WO2009087753A1 - Electrophoretic device and method for alignment - Google Patents

Electrophoretic device and method for alignment Download PDF

Info

Publication number
WO2009087753A1
WO2009087753A1 PCT/JP2008/050023 JP2008050023W WO2009087753A1 WO 2009087753 A1 WO2009087753 A1 WO 2009087753A1 JP 2008050023 W JP2008050023 W JP 2008050023W WO 2009087753 A1 WO2009087753 A1 WO 2009087753A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
excitation light
light
substrate
detection
Prior art date
Application number
PCT/JP2008/050023
Other languages
French (fr)
Japanese (ja)
Inventor
Rintaro Yamamoto
Hiroyuki Matsumoto
Hikaru Shibata
Original Assignee
Shimadzu Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corporation filed Critical Shimadzu Corporation
Priority to PCT/JP2008/050023 priority Critical patent/WO2009087753A1/en
Publication of WO2009087753A1 publication Critical patent/WO2009087753A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44717Arrangements for investigating the separated zones, e.g. localising zones
    • G01N27/44721Arrangements for investigating the separated zones, e.g. localising zones by optical means

Definitions

  • the present invention relates to an electrophoresis apparatus capable of automatically adjusting the position of the optical axis of a detection optical system, and a method for aligning the optical system with respect to the flow path of the electrophoresis apparatus.
  • Electrophoresis devices have been developed that perform chemical analysis and chemical synthesis by forming microchannels on a substrate such as glass by microelectromechanical system (MEMS) technology.
  • MEMS microelectromechanical system
  • molecules to be analyzed are labeled with a fluorescent dye for detection.
  • the fluorescently labeled molecules are separated in the flow path by electrophoresis, and are identified by detecting the excited fluorescence with a detection optical system.
  • Electrophoresis in a minute channel can reduce the amount of sample and reagent used, and enables high-speed and highly efficient chemical reaction and chemical analysis. However, since the amount of analysis is very small, a highly sensitive detection method is required. Therefore, it is important to align the excitation light of the detection optical system.
  • the condensing diameter of the LED is as large as about 400 ⁇ m, assuming that the width of the electrophoresis channel is about 100 ⁇ m. What is necessary is just to make it a flow path fit in the condensing diameter of LED, when aligning excitation light to a flow path. Therefore, if the flow path is produced with a processing position accuracy within about ⁇ 100 ⁇ m from the substrate end face of the electrophoresis apparatus, the flow path can be arranged within the condensing diameter of the LED.
  • an electrophoresis apparatus used for a sequencer that determines the sequence of deoxyribonucleic acid (DNA) or the like
  • a very small amount of fluorescent dye is added to a sample, and thus a high-power excitation light source is required. It is required to use the output of excitation light effectively by using a laser diode (LD) as an excitation light source and condensing it.
  • LD laser diode
  • the condensing diameter of the excitation light from the LD is about 30 ⁇ m to about 50 ⁇ m, it is necessary to irradiate the condensed excitation light into the channel having a width of about 100 ⁇ m.
  • the present invention provides an electrophoresis apparatus capable of aligning excitation light with high accuracy with respect to a flow path, and an optical system alignment method with respect to the flow path of the electrophoresis apparatus. For the purpose.
  • the first aspect of the present invention includes (a) a transparent substrate in which a flow path for electrophoresis is provided, and (b) irradiating the substrate with excitation light.
  • a detection optical system that detects the detection light excited by the liquid crystal
  • a moving unit that moves at least one of the substrate and the detection optical system in a direction perpendicular to the direction in which the flow path extends
  • the gist of the present invention is an electrophoresis apparatus including a control unit that determines the position of the end of the flow path from the intensity change of the detected light and aligns the excitation light with the flow path.
  • excitation light is irradiated to a transparent substrate in which a flow path for electrophoresis is provided, and (b) the excitation light is perpendicular to the direction in which the flow path extends.
  • C) determine the position of the end of the flow path from the change in the intensity of the detected light, and (d) align the excitation light with the flow path.
  • the gist is that it is a positioning method including.
  • FIG. 1 is a schematic diagram showing an example of the configuration of an electrophoresis apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing a cross section taken along line AA of the cathode shown in FIG.
  • FIG. 3 is a schematic view showing a cross section taken along line BB of the cathode shown in FIG.
  • FIG. 4 is a schematic sectional view showing an example of the arrangement of the substrates of the electrophoresis plate according to the embodiment of the present invention.
  • FIG. 5 is a diagram showing an example of the relationship between the detection light intensity from the substrate of the electrophoresis plate and the excitation light position according to the embodiment of the present invention.
  • FIG. 6 is a diagram showing another example of the relationship between the detection light intensity from the substrate of the electrophoresis plate and the excitation light position according to the embodiment of the present invention.
  • FIG. 7 is a flowchart showing an example of the alignment method according to the embodiment of the present invention.
  • the electrophoresis apparatus includes an electrophoresis plate 1, a heating block 20, a moving unit 24, a detection optical system 30, a control unit 40, and the like.
  • the electrophoresis plate 1 includes a substrate 10 and reservoirs 16a and 16b. Inside the substrate 10, there is provided a flow path 12 for electrophoresis of a sample to be analyzed to which a fluorescent dye is added.
  • Through holes 14 a and 14 b that communicate from the surface of the substrate 10 to the flow path 12 are provided at both ends of the flow path 12 in the direction in which the flow path 12 extends.
  • the reservoirs 16a and 16b are installed on the surface of the substrate 10 so as to surround the through holes 14a and 14b, respectively.
  • the electrophoresis plate 1 is installed on the upper surface of the heating block 20.
  • a through hole 22 is provided in the heating block 20.
  • the image of the flow path 12 projected on the cross section of the through hole 22 parallel to the upper surface of the heating block 20 extends from one end to the other end in the center of the cross section of the through hole 22.
  • the heating block 20 is provided with a heater (not shown) for heating the electrophoresis plate 1.
  • the moving unit 24 is installed on the lower surface of the heating block 20.
  • the moving unit 24 moves the heating unit block 20 in a direction orthogonal to the direction in which the flow path 12 extends.
  • the detection optical system 30 includes a light source 32, a filter 34, a lens 36, and a detector 38.
  • the light source 32 emits excitation light that excites the fluorescent dye added to the sample.
  • the filter 34 reflects the excitation light and transmits the fluorescence emitted from the excited fluorescent dye.
  • the lens 36 irradiates the electrophoresis plate so that the excitation light reflected by the filter 34 is condensed on the flow path 12 through the through hole 22.
  • the detector 38 detects the fluorescence emitted from the fluorescent dye.
  • a straight line passing through the lens 36, the filter 34, and the detector 38 is the optical axis Oa of the detection optical system 30.
  • the control unit 40 controls the moving unit 24 to move the electrophoresis plate 1 on the heating block 20 so that the optical axis Oa crosses the flow path 12. While moving the electrophoresis plate 1, the substrate 10 is irradiated with excitation light from the light source 32 of the detection optical system 30. The position of the end of the flow path 12 is determined from the change in the intensity of the detection light detected by the detector 38. The optical axis Oa is aligned with the center of the direction orthogonal to the extending direction of the flow path 12 obtained from the determined position of the end of the flow path 12.
