WO2009089258A2 - Joint compression of multiple echo trains using principal component analysis and independent component analysis - Google Patents

Joint compression of multiple echo trains using principal component analysis and independent component analysis Download PDF

Info

Publication number
WO2009089258A2
WO2009089258A2 PCT/US2009/030287 US2009030287W WO2009089258A2 WO 2009089258 A2 WO2009089258 A2 WO 2009089258A2 US 2009030287 W US2009030287 W US 2009030287W WO 2009089258 A2 WO2009089258 A2 WO 2009089258A2
Authority
WO
WIPO (PCT)
Prior art keywords
signal
eigenfunctions
nmr
property
component analysis
Prior art date
Application number
PCT/US2009/030287
Other languages
French (fr)
Other versions
WO2009089258A3 (en
Inventor
Peter Rottengatter
Mouin Hamdan
Original Assignee
Baker Hughes Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/347,784 external-priority patent/US8022698B2/en
Application filed by Baker Hughes Incorporated filed Critical Baker Hughes Incorporated
Priority to GB1011123.5A priority Critical patent/GB2468615B/en
Priority to CA2711494A priority patent/CA2711494C/en
Publication of WO2009089258A2 publication Critical patent/WO2009089258A2/en
Publication of WO2009089258A3 publication Critical patent/WO2009089258A3/en
Priority to NO20100977A priority patent/NO343160B1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/08Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/08Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
    • G01N24/081Making measurements of geologic samples, e.g. measurements of moisture, pH, porosity, permeability, tortuosity or viscosity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/08Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
    • G01N24/084Detection of potentially hazardous samples, e.g. toxic samples, explosives, drugs, firearms, weapons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/18Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging
    • G01V3/32Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging operating with electron or nuclear magnetic resonance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/18Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging
    • G01V3/34Transmitting data to recording or processing apparatus; Recording data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/50NMR imaging systems based on the determination of relaxation times, e.g. T1 measurement by IR sequences; T2 measurement by multiple-echo sequences
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/5608Data processing and visualization specially adapted for MR, e.g. for feature analysis and pattern recognition on the basis of measured MR data, segmentation of measured MR data, edge contour detection on the basis of measured MR data, for enhancing measured MR data in terms of signal-to-noise ratio by means of noise filtering or apodization, for enhancing measured MR data in terms of resolution by means for deblurring, windowing, zero filling, or generation of gray-scaled images, colour-coded images or images displaying vectors instead of pixels

