WO2009089258A2 - Joint compression of multiple echo trains using principal component analysis and independent component analysis - Google Patents
Joint compression of multiple echo trains using principal component analysis and independent component analysis Download PDFInfo
- Publication number
- WO2009089258A2 WO2009089258A2 PCT/US2009/030287 US2009030287W WO2009089258A2 WO 2009089258 A2 WO2009089258 A2 WO 2009089258A2 US 2009030287 W US2009030287 W US 2009030287W WO 2009089258 A2 WO2009089258 A2 WO 2009089258A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- eigenfunctions
- nmr
- property
- component analysis
- Prior art date
Links
- 238000000513 principal component analysis Methods 0.000 title claims abstract description 30
- 238000012880 independent component analysis Methods 0.000 title claims description 19
- 238000007906 compression Methods 0.000 title description 13
- 230000006835 compression Effects 0.000 title description 13
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 30
- 238000005481 NMR spectroscopy Methods 0.000 claims description 44
- 238000000034 method Methods 0.000 claims description 39
- 238000005553 drilling Methods 0.000 claims description 35
- 238000009826 distribution Methods 0.000 claims description 27
- 239000011148 porous material Substances 0.000 claims description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- 230000035699 permeability Effects 0.000 claims description 7
- 230000015654 memory Effects 0.000 claims description 4
- 239000004927 clay Substances 0.000 claims description 3
- 230000003287 optical effect Effects 0.000 claims description 2
- 239000011159 matrix material Substances 0.000 description 36
- 239000012530 fluid Substances 0.000 description 24
- 238000005755 formation reaction Methods 0.000 description 22
- 239000011435 rock Substances 0.000 description 11
- 238000005259 measurement Methods 0.000 description 9
- 239000013598 vector Substances 0.000 description 9
- 230000006870 function Effects 0.000 description 7
- 239000003921 oil Substances 0.000 description 7
- 230000003068 static effect Effects 0.000 description 6
- 229910001035 Soft ferrite Inorganic materials 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 230000005415 magnetization Effects 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 5
- 229910000859 α-Fe Inorganic materials 0.000 description 5
- 230000006837 decompression Effects 0.000 description 4
- 238000011835 investigation Methods 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000001208 nuclear magnetic resonance pulse sequence Methods 0.000 description 3
- 238000000611 regression analysis Methods 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000013144 data compression Methods 0.000 description 2
- 238000002592 echocardiography Methods 0.000 description 2
- 239000000295 fuel oil Substances 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 238000012628 principal component regression Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 229910001047 Hard ferrite Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000010420 art technique Methods 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000004323 axial length Effects 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000001667 episodic effect Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001815 facial effect Effects 0.000 description 1
- 230000008921 facial expression Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000010238 partial least squares regression Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N24/00—Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
- G01N24/08—Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N24/00—Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
- G01N24/08—Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
- G01N24/081—Making measurements of geologic samples, e.g. measurements of moisture, pH, porosity, permeability, tortuosity or viscosity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N24/00—Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
- G01N24/08—Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
- G01N24/084—Detection of potentially hazardous samples, e.g. toxic samples, explosives, drugs, firearms, weapons
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
- G01V3/18—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging
- G01V3/32—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging operating with electron or nuclear magnetic resonance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
- G01V3/18—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging
- G01V3/34—Transmitting data to recording or processing apparatus; Recording data
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/50—NMR imaging systems based on the determination of relaxation times, e.g. T1 measurement by IR sequences; T2 measurement by multiple-echo sequences
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/5608—Data processing and visualization specially adapted for MR, e.g. for feature analysis and pattern recognition on the basis of measured MR data, segmentation of measured MR data, edge contour detection on the basis of measured MR data, for enhancing measured MR data in terms of signal-to-noise ratio by means of noise filtering or apodization, for enhancing measured MR data in terms of resolution by means for deblurring, windowing, zero filling, or generation of gray-scaled images, colour-coded images or images displaying vectors instead of pixels
Definitions
- the present disclosure relates generally to determining geological properties of subsurface formations using Nuclear Magnetic Resonance ("NMR") methods for logging wellbores, particularly for representing NMR echo trains by a limited number of functional parameters, enabling efficient transmission of echo train from a downhole location.