  • a transparent substrate such as quartz glass, borosilicate glass, and resin is used.
  • the width of the channel 12 is in the range of about 50 ⁇ m to about 100 ⁇ m.
  • a metal such as aluminum (Al) is used as the heating block 20.
  • an eccentric cam of a motor-driven circular disk or the like is used. For example, if the circular disc is eccentric about 0.5 mm, an adjustment stroke of about 1 mm can be obtained.
  • a laser light source such as a laser diode (LD) that emits excitation light having a wavelength of less than about 500 nm
  • a filter such as a dichroic mirror, a long pass filter (LPF), or a combination of a dichroic mirror and an LPF is used.
  • the filter 34 reflects excitation light having a wavelength of less than about 500 nm and transmits light having a wavelength of about 500 nm or more.
  • the lens 36 collects excitation light in the flow path 12.
  • an optical amplification detector such as a photomultiplier tube (PMT) is used.
  • the control unit 40 may be configured by dedicated hardware, or may have a substantially equivalent function by software using a central processing unit (CPU) of a normal computer system.
  • CPU central processing unit
  • the substrate 10 includes a transparent first substrate 10a having a flow path 12 formed on the surface and a transparent second substrate 10b bonded to the surface of the first substrate 10a.
  • the channel 12 is formed by photolithography and etching such as wet etching or dry etching.
  • the channel 12 has curved end portions 2a and 2b having a convex curvature outward, and a flat bottom portion 4 between the end portions 2a and 2b.
  • the shape of the edge parts 2a and 2b is not limited.
  • the end of the flow path 12 can be formed into a shape such as a substantially vertical cross section or a tapered cross section close to a straight line.
  • the electrophoresis plate 1 is heated to about 50 ° C. to about 60 ° C. by the heating block 20 shown in FIG.
  • the buffer solution is injected from the through hole 14a into the channel 12 that has been washed in advance.
  • a sample to which a fluorescent dye is added is injected into the flow path 12 from the through hole 14b.
  • the buffer solution is put into the reservoirs 16a and 16b.
  • An electrode (not shown) is inserted into each buffer solution of the reservoirs 16a and 16b, and a sample is electrophoresed by applying a voltage.
  • the sample reaches the vicinity of the optical axis Oa of the detection optical system 30 by electrophoresis. As shown in FIG.
  • the excitation light LB emitted from the light source 32 is condensed into the flow path 12 by the lens 36 through the filter 34.
  • Fluorescence Fl is emitted from the fluorescent dye added to the sample by the excitation light.
  • a part of the fluorescence Fl is detected by the detector 38 through the lens 36 and the filter 34.
  • the width of the flow path 12 is about 100 ⁇ m, and the condensing diameter of the excitation light is about 30 ⁇ m to about 50 ⁇ m. It is required to align the optical axis Oa of the detection optical system 30 and the center of the flow path 12 with a high positional accuracy of about ⁇ 20 ⁇ m in a cross section perpendicular to the direction perpendicular to the extending direction of the flow path 12. .
  • the optical axis of the detection optical system 30 is aligned with the flow path 12 using the detection optical system 30.
  • the direction orthogonal to the extending direction of the flow path 12 is taken as the x-axis.
  • the end 2a, the bottom 4 and the end 2b of the flow path 12 are respectively positioned between Xa and Xb, between Xb and Xc, and between Xc and Xd.
  • the electrophoresis plate 1 controls the moving unit 24 and the detection optical system 30 to acquire the relationship between the position of the excitation light and the detection light intensity. Specifically, the electrophoresis plate 1 is moved so that the optical axis Oa traverses the flow path 12 while irradiating the substrate 10 with the excitation light emitted from the light source 32. As shown in FIG. 5, when excitation light is irradiated onto the substrate 10 at a position between the reference position and Xa, detection light with intensity Is due to autofluorescence of the substrate 10 is detected. When excitation light is irradiated between Xa and Xb or between Xc and Xd, detection light peaks Pl and Pr due to scattered light at the end surfaces of the end portions 2a and 2b are detected. In addition, when excitation light is irradiated to a position between Xb and Xc, detection light having an intensity Ic is detected by autofluorescence such as a buffer solution injected into the flow path 12.
  • the alignment may be performed without injecting the solution into the flow path 12.
  • the detection light by the autofluorescence of the substrate 10 decreases to the intensity Id according to the empty flow path 12.
  • the control unit 40 determines the center of the flow path 12. For example, the peak positions X1 and Xr of the detection light peaks Pl and Pr are obtained, and the center position of the flow path 12 is determined from (X1 + Xr) / 2.
  • the region showing the substantially flat detection light intensity Ic or Id substantially corresponds to the position between Xb and Xc of the bottom 4 of the flow path 12. Therefore, the center position of the flow path 12 can be determined from (Xb + Xc) / 2.
  • the rising positions of the detection light peaks Pl and Pr from the detection light intensity Is substantially correspond to the positions Xa and Xd at both ends of the flow path 12.
  • the center position of the flow path 12 can be determined from (Xa + Xd) / 2. Furthermore, since the width of the flow path 12 is known, it is possible to determine the center position of the flow path 12 by determining at least one of the positions Xl, Xr, Xa, Xb, Xc, and Xd. is there.
  • the position of the flow path 12 is determined by irradiating the substrate 10 including the flow path 12 with excitation light using the detection optical system 30 provided in the electrophoresis apparatus. Therefore, the position of the flow path 12 is determined without depending on the processing accuracy of the flow path 12 and without being affected by fine particles such as dust which becomes a problem when the electrophoresis plate 1 is installed in the heating block 20. be able to. As described above, in the electrophoresis apparatus according to the embodiment of the present invention, the excitation light can be aligned with the flow path 12 with high accuracy.
  • a buffer solution is injected into the flow path 12 of the electrophoresis plate 1 shown in FIG.
  • the control unit 40 controls the moving unit 24 to move the optical axis Oa of the detection optical system 30 to a predetermined reference position.
  • step S100 the excitation light of the light source 32 is applied to the substrate 10 of the electrophoresis plate 1 through the filter 34 and the lens 36.
  • step S101 the electrophoresis plate 1 is moved by the moving unit 24 in a direction orthogonal to the direction in which the flow path 12 extends.
  • step S102 detection light emitted from the substrate 10 is detected by the detector 38 while moving the excitation light across the flow path 12.
  • step S103 the position of the end portions 2a and 2b of the flow path 12 is determined by the control unit 40 from the change in detected light intensity with respect to the position of the excitation light.
  • the control unit 40 determines the center position of the flow path 12 from the positions of the end portions 2 a and 2 b of the flow path 12. Thereafter, the optical axis Oa of the detection optical system 30 is aligned with the center position of the flow path 12 by the moving unit 24.
  • the position of the flow path 12 is determined by irradiating the substrate 10 including the flow path 12 with excitation light using the detection optical system 30 provided in the electrophoresis apparatus. Therefore, the excitation light can be aligned with the flow path 12 with high accuracy.
  • the moving unit 24 is disposed on the lower surface of the heating block 20.
  • the moving unit 24 may be disposed in the detection optical system 30.
  • the electrophoresis plate 1 on the upper surface of the heating block 20 is fixed, and the detection optical system 30 is moved by the moving unit 24.
  • the present invention can be applied to an electrophoresis apparatus used for a sequencer for determining the sequence of DNA or the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

