may be a GSM system, a WCDMA system, an LTE system, a WiMAX system, a 3GPP2 system, or the like;
  • the target system may be a 3GPP2 DO system, a 3GPP2 1XRTT system, a UMB system, a SAE/LTE system, or a WiMAX system.
  • the UE establishes a logical channel UP and an interface to the IWF based on the source system.
  • the UE sends signaling of the target system (for example, registration, service signaling) through the UP interface, thereby simulating the behavior of the UE in the target system.
  • the UP interface may be based on the IP bearer system of the source system, or may be based on signaling layer messages of the source system, for example, based on GSM USSD messages, 2G/3G short messages, and 2G/3G LTE non-access stratum messages ( None Access Stratum, NAS).
  • the source system is a GSM system
  • the UE establishes a logical channel UP interface to the IWF based on the USSD channel of the source system GSM.
  • the UE transmits the signaling information of the access target system (3GPP2 DO system, 3GPP2 1XRTT system, UWB system, SAE/LTE system, WiMAX system, etc.) through the UP' interface established by the USSD channel to simulate the behavior of the UE in the target system.
  • the signaling message may be, for example, a registration signaling message or a service signaling message.
  • the UE and the IWF may adopt a USSD-based ICCP (IMS Control Channel Protocol IMS Control Channel Protocol) similar to an ICS (IMS Centralized System IMS centralized control system).
  • USSD Unstructured Supplementary Service Data
  • GSM Global System for Mobile Communications
  • USSD is a new interactive data service based on the GSM network.
  • the USSD system adopts an interactive session mode for connection and transparent channel. It is an ideal carrier for session-based services. It has the characteristics of fast response, strong interaction capability and high reliability. It also supports most common GSM mobile phones.
  • #SC*SI# where SC is the service code, consisting of 0-9 digits, SI is the service information, and can be any content.
  • the preceding # is a Leader Char, which can be composed of 1-3 digits of (*,#), and the following # is a Close Char such as *125#.
  • FIG 4 it is a schematic diagram of a network architecture in which the USSD channel is directly connected to the HLR.
  • the HLR forwards the message to the MSC where the MS is located, thereby providing the USSD service for the USSD users covered by the HLR.
  • the MS is sent, the USSD message arrives at the HLR via the MSC, and then the HLR transmits it to the USSD center, and the USSD center forwards the USSD message to the corresponding service processing module for processing, wherein the service processing module can be, for example, a USSD server ( USSD Server).
  • the service processing module can be, for example, a USSD server ( USSD Server).
  • FIG. 5 it is a schematic diagram of a network architecture for establishing a USSD channel directly connected to the MSC.
  • the USSD center When the USSD center is directly connected to the MSC, when the USSD center sends the USSD message to the MSC where the MS is located, the USSD user can automatically roam the USSD (the MSC where the MS is located must support the USSD function); The USSD message will be forwarded to the USSD center via the MSC, and will be forwarded by the USSD center to the corresponding service processing module for processing.
  • the USSD center acts as the USSD processing center (USSD Handler) of the MSC.
  • the UE and the IWF enable the compression function through the UP and interface negotiation.
  • the IWF can pass the Radius/Diameter protocol interface and AAA ( Autentication Authorization Accounting, authentication and authorization accounting)
  • AAA Autentication Authorization Accounting, authentication and authorization accounting
  • the server is connected.
  • the target system is a 3GPP2 DO network
  • the IWF has a 3GPP DO access side entity function
  • the interfaces of the IWF and the PDSN are A10/A11
  • the IWF and PCF interfaces are A8/A9/(A14)/(A20).
  • the target system is a 3GPP2 1XRTT network
  • the IWF has a 3GPP2 1XRTT access side entity function
  • the interface of the IWF and the 1XRTT MSC is A1.
  • the IWF When the target system is a 2G/3G network, the IWF has the 2G/3G access side entity function, the interface between the IWF and the 2G/3G MSC is the A/Iu-CS interface, and the interface between the IWF and the 2G/3G SGS is the Gb Iu-PS. interface.
  • the target system is a UMB network
  • the IWF contains the UMB network access side entity function
  • the IWF and AGW interfaces are U1
  • the IWF and SRNC interfaces are U2
  • the IWF and eBS interfaces are U1.
  • the IWF includes the SAE/LTE network access side eNodeB function, the IWF and MME interfaces are S1-MME, and the IWF and Serving GW interfaces are S1-IL. If the IWF contains the SGSN/MME functional entity, corresponding The IWF and MME have S3/S10 interfaces. Or the interface between the IWF and the MME is S3.
  • all the switching messages pass through the IWF, and the IWF is always on the path of the S3 interface.
  • FIG. 6 is a schematic structural diagram of an embodiment of the terminal device in FIG. As shown in FIG. 6, the terminal device of this embodiment includes a target system location area information obtaining unit 10, an interconnection function entity obtaining unit 12, and an access request unit 14.
  • the target system location area information obtaining unit 10 is configured to obtain location area information of the target system when the terminal is located in the source system;
  • the interconnecting function entity obtaining unit 12 is configured to obtain location information of the corresponding interconnected functional entity according to the location area information of the target system obtained by the target system location area information obtaining unit 10 or according to the location area information of the source system;
  • the access requesting unit 14 is configured to request access to the target system by using the interconnecting functional entity.
  • FIG. 7 is a schematic structural diagram of an embodiment of the interconnected function entity obtaining unit in FIG. 6; wherein the interconnecting functional entity obtaining unit 12 further includes:
  • the receiving unit 120 is configured to receive network identification information of the target system.
  • the generating unit 122 is configured to generate the location area information of the target system according to the network identifier information received by the receiving unit.
  • the network identifier information of the target system may be: the target network in the received neighboring cell list. The cell ID of the system.
  • the selecting unit 124 is configured to select one of the location information of the target system generated by the generating unit. As shown in FIG. 8, it is a schematic structural diagram of another embodiment of the interconnected function entity obtaining unit in FIG. 6.
  • the interconnecting functional entity obtaining unit 12 further includes:
  • the obtaining unit 126 is configured to obtain network identification information of the source system.
  • the query unit 128 is configured to query the network server to obtain the location area information of the target system according to the network identifier information of the source system.
  • the network identifier information of the source system is location area information; the network server is a DNS server.
  • FIG. 9 is a schematic flowchart of a method for accessing a target system from a source system of the terminal device of the terminal device shown in FIG. 6 . As shown in FIG. 9 , the method in this embodiment includes: S10. When the terminal is in the source system, obtain location area information of the target system.
  • the step of obtaining the location area information of the target system may include the following:
  • the terminal queries the DNS server to obtain location area information of the target system (CS network); or the IP network sends neighbor cell list information to the terminal, according to the CS in the neighbor cell list