- NMR Nuclear Magnetic Resonance
- NMR methods are among the most useful non-destructive techniques of material analysis.
- a small majority of spins are aligned with the applied field in the lower energy state, since the lower energy state in more stable than the higher energy state.
- the individual spins precess about the axis of the applied static magnetic field vector at a resonance frequency also termed as Larmor frequency. This frequency is characteristic to a particular nucleus and proportional to the applied static magnetic field.
- An alternating magnetic field at the resonance frequency in the Radio Frequency (RF) range applied by a transmitting antenna to a subject or specimen in the static magnetic field transfers nuclear spins into a coherent superposition of the lower energy state and the higher energy state.
- RF Radio Frequency
- the applied RF field is designed to perturb the thermal equilibrium of the magnetized nuclear spins, and the time dependence of the emitted energy is determined by the manner in which this system of spins looses coherence and returns to equilibrium magnetization.
- the return is characterized by two parameters: T 1 , the longitudinal or spin-lattice relaxation time; and T 2 , the transverse or spin-spin relaxation time.
- NMR well logging instruments can be used for determining properties of earth formations including the fractional volume of pore space and the fractional volume of mobile fluid filling the pore spaces of the earth formations.
- NMR logging or MRI imaging
- the downhole processing capabilities are limited as is the ability to transmit data to an uphole location for further analysis since all the data are typically sent up a wireline cable with limited bandwidth.
- Measurement-while-drilling methods the problem is exacerbated due to the harsh environment in which any downhole processor must operate and to the extremely limited telemetry capability: data are typically transmitted at a rate of no more than twenty bits per second.
- a second problem encountered in NMR logging and MRI is that of analysis of the data. As will be discussed below, the problem of data compression and of data analysis are closely inter-related.
- Rocks normally have a very broad distribution of pore sizes and fluid properties. Thus it is not surprising that magnetization decays of fluid in rock formations are non-exponential.
- the most commonly used method of analyzing relaxation data is to calculate a spectrum of relaxation times.
- the Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence is used to determine the transverse magnetization decay.
- the non-exponential magnetization decays are fit to the multi-exponential form:
- M(t) represents the spin echo amplitudes, equally spaced in time
- T 2 are predetermined time constants, equally spaced on a logarithm scale, typically between 0.3 ms and 3000 ms.
- the set of m are found using a regularized nonlinear least squares technique.
- the function m(T 2l ) conventionally called a T 2 distribution, usually maps linearly to a volumetrically weighted distribution of pore sizes.
- U.S. Patent Application Ser. No. 11/845,983 of Them et al. discloses a method which includes conveying a nuclear magnetic resonance (NMR) sensing apparatus into a borehole, using the NMR sensing apparatus for obtaining a signal indicative of the property of the earth formation, using a predetermined matrix to estimate from the signal a parametric representation of the relaxation of nuclear spins in terms of at least one basis function, telemetering the parametric representation to a surface location and, at the surface location, using the telemetered parametric representation to estimate the property of the earth formation.
- the signal may be a spin echo signal and representation of relaxation of nuclear spins may include a transverse relaxation time (T 2 ) distribution.
- the at least one basis function may be a Gaussian function, and parametric representation may include a mean, a standard deviation, and an amplitude of the Gaussian function.
- Defining the predetermined matrix may be done by performing a regression analysis on synthetic NMR signals and/or NMR signals measured on samples having known properties.
- the dependent variable in the regression analysis may be a spin echo signal.
- the regression analysis may be a partial least-squares, a principal component regression, an inverse least-squares, a ridge regression, a Neural Network, a neural net partial least-squares regression, and/or a locally weighted regression.
- the determined property may be bound volume irreducible, effective porosity, bound water, clay- bound water, total porosity, a permeability, and/or a pore size distribution.
