WO2009087915A1 - Ac motor drive system and method for detecting failure of the system - Google Patents

Ac motor drive system and method for detecting failure of the system Download PDF

Info

Publication number
WO2009087915A1
WO2009087915A1 PCT/JP2008/073600 JP2008073600W WO2009087915A1 WO 2009087915 A1 WO2009087915 A1 WO 2009087915A1 JP 2008073600 W JP2008073600 W JP 2008073600W WO 2009087915 A1 WO2009087915 A1 WO 2009087915A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
drive system
motors
current
motor drive
Prior art date
Application number
PCT/JP2008/073600
Other languages
French (fr)
Japanese (ja)
Inventor
Shuichi Mihara
Original Assignee
Kabushiki Kaisha Yaskawa Denki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Yaskawa Denki filed Critical Kabushiki Kaisha Yaskawa Denki
Priority to JP2009548887A priority Critical patent/JPWO2009087915A1/en
Publication of WO2009087915A1 publication Critical patent/WO2009087915A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors
    • H02P25/064Linear motors of the synchronous type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/0241Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being an overvoltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/04Arrangements for controlling or regulating the speed or torque of more than one motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/04Arrangements for controlling or regulating the speed or torque of more than one motor
    • H02P2006/045Control of current

Definitions

  • the present invention relates to a system for detecting an abnormality such as a disconnection or a ground fault of a power cable of the AC motor in a system in which a single servo driver controls an AC motor such as a plurality of linear motors, and an abnormality detection method thereof.
  • Japanese Patent Publication No. 7-28513 is a technique for diagnosing insulation deterioration during normal operation of one linear motor coil (Patent Document 1).
  • Japanese Patent Application Laid-Open No. 2004-212201 detects a ground fault by supplying a current to a motor coil via a power cable when the motor is stopped (Patent Document 2).
  • a ground fault of a motor coil is detected, and a motor power cable that is operating in a system that controls a plurality of linear motors with one servo driver is disconnected without causing a ground fault. In this case, since the disconnection cannot be detected, a normal motor that has not disconnected is broken.
  • Patent Document 3 Applicant to a technology that provides a linear motor with a small inertia, suitable for high-speed operation, good controllability, and miniaturization when applying a linear motor with an unusually long mover stroke to semiconductor manufacturing equipment Japanese Patent Laid-Open No. 2003-244929 (Patent Document 3).
  • This technique is a linear motor composed of a mover provided with a permanent magnet and a stator provided with a coil for generating a moving magnetic field.
  • the stator is configured by connecting a plurality of modules divided in length per unit in the longitudinal direction. By sending a command from the host controller to each of the modules via a servo driver device for controlling the position of the motor, this prior art continuously moves and positions the mover. Further, the divided module is an integrated servo driver.
  • the plurality of divided modules are composed of a linear motor and a servo driver (motor driving device) that drives the linear motor.
  • a servo driver motor driving device
  • Patent Document 1 is a technique for diagnosing insulation deterioration during normal operation of one linear motor coil.
  • Patent Document 2 is a technique for detecting a ground fault of a motor winding without actually operating a motor.
  • Patent Documents 1 and 2 are both techniques for detecting a ground fault. In a system in which a single servo driver controls a plurality of linear motors, a disconnection when a motor power cable in operation is disconnected without a ground fault. It could not be detected.
  • Patent Document 3 is common to the system of the present invention in that the linear motor is made into a plurality of modules. Patent Document 3 is different from the system configuration of the present invention in that each linear motor module is provided with a servo driver which is a driving device for driving each linear motor module.
  • the system configuration of the present invention includes a plurality of linear motors that are modularized, but there is only one driving device that drives and controls them. For this reason, the drive unit itself cannot accurately protect the linear motor from overcurrent if any one of the multiple linear motors electrically connected in parallel causes an abnormality such as disconnection or ground fault. It was.
  • the present invention has been made in view of such problems.
  • a plurality of AC motors are driven by a single motor driving device, the power cables of the AC motors electrically connected in parallel are disconnected or grounded. It is an object of the present invention to provide an AC motor drive system that can easily detect and protect those abnormalities when they are entangled and a method for detecting the abnormality.
  • the present invention provides an AC motor unit composed of a plurality of modularized AC motors, and an armature winding of each of the plurality of AC motors electrically connected in parallel to each other.
  • an AC motor drive system including a motor drive device that drives an AC motor unit
  • At least one DC current detector is provided in any one of the three phases, and the in-phase cables of the two sets of AC motors are connected to the in-phase cables of the two sets of AC motors so that the magnetic fields of the DC current detectors are canceled out.
  • the cable is provided with an abnormality detection unit which is connected so that the current polarity of the cable is reversed and the detection current of the current detector becomes zero, and determines whether the detection current is larger than a predetermined value set in advance. It is a feature.
  • the DC current detector may be a DCCT having a contact output so that a protection circuit can be assembled.
  • the abnormality detection unit according to claim 1 is incorporated in a housing of the motor driving device.
  • the present invention is characterized in that an emergency stop unit for emergency stopping the AC motor system based on an output signal of the abnormality detection unit is provided.
  • the base block of the main circuit transistor of the motor driving device or the input side or the output side of the motor driving device based on the abnormality determination output signal of the abnormality detection unit or the emergency stop signal which is the output signal from the contact output circuit according to claim 1
  • the power supply is shut off by a power breaker provided in the above.
  • the AC motor is an AC linear motor.
  • the AC motor drive system according to claim 1 is applied to any one of a liquid crystal exposure stage drive system, a reticle stage drive system, and a wafer stage drive system.
  • an AC motor unit composed of a plurality of modularized AC motors, and a motor drive device that drives the AC motor unit by one unit in parallel with each armature winding of the plurality of AC motors.
  • An abnormality detection method for an AC motor drive system comprising: at least one DC current detector in any one of the three phases, wherein the in-phase cables of two sets of AC motors are connected to the magnetic field of the DC current detector. So that the current polarity of the in-phase cable of the two sets of AC motors is reversed and the detection current of the current detector becomes zero, so that the detection current is larger than a predetermined value set in advance In this case, it is determined that abnormality is detected.
  • the present invention when a plurality of AC motors (linear motors) are driven by a single motor driving device (servo driver), the power cables of the AC motors (linear motors) electrically connected in parallel are disconnected, When a ground fault occurs, those abnormalities can be easily detected, and each AC motor (linear motor) can be protected. Further, the present invention has a feature that it is possible to detect disconnection of the power cable and abnormality of ground fault before actually operating the AC motor. Therefore, the present invention can be applied to each linear motor system of a liquid crystal exposure stage driving system, a reticle stage driving system, and a wafer stage driving system that require ultra-high accuracy positioning.
  • the number of abnormality detecting DCCTs used when the number of connected AC motor modules is two or three can be reduced to one or two, respectively. Further, the present invention does not simply measure and protect the current value, but detects the current imbalance, so that the current rated capacity of the current detector can be reduced and the malfunction of the system can be prevented.
  • the figure which shows the structure of the multi-connection linear motor system to which the method of this invention is applied The figure which shows the detection circuit structure in case two linear motors apply the method of this invention.
  • the figure which shows the detection circuit structure in case three linear motors apply the method of this invention.