  • the cell information of the network obtains the location area information of the CS network.
  • the terminal may select one of them; or in the IP network.
  • the location area information of the CS network is configured in the base station, and the base station of the IP network sends the location area information of the configured CS network to the terminal.
  • the step of obtaining the location area information of the target system may include the following:
  • the terminal may select one of the locations; or configure the location area information of the IP network in the base station system of the CS network, and the base station of the CS network will configure the IP network.
  • the location area information is sent to the terminal.
  • Step S12 Obtain corresponding location information of the interconnected functional entity according to the target system location area information.
  • the source system is an IP network system and the target system is a CS network system
  • the location information of the corresponding interconnected functional entity is obtained. The steps include:
  • the terminal detects the interconnection function entity according to the location area information of the CS network; or configures location information of the interconnection function entity in the base station system of the IP network, where the base station system of the IP network sends the configured location information to the terminal Or, according to the location information of the terminal in the IP network, query the DNS server to obtain the location information of the interconnected functional entity.
  • the step of detecting, by the terminal, the interconnected functional entity according to the location area information of the CS network may include:
  • the DNS server by using the location area information of the CS network to obtain the location information of the interconnected functional entity; or configuring the location area information of the CS network and the corresponding relationship of the interconnected functional entity in the IP network, according to the CS network obtained by the terminal The location area information, thereby obtaining the location information of the interconnected functional entity.
  • the step of obtaining location information of the corresponding interconnected functional entity includes:
  • the terminal sends the location information of the terminal in the CS network to the USSD gateway through the USSD tunnel and the interconnection function entity.
  • the USSD gateway queries the DNS server to obtain the location area information of the IP network.
  • Step S14 accessing the target system by using the interconnected functional entity.
  • FIG. 10 is a schematic flowchart of another embodiment of a method for accessing a target system from a source system according to the terminal device of the terminal device shown in FIG. 6. As shown in FIG. 10, the method in this embodiment is applied to the terminal. Access the IP network from the roaming CS network. The method includes:
  • Step S20 establishing a USSD channel between the terminal and the home network USSD gateway of the terminal;
  • Step S22 selecting an interconnection function entity according to the home network USSD gateway, that is, the home network USSD gateway according to the location area information of the IP network Or the location area information of the CS network is selected as an interconnection function entity; specifically: the home USSD gateway queries the DNS server according to the location area information of the IP network or the location area information of the CS network, and obtains the interconnection function of the roaming CS network. entity.
  • the method described herein is also applicable to the terminal accessing an IP network from its home network; Or the home USSD GW queries the DNS server according to the location area information of the IP network or the location area information of the CS network, obtains the USSD service access code of the roaming CS network, and returns the terminal to the terminal, according to the USSD service access code.
  • a logical channel is established with the USSD gateway of the roaming CS network, and the USSD gateway selects an interconnection function entity to serve the terminal according to the location area information of the IP network or the CS network currently located by the terminal.
  • Step S24 establishing a logical channel between the terminal and the interconnected functional entity
  • Step S26 The terminal accesses the target system through the logical channel.
  • the source system is a SAE/LTE network
  • the target system is a 2G CS network
  • the UP interface is based on IP to implement a method for the terminal to access the target system from the source system.
  • the location area (LA) information of the target system needs to be obtained according to the current location (TAE/LTE) information of the source system (SAE/LTE).
  • TEE/LTE current location
  • SAE/LTE source system
  • (1) Query the DNS server according to the current location information TA of the UE, thereby obtaining LA information. Or you can use the TA+ cell ID as the query input condition of the DNS server. The UE can also directly generate LA information according to the TA information.
  • the LTE cell is configured as an LA area, and the information of the LA area is configured on the base station (eNodeB) of the source system, and the eNodeB sends the message to the UE.
  • eNodeB base station
  • the LA and TA generation rules are configured on the mobility management entity (MME) of the source system. After the UE attaches in the SAE/LTE system, the UE obtains the LA information.
  • MME mobility management entity
  • the UE obtains the LAI according to the received 2G/3G Neighbor Cell Lists (NCL). If the UE obtains multiple LAIs, the UE selects one of them and performs CS registration. In a specific implementation, the UE reports the capability of registering the target system (2G/3G network) through the IWF to the eNodeB. The eNodeB selects whether to send the 2G/3G neighbor cell list to the UE according to the capability of the UE.
  • NCL 2G/3G Neighbor Cell Lists
  • FIG. 12 is a schematic diagram of obtaining LA information by using a neighbor cell list. among them,
  • the neighbor cell list in which the eNodeB serving the LTE cell configures the CS is the CS cell 2.
  • the UE can accurately obtain the LA information currently in the UE according to the CS cell 2.
  • the neighbor cell list in which the eNodeB serving the LTE cell configures the CS is CS cell 1, CS cell 2, and CS cell 3.
  • the UE may obtain, according to the CS cell list, the LA to which the UE is currently located, the LA to which the CS cell 1 belongs, and the LA to which the CS cell 3 belongs.
  • the UE selects one of the LAs according to the local policy or the network policy.
  • the CS cell 1 may not be configured in the actual configuration, or may be prioritized according to the size of the overlapping coverage, for example, Ordered queuing can be done in the NCL according to the size of the coverage area.
  • the terminal may select the location area information according to the number of cells belonging to the same location area in the neighbor cell list.
  • the eNodeB serving the LTE cell configures the neighbor cell list of the CS as the CS cell 1 and the CS cell 2.
  • the UE may obtain the LA of the LA and the CS cell 2 to which the UE is currently located, according to the CS cell list. If the CS cell 1 and the CS cell 2 belong to different LAs, the UE selects one of the LAs according to the local policy or the network policy.
  • the neighbor cell list is configured, because the overlapping coverage area of the CS cell 2 and the LTE cell 1 is small, the CS cell 2 may not be configured in the actual configuration or may be prioritized according to the size of the overlapping coverage. For example, Ordered queuing can be done in the NCL according to the size of the coverage area.