- a potential drawback of the method of Them is the lack of adaptability: the number of Gaussian functions used to characterize the T 2 distribution and the matrix are predefined and may not be equally suitable for all types of earth formations and all types of pulse sequences used in acquisition of the data. These drawbacks are addressed in the present disclosure.
- One embodiment of the disclosure is a method of determining a property of an earth formation.
- the method includes conveying a nuclear magnetic resonance (NMR) sensing apparatus into a borehole, using the NMR sensing apparatus for obtaining a signal indicative of the property of the earth formation, representing the NMR signals using a set of eigenfunctions and telemetering a representation of the NMR signals as a combination of the eigenfunctions to a surface location.
- NMR nuclear magnetic resonance
- the apparatus includes a nuclear magnetic resonance (NMR) sensing apparatus configured to be conveyed into a borehole and obtain a signal indicative of the property of the earth formation.
- the apparatus also includes a downhole processor configured to represent the NMR signals using a set of eigenfunctions and telemeter a representation of the NMR signals as a combination of the eigenfunctions to a surface location.
- NMR nuclear magnetic resonance
- Another embodiment of the disclosure is a computer-readable medium accessible to a processor.
- the computer-readable medium includes instructions which enable the processor to represent at least one signal obtained by an NMR sensing apparatus in a borehole representative of a property of an earth formation by a set of eigenfunctions; and telemeter a representation of the at least one signal as a combination of the eigenfunctions to a surface location.
- FIG. 1 shows a measurement-while-drilling tool suitable for use with the present disclosure
- FIG. 2 shows a sensor section of a measurement-while-drilling device suitable for use with the present disclosure
- FIG.3 shows exemplary principal component signals recovered from an ensemble of echo trains
- FIG. 4 shows (top): an exemplary echo train, and (bottom) comparison of an
- FIG. 5 shows the joint compression of data and a trainlet
- FIG. 6 is a flow chart showing further details of the implementation of the disclosure.
- FIG. 1 shows a schematic diagram of a drilling system 10 with a drillstring 20 carrying a drilling assembly 90 (also referred to as the bottom hole assembly, or "BHA") conveyed in a "wellbore" or “borehole” 26 for drilling the wellbore.
- the drilling system 10 includes a conventional derrick 11 erected on a floor 12 which supports a rotary table 14 that is rotated by a prime mover such as an electric motor (not shown) at a desired rotational speed.
- the drillstring 20 includes a tubing such as a drill pipe 22 or a coiled-tubing extending downward from the surface into the borehole 26. The drillstring 20 is pushed into the wellbore 26 when a drill pipe 22 is used as the tubing.
- a tubing injector such as an injector (not shown), however, is used to move the tubing from a source thereof, such as a reel (not shown), to the wellbore 26.
- the drill bit 50 attached to the end of the drillstring breaks up the geological formations when it is rotated to drill the borehole 26.
- the drillstring 20 is coupled to a drawworks 30 via a Kelly joint 21, swivel 28, and line 29 through a pulley 23.
- the drawworks 30 is operated to control the weight on bit, which is an important parameter that affects the rate of penetration.
- the operation of the drawworks is well known in the art and is thus not described in detail herein.
- axial velocity rate of penetration or ROP
- Depth information and ROP may be communicated downhole from a surface location.
- the method disclosed in U.S. Patent 6,769,497 to Dubinsky et al. having the same assignee as the present application and the contents of which are incorporated herein by reference may be used.
- the method of Dubinsky uses axial accelerometers to determine the ROP.
- a suitable drilling fluid 31 from a mud pit (source) 32 is circulated under pressure through a channel in the drillstring 20 by a mud pump 34.
- the drilling fluid passes from the mud pump 34 into the drillstring 20 via a desurger (not shown), fluid line 38 and Kelly joint 21.
- the drilling fluid 31 is discharged at the borehole bottom 51 through an opening in the drill bit 50.
- the drilling fluid 31 circulates uphole through the annular space 27 between the drillstring 20 and the borehole 26 and returns to the mud pit 32 via a return line 35.