  • Block diagram of a detection circuit to which the method of the present invention is applied It is a figure which shows the detection circuit structure of this invention in case there are two linear motors. It is a figure which shows the detection circuit structure of this invention in case there are three linear motors.
  • FIG. 1 is a diagram showing a configuration of a multi-coupled linear motor system of the present invention.
  • reference numeral 1 denotes a servo driver which is a motor driving device for driving a linear servo motor.
  • Reference numerals 2 and 3 denote a linear motor 1 (2), which is an AC motor driven by a servo driver, and a linear motor 2 (3).
  • 5 is a magnet for a linear motor
  • 6 is a linear motor power cable.
  • 11 is a linear scale which is a position sensor for detecting the position of the moving element
  • 12 is a pole sensor for detecting the magnetic pole position of the moving element
  • 13 is a signal converted from the linear scale and the hall sensor to serial data to the servo driver 1.
  • the linear motor unit is composed of a plurality of linear motors 1, linear motors 2,.
  • the servo driver 1 is electrically connected in parallel with the armature windings of the plurality of linear motors 1, linear motors 2,..., Applies a voltage to these armature windings, and drives the linear motor.
  • the linear motor magnet 5 is arranged by connecting the magnet portions (field poles) of the plurality of linear motors 1, linear motors 2,... So as to be in line with the linear motor moving direction (hereinafter referred to as tandem type). .
  • tandem type linear motor moving direction
  • the linear motor 1, linear motor 2,... are arranged in a straight line along the direction of movement of the linear motor.
  • two different drive shafts are connected in a gate shape (linear
  • the linear motor 1 and the linear motor 2 may be arranged in parallel to the moving direction of the motor.
  • the armature winding of the linear motor is on the stator side, and the field magnet 5 is on the mover side. Since the movement range of the linear motor is limited, the armature winding of the linear motor can be on the moving element side and the field magnet 5 can be on the stator side.
  • a motor controller system having a large capacity can be constructed by electrically connecting the module sliders of a plurality of small rated capacity linear motors shown in FIG. 1 in parallel (referred to as a multi-coupled linear motor slider) and supplying power.
  • the feature of this multi-coupled linear motor moving element is that a large capacity linear motor drive system (eg, injection molding, liquid crystal exposure stage, semiconductor exposure apparatus) can be easily constructed without having a lineup of linear motors up to a large capacity.
  • FIG. 2 shows an example in which two linear motors are connected in tandem or gantry type.
  • FIG. 2 shows a state in which the power lines of the two linear motors are electrically connected in parallel from the servo driver 1.
  • Reference numeral 7 denotes a current detector.
  • a direct current detector (Direct-Current-Current Transformer, hereinafter referred to as DCCT) capable of measuring a high frequency from direct current to several tens of kilometers (Hz) is used.
  • DCCT measures the current by passing the wire to be measured through a toroidal core and detecting the strength of the magnetic field created by the wire.
  • the toroidal core is obtained by solidifying magnetic powder into a donut shape and baking it.
  • the three-phase outputs (U, V, W) of the servo driver 1 are connected to the three-phase inputs (U1, V1, W1), (U2, V2, W2) of the linear motor 1 and linear motor 2, respectively.
  • DCCT is installed in any one of the three phases, for example, the U phase.
  • the current polarities of the U1 and U2 phases are reversed so that the DCCT magnetic field is offset so that the DCCT detection current becomes zero.
  • Two arrows in the DCCT indicate that the current polarities of the U1 and U2 phases are in opposite directions.
  • the DCCT (7) used here must select a DC component that can be detected.
  • the linear motor becomes unable to move due to any external factors such as screw engagement, the current of the DC component continues to flow to the motor.
  • DCCT For 7
  • the DCCT (7) needs to be a thing that is not damaged even if the detected current has a high frequency.
  • FIG. 3 shows a configuration example in the case of three linear motors. 3 is different from FIG. 2 in that a current detector (7b) is added to the four linear motors 3 and the V phase.
  • a current detector (7b) is added to the four linear motors 3 and the V phase.
  • DCCT (7a) By passing 2 linear motors 1 and 3 through DCCT (7a) and passing 3 linear motors 2 and 4 through DCCT (7b), the same number of linear motors can be connected.
  • a detection circuit can be configured with the idea. Similar to the DCCT (7) in FIG. 2 described above, the DCCT (7b) has a current polarity of the V1 and V2 phases reversed so that the magnetic field of the DCCT (7b) is canceled out. ) So that the detected current becomes zero.
  • FIG. 4 is a block diagram of the abnormality detection circuit of the present invention.
  • 8 is an abnormality detection circuit
  • 9 is a contact output circuit
  • 10 is an emergency stop circuit.
  • the abnormality detection circuit 8 receives the output signal of the current detector 7 and determines that it is abnormal when the input signal is larger than a predetermined value set in advance.
  • This predetermined value I0 is ideally when I0> 0 (A) is satisfied, but in reality, it is slightly different due to the difference in the power cable wiring length to each moving element (movable element) and other errors. Unbalanced current is generated.
  • the predetermined value I0 is set to (rated current per moving element / 2) or less, and is set as small as possible within a range in which no malfunction occurs during normal operation.
  • a current detector 7 having a high-speed response is used.
  • the DCCT uses a DCCT having a contact output so that a protection circuit can be built in the DCCT. In this case, select one that can set the operating current range of the contact within the DCCT rated current value.
  • the contact output circuit (9) gives an emergency stop signal to the emergency stop circuit (10) based on the abnormality judgment from the abnormality detection circuit (8), and quickly protects the system.
  • an emergency stop method whether the main circuit transistor of the servo driver 1 is the base block or the input side of the servo driver (1) based on the abnormality determination output signal of the abnormality detection circuit (8) or the emergency stop signal of the contact output circuit (9).
  • the power is shut off by a power circuit breaker provided on the output side.
  • an abnormality detection unit that is an abnormality detection circuit (8) may be incorporated in the housing of the motor drive device (servo driver).
  • the predetermined value I0 is stored in a nonvolatile memory of a control unit (not shown) of the servo driver (1), which is a motor driving device, or a nonvolatile memory of a host controller of the servo driver 1.
  • the abnormality detection circuit (8) can be configured by hardware (analog circuit) that compares the analog signal of the current detector 7 and a predetermined value I0 using an operational amplifier. Alternatively, both signals can be A / D converted and compared by the servo driver 1 or the CPU of the host controller.
  • FIG. 5 is a diagram showing a detection circuit configuration (basic form) according to the present invention when there are two linear motors.
  • FIG. 5 differs from FIG. 2 in that two DCCTs are used.
  • FIG. 2 using one DCCT cannot protect against the abnormality of the DCCT itself.
  • FIG. 5 in which DCCT is used for each of the two phases can protect the abnormality of the DCCT itself and can further improve the reliability of the system as compared with FIG.
  • FIG. 6 is a diagram showing the configuration of the detection circuit of the present invention when there are three linear motors. It is a figure which shows the detection circuit structure (basic form) of this invention in case there are three linear motors. 6 is different from FIG. 3 in that four DCCTs are used. FIG. 3 using two DCCTs cannot protect against the abnormality of the DCCT itself. On the other hand, FIG. 6 using two DCCTs for two phases (using a total of four DCCTs) can protect the abnormality of the DCCT itself, and can further improve the reliability of the system than FIG.
  • the semiconductor device manufacturing process includes a lithography process in which a predetermined circuit pattern formed on a reticle is exposed and transferred onto a wafer.
  • An exposure apparatus is used for this exposure transfer.
  • a reticle and a wafer are fixed to a reticle stage and a wafer stage, respectively, and exposure and transfer are performed while driving the reticle stage and wafer stage in synchronization with a linear motor.
  • the present invention is particularly applicable to reticle stage drive systems, wafer stage drive systems, and liquid crystal exposure stage drive system linear motor systems that require ultra-high precision positioning on the order of several tens of nanometers.