  • the terminal may select the location area information according to the number of cells belonging to the same location area in the neighbor cell list.
  • the cell measurement of the target system may be initiated when the terminal device processes one of the regions, thereby supporting the switching of the source system to the target system.
  • Figure 13 an example of network partitioning. among them,
  • the UE does not initiate cell measurement of 2G/3G.
  • the buffer area 1 when the UE is in an active state, the UE initiates a 2G/3G cell measurement to support handover from the source system to the target system.
  • buffer area 1 the discrimination of buffer area 1 is as follows:
  • the information may be sent to the UE through the BSC broadcast channel, or the corresponding indication information may be sent to the terminal through a radio link control (RRC) message; of course, the indication information may be carried by other messages, for example, a cell update confirmation (Cell) Update Confirm), Handover to UTRAN Command, Physical Channel Reconfiguration (Physical Channel) Reconfiguration), Radio Bearer Reconfiguration, Radio Bearer Release, Wireless? Radio Bearer Setup, RRC Connection Setup, Transport Channel Reconfiguration, Measurement Control, and other messages.
  • RRC radio link control
  • the received adjacent LTE network information includes a special 2G/3G Cell ID or an LTE Cell ID (for example, an LTE cell list). , thereby judging that it enters the boundary area.
  • the discriminating manner of the unbuffered region 2 is similar to the discriminating of the buffer region 1.
  • the UE can determine whether it is in a state, the UE can also determine whether the UE is in the second state.
  • LA location area
  • IWF location functional entity
  • the terminal (1) Configure the IWF address information in the eNodeB of the SAE/LTE and send it to the terminal; or query the DNS server to obtain the IWF address information (for example, IP address, port, etc.). After obtaining the information, the terminal directly establishes a connection with the IWF;
  • the terminal learns to enter the source system (LTE) and the target system (2G) boundary area by periodically interacting with the cell, the terminal is triggered to perform the LA/IWF detection process; or through a static mobile phone policy or The corresponding network policy is configured to instruct the terminal to perform the LA/IWF detection mechanism.
  • the source system is a SAE/LTE network
  • the target system is a 2G CS network
  • the UP interface is based on the NAS to implement a method for the terminal to access the target system from the source system.
  • the location area (LA) information of the target system needs to be obtained according to the current location area (TA) information of the source system (SAE/LTE), and the process of obtaining the LA information can take the manner described in FIG.
  • the IWF information obtained by querying the DNS server is the routing information that the MME can use.
  • LAU Location Area Update
  • the MME selects the IWF according to the LA, thereby establishing a NAS-based UP interface.
  • the triggering terminal when the terminal learns to enter the source system (LTE) and the target system (2G) boundary area, the triggering terminal performs the LA/IWF detection process; or instructs the terminal to execute the LA/IWF by using a static mobile phone policy or configuring a corresponding network policy.
  • Detection mechanism As shown in Figure 15, the source system is a 2G CS network, the target network is a S AE/LTE network, and the UP interface is based on USSD to implement a method for the terminal to access the target system from the source system.
  • the IWF and the HLR are both in the home network, and the UP interface is based on the USSD.
  • the USSD service access code of the home network is configured on the terminal, or the USSD service access code of the home network is dynamically allocated by the home network.
  • the location area information (TA) of the target system needs to be obtained according to the current location area information (LA) of the source system (2G CS ), and the 2G-group cell is configured into a virtual TA area, the TA area.
  • the IWF selects one MME to serve the UE according to the policy, that is, from the perspective of the SAE LTE network, the 2G cell is regarded as a pseudo LTE cell served by the IWF-eNB.
  • the UE can obtain the location area information (TA ) of the target system in the following manner:
  • the interface sends LA/CGI to the USSD gateway.
  • the USSD gateway generates a TA according to the LA or CGI mapping.
  • the USSD gateway uses LA/CGI as an input condition to obtain the TA by querying the DNS server.
  • the LA and TA mapping information is configured on the BSC, and the UE receives the LA TA information sent by the BSC when entering the area.
  • the UE obtains TA information according to the LTE Neighbor Cell Lists (NCL). If the UE obtains multiple TA information, the UE selects one of them and performs an LTE attach procedure. In a specific implementation, the UE reports the capability of registering with the USS and the IWF on the SAE/LTE network to the BSC. The BSC selects whether to send the LTE neighbor cell list to the UE according to the capability of the UE.
  • NCL LTE Neighbor Cell Lists
  • FIG. 16 is a schematic diagram of obtaining TA information by using a neighbor cell list.
  • the BSC/RNC serving the CS cell configures the neighbor cell list of the LTE as the LTE cell 1, the LTE cell 2, the LTE cell 3, the LTE cell 4, the LTE cell 5, the LTE cell 6, and the LTE cell 7 .
  • the UE may learn that the UE is currently in the LTE cell 1, LTE according to the LTE cell 1, the LTE cell 2, the LTE cell 3, the LTE cell 4, the LTE cell 5, the LTE cell 6, and the LTE cell 7.
  • the cell 2, the LTE cell 3, the LTE cell 4, the LTE cell 5, the LTE cell 6, and the LTE cell 7 belong to the TA. If the L LTE cell 1, the LTE cell 2, the LTE cell 3, the LTE cell 4, the LTE cell 5, the LTE cell 6, and the LTE cell 7 belong to different LAs, the UE selects one of the TAs according to a local policy or a network policy. In addition, when the neighbor cell list is configured, only the LTE cell 3 and the CS cell 3 have a large overlapping coverage, so in the actual configuration, only the LTE cell 3 is configured or the priority is divided according to the size of the overlapping coverage, for example, The NCL is queued in order according to the size of the coverage area. In addition, the terminal may select the location area information according to the number of cells belonging to the same location area in the neighbor cell list.
  • the above process is triggered to search for the TA, so that the IWF is registered on the SAE/LTE network.
  • the 2G/3G network supports DTM (Dual Transport Mode)
  • the UE accesses the SAE/LTE target network using a special APN (Access Point Name).
  • the information about obtaining the IWF address can be as follows:
  • the UE queries the DNS server through the UP interface to obtain the IWF address information. You can query by entering LA, CGI or TA.
  • the UE sends the LA, CGI, or TA to the USSD gateway through the UP interface.
  • the USSD gateway selects the IWF according to the predetermined policy. Or the mapping between LA or CGI or TA and IWF is configured on the USSD gateway.
  • the terminal learns to enter the source system (2G) and the target system (LTE) boundary area by periodically interacting with the cell, the terminal is triggered to perform the LA/IWF detection process; or through a static mobile phone policy or The corresponding network policy is configured to instruct the terminal to perform the LA/IWF detection mechanism.
  • the source system is the source network as the 2G CS network
  • the target network is the SAE/LTE network.
  • Network, UP, interface is a schematic diagram of another embodiment of a method for a terminal to access a target system from a source system based on USSD.
  • the IWF is on the visited network, the HLR is in the home network, and the interface is based on the USSD.