An electrophoretic device includes a transparent substrate (10) in which a flow path (12) for electrophoretic migration is provided, a detection optics system (30) which irradiates an excitation light onto the substrate (10) to detect a detection light excited by the excitation light, a movement unit (24) to move at least one of the substrate (10) and the detection optics system (30) in the direction perpendicular to the extending direction of the flow path (12), and a control unit (40) which determines an end position of the flow path (12) depending on a change in intensity of the detection light detected in association with movement to align the excitation light with the flow path (12).

Description

電気泳動装置及び位置合わせ方法Electrophoresis apparatus and alignment method
 本発明は、検出光学系の光軸の位置を自動調整可能な電気泳動装置、及びこの電気泳動装置の流路に対する光学系の位置合わせ方法に関する。 The present invention relates to an electrophoresis apparatus capable of automatically adjusting the position of the optical axis of a detection optical system, and a method for aligning the optical system with respect to the flow path of the electrophoresis apparatus.
 マイクロ電気機械システム(MEMS)技術によりガラス等の基板に微小な流路を形成して化学分析や化学合成を行う電気泳動装置が開発されている。電気泳動法による化学分析では、分析対象の分子が、検知のために蛍光色素で標識される。蛍光標識された分子は、電気泳動により流路内で分離され、励起された蛍光を検出光学系で検出することにより識別される。 Electrophoresis devices have been developed that perform chemical analysis and chemical synthesis by forming microchannels on a substrate such as glass by microelectromechanical system (MEMS) technology. In chemical analysis by electrophoresis, molecules to be analyzed are labeled with a fluorescent dye for detection. The fluorescently labeled molecules are separated in the flow path by electrophoresis, and are identified by detecting the excited fluorescence with a detection optical system.
 微小な流路内での電気泳動法では、用いる試料や試薬の量を低減でき、高速で高効率の化学反応や化学分析が可能となる。しかしながら、分析対象が微量となるため、高感度の検出法が必要となる。したがって、検出光学系の励起光の位置合わせが重要となる。 Electrophoresis in a minute channel can reduce the amount of sample and reagent used, and enables high-speed and highly efficient chemical reaction and chemical analysis. However, since the amount of analysis is very small, a highly sensitive detection method is required. Therefore, it is important to align the excitation light of the detection optical system.
 蛍光色素の励起光源に面発光型発光素子(LED)を用いる場合、LEDの集光径は、電気泳動の流路の幅を約100μmとして、約400μmと大きい。励起光を流路に位置合わせする際に、LEDの集光径内に流路が収まるようにすればよい。したがって、電気泳動装置の基板端面から約±100μm以内の加工位置精度で流路を作製すれば、LEDの集光径内に流路を配置することができる。 When a surface-emitting light emitting device (LED) is used as the excitation light source of the fluorescent dye, the condensing diameter of the LED is as large as about 400 μm, assuming that the width of the electrophoresis channel is about 100 μm. What is necessary is just to make it a flow path fit in the condensing diameter of LED, when aligning excitation light to a flow path. Therefore, if the flow path is produced with a processing position accuracy within about ± 100 μm from the substrate end face of the electrophoresis apparatus, the flow path can be arranged within the condensing diameter of the LED.
 デオキシリボ核酸(DNA)等の配列を決定するシーケンサに用いる電気泳動装置では、試料に付加する蛍光色素が微量であるため、大出力の励起光源が必要となる。励起光源としてレーザダイオード(LD)を用い、集光することで励起光の出力を有効に利用することが求められる。LDからの励起光の集光径を約30μm~約50μmとすると、幅が約100μmの流路内に集光した励起光を照射する必要がある。そのためには、電気泳動装置の基板に設けられた流路に対して励起光を、約±20μmの高い位置精度で位置合わせすることが必要となる。電気泳動装置の基板端面からの流路の加工位置精度では、このような高精度の位置合わせを実現することは困難である。また、位置合わせの基準面と基板端面の間に塵芥等の微粒子が挟まると正確な位置合わせが困難となる。 In an electrophoresis apparatus used for a sequencer that determines the sequence of deoxyribonucleic acid (DNA) or the like, a very small amount of fluorescent dye is added to a sample, and thus a high-power excitation light source is required. It is required to use the output of excitation light effectively by using a laser diode (LD) as an excitation light source and condensing it. When the condensing diameter of the excitation light from the LD is about 30 μm to about 50 μm, it is necessary to irradiate the condensed excitation light into the channel having a width of about 100 μm. For this purpose, it is necessary to align the excitation light with a high positional accuracy of about ± 20 μm with respect to the flow path provided on the substrate of the electrophoresis apparatus. With the processing position accuracy of the flow path from the substrate end face of the electrophoresis apparatus, it is difficult to achieve such high-precision alignment. In addition, if fine particles such as dust are sandwiched between the alignment reference plane and the substrate end surface, accurate alignment becomes difficult.
 上記問題点を鑑み、本発明は、流路に対して励起光を高精度で位置合わせすることが可能な電気泳動装置、及びこの電気泳動装置の流路に対する光学系の位置合わせ方法を提供することを目的とする。 In view of the above problems, the present invention provides an electrophoresis apparatus capable of aligning excitation light with high accuracy with respect to a flow path, and an optical system alignment method with respect to the flow path of the electrophoresis apparatus. For the purpose.
 上記目的を達成するために、本発明の第1の態様は、(イ)電気泳動用の流路が内部に設けられた透明な基板と、(ロ)基板に励起光を照射し、励起光により励起された検出光を検出する検出光学系と、(ハ)流路が延伸する方向と直交する方向に基板及び検出光学系の少なくとも一方を移動させる移動ユニットと、(ニ)移動に伴い検出される検出光の強度変化から流路の端部の位置を決定して励起光を流路に位置合わせする制御ユニットとを備える電気泳動装置であることを要旨とする。 In order to achieve the above object, the first aspect of the present invention includes (a) a transparent substrate in which a flow path for electrophoresis is provided, and (b) irradiating the substrate with excitation light. A detection optical system that detects the detection light excited by the liquid crystal, (c) a moving unit that moves at least one of the substrate and the detection optical system in a direction perpendicular to the direction in which the flow path extends, and The gist of the present invention is an electrophoresis apparatus including a control unit that determines the position of the end of the flow path from the intensity change of the detected light and aligns the excitation light with the flow path.
  本発明の第2の態様は、(イ)電気泳動用の流路が内部に設けられた透明な基板に励起光を照射し、(ロ)流路が延伸する方向と直交する方向に励起光を移動させながら励起光により励起された検出光を検出し、(ハ)検出光の強度変化より流路の端部の位置を決定し、(ニ)励起光を流路に位置合わせすることを含む位置合わせ方法であることを要旨とする。 According to the second aspect of the present invention, (a) excitation light is irradiated to a transparent substrate in which a flow path for electrophoresis is provided, and (b) the excitation light is perpendicular to the direction in which the flow path extends. (C) determine the position of the end of the flow path from the change in the intensity of the detected light, and (d) align the excitation light with the flow path. The gist is that it is a positioning method including.