- the drilling fluid acts to lubricate the drill bit 50 and to carry borehole cutting or chips away from the drill bit 50.
- a sensor Si typically placed in the line 38 provides information about the fluid flow rate.
- a surface torque sensor S 2 and a sensor S 3 associated with the drillstring 20 respectively provide information about the torque and rotational speed of the drillstring. Additionally, a sensor (not shown) associated with line 29 is used to provide the hook load of the drillstring 20.
- the drill bit 50 is rotated by only rotating the drill pipe 22.
- a downhole motor 55 (mud motor) is disposed in the drilling assembly 90 to rotate the drill bit 50 and the drill pipe 22 is rotated usually to supplement the rotational power, if required, and to effect changes in the drilling direction.
- the mud motor 55 is coupled to the drill bit 50 via a drive shaft (not shown) disposed in a bearing assembly 57.
- the mud motor rotates the drill bit 50 when the drilling fluid 31 passes through the mud motor 55 under pressure.
- the bearing assembly 57 supports the radial and axial forces of the drill bit.
- a stabilizer 58 coupled to the bearing assembly 57 acts as a centralizer for the lowermost portion of the mud motor assembly.
- a drilling sensor module 59 is placed near the drill bit 50.
- the drilling sensor module contains sensors, circuitry and processing software and algorithms relating to the dynamic drilling parameters. Such parameters typically include bit bounce, stick-slip of the drilling assembly, backward rotation, torque, shocks, borehole and annulus pressure, acceleration measurements and other measurements of the drill bit condition.
- a suitable telemetry or communication sub 72 using, for example, two-way telemetry, is also provided as illustrated in the drilling assembly 90.
- the drilling sensor module processes the sensor information and transmits it to the surface control unit 40 via the telemetry system 72.
- the communication sub 72, a power unit 78 and an MWD tool 79 are all connected in tandem with the drillstring 20. Flex subs, for example, are used in connecting the MWD tool 79 in the drilling assembly 90. Such subs and tools form the bottom hole drilling assembly 90 between the drillstring 20 and the drill bit 50.
- the drilling assembly 90 makes various measurements including the pulsed nuclear magnetic resonance measurements while the borehole 26 is being drilled.
- the communication sub 72 obtains the signals and measurements and transfers the signals, using two-way telemetry, for example, to be processed on the surface. Alternatively, the signals can be processed using a downhole processor in the drilling assembly 90.
- the surface control unit or processor 40 also receives signals from other downhole sensors and devices and signals from sensors S 1 -S 3 and other sensors used in the system 10 and processes such signals according to programmed instructions provided to the surface control unit 40.
- the surface control unit 40 displays desired drilling parameters and other information on a display/monitor 42 utilized by an operator to control the drilling operations.
- the surface control unit 40 typically includes a computer or a microprocessor-based processing system, memory for storing programs or models and data, a recorder for recording data, and other peripherals.
- the control unit 40 is typically adapted to activate alarms 44 when certain unsafe or undesirable operating conditions occur.
- a suitable device for use of the present disclosure is disclosed in U.S. Patent 6,215,304 to Slade, the contents of which are fully incorporated herein by reference. It should be noted that the device taught by Slade is for exemplary purposes only, and the method of the present disclosure may be used with many other NMR logging devices, and may be used for wireline as well as MWD applications.
- the tool has a drill bit 107 at one end, a sensor section 102 behind the drill head, and electronics 101.
- the sensor section 102 comprises a magnetic field generating assembly for generating a Bo magnetic field (which is substantially time invariant over the duration of a measurement), and an RF system for transmitting and receiving RF magnetic pulses and echoes.
- the magnetic field generating assembly comprises a pair of axially spaced main magnets 103, 104 having opposed pole orientations (i.e. with like magnetic poles facing each other), and three ferrite members 109, 110 axially arranged between the magnets 103, 104.