Abstract

It is possible to easily detect a failure of each of AC motors electrically connected in parallel and driven by a single motor drive device. More specifically, by detecting a power cable disconnection or grounding, it is possible to protect the AC motor drive system. The AC motor drive system includes: an AC motor unit formed by a plurality of AC motors arranged into a module; and a motor drive device electrically connected in parallel to respective armature windings of the AC motors for driving the AC motor unit. The system further includes: at least one DC current detector in an arbitrary one of three phases; and a failure detection unit which connects in-phase cables of the two sets of AC motors with opposite current polarities of the in-phase cables of the two sets of the AC motors so that the magnetic field of the DC current detector is cancelled and the detection current of the current detector is zero, thereby judging whether the detection current is greater than a predetermined value.

Description

交流モータ駆動システムとその異常検出方法AC motor drive system and its abnormality detection method
 本発明は、1台のサーボドライバで複数のリニアモータなどの交流モータを制御するシステムにおいてその交流モータの動力ケーブルの断線、地絡などの異常を検出するシステムとその異常検出方法に関する。 The present invention relates to a system for detecting an abnormality such as a disconnection or a ground fault of a power cable of the AC motor in a system in which a single servo driver controls an AC motor such as a plurality of linear motors, and an abnormality detection method thereof.
 1台のリニアモータ用コイルの正常運転中の絶縁劣化診断をする技術に特公平7-28513がある(特許文献1)。
 また、特開2004-212201においては、モータ停止状態で動力ケーブルを経由してモータコイルに電流を流して地絡を検出しているものもある(特許文献2)。
 上記特許文献はいずれも、モータコイルの地絡を検出しているものであり、1台のサーボドライバで複数のリニアモータを制御するシステムにおいて動作中のモータ動力ケーブルが地絡せずに断線した場合に断線を検出することが出来ないため、断線しなかった正常なモータが故障してしまうことになる。
Japanese Patent Publication No. 7-28513 is a technique for diagnosing insulation deterioration during normal operation of one linear motor coil (Patent Document 1).
Japanese Patent Application Laid-Open No. 2004-212201 detects a ground fault by supplying a current to a motor coil via a power cable when the motor is stopped (Patent Document 2).
In all of the above patent documents, a ground fault of a motor coil is detected, and a motor power cable that is operating in a system that controls a plurality of linear motors with one servo driver is disconnected without causing a ground fault. In this case, since the disconnection cannot be detected, a normal motor that has not disconnected is broken.
 可動子のストロークが異常に長いリニアモ-タを半導体製造装置に適用する場合に、イナーシャが小さくて高速動作に適し、制御性が良く、小型化が可能なリニアモータを提供する技術に本出願人による特開2003-244929(特許文献3)がある。この技術は永久磁石を設けた可動子と、移動磁界を発生させるコイルを設けた固定子とより構成されるリニアモータである。固定子はその長手方向に向かって単位当たりの長さに分割された複数のモジュールを連結したもので構成される。モータの位置制御を行うためのサーボドライバ装置を介して上位コントローラから当該各々のモジュールに指令を送ることにより、この従来技術は可動子を連続して走行位置決めする。また、分割されたモジュールは、サーボドライバをも一体化したものである。つまり分割された複数のモジュールはリニアモータとそれを駆動するサーボドライバ(モータ駆動装置)とで構成している。
特公平7-28513号公報(日本国) 特開2004-212201号公報(日本国) 特開2003-244929号公報(日本国)
Applicant to a technology that provides a linear motor with a small inertia, suitable for high-speed operation, good controllability, and miniaturization when applying a linear motor with an unusually long mover stroke to semiconductor manufacturing equipment Japanese Patent Laid-Open No. 2003-244929 (Patent Document 3). This technique is a linear motor composed of a mover provided with a permanent magnet and a stator provided with a coil for generating a moving magnetic field. The stator is configured by connecting a plurality of modules divided in length per unit in the longitudinal direction. By sending a command from the host controller to each of the modules via a servo driver device for controlling the position of the motor, this prior art continuously moves and positions the mover. Further, the divided module is an integrated servo driver. That is, the plurality of divided modules are composed of a linear motor and a servo driver (motor driving device) that drives the linear motor.
Japanese Patent Publication No. 7-28513 (Japan) JP 2004-212201 (Japan) JP 2003-244929 A (Japan)
 従来は、1台のサーボドライバで複数のリニアモータを制御するシステムにおいてモータ動力ケーブルの断線を検出する方法が確立されていなかった。そのため、複数のリニアモータの内1台でも動力ケーブルが断線、または、モータ故障により内部の巻線コイルが断線や、地絡した時に、正常なモータに過剰な電流が流れ込み、正常なモータまでも故障していた。 Conventionally, a method for detecting disconnection of a motor power cable has not been established in a system that controls a plurality of linear motors with a single servo driver. Therefore, even when one of the multiple linear motors is disconnected, or when the internal winding coil is disconnected or grounded due to a motor failure, excessive current flows into the normal motor, and even the normal motor It was out of order.
 特許文献1は、1台のリニアモータ用コイルの正常運転中の絶縁劣化診断技術である。特許文献2は、モータを実際に作動させない状態でモータ巻線の地絡を検出する技術である。特許文献1、2はいずれも地絡を検出する技術であり、1台のサーボドライバで複数のリニアモータを制御するシステムにおいて動作中のモータ動力ケーブルが地絡せずに断線した場合の断線を検出することができなかった。 Patent Document 1 is a technique for diagnosing insulation deterioration during normal operation of one linear motor coil. Patent Document 2 is a technique for detecting a ground fault of a motor winding without actually operating a motor. Patent Documents 1 and 2 are both techniques for detecting a ground fault. In a system in which a single servo driver controls a plurality of linear motors, a disconnection when a motor power cable in operation is disconnected without a ground fault. It could not be detected.
 特許文献3はリニアモータを複数のモジュールにした点で本願発明のシステムと共通する。特許文献3は各々のリニアモータのモジュールを駆動する駆動装置であるサーボドライバをリニアモータのモジュール毎に備えている点で本願発明のシステム構成と相違する。本願発明システム構成は、モジュール化した複数のリニアモータを備えるが、それらを駆動制御する駆動装置は1台のみである。このため駆動装置自身では電気的に並列接続した複数のリニアモータの内のいずれかひとつの巻線が断線、地絡などの異常を起こした場合、リニアモータを的確に過電流から保護ができなかった。 Patent Document 3 is common to the system of the present invention in that the linear motor is made into a plurality of modules. Patent Document 3 is different from the system configuration of the present invention in that each linear motor module is provided with a servo driver which is a driving device for driving each linear motor module. The system configuration of the present invention includes a plurality of linear motors that are modularized, but there is only one driving device that drives and controls them. For this reason, the drive unit itself cannot accurately protect the linear motor from overcurrent if any one of the multiple linear motors electrically connected in parallel causes an abnormality such as disconnection or ground fault. It was.
 本発明はこのような問題点に鑑みてなされたものであり、複数の交流モータを1台のモータ駆動装置で駆動する場合、電気的に並列接続した各交流モータの動力ケーブルが断線や、地絡した場合に簡単にそれらの異常を検出し、保護できる交流モータ駆動システムとその異常検出方法を提供することを目的とする。 The present invention has been made in view of such problems. When a plurality of AC motors are driven by a single motor driving device, the power cables of the AC motors electrically connected in parallel are disconnected or grounded. It is an object of the present invention to provide an AC motor drive system that can easily detect and protect those abnormalities when they are entangled and a method for detecting the abnormality.
 上記問題点を解決するため本発明は、モジュール化した複数の交流モータから構成される交流モータ部と、前記複数の交流モータの各電機子巻線と電気的に並列接続して1台で前記交流モータ部を駆動するモータ駆動装置とを備えた交流モータ駆動システムにおいて、
 3相のうちの任意の1相に少なくとも1つの直流電流検出器を備え、二組の交流モータの同相ケーブルを前記直流電流検出器の磁界が相殺されるように前記二組の交流モータの同相ケーブルの電流極性を逆方向にして電流検出器の検出電流が零となるように接続し、前記検出電流が予め設定した所定値よりも大きいか否かを判定する異常検出部を備えたことを特徴とするものである。