図1は、本発明の実施の形態に係る電気泳動装置の構成の一例を示す概略図である。FIG. 1 is a schematic diagram showing an example of the configuration of an electrophoresis apparatus according to an embodiment of the present invention. 図2は、図1に示した陰極のA-A線に沿った断面を示す概略図である。FIG. 2 is a schematic view showing a cross section taken along line AA of the cathode shown in FIG. 図3は、図1に示した陰極のB-B線に沿った断面を示す概略図である。FIG. 3 is a schematic view showing a cross section taken along line BB of the cathode shown in FIG. 図4は、本発明の実施の形態に係る電気泳動プレートの基板の配置の一例を示す概略断面図である。FIG. 4 is a schematic sectional view showing an example of the arrangement of the substrates of the electrophoresis plate according to the embodiment of the present invention. 図5は、本発明の実施の形態に係る電気泳動プレートの基板からの検出光強度と励起光位置の関係の一例を示す図である。FIG. 5 is a diagram showing an example of the relationship between the detection light intensity from the substrate of the electrophoresis plate and the excitation light position according to the embodiment of the present invention. 図6は、本発明の実施の形態に係る電気泳動プレートの基板からの検出光強度と励起光位置の関係の他の例を示す図である。FIG. 6 is a diagram showing another example of the relationship between the detection light intensity from the substrate of the electrophoresis plate and the excitation light position according to the embodiment of the present invention. 図7は、本発明の実施の形態に係る位置合わせ方法の一例を示すフローチャートである。FIG. 7 is a flowchart showing an example of the alignment method according to the embodiment of the present invention.
 以下図面を参照して、本発明の形態について説明する。以下の図面の記載において、同一または類似の部分には同一または類似の符号が付してある。但し、図面は模式的なものであり、装置やシステムの構成等は現実のものとは異なることに留意すべきである。したがって、具体的な構成は以下の説明を参酌して判断すべきものである。また図面相互間においても互いの構成等が異なる部分が含まれていることは勿論である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic and the configuration of the apparatus and system is different from the actual one. Therefore, a specific configuration should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different structures and the like are included between the drawings.
 又、以下に示す本発明の実施の形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。本発明の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることができる。 The following embodiments of the present invention exemplify apparatuses and methods for embodying the technical idea of the present invention. The technical idea of the present invention is based on the material and shape of component parts. The structure, arrangement, etc. are not specified below. The technical idea of the present invention can be variously modified within the technical scope described in the claims.
 (電気泳動装置)
 本発明の実施の形態に係る電気泳動装置は、図1及び図2に示すように、電気泳動プレート1、加熱ブロック20、移動ユニット24、検出光学系30及び制御ユニット40等を備える。電気泳動プレート1は、基板10及びリザーバ16a、16bを備える。基板10の内部に、蛍光色素が付加された分析対象の試料を電気泳動させる流路12が設けられる。流路12が延在する方向での流路12の両端に、基板10表面から流路12に通じる貫通孔14a、14bが設けられる。リザーバ16a、16bは、それぞれ貫通孔14a、14bを囲むように基板10表面に設置される。
(Electrophoresis device)
As shown in FIGS. 1 and 2, the electrophoresis apparatus according to the embodiment of the present invention includes an electrophoresis plate 1, a heating block 20, a moving unit 24, a detection optical system 30, a control unit 40, and the like. The electrophoresis plate 1 includes a substrate 10 and reservoirs 16a and 16b. Inside the substrate 10, there is provided a flow path 12 for electrophoresis of a sample to be analyzed to which a fluorescent dye is added. Through holes 14 a and 14 b that communicate from the surface of the substrate 10 to the flow path 12 are provided at both ends of the flow path 12 in the direction in which the flow path 12 extends. The reservoirs 16a and 16b are installed on the surface of the substrate 10 so as to surround the through holes 14a and 14b, respectively.
 電気泳動プレート1は、加熱ブロック20の上面に設置される。加熱ブロック20には、貫通孔22が設けられる。加熱ブロック20上面に平行な貫通孔22の断面に投影された流路12の像は、貫通孔22の断面中央部おいて一端から他端へと延在する。また、加熱ブロック20には、電気泳動プレート1を加熱するヒータ(図示省略)が設けられる。 The electrophoresis plate 1 is installed on the upper surface of the heating block 20. A through hole 22 is provided in the heating block 20. The image of the flow path 12 projected on the cross section of the through hole 22 parallel to the upper surface of the heating block 20 extends from one end to the other end in the center of the cross section of the through hole 22. The heating block 20 is provided with a heater (not shown) for heating the electrophoresis plate 1.
 移動ユニット24は、加熱ブロック20の下面に設置される。移動ユニット24は、流路12が延伸する方向と直交する方向に加熱部ブロック20を移動させる。 The moving unit 24 is installed on the lower surface of the heating block 20. The moving unit 24 moves the heating unit block 20 in a direction orthogonal to the direction in which the flow path 12 extends.
 検出光学系30は、光源32、フィルタ34、レンズ36、及び検出器38を備える。光源32は、試料に付加された蛍光色素を励起する励起光を出射する。フィルタ34は、励起光を反射し、励起された蛍光色素から放射される蛍光を透過する。レンズ36は、フィルタ34で反射された励起光を貫通孔22を通して流路12に集光するように電気泳動プレートに照射する。検出器38は、蛍光色素から放射された蛍光を検出する。ここで、レンズ36、フィルタ34及び検出器38を通る直線が検出光学系30の光軸Oaである。 The detection optical system 30 includes a light source 32, a filter 34, a lens 36, and a detector 38. The light source 32 emits excitation light that excites the fluorescent dye added to the sample. The filter 34 reflects the excitation light and transmits the fluorescence emitted from the excited fluorescent dye. The lens 36 irradiates the electrophoresis plate so that the excitation light reflected by the filter 34 is condensed on the flow path 12 through the through hole 22. The detector 38 detects the fluorescence emitted from the fluorescent dye. Here, a straight line passing through the lens 36, the filter 34, and the detector 38 is the optical axis Oa of the detection optical system 30.
 制御ユニット40は、移動ユニット24を制御して、光軸Oaが流路12を横切るように加熱ブロック20上の電気泳動プレート1を移動させる。電気泳動プレート1を移動させながら、検出光学系30の光源32から励起光を基板10に照射する。検出器38で検出された検出光の強度変化から流路12の端部の位置を決定する。決定された流路12の端部の位置から求めた流路12の延伸方向に直交する方向の中心に光軸Oaを位置合わせする。 The control unit 40 controls the moving unit 24 to move the electrophoresis plate 1 on the heating block 20 so that the optical axis Oa crosses the flow path 12. While moving the electrophoresis plate 1, the substrate 10 is irradiated with excitation light from the light source 32 of the detection optical system 30. The position of the end of the flow path 12 is determined from the change in the intensity of the detection light detected by the detector 38. The optical axis Oa is aligned with the center of the direction orthogonal to the extending direction of the flow path 12 obtained from the determined position of the end of the flow path 12.
 基板10として、石英ガラス、硼珪酸ガラス、及び樹脂等の透明な基板が用いられる。流路12の幅は、約50μm~約100μmの範囲である。加熱ブロック20として、アルミニウム(Al)等の金属が用いられる。移動ユニット24として、モータ駆動の円形ディスクの偏芯カム等が用いられる。例えば、円形ディスクを約0.5mm偏芯させると、約1mmの調整ストロークが得られる。 As the substrate 10, a transparent substrate such as quartz glass, borosilicate glass, and resin is used. The width of the channel 12 is in the range of about 50 μm to about 100 μm. A metal such as aluminum (Al) is used as the heating block 20. As the moving unit 24, an eccentric cam of a motor-driven circular disk or the like is used. For example, if the circular disc is eccentric about 0.5 mm, an adjustment stroke of about 1 mm can be obtained.