Definitions

  • the present disclosure relates generally to determining geological properties of subsurface formations using Nuclear Magnetic Resonance ("NMR") methods for logging wellbores, particularly for representing NMR echo trains by a limited number of functional parameters, enabling efficient transmission of echo train from a downhole location.
  • NMR Nuclear Magnetic Resonance
  • NMR methods are among the most useful non-destructive techniques of material analysis.
  • a small majority of spins are aligned with the applied field in the lower energy state, since the lower energy state in more stable than the higher energy state.
  • the individual spins precess about the axis of the applied static magnetic field vector at a resonance frequency also termed as Larmor frequency. This frequency is characteristic to a particular nucleus and proportional to the applied static magnetic field.
  • An alternating magnetic field at the resonance frequency in the Radio Frequency (RF) range applied by a transmitting antenna to a subject or specimen in the static magnetic field transfers nuclear spins into a coherent superposition of the lower energy state and the higher energy state.
  • RF Radio Frequency
  • the applied RF field is designed to perturb the thermal equilibrium of the magnetized nuclear spins, and the time dependence of the emitted energy is determined by the manner in which this system of spins looses coherence and returns to equilibrium magnetization.
  • the return is characterized by two parameters: T 1 , the longitudinal or spin-lattice relaxation time; and T 2 , the transverse or spin-spin relaxation time.
  • NMR well logging instruments can be used for determining properties of earth formations including the fractional volume of pore space and the fractional volume of mobile fluid filling the pore spaces of the earth formations.
  • NMR logging or MRI imaging
  • the downhole processing capabilities are limited as is the ability to transmit data to an uphole location for further analysis since all the data are typically sent up a wireline cable with limited bandwidth.
  • Measurement-while-drilling methods the problem is exacerbated due to the harsh environment in which any downhole processor must operate and to the extremely limited telemetry capability: data are typically transmitted at a rate of no more than twenty bits per second.
  • a second problem encountered in NMR logging and MRI is that of analysis of the data. As will be discussed below, the problem of data compression and of data analysis are closely inter-related.
  • Rocks normally have a very broad distribution of pore sizes and fluid properties. Thus it is not surprising that magnetization decays of fluid in rock formations are non-exponential.
  • the most commonly used method of analyzing relaxation data is to calculate a spectrum of relaxation times.
  • the Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence is used to determine the transverse magnetization decay.
  • the non-exponential magnetization decays are fit to the multi-exponential form:
  • M(t) represents the spin echo amplitudes, equally spaced in time
  • T 2 are predetermined time constants, equally spaced on a logarithm scale, typically between 0.3 ms and 3000 ms.
  • the set of m are found using a regularized nonlinear least squares technique.
  • the function m(T 2l ) conventionally called a T 2 distribution, usually maps linearly to a volumetrically weighted distribution of pore sizes.
  • U.S. Patent Application Ser. No. 11/845,983 of Them et al. discloses a method which includes conveying a nuclear magnetic resonance (NMR) sensing apparatus into a borehole, using the NMR sensing apparatus for obtaining a signal indicative of the property of the earth formation, using a predetermined matrix to estimate from the signal a parametric representation of the relaxation of nuclear spins in terms of at least one basis function, telemetering the parametric representation to a surface location and, at the surface location, using the telemetered parametric representation to estimate the property of the earth formation.
  • the signal may be a spin echo signal and representation of relaxation of nuclear spins may include a transverse relaxation time (T 2 ) distribution.
  • the at least one basis function may be a Gaussian function, and parametric representation may include a mean, a standard deviation, and an amplitude of the Gaussian function.
  • Defining the predetermined matrix may be done by performing a regression analysis on synthetic NMR signals and/or NMR signals measured on samples having known properties.
  • the dependent variable in the regression analysis may be a spin echo signal.
  • the regression analysis may be a partial least-squares, a principal component regression, an inverse least-squares, a ridge regression, a Neural Network, a neural net partial least-squares regression, and/or a locally weighted regression.
  • the determined property may be bound volume irreducible, effective porosity, bound water, clay- bound water, total porosity, a permeability, and/or a pore size distribution.
  • a potential drawback of the method of Them is the lack of adaptability: the number of Gaussian functions used to characterize the T 2 distribution and the matrix are predefined and may not be equally suitable for all types of earth formations and all types of pulse sequences used in acquisition of the data. These drawbacks are addressed in the present disclosure.
  • One embodiment of the disclosure is a method of determining a property of an earth formation.
  • the method includes conveying a nuclear magnetic resonance (NMR) sensing apparatus into a borehole, using the NMR sensing apparatus for obtaining a signal indicative of the property of the earth formation, representing the NMR signals using a set of eigenfunctions and telemetering a representation of the NMR signals as a combination of the eigenfunctions to a surface location.
  • NMR nuclear magnetic resonance
  • the apparatus includes a nuclear magnetic resonance (NMR) sensing apparatus configured to be conveyed into a borehole and obtain a signal indicative of the property of the earth formation.
  • the apparatus also includes a downhole processor configured to represent the NMR signals using a set of eigenfunctions and telemeter a representation of the NMR signals as a combination of the eigenfunctions to a surface location.
  • NMR nuclear magnetic resonance
  • Another embodiment of the disclosure is a computer-readable medium accessible to a processor.
  • the computer-readable medium includes instructions which enable the processor to represent at least one signal obtained by an NMR sensing apparatus in a borehole representative of a property of an earth formation by a set of eigenfunctions; and telemeter a representation of the at least one signal as a combination of the eigenfunctions to a surface location.
  • FIG. 1 shows a measurement-while-drilling tool suitable for use with the present disclosure
  • FIG. 2 shows a sensor section of a measurement-while-drilling device suitable for use with the present disclosure
  • FIG.3 shows exemplary principal component signals recovered from an ensemble of echo trains
  • FIG. 4 shows (top): an exemplary echo train, and (bottom) comparison of an
  • FIG. 5 shows the joint compression of data and a trainlet
  • FIG. 6 is a flow chart showing further details of the implementation of the disclosure.
  • FIG. 1 shows a schematic diagram of a drilling system 10 with a drillstring 20 carrying a drilling assembly 90 (also referred to as the bottom hole assembly, or "BHA") conveyed in a "wellbore" or “borehole” 26 for drilling the wellbore.
  • the drilling system 10 includes a conventional derrick 11 erected on a floor 12 which supports a rotary table 14 that is rotated by a prime mover such as an electric motor (not shown) at a desired rotational speed.
  • the drillstring 20 includes a tubing such as a drill pipe 22 or a coiled-tubing extending downward from the surface into the borehole 26. The drillstring 20 is pushed into the wellbore 26 when a drill pipe 22 is used as the tubing.
  • a tubing injector such as an injector (not shown), however, is used to move the tubing from a source thereof, such as a reel (not shown), to the wellbore 26.
  • the drill bit 50 attached to the end of the drillstring breaks up the geological formations when it is rotated to drill the borehole 26.
  • the drillstring 20 is coupled to a drawworks 30 via a Kelly joint 21, swivel 28, and line 29 through a pulley 23.
  • the drawworks 30 is operated to control the weight on bit, which is an important parameter that affects the rate of penetration.
  • the operation of the drawworks is well known in the art and is thus not described in detail herein.
  • axial velocity rate of penetration or ROP
  • Depth information and ROP may be communicated downhole from a surface location.
  • the method disclosed in U.S. Patent 6,769,497 to Dubinsky et al. having the same assignee as the present application and the contents of which are incorporated herein by reference may be used.
  • the method of Dubinsky uses axial accelerometers to determine the ROP.
  • a suitable drilling fluid 31 from a mud pit (source) 32 is circulated under pressure through a channel in the drillstring 20 by a mud pump 34.
  • the drilling fluid passes from the mud pump 34 into the drillstring 20 via a desurger (not shown), fluid line 38 and Kelly joint 21.
  • the drilling fluid 31 is discharged at the borehole bottom 51 through an opening in the drill bit 50.
  • the drilling fluid 31 circulates uphole through the annular space 27 between the drillstring 20 and the borehole 26 and returns to the mud pit 32 via a return line 35.
  • the drilling fluid acts to lubricate the drill bit 50 and to carry borehole cutting or chips away from the drill bit 50.
  • a sensor Si typically placed in the line 38 provides information about the fluid flow rate.
  • a surface torque sensor S 2 and a sensor S 3 associated with the drillstring 20 respectively provide information about the torque and rotational speed of the drillstring. Additionally, a sensor (not shown) associated with line 29 is used to provide the hook load of the drillstring 20.
  • the drill bit 50 is rotated by only rotating the drill pipe 22.
  • a downhole motor 55 (mud motor) is disposed in the drilling assembly 90 to rotate the drill bit 50 and the drill pipe 22 is rotated usually to supplement the rotational power, if required, and to effect changes in the drilling direction.
  • the mud motor 55 is coupled to the drill bit 50 via a drive shaft (not shown) disposed in a bearing assembly 57.
  • the mud motor rotates the drill bit 50 when the drilling fluid 31 passes through the mud motor 55 under pressure.
  • the bearing assembly 57 supports the radial and axial forces of the drill bit.
  • a stabilizer 58 coupled to the bearing assembly 57 acts as a centralizer for the lowermost portion of the mud motor assembly.
  • a drilling sensor module 59 is placed near the drill bit 50.
  • the drilling sensor module contains sensors, circuitry and processing software and algorithms relating to the dynamic drilling parameters. Such parameters typically include bit bounce, stick-slip of the drilling assembly, backward rotation, torque, shocks, borehole and annulus pressure, acceleration measurements and other measurements of the drill bit condition.
  • a suitable telemetry or communication sub 72 using, for example, two-way telemetry, is also provided as illustrated in the drilling assembly 90.
  • the drilling sensor module processes the sensor information and transmits it to the surface control unit 40 via the telemetry system 72.
  • the communication sub 72, a power unit 78 and an MWD tool 79 are all connected in tandem with the drillstring 20. Flex subs, for example, are used in connecting the MWD tool 79 in the drilling assembly 90. Such subs and tools form the bottom hole drilling assembly 90 between the drillstring 20 and the drill bit 50.
  • the drilling assembly 90 makes various measurements including the pulsed nuclear magnetic resonance measurements while the borehole 26 is being drilled.