  • the TA detection mechanism is similar to the description of FIG. Specifically, when the UE is in the visited network, it establishes a logical channel between the USSD gateways of the home network through the USSD service access code of the home network.
  • the UE queries the DNS server through the UP interface to obtain the IWF address information. You can query by entering LA, CGI or TA.
  • the UE sends the LA, CGI, or TA to the home network through the UP interface.
  • the USSD gateway belongs to the network.
  • the USSD gateway chooses to visit the network USSD gateway device according to LA/CGI/TA. Visiting the network
  • the USSD gateway is responsible for selecting the IWF, for example, selecting the IWF according to a predetermined policy, or configuring the mapping between the LA or CGI or the TA and the IWF in the visited network USSD gateway.
  • the terminal learns to enter the source system (2G) and the target system (LTE) boundary area
  • the terminal is triggered to perform the LA/IWF detection process; or the terminal is configured to execute the LA/ by a static mobile phone policy or a corresponding network policy.
  • IWF detection mechanism As shown in FIG. 18, the source system is a 2G CS network, the target network is a S AE/LTE network, and the UP interface is based on the USSD to implement a method for the terminal to access the target system from the source system.
  • the IWF is in the visited network, and the HLR is in the home network.
  • the TA detection mechanism is similar to the description of Figure 15. No longer detailed.
  • the UE When the UE is in the visited network, it establishes a logical channel to the USSD gateway of the home network through the USSD service access code of the home network, and sends the LA, CGI or TA to the home network USSD gateway through the logical channel, the home network USSD
  • the gateway returns the USSD service access code of the visited network where the UE is located according to the LA, the CGI, or the TA.
  • the USSD gateway uses the LA, CGI, or TA as an input condition to query a network server (for example, a DNS server) to obtain a USSD service access code of the visited network.
  • a network server for example, a DNS server
  • the UE establishes a logical channel between the UE and the visited USSD gateway by using the USSD service access code of the visited network, and visits the network USSD gateway according to the location of the IP network or the CS network where the terminal is located.
  • the information selection IWF serves the UE, and the visited network USSD gateway selects the IWF as the description of FIG. 15 and will not be described in detail.
  • the terminal learns to enter the source system (2G) and the target system (LTE) boundary area
  • the terminal is triggered to perform the LA/IWF detection process; or the terminal is instructed to execute the LA/ by a static mobile phone policy or a corresponding network policy.
  • IWF detection mechanism As shown in FIG. 19, the source system is a 2G CS network, the target network is a S AE/LTE network, and the UP interface is based on the USSD to implement a method for the terminal to access the target system from the source system.
  • the IWF is in the visited network, and the HLR is in the home network. Among them, the TA detection mechanism is similar to the description of FIG. No longer detailed.
  • the UE When the UE is in the visited network, it establishes a logical channel to the USSD gateway of the home network through the USSD service access code of the home network, and the home network USSD gateway detects that the UE is in the visited network according to the LA, CGI or TA, and selects the IWF. And the MME gateway serves the UE. Specifically, the USSD gateway uses the LA or CGI or TA as a query condition to obtain the IWF and the MME gateway by querying the DNS server.
  • the gateway device is a special device. There is a logical interface between the gateway device of the home network and the gateway device of the roaming network.
  • the SAE/LTE context can be transmitted to implement the switch from inter-MME.
  • the UE registers in advance with the SAE/LTE network through the home network USSD gateway and the IWF and the MME gateway, and generates a corresponding SAE/LTE context in the SAE/LTE network according to the service.
  • the UE needs to switch from the 2G network to the SAE/LTE network of the visited network.
  • the MME gateway queries the visited network MME gateway according to the TA, LA or CGI information, so as to send the related handover message.
  • the visited MME gateway finds the corresponding visited network MME and the corresponding eNodeB device according to the target LTE cell information, thereby completing the inter-MME handover.
  • the terminal learns to enter the source system (2G) and the target system (LTE) boundary area
  • the terminal is triggered to perform the LA/IWF detection process; or the terminal is configured to execute the LA/ by a static mobile phone policy or a corresponding network policy.
  • IWF detection mechanism The above process applies to the source network for 3G, WiMAX networks, UMB networks, HRPD networks, and
  • the network and target networks such as 3GPP2 DO are 3G CS networks, lxRTT networks, WiMAX networks, UMB networks, HRPD networks, and 3GPP2 DO networks.
  • IP networks or NAS-based UP interfaces are 3G CS networks, lxRTT networks, WiMAX networks, UMB networks, HRPD networks, and 3GPP2 DO networks.
  • IP networks or NAS-based UP interfaces IP networks or NAS-based UP interfaces.
  • the MSC upgrade supports the USSD service access code, that is, the MSC receives the USSD service access code associated with the IWF, and the MSC terminates the USSD session, and the MSC searches for the corresponding IWF according to the information of the USSD session, thereby establishing from the UE to The logical link of the IWF, so that the UE registers with the target network through the IWF, and executes the business logic.
  • USSD service access code that is, the MSC receives the USSD service access code associated with the IWF, and the MSC terminates the USSD session, and the MSC searches for the corresponding IWF according to the information of the USSD session, thereby establishing from the UE to The logical link of the IWF, so that the UE registers with the target network through the IWF, and executes the business logic.
  • the UE can trigger the LAU in the following three ways:
  • the UE first detects that its TA or CGI changes, and the UE generates LA according to TA/CGI. If the UE detects that the newly generated LA changes, the UE continues to detect an IWF according to the new LA information, and then the UE initiates a LAU procedure.
  • step (2) The UE learns the new LA information from the eNodeB broadcast message, and the remaining steps are the same as step (1).
  • the UE learns the new LA information and the new IWF information from the eNodeB broadcast message, and performs the LAU procedure. It should be noted that the above process is applicable to the source network being 3G, WiMAX network, UMB network,
  • the HRPD network and the network and target networks such as 3GPP2 DO are 3G CS networks, lxRTT networks, WiMAX networks, UMB networks, HRPD networks, and 3GPP2 DO networks.
  • the source network is a 2G network and the target network is a SAE/LTE network
  • the UE detects that the TA in which it is located changes, a Location Area Updating (TAU) process is initiated.
  • the UE can trigger the TAU in the following three ways:
  • the UE first detects its own LA or RA or CGI changes, then the UE generates a TA according to LA/RA/CGI. If the UE detects a change in the newly generated TA, the UE continues to detect an IWF according to the new TA, and then the UE initiates a TAU procedure. (2) The UE learns the new TA information from the BSC broadcast message, and the remaining steps are the same as step (1).
  • the UE learns the new TA information and the new IWF information from the BSC broadcast message, and performs the TAU process. It should be noted that the foregoing process is applicable to a network in which the source network is a 3G, an lxRTT network, a WiMAX network, a UMB network, an HRPD network, and a 3GPP2 DO network and a target network are a WiMAX network, a UMB network, an HRPD network, and a 3GPP2 DO.