 検出光学系30の光源32として、波長が約500nm未満の励起光を出射するレーザダイオード(LD)等のレーザ光源が用いられる。フィルタ34として、ダイクロイックミラー、ロングパスフィルタ(LPF)、あるいはダイクロイックミラーとLPFの組み合わせ等のフィルタが用いられる。フィルタ34は、波長が約500nm未満の励起光を反射し、波長が約500nm以上の光を透過する。レンズ36は、励起光を流路12に集光する。検出器38として、フォトマルチプライヤチューブ(PMT)等の光増幅検出器が用いられる。制御ユニット40は、専用のハードウェアで構成しても良く、通常のコンピュータシステムの中央処理装置(CPU)を用いて、ソフトウェアで実質的に等価な機能を有していても構わない。 As the light source 32 of the detection optical system 30, a laser light source such as a laser diode (LD) that emits excitation light having a wavelength of less than about 500 nm is used. As the filter 34, a filter such as a dichroic mirror, a long pass filter (LPF), or a combination of a dichroic mirror and an LPF is used. The filter 34 reflects excitation light having a wavelength of less than about 500 nm and transmits light having a wavelength of about 500 nm or more. The lens 36 collects excitation light in the flow path 12. As the detector 38, an optical amplification detector such as a photomultiplier tube (PMT) is used. The control unit 40 may be configured by dedicated hardware, or may have a substantially equivalent function by software using a central processing unit (CPU) of a normal computer system.
 例えば、基板10は、図3に示すように、表面に流路12が形成された透明な第1基板10a、及び第1基板10a表面に張り合わされた透明な第2基板10bを有する。流路12は、フォトリソグラフィ、及びウェットエッチングやドライエッチング等のエッチングにより形成される。例えば、流路12は、外側に凸の曲率を有する曲線形状の端部2a、2b、及び端部2a、2b間の平坦な底部4を有する。なお、端部2a、2bの形状は限定されない。エッチング条件により、流路12の端部を略垂直断面や直線に近いテーパ形状断面等の形状にすることが可能である。 For example, as shown in FIG. 3, the substrate 10 includes a transparent first substrate 10a having a flow path 12 formed on the surface and a transparent second substrate 10b bonded to the surface of the first substrate 10a. The channel 12 is formed by photolithography and etching such as wet etching or dry etching. For example, the channel 12 has curved end portions 2a and 2b having a convex curvature outward, and a flat bottom portion 4 between the end portions 2a and 2b. In addition, the shape of the edge parts 2a and 2b is not limited. Depending on the etching conditions, the end of the flow path 12 can be formed into a shape such as a substantially vertical cross section or a tapered cross section close to a straight line.
 例えば、図2に示した加熱ブロック20により電気泳動プレート1を、約50℃~約60℃に過熱する。貫通孔14aから予め洗浄された流路12にバッファ溶液を注入する。貫通孔14bから流路12に蛍光色素が付加された試料を注入する。その後、バッファ溶液を、リザーバ16a、16bに入れる。電極(図示省略)をリザーバ16a、16bそれぞれのバッファ溶液に挿入し、電圧を印加することにより試料を電気泳動させる。試料は、電気泳動により検出光学系30の光軸Oaの近傍に到達する。図3に示したように、光源32から出射された励起光LBは、フィルタ34を介してレンズ36により流路12中に集光される。励起光により試料に付加された蛍光色素から蛍光Flが放射される。蛍光Flの一部が、レンズ36、フィルタ34を通って検出器38により検出される。 For example, the electrophoresis plate 1 is heated to about 50 ° C. to about 60 ° C. by the heating block 20 shown in FIG. The buffer solution is injected from the through hole 14a into the channel 12 that has been washed in advance. A sample to which a fluorescent dye is added is injected into the flow path 12 from the through hole 14b. Thereafter, the buffer solution is put into the reservoirs 16a and 16b. An electrode (not shown) is inserted into each buffer solution of the reservoirs 16a and 16b, and a sample is electrophoresed by applying a voltage. The sample reaches the vicinity of the optical axis Oa of the detection optical system 30 by electrophoresis. As shown in FIG. 3, the excitation light LB emitted from the light source 32 is condensed into the flow path 12 by the lens 36 through the filter 34. Fluorescence Fl is emitted from the fluorescent dye added to the sample by the excitation light. A part of the fluorescence Fl is detected by the detector 38 through the lens 36 and the filter 34.
 DNA等の配列を決定するシーケンサに用いる電気泳動装置では、試料に付加する蛍光色素が微量であり、高感度の検出が必要である。したがって、図2に示した検出光学系30の光軸Oaを高精度で流路12に対して位置合わせをして、励起光を流路12内に集光させる必要がある。例えば、流路12の幅を約100μm、励起光の集光径を約30μm~約50μmとする。流路12の延伸方向と直交する方向に垂直に切った断面において、検出光学系30の光軸Oaと流路12の中心を、約±20μmの高い位置精度で位置合わせすることが要求される。 In an electrophoresis apparatus used for a sequencer that determines the sequence of DNA or the like, a very small amount of fluorescent dye is added to a sample, and high-sensitivity detection is required. Therefore, it is necessary to align the optical axis Oa of the detection optical system 30 shown in FIG. For example, the width of the flow path 12 is about 100 μm, and the condensing diameter of the excitation light is about 30 μm to about 50 μm. It is required to align the optical axis Oa of the detection optical system 30 and the center of the flow path 12 with a high positional accuracy of about ± 20 μm in a cross section perpendicular to the direction perpendicular to the extending direction of the flow path 12. .
 本発明の実施の形態では、検出光学系30を利用して検出光学系30の光軸を流路12に対して位置合わせを行う。図4に示すように、流路12の延伸方向と直交する方向をx軸とする。例えば、貫通孔22の一端を基準位置Oとして、流路12の端部2a、底部4、及び端部2bのそれぞれは、Xa~Xb間、Xb~Xc間、及びXc~Xd間の位置となる。 In the embodiment of the present invention, the optical axis of the detection optical system 30 is aligned with the flow path 12 using the detection optical system 30. As shown in FIG. 4, the direction orthogonal to the extending direction of the flow path 12 is taken as the x-axis. For example, with one end of the through hole 22 as the reference position O, the end 2a, the bottom 4 and the end 2b of the flow path 12 are respectively positioned between Xa and Xb, between Xb and Xc, and between Xc and Xd. Become.
 図2に示した制御ユニット40は移動ユニット24及び検出光学系30を制御して、励起光の位置と検出光強度の関係を取得する。具体的には、光源32から出射された励起光を基板10に照射しながら、光軸Oaが流路12を横切るように電気泳動プレート1を移動させる。図5に示すように、励起光が基準位置からXa間の位置の基板10に照射されると、基板10の自家蛍光による強度Isの検出光が検出される。励起光がXa~Xb間、或いはXc~Xd間の位置に照射されると、端部2a、2bそれぞれの端面での散乱光による検出光ピークPl、Prがそれぞれ検出される。また、励起光がXb~Xc間の位置に照射されると、流路12内に注入されたバッファ溶液等の自家蛍光により強度Icの検出光が検出される。 2 controls the moving unit 24 and the detection optical system 30 to acquire the relationship between the position of the excitation light and the detection light intensity. Specifically, the electrophoresis plate 1 is moved so that the optical axis Oa traverses the flow path 12 while irradiating the substrate 10 with the excitation light emitted from the light source 32. As shown in FIG. 5, when excitation light is irradiated onto the substrate 10 at a position between the reference position and Xa, detection light with intensity Is due to autofluorescence of the substrate 10 is detected. When excitation light is irradiated between Xa and Xb or between Xc and Xd, detection light peaks Pl and Pr due to scattered light at the end surfaces of the end portions 2a and 2b are detected. In addition, when excitation light is irradiated to a position between Xb and Xc, detection light having an intensity Ic is detected by autofluorescence such as a buffer solution injected into the flow path 12.