  • the communication sub 72 obtains the signals and measurements and transfers the signals, using two-way telemetry, for example, to be processed on the surface. Alternatively, the signals can be processed using a downhole processor in the drilling assembly 90.
  • the surface control unit or processor 40 also receives signals from other downhole sensors and devices and signals from sensors S 1 -S 3 and other sensors used in the system 10 and processes such signals according to programmed instructions provided to the surface control unit 40.
  • the surface control unit 40 displays desired drilling parameters and other information on a display/monitor 42 utilized by an operator to control the drilling operations.
  • the surface control unit 40 typically includes a computer or a microprocessor-based processing system, memory for storing programs or models and data, a recorder for recording data, and other peripherals.
  • the control unit 40 is typically adapted to activate alarms 44 when certain unsafe or undesirable operating conditions occur.
  • a suitable device for use of the present disclosure is disclosed in U.S. Patent 6,215,304 to Slade, the contents of which are fully incorporated herein by reference. It should be noted that the device taught by Slade is for exemplary purposes only, and the method of the present disclosure may be used with many other NMR logging devices, and may be used for wireline as well as MWD applications.
  • the tool has a drill bit 107 at one end, a sensor section 102 behind the drill head, and electronics 101.
  • the sensor section 102 comprises a magnetic field generating assembly for generating a Bo magnetic field (which is substantially time invariant over the duration of a measurement), and an RF system for transmitting and receiving RF magnetic pulses and echoes.
  • the magnetic field generating assembly comprises a pair of axially spaced main magnets 103, 104 having opposed pole orientations (i.e. with like magnetic poles facing each other), and three ferrite members 109, 110 axially arranged between the magnets 103, 104.
  • the ferrite members are made of "soft" ferrite which can be distinguished over “hard” ferrite by the shape of the BH curve which affects both intrinsic coercivity (H j the intersection with the H axis) and initial permeability ( ⁇ i, the gradient of the BH curve in the unmagnetized case).
  • Soft ferrite ⁇ t values typically range from 10 to 10000 whereas hard ferrite has ⁇ , of about 1. Therefore the soft ferrite has large initial permeability (typically greater than 10, preferably greater than 1000).
  • the RF system comprises a set of RF transmit antenna and RF receive antenna coil windings 105 arranged as a central "field forming" solenoid group 113 and a pair of outer “coupling control" solenoid groups 114.
  • the tool has a mud pipe 160 with a clear central bore 106 and a number of exit apertures 161-164 to carry drilling mud to the bit 107, and the main body of the tool is provided by a drill collar 108.
  • Drilling mud is pumped down the mud pipe 160 by a pump 121 returning around the tool and the entire tool is rotated by a drive 120.
  • Coiled tubing or a drillstring may be used for coupling the drive to the downhole assembly.
  • the drill collar 108 provides a recess 170 for RF transmit antenna and RF receive antenna coil windings 105. Gaps in the pockets between the soft ferrite members are filled with non-conducting material 131, 135 (e.g: ceramic or high temperature plastic) and the RF coils 113, 114 are then wound over the soft ferrite members 109, 110.
  • the soft ferrites 109, 110 and RF coil assembly 113, 114 are pressure impregnated with suitable high temperature, low viscosity epoxy resin (not shown) to harden the system against the effects of vibration, seal against drilling fluid at well pressure, and reduce the possibility of magnetoacoustic oscillations.
  • the device of Slade has an axisymmetric magnetic field and region of investigation 112 that is unaffected by tool rotation. Use of the ferrite results in a region of investigation that is close to the borehole. This is not a major problem on a MWD tool because there is little invasion of the formation by borehole drilling fluids prior to the logging.
  • the region of investigation is within a shell with a radial thickness of about 20 mm and an axial length of about 50 mm.
  • the gradient within the region of investigation is less than 2.7 G/cm. It is to be noted that these values are for the Slade device and, as noted above, the method of the present disclosure may also be used with other suitable NMR devices.
  • the method of the present disclosure is based on a representation of the acquired echo train of the earth formation as a weighted combination of principal components derived during data acquisition. This enables compression of the data: typically, instead of a thousand samples being required to depict a single echo train, 10 principal components are transmitted for each echo train. The principal components are derived downhole and may be transmitted uphole when previously derived principal components do not provide an adequate reconstruction of the echo trains downhole. At the surface, the received data (which may include adjective noise) is decompressed and inverted to give a T 2 distribution.
  • PCA Principal Component Analysis
  • the echo trains are 1000 samples long.
  • the mean value of they-th echo is denoted by: 1 N
  • Data compression is accomplished by truncating the matrix Fto the first k rows corresponding to the dominant eigenvalues in eqn. (7).
  • Table I shows an example of the dominant eigenvalues for an exemplary sequence of echo trains. Table I: Variance distribution
  • FIG.3 shows the eigenvectors corresponding to the seven largest eigenvalues for the echo trains used in the derivation of Table I. They are ordered according to the magnitude of the eigenvalues 301, 303, 305, 307, 309, 311, 313.
  • the curve 451 shows the original T 2 distribution corresponding to the noise free echo train.
  • an original echo train (contained in 401 is generated).
  • Noise is added to the original echo train to give a noisy echo train, also contained in 401 in the upper part of FIG. 4.
  • the curve 453 is the result of inverting the noisy echo train. Comparison of 451 and 453 shows that even with a low level of noise, the inversion deviates from the correct result. Compressing and decompressing the noisy echo train gives a result that is still contained in 401. As discussed below, the results of the decompression are made up of the eigenvectors and are not multiexponential. Inverting the results of decompression gives the curve 455.
  • the PCA method may also be used to compress two or more echo trains in a single operation.
  • the top portion of FIG. 5 shows a concatenation of two echo trains.
  • the early portion 501 was acquired with a short wait time to get a measurement of rapidly relaxing components of the T 2 spectrum while the latter portion 503 is a long echo train intended to recover the slower components of the T 2 spectrum.
  • the bottom portion of FIG. 5 shows little difference between the actual T 2 distribution and the results of using PCA on the concatenated echo trains.
  • NMR data are acquired downhole 607.
  • a truncated eigenvector matrix is applied 609 to the acquired echo train X.
  • the compressed data are telemetered to the surface 613 and a reconstruction of the echo train is inverted to give the T 2 distribution 615.
  • the eigenvector matrix is generated at the surface and the truncated matrix is loaded into the memory of the downhole processor.
  • T 2 a series of synthetic data values (a single exponential) for every value of T 2 that is to be considered, e.g. for 0.3ms, 0.35ms, ..., 3000ms.
  • every conceivable measured echo train can be decomposed into a set of these series of data values. We therefore use PCA on this data to learn about its statistical properties.
  • the PCA is done downhole. This requires enormous computation power and is to be done sparingly in situations where it is established that a previously determined set of eigenvectors does not adequately represent the data. This may happen if, for example, parameters of the pulse sequence are changed, or if there is a major change in lithology and/or fluid content of the formation.
  • the recreation of properties of interest may cover T 2 distribution, volumetrics, permeability, echo trains, and other rock and fluid properties that are based on NMR data. It should further be noted that the method itself is of course not limited to downhole applications, As noted in Hamdan, bound volume irreducible, effective porosity, bound water, clay-bound water, and total porosity are among the formation properties that may be determined. From the T 2 relaxation spectrum, using an inversion method it is possible to estimate the pore-size distribution. The use of a pore-scale geometric model used in inverting NMR spectra is described, for example, in US Patent 7363161 to Georgi et al., having the same assignee as the present disclosure. Determination of permeability is discussed in US 6,686,736 to Schoen et al., having the same assignee as the present disclosure.
  • ICA independent component analysis
  • the reprojection of C n back into the p dimensional space has minimum reconstruction error.
  • the reprojection is lossless.
  • the goal in PCA is to minimize the reconstruction error from compressed data.
  • NMR measurements are indicative of the pore-size distribution in an earth formation.
  • they are indicative of fluid types.
  • the primary pore-size distribution in sedimentary rocks reflects the depositional energy, something that is episodic.
  • a significant amount of local structure is to be expected in the pore-size distribution.
  • the presence of heavy oil in a formation would also imply a local structure in the relaxation time distributions — once heavy oil has formed, it cannot be undone to light oil.
  • T 2j 0.2... 8192 using increment of 2 (1/4) .
  • F is a matrix that spans all single components decays in the echo train space.
  • S is a matrix of independent components (latent variables) of the corresponding type of acquisition (Created from ICA (Independent component analysis), using the fastICA algorithm, available with MATLAB, of the F matrix).
  • M is the mixing matrix. Both M and S need to be estimated. Once S and M are found the manner of compressing data is as follows: (14)
  • Eqn. 17 is applied in the downhole tool for compression of echo trains.
  • Eqn. 15 becomes Eqn. 18 and is applied in the surface system to decompress the mud- pulse-transmitted data:
  • Eqn. 17 tells us that providing the inverse of a reduced form of the S matrix, we can compress an echo-train of length 1000, (and if we have an echo-train of length N, we need to create the S matrix of size 6xN,) into a 1x6 matrix. Furthermore Eqn. 18 tells us we could recover the echo-train by using the same model (independent components) and the corresponding compression.
  • Loads is a matrix of eigenvectors of the corresponding type of acquisition (Created from Principal components decomposition of the F matrix) and scores are the eigenvalues of Matrix F.
  • the scores ScoreSj of T is a linear combination of F defined by Loads; that is to say that Scores; is the projection of F on Loads;, by replacing the value of F in Eqn. 10 into Eqn. 2
  • ⁇ i x iooo 4 x64 x Scores 64 x64 x Loads 64 xl000 (20 ).
  • Eqn. 22 tells us that we could compress the whole Echo-Train from 1000 points into 64 points without losing any information. Analysis of PCA tells us that beyond component 5 there will be almost zero percent of variance left as the following table shows:
  • Eqn, 23 tells us that providing a reduced form of the Loads matrix, we can compress an Echo-Train of length 1000, (and if we have an Echo-train of length N, we need to create the Loads matrix of size 5xN,) into 1x5 matrix. Furthermore Eqn. 24 tells us we could recover the echo-train by using the same model and the corresponding compression.
  • the ICA algorithm can be basically be used as a replacement of the PCA.
  • Implicit in the control and processing of the data is the use of a computer program implemented on a suitable machine readable medium that enables the processor to perform the control and processing.
  • the machine readable medium may include ROMs, EPROMs, EAROMs, Flash Memories and Optical disks.