  • the mobility management in the active state The following describes the SAE/LTE accessing the 2G/3G CS network through the IWF.
  • the source network is the SAE/LTE network
  • the target network is the 2G/3G CS network.
  • FIG. 20 it is an embodiment of the present invention for performing mobility management in an Active state;
  • the UE has an active voice session.
  • the detection process is similar to the description of FIG.
  • the UE notifies the source IWF to perform an inter-IWF handover through the UP' interface.
  • the IWF is switched to a normal inter-BSC handover (if the source IWF and the target IWF belong to different MSCs, it can be inter-MSC handover); and from the IWF perspective, because the IWF is in the inter-BSC/inter-
  • An indication is added to the MSC handover message to indicate that the target IWF is switched to the inter-IWF.
  • the indication may be added to a Transparent Container field in the inter-BSC/inter-MSC handover message.
  • the source IWF performs inter-IWF switching in two ways:
  • the UE sends the LA, TA, or CGI to the source IWF (for example, UP, interface), and the source IWF detects the target IWF according to the LA, TA, or CGI, thereby triggering the IWF handover (the IWF detection process is similar to the foregoing FIG. Figure 14 and Figure 15).
  • the source IWF for example, UP, interface
  • the UE detects the IWF of the new LA and notifies the source IWF (eg via UP, interface).
  • the IWF detection process is similar to that described above with respect to Figures 11, 14, and 15.
  • FIG. 21 it is a schematic diagram of another embodiment of performing mobility management in an active state in the present invention; wherein, the target IWF receives an inter-IWF switch, and performs the following processing:
  • the inter-IWF handover message contains the voice bearer negotiation information of UE A (eg, an IP address, The port information and the QoS requirement are used to perform bearer negotiation, and the negotiation result is returned to the UE through the inter-IWF handover procedure.
  • voice bearer negotiation information of UE A eg, an IP address
  • the port information and the QoS requirement are used to perform bearer negotiation, and the negotiation result is returned to the UE through the inter-IWF handover procedure.
  • the inter-IWF handover message includes the message established by the UE's UP' interface
  • the UP' interface is established to establish a negotiation process, and the negotiation result is returned to the UE through the inter-IWF handover procedure.
  • the IWF may also initiate the 7- carrier negotiation information and the UP to the UE A, and the interface establishes a negotiation process.
  • the IWF may immediately return a handover success message to the source IWF (eg, via the MSC).
  • the source IWF receives the handover message returned by the target IWF and sends it to UE A. If UE A does not perform bearer negotiation negotiation or UP interface establishment negotiation in the inter-IWF handover procedure, UE A initiates the above process.
  • the target IWF triggers voice bearer setup through the Rx interface, or UE A initiates bearer setup. After the bearer is established, the target IWF-BSC performs an inter-BSC/inter-MSC handover complete message.
  • the above process is also applicable to networks such as 3G, WiMAX network, UMB network, HRPD network, and 3GPP2 DO network and target network are 3G, lxRTT network, WiMAX network, UMB network, HRPD network and 3GPP2 DO.
  • the terminal device obtains the location area information of the target system according to the location information of the source system, and accesses the target system through a corresponding interconnection function entity, thereby implementing the Voice call continuity from the source system to the target system.
  • the present invention can be implemented by hardware, or by software plus necessary general hardware platform.
  • the technical solution of the present invention may be embodied in the form of a software product, which may be stored in a non-volatile storage medium (which may be a CD-ROM, a USB flash drive, a mobile hard disk, etc.), including several The instructions are for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform the methods described in various embodiments of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种终端从源系统接入目标系统的方法、 设备 本申请要求于 2008年 1月 4日提交中国专利局、申请号为 200810025615.4、 发明名称为 "一种终端从源系统接入目标系统的方法、 设备" 的中国专利申请 的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及移动通信领域, 尤其涉及一种终端从源系统接入目标系统的方 法、 设备。 背景技术
通用移动通信系统 ( Universal Mobile Telecommunications System, UMTS ) 是采用宽带码分多址接入 ( Wideband Code Division Multiple Access, WCDMA ) 空中接口技术的第三代移动通信系统,通常也把 UMTS系统称为 WCDMA通信 系统。 UMTS 系统采用了与第二代移动通信系统类似的结构, 包括无线接入网 络( Radio Access Network, RAN )和核心网络( Core Network, CN )。 其中无 线接入网络用于处理所有与无线有关的功能, 而 CN处理 UMTS系统内用户位 置管理、 业务管理等功能, 并实现与外部网络的交换和路由功能。 CN从逻辑上 分为电路交换域 ( Circuit Switched Domain, CS )和分组交换域 ( Packet Switched Domain, PS )。 UTRAN(Universal Terrestrial Radio Access Network通用地面无线 接入网)、 CN与用户设备 ( User Equipment, UE )一起构成了整个 UMTS 系统。
图 1是现有的采用 Dual Radio实现语音呼叫连续性的方案原理示意图。 其中, Dual Radio—般是指在 3GPP和 Non-3GPP之间, UE在同一时间点能够同时接收两 种无线信号。 其中, 如果 UE A在 CS域发起语音呼叫, 此 CS语音呼叫被锚定在 VCC AS(Voice Call Continuity Application Server, 语音呼叫连续性应用服务器)。 当 UE A将要移动出 CS网络而进入 WLAN网络覆盖, UE A通过 WLAN网络发起一 个 IMS语音呼叫并将该 IMS语音呼叫也锚定在 VCC AS上。当该 IMS语音呼叫建立 起来后, UE A和 VCC AS之间的 CS信令和语音承载被 UE A和 VCC AS之间的 IMS信令以及其附属的 VoIP承载所代替。实现了从 CS网络到 IMS网络的语音呼叫 连续性, 但是, 该方案只适用于 Wi-Fi网络和 GERAN之间在 Dual Radio条件 下语音连续性问题。 随着 SAE/LTE, WiMAX等无线宽带技术出现, 有必要考虑 从 SAE/LTE、 WiMAX和蜂窝网络之间的在 Single Radio ( Single Radio一般指在 3GPP内部, UE在一个时间点只能接收一种 3GPP无线信号) 情况下的无缝切换 的解决方案。 发明内容
本发明实施例所要解决的技术问题在于, 提供一种终端从源系统接入目标 系统的方法、 终端设备, 可以使终端设备从源系统无缝接入到目标系统。
本发明实施例提供的一种实现终端从 IP网络接入 CS网络的方法, 包括步 骤:
当终端处于 IP网络, 该终端获得该 CS网络的位置区信息;
所述终端根据该 CS网络的位置区信息或该 IP网络的位置区信息, 获得相 应的互联功能实体的位置信息;
该终端通过该互联功能实体接入该 CS网络。
相应的, 本发明实施例提供了一种实现终端从 CS网络接入 IP网络的方法, 包括步骤:
当终端处于 CS网络, 所述终端获得该 IP网络的位置区信息;
所述终端根据该 CS网络或 IP网络的位置区信息, 获得相应的互联功能实 体的位置信息;
该终端通过该互联功能实体接入该 IP网络。
相应地, 本发明实施例提供了一种实现终端从漫游 CS网络接入 IP网络的 方法, 包括步骤:
建立所述终端和所述终端的归属网络非结构化补充数据业务( Unstructured Supplementary Service Data, USSD ) 网关之间 USSD通道;
根据该归属网络 USSD网关选择一个互联功能实体;
建立该终端和该互联功能实体之间的逻辑通道;
该终端通过该逻辑通道接入该 IP网络。
相应地, 本发明实施例提供了一种终端设备, 包括:
目标系统位置区信息获得单元, 用于当终端位于源系统时, 获得目标系统 的位置区信息; 互联功能实体获得单元, 用于根据目标系统位置区信息获得单元所获得的 目标系统的位置区信息或根据源系统的位置区信息, 获得相应的互联功能实体 的位置信息;
接入请求单元, 用于通过该互联功能实体请求接入该目标系统。
在本发明实施例的方法、 终端设备中, 终端设备通过根据源系统所在的位 置信息获得目标系统的位置区信息, 并通过一个相应的互联功能实体接入到该 目标系统中, 可以实现从源系统到目标系统的语音呼叫连续性。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付 出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1是现有技术中采用 Dual Radio实现语音呼叫连续性的方案原理示意图; 图 2是系统架构演进网络的系统架构的一种实施例示意图;
图 3 是本发明一种实施例提供的包括有互联功能是实体的网络架构的示意 图;
图 4是与归属位置登记器(Home Location Register, HLR )直连建立 USSD 通道的网络架构示意图;
图 5是与移动交换中心 (Mobile Switch Center, MSC ) 直连建立 USSD通 道的网络架构示意图;
图 6是图 3中的终端设备的一个实施例结构组成示意图;
图 7是图 6中的互联功能实体获得单元的一个实施例结构组成示意图; 图 8是图 6中的互联功能实体获得单元的另一个实施例结构组成示意图; 图 9是本发明终端从源系统接入目标系统的方法的第一实施例示意图; 图 10是本发明终端从源系统接入目标系统的方法的第二实施例示意图; 图 11是源系统为 SAE/LTE网络, 目标系统为 2G CS网络, UP,接口基于 IP 来实现终端从源系统接入目标系统的方法示意图;
图 12是利用邻小区列表来获得 LA信息的示意图;
图 13是网络划分的一个例子; 图 14是源系统为 SAE/LTE网络, 目标系统为 2G CS网络, UP'接口基于 NAS来实现终端从源系统接入目标系统的方法示意图;
图 15是源系统为源网络为 2G CS网络, 目标网络为 SAE LTE网络, UP' 接口基于 USSD来实现终端从源系统接入目标系统的方法示意图;
图 16是利用邻小区列表来获得 TA信息的示意图;
图 17是源系统为源网络为 2G CS网络, 目标网络为 SAE LTE网络, UP' 接口基于 USSD来实现终端从源系统接入目标系统的方法另一实施例的示意图; 图 18是源系统为源网络为 2G CS网络, 目标网絡为 SAE/LTE网络, UP' 接口基于 USSD来实现终端从源系统接入目标系统的方法再一实施例的示意图; 图 19是源系统为源网络为 2G CS网络, 目标网络为 SAE/LTE网络, UP' 接口基于 USSD来实现终端从源系统接入目标系统的方法又一实施例的示意图; 图 20是本发明中在 Active状态下进行移动性管理的一个实施例示意图; 图 21是本发明中在 Active状态下进行移动性管理的另一实施例的示意图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
如图 2所示, 是系统架构演进网络( System Architecture Evolution , SAE ) 的系统架构的一种实施例示意图; 其中,