- the ferrite members are made of "soft" ferrite which can be distinguished over “hard” ferrite by the shape of the BH curve which affects both intrinsic coercivity (H j the intersection with the H axis) and initial permeability ( ⁇ i, the gradient of the BH curve in the unmagnetized case).
- Soft ferrite ⁇ t values typically range from 10 to 10000 whereas hard ferrite has ⁇ , of about 1. Therefore the soft ferrite has large initial permeability (typically greater than 10, preferably greater than 1000).
- the RF system comprises a set of RF transmit antenna and RF receive antenna coil windings 105 arranged as a central "field forming" solenoid group 113 and a pair of outer “coupling control" solenoid groups 114.
- the tool has a mud pipe 160 with a clear central bore 106 and a number of exit apertures 161-164 to carry drilling mud to the bit 107, and the main body of the tool is provided by a drill collar 108.
- Drilling mud is pumped down the mud pipe 160 by a pump 121 returning around the tool and the entire tool is rotated by a drive 120.
- Coiled tubing or a drillstring may be used for coupling the drive to the downhole assembly.
- the drill collar 108 provides a recess 170 for RF transmit antenna and RF receive antenna coil windings 105. Gaps in the pockets between the soft ferrite members are filled with non-conducting material 131, 135 (e.g: ceramic or high temperature plastic) and the RF coils 113, 114 are then wound over the soft ferrite members 109, 110.
- the soft ferrites 109, 110 and RF coil assembly 113, 114 are pressure impregnated with suitable high temperature, low viscosity epoxy resin (not shown) to harden the system against the effects of vibration, seal against drilling fluid at well pressure, and reduce the possibility of magnetoacoustic oscillations.
- the device of Slade has an axisymmetric magnetic field and region of investigation 112 that is unaffected by tool rotation. Use of the ferrite results in a region of investigation that is close to the borehole. This is not a major problem on a MWD tool because there is little invasion of the formation by borehole drilling fluids prior to the logging.
- the region of investigation is within a shell with a radial thickness of about 20 mm and an axial length of about 50 mm.
- the gradient within the region of investigation is less than 2.7 G/cm. It is to be noted that these values are for the Slade device and, as noted above, the method of the present disclosure may also be used with other suitable NMR devices.
- the method of the present disclosure is based on a representation of the acquired echo train of the earth formation as a weighted combination of principal components derived during data acquisition. This enables compression of the data: typically, instead of a thousand samples being required to depict a single echo train, 10 principal components are transmitted for each echo train. The principal components are derived downhole and may be transmitted uphole when previously derived principal components do not provide an adequate reconstruction of the echo trains downhole. At the surface, the received data (which may include adjective noise) is decompressed and inverted to give a T 2 distribution.
- PCA Principal Component Analysis
- the echo trains are 1000 samples long.
- the mean value of they-th echo is denoted by: 1 N
- Data compression is accomplished by truncating the matrix Fto the first k rows corresponding to the dominant eigenvalues in eqn. (7).
- Table I shows an example of the dominant eigenvalues for an exemplary sequence of echo trains. Table I: Variance distribution
- FIG.3 shows the eigenvectors corresponding to the seven largest eigenvalues for the echo trains used in the derivation of Table I. They are ordered according to the magnitude of the eigenvalues 301, 303, 305, 307, 309, 311, 313.
- the curve 451 shows the original T 2 distribution corresponding to the noise free echo train.
- an original echo train (contained in 401 is generated).
- Noise is added to the original echo train to give a noisy echo train, also contained in 401 in the upper part of FIG. 4.
- the curve 453 is the result of inverting the noisy echo train. Comparison of 451 and 453 shows that even with a low level of noise, the inversion deviates from the correct result. Compressing and decompressing the noisy echo train gives a result that is still contained in 401. As discussed below, the results of the decompression are made up of the eigenvectors and are not multiexponential. Inverting the results of decompression gives the curve 455.
- the PCA method may also be used to compress two or more echo trains in a single operation.
- the top portion of FIG. 5 shows a concatenation of two echo trains.