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Health & Medical Sciences (AREA)
  • Remote Sensing (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Mining & Mineral Resources (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Fluid Mechanics (AREA)
  • Molecular Biology (AREA)
  • Toxicology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

NMR spin echo signals are acquired downhole. Principal Component Analysis is used to represent the signals by a weighted combination of the principal components and these weights are telemetered to the surface. At the surface, the NMR spin echo signals are recovered and inverted to give formation properties.

Description

JOINT COMPRESSION OF MULTIPLE ECHO TRAINS USING PRINCIPAL COMPONENT ANALYSIS AND INDEPENDENT COMPONENT ANALYSIS
BACKGROUND OF THE DISCLOSURE
1. Field of the Disclosure
[0001] The present disclosure relates generally to determining geological properties of subsurface formations using Nuclear Magnetic Resonance ("NMR") methods for logging wellbores, particularly for representing NMR echo trains by a limited number of functional parameters, enabling efficient transmission of echo train from a downhole location.
2. Description of the Related Art
[0002] NMR methods are among the most useful non-destructive techniques of material analysis. When hydrogen nuclei are placed in an applied static magnetic field, a small majority of spins are aligned with the applied field in the lower energy state, since the lower energy state in more stable than the higher energy state. The individual spins precess about the axis of the applied static magnetic field vector at a resonance frequency also termed as Larmor frequency. This frequency is characteristic to a particular nucleus and proportional to the applied static magnetic field. An alternating magnetic field at the resonance frequency in the Radio Frequency (RF) range, applied by a transmitting antenna to a subject or specimen in the static magnetic field transfers nuclear spins into a coherent superposition of the lower energy state and the higher energy state. In this superposition state the magnetization of the spins precesses about the axis of the static magnetic field vector and therefore induces an oscillating voltage in a receiver antenna even after the transmitted field is switched off, whose amplitude and rate of decay depend on the physicochemical properties of the material being examined. The applied RF field is designed to perturb the thermal equilibrium of the magnetized nuclear spins, and the time dependence of the emitted energy is determined by the manner in which this system of spins looses coherence and returns to equilibrium magnetization. The return is characterized by two parameters: T1, the longitudinal or spin-lattice relaxation time; and T2, the transverse or spin-spin relaxation time. [0003] Measurements of NMR parameters of fluid filling the pore spaces of earth formations such as relaxation times of the hydrogen spins, diffusion coefficient and/or the hydrogen density is the basis for NMR well logging. NMR well logging instruments can be used for determining properties of earth formations including the fractional volume of pore space and the fractional volume of mobile fluid filling the pore spaces of the earth formations.
[0004] One basic problem encountered in NMR logging or MRI (imaging) is the vast amount of data that has to be analyzed. In well logging with wireline instruments, the downhole processing capabilities are limited as is the ability to transmit data to an uphole location for further analysis since all the data are typically sent up a wireline cable with limited bandwidth. In the so-called Measurement-while-drilling methods, the problem is exacerbated due to the harsh environment in which any downhole processor must operate and to the extremely limited telemetry capability: data are typically transmitted at a rate of no more than twenty bits per second.
[0005] A second problem encountered in NMR logging and MRI is that of analysis of the data. As will be discussed below, the problem of data compression and of data analysis are closely inter-related.
[0006] Methods of using NMR measurements for determining the fractional volume of pore space and the fractional volume of mobile fluid are described, for example, in Spin Echo Magnetic Resonance Logging: Porosity and Free Fluid Index Determination, M. N. Miller et al, Society of Petroleum Engineers paper no. 20561, Richardson, TX, 1990. In porous media there is a significant difference in the Ti and T2 relaxation time spectra of the fluids mixture filling the pore space. Thus, for example, light hydrocarbons and gas may have T1 relaxation time of about several seconds, while T2 may be thousand times less. This phenomenon is due to diffusion effect in internal and external static magnetic field gradients. Internal magnetic field gradients are due to magnetic susceptibility difference between rock formation matrix and pore filling fluid.
[0007] Since oil is found in porous rock formations, the relationships between porous rocks and the fluids filling their pore spaces are extremely complicated and difficult to model. Nuclear magnetic resonance is sensitive to main petrophysical parameters, but has no capabilities to establish these complex relationships. Oil and water are generally found together in reservoir rocks. Since most reservoir rocks are hydrophilic, droplets of oil sit in the center of pores and are unaffected by the pore surface. The water-oil interface normally does not affect relaxation, therefore, the relaxation rate of oil is primarily proportional to its viscosity. However, such oil by itself is a very complex mixture of hydrocarbons that may be viewed as a broad spectrum of relaxation times. In a simple case of pure fluid in a single pore, there are two diffusion regimes that govern the relaxation rate. Rocks normally have a very broad distribution of pore sizes and fluid properties. Thus it is not surprising that magnetization decays of fluid in rock formations are non-exponential. The most commonly used method of analyzing relaxation data is to calculate a spectrum of relaxation times. The Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence is used to determine the transverse magnetization decay. The non-exponential magnetization decays are fit to the multi-exponential form:
M(t) = ∑ m(T2, )e-l/T» (1)
where M(t) represents the spin echo amplitudes, equally spaced in time, and the T2, are predetermined time constants, equally spaced on a logarithm scale, typically between 0.3 ms and 3000 ms. The set of m are found using a regularized nonlinear least squares technique. The function m(T2l), conventionally called a T2 distribution, usually maps linearly to a volumetrically weighted distribution of pore sizes.
[0008] The calibration of this mapping is addressed in several publications. Prior art solutions seek a solution to the problem of mathematical modeling the received echo signals by the use of several techniques, including the use of non-linear regression analysis of the measurement signal and non-linear least square fit routines. Other prior art techniques include a variety of signal modeling techniques, such as polynomial rooting, singular value decomposition (SVD) and miscellaneous refinements thereof, to obtain a better approximation of the received signal. A problem with prior art signal compressions is that some information is lost. [0009] Inversion methods discussed in prior art are generally computationally intensive and still end up with a large number of parameters that have to be transmitted uphole. In particular, no simple methods have been proposed to take advantage of prior knowledge about the structure of the investigated material and the signal-to-noise (SNR) ratio of the received echo signal. Also, no efficient solutions have been proposed to combine advanced mathematical models with simple signal processing algorithms to increase the accuracy and numerical stability of the parameter estimates. Finally, existing solutions require the use of significant computational power which makes the practical use of those methods inefficient, and frequently impossible to implement in real-time applications.
[0010] U.S. Patent Application Ser. No. 11/845,983 of Them et al. (Publication US 20080036457) discloses a method which includes conveying a nuclear magnetic resonance (NMR) sensing apparatus into a borehole, using the NMR sensing apparatus for obtaining a signal indicative of the property of the earth formation, using a predetermined matrix to estimate from the signal a parametric representation of the relaxation of nuclear spins in terms of at least one basis function, telemetering the parametric representation to a surface location and, at the surface location, using the telemetered parametric representation to estimate the property of the earth formation. The signal may be a spin echo signal and representation of relaxation of nuclear spins may include a transverse relaxation time (T2) distribution. The at least one basis function may be a Gaussian function, and parametric representation may include a mean, a standard deviation, and an amplitude of the Gaussian function. Defining the predetermined matrix may be done by performing a regression analysis on synthetic NMR signals and/or NMR signals measured on samples having known properties. The dependent variable in the regression analysis may be a spin echo signal. The regression analysis may be a partial least-squares, a principal component regression, an inverse least-squares, a ridge regression, a Neural Network, a neural net partial least-squares regression, and/or a locally weighted regression. The determined property may be bound volume irreducible, effective porosity, bound water, clay- bound water, total porosity, a permeability, and/or a pore size distribution.