UE 为用户设备, 即终端; EUTRAN 为演进的无线接入网, 其中有演进的 Node B , 称为 eNB , 可能还有其他节点, 我们以 eNB来代替这些节点。 MME ( Mobility Management Entity ) 为移动性管理实体, 具有控制面功能, 如与 UE 的控制面消息处理, 移动性管理(记录 UE位置信息), 寻呼、 认证等。 Serving SAE Gateway, 服务网关, 具有用户面功能, 传递 UE的数据, 与无线接入网存 在 S1-U接口。 MME和服务网关合起来类似传统的 SGSN( Serving GPRS Support Node, 服务 GPRS支持节点)。 PDN GW ( Packet Data Network SAE Gateway, 分组数据网网关;),类似传统的 GGSN( Gateway GPRS Support Node, 网关 GPRS 支持节点;),与外部数据网络存在 SGi接口,具有策略执行、包过滤等功能。 PCRF ( Policy Control and Charging Rules Function, 策略控制与计费规则功能实体)执 行策略相关控制功能。 S3接口是 MME与 2G/3G的 SGSN之间的接口, 其基于 GTP协议, S4是服务网关与 SGSN的接口。 服务网关与 PDN网关可能处于同 一个物理节点也可能处于不同物理节点。 MME和服务网关也可能是同一个物理 节点或分离的物理节点。 当上面的逻辑实体处于同一个节点, 则其之间的接口 信令转为内部节点消息。
SAE/LTE被定义为一个纯的包交换系统, 这就表明在该系统中语音业务只 能在包交换的承载上传输。 在 SAE/LTE系统中, 语音业务数据一般由 IMS来控 制,所以在 SAE/LTE中语音业务一般被称作 VoIP语音业务。 而对于传统的语音 业务, 一般都是承载在 CS TDM ( Time Division Multiplexing, 时分复用 )上。 SAE/LTE在初始阶段的部署是热点覆盖,而 GSM/UMTS网络在某种程度上可看 作一种全覆盖。 显然这种网络拓朴结构带来一个问题: 当 UE从 2G/3G 电路域
( Circuit System, CS )网络移动进入 SAE/LTE网络热点覆盖范围时,承载 2G/3G CS网络上语音需要被无缝地转移到 SAE/LTE的基于 IMS的语音业务, 即保持 语音连续性。
语音呼叫连续性 (Voice Call Continuity, VCC)—般是指, 当 UE在支持 VoIP ( Voice Over IP, 用 IP传输语音)业务的网络和不支持 VoIP业务的网络之间移 动时, 该 UE的语音业务必须要保持连续, 即将承载在源系统的 VoIP的语音业 务平滑切换到目标系统 CS域, 反之亦然。 图 3是本发明的实施例中一种包括有 互联功能实体 ( Interworking Function , IWF ) 的网络架构示意图。 如图 3所示, 该网络包括源系统、 目标系统以及互联功能实体。 具体实现中, 所述源系统可 以为 GSM系统、 WCDMA系统、 LTE系统、 WiMAX系统以及 3GPP2系统等; 所述目标系统可为 3GPP2 DO系统、 3GPP2 1XRTT系统、 UMB系统、 SAE/LTE 系统、 WiMAX系统、 2G/3G系统等中的至少一个; 具体实现中, UE基于源系 统建立到 IWF的逻辑通道 UP,接口。 UE通过 UP,接口发送目标系统的信令 (例 如注册、 业务信令), 从而模拟 UE在目标系统的行为。
具体实现中, UP,接口可以基于源系统的 IP承载系统, 也可以基于源系统 的信令层次消息, 如, 基于 GSM USSD消息、 2G/3G短消息、 2G/3G LTE非接 入层消息( None Access Stratum, NAS )。如图 3所示, 当源系统为 GSM系统时, UE基于源系统 GSM 的 USSD 通道建立到 IWF的逻辑通道 UP,接口。 进而实 现 UE通过 USSD 通道建立的 UP'接口发送接入目标系统 ( 3GPP2 DO系统、 3GPP2 1XRTT系统、 UWB系统、 SAE/LTE系统、 WiMAX系统等系统)的信令 信息,模拟 UE在目标系统的行为 ,其中,该信令消息可以为诸如注册信令消息、 业务信令消息。具体实现中, UE和 IWF可采用类似 ICS( IMS Centralized System IMS集中控制系统) 的基于 USSD的 ICCP ( IMS Control Channel Protocol IMS 控制通道协议)。
其中, USSD ( Unstructured Supplementary Service Data 非结构化补充数据 业务)是一种基于 GSM移动通信网絡的新型交互会话数据业务, 是继短消息业 务后在 GSM移动通信网络上推出的又一新型增值业务。 USSD是一种基于 GSM 网络的新型交互式数据业务。 USSD系统采用的是面向连接, 提供透明通道的交 互式会话方式, 是会话类业务的理想载体, 具有响应速度快、 交互能力强、 可靠 性高的特点, 同时支持大多数普通 GSM手机。 USSD发起的形式: #SC*SI#, 其 中, SC即业务码, 由 0-9的数字组成, SI为业务信息, 可以为任意内容。 前面 的#为前导符 (Leader Char),可由 (*,#)的 1-3位组合而成, 后面的 #为结束符 (Close Char)比如 *125#。其架构有两种方式:与 HLR直连方式以及与 MSC直连的方式。
如图 4所示, 是一种与 HLR直连建立 USSD通道的网络架构示意图。 在 USSD中心与 HLR直接连接的情形下, 当 USSD中心下发时, 向 MS所归属的 HLR发送 USSD消息, 由 HLR转发给该 MS所在的 MSC, 从而为本 HLR所覆 盖的 USSD用户提供 USSD服务; 当 MS上发时, USSD消息经由 MSC到达 HLR, 然后 HLR将其传到 USSD中心, 由 USSD中心转发 USSD消息给相应 的业务处理模块进行处理, 其中, 该业务处理模块可以诸如为 USSD 服务器 ( USSD Server )。
如图 5所示, 是一种与 MSC直连建立 USSD通道的网络架构示意图。 在 USSD 中心与 MSC直接连接的情形下, 当 USSD 中心下发时, 向 MS所在的 MSC发送 USSD消息, 实现全网 USSD用户的自动漫游( MS所在的 MSC须支 持 USSD功能); 当 MS上发时, USSD消息将经由 MSC到达 USSD中心, 由 USSD中心转发给相应的业务处理模块进行处理, 此时 USSD中心作为 MSC的 USSD处理中心 (USSD Handler)。 另夕卜, 具体实现中, 为了提高 UP,接口传输信 令的速度, UE和 IWF通过 UP,接口协商启用压缩功能。
具体实现中, IWF可通过 Radius/Diameter协议接口和 AAA ( Autentication Authorization Accounting ,认证授权计費)服务器相连。 当目标系统为 3GPP2 DO 网络时, IWF含有 3GPP DO接入侧实体功能, IWF和 PDSN的接口为 A10/A11 , IWF和 PCF接口为 A8/A9/(A14)/(A20)。 当目标系统为 3GPP2 1XRTT网络时, IWF含有 3GPP2 1XRTT接入侧实体功能, IWF和 1XRTT MSC的接口为 A1。 当目标系统为 2G/3G网络时, IWF含有 2G/3G接入侧实体功能, IWF和 2G/3G MSC的接口为 A/Iu-CS接口, IWF和 2G/3G SGS 的接口为 Gb Iu-PS接口。 当 目标系统为 UMB网络时, IWF含有 UMB网络接入侧实体功能 , IWF和 AGW 接口为 Ul , IWF和 SRNC接口为 U2, IWF和 eBS接口为 Ul。 当目标系统为 SAE/LTE网络时, IWF含有 SAE/LTE网络接入侧 eNodeB功能, IWF和 MME 接口为 Sl-MME, IWF和 Serving GW接口为 S1-IL 如果 IWF含有 SGSN/MME 功能实体, 相应地, IWF和 MME拥有 S3/S10接口。 或者 IWF和 MME之间的 接口为 S3,,当从 SAE/LTE网络到 2G/3G网络切换,所有的切换消息都通过 IWF, IWF一直在 S3接口的路径上。 当从 2G/3G网络到 SAE/LTE网络切换时, 所有 的切换消息都通过 IWF, IWF一直在 S3接口的路径上。 当目标系统为 WiMAX 网络时, IWF含有 WiMAX网络接入侧 BS功能, IWF和 ASN-GW接口为 R4/R6。 并且, 作为逻辑功能实体的 IWF , 可承载在实际的物理设备上 (比如, MSC/SGSN/MME/ASN-GW等设备上 具体的, 图 6是图 3中的终端设备一个实施例结构组成示意图, 如图 6所 示, 本实施例的终端设备包括目标系统位置区信息获得单元 10、 互联功能实体 获得单元 12和接入请求单元 14。 其中:
目标系统位置区信息获得单元 10, 用于当所述终端位于源系统时, 获得所 述目标系统的位置区信息;
互联功能实体获得单元 12, 用于根据所述目标系统位置区信息获得单元 10 所获得的目标系统的位置区信息或根据源系统的位置区信息, 获得相应的互联 功能实体的位置信息;
接入请求单元 14, 用于通过所述互联功能实体请求接入所述目标系统。 进一步, 如图 7所示, 是图 6中的互联功能实体获得单元的一个实施例结 构组成示意图; 其中, 该互联功能实体获得单元 12进一步包括: 接收单元 120, 用于接收目标系统的网络标识信息;
生成单元 122,用于根据所述接收单元所接收的网络标识信息生成所述目标 系统的位置区信息; 例如, 该目标系统的网络标识信息可以为: 接收的邻小区 列表中的所述目标网络系统的小区标识。
选择单元 124, 用于在所述生成单元所生成的目标系统的位置信息为多个 时, 选择其中一个。 如图 8所示, 是图 6中的互联功能实体获得单元的另一个实施例结构组成 示意图; 其中, 该互联功能实体获得单元 12进一步包括:
获得单元 126, 用于获得源系统的网络标识信息;
查询单元 128 , 用于根据所述源系统的网络标识信息, 查询网络服务器获得 所述目标系统的位置区信息。 其中, 该源系统的网络标识信息为位置区信息; 该网络服务器为 DNS服务器。 相应的, 图 9 ^^于图 6所示的终端设备的本发明的终端从源系统接入目 标系统的方法的一个实施例流程示意图, 如图 9所示, 本实施例的方法包括: 步骤 S10, 终端在源系统时, 获得目标系统的位置区信息;
具体实现时, 当该源系统为 IP网络系统, 目标系统为 CS网络系统时, 该 获得目标系统的位置区信息的步骤可包括如下:
根据源系统(IP网络) 的位置信息, 该终端查询 DNS服务器, 获得目标系 统(CS网络)的位置区信息; 或者该 IP网络发送邻小区列表信息给该终端, 根 据该邻小区列表中该 CS网络的小区信息, 获得该 CS网络的位置区信息, 当从 该邻小区列表中 CS网络的小区信息获得 CS网络的位置区信息为多个时, 该终 端可以选择其中一个; 或者在该 IP网络的基站中配置该 CS网络的位置区信息, 该 IP网络的基站将配置的 CS网络的位置区信息发送给该终端。
当该源系统为 CS网络系统, 目标系统为 IP网络系统时, 该获得目标系统 的位置区信息的步骤可包括如下:
根据该 CS网络的位置信息, 通过互联功能实体获得该 IP网络的位置区信 息; 或者该 CS 网络发送邻小区列表信息给该终端, 根据该邻小区列表中该 IP 网络的小区信息, 获得该 IP网络的位置区信息, 如果当从邻小区列表中 IP网络 的小区信息获得该 IP网络的位置区信息为多个时, 该终端可以选择其中一个; 或者在该 CS网络的基站系统配置该 IP网络的位置区信息,该 CS网络的基站将 配置的 IP网络的位置区信息发送给该终端。
步骤 S12, 根据目标系统位置区信息, 获得相应的互联功能实体位置信息; 具体实现时, 当该源系统为 IP网络系统, 目标系统为 CS网络系统时, 该 获得相应的互联功能实体位置信息的步骤包括:
终端根据该 CS网络的位置区信息检测(discovery )该互联功能实体; 或者 在该 IP网絡的基站系统配置该互联功能实体的位置信息,该 IP网络的基站系统 将配置的位置信息发送给该终端; 或者根据该终端在所述 IP网络的位置信息, 查询 DNS服务器获得该互联功能实体的位置信息。
其中,终端根据所述 CS网络的位置区信息检测该互联功能实体的步骤可包 括:
通过该 CS网络的位置区信息查询 DNS服务器, 获得该互联功能实体的位 置信息; 或者在该 IP网络里配置该 CS网络的位置区信息和该互联功能实体对 应关系, 根据该终端获得的 CS网络的位置区信息, 从而获得该互联功能实体的 位置信息。
当该源系统为 CS网络系统, 目标系统为 IP网络系统时, 该获得相应的互 联功能实体位置信息的步骤包括:
该终端通过 USSD隧道和该互联功能实体发送该终端在该 CS网络的位置区 信息给 USSD网关; USSD网关查询 DNS服务器,获取该 IP网络的位置区信息。
步骤 S14, 通过该互联功能实体接入目标系统。
相应的, 图 10是基于图 6所示的终端设备的本发明的终端从源系统接入目 标系统的方法的另一个实施例流程示意图, 如图 10所示, 本实施例的方法应用 于终端从漫游 CS网络接入 IP网络。 该方法包括:
步骤 S20, 建立终端与该终端的归属网络 USSD网关之间的 USSD通道; 步骤 S22, 根据该归属网络 USSD 网关选择互联功能实体, 即该归属网络 USSD 网关才艮据所述 IP网络的位置区信息或所述 CS网络的位置区信息选择互 联功能实体; 具体为: 该归属 USSD网关根据该 IP网络的位置区信息或所述 CS 网络的位置区信息查询 DNS服务器, 获得该漫游 CS网络的互联功能实体。 注 意, 这里所描述的方法也适用于所述终端从其归属网络接入 IP网络; 或者所述归属 USSD GW根据该 IP网络的位置区信息或该 CS网络的位置 区信息查询 DNS服务器, 获得该漫游 CS网络的 USSD业务接入码并返回给终 端, 终端根据该 USSD业务接入码与漫游 CS网络的 USSD网关建立逻辑通道, 该 USSD网关根据终端当前所处 IP网络或者 CS网络的位置区信息, 选择互联 功能实体为该终端服务。
步骤 S24, 建立该终端和该互联功能实体之间的逻辑通道;
步骤 S26, 该终端通过该逻辑通道接入目标系统。
下面以具体实施例为例 , 对本发明实施例进行更加详细的说明。 如图 11所示, 是源系统为 SAE/LTE网络, 目标系统为 2G CS网络, UP, 接口基于 IP来实现终端从源系统接入目标系统的方法示意图。
首先, 需要根据源系统(SAE/LTE ) 的当前位置( Tracking area, TA )信息 来获得目标系统的位置区( Location Area, LA )信息, 该获得 LA信息的过程可 以采取如下方式:
(1)根据 UE所处当前位置信息 TA来查询 DNS服务器, 从而获取 LA信息。 或者可以使用 TA+小区 ID作为 DNS服务器的查询输入条件。 UE也可以根据该 TA信息直接生成 LA信息。
(2) 将一组 LTE小区配置成 LA区域, 并且将该 LA区域的信息配置在源系 统的基站 (eNodeB ) 上, eNodeB将该消息发送给 UE。
(3)在源系统的移动性管理实体( MME ) 上配置 LA和 TA的生成规则, 当 UE在 SAE/LTE系统进行附着后, UE获得 LA信息。
(4)根据接收到 2G/3G邻小区列表( Neighbor Cell Lists, NCL ), UE获得 LAI。 如果 UE获得 LAI为多个, UE选择其中一个, 执行 CS注册。 具体实现中, UE 上报支持通过 IWF在目标系统(2G/3G网络) 注册的能力给 eNodeB。 eNodeB 根据 UE的能力选择是否将 2G/3G邻小区列表发送给 UE。
为便于理解, 请参见图 12所示, 是利用邻小区列表来获得 LA信息的示意 图。 其中,
(1)对于 LTE小区 2, 服务该 LTE小区的 eNodeB配置 CS的邻小区列表为 CS小区 2。 UE驻扎在 LTE小区 2时, UE可以根据 CS小区 2, 准确获取 UE 当前所处的 LA信息。 (2)对于 LTE小区 3, 服务该 LTE小区的 eNodeB配置 CS的邻小区列表为 CS小区 1、 CS小区 2、 CS小区 3。 UE驻扎在 LTE小区 3时, UE可以根据 CS 小区列表, 获取 UE当前可能处于 CS小区 1所属 LA、 CS小区 2的所属 LA、 CS小区 3的所属 LA。 如果 CS小区 1、 CS小区 2或者 CS小区 3属于不同的 LA,则 UE根据本地策略或者网络策略选择其中一个 LA。 另外, 在配置邻小区 列表时, 因为 CS小区 1和 LTE小区 3的重叠覆盖范围很小, 所以在实际配置 中可以不配置 CS小区 1 ,或者根据重叠覆盖范围的大小进行优先级划分,例如, 可以在 NCL中按照覆盖区域的大小进行有序排队。 另外, 终端可以根据邻小区 列表中属于同一个位置区的小区个数来选择位置区信息。
(3)对于 LTE小区 1 , 服务该 LTE小区的 eNodeB配置 CS的邻小区列表为 CS小区 1、 CS小区 2。 UE驻扎在 LTE小区 1时, UE可以根据 CS小区列表, 获取 UE当前可能处于 CS小区 1所属 LA、 CS小区 2的所属 LA。 如果 CS小 区 1、 CS小区 2属于不同的 LA, 则 UE根据本地策略或者网络策略选择其中一 个 LA。 另外, 在配置邻小区列表时, 因为 CS小区 2和 LTE小区 1的重叠覆盖 范围 4艮小,所以在实际配置中可以不配置 CS小区 2或者根据重叠覆盖范围的大 小进行优先级划分, 例如, 可以在 NCL中按照覆盖区域的大小进行有序排队。 另外, 终端可以根据邻小区列表中属于同一个位置区的小区个数来选择位置区 信息。
另外, 在其他一些实施实例中, 可以通过对源系统划分緩冲区和非緩冲区, 当终端设备处理其中一个区域时可以发起目标系统的小区测量, 从而支持源系 统到目标系统的切换。 如下图 13所示, 为网络划分的一个例子。 其中,
对于 SAE/LTE网络划分緩冲区域 1和非緩冲区域 2, 在非緩冲区域 2, UE 处于活动状态下, UE不会发起 2G/3G的小区测量。 在緩冲区域 1 , UE处于活 动状态下, UE发起 2G/3G的小区测量从而支持从源系统到目标系统的切换。
具体说来, 緩冲区域 1的判别如下所示:
1)在 LTE-2G緩冲区域的 eNodeB上配置特定的指示, 并由 eNodeB发送给 该区域的 UE。 具体实现中, 可通过 BSC广播信道发送给 UE, 或者通过无线链 路控制 (RRC ) 消息向终端发送相应的指示信息; 当然还可以通过其他消息来 携带该指示信息, 例如, 小区更新确认(Cell Update Confirm )、 到 UTRAN的切 换命令 ( Handover to UTRAN Command ), 物理信道重配 (Physical Channel Reconfiguration )、 无线承载重配 ( Radio Bearer Reconfiguration )、 无线承载释放 ( Radio Bearer Release ), 无线? 载建立( Radio Bearer Setup )、 无线链路控制连 接建立 ( RRC Connection Setup )、 传输信道重配 ( Transport Channel Reconfiguration )、 测量控制 ( Measurement Control )等消息。