In order to solve the above-described problems, the present invention provides an AC motor unit composed of a plurality of modularized AC motors, and an armature winding of each of the plurality of AC motors electrically connected in parallel to each other. In an AC motor drive system including a motor drive device that drives an AC motor unit,
At least one DC current detector is provided in any one of the three phases, and the in-phase cables of the two sets of AC motors are connected to the in-phase cables of the two sets of AC motors so that the magnetic fields of the DC current detectors are canceled out. The cable is provided with an abnormality detection unit which is connected so that the current polarity of the cable is reversed and the detection current of the current detector becomes zero, and determines whether the detection current is larger than a predetermined value set in advance. It is a feature.
 また請求項1において前記直流電流検出器は保護回路を組めるように接点出力を備えたDCCTであることを特徴とするものである。
 また請求項1において前記異常検出部を前記モータ駆動装置の筐体内に内蔵したことを特徴とするものである。
 また請求項1において前記異常検出部の出力信号に基づいて前記交流モータシステムを非常停止する非常停止部を備えることを特徴とするものである。
 また請求項1において異常検出部の異常判定出力信号又は接点出力回路からの出力信号である非常停止信号に基づき前記モータ駆動装置の主回路トランジスタのベースブロック又は前記モータ駆動装置の入力側か出力側に設けた電源遮断器により電源を遮断することを特徴とするものである。
 また請求項1において前記交流モータは交流リニアモータであることを特徴とするものである。
 また請求項1において前記交流モータ駆動システムを液晶露光ステージ駆動システム、レチクルステージ駆動システム、ウエハステージ駆動システムのいずれかに適用することを特徴とするものである。
The DC current detector may be a DCCT having a contact output so that a protection circuit can be assembled.
In addition, the abnormality detection unit according to claim 1 is incorporated in a housing of the motor driving device.
Further, the present invention is characterized in that an emergency stop unit for emergency stopping the AC motor system based on an output signal of the abnormality detection unit is provided.
In addition, the base block of the main circuit transistor of the motor driving device or the input side or the output side of the motor driving device based on the abnormality determination output signal of the abnormality detection unit or the emergency stop signal which is the output signal from the contact output circuit according to claim 1 The power supply is shut off by a power breaker provided in the above.
Further, in the present invention, the AC motor is an AC linear motor.
The AC motor drive system according to claim 1 is applied to any one of a liquid crystal exposure stage drive system, a reticle stage drive system, and a wafer stage drive system.
 また、モジュール化した複数の交流モータから構成される交流モータ部と、前記複数の交流モータの各電機子巻線と電気的に並列接続して1台で前記交流モータ部を駆動するモータ駆動装置とを備えた交流モータ駆動システムの異常検出方法において、3相のうちの任意の1相に少なくとも1つの直流電流検出器を備え、二組の交流モータの同相ケーブルを前記直流電流検出器の磁界が相殺されるように前記二組の交流モータの同相ケーブルの電流極性を逆方向にして電流検出器の検出電流が零となるように接続し、前記検出電流が予め設定した所定値よりも大きい場合に異常検出と判定することを特徴とするものである。 Also, an AC motor unit composed of a plurality of modularized AC motors, and a motor drive device that drives the AC motor unit by one unit in parallel with each armature winding of the plurality of AC motors. An abnormality detection method for an AC motor drive system comprising: at least one DC current detector in any one of the three phases, wherein the in-phase cables of two sets of AC motors are connected to the magnetic field of the DC current detector. So that the current polarity of the in-phase cable of the two sets of AC motors is reversed and the detection current of the current detector becomes zero, so that the detection current is larger than a predetermined value set in advance In this case, it is determined that abnormality is detected.
 本発明によれば、複数の交流モータ(リニアモータ)を1台のモータ駆動装置(サーボドライバ)で駆動する場合、電気的に並列接続した各交流モータ(リニアモータ)の動力ケーブルが断線や、地絡した場合に簡単にそれらの異常を検出し、各交流モータ(リニアモータ)を保護することができる。
 また本発明は交流モータを実運転する前にその動力ケーブルの断線や、地絡の異常を検出できる特徴がある。したがって、超高精度位置決めを求められる液晶露光ステージ駆動システム、レチクルステージ駆動系及びウエハステージ駆動系の各リニアモータシステムに適用することができる。
 また本発明は連結する交流モータのモジュール数が2台、3台の場合に用いる異常検出用のDCCTの数を各々1台、2台と少なくすることができる。
 また本発明は単に電流値を測定して保護するのではなく、電流のアンバランスを検知するので電流検出器の電流定格容量を小さくできシステムの誤作動を防止することができる。
According to the present invention, when a plurality of AC motors (linear motors) are driven by a single motor driving device (servo driver), the power cables of the AC motors (linear motors) electrically connected in parallel are disconnected, When a ground fault occurs, those abnormalities can be easily detected, and each AC motor (linear motor) can be protected.
Further, the present invention has a feature that it is possible to detect disconnection of the power cable and abnormality of ground fault before actually operating the AC motor. Therefore, the present invention can be applied to each linear motor system of a liquid crystal exposure stage driving system, a reticle stage driving system, and a wafer stage driving system that require ultra-high accuracy positioning.
Further, according to the present invention, the number of abnormality detecting DCCTs used when the number of connected AC motor modules is two or three can be reduced to one or two, respectively.
Further, the present invention does not simply measure and protect the current value, but detects the current imbalance, so that the current rated capacity of the current detector can be reduced and the malfunction of the system can be prevented.
本発明の方法を適用する多連結リニアモータシステムの構成を示す図The figure which shows the structure of the multi-connection linear motor system to which the method of this invention is applied. 本発明の方法を適用するリニアモータが2台の場合の検出回路構成を示す図The figure which shows the detection circuit structure in case two linear motors apply the method of this invention. 本発明の方法を適用するリニアモータが3台の場合の検出回路構成を示す図The figure which shows the detection circuit structure in case three linear motors apply the method of this invention. 本発明の方法を適用する検出回路のブロック図Block diagram of a detection circuit to which the method of the present invention is applied リニアモータが2台の場合の本発明の検出回路構成を示す図である。It is a figure which shows the detection circuit structure of this invention in case there are two linear motors. リニアモータが3台の場合の本発明の検出回路構成を示す図である。It is a figure which shows the detection circuit structure of this invention in case there are three linear motors.
符号の説明Explanation of symbols
1 サーボドライバ(モータ駆動装置)
2 リニアモータ1(交流モータ)
3 リニアモータ2(交流モータ)
4 リニアモータ3(交流モータ)
5 マグネット
6 モータ動力ケーブル
7、7a、7b、7c、7d 電流検出器(DCCT)
8 異常検出回路
9 接点出力回路
10 非常停止回路
11 リニアスケール
12 ポールセンサ
13 シリアルコンバータ
1 Servo driver (motor drive device)
2 Linear motor 1 (AC motor)
3 Linear motor 2 (AC motor)
4 Linear motor 3 (AC motor)
5 Magnet 6 Motor power cable 7, 7a, 7b, 7c, 7d Current detector (DCCT)
8 Abnormality detection circuit 9 Contact output circuit 10 Emergency stop circuit 11 Linear scale 12 Pole sensor 13 Serial converter
 以下、本発明の方法の具体的実施例について、図に基づいて説明する。 Hereinafter, specific examples of the method of the present invention will be described with reference to the drawings.
 図1は、本発明の多連結リニアモータシステムの構成を示す図である。図において1はリニアサーボモータを駆動するためのモータ駆動装置であるサーボドライバである。2、3は各々サーボドライバで駆動される交流モータであるリニアモータ1(2)、同じくリニアモータ2(3)である。5はリニアモータ用のマグネット、6はリニアモータ動力ケーブルである。11は移動子の位置を検出する位置センサであるリニアスケール、12は移動子の磁極位置を検出するポールセンサ、13はリニアスケールとホールセンサからの信号をシリアルデータに変換してサーボドライバ1へ出力するシリアルコンバータである。