 なお、流路12内に溶液を注入せずに位置合わせを行ってもよい。この場合、図6に示すように、励起光がXb~Xc間の位置に照射されると、基板10の自家蛍光による検出光は空の流路12に応じて強度Idと減少する。 The alignment may be performed without injecting the solution into the flow path 12. In this case, as shown in FIG. 6, when the excitation light is irradiated to a position between Xb and Xc, the detection light by the autofluorescence of the substrate 10 decreases to the intensity Id according to the empty flow path 12.
 図5又は図6の結果をもちいて、制御ユニット40は流路12の中心を決定する。例えば、検出光ピークPl、Prのピーク位置Xl、Xrを求めて、流路12の中心位置を(Xl+Xr)/2から決定する。或いは、ほぼ平坦な検出光強度Ic、又はIdを示す領域は、実質的に流路12の底部4のXb~Xc間の位置に相当する。したがって、流路12の中心位置を、(Xb+Xc)/2から決定することができる。同様に、検出光強度Isから検出光ピークPl、Prの立ち上がり位置は、実質的に流路12の両端の位置Xa、Xdに相当する。したがって、流路12の中心位置を、(Xa+Xd)/2から決定することができる。更に、流路12の幅は既知であるので、位置Xl、Xr、Xa、Xb、Xc,Xdの中の少なくとも一つを決定することにより、流路12の中心位置を決定することが可能である。 Using the result of FIG. 5 or FIG. 6, the control unit 40 determines the center of the flow path 12. For example, the peak positions X1 and Xr of the detection light peaks Pl and Pr are obtained, and the center position of the flow path 12 is determined from (X1 + Xr) / 2. Alternatively, the region showing the substantially flat detection light intensity Ic or Id substantially corresponds to the position between Xb and Xc of the bottom 4 of the flow path 12. Therefore, the center position of the flow path 12 can be determined from (Xb + Xc) / 2. Similarly, the rising positions of the detection light peaks Pl and Pr from the detection light intensity Is substantially correspond to the positions Xa and Xd at both ends of the flow path 12. Therefore, the center position of the flow path 12 can be determined from (Xa + Xd) / 2. Furthermore, since the width of the flow path 12 is known, it is possible to determine the center position of the flow path 12 by determining at least one of the positions Xl, Xr, Xa, Xb, Xc, and Xd. is there.
 本発明の実施の形態では、電気泳動装置に備えられた検出光学系30を用いて流路12を含む基板10に励起光を照射して流路12の位置を決定する。したがって、流路12の加工精度に依存することなく、また、電気泳動プレート1を加熱ブロック20に設置する場合に問題となる塵芥等の微粒子に影響されることなく流路12の位置を決定することができる。このように、本発明の実施の形態に係る電気泳動装置では、流路12に対して励起光を高精度で位置合わせすることが可能となる。 In the embodiment of the present invention, the position of the flow path 12 is determined by irradiating the substrate 10 including the flow path 12 with excitation light using the detection optical system 30 provided in the electrophoresis apparatus. Therefore, the position of the flow path 12 is determined without depending on the processing accuracy of the flow path 12 and without being affected by fine particles such as dust which becomes a problem when the electrophoresis plate 1 is installed in the heating block 20. be able to. As described above, in the electrophoresis apparatus according to the embodiment of the present invention, the excitation light can be aligned with the flow path 12 with high accuracy.
 (位置合わせ方法)
 次に、本発明の実施の形態に係る位置合わせ方法を、図7に示すフローチャートを用いて説明する。予め、図2に示した電気泳動プレート1の流路12にバッファ溶液を注入する。制御ユニット40が移動ユニット24を制御して、検出光学系30の光軸Oaを所定の基準位置に移動する。
(Positioning method)
Next, the alignment method according to the embodiment of the present invention will be described using the flowchart shown in FIG. In advance, a buffer solution is injected into the flow path 12 of the electrophoresis plate 1 shown in FIG. The control unit 40 controls the moving unit 24 to move the optical axis Oa of the detection optical system 30 to a predetermined reference position.
 ステップS100で、光源32の励起光が、フィルタ34及びレンズ36を介して電気泳動プレート1の基板10に照射される。 In step S100, the excitation light of the light source 32 is applied to the substrate 10 of the electrophoresis plate 1 through the filter 34 and the lens 36.
 ステップS101で、流路12が延伸する方向と直交する方向において、移動ユニット24により電気泳動プレート1を移動させる。 In step S101, the electrophoresis plate 1 is moved by the moving unit 24 in a direction orthogonal to the direction in which the flow path 12 extends.
 ステップS102で、励起光を流路12を横切るように移動させながら、検出器38により基板10から放射される検出光を検出する。 In step S102, detection light emitted from the substrate 10 is detected by the detector 38 while moving the excitation light across the flow path 12.
 ステップS103で、制御ユニット40により、励起光の位置に対する検出光強度変化より流路12の端部2a、2bの位置が決定される。制御ユニット40により、流路12の端部2a、2bの位置から流路12の中心位置が決定される。その後、移動ユニット24により、検出光学系30の光軸Oaが流路12の中心位置に位置合わせされる。 In step S103, the position of the end portions 2a and 2b of the flow path 12 is determined by the control unit 40 from the change in detected light intensity with respect to the position of the excitation light. The control unit 40 determines the center position of the flow path 12 from the positions of the end portions 2 a and 2 b of the flow path 12. Thereafter, the optical axis Oa of the detection optical system 30 is aligned with the center position of the flow path 12 by the moving unit 24.
 本発明の実施の形態に係る位置合わせ方法では、電気泳動装置に備えられた検出光学系30を用いて流路12を含む基板10に励起光を照射して流路12の位置を決定する。したがって、流路12に対して励起光を高精度で位置合わせすることが可能となる。 In the alignment method according to the embodiment of the present invention, the position of the flow path 12 is determined by irradiating the substrate 10 including the flow path 12 with excitation light using the detection optical system 30 provided in the electrophoresis apparatus. Therefore, the excitation light can be aligned with the flow path 12 with high accuracy.
 (その他の実施の形態)
 上記のように、本発明は本発明の実施の形態によって記載したが、この開示の一部をなす論述及び図面は本発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
(Other embodiments)
As described above, the present invention has been described according to the embodiment of the present invention. However, it should not be understood that the description and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.
 本発明の実施の形態においては、移動ユニット24は加熱ブロック20の下面に配置されている。しかしながら、移動ユニット24を検出光学系30に配置してもよい。この場合、加熱ブロック20上面の電気泳動プレート1は固定され、検出光学系30が移動ユニット24により移動される。 In the embodiment of the present invention, the moving unit 24 is disposed on the lower surface of the heating block 20. However, the moving unit 24 may be disposed in the detection optical system 30. In this case, the electrophoresis plate 1 on the upper surface of the heating block 20 is fixed, and the detection optical system 30 is moved by the moving unit 24.
 このように、本発明はここでは記載していないさまざまな実施の形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。 Thus, it goes without saying that the present invention includes various embodiments not described herein. Accordingly, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.
 本発明は、DNA等の配列を決定するシーケンサに用いる電気泳動装置に適用できる。 The present invention can be applied to an electrophoresis apparatus used for a sequencer for determining the sequence of DNA or the like.