2)在缓冲区域配置特珠 2G/3G Cell ID或者 LTE Cell ID, 当 UE进入緩冲区 域时, 接收到相邻 LTE网络信息包含特殊 2G/3G Cell ID或者 LTE Cell ID (例如 LTE小区列表), 从而判断其进入边界区域。
非緩冲区域 2的判別方式类似于緩冲区域 1的判別。
另外, 如果从逻辑上只存在两种状态, 只需要一种标示, 如果 UE能判断出 是否处于一种状态, 则 UE也就可以判断出 UE是否出于第二种状态。 再请回到图 11, 在获得目标系统的位置区 (LA )信息之后, 需要获得为该 终端服务的互联功能实体(IWF )位置信息。 以使该终端与该互联功能实体建立 连接, 从而接入目标系统。 该获得互联功能实体的信息可以釆用如下的方式:
(1)在 SAE/LTE的 eNodeB中配置 IWF地址信息, 并发送给终端; 或者通过 查询 DNS服务器, 从而获得 IWF地址信息 (如, IP地址、 端口等)。 终端在获 得所述信息后, 直接和 IWF建立连接;
(2)根据 UE所处当前源系统的位置信息 TA来查询 DNS服务器, 从而获取 IWF地址信息。 也可以使用 TA+小区 ID作为查询条件, 在 DNS服务器中查询 该 IWF地址信息。 或者
(3)根据 LA查询 DNS服务器, 获得 IWF地址信息。
一般说来, 当终端通过周期性地与所处小区的交互,获知进入源系统(LTE ) 和目标系统 (2G ) 边界区域, 则触发终端执行该 LA/IWF检测过程; 或者通过 静态手机策略或者配置相应的网络策略指示终端执行该 LA/IWF检测机制。 如图 14所示, 是源系统为 SAE/LTE网络, 目标系统为 2G CS网络, UP, 接口基于 NAS来实现终端从源系统接入目标系统的方法示意图。
首先, 需要根据源系统 (SAE/LTE ) 的当前位置区 (TA )信息来获得目标 系统的位置区 (LA )信息, 该获得 LA信息的过程可以采取对图 11中说明的所 述方式。 在获得目标系统的位置信息 (LA )之后, 需要获得为该终端服务的互联功 能实体(IWF )信息。 该过程与对图 11 中的说明类似, 区别之处在于, 通过查 询 DNS服务器所获得的 IWF信息为 MME能够使用的路由信息。在 MME上配 置 LA和 IWF对应关系。 当 UE进行位置区更新 (Location Area Update, LAU) 时, MME根据 LA选择 IWF , 从而建立基于 NAS的 UP,接口。
同理, 当终端获知进入源系统 (LTE ) 和目标系统 (2G ) 边界区域, 则触 发终端执行该 LA/IWF检测过程; 或者通过静态手机策略或者配置相应的网络 策略指示终端执行该 LA/IWF检测机制。 如图 15所示, 是源系统为源网络为 2G CS网络, 目标网络为 S AE/LTE网 络, UP,接口基于 USSD来实现终端从源系统接入目标系统的方法示意图。
其中, IWF和 HLR都处于归属网络, UP,接口基于 USSD。 一般说来, 终 端上配置有归属网络的 USSD业务接入码, 或者由归属网络来动态分配归属网 络的 USSD业务接入码。
首先, 需要根据源系统 (2G CS ) 的当前位置区信息 (LA ) 来获得目标系 统( SAE/LTE ) 的位置区信息( TA ), 将 2G—组小区配置成一个虚拟 TA区域, 该 TA区域由一个或多个 IWF来服务, IWF根据策略选择一个 MME服务 UE, 即从 SAE LTE网络来看 , 2G小区被看成由 IWF-eNB服务的伪 LTE小区。
UE可以通过以下的方式来获取目标系统的位置区信息 ( TA ):
(1) 通过 UP,接口发送 LA/CGI给 USSD网关, USSD网关根据 LA或者 CGI 映射生成 TA, 或者, USSD网关将 LA/CGI作为输入条件, 通过查询 DNS服务 器获得 TA。
(2)将 LA和 TA的映射信息配置在 BSC上, UE进入该区域时接收到 BSC 发送的 LA TA信息。
(3)根据接收到 LTE邻小区列表 (Neighbor Cell Lists , NCL) , UE获得 TA信 息。 如果 UE获得 TA信息为多个, UE选择其中一个, 执行 LTE附着流程。 具 体实现中, UE上报支持通过 USSD和 IWF在 SAE/LTE网络注册的能力给 BSC。 BSC根据 UE的能力选择是否将 LTE邻小区列表发送给 UE。
为便于理解, 请参见图 16所示, 是利用邻小区列表来获得 TA信息的示意 图。 其中, (1)对于 CS小区 3, 服务该 CS小区的 BSC/RNC配置 LTE的邻小区列表为 LTE小区 1、 LTE小区 2、 LTE小区 3 、 LTE小区 4、 LTE小区 5、 LTE小区 6、 LTE小区 7。 UE驻留在 CS小区 2时, UE可以根据 LTE小区 1、 LTE小区 2、 LTE小区 3 、 LTE小区 4、 LTE小区 5、 LTE小区 6、 LTE小区 7, 获知 UE当 前可能处于 LTE小区 1、 LTE小区 2、 LTE小区 3 、 LTE小区 4、 LTE小区 5、 LTE小区 6、 LTE小区 7所属 TA。如果 L LTE小区 1、 LTE小区 2、 LTE小区 3 、 LTE小区 4、 LTE小区 5、 LTE小区 6、 LTE小区 7属于不同的 LA,则 UE根据本 地策略或者网络策略选择其中一个 TA。 另外, 在配置邻小区列表时, 因为只有 LTE小区 3和 CS小区 3的重叠覆盖范围很大, 所以在实际配置中只配置 LTE 小区 3或者根据重叠覆盖范围的大小进行优先级划分, 例如, 在 NCL中按照覆 盖区域的大小有序排队。 另外, 终端可以根据邻小区列表中属于同一个位置区 的小区个数来选择位置区信息。
一般说来, UE进入 LTE和 2G/3G边界区域时,才会触发上述流程查找 TA, 从而通过 IWF 在 SAE/LTE 网络上进行注册。 另外, 如果 2G/3G 网络支持 DTM(Dual Transport Mode 双传输模式),则 UE使用特殊 APN(Access Point Name 接入点名字)接入 SAE/LTE目标网络。
再请回到图 15, 在获得目标系统的位置区信息(TA )之后, 需要获得为该 终端服务的 IWF地址信息。以使该终端与该 IWF建立连接,从而接入目标系统。 该获得 IWF地址信息可以采用如下的方式:
(1)在 BSC中配置 IWF地址信息, 并发送到 UE。
(2) UE通过 UP,接口查询 DNS服务器, 从而获取 IWF地址信息。 可以通过 输入 LA、 CGI或者 TA来进行查询。
(3) UE通过 UP,接口将 LA、 CGI或者 TA发送到 USSD网关, USSD网关根 据预定策略选择 IWF。 或者在 USSD网关配置有 LA或者 CGI或者 TA和 IWF 之间的映射关系。
一般说来, 当终端通过周期性地与所处小区的交互, 获知进入源系统(2G ) 和目标系统( LTE )边界区域, 则触发终端执行该 LA/IWF检测过程; 或者通过 静态手机策略或者配置相应的网络策略指示终端执行该 LA/IWF检测机制。 如图 17所示, 是源系统为源网络为 2G CS网络, 目标网络为 SAE/LTE网 络, UP,接口基于 USSD来实现终端从源系统接入目标系统的方法另一实施例的 示意图。
其中, IWF处于拜访网络, HLR处于归属网络, UP,接口基于 USSD。 其中, TA检测机制与对图 15的说明类似。具体说来, 当 UE处于拜访网络, 其通过归属网络的 USSD业务接入码建立到归属网络 USSD网关之间的逻辑通 道。
其中, 获得 IWF信息所采取的方式为:
(1)UE通过 UP,接口查询 DNS服务器, 从而获取 IWF地址信息。 可以通 过输入 LA、 CGI或者 TA来进行查询。
(2)UE通过 UP,接口将 LA、 CGI或者 TA发送到归属网络 USSD网关, 归 属网络 USSD 网关根据 LA/CGI/TA选择拜访网络 USSD 网关设备。 拜访网络 USSD网关负责选择 IWF,例如根据预定策略选择 IWF,或者在该拜访网络 USSD 网关配置有 LA或者 CGI或者 TA和 IWF之间的映射关系。
一般说来, 当终端获知进入源系统 ( 2G ) 和目标系统 ( LTE ) 边界区域, 则触发终端执行该 LA/IWF检测过程; 或者通过静态手机策略或者配置相应的 网络策略指示终端执行该 LA/IWF检测机制。 如图 18所示, 是源系统为源网络为 2G CS网络, 目标网络为 S AE/LTE网 络, UP,接口基于 USSD来实现终端从源系统接入目标系统的方法再一实施例的 示意图。
其中, IWF处于拜访网络, HLR处于归属网络。 TA检测机制与对图 15的 说明类似。 不再详述。
当 UE处于拜访网络,其通过归属网络的 USSD业务接入码建立到归属网络 USSD网关之间的逻辑通道, 并且通过所述逻辑通道将 LA、 CGI或者 TA发送 到归属网络 USSD网关, 归属网络 USSD网关根据所述 LA、 CGI或者 TA, 返 回 UE所处的拜访网络的 USSD业务接入码。 具体地, USSD网关将所述 LA、 CGI或者 TA作为输入条件,查询网络服务器 (例如 DNS服务器)从而获得拜访网 络的 USSD业务接入码。
UE使用拜访网络的 USSD业务接入码建立 UE和拜访网络 USSD网关之间 的逻辑通道, 拜访网络 USSD网关根据终端所处 IP网络或者 CS网络的位置区 信息选择 IWF为所述 UE服务, 其中, 拜访网络 USSD网关选择 IWF 与对图 15的说明相同, 不再详述。
一般说来, 当终端获知进入源系统 (2G ) 和目标系统 (LTE ) 边界区域, 则触发终端执行该 LA/IWF检测过程; 或者通过静态手机策略或者配置相应的 网络策略指示终端执行该 LA/IWF检测机制。 如图 19所示, 是源系统为源网络为 2G CS网络, 目标网絡为 S AE/LTE网 络, UP,接口基于 USSD来实现终端从源系统接入目标系统的方法又一实施例的 示意图。
其中, IWF处于拜访网络, HLR处于归属网络。 其中, TA检测机制与图 15的说明类似。 不再详述。
当 UE处于拜访网络,其通过归属网络的 USSD业务接入码建立到归属网络 USSD网关之间的逻辑通道, 归属网络 USSD网关根据所述 LA、 CGI或者 TA, 检测 UE处于拜访网络,则选择 IWF和 MME网关服务该 UE。具体说来, USSD 网关将所述 LA或者 CGI或者 TA作为查询条件,通过查询 DNS服务器获取 IWF 和 MME网关^ ί言息。
ΜΜΕ 网关设备是特殊的 ΜΜΕ设备, 归属网络的 ΜΜΕ网关设备和漫游网 络的 ΜΜΕ网关设备之间存在逻辑接口, 可以传输相关 SAE/LTE上下文, 从而 实现从 inter-MME切换。 具体说来, UE通过归属网络 USSD网关和 IWF以及 MME网关预先在 SAE/LTE网络注册, 并且根据业务在 SAE/LTE网络生成相应 的 SAE/LTE上下文。 此时, UE需要从 2G 网络切换到拜访网络的 SAE/LTE网 络, 当 MME网关收到切换请求后, MME网关根据 TA、 LA或者 CGI信息查询 到拜访网络 MME网关, 从而将相关的切换消息发送^^早访网络 MME网关。拜 访网络 MME网关根据目标 LTE小区信息, 找到相应的拜访网络 MME以及相 应 eNodeB设备, 从而完成 inter-MME切换。
一般说来, 当终端获知进入源系统 ( 2G ) 和目标系统 ( LTE ) 边界区域, 则触发终端执行该 LA/IWF检测过程; 或者通过静态手机策略或者配置相应的 网络策略指示终端执行该 LA/IWF检测机制。 上述过程适用于源网络为 3G、 WiMAX网络、 UMB网络、 HRPD网络以及 3GPP2 DO等网络和目标网络为 3G CS网络、 lxRTT网络、 WiMAX网络、 UMB 网络、 HRPD网络以及 3GPP2 DO等网络, 同样也适用基于 IP网络或者 NAS 的 UP,接口。
另外, MSC升级支持 USSD业务接入码,即 MSC接收到和 IWF相关的 USSD 业务接入码, MSC终结该 USSD会话, 同时 MSC根据该 USSD会话的信息, 查找相应的 IWF, 从而建立从 UE到 IWF的逻辑链路, 从而 UE通过 IWF在目 标网絡注册, 执行业务逻辑。 下面对本发明中的移动性管理进行说明。 关于 Idle状态下的移动性管理: 当源网络为 SAE LTE网络, 目标网络为 2G网络时, 当 UE检测其所处的 位置区 (LA )发生变化, 则发起位置区更新 (Location Area Updating, LAU)过 程。 具体说来, UE可通过以下三种方法触发 LAU:
(1) UE首先检测自己的 TA或者 CGI发生变化,则 UE根据 TA/CGI生成 LA。 如果 UE检测新生成的 LA发生变化,则 UE继续根据新的 LA信息检测一个 IWF, 然后 UE发起 LAU过程。
(2) UE从 eNodeB广播消息获知新 LA信息, 其余步骤同步骤 (1)。
(3) UE从 eNodeB广播消息获知新 LA信息和新 IWF信息,执行 LAU过程。 需要说明的是, 上述过程适用于源网络为 3G、 WiMAX网络、 UMB网络、
HRPD 网络以及 3GPP2 DO等网络和目标网络为 3G CS 网络、 lxRTT网络、 WiMAX网络、 UMB网络、 HRPD网络以及 3GPP2 DO等网络。 当源网络为 2G网络, 目标网络为 SAE/LTE网络时, 当 UE检测其所处的 TA发生变化, 则发起位置区更新 (Location Area Updating, TAU)过程。 具体数 来, UE可通过以下三种方法触发 TAU:
(1)UE 首先检测自己的 LA 或者 RA 或者 CGI 发生变化, 则 UE根据 LA/RA/CGI生成 TA。 如果 UE检测新生成的 TA发生变化, 则 UE继续根据新 的 TA检测一个 IWF , 然后 UE发起 TAU过程。 (2) UE从 BSC广播消息获知新 TA信息, 其余步骤同步骤 (1)。
(3) UE从 BSC广播消息获知新 TA信息和新 IWF信息, 执行 TAU过程。 需要说明的是, 上述过程适用于源网络为 3G、 lxRTT网络、 WiMAX网络、 UMB网络、 HRPD网络以及 3GPP2 DO网络和目标网络为 WiMAX网络、 UMB 网络、 HRPD网络以及 3GPP2 DO等网络。 关于 Active状态下移动性管理: 下面 UE在 SAE/LTE通过 IWF接入 2G/3G CS网络为例进行说明, 即源网 络为 SAE/LTE网络, 目标网络为 2G/3G CS网络。 如图 20所示,是本发明中在 Active状态下进行移动性管理的一个实施例示 意图;
其中, UE有一个活动的语音会话, 当 UE检测 LA发生变化, 该检测过程 与对图 19的说明类同。 则 UE通过 UP'接口通知源 IWF执行 inter-IWF切换。 从 MSC来看, 所述 IWF切换为普通 inter-BSC切换 (如果源 IWF和目标 IWF 属于不同 MSC, 则可为 inter-MSC 切换); 而从 IWF 来看, 因为 IWF 在 inter-BSC/inter-MSC切换消息中添加指示, 指示目标 IWF此切换为 inter-IWF。 具体说来, 所述指示可添加在 inter-BSC/inter-MSC 切换消息中透明容器字段 (Transparent Container)。
一般来说, 源 IWF根据以下两种方式执行 inter-IWF切换:
(1) UE将 LA、 TA或者 CGI发送给源 IWF (例如 UP,接口), 源 IWF根据所 述 LA、 TA或者 CGI检测目标 IWF, 从而触发 IWF切换( IWF检测过程类似于 前述对图 11、 图 14、 图 15的说明)。
(2) UE检测服务新的 LA的 IWF并通知源 IWF (例如通过 UP,接口)。 IWF 检测过程类似于前述对图 11、 图 14、 图 15的说明。 如图 21所示,是本发明中在 Active状态下进行移动性管理的另一实施例的 示意图; 其中, 目标 IWF收到 inter-IWF切换, 进行如下处理:
(1)如果 inter-IWF切换消息包含 UE A的语音承载协商信息 (如, IP地址、 端口信息、 QoS要求;), 则目标 IWF执行承载协商, 并将协商结果通过 inter-IWF 切换流程返回给 UE。
(2)如果 inter-IWF切换消息包含 UE A的 UP'接口建立的消息, 则执行 UP' 接口建立协商过程, 并将协商结果通过 inter-IWF切换流程返回给 UE。
(3)如果 inter-IWF没有包括上述消息,则 IWF也可以向 UE A主动发起7 载 协商信息和 UP,接口建立协商过程。
(4)如果 inter-IWF没有包括上述消息, 则 IWF可以立即返回切换成功消息 给源 IWF (如, 通过 MSC )。
源 IWF收到目标 IWF返回的切换消息,发送给 UE A。如果 UE A在 inter-IWF 切换流程中没有执行承载协商协商或者 UP接口建立协商, 则 UE A主动发起上 述过程。
目标 IWF通过 Rx接口触发语音承载建立, 或者 UE A发起承载建立。承载 建立完成后, 目标 IWF-BSC执行 inter-BSC/inter-MSC切换完成消息。 上述过程同样适用于源网络为 3G、 WiMAX网络、 UMB网络、 HRPD网络 以及 3GPP2 DO网络和目标网络为 3G、 lxRTT网络、 WiMAX网络、 UMB网络、 HRPD网络以及 3GPP2 DO等网络。
在本发明实施例的的方法、 终端设备中, 终端设备通过根据源系统所在的 位置信息获得目标系统的位置区信息, 并通过一个相应的互联功能实体接入到 该目标系统中, 可以实现从源系统到目标系统的语音呼叫连续性。
通过以上的实施方式的描述, 本领域的技术人员可以清楚地了解到本发明, 可以通过硬件实现, 也可以借助软件加必要的通用硬件平台的方式来实现。 基 于这样的理解, 本发明的技术方案可以以软件产品的形式体现出来, 该软件产 品可以存储在一个非易失性存储介质 (可以是 CD-ROM, U盘, 移动硬盘等) 中, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或 者网络设备等)执行本发明各个实施例所述的方法。
以上所揭露的仅为本发明较佳实施例而已, 当然不能以此来限定本发明之 权利范围, 因此依本发明权利要求所作的等同变化, 仍属本发明所涵盖的范围。