 リニアモータ部はモジュール化した複数のリニアモータ1、リニアモータ2、・・・から構成される。サーボドライバ1は、複数のリニアモータ1、リニアモータ2、・・・の電機子巻線と電気的に並列接続され、これら電機子巻線へ電圧を印加し、リニアモータを駆動する。リニアモータ用マグネット5は複数のリニアモータ1、リニアモータ2、・・・の各マグネット部分(界磁極)をリニアモータの移動方向と一直線上になるように連結し配置する(以下タンデムタイプという)。このように所定の定格トルク、定格電力を備えたモジュールを連結配置することで定格トルク、定格電力の大きなリニアモータを構成する。図1ではリニアモータ1、リニアモータ2・・・をリニアモータの移動方向と沿うように一直線上に配置しているが、ガントリータイプのように駆動軸を異なる2軸を門形に連結(リニアモータの移動方向に対して平行にリニアモータ1、リニアモータ2を配置する)して駆動しても良い。通常はリニアモータの電機子巻線を固定子側とし、界磁用のマグネット5を移動子側とする。リニアモータは移動範囲が限定されているため、通常とは逆にリニアモータの電機子巻線を移動子側とし、界磁用のマグネット5を固定子側とすることもできる。
FIG. 1 is a diagram showing a configuration of a multi-coupled linear motor system of the present invention. In the figure, reference numeral 1 denotes a servo driver which is a motor driving device for driving a linear servo motor. Reference numerals 2 and 3 denote a linear motor 1 (2), which is an AC motor driven by a servo driver, and a linear motor 2 (3). 5 is a magnet for a linear motor, and 6 is a linear motor power cable. 11 is a linear scale which is a position sensor for detecting the position of the moving element, 12 is a pole sensor for detecting the magnetic pole position of the moving element, and 13 is a signal converted from the linear scale and the hall sensor to serial data to the servo driver 1. It is a serial converter that outputs.
The linear motor unit is composed of a plurality of linear motors 1, linear motors 2,. The servo driver 1 is electrically connected in parallel with the armature windings of the plurality of linear motors 1, linear motors 2,..., Applies a voltage to these armature windings, and drives the linear motor. The linear motor magnet 5 is arranged by connecting the magnet portions (field poles) of the plurality of linear motors 1, linear motors 2,... So as to be in line with the linear motor moving direction (hereinafter referred to as tandem type). . In this way, a linear motor having a large rated torque and rated power is configured by connecting and arranging modules having predetermined rated torque and rated power. In FIG. 1, the linear motor 1, linear motor 2,... Are arranged in a straight line along the direction of movement of the linear motor. However, like the gantry type, two different drive shafts are connected in a gate shape (linear The linear motor 1 and the linear motor 2 may be arranged in parallel to the moving direction of the motor. Normally, the armature winding of the linear motor is on the stator side, and the field magnet 5 is on the mover side. Since the movement range of the linear motor is limited, the armature winding of the linear motor can be on the moving element side and the field magnet 5 can be on the stator side.
 図1に示す複数の小定格容量のリニアモータのモジュール移動子を電気的に並列に接続し(多連結リニアモータ移動子という)、給電することで容量の大きなモータ制御装置システムを構築できる。この多連結リニアモータ移動子の特徴は大きな容量までリニアモータのラインナップを持たずに簡単に大容量リニアモータ駆動システム(例:射出成型、液晶露光ステージ、半導体露光装置)を構築できる点である。 A motor controller system having a large capacity can be constructed by electrically connecting the module sliders of a plurality of small rated capacity linear motors shown in FIG. 1 in parallel (referred to as a multi-coupled linear motor slider) and supplying power. The feature of this multi-coupled linear motor moving element is that a large capacity linear motor drive system (eg, injection molding, liquid crystal exposure stage, semiconductor exposure apparatus) can be easily constructed without having a lineup of linear motors up to a large capacity.
 図2はリニアモータ2台がタンデムタイプ又はガントリータイプで連結している例である。図2では2台のリニアモータの動力線がサーボドライバ1から電気的に互いに並列に接続されている様子を示している。7は電流検出器である。この電流検出器としては直流から数十キロ(Hz)までの高周波を測定できる直流電流検出器(Direct Current Current Transformer以下DCCTという)を用いる。DCCTは測定する電線をトロイダルコア(Troidal Core)中に通し、その電線が作る磁界の強さを検出して電流を測定するものである。ここでトロイダルコアとは磁性体の粉をドーナツ状に固めて、焼いて固めたものです。このため電流を電気的に非接触で検出できる特徴がある。サーボドライバ1の三相出力(U、V、W)が各々リニアモータ1、リニアモータ2の三相入力(U1、V1、W1)、(U2、V2、W2)へ各々接続される。その際3相のうちの任意の1相、例えばU相にDCCTを設置する。この場合DCCTの磁界が相殺されるようにU1とU2相の電流極性を逆方向にしてDCCTの検出電流が零となるようにする。DCCT中の二つの矢印はU1とU2相の電流極性が逆方向であることを示している。 Fig. 2 shows an example in which two linear motors are connected in tandem or gantry type. FIG. 2 shows a state in which the power lines of the two linear motors are electrically connected in parallel from the servo driver 1. Reference numeral 7 denotes a current detector. As this current detector, a direct current detector (Direct-Current-Current Transformer, hereinafter referred to as DCCT) capable of measuring a high frequency from direct current to several tens of kilometers (Hz) is used. DCCT measures the current by passing the wire to be measured through a toroidal core and detecting the strength of the magnetic field created by the wire. Here, the toroidal core is obtained by solidifying magnetic powder into a donut shape and baking it. For this reason, there exists the characteristic which can detect an electric current non-contactingly. The three-phase outputs (U, V, W) of the servo driver 1 are connected to the three-phase inputs (U1, V1, W1), (U2, V2, W2) of the linear motor 1 and linear motor 2, respectively. At that time, DCCT is installed in any one of the three phases, for example, the U phase. In this case, the current polarities of the U1 and U2 phases are reversed so that the DCCT magnetic field is offset so that the DCCT detection current becomes zero. Two arrows in the DCCT indicate that the current polarities of the U1 and U2 phases are in opposite directions.
 交流モータであるリニアモータ1(2)と、リニアモータ2(3)の動力ケーブルの同相を互い違いの向きに7のDCCTに通す事で、正常時は検出電流がゼロとなっているが、ケーブル断線時には片側ケーブルにだけ電流が流れる為7のDCCTで電流が検出される。電流が検出されたことでケーブル断線または、地絡と判断し、図4の断線検出ブロック図によって多連結リニアモータシステムのサーボドライバへの駆動電源を遮断する非常停止回路を操作することで正常なモータに過剰な電流が流れてモータが故障してしまうことを保護することが可能となる。 By passing the same phase of the power cables of the linear motor 1 (2) and linear motor 2 (3), which are AC motors, through the DCCT of 7 in a staggered direction, the detected current is zero when normal. At the time of disconnection, current flows only through one cable, so that current is detected by DCCT of 7. It is normal to operate the emergency stop circuit that shuts off the drive power to the servo driver of the multi-coupled linear motor system according to the disconnection detection block diagram of FIG. It is possible to protect the motor from malfunctioning due to excessive current flowing through the motor.
 ここで使用しているDCCT(7)は、直流成分の検出が可能なものを選定する必要がある。リニアモータがネジのかみこみ等、何らかの外部要因で動けなくなった時には、モータへは直流成分の電流が流れつづける為、このようなケースに於いても正常に検出回路を動作させる為には、DCCT(7)は、直流成分の検出が可能なものを選定する必要がある。また、リニアサーボモータへの適用のため、DCCT(7)は、検出電流が高周波数であっても破損しない物である必要がある。 The DCCT (7) used here must select a DC component that can be detected. When the linear motor becomes unable to move due to any external factors such as screw engagement, the current of the DC component continues to flow to the motor. In this case, in order to operate the detection circuit normally, DCCT ( For 7), it is necessary to select one capable of detecting a DC component. Further, for application to a linear servo motor, the DCCT (7) needs to be a thing that is not damaged even if the detected current has a high frequency.
 図3は、リニアモータが3台の場合の構成例である。図3が図2と異なる部分は、4のリニアモータ3とV相に電流検出器(7b)を追加した部分である。2のリニアモータ1と、3のリニアモータ2をDCCT(7a)に通し、3のリニアモータ2と4のリニアモータ3をDCCT(7b)に通す事で、リニアモータが何台つながっても同じ考えで検出回路を構成することが出来る。DCCT(7b)への電線の取付け方は上述の図2のDCCT(7)と同様にDCCT(7b)の磁界が相殺されるようにV1とV2相の電流極性を逆方向にしてDCCT(7b)の検出電流が零となるようにする。
 DCCTに通している動力ケーブルが2本とも同時に断線した場合には、サーボドライバ1から出力される1相が断線したことと等価になるため、サーボドライバ1の方で図4に示す異常検出回路(8)が動作する。