[0011] A potential drawback of the method of Them is the lack of adaptability: the number of Gaussian functions used to characterize the T2 distribution and the matrix are predefined and may not be equally suitable for all types of earth formations and all types of pulse sequences used in acquisition of the data. These drawbacks are addressed in the present disclosure.
SUMMARY OF THE DISCLOSURE
[0012] One embodiment of the disclosure is a method of determining a property of an earth formation. The method includes conveying a nuclear magnetic resonance (NMR) sensing apparatus into a borehole, using the NMR sensing apparatus for obtaining a signal indicative of the property of the earth formation, representing the NMR signals using a set of eigenfunctions and telemetering a representation of the NMR signals as a combination of the eigenfunctions to a surface location.
[0013] Another embodiment of the disclosure is an apparatus for determining a property of an earth formation. The apparatus includes a nuclear magnetic resonance (NMR) sensing apparatus configured to be conveyed into a borehole and obtain a signal indicative of the property of the earth formation. The apparatus also includes a downhole processor configured to represent the NMR signals using a set of eigenfunctions and telemeter a representation of the NMR signals as a combination of the eigenfunctions to a surface location.
[0014] Another embodiment of the disclosure is a computer-readable medium accessible to a processor. The computer-readable medium includes instructions which enable the processor to represent at least one signal obtained by an NMR sensing apparatus in a borehole representative of a property of an earth formation by a set of eigenfunctions; and telemeter a representation of the at least one signal as a combination of the eigenfunctions to a surface location.
BRIEF DESCRIPTION OF THE DRAWINGS [0015] The present disclosure is best understood with reference to the accompanying figures in which like numerals refer to like elements and in which: FIG. 1 shows a measurement-while-drilling tool suitable for use with the present disclosure; FIG. 2 (prior art) shows a sensor section of a measurement-while-drilling device suitable for use with the present disclosure; FIG.3 shows exemplary principal component signals recovered from an ensemble of echo trains, FIG. 4 shows (top): an exemplary echo train, and (bottom) comparison of an
NMR T2 with a reconstructed distribution; FIG. 5 shows the joint compression of data and a trainlet; and FIG. 6 is a flow chart showing further details of the implementation of the disclosure.
DETAILED DESCRIPTION OF THE DISCLOSURE
[0016] FIG. 1 shows a schematic diagram of a drilling system 10 with a drillstring 20 carrying a drilling assembly 90 (also referred to as the bottom hole assembly, or "BHA") conveyed in a "wellbore" or "borehole" 26 for drilling the wellbore. The drilling system 10 includes a conventional derrick 11 erected on a floor 12 which supports a rotary table 14 that is rotated by a prime mover such as an electric motor (not shown) at a desired rotational speed. The drillstring 20 includes a tubing such as a drill pipe 22 or a coiled-tubing extending downward from the surface into the borehole 26. The drillstring 20 is pushed into the wellbore 26 when a drill pipe 22 is used as the tubing. For coiled-tubing applications, a tubing injector, such as an injector (not shown), however, is used to move the tubing from a source thereof, such as a reel (not shown), to the wellbore 26. The drill bit 50 attached to the end of the drillstring breaks up the geological formations when it is rotated to drill the borehole 26. If a drill pipe 22 is used, the drillstring 20 is coupled to a drawworks 30 via a Kelly joint 21, swivel 28, and line 29 through a pulley 23. During drilling operations, the drawworks 30 is operated to control the weight on bit, which is an important parameter that affects the rate of penetration. The operation of the drawworks is well known in the art and is thus not described in detail herein. For the purposes of this disclosure, it is necessary to know the axial velocity (rate of penetration or ROP) of the bottomhole assembly. Depth information and ROP may be communicated downhole from a surface location. Alternatively, the method disclosed in U.S. Patent 6,769,497 to Dubinsky et al. having the same assignee as the present application and the contents of which are incorporated herein by reference may be used. The method of Dubinsky uses axial accelerometers to determine the ROP. During drilling operations, a suitable drilling fluid 31 from a mud pit (source) 32 is circulated under pressure through a channel in the drillstring 20 by a mud pump 34. The drilling fluid passes from the mud pump 34 into the drillstring 20 via a desurger (not shown), fluid line 38 and Kelly joint 21. The drilling fluid 31 is discharged at the borehole bottom 51 through an opening in the drill bit 50. The drilling fluid 31 circulates uphole through the annular space 27 between the drillstring 20 and the borehole 26 and returns to the mud pit 32 via a return line 35. The drilling fluid acts to lubricate the drill bit 50 and to carry borehole cutting or chips away from the drill bit 50. A sensor Si typically placed in the line 38 provides information about the fluid flow rate. A surface torque sensor S2 and a sensor S3 associated with the drillstring 20 respectively provide information about the torque and rotational speed of the drillstring. Additionally, a sensor (not shown) associated with line 29 is used to provide the hook load of the drillstring 20.
[0017] In one embodiment of the disclosure, the drill bit 50 is rotated by only rotating the drill pipe 22. In another embodiment of the disclosure, a downhole motor 55 (mud motor) is disposed in the drilling assembly 90 to rotate the drill bit 50 and the drill pipe 22 is rotated usually to supplement the rotational power, if required, and to effect changes in the drilling direction.
[0018] In an exemplary embodiment of FIG. 1, the mud motor 55 is coupled to the drill bit 50 via a drive shaft (not shown) disposed in a bearing assembly 57. The mud motor rotates the drill bit 50 when the drilling fluid 31 passes through the mud motor 55 under pressure. The bearing assembly 57 supports the radial and axial forces of the drill bit. A stabilizer 58 coupled to the bearing assembly 57 acts as a centralizer for the lowermost portion of the mud motor assembly.
[0019] In one embodiment of the disclosure, a drilling sensor module 59 is placed near the drill bit 50. The drilling sensor module contains sensors, circuitry and processing software and algorithms relating to the dynamic drilling parameters. Such parameters typically include bit bounce, stick-slip of the drilling assembly, backward rotation, torque, shocks, borehole and annulus pressure, acceleration measurements and other measurements of the drill bit condition. A suitable telemetry or communication sub 72 using, for example, two-way telemetry, is also provided as illustrated in the drilling assembly 90. The drilling sensor module processes the sensor information and transmits it to the surface control unit 40 via the telemetry system 72.
[0020] The communication sub 72, a power unit 78 and an MWD tool 79 are all connected in tandem with the drillstring 20. Flex subs, for example, are used in connecting the MWD tool 79 in the drilling assembly 90. Such subs and tools form the bottom hole drilling assembly 90 between the drillstring 20 and the drill bit 50. The drilling assembly 90 makes various measurements including the pulsed nuclear magnetic resonance measurements while the borehole 26 is being drilled. The communication sub 72 obtains the signals and measurements and transfers the signals, using two-way telemetry, for example, to be processed on the surface. Alternatively, the signals can be processed using a downhole processor in the drilling assembly 90.
[0021] The surface control unit or processor 40 also receives signals from other downhole sensors and devices and signals from sensors S1-S3 and other sensors used in the system 10 and processes such signals according to programmed instructions provided to the surface control unit 40. The surface control unit 40 displays desired drilling parameters and other information on a display/monitor 42 utilized by an operator to control the drilling operations. The surface control unit 40 typically includes a computer or a microprocessor-based processing system, memory for storing programs or models and data, a recorder for recording data, and other peripherals. The control unit 40 is typically adapted to activate alarms 44 when certain unsafe or undesirable operating conditions occur.