- the early portion 501 was acquired with a short wait time to get a measurement of rapidly relaxing components of the T 2 spectrum while the latter portion 503 is a long echo train intended to recover the slower components of the T 2 spectrum.
- the bottom portion of FIG. 5 shows little difference between the actual T 2 distribution and the results of using PCA on the concatenated echo trains.
- NMR data are acquired downhole 607.
- a truncated eigenvector matrix is applied 609 to the acquired echo train X.
- the compressed data are telemetered to the surface 613 and a reconstruction of the echo train is inverted to give the T 2 distribution 615.
- the eigenvector matrix is generated at the surface and the truncated matrix is loaded into the memory of the downhole processor.
- T 2 a series of synthetic data values (a single exponential) for every value of T 2 that is to be considered, e.g. for 0.3ms, 0.35ms, ..., 3000ms.
- every conceivable measured echo train can be decomposed into a set of these series of data values. We therefore use PCA on this data to learn about its statistical properties.
- the PCA is done downhole. This requires enormous computation power and is to be done sparingly in situations where it is established that a previously determined set of eigenvectors does not adequately represent the data. This may happen if, for example, parameters of the pulse sequence are changed, or if there is a major change in lithology and/or fluid content of the formation.
- the recreation of properties of interest may cover T 2 distribution, volumetrics, permeability, echo trains, and other rock and fluid properties that are based on NMR data. It should further be noted that the method itself is of course not limited to downhole applications, As noted in Hamdan, bound volume irreducible, effective porosity, bound water, clay-bound water, and total porosity are among the formation properties that may be determined. From the T 2 relaxation spectrum, using an inversion method it is possible to estimate the pore-size distribution. The use of a pore-scale geometric model used in inverting NMR spectra is described, for example, in US Patent 7363161 to Georgi et al., having the same assignee as the present disclosure. Determination of permeability is discussed in US 6,686,736 to Schoen et al., having the same assignee as the present disclosure.
- ICA independent component analysis
- the reprojection of C n back into the p dimensional space has minimum reconstruction error.
- the reprojection is lossless.
- the goal in PCA is to minimize the reconstruction error from compressed data.
- NMR measurements are indicative of the pore-size distribution in an earth formation.
- they are indicative of fluid types.
- the primary pore-size distribution in sedimentary rocks reflects the depositional energy, something that is episodic.
- a significant amount of local structure is to be expected in the pore-size distribution.
- the presence of heavy oil in a formation would also imply a local structure in the relaxation time distributions — once heavy oil has formed, it cannot be undone to light oil.
- T 2j 0.2... 8192 using increment of 2 (1/4) .
- F is a matrix that spans all single components decays in the echo train space.
- S is a matrix of independent components (latent variables) of the corresponding type of acquisition (Created from ICA (Independent component analysis), using the fastICA algorithm, available with MATLAB, of the F matrix).
- M is the mixing matrix. Both M and S need to be estimated. Once S and M are found the manner of compressing data is as follows: (14)
- Eqn. 17 is applied in the downhole tool for compression of echo trains.
- Eqn. 15 becomes Eqn. 18 and is applied in the surface system to decompress the mud- pulse-transmitted data:
- Eqn. 17 tells us that providing the inverse of a reduced form of the S matrix, we can compress an echo-train of length 1000, (and if we have an echo-train of length N, we need to create the S matrix of size 6xN,) into a 1x6 matrix. Furthermore Eqn. 18 tells us we could recover the echo-train by using the same model (independent components) and the corresponding compression.
- Loads is a matrix of eigenvectors of the corresponding type of acquisition (Created from Principal components decomposition of the F matrix) and scores are the eigenvalues of Matrix F.
- the scores ScoreSj of T is a linear combination of F defined by Loads; that is to say that Scores; is the projection of F on Loads;, by replacing the value of F in Eqn. 10 into Eqn. 2
- ⁇ i x iooo 4 x64 x Scores 64 x64 x Loads 64 xl000 (20 ).