 また、ACリニアモータの3相電源の内、1相だけの電流を比較しておけば、電流検出器を設けていない他の相が断線した場合でも、アンバランス電流が電流検出器を設けた相へ流れるため上述した場合と同様に異常(断線、地絡)を検出できる。
FIG. 3 shows a configuration example in the case of three linear motors. 3 is different from FIG. 2 in that a current detector (7b) is added to the four linear motors 3 and the V phase. By passing 2 linear motors 1 and 3 through DCCT (7a) and passing 3 linear motors 2 and 4 through DCCT (7b), the same number of linear motors can be connected. A detection circuit can be configured with the idea. Similar to the DCCT (7) in FIG. 2 described above, the DCCT (7b) has a current polarity of the V1 and V2 phases reversed so that the magnetic field of the DCCT (7b) is canceled out. ) So that the detected current becomes zero.
If both of the power cables passing through the DCCT are disconnected at the same time, this is equivalent to the disconnection of one phase output from the servo driver 1, so that the abnormality detection circuit shown in FIG. (8) operates.
Moreover, if the current of only one phase is compared among the three-phase power supply of the AC linear motor, the unbalanced current is provided with the current detector even if the other phase without the current detector is disconnected. Since it flows to the phase, an abnormality (disconnection, ground fault) can be detected as in the case described above.
 図4は、本発明の異常検出回路の構成図である。図において、8は異常検出回路、9は接点出力回路、10は非常停止回路である。異常検出回路8は電流検出器7の出力信号を入力しその入力信号が事前に設定した所定値より大きい場合は異常と判定する。この所定値I0は理想的にはI0>0(A)を満たす場合であるが、実際的には各移動子(可動子)への動力ケーブル配線長の違いや、その他の誤差分により、僅かなアンバランス電流が生じる。この点を考慮に入れ所定値I0は(各移動子1個当たりの定格電流/2)以下とし、正常時に誤動作しない範囲でできる限り小さな値に設定する。電流検出器7は高速応答のものを用いる。各リニアモータの電機子巻線を過電流から保護するために、DCCTはDCCTに保護回路を組めるように接点出力を備えたDCCTを用いる。この場合DCCTの定格電流値内で、接点の動作電流範囲を設定できるものを選定する。 FIG. 4 is a block diagram of the abnormality detection circuit of the present invention. In the figure, 8 is an abnormality detection circuit, 9 is a contact output circuit, and 10 is an emergency stop circuit. The abnormality detection circuit 8 receives the output signal of the current detector 7 and determines that it is abnormal when the input signal is larger than a predetermined value set in advance. This predetermined value I0 is ideally when I0> 0 (A) is satisfied, but in reality, it is slightly different due to the difference in the power cable wiring length to each moving element (movable element) and other errors. Unbalanced current is generated. In consideration of this point, the predetermined value I0 is set to (rated current per moving element / 2) or less, and is set as small as possible within a range in which no malfunction occurs during normal operation. A current detector 7 having a high-speed response is used. In order to protect the armature winding of each linear motor from overcurrent, the DCCT uses a DCCT having a contact output so that a protection circuit can be built in the DCCT. In this case, select one that can set the operating current range of the contact within the DCCT rated current value.
 接点出力回路(9)は異常検出回路(8)からの異常判定に基づいて非常停止回路(10)に非常停止信号を与え、速やかにシステムを保護する。非常停止方法としては異常検出回路(8)の異常判定出力信号又は接点出力回路(9)の非常停止信号に基づきサーボドライバ1の主回路トランジスタをベースブロック、あるいはサーボドライバ(1)の入力側か出力側に設けた電源遮断器により電源を遮断する。また異常検出回路(8)である異常検出部をモータ駆動装置(サーボドライバ)の筐体内に内蔵してもよい。所定値I0はモータ駆動装置であるサーボドライバ(1)の図示しない制御部の不揮発メモリまたはサーボドライバ1の上位制御装置の不揮発メモリへ記憶する。異常検出回路(8)は電流検出器7のアナログ信号と所定値I0を使用してオペアンプで両者を比較するハードウェア(アナログ回路)で構成することができる。あるいは両信号をA/D変換してサーボドライバ1または上位制御装置のCPUで比較処理することもできる。 The contact output circuit (9) gives an emergency stop signal to the emergency stop circuit (10) based on the abnormality judgment from the abnormality detection circuit (8), and quickly protects the system. As an emergency stop method, whether the main circuit transistor of the servo driver 1 is the base block or the input side of the servo driver (1) based on the abnormality determination output signal of the abnormality detection circuit (8) or the emergency stop signal of the contact output circuit (9). The power is shut off by a power circuit breaker provided on the output side. In addition, an abnormality detection unit that is an abnormality detection circuit (8) may be incorporated in the housing of the motor drive device (servo driver). The predetermined value I0 is stored in a nonvolatile memory of a control unit (not shown) of the servo driver (1), which is a motor driving device, or a nonvolatile memory of a host controller of the servo driver 1. The abnormality detection circuit (8) can be configured by hardware (analog circuit) that compares the analog signal of the current detector 7 and a predetermined value I0 using an operational amplifier. Alternatively, both signals can be A / D converted and compared by the servo driver 1 or the CPU of the host controller.
 図5は、リニアモータが2台の場合の本発明の検出回路構成(基本形)を示す図である。図5が図2と異なる部分はDCCTを2台使用する点である。DCCTを1台用いる図2はDCCT自身の異常に対する保護ができない。これに対し、2相に各々DCCTを用いる図5はDCCT自身の異常保護ができ、図2よりもシステムの信頼性をより高めることができる。 FIG. 5 is a diagram showing a detection circuit configuration (basic form) according to the present invention when there are two linear motors. FIG. 5 differs from FIG. 2 in that two DCCTs are used. FIG. 2 using one DCCT cannot protect against the abnormality of the DCCT itself. On the other hand, FIG. 5 in which DCCT is used for each of the two phases can protect the abnormality of the DCCT itself and can further improve the reliability of the system as compared with FIG.
 図6は、リニアモータが3台の場合の本発明の検出回路構成を示す図である。リニアモータが3台の場合の本発明の検出回路構成(基本形)を示す図である。図6が図3と異なる部分はDCCTを4台使用する点である。DCCTを2台用いる図3はDCCT自身の異常に対する保護ができない。これに対し、2相に各々DCCTを2台(合計DCCT4台使用)用いる図6はDCCT自身の異常保護ができ、図3よりもシステムの信頼性をより高めることができる。 FIG. 6 is a diagram showing the configuration of the detection circuit of the present invention when there are three linear motors. It is a figure which shows the detection circuit structure (basic form) of this invention in case there are three linear motors. 6 is different from FIG. 3 in that four DCCTs are used. FIG. 3 using two DCCTs cannot protect against the abnormality of the DCCT itself. On the other hand, FIG. 6 using two DCCTs for two phases (using a total of four DCCTs) can protect the abnormality of the DCCT itself, and can further improve the reliability of the system than FIG.
 半導体デバイスの製造工程においては、レチクル上に形成された所定の回路パターンをウエハに露光転写するリソグラフィ工程が含まれる。この露光転写には露光装置が使用される。露光装置においては、レチクルとウエハをそれぞれレチクルステージ、ウエハステージに固定し、これらレチクルステージ、ウエハステージをリニアモータにより同期して駆動しながら、露光転写を行うことが行われている。本発明は特に数十ナノミクロンオーダーの超高精度位置決めを求められるレチクルステージ駆動系及びウエハステージ駆動系や液晶露光ステージ駆動系の各リニアモータシステムに適用することができる。 The semiconductor device manufacturing process includes a lithography process in which a predetermined circuit pattern formed on a reticle is exposed and transferred onto a wafer. An exposure apparatus is used for this exposure transfer. In an exposure apparatus, a reticle and a wafer are fixed to a reticle stage and a wafer stage, respectively, and exposure and transfer are performed while driving the reticle stage and wafer stage in synchronization with a linear motor. The present invention is particularly applicable to reticle stage drive systems, wafer stage drive systems, and liquid crystal exposure stage drive system linear motor systems that require ultra-high precision positioning on the order of several tens of nanometers.