[0022] A suitable device for use of the present disclosure is disclosed in U.S. Patent 6,215,304 to Slade, the contents of which are fully incorporated herein by reference. It should be noted that the device taught by Slade is for exemplary purposes only, and the method of the present disclosure may be used with many other NMR logging devices, and may be used for wireline as well as MWD applications.
[0023] Referring now to FIG. 2, the tool has a drill bit 107 at one end, a sensor section 102 behind the drill head, and electronics 101. The sensor section 102 comprises a magnetic field generating assembly for generating a Bo magnetic field (which is substantially time invariant over the duration of a measurement), and an RF system for transmitting and receiving RF magnetic pulses and echoes. The magnetic field generating assembly comprises a pair of axially spaced main magnets 103, 104 having opposed pole orientations (i.e. with like magnetic poles facing each other), and three ferrite members 109, 110 axially arranged between the magnets 103, 104. The ferrite members are made of "soft" ferrite which can be distinguished over "hard" ferrite by the shape of the BH curve which affects both intrinsic coercivity (Hj the intersection with the H axis) and initial permeability ( μi, the gradient of the BH curve in the unmagnetized case). Soft ferrite μt values typically range from 10 to 10000 whereas hard ferrite has μι, of about 1. Therefore the soft ferrite has large initial permeability (typically greater than 10, preferably greater than 1000). The RF system comprises a set of RF transmit antenna and RF receive antenna coil windings 105 arranged as a central "field forming" solenoid group 113 and a pair of outer "coupling control" solenoid groups 114.
[0024] The tool has a mud pipe 160 with a clear central bore 106 and a number of exit apertures 161-164 to carry drilling mud to the bit 107, and the main body of the tool is provided by a drill collar 108. Drilling mud is pumped down the mud pipe 160 by a pump 121 returning around the tool and the entire tool is rotated by a drive 120. Coiled tubing or a drillstring may be used for coupling the drive to the downhole assembly.
[0025] The drill collar 108 provides a recess 170 for RF transmit antenna and RF receive antenna coil windings 105. Gaps in the pockets between the soft ferrite members are filled with non-conducting material 131, 135 (e.g: ceramic or high temperature plastic) and the RF coils 113, 114 are then wound over the soft ferrite members 109, 110. The soft ferrites 109, 110 and RF coil assembly 113, 114 are pressure impregnated with suitable high temperature, low viscosity epoxy resin (not shown) to harden the system against the effects of vibration, seal against drilling fluid at well pressure, and reduce the possibility of magnetoacoustic oscillations. The RF coils 113, 114 are then covered with wear plates 111 typically ceramic or other durable non-conducting material to protect them from the rock chippings flowing upwards past the tool in the borehole mud. [0026] Because of the opposed magnet configuration, the device of Slade has an axisymmetric magnetic field and region of investigation 112 that is unaffected by tool rotation. Use of the ferrite results in a region of investigation that is close to the borehole. This is not a major problem on a MWD tool because there is little invasion of the formation by borehole drilling fluids prior to the logging. The region of investigation is within a shell with a radial thickness of about 20 mm and an axial length of about 50 mm. The gradient within the region of investigation is less than 2.7 G/cm. It is to be noted that these values are for the Slade device and, as noted above, the method of the present disclosure may also be used with other suitable NMR devices.
[0027] The method of the present disclosure is based on a representation of the acquired echo train of the earth formation as a weighted combination of principal components derived during data acquisition. This enables compression of the data: typically, instead of a thousand samples being required to depict a single echo train, 10 principal components are transmitted for each echo train. The principal components are derived downhole and may be transmitted uphole when previously derived principal components do not provide an adequate reconstruction of the echo trains downhole. At the surface, the received data (which may include adjective noise) is decompressed and inverted to give a T2 distribution. We briefly discuss the
Principal Component Analysis (PCA) method for compression and decompression of the data.
[0028] We represent a sequence of N echo trains, each M echoes long, by the matrix:
Figure imgf000012_0001
F = (I)-
JN-1,1 JN-1,2 JN-IM-1 JN-UM
Figure imgf000012_0002
Typically, the echo trains are 1000 samples long. The mean value of they-th echo is denoted by: 1 N
(32
-<v (=1
We next define the covariance matrix of the data by:
M \A L1 J (3), where
Figure imgf000013_0001
The covariance matrix C is decomposed into its eigenvalues and eigenvectors C = VAV~l (5), where V is a matrix whose columns are the eigenvectors of C and Λ is the diagonal matrix of eigenvalues:
Figure imgf000013_0002
with λι ≥ Λ2 ≥ λi --- ≥ λM_ι ≥ λM (7).
With this ordering of the eigenvalues, the eigenvectors of Fare the principal components.
[0029] The representation of the echo train data is done by the transformation
M' = V. E (8), and the inverse transform
E = V1M' = VTM' (9) may be used to recover the data. Data compression is accomplished by truncating the matrix Fto the first k rows corresponding to the dominant eigenvalues in eqn. (7). Table I shows an example of the dominant eigenvalues for an exemplary sequence of echo trains. Table I: Variance distribution
Figure imgf000014_0001
[0030] FIG.3 shows the eigenvectors corresponding to the seven largest eigenvalues for the echo trains used in the derivation of Table I. They are ordered according to the magnitude of the eigenvalues 301, 303, 305, 307, 309, 311, 313.
[0031] In the lower part of FIG. 4, the curve 451 shows the original T2 distribution corresponding to the noise free echo train. Using the curve 451, an original echo train (contained in 401 is generated). Noise is added to the original echo train to give a noisy echo train, also contained in 401 in the upper part of FIG. 4. The curve 453 is the result of inverting the noisy echo train. Comparison of 451 and 453 shows that even with a low level of noise, the inversion deviates from the correct result. Compressing and decompressing the noisy echo train gives a result that is still contained in 401. As discussed below, the results of the decompression are made up of the eigenvectors and are not multiexponential. Inverting the results of decompression gives the curve 455. Such a result is unsatisfactory because the inversion algorithm attempts to fit a multi-exponential to a curve that is not a multi- exponential any more. In order to avoid problems caused by the decompression results being non-exponential, a small amount of noise is added to the decompressed data before the inversion is carried out. When this noisy decompressed data is inverted, the result is shown by 457. Good agreement is seen between original T2 distribution and the results of inversion using PCA.
[0032] The PCA method may also be used to compress two or more echo trains in a single operation. The top portion of FIG. 5 shows a concatenation of two echo trains. The early portion 501 was acquired with a short wait time to get a measurement of rapidly relaxing components of the T2 spectrum while the latter portion 503 is a long echo train intended to recover the slower components of the T2 spectrum. The bottom portion of FIG. 5 shows little difference between the actual T2 distribution and the results of using PCA on the concatenated echo trains.
[0033] It should be noted that the PCA also works for T1 data. It has been found that joint compression OfT1 and T2 data is satisfactory only for a fixed value of Ti/T2. As this ratio is variable downhole, the joint compression OfT1 and T2 data is of limited value.
[0034] Turning now to FIG.6, a flow chart summarizing the implementation of the method, including further details of the fitting method described above is shown. NMR data are acquired downhole 607. A truncated eigenvector matrix is applied 609 to the acquired echo train X. The compressed data are telemetered to the surface 613 and a reconstruction of the echo train is inverted to give the T2 distribution 615.
[0035] In one embodiment of the disclosure, the eigenvector matrix is generated at the surface and the truncated matrix is loaded into the memory of the downhole processor. We create synthetic single-exponential data. This is a pure exponential function, 1000 values equally spaced by TE=0.6ms, with given T2. We create such a series of synthetic data values (a single exponential) for every value of T2 that is to be considered, e.g. for 0.3ms, 0.35ms, ..., 3000ms. This gives 64 series of data values of single-exponentials. We note every conceivable measured echo train can be decomposed into a set of these series of data values. We therefore use PCA on this data to learn about its statistical properties. We want to do a coordinate system rotation (in a 1000 dimensional vector space), and we use PCA now to learn which basis vectors must be used in order to most economically express any multi- exponential in the new coordinate system. Note that while the original data matrix consisted of exponentials, after PCA, the eigenvectors are not necessarily exponentials. After the PCA is done, the matrix is truncated to the number of rows corresponding to the dominant eigenvalues. See eqn. (9).