Claims (12)

  1.  電気泳動用の流路が内部に設けられた透明な基板と、
     前記基板に励起光を照射し、前記励起光により励起された検出光を検出する検出光学系と、
     前記流路が延伸する方向と直交する方向に前記基板及び前記検出光学系の少なくとも一方を移動させる移動ユニットと、
     前記移動に伴い検出される前記検出光の強度変化から、前記流路の端部の位置を決定して前記励起光を前記流路に位置合わせする制御ユニット
     とを備えることを特徴とする電気泳動装置。
    A transparent substrate provided with a flow path for electrophoresis inside;
    A detection optical system for irradiating the substrate with excitation light and detecting detection light excited by the excitation light;
    A moving unit that moves at least one of the substrate and the detection optical system in a direction orthogonal to a direction in which the flow path extends;
    A control unit that determines the position of the end of the flow path from the intensity change of the detection light detected with the movement and aligns the excitation light with the flow path. apparatus.
  2.  前記基板を搭載する電気泳動プレートを更に備えることを特徴とする請求項1に記載の電気泳動装置。 The electrophoresis apparatus according to claim 1, further comprising an electrophoresis plate on which the substrate is mounted.
  3.  前記移動ユニットが、前記電気泳動プレートを駆動する扁芯カムを備えることを特徴とする請求項2に記載の電気泳動装置。 The electrophoresis apparatus according to claim 2, wherein the moving unit includes a flat-core cam that drives the electrophoresis plate.
  4.  前記励起光が、レーザ光であることを特徴とする請求項1に記載の電気泳動装置。 2. The electrophoresis apparatus according to claim 1, wherein the excitation light is laser light.
  5.  前記検出光が、前記励起光により励起された前記流路の端部での散乱光であることを特徴とする請求項1に記載の電気泳動装置。 2. The electrophoresis apparatus according to claim 1, wherein the detection light is scattered light at an end of the flow path excited by the excitation light.
  6.  前記検出光が、前記励起光により励起された前記基板の自家蛍光であることを特徴とする請求項1に記載の電気泳動装置。 2. The electrophoresis apparatus according to claim 1, wherein the detection light is autofluorescence of the substrate excited by the excitation light.
  7.  電気泳動用の流路が内部に設けられた透明な基板に励起光を照射し、
     前記流路が延伸する方向と直交する方向に前記励起光を移動させながら前記励起光により励起された検出光を検出し、
     前記検出光の強度変化より前記流路の端部の位置を決定し、
     前記励起光を前記流路に位置合わせする
     ことを含むことを特徴とする位置合わせ方法。
    Irradiate excitation light to a transparent substrate with a flow path for electrophoresis inside,
    Detecting detection light excited by the excitation light while moving the excitation light in a direction perpendicular to the direction in which the flow path extends,
    Determine the position of the end of the flow path from the change in intensity of the detection light,
    Aligning the excitation light with the flow path.
  8.  前記励起光が、レーザ光であることを特徴とする請求項7に記載の位置合わせ方法。 The alignment method according to claim 7, wherein the excitation light is laser light.
  9.  前記検出光が、前記流路の端部での散乱光であることを特徴とする請求項7に記載の位置合わせ方法。 The alignment method according to claim 7, wherein the detection light is scattered light at an end of the flow path.
  10.  前記流路の端部の位置が、前記散乱光のピーク位置から決定されることを特徴とする請求項9に記載の位置合わせ方法。 10. The alignment method according to claim 9, wherein the position of the end of the flow path is determined from the peak position of the scattered light.
  11.  前記検出光が、前記励起光により励起された前記基板の自家蛍光であることを特徴とする請求項7に記載の位置合わせ方法。 The alignment method according to claim 7, wherein the detection light is autofluorescence of the substrate excited by the excitation light.
  12.  前記流路の端部の位置が、前記基板の自家蛍光の平坦部から決定されることを特徴とする請求項11に記載の位置合わせ方法。 12. The alignment method according to claim 11, wherein the position of the end of the flow path is determined from a flat part of autofluorescence of the substrate.
PCT/JP2008/050023 2008-01-07 2008-01-07 Electrophoretic device and method for alignment WO2009087753A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/050023 WO2009087753A1 (en) 2008-01-07 2008-01-07 Electrophoretic device and method for alignment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/050023 WO2009087753A1 (en) 2008-01-07 2008-01-07 Electrophoretic device and method for alignment