Claims (8)

  1.  モジュール化した複数の交流モータから構成される交流モータ部と、前記複数の交流モータの各電機子巻線と電気的に並列接続して1台で前記交流モータ部を駆動するモータ駆動装置とを備えた交流モータ駆動システムにおいて、
     3相のうちの任意の1相に少なくとも1つの直流電流検出器を備え、二組の交流モータの同相ケーブルを前記直流電流検出器の磁界が相殺されるように前記二組の交流モータの同相ケーブルの電流極性を逆方向にして電流検出器の検出電流が零となるように接続し、
     前記検出電流が予め設定した所定値よりも大きいか否かを判定する異常検出部を備えたことを特徴とする交流モータ駆動システム。
    An AC motor unit including a plurality of modularized AC motors, and a motor driving device that electrically connects the armature windings of the plurality of AC motors in parallel and drives the AC motor unit by one unit. In the provided AC motor drive system,
    At least one DC current detector is provided in any one of the three phases, and the in-phase cables of the two sets of AC motors are connected to the in-phase cables of the two sets of AC motors so that the magnetic fields of the DC current detectors are canceled out. Connect the current polarity of the cable in the reverse direction so that the detection current of the current detector becomes zero,
    An AC motor drive system comprising an abnormality detection unit for determining whether or not the detected current is larger than a predetermined value set in advance.
  2.  前記直流電流検出器は保護回路を組めるように接点出力を備えたDCCTであることを特徴とする請求項1記載の交流モータ駆動システム。 2. The AC motor drive system according to claim 1, wherein the DC current detector is a DCCT having a contact output so that a protection circuit can be assembled.
  3.  前記異常検出部を前記モータ駆動装置の筐体内に内蔵したことを特徴とする請求項1記載の交流モータ駆動システム。 The AC motor drive system according to claim 1, wherein the abnormality detection unit is built in a housing of the motor drive device.
  4.  前記異常検出部の出力信号に基づいて前記交流モータシステムを非常停止する非常停止部を備えることを特徴とする請求項1記載の交流モータ駆動システム。 The AC motor drive system according to claim 1, further comprising an emergency stop unit that performs an emergency stop on the AC motor system based on an output signal of the abnormality detection unit.
  5.  異常検出部の異常判定出力信号又は接点出力回路からの出力信号である非常停止信号に基づき前記モータ駆動装置の主回路トランジスタのベースブロック又は前記モータ駆動装置の入力側か出力側に設けた電源遮断器により電源を遮断することを特徴とする請求項1記載の交流モータ駆動システム。 Based on the abnormality determination output signal of the abnormality detection unit or the emergency stop signal which is the output signal from the contact output circuit, the power block provided on the base block of the main circuit transistor of the motor driving device or on the input side or output side of the motor driving device The AC motor drive system according to claim 1, wherein the power source is shut off by a device.
  6.  前記交流モータは交流リニアモータであることを特徴とする請求項1記載の交流モータ駆動システム。 2. The AC motor drive system according to claim 1, wherein the AC motor is an AC linear motor.
  7.  前記交流モータ駆動システムを液晶露光ステージ駆動システム、レチクルステージ駆動システム、ウエハステージ駆動システムのいずれかに適用することを特徴とする請求項1記載の交流モータ駆動システム。 2. The AC motor drive system according to claim 1, wherein the AC motor drive system is applied to any one of a liquid crystal exposure stage drive system, a reticle stage drive system, and a wafer stage drive system.
  8.  モジュール化した複数の交流モータから構成される交流モータ部と、前記複数の交流モータの各電機子巻線と電気的に並列接続して1台で前記交流モータ部を駆動するモータ駆動装置とを備えた交流モータ駆動システムの異常検出方法において、
     3相のうちの任意の1相に少なくとも1つの直流電流検出器を備え、二組の交流モータの同相ケーブルを前記直流電流検出器の磁界が相殺されるように前記二組の交流モータの同相ケーブルの電流極性を逆方向にして電流検出器の検出電流が零となるように接続し、
     前記検出電流が予め設定した所定値よりも大きい場合に異常検出と判定することを特徴とする交流モータ駆動システムの異常検出方法。
    An AC motor unit including a plurality of modularized AC motors, and a motor driving device that electrically connects the armature windings of the plurality of AC motors in parallel and drives the AC motor unit by one unit. In the AC motor drive system abnormality detection method provided,
    At least one DC current detector is provided in any one of the three phases, and the in-phase cables of the two sets of AC motors are connected to the in-phase cables of the two sets of AC motors so that the magnetic fields of the DC current detectors are canceled out. Connect the current polarity of the cable in the reverse direction so that the detection current of the current detector becomes zero,
    An abnormality detection method for an AC motor drive system, wherein an abnormality detection is determined when the detected current is larger than a predetermined value set in advance.
PCT/JP2008/073600 2008-01-10 2008-12-25 Ac motor drive system and method for detecting failure of the system WO2009087915A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009548887A JPWO2009087915A1 (en) 2008-01-10 2008-12-25 AC motor drive system and its abnormality detection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-002893 2008-01-10
JP2008002893 2008-01-10