[0036] In an alternate embodiment of the disclosure, the PCA is done downhole. This requires enormous computation power and is to be done sparingly in situations where it is established that a previously determined set of eigenvectors does not adequately represent the data. This may happen if, for example, parameters of the pulse sequence are changed, or if there is a major change in lithology and/or fluid content of the formation.
[0037] The recreation of properties of interest may cover T2 distribution, volumetrics, permeability, echo trains, and other rock and fluid properties that are based on NMR data. It should further be noted that the method itself is of course not limited to downhole applications, As noted in Hamdan, bound volume irreducible, effective porosity, bound water, clay-bound water, and total porosity are among the formation properties that may be determined. From the T2 relaxation spectrum, using an inversion method it is possible to estimate the pore-size distribution. The use of a pore-scale geometric model used in inverting NMR spectra is described, for example, in US Patent 7363161 to Georgi et al., having the same assignee as the present disclosure. Determination of permeability is discussed in US 6,686,736 to Schoen et al., having the same assignee as the present disclosure.
[0038] In an alternate embodiment of the disclosure, instead of principal component regression or principal component analysis (PCA), a method referred to as independent component analysis (ICA) may be used. In PCA, the basis vectors are obtained by solving the algebraic eigenvalue problem RT(XXT)R= Λ (10) where X is a data matrix whose columns are training samples (with the mean values removed), R is a matrix of eigenvectors, and Λ is the corresponding diagonal matrix of eigenvalues. With such a representation, the projection of data, Cn = Rn 1X, from the original p dimensional space to a subspace spanned by n principal eigenvectors is optimal in the mean squared error sense. That is, the reprojection of Cn back into the p dimensional space has minimum reconstruction error. In fact, if n is large enough to include all the eigenvectors with non-zero eigenvalues, the reprojection is lossless. The goal in PCA is to minimize the reconstruction error from compressed data.
[0039] In ICA, on the other hand the goal is to minimize the statistical dependence between the basis vectors. Mathematically, this can be written as WXT = U, where ICA searches for a linear transformation W that minimizes the statistical dependence between the rows of U, given a training set X (as before). Unlike PCA, the basis vectors in ICA are neither orthogonal nor ranked in order. Also, there is no closed form expression to find W. Instead iterative algorithms have to be used. See Baek et al., PCA vs. ICA: A comparison on the FERET data set.
[0040] As noted by Baek, global properties are better represented by PCA while local structure is better represented by ICA. Based on a comparison of PCA to ICA, Baek concluded that for facial recognition problems (that are holistic in nature), PCA gave superior results. Baek further conjectured that evaluations on localized recognition tasks, such as recognizing facial expressions, ICA may give better results.
[0041] First and foremost, NMR measurements are indicative of the pore-size distribution in an earth formation. Secondarily, they are indicative of fluid types. By their very nature, the primary pore-size distribution in sedimentary rocks reflects the depositional energy, something that is episodic. Hence a significant amount of local structure is to be expected in the pore-size distribution. To put it another way, one would, for example, expect a high correlation between occurrences of pore-sizes of lμm and l.Olμm: this would imply a local structure in the T2 distribution and the Ti distribution. In addition, the presence of heavy oil in a formation would also imply a local structure in the relaxation time distributions — once heavy oil has formed, it cannot be undone to light oil.
[0042] We next discuss implementation of ICA and differences with PCA. NMR relaxation of fluids in rocks exhibits multi-exponential behavior, which can be expressed in a discrete model as follows: E(t) = ∑Aje r^ (11)
Assuming T2j = 0.2... 8192 using increment of 2(1/4), then T2 will have a length of 64. This will translate into matrix notation when sampling the t at TE= 0.6 μs and 1000 samples as:
AxIOOO ~ Λx64 X ^64x1000 (12),
where Aj is proportional to the proton population of pores which have a relaxation time of T2j, E(t) is the resultant echo-train in continuous time and E is discretized version of E(t).
We first map all possible echo-trains with single exponential decay constant into a matrix F. Next, Through Independent Component Analysis we decompose the F matrix into 2 matrices.
^64x1000 = ^64x64 X ^64x1000 (13)
F is a matrix that spans all single components decays in the echo train space. S is a matrix of independent components (latent variables) of the corresponding type of acquisition (Created from ICA (Independent component analysis), using the fastICA algorithm, available with MATLAB, of the F matrix). M is the mixing matrix. Both M and S need to be estimated. Once S and M are found the manner of compressing data is as follows:
Figure imgf000018_0001
(14)
let
Comp lx64 = Alx64 x M64x64
(14a) Comp is called the Compression vector. Eqn 4. can then be written into:
Figure imgf000019_0001
Now multiply to the right both sides by inverse of S => S"1.
Figure imgf000019_0003
CθmpiχM X SMχmo X
Figure imgf000019_0002
which leads to
Figure imgf000019_0004
= Complx64 (16)
But the eigenanalysis of the Covariance of F tells us that beyond component 6 there will be almost zero percent of variance left as Table 1 shows.
[0043] Thus Eqn. 16 can be reduced into:
^lxiooo x 5"1IOOOxO = Complx6 (17).
Eqn. 17 is applied in the downhole tool for compression of echo trains. Eqn. 15 becomes Eqn. 18 and is applied in the surface system to decompress the mud- pulse-transmitted data:
Figure imgf000019_0005
Eqn. 17 tells us that providing the inverse of a reduced form of the S matrix, we can compress an echo-train of length 1000, (and if we have an echo-train of length N, we need to create the S matrix of size 6xN,) into a 1x6 matrix. Furthermore Eqn. 18 tells us we could recover the echo-train by using the same model (independent components) and the corresponding compression.
[0044] The PCA algorithm differ from the ICA only in the way of decomposition Through Principal Component Analysis we decompose the F matrix into 2 matrices. ^64*iooo = Scores Mx64 x Loads 64xlQ00 (19))
Where F is a matrix that spans all single components decays, Loads is a matrix of eigenvectors of the corresponding type of acquisition (Created from Principal components decomposition of the F matrix) and scores are the eigenvalues of Matrix F.
It is to be noted that Scores forms an orthogonal set (Scores^ ScoreSj =0 for i≠j) and Loads forms an orthonormal set (LoadSjT LoadSj =0 for i≠j and = 1 for i=j ) => Loads7 = Loads"1 .The scores ScoreSj of T is a linear combination of F defined by Loads; that is to say that Scores; is the projection of F on Loads;, by replacing the value of F in Eqn. 10 into Eqn. 2
^ixiooo = 4x64 x Scores 64 x64 x Loads 64 xl000 (20).
Let
ComP 1x64 = 4x64 X Scores 64χ64 (20a)
Comp is what we call a Compression vector. Eqn. 20a can then be written into: ^ixiooo = Comp lje64 x Loads 64jd000 {2λ)
Now multiplying to the right by inverse of Loads => Loads'1, and using the fact that Loads"1 = Loads1
^lxiooo x Loads ioooχ64 = Complx64 x Loads 64xl000 x Loads iooox64
which leads to
^uiooo x Loadsτ ιooox64 = ComplxM (22)
[0045] Eqn. 22 tells us that we could compress the whole Echo-Train from 1000 points into 64 points without losing any information. Analysis of PCA tells us that beyond component 5 there will be almost zero percent of variance left as the following table shows:
Figure imgf000021_0001
Thus Eqn.22 can be reduced into: x Loads TIOQOX5 = Comp 1x5 (23) and Eqs. 21 becomes
'1*1000 = Comp, 5 x Loads 5x1000 (24)
[0046] Eqn, 23 tells us that providing a reduced form of the Loads matrix, we can compress an Echo-Train of length 1000, (and if we have an Echo-train of length N, we need to create the Loads matrix of size 5xN,) into 1x5 matrix. Furthermore Eqn. 24 tells us we could recover the echo-train by using the same model and the corresponding compression.
[0047] To summarize, the ICA algorithm can be basically be used as a replacement of the PCA. [0048] Implicit in the control and processing of the data is the use of a computer program implemented on a suitable machine readable medium that enables the processor to perform the control and processing. The machine readable medium may include ROMs, EPROMs, EAROMs, Flash Memories and Optical disks.