Claims

权 利 要 求
1、 一种终端从 IP网络接入 CS网络的方法, 其特征在于, 包括: 当终端处于 IP网络, 所述终端获得所述 CS网络的位置区信息;
所述终端根据所述 CS网络或所述 IP网络的位置区信息, 获得相应的互联 功能实体的位置信息;
所述终端通过所述互联功能实体接入所述 CS网络。
2、 如权利要求 1所述的终端从 IP网络接入 CS网络的方法, 其特征在于 , 所述终端获得所述 CS网络的位置区信息的步骤包括:
通过所述 IP网络的位置信息, 查询 务器, 获得所述 CS网络的位置区信 息; 或者
接收所述 IP 网络发送的邻小区列表信息, 根据所述邻小区列表中所述 CS 网络的小区信息, 获得所述 CS网络的位置区信息; 或者
在所述 IP网络的基站中配置所述 CS网络的位置区信息 , 接收所述 IP网络 的基站发送的所述 CS网络的位置区信息。
3、 如权利要求 2所述的终端从 IP网络接入 CS网络的方法, 其特征在于, 接收所述 IP网络发送的邻小区列表信息, 根据所述邻小区列表中所述 CS网络 的小区信息, 获得所述 CS网络的位置区信息的步骤包括:
当从所述邻小区列表中所述 CS网络的小区信息获得所述 CS网络的位置区 信息为多个时, 所述终端选择其中一个。
4、 如权利要求 1所述的终端从 IP网络接入 CS网络的方法, 其特征在于, 所述终端根据所述 CS网络或所述 IP网络的位置区信息, 获得相应的互联功能 实体的位置信息的步骤为:
根据所述 CS网络的位置区信息检测所述互联功能实体; 或者
在所述 IP网络的基站系统配置所述互联功能实体的位置信息,所述 IP网络 的基站系统发送给所述终端; 或者
根据所述 IP网络的位置区信息, 查询服务器获得所述互联功能实体的位置 信息。
5、 如权利要求 4所述的终端从 IP网络接入 CS网络的方法, 其特征在于, 终端根据所述 CS网络的位置区信息检测所述互联功能实体的步骤包括:
通过所述 CS网络的位置区信息查询服务器,获得所述互联功能实体的位置 信息; 或者
在所述 IP网络里配置所述 CS网络的位置区信息和所述互联功能实体对应 关系, 根据所述终端获得所述 CS网络的位置区信息, 从而获得所述互联功能实 体的位置信息。
6、 如权利要求 1至 5任一项所述的终端从 IP网络接入 CS网络的方法, 其 特征在于, 所述终端通过所述互联功能实体接入所述 CS网络的步骤包括:
所述互联功能实体发送接入所述 CS网络的信令信息。
7、 一种终端从 CS网络接入 IP网络的方法, 其特征在于, 包括: 当终端处于 CS网络, 所述终端获得所述 IP网络的位置区信息;
所述终端根据所述 CS网络或所述 IP网络的位置区信息, 获得相应的互联 功能实体的位置信息;
所述终端通过所述互联功能实体接入所述 IP网络。
8、 如权利要求 7所述的终端从 CS网络接入 IP网络的方法, 其特征在于, 所述当终端处于 CS网络, 所述终端获得所述 IP网络的位置区信息的步骤包括: 根据所述 CS网络的位置信息, 通过所述互联功能实体获得所述 IP网络的 位置区信息; 或者
接收所述 CS 网络发送的邻小区列表信息, 根据所述邻小区列表中所述 IP 网络的小区信息, 获得所述 IP网络的位置区信息; 或者
在所述 CS 网络的基站系统配置所述 IP 网络的位置区信息, 接收所述 CS 网络的基站发送的所述 IP网络的位置区信息。
9、 如权利要求 8所述的终端从 CS网络接入 IP网络的方法, 其特征在于 , 根据所述 CS网络的位置信息, 通过所述互联功能实体获得所述 IP网络的位置 区信息的步骤:
所述终端通过 USSD隧道和所述互联功能实体发送所述终端在所述 CS网络 的位置区信息给 USSD网关;
USSD网关查询 DNS服务器, 获取所述 IP网络的位置区信息。
10、 如权利要求 8所述的终端从 CS网络接入 IP网络的方法, 其特征在于, 接收所述 CS网络发送的邻小区列表信息, 根据所述邻小区列表中所述 IP网络 的小区信息, 获得所述 IP网络的位置区信息的步骤包括:
当从所述邻小区列表中所述 IP网络的小区信息获得所述 IP网络的位置区信 息为多个时, 所述终端选择其中一个。
11、 如权利要求 7所述的终端从 CS网 入 IP网络的方法, 其特征在于, 所述终端根据所述 CS网络或所述 IP网络的位置区信息, 获得相应的互联功能 实体的位置信息的步骤为:
终端根据所述 CS网络或所述 IP网络的位置区信息查询 DNS服务器,检测 所述互联功能实体; 或者
在所述 CS网络的基站系统配置所述互联功能实体的位置信息, 所述 CS网 络的基站系统发送给所述终端。
12、如权利要求 11所述的终端从 CS网络接入 IP网络的方法,其特征在于, 终端根据所述 CS网络或所述 IP网絡的位置区信息查询 DNS服务器,检测所述 互联功能实体的步骤包括:
建立所述终端和所述终端的归属网络 USSD网关之间 USSD通道; 所述归属 USSD网关根据所述 IP网络的位置区信息或所述 CS网络的位置 区信息查询 DNS服务器, 获得所述归属 CS网络的互联功能实体; 或者
所述归属 USSD网关根据所述 IP网络的位置区信息或所述 CS网络的位置 区信息查询 DNS服务器, 获得所述漫游 CS网络的互联功能实体; 或者
所述归属 USSD网关根据所述 IP网络的位置区信息或所述 CS网络的位置 区信息查询 DNS服务器, 获得所述漫游 CS网络的 USSD业务接入码并返回给 所述终端, 所述终端根据所述漫游 CS 网络的 USSD业务接入码接入所述漫游 CS网络的 USSD网关, 所述漫游 CS网络的 USSD网关根据所述 CS网络或所 述 IP网络的位置区信息选择一个互联功能实体。
13、 如权利要求 7至 12任一项所述的终端从 CS网络接入 IP网络的方法, 其特征在于, 所述终端通过所述互联功能实体接入所述 IP网络的步骤包括: 所述互联功能实体发送接入所述 CS网络的信令信息。
14、 一种终端设备, 其特征在于, 包括:
目标系统位置区信息获得单元, 用于当所述终端位于源系统时, 获得所述 目标系统的位置区信息;
互联功能实体获得单元, 用于根据所述目标系统位置区信息获得单元所获 得的目标系统的位置区信息或根据源系统的位置区信息, 获得相应的互联功能 实体的位置信息;
接入请求单元, 用于通过所述互联功能实体倚求接入所述目标系统。
15、 如权利要求 14所述的终端设备, 其特征在于, 所述目标系统位置区信 息获得单元包括:
接收单元, 用于接收目标系统的网络标识信息;
生成单元, 用于根据所述接收单元所接收的网络标识信息生成所述目标系 统的位置区信息。
16、 如权利要求 15所述的终端设备, 其特征在于, 所述目标系统的网络标 识信息为: 接收的邻小区列表中的所述目标网络系统的小区标识。
17、 如权利要求 15或 16所述的终端设备, 其特征在于, 所述目标系统位 置区信息获得单元进一步包括:
选择单元, 用于在所述生成单元所生成的目标系统的位置信息为多个时, 选择其中一个。
18、 如权利要求 14所述的终端设备, 其特征在于, 所述目标系统位置区信 息获得单元包括:
获得单元, 用于获得源系统的网络标识信息;
查询单元, 用于根据所述源系统的网络标识信息, 查询网络服务器获得所 述目标系统的位置区信息。
19、 如权利要求 18所述的终端设备, 其特征在于, 所述源系统的网絡标识 信息为源系统的位置区信息; 所述网络服务器为 DNS服务器。
PCT/CN2008/073799 2008-01-04 2008-12-27 Procédé et dispositif permettant à un terminal d'accéder à un système cible depuis un système source WO2009089751A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2008100256154A CN101478797B (zh) 2008-01-04 2008-01-04 一种终端从源系统接入目标系统的方法、设备
CN200810025615.4 2008-01-04

Publications (1)

Publication Number Publication Date
WO2009089751A1 true WO2009089751A1 (fr) 2009-07-23

Family

ID=40839416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/073799 WO2009089751A1 (fr) 2008-01-04 2008-12-27 Procédé et dispositif permettant à un terminal d'accéder à un système cible depuis un système source

Country Status (2)

Country Link
CN (1) CN101478797B (zh)
WO (1) WO2009089751A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2503819A4 (en) * 2009-11-19 2017-06-28 Nec Corporation Wireless communication system, adjacent-cell list optimizing system, base station and adjacent-cell list updating method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106535320B (zh) * 2015-09-10 2019-12-17 展讯通信(上海)有限公司 移动终端及其定位方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020072367A1 (en) * 2000-12-11 2002-06-13 Tatsuaki Osafune Mobile communication system
CN1402453A (zh) * 2001-08-22 2003-03-12 日本电气株式会社 移动通信系统及通信控制方法及移动终端设备、控制方法
WO2006121832A1 (en) * 2005-05-05 2006-11-16 Motorola, Inc. Cross-paging between communication networks
WO2007062674A1 (en) * 2005-12-01 2007-06-07 Telefonaktiebolaget Lm Ericsson (Publ) Call handling for ims registered user
CN101325806A (zh) * 2007-09-14 2008-12-17 中兴通讯股份有限公司 跨系统切换优化方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020072367A1 (en) * 2000-12-11 2002-06-13 Tatsuaki Osafune Mobile communication system
CN1402453A (zh) * 2001-08-22 2003-03-12 日本电气株式会社 移动通信系统及通信控制方法及移动终端设备、控制方法
WO2006121832A1 (en) * 2005-05-05 2006-11-16 Motorola, Inc. Cross-paging between communication networks
WO2007062674A1 (en) * 2005-12-01 2007-06-07 Telefonaktiebolaget Lm Ericsson (Publ) Call handling for ims registered user
CN101325806A (zh) * 2007-09-14 2008-12-17 中兴通讯股份有限公司 跨系统切换优化方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2503819A4 (en) * 2009-11-19 2017-06-28 Nec Corporation Wireless communication system, adjacent-cell list optimizing system, base station and adjacent-cell list updating method

Also Published As

Publication number Publication date
CN101478797A (zh) 2009-07-08
CN101478797B (zh) 2010-10-27

Similar Documents

Publication Publication Date Title
EP3884719B1 (en) Wireless device paging by a wireless network
US10708827B2 (en) Method and nodes for handling a UE which has moved from an old location to a new location
US9432885B2 (en) Method and apparatus for packet-switched service handover in wireless communication system
EP2192734B1 (en) A generic access network and the service realization method using the generic access network
JP5524338B2 (ja) 移動局の無線アクセス技術機能に関する情報の受信
EP2774414A1 (en) Plmn selection at handover to a target shared location being shared between core network operators
TW200950499A (en) Method and system for interworking of cellular networks and wireless local area networks
WO2009006774A1 (en) Interior hangover method in a system
AU2015412035B2 (en) Method and nodes for handling network connections
WO2011134436A1 (zh) 电路交换域到分组交换域的切换方法和设备及通信系统
US9930579B2 (en) Method and nodes for providing handover management
JP7135122B2 (ja) リダイレクション方法、通信システム及び通信装置
WO2010108420A1 (zh) 通信业务切换处理方法、网络系统与互通功能实体
Fiat et al. An architecture for umts-wimax interworking
CN101472316B (zh) 实现语音呼叫连续性的方法及互联功能实体
WO2010102571A1 (zh) S101隧道重定向的方法和装置
WO2008125050A1 (fr) Procédé et système de communication sans fil pour obtenir un transfert de réseau
WO2009089751A1 (fr) Procédé et dispositif permettant à un terminal d'accéder à un système cible depuis un système source
WO2013000289A1 (zh) 直连隧道的移动性管理方法、网元及系统
WO2011003356A1 (zh) 获取信令转发功能实体信息的方法及设备
Ali-Yahiya et al. Mobility

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08870662

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08870662

Country of ref document: EP

Kind code of ref document: A1