Publications (1)

Publication Number Publication Date
WO2009087915A1 true WO2009087915A1 (en) 2009-07-16

Family

ID=40853039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/073600 WO2009087915A1 (en) 2008-01-10 2008-12-25 Ac motor drive system and method for detecting failure of the system

Country Status (2)

Country Link
JP (1) JPWO2009087915A1 (en)
WO (1) WO2009087915A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011072062A (en) * 2009-09-24 2011-04-07 Kamimura Kogyo:Kk Method and device for detecting failure in two or more bldc three-phase dc motors using single inverter
JP6652691B1 (en) * 2019-06-07 2020-02-26 U−Mhiプラテック株式会社 Motor drive

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586096A (en) * 1981-07-01 1983-01-13 Mitsubishi Electric Corp Controller for dc motor
JPH0654440A (en) * 1992-07-27 1994-02-25 Yashima Denki Co Ltd Device for detecting abnormality of rotary machine
JP2000166294A (en) * 1998-11-25 2000-06-16 Topre Corp Group operation control method and system of synchronous motor
JP2004024877A (en) * 2002-06-24 2004-01-29 Sunstar Precision Co Ltd Embroidery frame drive unit
JP2005176571A (en) * 2003-12-15 2005-06-30 Mitsubishi Electric Corp Electric car controlling device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586096A (en) * 1981-07-01 1983-01-13 Mitsubishi Electric Corp Controller for dc motor
JPH0654440A (en) * 1992-07-27 1994-02-25 Yashima Denki Co Ltd Device for detecting abnormality of rotary machine
JP2000166294A (en) * 1998-11-25 2000-06-16 Topre Corp Group operation control method and system of synchronous motor
JP2004024877A (en) * 2002-06-24 2004-01-29 Sunstar Precision Co Ltd Embroidery frame drive unit
JP2005176571A (en) * 2003-12-15 2005-06-30 Mitsubishi Electric Corp Electric car controlling device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011072062A (en) * 2009-09-24 2011-04-07 Kamimura Kogyo:Kk Method and device for detecting failure in two or more bldc three-phase dc motors using single inverter
JP6652691B1 (en) * 2019-06-07 2020-02-26 U−Mhiプラテック株式会社 Motor drive
CN112352376A (en) * 2019-06-07 2021-02-09 宇菱塑胶科技有限公司 Motor driving device
CN112352376B (en) * 2019-06-07 2021-09-07 宇菱塑胶科技有限公司 Motor driving device
US11271512B2 (en) 2019-06-07 2022-03-08 U-Mhi Platech Co., Ltd. Motor driving device

Also Published As

Publication number Publication date
JPWO2009087915A1 (en) 2011-05-26

Similar Documents

Publication Publication Date Title
JP4696146B2 (en) Disconnection detection method and power conversion device
US8610452B2 (en) Apparatus and method for diagnosing permanent magnet demagnetization of permanent magnet synchronous motor, and apparatus for driving permanent magnet synchronous motor
CN107148521B (en) The fault-tolerant drive system of magnetic bearing
JP5205267B2 (en) Power branch system and power branch method
KR102066364B1 (en) Power converter and electric power steering
JP2010539877A (en) Method and system for bypassing power element of power supply
JP6494860B2 (en) Three-phase duplex motor device for electric power steering device
JP2006158182A (en) Motor drive system
KR20180008790A (en) Power conversion device and motor drive device
JP2010504731A (en) Anomaly detection by evaluating the amount of magnetic field orientation control
JP2010263712A (en) Motor drive and motor drive system
JP6758998B2 (en) Electric motor device
US8994308B2 (en) Method and apparatus for improving output of a multi-winding motor
WO2009087915A1 (en) Ac motor drive system and method for detecting failure of the system
US6573672B2 (en) Fail passive servo controller
KR101665890B1 (en) Apparatus for sensing disorder of 3-phase motor
KR20060118669A (en) Linear motor of delivery system
CN110771015A (en) Electrical machine with integrated power electronics
Habetler et al. Current-based condition monitoring and fault tolerant operation for electric machines in automotive applications
WO2008117345A1 (en) Linear motor and its control method
EP1454198B1 (en) Fail passive servo controller
WO2019054089A1 (en) Motor drive device, motor, and electric power steering device
JP2003284388A (en) Motor drive unit, stage device, and aligner using such
US8957621B2 (en) Actuator having a multiphase motor, and a method of controlling such an actuator
JP2005083898A (en) Motor inspection device and motor inspection system using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08869522

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009548887

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08869522

Country of ref document: EP

Kind code of ref document: A1