- Eqn. 22 tells us that we could compress the whole Echo-Train from 1000 points into 64 points without losing any information. Analysis of PCA tells us that beyond component 5 there will be almost zero percent of variance left as the following table shows:
- Eqn, 23 tells us that providing a reduced form of the Loads matrix, we can compress an Echo-Train of length 1000, (and if we have an Echo-train of length N, we need to create the Loads matrix of size 5xN,) into 1x5 matrix. Furthermore Eqn. 24 tells us we could recover the echo-train by using the same model and the corresponding compression.
- the ICA algorithm can be basically be used as a replacement of the PCA.
- Implicit in the control and processing of the data is the use of a computer program implemented on a suitable machine readable medium that enables the processor to perform the control and processing.
- the machine readable medium may include ROMs, EPROMs, EAROMs, Flash Memories and Optical disks.
Landscapes
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- High Energy & Nuclear Physics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Geology (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geophysics (AREA)
- Health & Medical Sciences (AREA)
- Remote Sensing (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Mining & Mineral Resources (AREA)
- Geochemistry & Mineralogy (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Fluid Mechanics (AREA)
- Molecular Biology (AREA)
- Toxicology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
- Geophysics And Detection Of Objects (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB1011123.5A GB2468615B (en) | 2008-01-07 | 2009-01-07 | Joint compression of multiple echo trains using principal component analysis and independent component analysis |
CA2711494A CA2711494C (en) | 2008-01-07 | 2009-01-07 | Joint compression of multiple echo trains using principal component analysis and independent component analysis |
NO20100977A NO343160B1 (en) | 2008-01-07 | 2010-07-05 | Total compression of multiple echo trains using principal component analysis and independent component analysis |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US1946208P | 2008-01-07 | 2008-01-07 | |
US61/019,462 | 2008-01-07 | ||
US12/347,784 | 2008-12-31 | ||
US12/347,784 US8022698B2 (en) | 2008-01-07 | 2008-12-31 | Joint compression of multiple echo trains using principal component analysis and independent component analysis |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2009089258A2 true WO2009089258A2 (en) | 2009-07-16 |
WO2009089258A3 WO2009089258A3 (en) | 2009-09-24 |
Family
ID=40853743
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2009/030287 WO2009089258A2 (en) | 2008-01-07 | 2009-01-07 | Joint compression of multiple echo trains using principal component analysis and independent component analysis |
Country Status (4)
Country | Link |
---|---|
CA (1) | CA2711494C (en) |
GB (1) | GB2468615B (en) |
NO (1) | NO343160B1 (en) |
WO (1) | WO2009089258A2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104614778A (en) * | 2015-01-27 | 2015-05-13 | 吉林大学 | Nuclear magnetic resonance underground water detection signal noise eliminating method based on independent component analysis (ICA) |
CN105004747A (en) * | 2015-07-13 | 2015-10-28 | 中国地质大学(北京) | Method for nuclear magnetic resonance measurement of coal core average pore compression coefficient |
US10061053B2 (en) | 2015-04-30 | 2018-08-28 | Baker Hughes, A Ge Company, Llc | NMR T2 distribution from simultaneous T1 and T2 inversions for geologic applications |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2545484B2 (en) * | 1990-05-21 | 1996-10-16 | シュルンベルジェ オーバーシーズ,エス,エイ | Perforation measurement and interpretation of NMR characteristics of formations |
US6040696A (en) * | 1997-09-16 | 2000-03-21 | Schlumberger Technology Corporation | Method for estimating pore structure in carbonates from NMR measurements |
US6181132B1 (en) * | 1998-10-02 | 2001-01-30 | Shell Oil Company | NMR logging assembly |
US6859032B2 (en) * | 2001-12-18 | 2005-02-22 | Schlumberger Technology Corporation | Method for determining molecular properties of hydrocarbon mixtures from NMR data |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6859033B2 (en) * | 2002-08-28 | 2005-02-22 | Schlumberger Technology Corporation | Method for magnetic resonance fluid characterization |
US7034528B2 (en) * | 2003-02-27 | 2006-04-25 | Schlumberger Technology Corporation | Methods for formation evaluation based on multi-dimensional representation of nuclear magnetic resonance data |
US7495436B2 (en) * | 2004-03-18 | 2009-02-24 | Baker Hughes Incorporated | Rock properties prediction, categorization, and recognition from NMR echo-trains using linear and nonlinear regression |
-
2009
- 2009-01-07 CA CA2711494A patent/CA2711494C/en active Active
- 2009-01-07 WO PCT/US2009/030287 patent/WO2009089258A2/en active Application Filing
- 2009-01-07 GB GB1011123.5A patent/GB2468615B/en active Active
-
2010
- 2010-07-05 NO NO20100977A patent/NO343160B1/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2545484B2 (en) * | 1990-05-21 | 1996-10-16 | シュルンベルジェ オーバーシーズ,エス,エイ | Perforation measurement and interpretation of NMR characteristics of formations |
US6040696A (en) * | 1997-09-16 | 2000-03-21 | Schlumberger Technology Corporation | Method for estimating pore structure in carbonates from NMR measurements |
US6181132B1 (en) * | 1998-10-02 | 2001-01-30 | Shell Oil Company | NMR logging assembly |
US6859032B2 (en) * | 2001-12-18 | 2005-02-22 | Schlumberger Technology Corporation | Method for determining molecular properties of hydrocarbon mixtures from NMR data |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104614778A (en) * | 2015-01-27 | 2015-05-13 | 吉林大学 | Nuclear magnetic resonance underground water detection signal noise eliminating method based on independent component analysis (ICA) |
US10061053B2 (en) | 2015-04-30 | 2018-08-28 | Baker Hughes, A Ge Company, Llc | NMR T2 distribution from simultaneous T1 and T2 inversions for geologic applications |
CN105004747A (en) * | 2015-07-13 | 2015-10-28 | 中国地质大学(北京) | Method for nuclear magnetic resonance measurement of coal core average pore compression coefficient |
Also Published As
Publication number | Publication date |
---|---|
WO2009089258A3 (en) | 2009-09-24 |
GB201011123D0 (en) | 2010-08-18 |
GB2468615A (en) | 2010-09-15 |
CA2711494A1 (en) | 2009-07-16 |
GB2468615B (en) | 2012-06-13 |
NO343160B1 (en) | 2018-11-19 |
CA2711494C (en) | 2015-03-17 |
NO20100977L (en) | 2010-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8022698B2 (en) | Joint compression of multiple echo trains using principal component analysis and independent component analysis | |
US7821260B2 (en) | NMR echo train compression using only NMR signal matrix multiplication to provide a lower transmission bit parametric representation from which estimate values of earth formation properties are obtained | |
US8004279B2 (en) | Real-time NMR distribution while drilling | |
US7495436B2 (en) | Rock properties prediction, categorization, and recognition from NMR echo-trains using linear and nonlinear regression | |
EP2062073B1 (en) | Nmr echo train compression | |
US9097818B2 (en) | Kerogen porosity volume and pore size distribution using NMR | |
US7358725B2 (en) | Correction of NMR artifacts due to axial motion and spin-lattice relaxation | |
US8093893B2 (en) | Rock and fluid properties prediction from downhole measurements using linear and nonlinear regression | |
US6727696B2 (en) | Downhole NMR processing | |
US9081117B2 (en) | Method and apparatus for predicting petrophysical properties from NMR data in carbonate rocks | |
US8912916B2 (en) | Non-uniform echo train decimation | |
CA2711494C (en) | Joint compression of multiple echo trains using principal component analysis and independent component analysis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09700155 Country of ref document: EP Kind code of ref document: A2 |
|
ENP | Entry into the national phase |
Ref document number: 1011123 Country of ref document: GB Kind code of ref document: A Free format text: PCT FILING DATE = 20090107 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1011123.5 Country of ref document: GB |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2711494 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09700155 Country of ref document: EP Kind code of ref document: A2 |