Claims

What is claimed is: 1. A method of determining a property of an earth formation, the method comprising: conveying a nuclear magnetic resonance (NMR) sensing apparatus into a borehole; using the NMR sensing apparatus for obtaining at least one signal indicative of the property of the earth formation; representing the at least one signal using a set of eigenfunctions; and telemetering a representation of the at least one signal as a combination of the eigenfunctions to a surface location.
2. The method of claim 1 further comprising deriving the eigenfunctions using at least one of: (i) a principal component analysis, and (ii) an independent component analysis.
3. The method of claim 1 further comprising deriving the eigenfunctions at one of: (i) a surface location, and (ii) a downhole location
4. The method of claim 1 wherein the at least one signal is selected from the group consisting of: (i) a spin echo signal representative of a transverse relaxation time (T2) distribution, and (ii) a signal representative of the longitudinal relaxation time (Ti) distribution.
5. The method of claim 1 further comprising using the telemetered representation to provide an estimate the at least one signal and to estimate the property of the earth formation.
6. The method of claim 1 wherein the property is selected from the group consisting of: (i) bound volume irreducible, (ii) effective porosity, (iii) bound water, (iv) clay-bound water, (v) total porosity, (vi) a permeability, and (vii) a pore size distribution.
7. The method of claim 1 wherein the at least one signal comprises a concatenation of a first echo train and a second echo train.
8. The method of claim 1 further comprising conveying the NMR sensing apparatus into the borehole on a bottomhole assembly using a drilling tubular.
9. An apparatus configured to determine a property of an earth formation, the apparatus comprising: a nuclear magnetic resonance (NMR) sensing apparatus configured to be conveyed into a borehole and provide at least one signal indicative of the property of the earth formation; and at least one processor configured to: (A) represent the at least one signal using a set of eigenfunctions; and (B) telemeter a representation of the at least one signal as a combination of the eigenfunctions to a surface location.
10. The apparatus of claim 9 wherein the at least one processor is further configured to derive the eigenfunctions using at least one of: (i) a principal component analysis, and (ii) an independent component analysis.
11. The apparatus of claim 9 wherein the at least one processor is further configured to derive the eigenfunctions at one of: (i) a surface location, and (ii) a downhole location
12. The apparatus of claim 9 wherein NMR sensing apparatus is further configured to provide a signal selected from the group consisting of: (i) a spin echo signal representative of a transverse relaxation time (T2) distribution, and (ii) a signal representative of the longitudinal relaxation time (T1) distribution.
13. The apparatus of claim 9 further comprising a surface processor configured to use the telemetered representation to provide an estimate of the at least one signal and to estimate the property of the earth formation.
14. The apparatus of claim 9 wherein the NMR sensing apparatus is further configured to provide a signal indicative of a property selected from the group consisting of: (i) bound volume irreducible, (ii) effective porosity, (iii) bound water, (iv) clay-bound water, (v) total porosity, (vi) a permeability, and (vii) a pore size distribution.
15. The apparatus of claim 9 wherein the at least one signal comprises a concatenation of a first echo train and a second echo train.
16. The apparatus of claim 9 further comprising a drilling tubular configured to convey the NMR sensing apparatus into the borehole on a bottomhole assembly.
17. A computer-readable medium accessible to a processor, the computer-readable medium including instructions which enable the processor to: Represent, by a set of eigenfuncations, at least one signal obtained by an NMR sensing apparatus in a borehole representative of a property of an earth formation; and telemeter a representation of the at least one signal as a combination of the eigenfunctions to a surface location.
18. The computer-readable medium of claim 17 further comprising at least one of: (i) a ROM, (ii) an EPROM, (iii) an EAROM, (iv) a flash memory, and (v) an optical disk.
PCT/US2009/030287 2008-01-07 2009-01-07 Joint compression of multiple echo trains using principal component analysis and independent component analysis WO2009089258A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GB1011123.5A GB2468615B (en) 2008-01-07 2009-01-07 Joint compression of multiple echo trains using principal component analysis and independent component analysis
CA2711494A CA2711494C (en) 2008-01-07 2009-01-07 Joint compression of multiple echo trains using principal component analysis and independent component analysis
NO20100977A NO343160B1 (en) 2008-01-07 2010-07-05 Total compression of multiple echo trains using principal component analysis and independent component analysis

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US1946208P 2008-01-07 2008-01-07
US61/019,462 2008-01-07
US12/347,784 2008-12-31
US12/347,784 US8022698B2 (en) 2008-01-07 2008-12-31 Joint compression of multiple echo trains using principal component analysis and independent component analysis

Publications (2)

Publication Number Publication Date
WO2009089258A2 true WO2009089258A2 (en) 2009-07-16
WO2009089258A3 WO2009089258A3 (en) 2009-09-24

Family

ID=40853743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2009/030287 WO2009089258A2 (en) 2008-01-07 2009-01-07 Joint compression of multiple echo trains using principal component analysis and independent component analysis

Country Status (4)

Country Link
CA (1) CA2711494C (en)
GB (1) GB2468615B (en)
NO (1) NO343160B1 (en)
WO (1) WO2009089258A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104614778A (en) * 2015-01-27 2015-05-13 吉林大学 Nuclear magnetic resonance underground water detection signal noise eliminating method based on independent component analysis (ICA)
CN105004747A (en) * 2015-07-13 2015-10-28 中国地质大学(北京) Method for nuclear magnetic resonance measurement of coal core average pore compression coefficient
US10061053B2 (en) 2015-04-30 2018-08-28 Baker Hughes, A Ge Company, Llc NMR T2 distribution from simultaneous T1 and T2 inversions for geologic applications

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2545484B2 (en) * 1990-05-21 1996-10-16 シュルンベルジェ オーバーシーズ,エス,エイ Perforation measurement and interpretation of NMR characteristics of formations
US6040696A (en) * 1997-09-16 2000-03-21 Schlumberger Technology Corporation Method for estimating pore structure in carbonates from NMR measurements
US6181132B1 (en) * 1998-10-02 2001-01-30 Shell Oil Company NMR logging assembly
US6859032B2 (en) * 2001-12-18 2005-02-22 Schlumberger Technology Corporation Method for determining molecular properties of hydrocarbon mixtures from NMR data

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6859033B2 (en) * 2002-08-28 2005-02-22 Schlumberger Technology Corporation Method for magnetic resonance fluid characterization
US7034528B2 (en) * 2003-02-27 2006-04-25 Schlumberger Technology Corporation Methods for formation evaluation based on multi-dimensional representation of nuclear magnetic resonance data
US7495436B2 (en) * 2004-03-18 2009-02-24 Baker Hughes Incorporated Rock properties prediction, categorization, and recognition from NMR echo-trains using linear and nonlinear regression

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2545484B2 (en) * 1990-05-21 1996-10-16 シュルンベルジェ オーバーシーズ,エス,エイ Perforation measurement and interpretation of NMR characteristics of formations
US6040696A (en) * 1997-09-16 2000-03-21 Schlumberger Technology Corporation Method for estimating pore structure in carbonates from NMR measurements
US6181132B1 (en) * 1998-10-02 2001-01-30 Shell Oil Company NMR logging assembly
US6859032B2 (en) * 2001-12-18 2005-02-22 Schlumberger Technology Corporation Method for determining molecular properties of hydrocarbon mixtures from NMR data

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104614778A (en) * 2015-01-27 2015-05-13 吉林大学 Nuclear magnetic resonance underground water detection signal noise eliminating method based on independent component analysis (ICA)
US10061053B2 (en) 2015-04-30 2018-08-28 Baker Hughes, A Ge Company, Llc NMR T2 distribution from simultaneous T1 and T2 inversions for geologic applications
CN105004747A (en) * 2015-07-13 2015-10-28 中国地质大学(北京) Method for nuclear magnetic resonance measurement of coal core average pore compression coefficient

Also Published As

Publication number Publication date
WO2009089258A3 (en) 2009-09-24
GB201011123D0 (en) 2010-08-18
GB2468615A (en) 2010-09-15
CA2711494A1 (en) 2009-07-16
GB2468615B (en) 2012-06-13
NO343160B1 (en) 2018-11-19
CA2711494C (en) 2015-03-17
NO20100977L (en) 2010-08-27

Similar Documents

Publication Publication Date Title
US8022698B2 (en) Joint compression of multiple echo trains using principal component analysis and independent component analysis
US7821260B2 (en) NMR echo train compression using only NMR signal matrix multiplication to provide a lower transmission bit parametric representation from which estimate values of earth formation properties are obtained
US8004279B2 (en) Real-time NMR distribution while drilling
US7495436B2 (en) Rock properties prediction, categorization, and recognition from NMR echo-trains using linear and nonlinear regression
EP2062073B1 (en) Nmr echo train compression
US9097818B2 (en) Kerogen porosity volume and pore size distribution using NMR
US7358725B2 (en) Correction of NMR artifacts due to axial motion and spin-lattice relaxation
US8093893B2 (en) Rock and fluid properties prediction from downhole measurements using linear and nonlinear regression
US6727696B2 (en) Downhole NMR processing
US9081117B2 (en) Method and apparatus for predicting petrophysical properties from NMR data in carbonate rocks
US8912916B2 (en) Non-uniform echo train decimation
CA2711494C (en) Joint compression of multiple echo trains using principal component analysis and independent component analysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09700155

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 1011123

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20090107

WWE Wipo information: entry into national phase

Ref document number: 1011123.5

Country of ref document: GB

WWE Wipo information: entry into national phase

Ref document number: 2711494

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09700155

Country of ref document: EP

Kind code of ref document: A2