Publications (1)

Publication Number Publication Date
WO2009087753A1 true WO2009087753A1 (en) 2009-07-16

Family

ID=40852878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/050023 WO2009087753A1 (en) 2008-01-07 2008-01-07 Electrophoretic device and method for alignment

Country Status (1)

Country Link
WO (1) WO2009087753A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0295241A (en) * 1988-09-30 1990-04-06 Shimadzu Corp Method and mechanism for adjusting capillary cell detector
JPH04313032A (en) * 1991-04-11 1992-11-05 Kubota Corp Device for spectroscopic analysis
JPH10246721A (en) * 1997-03-03 1998-09-14 Shimadzu Corp Microchip electrophoretic apparatus
JP2003057167A (en) * 2001-08-10 2003-02-26 Dkk Toa Corp Member movement mechanism

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0295241A (en) * 1988-09-30 1990-04-06 Shimadzu Corp Method and mechanism for adjusting capillary cell detector
JPH04313032A (en) * 1991-04-11 1992-11-05 Kubota Corp Device for spectroscopic analysis
JPH10246721A (en) * 1997-03-03 1998-09-14 Shimadzu Corp Microchip electrophoretic apparatus
JP2003057167A (en) * 2001-08-10 2003-02-26 Dkk Toa Corp Member movement mechanism

Similar Documents

Publication Publication Date Title
US20100032582A1 (en) Fluorescence detection system and method
JP4431518B2 (en) Electrophoresis device and capillary array
JP6337905B2 (en) Surface plasmon resonance fluorescence analysis method and surface plasmon resonance fluorescence analyzer
JP5930482B2 (en) Disposable bioanalytical cartridge and device for performing bioanalysis using the cartridge
JP7114611B2 (en) Analysis method and analyzer
JP6424890B2 (en) Surface plasmon enhanced fluorescence measurement method, surface plasmon enhanced fluorescence measurement device and analysis chip
US11714049B2 (en) Method for surface plasmon resonance fluorescence analysis and device for surface plasmon resonance fluorescence analysis
US20220236219A1 (en) Glycan profiling utilizing capillary electrophoresis
US20090218496A1 (en) Sensing apparatus and a method of detecting substances
WO2018021238A1 (en) Detection chip, detection system, and detection method
JP6933730B2 (en) Disposable multi-channel bioanalysis cartridge and capillary electrophoresis system for performing bioanalysis using it
US20110253540A1 (en) Bio-analysis using ball-ended incident and output optical fibers
WO2017082069A1 (en) Reaction method
US20180196077A1 (en) Detection Device And Detection Method
WO2009087753A1 (en) Electrophoretic device and method for alignment
JPWO2001084134A1 (en) Capillary array unit and electrophoresis apparatus using the same
JP7121742B2 (en) Optical specimen detection system using diffracted light removal slit
JP6399089B2 (en) Surface plasmon resonance fluorescence analysis method, surface plasmon resonance fluorescence analyzer, and alignment method
JP4438211B2 (en) Electrophoresis device
EP4130719A1 (en) Detection device
JP5772238B2 (en) Microchip for surface plasmon resonance measurement and surface plasmon resonance measurement apparatus
JP4661213B2 (en) Electrophoresis device
JP6221785B2 (en) Detection apparatus and detection method
JP2004309270A (en) Microchemical system
WO2002079768A1 (en) Thermal lens microscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08702904

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08702904

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP