WO2009086229A2 - Drought tolerant plants and related constructs and methods involving genes encoding mir827 - Google Patents

Drought tolerant plants and related constructs and methods involving genes encoding mir827 Download PDF

Info

Publication number
WO2009086229A2
WO2009086229A2 PCT/US2008/087874 US2008087874W WO2009086229A2 WO 2009086229 A2 WO2009086229 A2 WO 2009086229A2 US 2008087874 W US2008087874 W US 2008087874W WO 2009086229 A2 WO2009086229 A2 WO 2009086229A2
Authority
WO
WIPO (PCT)
Prior art keywords
plant
dna construct
recombinant dna
sequence
compared
Prior art date
Application number
PCT/US2008/087874
Other languages
French (fr)
Other versions
WO2009086229A3 (en
Inventor
Milo Aukerman
Wonkeun Park
Original Assignee
E. I. Du Pont De Nemours And Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E. I. Du Pont De Nemours And Company filed Critical E. I. Du Pont De Nemours And Company
Priority to MX2010006941A priority Critical patent/MX2010006941A/en
Priority to CA2710221A priority patent/CA2710221A1/en
Priority to CN200880127193.XA priority patent/CN101952443B/en
Priority to BRPI0819513-7A2A priority patent/BRPI0819513A2/en
Priority to EP08866008A priority patent/EP2229448A2/en
Publication of WO2009086229A2 publication Critical patent/WO2009086229A2/en
Publication of WO2009086229A3 publication Critical patent/WO2009086229A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance

Definitions

  • the field of invention relates to plant breeding and genetics and, in particular, relates to recombinant DNA constructs useful in plants for conferring tolerance to drought.
  • miRNAs play an important role in regulating gene activity. These 20-22 nucleotide noncoding RNAs have the ability to hybridize via base-pairing with specific target mRNAs and downregulate the expression of these transcripts, by mediating either RNA cleavage or translational repression. Recent studies have indicated that miRNAs have important functions during development. In plants, they have been shown to control a variety of developmental processes including flowering time, leaf morphology, organ polarity, floral morphology, and root development (reviewed by Mallory and Vaucheret (2006) Nat Genet 38: S31 -36). Given the established regulatory role of miRNAs, it is likely that they are also involved in the control of some of the major crop traits such drought tolerance and disease resistance.
  • Plant miRNAs are processed from longer precursor transcripts termed pre-miRNA that range in length from -50 to 500 nucleotides, and these precursors have the ability to form stable hairpin structures (reviewed by Bartel (2004) Cell 116: 281 -297). Many miRNA hairpin precursors originate as longer transcripts of 1 -2 kb or longer, termed ph-miRNA, that are polyadenylated and capped. This fact coupled with the detection of numerous ph-miRNAs in Expressed Sequence Tags (ESTs) libraries indicates that RNA polymerase Il is the enzyme responsible for miRNA gene transcription.
  • ESTs Expressed Sequence Tags
  • Transgenic experiments indicate that it is the structure rather than the sequence of the pre-miRNA that directs their correct processing and that the rest of the pri-miRNA is not required for the production of miRNAs. While pri- miRNAs are processed to pre-miRNAs by Drosha in the nucleus and Dicer cleaves pre-miRNAs in the cytoplasm in metazoans, miRNA maturation in plants differs from the pathway in animals because plants lack a Drosha homolog.
  • DCL1 RNase III enzyme DICER-LIKE 1
  • miRNA families have been identified in Arabidopsis (reviewed by Meyers et al. (2006) Curr Opin Biotech 17; 1 -8). Many of these miRNA sequences are represented by more than one locus, bringing the total number up to approximately 100. Because the particular miRNAs found by one lab are not generally overlapping with those found by another independent lab, it is assumed that the search for the entire set of miRNAs expressed by a given plant genome, the "miRNome,” is not yet complete. One reason for this might be that many miRNAs are expressed only under very specific conditions, and thus may have been missed by standard cloning efforts.
  • a complementary approach to standard miRNA cloning is computational prediction of miRNAs using available genomic and/or EST sequences, and several labs have reported finding novel Arabidopsis miRNAs in this manner (reviewed by Bonnet et al. (2006) New Phytol 171 :451 -468).
  • Using these computational approaches which rely in part on the observation that known miRNAs reside in hairpin precursors, hundreds of plant miRNAs have been predicted. However only a small fraction have been experimentally verified by Northern blot analysis.
  • most of these computational methods rely on comparisons between two representative genomes (e.g. Arabidopsis and rice) in order to find conserved intergenic regions, and thus are not suitable for identifying species-specific miRNAs, which may represent a substantial fraction of the miRNome of any given organism.
  • the invention includes a plant comprising in its genome a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory element, wherein said polynucleotide has a nucleic acid sequence of at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25, 26 or 27, and wherein said plant exhibits increased drought tolerance when compared to a control plant not comprising said recombinant DNA construct.
  • the plant may be a maize plant or a soybean plant.
  • the invention includes a plant comprising in its genome a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory element, wherein said polynucleotide encodes a modified plant miRNA precursor comprising a first and a second oligonucleotide, wherein at least one of the first or the second oligonucleotides is heterologous to the precursor, wherein the first oligonucleotide is substantially complementary to the second oligonucleotide, and the second oligonucleotide encodes a miRNA with 0, 1 , 2 or 3 mismatches to a sequence selected from the group consisting of SEQ ID NOs:3, 6, 9, 12, 15, 18, 21 , 24 and 27, and wherein said plant exhibits increased drought tolerance when compared to a control plant not comprising said recombinant DNA construct.
  • the plant may be a maize plant or a soybean plant.
  • the invention includes a method of increasing drought tolerance in a plant, comprising: (a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence, wherein the polynucleotide has a nucleic acid sequence of at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25, 26 or 27; and (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the recombinant DNA construct and exhibits increased drought tolerance when compared to a control plant not comprising the recombinant DNA construct.
  • the method may further comprise: (c) obtaining a progeny plant derived from the transgenic plant, wherein said progeny plant comprises in its genome the recombinant DNA construct and exhibits increased drought tolerance when compared to a control plant not comprising the recombinant DNA construct.
  • the invention includes a method of evaluating drought tolerance in a plant, comprising: (a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence, wherein the polynucleotide has a nucleic acid sequence of at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25, 26 or 27; (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the recombinant DNA construct; and (c) evaluating the transgenic plant for drought tolerance compared to a control plant not comprising the recombinant DNA construct.
  • the method may further comprise: (d) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the recombinant DNA construct; and (e) evaluating the progeny plant for drought tolerance compared to a control plant not comprising the recombinant DNA construct.
  • the invention includes a method of evaluating drought tolerance in a plant, comprising: (a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence, wherein the polynucleotide has a nucleic acid sequence of at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25, 26 or 27; (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the recombinant DNA construct; (c) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the recombinant DNA construct; and (d) evaluating drought tolerance in
  • the invention includes a method of determining an alteration of an agronomic characteristic in a plant, comprising: (a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence, wherein the polynucleotide has a nucleic acid sequence of at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25, 26 or 27; (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the recombinant DNA construct; and (c) determining whether the transgenic plant exhibits an alteration of at least one agronomic characteristic when compared to a control plant not comprising:
  • the method may further comprise: (d) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the recombinant DNA construct; and (e) determining whether the progeny plant exhibits an alteration of at least one agronomic characteristic when compared to a control plant not comprising the recombinant DNA construct. Additionally, said determining step (c) may comprise determining whether the transgenic plant exhibits an alteration of at least one agronomic characteristic when compared, under water limiting conditions, to a control plant not comprising the recombinant DNA construct.
  • said determining step (e) may comprise determining whether the progeny plant exhibits an alteration of at least one agronomic characteristic when compared, under water limiting conditions, to a control plant not comprising the recombinant DNA construct.
  • the invention includes a method of determining an alteration of an agronomic characteristic in a plant, comprising: (a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence, wherein the polynucleotide has a nucleic acid sequence of at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25, 26 or 27; (b) regenerating a transgenic plant from the regenerable plant
  • Said determining step (d) may further comprise determining whether the transgenic plant exhibits an alteration of at least one agronomic characteristic when compared, under water limiting conditions, to a control plant not comprising the recombinant DNA construct.
  • Figure 1 shows a schematic of the pBC vector (SEQ ID NO:40).
  • Figure 2 shows a map of the vector pDONRTM/Zeo (SEQ ID NO:41 ).
  • the attP1 site is at nucleotides 570-801 ; the attP2 site is at nucleotides 2754-2985 (complementary strand).
  • Figure 3 shows a map of the vector pDONRTM221 (SEQ ID NO:42).
  • the attP1 site is at nucleotides 570-801 ; the attP2 site is at nucleotides 2754-2985 (complementary strand).
  • Figure 4 shows a map of the vector pBC-yellow (SEQ ID NO:43), a destination vector for use in construction of expression vectors for Arabidopsis.
  • the attR1 site is at nucleotides 11276-11399 (complementary strand); the attR2 site is at nucleotides 9695-9819 (complementary strand).
  • Figure 5 shows a map of PHP27840 (SEQ ID NO:44), a destination vector for use in construction of expression vectors for soybean.
  • the attR1 site is at nucleotides 7310-7434; the attR2 site is at nucleotides 8890-9014.
  • Figure 6 shows a map of PHP23236 (SEQ ID NO:45), a destination vector for use in construction of expression vectors for Gaspe Flint derived maize lines.
  • the attR1 site is at nucleotides 2006-2130; the attR2 site is at nucleotides 2899- 3023.
  • Figure 7 shows a map of PHP10523 (SEQ ID NO:46), a plasmid DNA present in Agrobacterium strain LBA4404 ( Komari et al., Plant J. 10:165-174 (1996); NCBI General Identifier No. 59797027).
  • Figure 8 shows a map of PHP23235 (SEQ ID NO:47), a vector used to construct the destination vector PHP23236.
  • Figure 9 shows a map of PHP28647 (SEQ ID NO:48), a destination vector for use with maize inbred-derived lines.
  • the attR1 site is at nucleotides 2289-2413; the attR2 site is at nucleotides 3869-3993.
  • Figure 10 shows a Northern blot analysis of AtmiR827 overexpression lines 1 through 9, plus wild-type control (CoI-O)
  • Figure 11 shows drought tolerance of AtmiR827 overexpression line 2 when compared to control. Similar results were seen for line 1.
  • Figure 12 shows ABA hypersensitivity of germination inhibition for AtmiR827 overexpression line 2 when compared to the control (CoI-O).
  • SEQ ID NOs:1 - 39 are described in Table 1.
  • SEQ ID NO:40 is the nucleotide sequence of the 15.3 kb pBC vector.
  • SEQ ID NO:41 is the nucleotide sequence of the Gateway® donor vector pDONRTM/Zeo.
  • SEQ ID NO:42 is the nucleotide sequence of the Gateway® donor vector pDONRTM221.
  • SEQ ID NO:43 is the nucleotide sequence of pBC-yellow, a destination vector for use with Arabidopsis.
  • SEQ ID NO:44 is the nucleotide sequence of PHP27840, a destination vector for use with soybean.
  • SEQ ID NO:45 is the nucleotide sequence of PHP23236, a destination vector for use with Gaspe Flint derived maize lines.
  • SEQ ID NO:46 is the nucleotide sequence of PHP10523 (Komari et al., Plant J. 10:165-174 (1996); NCBI General Identifier No. 59797027).
  • SEQ ID NO:47 is the nucleotide sequence of PHP23235, a destination vector for use with Gaspe Flint derived lines.
  • SEQ ID NO:48 is the nucleotide sequence of PHP28647, a destination vector for use with maize inbred-derived lines.
  • SEQ ID NO:49 is the nucleotide sequence of the attB1 site.
  • SEQ ID NO:50 is the nucleotide sequence of the attB2 site.
  • SEQ ID NO:51 is the nucleotide sequence of the AtmiR827pre-5'attB forward primer, containing the attB1 sequence, used to amplify the At-miR827- coding region.
  • SEQ ID NO:52 is the nucleotide sequence of the AtmiR827pre-3'attB reverse primer, containing the attB2 sequence, used to amplify the At-miR827- coding region.
  • SEQ ID NO:53 is the nucleotide sequence of the VC062 primer, containing the T3 promoter and attB1 site, useful to amplify cDNA inserts cloned into a Blueschpt® Il SK(+) vector (Stratagene).
  • SEQ ID NO:54 is the nucleotide sequence of the VC063 primer, containing the T7 promoter and attB2 site, useful to amplify cDNA inserts cloned into a Blueschpt® Il SK(+) vector (Stratagene).
  • SEQ ID NO:55 is the nucleotide sequence of the 5' RNA adaptor used for RT-PCR of small RNAs
  • SEQ ID NO:56 is the nucleotide sequence of the 3' RNA adaptor used for RT-PCR of small RNAs.
  • the Sequence Listing contains the one letter code for nucleotide sequence characters and the three letter codes for amino acids as defined in conformity with the lUPAC-IUBMB standards described in Nucleic Acids Res. -/3:3021 -3030 (1985) and in the Biochemical J. 219 (No. 2 ⁇ :345-373 (1984) which are herein incorporated by reference.
  • the symbols and format used for nucleotide and amino acid sequence data comply with the rules set forth in 37 C. F. R. ⁇ 1.822.
  • Small RNAs play an important role in controlling gene expression. Regulation of many developmental processes including flowering is controlled by small RNAs. It is now possible to engineer changes in gene expression of plant genes by using transgenic constructs which produce small RNAs in the plant.
  • the invention provides methods and compositions useful for suppressing targeted sequences.
  • the compositions can be employed in any type of plant cell, and in other cells which comprise the appropriate processing components ⁇ e.g., RNA interference components), including invertebrate and vertebrate animal cells.
  • RNA interference components e.g., RNA interference components
  • the compositions and methods are based on an endogenous miRNA silencing process discovered in Arabidopsis, a similar strategy can be used to extend the number of compositions and the organisms in which the methods are used.
  • the methods can be adapted to work in any eukaryotic cell system. Additionally, the compositions and methods described herein can be used in individual cells, cells or tissue in culture, or in vivo in organisms, or in organs or other portions of organisms.
  • compositions selectively suppress the target sequence by encoding a miRNA having substantial complementarity to a region of the target sequence.
  • the miRNA is provided in a nucleic acid construct which, when transcribed into RNA, is predicted to form a hairpin structure which is processed by the cell to generate the miRNA, which then suppresses expression of the target sequence.
  • Nucleic acid sequences are disclosed that encode miRNAs from maize.
  • Backbone hairpins containing the individual miRNA sequences are also disclosed.
  • Constructs are described for transgenic expression of miRNAs and their backbones.
  • constructs are described wherein backbone sequences and miRNA sequences are exchanged thereby altering the expression pattern of the miRNA, and its subsequent specific target sequence in the transgenic host. Any miRNA can be exchanged with any other backbone to create a new miRNA/backbone hybrid.
  • a method for suppressing a target sequence employs any of the constructs above, in which a miRNA is designed to identify a region of the target sequence, and inserted into the construct. Upon introduction into a cell, the miRNA produced suppresses expression of the targeted sequence.
  • the target sequence can be an endogenous plant sequence, or a heterologous transgene in the plant. There can also be mentioned as the target gene, for example, a gene from a plant pathogen, such as a pathogenic virus, nematode, insect, or mold or fungus.
  • Another aspect of the invention concerns a plant, cell, and seed comprising the construct and/or the miRNA.
  • the cell will be a cell from a plant, but other prokaryotic or eukaryotic cells are also contemplated, including but not limited to viral, bacterial, yeast, insect, nematode, or animal cells.
  • Plant cells include cells from monocots and dicots.
  • the invention also provides plants and seeds comprising the construct and/or the miRNA.
  • miRNA and “miRNA”, used interchangeably herein, refer to an oligohbonucleic acid, which regulates expression of a polynucleotide comprising the target sequence.
  • a “mature miRNA” refers to the miRNA generated from the processing of a miRNA precursor.
  • a “miRNA template” is an oligonucleotide region, or regions, in a nucleic acid construct which encodes the miRNA.
  • the "backside” region of a miRNA is a portion of a polynucleotide construct which is substantially complementary to the miRNA template and is predicted to base pair with the miRNA template.
  • the miRNA template and backside may form a double- stranded polynucleotide, including a hairpin structure.
  • domain and “functional domain”, used interchangeably herein, refer to nucleic acid sequence(s) that are capable of eliciting a biological response in plants.
  • the present invention concerns miRNAs composed of at least 21 nucleotide sequences acting either individually, or in concert with other miRNA sequences, therefore a domain could refer to either individual miRNAs or groups of miRNAs.
  • miRNA sequences associated with their backbone sequences could be considered domains useful for processing the miRNA into its active form.
  • subdomains or “functional subdomains” refer to subsequences of domains that are capable of eliciting a biological response in plants.
  • a miRNA could be considered a subdomain of a backbone sequence.
  • Contiguous sequences or domains refer to sequences that are sequentially linked without added nucleotides intervening between the domains.
  • Target sequence is used to mean the nucleic acid sequence that is selected for alteration (e.g., suppression) of expression, and is not limited to polynucleotides encoding polypeptides.
  • the target sequence comprises a sequence that is substantially or fully complementary to the miRNA.
  • the target sequence includes, but is not limited to, RNA, DNA, or a polynucleotide comprising the target sequence. As discussed in Bartel and Bartel (2003) Plant Phys. 132:709- 719, most microRNA sequences are 20-22 nucleotides with anywhere from 0, 1 , 2 or 3 mismatches when compared to their target sequences.
  • the miRNA template (i.e. the polynucleotide encoding the miRNA), and thereby the miRNA, may comprise some mismatches relative to the target sequence.
  • the miRNA template has > 1 nucleotide mismatch as compared to the target sequence, for example, the miRNA template can have 1 , 2, 3, 4, 5, or more mismatches as compared to the target sequence. This degree of mismatch may also be described by determining the percent identity of the miRNA template to the complement of the target sequence.
  • the miRNA template may have a percent identity including about at least 70%, 75%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% as compared to the complement of the target sequence.
  • the miRNA template (i.e. the polynucleotide encoding the miRNA) and thereby the miRNA, may comprise some mismatches relative to the miRNA backside.
  • the miRNA template has > 1 nucleotide mismatch as compared to the miRNA backside, for example, the miRNA template can have 1 , 2, 3, 4, 5, or more mismatches as compared to the miRNA backside. This degree of mismatch may also be described by determining the percent identity of the miRNA template to the complement of the miRNA backside.
  • the miRNA template may have a percent identity including about at least 70%, 75%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% as compared to the complement of the miRNA backside.
  • EST is a DNA sequence derived from a cDNA library and therefore is a sequence which has been transcribed.
  • An EST is typically obtained by a single sequencing pass of a cDNA insert.
  • the sequence of an entire cDNA insert is termed the "Full-Insert Sequence” (“FIS").
  • FIS Frull-Insert Sequence
  • a "Contig” sequence is a sequence assembled from two or more sequences that can be selected from, but not limited to, the group consisting of an EST, FIS and PCR sequence.
  • a sequence encoding an entire or functional protein is termed a
  • CCS Complete Gene Sequence
  • Agronomic characteristic is a measurable parameter including but not limited to, greenness, yield, growth rate, biomass, fresh weight at maturation, dry weight at maturation, fruit yield, seed yield, total plant nitrogen content, fruit nitrogen content, seed nitrogen content, nitrogen content in a vegetative tissue, total plant free amino acid content, fruit free amino acid content, seed free amino acid content, free amino acid content in a vegetative tissue, total plant protein content, fruit protein content, seed protein content, protein content in a vegetative tissue, drought tolerance, nitrogen uptake, root lodging, harvest index, stalk lodging, plant height, ear height and ear length.
  • Transgenic refers to any cell, cell line, callus, tissue, plant part or plant, the genome of which has been altered by the presence of a heterologous nucleic acid, such as a recombinant DNA construct, including those initial transgenic events as well as those created by sexual crosses or asexual propagation from the initial transgenic event.
  • the term “transgenic” as used herein does not encompass the alteration of the genome (chromosomal or extra-chromosomal) by conventional plant breeding methods or by naturally occurring events such as random cross- fertilization, non-recombinant viral infection, non-recombinant bacterial transformation, non-recombinant transposition, or spontaneous mutation.
  • Gene as it applies to plant cells encompasses not only chromosomal
  • organelle DNA found within the nucleus, but organelle DNA found within subcellular components (e.g., mitochondrial, plastid) of the cell.
  • Plant includes reference to whole plants, plant organs, plant tissues, seeds and plant cells and progeny of same.
  • Plant cells include, without limitation, cells from seeds, suspension cultures, embryos, meristematic regions, callus tissue, leaves, roots, shoots, gametophytes, sporophytes, pollen, and microspores.
  • Progeny comprises any subsequent generation of a plant.
  • Transgenic plant includes reference to a plant which comprises within its genome a heterologous polynucleotide.
  • the heterologous polynucleotide is stably integrated within the genome such that the polynucleotide is passed on to successive generations.
  • the heterologous polynucleotide may be integrated into the genome alone or as part of a recombinant DNA construct.
  • Heterologous with respect to sequence means a sequence that originates from a foreign species, or, if from the same species, is substantially modified from its native form in composition and/or genomic locus by deliberate human intervention.
  • Polynucleotide “nucleic acid sequence”, “nucleotide sequence”, or “nucleic acid fragment” are used interchangeably and is a polymer of RNA or DNA that is single- or double-stranded, optionally containing synthetic, non-natural or altered nucleotide bases.
  • Nucleotides are referred to by their single letter designation as follows: “A” for adenylate or deoxyadenylate (for RNA or DNA, respectively), “C” for cytidylate or deoxycytidylate, “G” for guanylate or deoxyguanylate, “U” for uridylate, “T” for deoxythymidylate, “R” for purines (A or G), “Y” for pyrimidines (C or T), "K” for G or T, “H” for A or C or T, “I” for inosine, and “N” for any nucleotide.
  • Polypeptide”, “peptide”, “amino acid sequence” and “protein” are used interchangeably herein to refer to a polymer of amino acid residues. The terms apply to amino acid polymers in which one or more amino acid residue is an artificial chemical analogue of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers.
  • the terms “polypeptide”, “peptide”, “amino acid sequence”, and “protein” are also inclusive of modifications including, but not limited to, glycosylation, lipid attachment, sulfation, gamma- carboxylation of glutamic acid residues, hydroxylation and ADP-ribosylation.
  • mRNA essential RNA
  • mRNA RNA that is without introns and that can be translated into protein by the cell.
  • cDNA refers to a DNA that is complementary to and synthesized from a mRNA template using the enzyme reverse transcriptase.
  • the cDNA can be single- stranded or converted into the double-stranded form using the Klenow fragment of DNA polymerase I.
  • Meture protein refers to a post-translationally processed polypeptide; i.e., one from which any pre- or pro-peptides present in the primary translation product have been removed.
  • Precursor protein refers to the primary product of translation of mRNA; i.e., with pre- and pro-peptides still present. Pre- and pro-peptides may be and are not limited to intracellular localization signals.
  • Isolated refers to materials, such as nucleic acid molecules and/or proteins, which are substantially free or otherwise removed from components that normally accompany or interact with the materials in a naturally occurring environment. Isolated polynucleotides may be purified from a host cell in which they naturally occur. Conventional nucleic acid purification methods known to skilled artisans may be used to obtain isolated polynucleotides. The term also embraces recombinant polynucleotides and chemically synthesized polynucleotides.
  • Recombinant refers to an artificial combination of two otherwise separated segments of sequence, e.g., by chemical synthesis or by the manipulation of isolated segments of nucleic acids by genetic engineering techniques. "Recombinant” also includes reference to a cell or vector, that has been modified by the introduction of a heterologous nucleic acid or a cell derived from a cell so modified, but does not encompass the alteration of the cell or vector by naturally occurring events (e.g., spontaneous mutation, natural transformation/transduction/transposition) such as those occurring without deliberate human intervention.
  • naturally occurring events e.g., spontaneous mutation, natural transformation/transduction/transposition
  • Recombinant DNA construct refers to a combination of nucleic acid fragments that are not normally found together in nature. Accordingly, a recombinant DNA construct may comprise regulatory sequences and coding sequences that are derived from different sources, or regulatory sequences and coding sequences derived from the same source, but arranged in a manner different than that normally found in nature.
  • regulatory sequences refer to nucleotide sequences located upstream
  • regulatory sequences may include, but are not limited to, promoters, translation leader sequences, introns, and polyadenylation recognition sequences.
  • regulatory sequence and “regulatory element” are used interchangeably herein.
  • Promoter refers to a nucleic acid fragment capable of controlling transcription of another nucleic acid fragment.
  • Promoter functional in a plant is a promoter capable of controlling transcription in plant cells whether or not its origin is from a plant cell.
  • tissue-specific promoter and “tissue-preferred promoter” are used interchangeably, and refer to a promoter that is expressed predominantly but not necessarily exclusively in one tissue or organ, but that may also be expressed in one specific cell.
  • “Developmentally regulated promoter” refers to a promoter whose activity is determined by developmental events.
  • “Operably linked” refers to the association of nucleic acid fragments in a single fragment so that the function of one is regulated by the other.
  • a promoter is operably linked with a nucleic acid fragment when it is capable of regulating the transcription of that nucleic acid fragment.
  • “Expression” refers to the production of a functional product.
  • expression of a nucleic acid fragment may refer to transcription of the nucleic acid fragment (e.g., transcription resulting in mRNA or functional RNA) and/or translation of mRNA into a precursor or mature protein.
  • Phenotype means the detectable characteristics of a cell or organism.
  • “Introduced” in the context of inserting a nucleic acid fragment (e.g., a recombinant DNA construct) into a cell means “transfection” or “transformation” or “transduction” and includes reference to the incorporation of a nucleic acid fragment into a eukaryotic or prokaryotic cell where the nucleic acid fragment may be incorporated into the genome of the cell (e.g., chromosome, plasmid, plastid or mitochondrial DNA), converted into an autonomous replicon, or transiently expressed (e.g., transfected mRNA).
  • a "transformed cell” is any cell into which a nucleic acid fragment (e.g., a recombinant DNA construct) has been introduced.
  • Transformation refers to both stable transformation and transient transformation.
  • Stable transformation refers to the introduction of a nucleic acid fragment into a genome of a host organism resulting in genetically stable inheritance. Once stably transformed, the nucleic acid fragment is stably integrated in the genome of the host organism and any subsequent generation.
  • Transient transformation refers to the introduction of a nucleic acid fragment into the nucleus, or DNA-containing organelle, of a host organism resulting in gene expression without genetically stable inheritance.
  • Allele is one of several alternative forms of a gene occupying a given locus on a chromosome.
  • the alleles present at a given locus on a pair of homologous chromosomes in a diploid plant are the same that plant is homozygous at that locus. If the alleles present at a given locus on a pair of homologous chromosomes in a diploid plant differ that plant is heterozygous at that locus. If a transgene is present on one of a pair of homologous chromosomes in a diploid plant that plant is hemizygous at that locus.
  • DIAGONALS SAVED 4.
  • Standard recombinant DNA and molecular cloning techniques used herein are well known in the art and are described more fully in Sambrook, J., Fritsch, E. F. and Maniatis, T. Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, 1989 (hereinafter "Sambrook”).
  • Embodiments include isolated polynucleotides and polypeptides, recombinant DNA constructs useful for conferring drought tolerance, compositions (such as plants or seeds) comprising these recombinant DNA constructs, and methods utilizing these recombinant DNA constructs.
  • the present invention includes the following isolated polynucleotides and polypeptides:
  • An isolated polynucleotide comprising: (i) a nucleic acid sequence having at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25, 26 or 27; or (ii) a full complement of the nucleic acid
  • polypeptide having an amino acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:29, 31 , 33, 35, 37 or 39.
  • the polypeptide is preferably a SPX/MFS or an SPX/RING protein.
  • a recombinant DNA construct comprises a polynucleotide operably linked to at least one regulatory sequence (e.g., a promoter functional in a plant), wherein the polynucleotide comprises (i) a nucleic acid sequence having at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based
  • a recombinant DNA construct comprises a polynucleotide operably linked to at least one regulatory sequence (e.g., a promoter functional in a plant), wherein said polynucleotide encodes a miR827 sequence.
  • the miR827 sequence is from Arabidopsis thaliana, Zea mays, Glycine max, Glycine tabacina, Glycine soja and Glycine tomentella.
  • a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory element (e.g., a promoter functional in a plant), wherein said polynucleotide encodes a modified plant miRNA precursor comprising a first and a second oligonucleotide, wherein at least one of the first or the second oligonucleotides is heterologous to the precursor, wherein the first oligonucleotide is substantially complementary to the second oligonucleotide, and the second oligonucleotide encodes a miRNA with 0, 1 , 2 or 3 mismatches to a sequence selected from the group consisting of SEQ ID NOs:3, 6, 9, 12, 15, 18, 21 , 24 and 27, and wherein said plant exhibits increased drought tolerance when compared to a control plant not comprising said recombinant DNA construct.
  • a regulatory element e.g., a promoter functional in a plant
  • the present invention includes suppression DNA constructs.
  • a suppression DNA construct may comprise at least one regulatory sequence (for example, a promoter functional in a plant) operably linked to (a) all or part of: (i) a nucleic acid sequence having a sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:28, 30, 32, 34, 36 or 38, or (ii) a full complement of
  • the suppression DNA construct may comprise a cosuppression construct, antisense construct, viral-suppression construct, hairpin suppression construct, stem-loop suppression construct, double- stranded RNA-producing construct, RNAi construct, or small RNA construct (e.g., an siRNA construct or an miRNA construct).
  • a codon for the amino acid alanine, a hydrophobic amino acid may be substituted by a codon encoding another less hydrophobic residue, such as glycine, or a more hydrophobic residue, such as valine, leucine, or isoleucine.
  • “Suppression DNA construct” is a recombinant DNA construct which when transformed or stably integrated into the genome of the plant, results in “silencing" of a target gene in the plant.
  • the target gene may be endogenous or transgenic to the plant.
  • “Silencing,” as used herein with respect to the target gene refers generally to the suppression of levels of mRNA or protein/enzyme expressed by the target gene, and/or the level of the enzyme activity or protein functionality.
  • the terms “suppression”, “suppressing” and “silencing”, used interchangeably herein, include lowering, reducing, declining, decreasing, inhibiting, eliminating or preventing.
  • “Silencing” or “gene silencing” does not specify mechanism and is inclusive, and not limited to, anti-sense, cosuppression, viral-suppression, hairpin suppression, stem-loop suppression, RNAi-based approaches, and small RNA- based approaches.
  • a suppression DNA construct may comprise a region derived from a target gene of interest and may comprise all or part of the nucleic acid sequence of the sense strand (or antisense strand) of the target gene of interest.
  • the region may be 100% identical or less than 100% identical (e.g., at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical) to all or part of the sense strand (or antisense strand) of the gene of the gene of the gene of
  • Suppression DNA constructs are well-known in the art, are readily constructed once the target gene of interest is selected, and include, without limitation, cosuppression constructs, antisense constructs, viral-suppression constructs, hairpin suppression constructs, stem-loop suppression constructs, double-stranded RNA-producing constructs, and more generally, RNAi (RNA interference) constructs and small RNA constructs such as siRNA (short interfering RNA) constructs and miRNA (microRNA) constructs.
  • cosuppression constructs include, without limitation, cosuppression constructs, antisense constructs, viral-suppression constructs, hairpin suppression constructs, stem-loop suppression constructs, double-stranded RNA-producing constructs, and more generally, RNAi (RNA interference) constructs and small RNA constructs such as siRNA (short interfering RNA) constructs and miRNA (microRNA) constructs.
  • cosuppression constructs include, without limitation, cosuppression constructs, antisense constructs, viral
  • Antisense inhibition refers to the production of antisense RNA transcripts capable of suppressing the expression of the target gene or gene product.
  • Antisense RNA refers to an RNA transcript that is complementary to all or part of a target primary transcript or mRNA and that blocks the expression of a target isolated nucleic acid fragment (U.S. Patent No. 5,107,065). The complementarity of an antisense RNA may be with any part of the specific gene transcript, i.e., at the 5' non-coding sequence, 3' non-coding sequence, introns, or the coding sequence. "Cosuppression” refers to the production of sense RNA transcripts capable of suppressing the expression of the target gene or gene product. "Sense” RNA refers to RNA transcript that includes the mRNA and can be translated into protein within a cell or in vitro.
  • Cosuppression constructs in plants have been previously designed by focusing on overexpression of a nucleic acid sequence having homology to a native mRNA, in the sense orientation, which results in the reduction of all RNA having homology to the overexpressed sequence (see Vaucheret et al., Plant J. 16:651 -659 (1998); and Gura, Nature 404:804-808 (2000)).
  • Yet another variation includes using synthetic repeats to promote formation of a stem in the stem-loop structure.
  • Transgenic organisms prepared with such recombinant DNA fragments have been shown to have reduced levels of the protein encoded by the nucleotide fragment forming the loop as described in PCT Publication No. WO 02/00904, published January 3, 2002.
  • RNA interference refers to the process of sequence-specific post- transcriptional gene silencing in animals mediated by short interfering RNAs
  • RNA silencing (siRNAs) (Fire et al., Nature 391 :806 (1998)).
  • PTGS post-transchptional gene silencing
  • quelling in fungi.
  • the process of post- transchptional gene silencing is thought to be an evolutionahly-conserved cellular defense mechanism used to prevent the expression of foreign genes and is commonly shared by diverse flora and phyla (Fire et al., Trends Genet. 15:358 (1999)).
  • Such protection from foreign gene expression may have evolved in response to the production of double-stranded RNAs (dsRNAs) derived from viral infection or from the random integration of transposon elements into a host genome via a cellular response that specifically destroys homologous single-stranded RNA of viral genomic RNA.
  • dsRNAs double-stranded RNAs
  • the presence of dsRNA in cells triggers the RNAi response through a mechanism that has yet to be fully characterized.
  • dsRNAs short interfering RNAs
  • dicer a hbonuclease III enzyme referred to as dicer.
  • Dicer is involved in the processing of the dsRNA into short pieces of dsRNA known as short interfering RNAs (siRNAs) (Berstein et al., Nature 409:363 (2001 )).
  • Short interfering RNAs derived from dicer activity are typically about 21 to about 23 nucleotides in length and comprise about 19 base pair duplexes (Elbashir et al., Genes Dev. 15:188 (2001 )).
  • Dicer has also been implicated in the excision of 21- and 22-nucleotide small temporal RNAs (stRNAs) from precursor RNA of conserved structure that are implicated in translational control (Hutvagner et al., Science 293:834 (2001 )).
  • the RNAi response also features an endonuclease complex, commonly referred to as an RNA-induced silencing complex (RISC), which mediates cleavage of single- stranded RNA having sequence complementarity to the antisense strand of the siRNA duplex. Cleavage of the target RNA takes place in the middle of the region complementary to the antisense strand of the siRNA duplex.
  • RISC RNA-induced silencing complex
  • RNA interference can also involve small RNA (e.g., miRNA) mediated gene silencing, presumably through cellular mechanisms that regulate chromatin structure and thereby prevent transcription of target gene sequences (see, e.g., Allshire, Science 297:1818-1819 (2002); Volpe et al., Science 297:1833-1837 (2002); Jenuwein, Science 297:2215-2218 (2002); and Hall et al., Science 297:2232-2237 (2002)).
  • miRNA molecules of the invention can be used to mediate gene silencing via interaction with RNA transcripts or alternately by interaction with particular gene sequences, wherein such interaction results in gene silencing either at the transcriptional or post-transcriptional level.
  • RNAi has been studied in a variety of systems. Fire et al. (Nature 391 :806 (1998)) were the first to observe RNAi in Caenorhabditis elegans. Wianny and Goetz ⁇ Nature Cell Biol. 2:70 (1999)) describe RNAi mediated by dsRNA in mouse embryos. Hammond et al. (Nature 404:293 (2000)) describe RNAi in Drosophila cells transfected with dsRNA.
  • Small RNAs play an important role in controlling gene expression.
  • RNAs Regulation of many developmental processes, including flowering, is controlled by small RNAs. It is now possible to engineer changes in gene expression of plant genes by using transgenic constructs which produce small RNAs in the plant.
  • Small RNAs appear to function by base-pairing to complementary RNA or DNA target sequences. When bound to RNA, small RNAs trigger either RNA cleavage or translational inhibition of the target sequence. When bound to DNA target sequences, it is thought that small RNAs can mediate DNA methylation of the target sequence. The consequence of these events, regardless of the specific mechanism, is that gene expression is inhibited. It is thought that sequence complementarity between small RNAs and their
  • RNA targets helps to determine which mechanism, RNA cleavage or translational inhibition, is employed. It is believed that siRNAs T which are perfectly complementary with their targets, work by RNA cleavage. Some miRNAs have perfect or near-perfect complementarity with their targets, and RNA cleavage has been demonstrated for at least a few of these miRNAs. Other miRNAs have several mismatches with their targets, and apparently inhibit their targets at the translational level. Again, without being held to a particular theory on the mechanism of action, a general rule is emerging that perfect or near-perfect complementarity causes RNA cleavage, whereas translational inhibition is favored when the miRNA/target duplex contains many mismatches.
  • miR172 microRNA 172 in plants.
  • One of the targets of miR172 is APETALA2 (AP2), and although miR172 shares near-perfect complementarity with AP2 it appears to cause translational inhibition of AP2 rather than RNA cleavage.
  • AP2 APETALA2
  • MicroRNAs are noncoding RNAs of about 19 to about 24 nucleotides (nt) in length that have been identified in both animals and plants (Lagos-Quintana et al., Science 294:853-858 (2001 ), Lagos-Quintana et al., Curr. Biol. 12:735-739 (2002); Lau et al., Science 294:858-862 (2001 ); Lee and Ambros, Science 294:862-864 (2001 ); Llave et al., Plant Cell 14:1605-1619 (2002); Mourelatos et al., Genes. Dev. 16:720-728 (2002); Park et al., Curr. Biol.
  • RNAse Ill-like protein (Grishok et al., Ce// 106:23-34 (2001 ); Hutvagner et al., Science 293:834-838 (2001 ); Ketting et al., Genes. Dev. 15:2654- 2659 (2001 )).
  • Plants also have a dicer-like enzyme, DCL1 (previously named CARPEL FACTORY/SHORT I NTEG U M E NTS 1/ SUSPENSOR1 ), and recent evidence indicates that it, like dicer, is involved in processing the hairpin precursors to generate mature miRNAs (Park et al., Curr. Biol. 12:1484-1495 (2002); Reinhart et al., Genes Dev. 16:1616-1626 (2002)).
  • DCL1 dicer-like enzyme
  • G:C versus A:U content, and/or mismatches affects the strand selection, with the low stability end being easier to unwind by a helicase activity.
  • the 5' end strand at the low stability end is incorporated into the RISC complex, while the other strand is degraded.
  • MicroRNAs appear to regulate target genes by binding to complementary sequences located in the transcripts produced by these genes.
  • the target sites are located in the 3' UTRs of the target mRNAs (Lee et al., Ce// 75:843-854 (1993); Wightman et al., Ce// 75:855-862 (1993); Reinhart et al., Nature 403:901 -906 (2000); Slack et al., MoI. Ce// 5:659-669 (2000)), and there are several mismatches between the lin-4 and let-7 miRNAs and their target sites.
  • Binding of the lin-4 or let-7 miRNA appears to cause downregulation of steady-state levels of the protein encoded by the target mRNA without affecting the transcript itself (Olsen and Ambros, Dev. Biol. 216:671 -680 (1999)).
  • miRNAs can in some cases cause specific RNA cleavage of the target transcript within the target site, and this cleavage step appears to require 100% complementarity between the miRNA and the target transcript (Hutvagner and Zamore, Science 297:2056-2060 (2002); Llave et al., Plant Cell 14:1605-1619 (2002)).
  • miRNAs can enter at least two pathways of target gene regulation: (1 ) protein downregulation when target complementarity is ⁇ 100%; and (2) RNA cleavage when target complementarity is 100%.
  • MicroRNAs entering the RNA cleavage pathway are analogous to the 21 -25 nt short interfering RNAs (siRNAs) generated during RNA interference (RNAi) in animals and posttranscriptional gene silencing (PTGS) in plants, and likely are incorporated into an RNA-induced silencing complex (RISC) that is similar or identical to that seen for RNAi.
  • siRNAs short interfering RNAs
  • PTGS posttranscriptional gene silencing
  • RISC RNA-induced silencing complex
  • a recombinant DNA construct (including a suppression DNA construct) of the present invention comprises at least one regulatory sequence.
  • a regulatory sequence may be a promoter.
  • a number of promoters can be used in recombinant DNA constructs of the present invention.
  • the promoters can be selected based on the desired outcome, and may include constitutive, tissue-specific, inducible, or other promoters for expression in the host organism.
  • Suitable constitutive promoters for use in a plant host cell include, for example, the core promoter of the Rsyn7 promoter and other constitutive promoters disclosed in WO 99/43838 and U.S. Patent No.
  • ALS promoter U.S. Patent No. 5,659,026
  • Other constitutive promoters include, for example, those discussed in U.S. Patent Nos. 5,608,149; 5,608,144; 5,604,121 ; 5,569,597; 5,466,785; 5,399,680; 5,268,463; 5,608,142; and 6,177,611.
  • tissue-specific or developmentally regulated promoter it may be desirable to use a tissue-specific or developmentally regulated promoter.
  • a preferred tissue-specific or developmentally regulated promoter is a DNA sequence which regulates the expression of a DNA sequence selectively in the cells/tissues of a plant critical to tassel development, seed set, or both, and limits the expression of such a DNA sequence to the period of tassel development or seed maturation in the plant. Any identifiable promoter may be used in the methods of the present invention which causes the desired temporal and spatial expression.
  • Promoters which are seed or embryo-specific and may be useful in the invention include soybean Kunitz trypsin inhibitor (Kti3, Jofuku and Goldberg, Plant Cell 1 :1079-1093 (1989)), patatin (potato tubers) (Rocha-Sosa, M., et al. (1989) EMBO J. 8:23-29), convicilin, vicilin, and legumin (pea cotyledons) (Rerie, W.G., et al. (1991 ) MoI. Gen. Genet. 259:149-157; Newbigin, E.J., et al. (1990) Planta 180:461 -470; Higgins, T.J.V., et al.
  • Promoters of seed-specific genes operably linked to heterologous coding regions in chimeric gene constructions maintain their temporal and spatial expression pattern in transgenic plants.
  • Such examples include Arabidopsis thaliana 2S seed storage protein gene promoter to express enkephalin peptides in Arabidopsis and Brassica napus seeds (Vanderkerckhove et al., Bio/Technology 7:L929-932 (1989)), bean lectin and bean beta-phaseolin promoters to express luciferase (Riggs et al., Plant Sci. 63:47-57 (1989)), and wheat glutenin promoters to express chloramphenicol acetyl transferase (Colot et al., EMBO J 6:3559- 3564 (1987)).
  • Inducible promoters selectively express an operably linked DNA sequence in response to the presence of an endogenous or exogenous stimulus, for example by chemical compounds (chemical inducers) or in response to environmental, hormonal, chemical, and/or developmental signals.
  • Inducible or regulated promoters include, for example, promoters regulated by light, heat, stress, flooding or drought, phytohormones, wounding, or chemicals such as ethanol, jasmonate, salicylic acid, or safeners.
  • Promoters for use in the instant invention may include the following: 1 ) the stress-inducible RD29A promoter (Kasuga et al. (1999) Nature Biotechnol.
  • Zag2 transcripts can be detected 5 days prior to pollination to 7 to 8 days after pollination ("DAP"), and directs expression in the carpel of developing female inflorescences and Ciml which is specific to the nucleus of developing maize kernels. Ciml transcript is detected 4 to 5 days before pollination to 6 to 8 DAP.
  • DAP pollination
  • Other useful promoters include any promoter which can be derived from a gene whose expression is maternally associated with developing female florets.
  • Additional promoters for regulating the expression of the nucleotide sequences of the present invention in plants are stalk-specific promoters.
  • Such stalk-specific promoters include the alfalfa S2A promoter (GenBank Accession No. EF030816; Abrahams et al., Plant MoI. Biol. 27:513-528 (1995)) and S2B promoter (GenBank Accession No. EF030817) and the like, herein incorporated by reference.
  • Promoters may be derived in their entirety from a native gene, or be composed of different elements derived from different promoters found in nature, or even comprise synthetic DNA segments. It is understood by those skilled in the art that different promoters may direct the expression of a gene in different tissues or cell types, or at different stages of development, or in response to different environmental conditions. It is further recognized that since in most cases the exact boundaries of regulatory sequences have not been completely defined, DNA fragments of some variation may have identical promoter activity. Promoters that cause a gene to be expressed in most cell types at most times are commonly referred to as "constitutive promoters". New promoters of various types useful in plant cells are constantly being discovered; numerous examples may be found in the compilation by Okamuro, J. K., and Goldberg, R. B., Biochemistry of Plants 15:1 -82 (1989).
  • Additional promoters may include: RIP2, ml_IP15, ZmCORI , Rab17, CaMV 35S, RD29A, B22E, Zag2, SAM synthetase, ubiquitin, CaMV 19S, nos, Adh, sucrose synthase, R-allele, the vascular tissue preferred promoters S2A (Genbank accession number EF030816) and S2B (Genbank accession number EF030817), and the constitutive promoter GOS2 from Zea mays.
  • promoters may include root preferred promoters, such as the maize NAS2 promoter, the maize Cyclo promoter (US 2006/0156439, published July 13, 2006), the maize ROOTMET2 promoter (WO05063998, published July 14, 2005), the CR1 BIO promoter (WO06055487, published May 26, 2006), the CRWAQ81 (WO05035770, published April 21 , 2005) and the maize ZRP2.47 promoter (NCBI accession number: U38790; GI No. 1063664), Recombinant DNA constructs of the present invention may also include other regulatory sequences, including but not limited to, translation leader sequences, introns, and polyadenylation recognition sequences.
  • a recombinant DNA construct of the present invention further comprises an enhancer or silencer.
  • An intron sequence can be added to the 5' untranslated region, the protein- coding region or the 3' untranslated region to increase the amount of the mature message that accumulates in the cytosol.
  • Inclusion of a spliceable intron in the transcription unit in both plant and animal expression constructs has been shown to increase gene expression at both the mRNA and protein levels up to 1000-fold. Buchman and Berg, MoI. Cell Biol. 8:4395-4405 (1988); CaIMs et al., Genes Dev. 1 :1183-1200 (1987).
  • Such intron enhancement of gene expression is typically greatest when placed near the 5' end of the transcription unit.
  • Use of maize introns AdM -S intron 1 , 2, and 6, the Bronze-1 intron are known in the art. See generally, The Maize Handbook, Chapter 116, Freeling and Walbot, Eds., Springer, New York (1994).
  • polypeptide expression it is generally desirable to include a polyadenylation region at the 3'-end of a polynucleotide coding region.
  • the polyadenylation region can be derived from the natural gene, from a variety of other plant genes, or from T-DNA.
  • the 3' end sequence to be added can be derived from, for example, the nopaline synthase or octopine synthase genes, or alternatively from another plant gene, or from any other eukaryotic gene.
  • a translation leader sequence is a DNA sequence located between the promoter sequence of a gene and the coding sequence.
  • the translation leader sequence is present in the fully processed mRNA upstream of the translation start sequence.
  • the translation leader sequence may affect processing of the primary transcript to mRNA, mRNA stability or translation efficiency. Examples of translation leader sequences have been described (Turner, R. and Foster, G. D. (1995) Molecular Biotechnology 3:225).
  • Any plant can be selected for the identification of regulatory sequences and miR827 sequences to be used in recombinant DNA constructs of the present invention.
  • suitable plant targets for the isolation of genes and regulatory sequences would include but are not limited to alfalfa, apple, apricot, Arabidopsis, artichoke, arugula, asparagus, avocado, banana, barley, beans, beet, blackberry, blueberry, broccoli, brussels sprouts, cabbage, canola, cantaloupe, carrot, cassava, castorbean, cauliflower, celery, cherry, chicory, cilantro, citrus, Clementines, clover, coconut, coffee, corn, cotton, cranberry, cucumber, Douglas fir, eggplant, endive, escarole, eucalyptus, fennel, figs, garlic, gourd, grape, grapefruit, honey dew, jicama, kiwifruit, lettuce, leeks, lemon, lime, Loblolly pine, linseed
  • compositions are a plant comprising in its genome any of the recombinant DNA constructs (including any of the suppression DNA constructs) of the present invention (such as any of the constructs discussed above).
  • Compositions also include any progeny of the plant, and any seed obtained from the plant or its progeny, wherein the progeny or seed comprises within its genome the recombinant DNA construct (or suppression DNA construct).
  • Progeny includes subsequent generations obtained by self-pollination or outcrossing of a plant.
  • Progeny also includes hybrids and inbreds. In hybrid seed propagated crops, mature transgenic plants can be self- pollinated to produce a homozygous inbred plant.
  • the inbred plant produces seed containing the newly introduced recombinant DNA construct (or suppression DNA construct). These seeds can be grown to produce plants that would exhibit an altered agronomic characteristic (e.g., an increased agronomic characteristic, optionally under water limiting conditions), or used in a breeding program to produce hybrid seed, which can be grown to produce plants that would exhibit such an altered agronomic characteristic.
  • the seeds may be maize seeds.
  • the plant may be a monocotyledonous or dicotyledonous plant, for example, a maize or soybean plant, such as a maize hybrid plant or a maize inbred plant.
  • the plant may also be sunflower, sorghum, canola, wheat, alfalfa, cotton, rice, barley or millet.
  • the recombinant DNA construct may be stably integrated into the genome of the plant.
  • Embodiments include but are not limited to the embodiments: 1.
  • a plant for example, a maize or soybean plant
  • a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence, wherein said polynucleotide has a sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to
  • the plant further exhibits an alteration of at least one agronomic characteristic when compared to the control plant.
  • a plant for example, a maize or soybean plant
  • comprising in its genome a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence, wherein said polynucleotide encodes a miR827 sequence, and wherein said plant exhibits increased drought tolerance when compared to a control plant not comprising said recombinant DNA construct.
  • the plant further may exhibit an alteration of at least one agronomic characteristic when compared to the control plant.
  • a plant for example, a maize or soybean plant comprising in its genome a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence, wherein said polynucleotide encodes a miR827 sequence, and wherein said plant exhibits an alteration of at least one agronomic characteristic when compared to a control plant not comprising said recombinant DNA construct.
  • a plant for example, a maize or soybean plant
  • a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory element, wherein said polynucleotide has a sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:1 , 2, 3, 4, 5, 6, 7,
  • a plant for example, a maize or soybean plant
  • a suppression DNA construct comprising at least one regulatory element operably linked to a region derived from all or part of a sense strand or antisense strand of a target gene of interest, said region having a nucleic acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to said all or
  • a plant for example, a maize or soybean plant
  • a suppression DNA construct comprising at least one regulatory element operably linked to all or part of (a) a nucleic acid sequence having a sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:28, 30, 32, 34, 36 or 38, or (b) a full complement
  • a plant for example, a maize or soybean plant comprising in its genome a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory element, wherein said polynucleotide encodes a modified plant miRNA precursor comprising a first and a second oligonucleotide, wherein at least one of the first or the second oligonucleotides is heterologous to the precursor, wherein the first oligonucleotide is substantially complementary to the second oligonucleotide, and the second oligonucleotide encodes a miRNA with 0, 1 , 2 or 3 mismatches to a sequence selected from the group consisting of SEQ ID NOs:3, 6, 9, 12, 15, 18, 21 , 24 and 27, and wherein said plant exhibits increased drought tolerance when compared to a control plant not comprising said recombinant DNA construct.
  • the miR827 sequence may be from Arabidopsis thaliana, Zea mays, Glycine max, Glycine tabacina, Glycine soja or Glycine tomentella.
  • the recombinant DNA construct may comprise at least a promoter functional in a plant as a regulatory sequence.
  • the alteration of at least one agronomic characteristic is either an increase or decrease.
  • the at least one agronomic characteristic may be selected from the group consisting of greenness, yield, growth rate, biomass, fresh weight at maturation, dry weight at maturation, fruit yield, seed yield, total plant nitrogen content, fruit nitrogen content, seed nitrogen content, nitrogen content in a vegetative tissue, total plant free amino acid content, fruit free amino acid content, seed free amino acid content, free amino acid content in a vegetative tissue, total plant protein content, fruit protein content, seed protein content, protein content in a vegetative tissue, drought tolerance, nitrogen uptake, root lodging, harvest index, stalk lodging, plant height, ear height and ear length.
  • the alteration of at least one agronomic characteristic may be an increase in yield, greenness or biomass.
  • the plant may exhibit the alteration of at least one agronomic characteristic when compared, under water limiting conditions, to a control plant not comprising said recombinant DNA construct (or said suppression DNA construct).
  • “Drought” refers to a decrease in water availability to a plant that, especially when prolonged, can cause damage to the plant or prevent its successful growth (e.g., limiting plant growth or seed yield).
  • “Drought tolerance” is a trait of a plant to survive under drought conditions over prolonged periods of time without exhibiting substantial physiological or physical deterioration.
  • “Increased drought tolerance” of a plant is measured relative to a reference or control plant, and is a trait of the plant to survive under drought conditions over prolonged periods of time, without exhibiting the same degree of physiological or physical deterioration relative to the reference or control plant grown under similar drought conditions.
  • the reference or control plant does not comprise in its genome the recombinant DNA construct or suppression DNA construct.
  • One of ordinary skill in the art is familiar with protocols for simulating drought conditions and for evaluating drought tolerance of plants that have been subjected to simulated or naturally-occurring drought conditions. For example, one can simulate drought conditions by giving plants less water than normally required or no water over a period of time, and one can evaluate drought tolerance by looking for differences in physiological and/or physical condition, including (but not limited to) vigor, growth, size, or root length, or in particular, leaf color or leaf area size. Other techniques for evaluating drought tolerance include measuring chlorophyll fluorescence, photosynthetic rates and gas exchange rates.
  • a drought stress experiment may involve a chronic stress (i.e., slow dry down) and/or may involve two acute stresses (i.e., abrupt removal of water) separated by a day or two of recovery.
  • Chronic stress may last 8 - 10 days.
  • Acute stress may last 3 - 5 days.
  • the following variables may be measured during drought stress and well watered treatments of transgenic plants and relevant control plants:
  • variable "% area chg_start chronic - acute2" is a measure of the percent change in total area determined by remote visible spectrum imaging between the first day of chronic stress and the day of the second acute stress
  • variable "% area chg_start chronic - end chronic” is a measure of the percent change in total area determined by remote visible spectrum imaging between the first day of chronic stress and the last day of chronic stress
  • variable "% area chg_start chronic - harvest” is a measure of the percent change in total area determined by remote visible spectrum imaging between the first day of chronic stress and the day of harvest
  • variable "% area chg_start chronic - recovery24hr” is a measure of the percent change in total area determined by remote visible spectrum imaging between the first day of chronic stress and 24 hrs into the recovery (24hrs after acute stress 2)
  • variable "psii_acute1 " is a measure of Photosystem Il (PSII) efficiency at the end of the first acute stress period. It provides an estimate of the efficiency at which light is absorbed by PSII antennae and is directly related to carbon dioxide assimilation within the leaf.
  • PSII Photosystem Il
  • variable "psii_acute2" is a measure of Photosystem Il (PSII) efficiency at the end of the second acute stress period. It provides an estimate of the efficiency at which light is absorbed by PSII antennae and is directly related to carbon dioxide assimilation within the leaf.
  • PSII Photosystem Il
  • variable "fv/fm_acute1" is a measure of the optimum quantum yield (Fv/Fm) at the end of the first acute stress - (variable fluorescence difference between the maximum and minimum fluorescence / maximum fluorescence)
  • variable "fv/fm_acute2" is a measure of the optimum quantum yield (Fv/Fm) at the end of the second acute stress - (variable flourescence difference between the maximum and minimum fluorescence / maximum fluorescence)
  • the variable "leaf rollingjiarvest” is a measure of the ratio of top image to side image on the day of harvest.
  • the variable "leaf rolling_recovery24hr” is a measure of the ratio of top image to side image 24 hours into the recovery.
  • SGR Specific Growth Rate
  • Y(t) Y0 * e ).
  • the variable "shoot dry weight” is a measure of the shoot weight 96 hours after being placed into a 104 0 C oven
  • the variable "shoot fresh weight” is a measure of the shoot weight immediately after being cut from the plant.
  • the Examples below describe some representative protocols and techniques for simulating drought conditions and/or evaluating drought tolerance.
  • control or reference plant to be utilized when assessing or measuring an agronomic characteristic or phenotype of a transgenic plant in any embodiment of the present invention in which a control plant is utilized (e.g., compositions or methods as described herein).
  • a control plant e.g., compositions or methods as described herein.
  • the introgressed line would typically be measured relative to the parent inbred or variety line (i.e., the parent inbred or variety line is the control or reference plant).
  • the second hybrid line would typically be measured relative to the first hybrid line (i.e., the first hybrid line is the control or reference plant).
  • a plant comprising a recombinant DNA construct (or suppression DNA construct) the plant may be assessed or measured relative to a control plant not comprising the recombinant DNA construct (or suppression DNA construct) but otherwise having a comparable genetic background to the plant (e.g., sharing at least 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity of nuclear genetic material compared to the plant comprising the recombinant DNA construct (or suppression DNA construct)).
  • AFLP®s Polymorphisms
  • SSRs Simple Sequence Repeats
  • Methods include but are not limited to methods for increasing drought tolerance in a plant, methods for evaluating drought tolerance in a plant, methods for altering an agronomic characteristic in a plant, methods for determining an alteration of an agronomic characteristic in a plant, and methods for producing seed.
  • the plant may be a monocotyledonous or dicotyledonous plant, for example, a maize or soybean plant.
  • the plant may also be sunflower, sorghum, canola, wheat, alfalfa, cotton, rice, barley or millet.
  • the seed may be a maize or soybean seed, for example, a maize hybrid seed or maize inbred seed.
  • Methods include but are not limited to the following: A method of increasing drought tolerance in a plant, comprising: (a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence (for example, a promoter functional in a plant), wherein the polynucleotide has a sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity
  • the method may further comprise (c) obtaining a progeny plant derived from the transgenic plant, wherein said progeny plant comprises in its genome the recombinant DNA construct and exhibits increased drought tolerance when compared to a control plant not comprising the recombinant DNA construct.
  • a method of increasing drought tolerance in a plant comprising: (a) introducing into a regenerable plant cell a suppression DNA construc ⁇ comphsing at least one regulatory sequence (for example, a promoter functional in a plant) operably linked to all or part of (i) a nucleic acid sequence having a sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared
  • a method of increasing drought tolerance in a plant comprising: (a) introducing into a regenerable plant cell a suppression DNA construct comprising at least one regulatory sequence (for example, a promoter functional in a plant) operably linked to a region derived from all or part of a sense strand or antisense strand of a target gene of interest, said region having a nucleic acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity
  • a method of evaluating drought tolerance in a plant comprising (a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least on regulatory sequence (for example, a promoter functional in a plant), wherein the polynucleotide has a sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment
  • the method may further comprise (d) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the recombinant DNA construct; and (e) evaluating the progeny plant for drought tolerance compared to a control plant not comprising the recombinant DNA construct.
  • a method of evaluating drought tolerance in a plant comprising (a) introducing into a regenerable plant cell a suppression DNA construct comprising at least one regulatory sequence (for example, a promoter functional in a plant) operably linked to all or part of (i) a nucleic acid sequence having a sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO
  • the method may further comprise (d) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the suppression DNA construct; and (e) evaluating the progeny plant for drought tolerance compared to a control plant not comprising the suppression DNA construct.
  • a method of evaluating drought tolerance in a plant comprising (a) introducing into a regenerable plant cell a suppression DNA construct comprising at least one regulatory sequence (for example, a promoter functional in a plant) operably linked to a region derived from all or part of a sense strand or antisense strand of a target gene of interest, said region having a nucleic acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity
  • the method may further comprise (d) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the suppression DNA construct; and (e) evaluating the progeny plant for drought tolerance compared to a control plant not comprising the suppression DNA construct.
  • a method of evaluating drought tolerance in a plant comprising (a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence (for example, a promoter functional in a plant), wherein said polynucleotide has a sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment
  • a method of evaluating drought tolerance in a plant comprising (a) introducing into a regenerable plant cell a suppression DNA construct comprising at least one regulatory sequence (for example, a promoter functional in a plant) operably linked to all or part of (i) a nucleic acid sequence having a sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO
  • a method of evaluating drought tolerance in a plant comprising (a) introducing into a regenerable plant cell a suppression DNA construct comprising at least one regulatory sequence (for example, a promoter functional in a plant) operably linked to a region derived from all or part of a sense strand or antisense strand of a target gene of interest, said region having a nucleic acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity
  • a method of determining an alteration of an agronomic characteristic in a plant comprising (a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least on regulatory sequence (for example, a promoter functional in a plant), wherein said polynucleotide has a sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based
  • the method may further comprise (d) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the recombinant DNA construct; and (e) determining whether the progeny plant exhibits an alteration in at least one agronomic characteristic when compared, optionally under water limiting conditions, to a control plant not comprising the recombinant DNA construct.
  • a method of determining an alteration of an agronomic characteristic in a plant comprising (a) introducing into a regenerable plant cell a suppression DNA construct comprising at least one regulatory sequence (for example, a promoter functional in a plant) operably linked to all or part of (i) a nucleic acid sequence having a sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment
  • the method may further comprise (d) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the suppression DNA construct; and (e) determining whether the progeny plant exhibits an alteration in at least one agronomic characteristic when compared, optionally under water limiting conditions, to a control plant not comprising the suppression DNA construct.
  • a method of determining an alteration of an agronomic characteristic in a plant comprising (a) introducing into a regenerable plant cell a suppression DNA construct comprising at least one regulatory sequence (for example, a promoter functional in a plant) operably linked to a region derived from all or part of a sense strand or antisense strand of a target gene of interest, said region having a nucleic acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 9
  • the method may further comprise (d) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the suppression DNA construct; and (e) determining whether the progeny plant exhibits an alteration in at least one agronomic characteristic when compared, optionally under water limiting conditions, to a control plant not comprising the suppression DNA construct.
  • a method of determining an alteration of an agronomic characteristic in a plant comprising (a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence (for example, a promoter functional in a plant), wherein said polynucleotide has a sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based
  • a method of determining an alteration of an agronomic characteristic in a plant comprising (a) introducing into a regenerable plant cell a suppression DNA construct comprising at least one regulatory sequence (for example, a promoter functional in a plant) operably linked to all or part of (i) a nucleic acid sequence having a sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment
  • a method of determining an alteration of an agronomic characteristic in a plant comprising (a) introducing into a regenerable plant cell a suppression DNA construct comprising at least one regulatory sequence (for example, a promoter functional in a plant) operably linked to a region derived from all or part of a sense strand or antisense strand of a target gene of interest, said region having a nucleic acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 9
  • step (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the suppression DNA construct; (c) obtaining a progeny plant derived from said transgenic plant, wherein the progeny plant comprises in its genome the suppression DNA construct; and (d) determining whether the progeny plant exhibits an alteration in at least one agronomic characteristic when compared, optionally under water limiting conditions, to a control plant not comprising the suppression DNA construct.
  • a method of producing seed comprising any of the preceding methods, and further comprising obtaining seeds from said progeny plant, wherein said seeds comprise in their genome said recombinant DNA construct (or suppression DNA construct).
  • said regenerable plant cell may comprise a callus cell, and embryogenic callus cell, a gametic cell, a meristematic cell, or a cell of an immature embryo.
  • the regenerable plant cells may derive from an inbred maize plant.
  • said regenerating step may comprise: (i) culturing said transformed plant cells in a media comprising an embryogenic promoting hormone until callus organization is observed; (ii) transferring said transformed plant cells of step (i) to a first media which includes a tissue organization promoting hormone; and (iii) subcultuhng said transformed plant cells after step (ii) onto a second media, to allow for shoot elongation, root development or both.
  • the at least one agronomic characteristic may be selected from the group consisting of greenness, yield, growth rate, biomass, fresh weight at maturation, dry weight at maturation, fruit yield, seed yield, total plant nitrogen content, fruit nitrogen content, seed nitrogen content, nitrogen content in a vegetative tissue, total plant free amino acid content, fruit free amino acid content, seed free amino acid content, amino acid content in a vegetative tissue, total plant protein content, fruit protein content, seed protein content, protein content in a vegetative tissue, drought tolerance, nitrogen uptake, root lodging, harvest index, stalk lodging, plant height, ear height and ear length.
  • the alteration of at least one agronomic characteristic may be an increase in yield, greenness or biomass.
  • the plant may exhibit the alteration of at least one agronomic characteristic when compared, under water limiting conditions, to a control plant not comprising said recombinant DNA construct (or said suppression DNA construct).
  • each method further may comprise introducing into the regenerable plant cell a second suppression DNA construct, wherein the second suppression DNA construct comprises at least one regulatory element operably linked to all or part of: (1 ) a nucleic acid sequence having least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:28, 30, 32, 34, 36 or 38; or (2) a full complement of the nucleic acid sequence of (a)(1 ).
  • the second suppression DNA construct may be introduced into the plant cell by co- transformation with the first suppression DNA construct, by sequential transformation of a plant, plant cell, or plant tissue culture line containing the first suppression DNA constructs, or by crossing of two plants that each have been transformed with a different suppression DNA construct.
  • a regulatory sequence such as one or more enhancers, for example, as part of a transposable element
  • the introduction of recombinant DNA constructs of the present invention into plants may be carried out by any suitable technique, including but not limited to direct DNA uptake, chemical treatment, electroporation, microinjection, cell fusion, infection, vector-mediated DNA transfer, bombardment, or Agrobacterium-me ⁇ ate ⁇ transformation.
  • Transformation of monocotyledons using electroporation, particle bombardment, and Agrobacte ⁇ um have also been reported, for example, transformation and plant regeneration as achieved in asparagus (Bytebier et al., Proc. Natl. Acad. Sci.
  • This regeneration and growth process typically includes the steps of selection of transformed cells, culturing those individualized cells through the usual stages of embryonic development through the rooted plantlet stage. Transgenic embryos and seeds are similarly regenerated. The resulting transgenic rooted shoots are thereafter planted in an appropriate plant growth medium such as soil.
  • the development or regeneration of plants containing the foreign, exogenous isolated nucleic acid fragment that encodes a protein of interest is well known in the art.
  • the regenerated plants may be self-pollinated to provide homozygous transgenic plants. Otherwise, pollen obtained from the regenerated plants is crossed to seed-grown plants of agronomically important lines. Conversely, pollen from plants of these important lines is used to pollinate regenerated plants.
  • a transgenic plant of the present invention containing a desired polypeptide is cultivated using methods well known to one skilled in the art.
  • RNA samples were extracted using Trizol reagent (Invitrogen), from mixed later stages maize kernels (7, 14 and 21 days after pollination). Total RNA was fractionated on 15% polyacrylamide TBE/urea gels, and a 21 -nt RNA marker was also included in a separate lane. Following electrophoresis, the gels were stained with ethidium bromide, and the region of the gel corresponding to 20-22 nucleotides was excised.
  • the products of each ligation were gel purified on 10% denaturing polyacrylamide gels, to remove unligated adaptors.
  • RT-PCR was then carried out on the final ligation product, using primers complementary to the 5' and 3' adaptor sequences. Amplified cDNAs corresponding to small RNAs were sequenced by concatamerization followed by standard dideoxy sequencing (Elbashir et al., 2001 Genes & Dev. 15:88-200).
  • RNA sequences were sequenced from the mixed stage kernel library. After trimming adaptor sequences, the small RNA sequences were used as the query in BLAST searches to identify longer sequences in the DuPont internal cDNA database that could be used to generate predicted miRNA precursor sequences. Folding of potential hairpin precursor structures was performed using a publicly available RNA folding algorithm (Vienna RNA Package), and candidate miRNAs were chosen based on visual inspection of hairpin structures.
  • candidate target genes from Arabidopsis, corn and rice were identified. These target genes all share the SPX domain.
  • the candidate target genes are listed in Table 3.
  • Candidate miR827 target genes listed in Table 3 contain a SPX domain, thought to be involved in G-protein signal transduction, and either a RING finger domain, involved in protein-protein interactions such as in the ubiquitin pathway, or a MFS ("Major Facilitator Superfamily") transmembrane domain involved in small solute transport.
  • SPX domain thought to be involved in G-protein signal transduction
  • RING finger domain involved in protein-protein interactions
  • MFS Major Facilitator Superfamily
  • WO2008/133643A2 The miR827 homologs from Arabidopsis, maize, rice and soybean, and putative target genes are also described in PCT International Patent Publication No. WO2008/133643A2.
  • WO2008/133643A2 the expression levels of maize miR827 and/or the miR827 precursor were examined under conditions of stress in the following areas: drought, temperature, nitrogen and phosphate.
  • InvitrogenTM Gateway® C1 conversion insert The in planta selectable marker in this vector is the BAR gene, which confers resistance to the herbicide glufosinate (BASTA).
  • AtmiR827 region containing the hairpin precursor plus additional flanking sequence was amplified from Arabidopsis genomic DNA using PCR with the following primers:
  • AtmiR827pre-5'attB forward primer (SEQ ID NO:51 ):
  • AtmiR827pre-3'attB reverse primer (SEQ ID NO:52):
  • the forward primer contains the attB1 sequence (ACAAGTTTGTACAAAAAAGCAGGCT; SEQ ID NO:49) adjacent to 24 nucleotides corresponding to a genomic sequence approximately 100 nucleotides upstream of the AtmiR827 hairpin precursor.
  • the reverse primer contains the attB2 sequence
  • ACCACTTTGTACAAGAAAGCTGGGT SEQ ID NO:50 adjacent to the reverse complement of a 24-nucleotide genomic sequence approximately 200 nucleotides downstream of the AtmiR827 hairpin precursor.
  • a BP Recombination Reaction was performed with pDONRTM/Zeo (SEQ ID NO:41 ; FIG. 2). This process removed the bacteria lethal ccdB gene, as well as the chloramphenicol resistance gene (CAM) from pDONRTM/Zeo and directionally cloned the PCR product with flanking attB1 and attB2 sites creating an entry clone. This entry clone was used for a subsequent LR Recombination Reaction with a destination vector, as follows.
  • the 15.3-kb T-DNA based binary vector (destination vector), called pBC (SEQ ID NO:40; FIG. 1 ), contains the bacterial lethal ccdB gene as well as the chloramphenicol resistance gene (CAM) flanked by attR1 and attR2 sequences.
  • pBC The 15.3-kb T-DNA based binary vector
  • CAM chloramphenicol resistance gene
  • an LR Recombination Reaction was performed on the entry clone, containing the directionally cloned PCR product, and pBC. This allowed for rapid and directional cloning of the candidate gene behind the 35S promoter in pBC to create the 35S promoter::AtmiR827 expression construct, pBC-AtmiR827.
  • the 35S promoter::AtmiR827 expression construct was introduced into wild- type Arabidopsis ecotype CoI-O using the following whole plant Agrobacterium transformation procedure.
  • the 35S promoter: :AtmiR827 construct was transformed into Agrobacterium tumefaciens strain C58 and grown in LB at 25 0 C to OD600 ⁇ 1.0. Cells were then pelleted by centrifugation and resuspended in an equal volume of 5% sucrose/0.05% Silwet L-77 (OSI Specialties, Inc). At early bolting, soil grown Arabidopsis thaliana ecotype CoI-O were top watered with the Agrobacterium suspension.
  • the soil is watered to saturation and then plants are grown under standard conditions (i.e., 16 hour light, 8 hour dark cycle; 22°C; -60% relative humidity). No additional water is given.
  • Digital images of the plants are taken at the onset of visible drought stress symptoms. Images are taken once a day (at the same time of day), until the plants appear desiccated. Typically, four consecutive days of data is captured. Color analysis is employed for identifying potential drought tolerant lines.
  • Color analysis can be used to measure the increase in the percentage of leaf area that falls into a yellow color bin.
  • hue, saturation and intensity data (“HSI")
  • the yellow color bin consists of hues 35 to 45.
  • Leaf area is also used as another criterion for identifying potential drought tolerant lines, since Arabidopsis leaves wilt during drought stress. Maintenance of leaf area can be measured as reduction of rosette leaf area over time.
  • Leaf area is measured in terms of the number of green pixels obtained using the LemnaTec imaging system.
  • Transgenic and control (e.g., wild-type) plants are grown side by side in flats that contain 72 plants (9 plants/pot).
  • images are measured for a number of days to monitor the wilting process. From these data wilting profiles are determined based on the green pixel counts obtained over four consecutive days for transgenic and accompanying control plants. The profile is selected from a series of measurements over the four day period that gives the largest degree of wilting.
  • the ability to withstand drought is measured by the tendency of transgenic plants to resist wilting compared to control plants.
  • LemnaTec HTSBonitUV software is used to analyze CCD images.
  • Estimates of the leaf area of the Arabidopsis plants are obtained in terms of the number of green pixels.
  • the data for each image is averaged to obtain estimates of mean and standard deviation for the green pixel counts for transgenic and wild- type plants.
  • Parameters for a noise function are obtained by straight line regression of the squared deviation versus the mean pixel count using data for all images in a batch. Error estimates for the mean pixel count data are calculated using the fit parameters for the noise function.
  • the mean pixel counts for transgenic and wild-type plants are summed to obtain an assessment of the overall leaf area for each image.
  • the four-day interval with maximal wilting is obtained by selecting the interval that corresponds to the maximum difference in plant growth.
  • the individual wilting responses of the transgenic and wild-type plants are obtained by normalization of the data using the value of the green pixel count of the first day in the interval.
  • the drought tolerance of the transgenic plant compared to the wild- type plant is scored by summing the weighted difference between the wilting response of transgenic plants and wild-type plants over day two to day four; the weights are estimated by propagating the error in the data.
  • a positive drought tolerance score corresponds to a transgenic plant with slower wilting compared to the wild-type plant. Significance of the difference in wilting response between transgenic and wild-type plants is obtained from the weighted sum of the squared deviations.
  • Phase 1 hits Lines with a significant delay in yellow color accumulation and/or with significant maintenance of rosette leaf area, when compared to the average of the whole flat, are designated as Phase 1 hits.
  • Phase 1 hits are re-screened in duplicate under the same assay conditions.
  • Score of greater than 0.9 the line is then considered a validated drought tolerant line.
  • T2 seed for the transgenic AtmiR827 overexpression lines was sown in four pots of Scotts® Metro-Mix® 200 soil, such that each pot contained 18-27 seed arranged into 9 positions (2-3 seed per position). These four pots were interspersed in one flat with four pots of CoI-O, planted in an identical manner. The soil was watered to saturation and then plants were grown under standard conditions (i.e., 16 hour light, 8 hour dark cycle; 22°C; -60% relative humidity). No additional water was given. At approximately one week after germination, the four pots with transgenic T2 seedlings were removed from the flat and sprayed with glufosinate to eliminate non-transgenic siblings.
  • AtmiR827 overexpression lines 1 and 2 displayed significant maintenance of rosette leaf area under drought conditions, when compared to the CoI-O control ( Figure 11 ), and therefore AtmiR827 confers drought tolerance when overexpressed.
  • Seeds from AtmiR827 overexpression line 2 and from the control (CoI-O) were sterilized and plated on 0.7% agar plates containing 0.5X Murashige and Skoog salts, 1 % sucrose, and either 0, 0.5, or 1 ⁇ M abscisic acid (ABA).
  • ABA abscisic acid
  • the plates were placed in a growth chamber set at 20 0 C, 16 hr light/8 hr dark photoperiod, 100 ⁇ mole/m 2 /s light intensity, for 48 hours. Plates were then examined under a dissecting microscope and germination of the seeds was scored. Radical protrusion from the seed coat was used as the criteria for a positive germination event.
  • AtmiR827 overexpression line displayed an increased inhibition of germination by ABA ( Figure 12), and therefore is hypersensitive to ABA.
  • Sequences homologous to the Arabidopsis miR827 gene can be identified using sequence comparison algorithms such as BLAST (Basic Local Alignment Search Tool; Altschul et al., J. MoI. Biol. 215:403-410 (1993); see also the explanation of the BLAST algorithm on the world wide web site for the National Center for Biotechnology Information at the National Library of Medicine of the National Institutes of Health). Sequences encoding homologous miR827 genes can be PCR-amplified by either of the following methods.
  • Method 1 (RNA-based): If the 5' and 3' sequence information for the miR827-coding region is available, gene-specific primers can be designed as outlined above. RT-PCR can be used with plant RNA to obtain a nucleic acid fragment containing the protein-coding region flanked by attB1 (SEQ ID NO:49) and attB2 (SEQ ID NO:50) sequences.
  • Method 2 (DNA-based): Alternatively, if a cDNA clone is available for a gene encoding a miR827 precursor, the entire cDNA insert (containing 5' and 3' non-coding regions) can be PCR amplified. Forward and reverse primers can be designed that contain either the attB1 sequence and vector-specific sequence that precedes the cDNA insert or the attB2 sequence and vector-specific sequence that follows the cDNA insert, respectively. For a cDNA insert cloned into the vector pBulescript SK+, the forward primer VC062 (SEQ ID NO:53) and the reverse primer VC063 (SEQ ID NO:54) can be used.
  • Methods 1 and 2 can be modified according to procedures known by one skilled in the art.
  • the primers of Method 1 may contain restriction sites instead of attB1 and attB2 sites, for subsequent cloning of the PCR product into a vector containing attB1 and attB2 sites.
  • Method 2 can involve amplification from a cDNA clone, a lambda clone, a BAC clone or genomic DNA.
  • a PCR product obtained by either method above can be combined with the Gateway® donor vector, such as pDONRTM/Zeo (InvitrogenTM; FIG. 2; SEQ ID NO:41 ) or pDONRTM221 (InvitrogenTM; FIG. 3; SEQ ID NO:42), using a BP Recombination Reaction.
  • This process removes the bacteria lethal ccdB gene, as well as the chloramphenicol resistance gene (CAM) from pDONRTM221 and directionally clones the PCR product with flanking attB1 and attB2 sites to create an entry clone.
  • CAM chloramphenicol resistance gene
  • the sequence encoding the miR827 sequence from the entry clone can then be transferred to a suitable destination vector, such as pBC-Yellow (FIG. 4; SEQ ID NO:43), PHP27840 (FIG. 5; SEQ ID NO:44) or PHP23236 (FIG. 6; SEQ ID NO:45), to obtain a plant expression vector for use with Arabidopsis, soybean and corn, respectively.
  • a suitable destination vector such as pBC-Yellow (FIG. 4; SEQ ID NO:43), PHP27840 (FIG. 5; SEQ ID NO:44) or PHP23236 (FIG. 6; SEQ ID NO:45)
  • the attP1 and attP2 sites of donor vectors pDONRTM/Zeo or pDONRTM221 are shown in Figures 2 and 3, respectively.
  • the attR1 and attR2 sites of destination vectors pBC-Yellow, PHP27840 and PHP23236 are shown in Figures 4, 5 and 6, respectively
  • a MultiSite Gateway® LR recombination reaction between multiple entry clones and a suitable destination vector can be performed to create an expression vector.
  • Soybean plants can be transformed to overexpress a miR827 sequence in order to examine the resulting phenotype.
  • Gateway® entry clone described above can be used to directionally clone each gene into the PHP27840 vector (SEQ ID NO:44; FIG. 5) such that expression of the gene is under control of the SCP1 promoter. Soybean embryos may then be transformed with the expression vector comprising sequences encoding the instant polypeptides.
  • somatic embryos cotyledons, 3-5 mm in length dissected from surface sterilized, immature seeds of the soybean cultivar A2872, can be cultured in the light or dark at 26 0 C on an appropriate agar medium for 6-10 weeks. Somatic embryos, which produce secondary embryos, are then excised and placed into a suitable liquid medium. After repeated selection for clusters of somatic embryos which multiply as early, globular staged embryos, the suspensions are maintained as described below. Soybean embryogenic suspension cultures can be maintained in 35 ml_ liquid media on a rotary shaker, 150 rpm, at 26 0 C with florescent lights on a 16:8 hour day/night schedule.
  • a selectable marker gene which can be used to facilitate soybean transformation is a chimeric gene composed of the 35S promoter from cauliflower mosaic virus (Odell et al. (1985) Nature 373:810-812), the hygromycin phosphotransferase gene from plasmid pJR225 (from E. coli; Gritz et al. (1983) Gene 25:179-188) and the 3' region of the nopaline synthase gene from the T-DNA of the Ti plasmid of Agrobacterium tumefaciens.
  • Another selectable marker gene which can be used to facilitate soybean transformation is an herbicide-resistant acetolactate synthase (ALS) gene from soybean or Arabidopsis.
  • ALS herbicide-resistant acetolactate synthase
  • ALS is the first common enzyme in the biosynthesis of the branched-chain amino acids valine, leucine and isoleucine. Mutations in ALS have been identified that convey resistance to some or all of three classes of inhibitors of ALS (US Patent No. 5,013,659; the entire contents of which are herein incorporated by reference).
  • Approximately 300-400 mg of a two-week-old suspension culture is placed in an empty 60x15 mm petri dish and the residual liquid removed from the tissue with a pipette.
  • approximately 5-10 plates of tissue are normally bombarded.
  • Membrane rupture pressure is set at 1100 psi and the chamber is evacuated to a vacuum of 28 inches mercury.
  • the tissue is placed approximately 3.5 inches away from the retaining screen and bombarded three times. Following bombardment, the tissue can be divided in half and placed back into liquid and cultured as described above.
  • the liquid media may be exchanged with fresh media, and eleven to twelve days post bombardment with fresh media containing 50 mg/mL hygromycin. This selective media can be refreshed weekly.
  • green, transformed tissue may be observed growing from untransformed, necrotic embryogenic clusters. Isolated green tissue is removed and inoculated into individual flasks to generate new, clonally propagated, transformed embryogenic suspension cultures. Each new line may be treated as an independent transformation event. These suspensions can then be subcultured and maintained as clusters of immature embryos or regenerated into whole plants by maturation and germination of individual somatic embryos.
  • T1 plants can be subjected to a soil-based drought stress. Using image analysis, plant area, volume, growth rate and color analysis can be taken at multiple times before and during drought stress. Overexpression constructs that result in a significant delay in wilting or leaf area reduction, yellow color accumulation and/or increased growth rate during drought stress will be considered evidence that the Arabidopsis gene functions in soybean to enhance drought tolerance. Soybean plants transformed with miR827 sequence can then be assayed under more vigorous field-based studies to study yield enhancement and/or stability under well-watered and water-limiting conditions.
  • Maize plants can be transformed to overexpress a miR827 sequence in order to examine the resulting phenotype.
  • the same Gateway® entry clone described above can be used to directionally clone each gene into a maize transformation vector.
  • Expression of the gene in the maize transformation vector can be under control of a constitutive promoter such as the maize ubiquitin promoter (Chhstensen et al., (1989) Plant MoI. Biol. 12:619-632 and Christensen et al., (1992) Plant MoI. Biol. 18:675-689)
  • the recombinant DNA construct described above can then be introduced into corn cells by the following procedure.
  • Immature corn embryos can be dissected from developing caryopses derived from crosses of the inbred corn lines H99 and LH132.
  • the embryos are isolated 10 to 11 days after pollination when they are 1.0 to 1.5 mm long.
  • the embryos are then placed with the axis-side facing down and in contact with agarose-solidified N6 medium (Chu et al. (1975) Sci. Sin. Peking 18:659-668).
  • the embryos are kept in the dark at 27°C.
  • Friable embryogenic callus consisting of undifferentiated masses of cells with somatic proembryoids and embryoids borne on suspensor structures proliferates from the scutellum of these immature embryos.
  • the embryogenic callus isolated from the primary explant can be cultured on N6 medium and sub-cultured on this medium every 2 to 3 weeks.
  • the plasmid, p35S/Ac (obtained from Dr. Peter Eckes, Hoechst Ag, Frankfurt, Germany) may be used in transformation experiments in order to provide for a selectable marker.
  • This plasmid contains the Pat gene (see European Patent Publication 0 242 236) which encodes phosphinothhcin acetyl transferase (PAT).
  • PAT phosphinothhcin acetyl transferase
  • the enzyme PAT confers resistance to herbicidal glutamine synthetase inhibitors such as phosphinothricin.
  • the pat gene in p35S/Ac is under the control of the 35S promoter from cauliflower mosaic virus (Odell et al. (1985) Nature 313:810-812) and the 3' region of the nopaline synthase gene from the T-DNA of the Ti plasmid of Agrobacterium tumefaciens.
  • the particle bombardment method (Klein et al. (1987) Nature 327:70-73) may be used to transfer genes to the callus culture cells.
  • gold particles (1 ⁇ m in diameter) are coated with DNA using the following technique.
  • Ten ⁇ g of plasmid DNAs are added to 50 ⁇ l_ of a suspension of gold particles (60 mg per ml_).
  • Calcium chloride 50 ⁇ l_ of a 2.5 M solution
  • spermidine free base (20 ⁇ l_ of a 1.0 M solution) are added to the particles.
  • the suspension is vortexed during the addition of these solutions. After 10 minutes, the tubes are briefly centrifuged (5 sec at 15,000 rpm) and the supernatant removed.
  • the particles are resuspended in 200 ⁇ l_ of absolute ethanol, centrifuged again and the supernatant removed. The ethanol rinse is performed again and the particles resuspended in a final volume of 30 ⁇ l_ of ethanol.
  • An aliquot (5 ⁇ l_) of the DNA- coated gold particles can be placed in the center of a KaptonTM flying disc (Bio-Rad Labs). The particles are then accelerated into the corn tissue with a DuPontTM BiolisticTM PDS-1000/He (Bio-Rad Instruments, Hercules CA), using a helium pressure of 1000 psi, a gap distance of 0.5 cm and a flying distance of 1.0 cm.
  • the embryogenic tissue is placed on filter paper over agarose-solidified N6 medium.
  • the tissue is arranged as a thin lawn and covers a circular area of about 5 cm in diameter.
  • the petri dish containing the tissue can be placed in the chamber of the PDS-1000/He approximately 8 cm from the stopping screen.
  • the air in the chamber is then evacuated to a vacuum of 28 inches of Hg.
  • the macrocarher is accelerated with a helium shock wave using a rupture membrane that bursts when the He pressure in the shock tube reaches 1000 psi.
  • tissue can be transferred to N6 medium that contains bialaphos (5 mg per liter) and lacks casein or proline. The tissue continues to grow slowly on this medium. After an additional 2 weeks the tissue can be transferred to fresh N6 medium containing bialaphos. After 6 weeks, areas of about 1 cm in diameter of actively growing callus can be identified on some of the plates containing the bialaphos-supplemented medium. These calli may continue to grow when sub-cultured on the selective medium.
  • Plants can be regenerated from the transgenic callus by first transferring clusters of tissue to N6 medium supplemented with 0.2 mg per liter of 2,4-D. After two weeks the tissue can be transferred to regeneration medium (Fromm et al. (1990) Bio/Technology 8:833-839).
  • Transgenic TO plants can be regenerated and their phenotype determined following high throughput ("HTP") procedures. T1 seed can be collected.
  • HTP high throughput
  • T1 plants can be subjected to a soil-based drought stress. Using image analysis, plant area, volume, growth rate and color analysis can be taken at multiple times before and during drought stress. Overexpression constructs that result in a significant delay in wilting or leaf area reduction, yellow color accumulation and/or increased growth rate during drought stress will be considered evidence that the miR827 sequence functions in maize to enhance drought tolerance.
  • PHP10523 contains VIR genes for T-DNA transfer, an Agrobacterium low copy number plasmid origin of replication, a tetracycline resistance gene, and a Cos site for in vivo DNA bimolecular recombination. Meanwhile the electroporation cuvette is chilled on ice. The electroporator settings are adjusted to 2.1 kV.
  • a DNA aliquot (0.5 ⁇ l_ parental DNA at a concentration of 0.2 ⁇ g -1.0 ⁇ g in low salt buffer or twice distilled H 2 O) is mixed with the thawed Agrobacterium tumefaciens LBA4404 cells while still on ice. The mixture is transferred to the bottom of electroporation cuvette and kept at rest on ice for 1 -2 min. The cells are electroporated (Eppendorf electroporator 2510) by pushing the "pulse" button twice (ideally achieving a 4.0 millisecond pulse).
  • Option 1 Overlay plates with 30 ⁇ L of 15 mg/mL hfampicin.
  • LBA4404 has a chromosomal resistance gene for hfampicin. This additional selection eliminates some contaminating colonies observed when using poorer preparations of LBA4404 competent cells.
  • Option 2 Perform two replicates of the electroporation to compensate for poorer electrocompetent cells.
  • Aliquots of 2 ⁇ l_ are used to electroporate 20 ⁇ l_ of DH10b + 20 ⁇ l_ of twice distilled H 2 O aS per above.
  • a 15 ⁇ l_ aliquot can be used to transform 75-100 ⁇ l_ of InvitrogenTM Library Efficiency DH5 ⁇ .
  • the cells are spread on plates containing LB medium and 50 ⁇ g/mL spectinomycin and incubated at 37 0 C overnight.
  • Maize plants can be transformed to overexpress a mir827 sequence in order to examine the resulting phenotype. Transformation of maize is performed essentially as described by Zhao et al. in Meth. MoI. Biol. 318:315-323 (2006) (see also Zhao et al., MoI. Breed. 8:323-333 (2001 ) and U.S. Patent No. 5,981 ,840 issued November 9, 1999, incorporated herein by reference). The transformation process involves bacterium innoculation, co-cultivation, resting, selection and plant regeneration.
  • Immature maize embryos are dissected from caryopses and placed in a 2 mL microtube containing 2 mL PHI-A medium.
  • the Agrobacterium suspension is removed from the infection step with a 1 ml_ micropipettor. Using a sterile spatula the embryos are scraped from the tube and transferred to a plate of PHI-B medium in a 100x15 mm Petri dish. The embryos are oriented with the embryonic axis down on the surface of the medium. Plates with the embryos are cultured at 20 0 C, in darkness, for three days. L- Cysteine can be used in the co-cultivation phase. With the standard binary vector, the co-cultivation medium supplied with 100-400 mg/L L-cysteine is critical for recovering stable transgenic events.
  • Embryonic tissue propagated on PHI-D medium is subcultured to PHI-E medium (somatic embryo maturation medium), in 100x25 mm Petri dishes and incubated at 28 0 C, in darkness, until somatic embryos mature, for about ten to eighteen days.
  • PHI-E medium synthetic embryo maturation medium
  • Individual, matured somatic embryos with well-defined scutellum and coleoptile are transferred to PHI-F embryo germination medium and incubated at 28 0 C in the light (about 80 ⁇ E from cool white or equivalent fluorescent lamps).
  • regenerated plants about 10 cm tall, are potted in horticultural mix and hardened-off using standard horticultural methods.
  • PHI-A 4g/L CHU basal salts, 1.0 mL/L 100OX Eriksson's vitamin mix, 0.5 mg/L thiamin HCI, 1.5 mg/L 2,4-D, 0.69 g/L L-proline, 68.5 g/L sucrose, 36 g/L glucose, pH 5.2. Add 100 ⁇ M acetosyringone (filter-sterilized).
  • PHI-B PHI-A without glucose, increase 2,4-D to 2 mg/L, reduce sucrose to 30 g/L and supplemente with 0.85 mg/L silver nitrate (filter-sterilized), 3.0 g/L Gelrite®, 100 ⁇ M acetosyringone (filter- sterilized), pH 5.8.
  • PHI-C PHI-B without Gelrite® and acetosyhngonee, reduce 2,4-D to 1.5 mg/L and supplemente with 8.0 g/L agar, 0.5 g/L 2-[N- morpholino]ethane-sulfonic acid (MES) buffer, 100 mg/L carbenicillin (filter-sterilized).
  • MES 2-[N- morpholino]ethane-sulfonic acid
  • PHI-D PHI-C supplemented with 3 mg/L bialaphos (filter-sterilized).
  • PHI-E 4.3 g/L of Murashige and Skoog (MS) salts, (Gibco, BRL 11117-074), 0.5 mg/L nicotinic acid, 0.1 mg/L thiamine HCI, 0.5 mg/L pyridoxine HCI, 2.0 mg/L glycine, 0.1 g/L myo-inositol, 0.5 mg/L zeatin (Sigma, Cat. No. Z-0164), 1 mg/L indole acetic acid
  • IAA 26.4 ⁇ g/L abscisic acid
  • ABA abscisic acid
  • 60 g/L sucrose 60 g/L sucrose
  • 3 mg/L bialaphos filter-sterilized
  • 100 mg/L carbenicillin filter-sterilized
  • 8 g/L agar pH 5.6.
  • PHI-F PHI-E without zeatin, IAA, ABA; reduce sucrose to 40 g/L; replacing agar with 1.5 g/L Gelrite®; pH 5.6.
  • Plants can be regenerated from the transgenic callus by first transferring clusters of tissue to N6 medium supplemented with 0.2 mg per liter of 2,4-D. After two weeks the tissue can be transferred to regeneration medium (Fromm et al., Bio/Technology 8:833-839 (1990)). Transgenic TO plants can be regenerated and their phenotype determined.
  • T1 seed can be collected.
  • a recombinant DNA construct can be introduced into an elite maize inbred line either by direct transformation or introgression from a separately transformed line.
  • Transgenic plants either inbred or hybrid, can undergo more vigorous field- based experiments to study yield enhancement and/or stability under water limiting and water non-limiting conditions.
  • Subsequent yield analysis can be done to determine whether plants that contain the miR827 sequence have an improvement in yield performance (under water limiting or non-limiting conditions), when compared to the control (or reference) plants that do not contain the validated Arabidopsis lead gene.
  • water limiting conditions can be imposed during the flowering and/or grain fill period for plants that contain the validated Arabidopsis lead gene and the control plants. Plants containing the validated Arabidopsis lead gene would have less yield loss relative to the control plants, for example, 25% less yield loss, under water limiting conditions, or would have increased yield relative to the control plants under water non-limiting conditions.
  • an LR Recombination Reaction can be performed with a miR827 entry clone and a destination vector (PHP28647) to create an overexpression vector.
  • the overexpression vector will contain the following expression cassettes:
  • Ubiquitin promoter::moPAT::Pinll terminator cassette expressing the PAT herbicide resistance gene used for selection during the transformation process.
  • LTP2 promoter :DS-RED2::Pinll terminator; cassette expressing the DS- RED color marker gene used for seed sorting.
  • the miR827 sequence present in an expression vector can be introduced into a maize inbred line, or a transformable maize line derived from an elite maize inbred line, using Agrobacterium-me ⁇ ate ⁇ transformation as described above.
  • the miR827 expression vector can be electroporated into the LBA4404 Agrobacterium strain containing vector PHP10523 (FIG. 7; SEQ ID NO:46) to create a miR827 co-integrate vector.
  • the co-integrate vector is formed by recombination of the 2 plasmids, the miR827 expression vector and PHP10523, through the COS recombination sites contained on each vector.
  • the co-integrate miR827 vector will contain the same 3 expression cassettes as above (Example 12) in addition to other genes (TET, TET, TRFA, ORI terminator, CTL, ORI V, VIR C1 , VIR C2, VIR G, VIR B) needed for the Agrobacterium strain and the transformation.
  • Destination vector PHP23236 (FIG. 6, SEQ ID NO:45) was obtained by transformation of Agrobacterium strain LBA4404 containing plasmid PHP10523 (FIG. 7, SEQ ID NO:46) with plasmid PHP23235 (FIG. 8, SEQ ID NO:47) and isolation of the resulting co-integration product.
  • Destination vector PHP23236 can be used in a recombination reaction with an entry clone as described above to create a maize expression vector for transformation of Gaspe Flint-derived maize lines.
  • clone cil1 c.pk002.l5a which contains a cDNA insert of approximately 1 kb in length that encodes the Zm-miR827 mature sequence (SEQ ID NO:3).
  • cDNA insert Within the cDNA insert is a region of 132 nucleotides that includes the mature Zm-miR827 microRNA sequence and is predicted to form a hairpin precursor typical of microRNA precursors. Therefore, clone cil1 c.pk002.l5a has a cDNA insert encoding the primary transcript (SEQ ID NO:1 ) for Zm-miR827 (SEQ ID NO:3).
  • cil1 c.pk002.l5a was directionally cloned into the destination vector PHP23236 (SEQ ID NO:45; FIG. 6) to create the expression vector PHP26200, which contains the cDNA of interest under control of the UBI promoter and is a T- DNA binary vector for transformation into corn as described, but not limited to, the examples described herein.
  • Maize plants can be transformed to overexpress a miR827 sequence in order to examine the resulting phenotype.
  • Recipient plant cells can be from a uniform maize line having a short life cycle ("fast cycling"), a reduced size, and high transformation potential. Typical of these plant cells for maize are plant cells from any of the publicly available Gaspe Flint (GBF) line varieties.
  • GBF Gaspe Flint
  • One possible candidate plant line variety is the F1 hybrid of GBF x QTM (Quick Turnaround Maize, a publicly available form of Gaspe Flint selected for growth under greenhouse conditions) disclosed in Tomes et al. U.S. Patent Application Publication No. 2003/0221212.
  • Transgenic plants obtained from this line are of such a reduced size that they can be grown in four inch pots (1/4 the space needed for a normal sized maize plant) and mature in less than 2.5 months.
  • Another suitable line is a double haploid line of GS3 (a highly transformable line) X Gaspe Flint.
  • GS3 a highly transformable line
  • X Gaspe Flint a transformable elite inbred line carrying a transgene which causes early flowering, reduced stature, or both.
  • Transformation Protocol Any suitable method may be used to introduce the transgenes into the maize cells, including but not limited to inoculation type procedures using Agrobacte ⁇ um based vectors. Transformation may be performed on immature embryos of the recipient (target) plant. Precision Growth and Plant Tracking:
  • the event population of transgenic (TO) plants resulting from the transformed maize embryos is grown in a controlled greenhouse environment using a modified randomized block design to reduce or eliminate environmental error.
  • a randomized block design is a plant layout in which the experimental plants are divided into groups (e.g., thirty plants per group), referred to as blocks, and each plant is randomly assigned a location with the block.
  • a replicate group For a group of thirty plants, twenty-four transformed, experimental plants and six control plants (plants with a set phenotype) (collectively, a "replicate group") are placed in pots which are arranged in an array (a.k.a. a replicate group or block) on a table located inside a greenhouse. Each plant, control or experimental, is randomly assigned to a location with the block which is mapped to a unique, physical greenhouse location as well as to the replicate group. Multiple replicate groups of thirty plants each may be grown in the same greenhouse in a single experiment. The layout (arrangement) of the replicate groups should be determined to minimize space requirements as well as environmental effects within the greenhouse. Such a layout may be referred to as a compressed greenhouse layout.
  • An alternative to the addition of a specific control group is to identify those transgenic plants that do not express the gene of interest.
  • a variety of techniques such as RT-PCR can be applied to quantitatively assess the expression level of the introduced gene.
  • TO plants that do not express the transgene can be compared to those which do.
  • each plant in the event population is identified and tracked throughout the evaluation process, and the data gathered from that plant is automatically associated with that plant so that the gathered data can be associated with the transgene carried by the plant.
  • each plant container can have a machine readable label (such as a Universal Product Code (UPC) bar code) which includes information about the plant identity, which in turn is correlated to a greenhouse location so that data obtained from the plant can be automatically associated with that plant.
  • UPC Universal Product Code
  • any efficient, machine readable, plant identification system can be used, such as two-dimensional matrix codes or even radio frequency identification tags (RFID) in which the data is received and interpreted by a radio frequency receiver/processor.
  • RFID radio frequency identification tags
  • Phenotypic Analysis Using Three-Dimensional Imaging Each greenhouse plant in the TO event population, including any control plants, is analyzed for agronomic characteristics of interest, and the agronomic data for each plant is recorded or stored in a manner so that it is associated with the identifying data (see above) for that plant. Confirmation of a phenotype (gene effect) can be accomplished in the T1 generation with a similar experimental design to that described above.
  • the TO plants are analyzed at the phenotypic level using quantitative, nondestructive imaging technology throughout the plant's entire greenhouse life cycle to assess the traits of interest.
  • a digital imaging analyzer may be used for automatic multi-dimensional analyzing of total plants.
  • the imaging may be done inside the greenhouse.
  • Two camera systems, located at the top and side, and an apparatus to rotate the plant, are used to view and image plants from all sides. Images are acquired from the top, front and side of each plant. All three images together provide sufficient information to evaluate the biomass, size and morphology of each plant. Due to the change in size of the plants from the time the first leaf appears from the soil to the time the plants are at the end of their development, the early stages of plant development are best documented with a higher magnification from the top.
  • the following events occur: (1 ) the plant is conveyed inside the analyzer area, rotated 360 degrees so its machine readable label can be read, and left at rest until its leaves stop moving; (2) the side image is taken and entered into a database; (3) the plant is rotated 90 degrees and again left at rest until its leaves stop moving, and (4) the plant is transported out of the analyzer.
  • Imaging Instrumentation Any suitable imaging instrumentation may be used, including but not limited to light spectrum digital imaging instrumentation commercially available from LemnaTec GmbH of Wurselen, Germany. The images are taken and analyzed with a LemnaTec Scanalyzer HTS LT-0001-2 having a 1/2" IT Progressive Scan IEE CCD imaging device. The imaging cameras may be equipped with a motor zoom, motor aperture and motor focus. All camera settings may be made using LemnaTec software. For example, the instrumental variance of the imaging analyzer may be less than about 5% for major components and less than about 10% for minor components. Software:
  • the imaging analysis system comprises a LemnaTec HTS Bonit software program for color and architecture analysis and a server database for storing data from about 500,000 analyses, including the analysis dates.
  • the original images and the analyzed images are stored together to allow the user to do as much reanalyzing as desired.
  • the database can be connected to the imaging hardware for automatic data collection and storage.
  • a variety of commercially available software systems e.g. Matlab, others
  • Matlab can be used for quantitative interpretation of the imaging data, and any of these software systems can be applied to the image data set.
  • a conveyor system with a plant rotating device may be used to transport the plants to the imaging area and rotate them during imaging. For example, up to four plants, each with a maximum height of 1.5 m, are loaded onto cars that travel over the circulating conveyor system and through the imaging measurement area. In this case the total footprint of the unit (imaging analyzer and conveyor loop) is about 5 m x 5 m.
  • the conveyor system can be enlarged to accommodate more plants at a time.
  • the plants are transported along the conveyor loop to the imaging area and are analyzed for up to 50 seconds per plant. Three views of the plant are taken.
  • the conveyor system, as well as the imaging equipment, should be capable of being used in greenhouse environmental conditions.
  • Illumination Any suitable mode of illumination may be used for the image acquisition. For example, a top light above a black background can be used. Alternatively, a combination of top- and backlight using a white background can be used.
  • the illuminated area should be housed to ensure constant illumination conditions.
  • the housing should be longer than the measurement area so that constant light conditions prevail without requiring the opening and closing or doors.
  • the illumination can be varied to cause excitation of either transgene (e.g., green fluorescent protein (GFP), red fluorescent protein (RFP)) or endogenous (e.g. Chlorophyll) fluorophores.
  • transgene e.g., green fluorescent protein (GFP), red fluorescent protein (RFP)
  • endogenous fluorophores e.g. Chlorophyll
  • the plant images should be taken from at least three axes, for example, the top and two side (sides 1 and 2) views. These images are then analyzed to separate the plant from the background, pot and pollen control bag (if applicable).
  • the volume of the plant can be estimated by the calculation:
  • Volumeiyoxels -JTopArea(pixels) x ⁇ j SidelArea(pixels) x -J Side2Area(pixels)
  • the units of volume and area are "arbitrary units". Arbitrary units are entirely sufficient to detect gene effects on plant size and growth in this system because what is desired is to detect differences (both positive-larger and negative-smaller) from the experimental mean, or control mean.
  • the arbitrary units of size (e.g. area) may be trivially converted to physical measurements by the addition of a physical reference to the imaging process. For instance, a physical reference of known area can be included in both top and side imaging processes. Based on the area of these physical references a conversion factor can be determined to allow conversion from pixels to a unit of area such as square centimeters (cm 2 ).
  • the physical reference may or may not be an independent sample. For instance, the pot, with a known diameter and height, could serve as an adequate physical reference.
  • Color Classification The imaging technology may also be used to determine plant color and to assign plant colors to various color classes.
  • the assignment of image colors to color classes is an inherent feature of the LemnaTec software. With other image analysis software systems color classification may be determined by a variety of computational approaches.
  • a useful classification scheme is to define a simple color scheme including two or three shades of green and, in addition, a color class for chlorosis, necrosis and bleaching, should these conditions occur.
  • a background color class which includes non plant colors in the image (for example pot and soil colors) is also used and these pixels are specifically excluded from the determination of size.
  • the plants are analyzed under controlled constant illumination so that any change within one plant over time, or between plants or different batches of plants (e.g. seasonal differences) can be quantified.
  • color classification can be used to assess other yield component traits. For these other yield component traits additional color classification schemes may be used.
  • the trait known as "staygreen”, which has been associated with improvements in yield, may be assessed by a color classification that separates shades of green from shades of yellow and brown (which are indicative of senescing tissues).
  • a color classification that separates shades of green from shades of yellow and brown (which are indicative of senescing tissues).
  • Green/Yellow Ratio Green/Yellow Ratio
  • Plant Architecture Analysis The skilled plant biologist will recognize that other plant colors arise which can indicate plant health or stress response (for instance anthocyanins), and that other color classification schemes can provide further measures of gene action in traits related to these responses. Plant Architecture Analysis:
  • Transgenes which modify plant architecture parameters may also be identified using the present invention, including such parameters as maximum height and width, internodal distances, angle between leaves and stem, number of leaves starting at nodes and leaf length.
  • the LemnaTec system software may be used to determine plant architecture as follows. The plant is reduced to its main geometric architecture in a first imaging step and then, based on this image, parameterized identification of the different architecture parameters can be performed. Transgenes that modify any of these architecture parameters either singly or in combination can be identified by applying the statistical approaches previously described.
  • Pollen Shed Date is an important parameter to be analyzed in a transformed plant, and may be determined by the first appearance on the plant of an active male flower. To find the male flower object, the upper end of the stem is classified by color to detect yellow or violet anthers. This color classification analysis is then used to define an active flower, which in turn can be used to calculate pollen shed date.
  • pollen shed date and other easily visually detected plant attributes can be recorded by the personnel responsible for performing plant care.
  • pollen shed date and other easily visually detected plant attributes can be recorded by the personnel responsible for performing plant care.
  • this data is tracked by utilizing the same barcodes utilized by the LemnaTec light spectrum digital analyzing device.
  • a computer with a barcode reader, a palm device, or a notebook PC may be used for ease of data capture recording time of observation, plant identifier, and the operator who captured the data.
  • Orientation of the Plants Mature maize plants grown at densities approximating commercial planting often have a planar architecture. That is, the plant has a clearly discernable broad side, and a narrow side. The image of the plant from the broadside is determined. To each plant a well defined basic orientation is assigned to obtain the maximum difference between the broadside and edgewise images. The top image is used to determine the main axis of the plant, and an additional rotating device is used to turn the plant to the appropriate orientation prior to starting the main image acquisition. EXAMPLE 17
  • Transgenic Gaspe Flint derived maize lines containing the miR827 sequence can be screened for tolerance to drought stress in the following manner. Transgenic maize plants are subjected to well-watered conditions (control) and to drought-stressed conditions. Transgenic maize plants are screened at the T1 stage or later.
  • Pots are watered by an automated system fitted to timers to provide watering at 25 or 50% of field capacity during the entire period of drought-stress treatment. The intensity and duration of this stress will allow identification of the impact on vegetative growth as well as on the anthesis-silking interval.
  • Potting mixture A mixture of 1/3 turface (Profile Products LLC, IL, USA), 1/3 sand and 1/3 SB300 (Sun Gro Horticulture, WA, USA) can be used.
  • the SB300 can be replaced with Fafard Fine-Germ (Conrad Fafard, Inc., MA, USA) and the proportion of sand in the mixture can be reduced.
  • a final potting mixture can be 3/8 (37.5%) turface, 3/8 (37.5%) Fafard and % (25%) sand.
  • Field Capacity Determination The weight of the soil mixture (w1 ) to be used in one S200 pot (minus the pot weight) is measured. If all components of the soil mix are not dry, the soil is dried at 100 0 C to constant weight before determining w1. The soil in the pot is watered to full saturation and all the gravitational water is allowed to drain out. The weight of the soil (w2) after all gravitational water has seeped out (minus the pot weight) is determined.
  • Field capacity is the weight of the water remaining in the soil obtained as w2-w1. It can be written as a percentage of the oven-dry soil weight.
  • Border plants Place a row of border plants on bench-edges adjacent to the glass walls of the greenhouse or adjacent to other potential causes of microenvironment variability such as a cooler fan.
  • Watering can be done using PVC pipes with drilled holes to supply water to systematically positioned pots using a siphoning device. Irrigation scheduling can be done using timers.
  • Statistical analysis Mean values for plant size, color and chlorophyll fluorescence recorded on transgenic events under different stress treatments will be exported to Spotfire (Spotfire, Inc., MA, USA). Treatment means will be evaluated for differences using Analysis of Variance. Replications: Eight to ten individual plants are used per treatment per event.
  • Lemnatec measurements are made three times a week throughout growth to capture plant-growth rate.
  • Leaf color determinations are made three times a week throughout the stress period using Lemnatec.
  • Chlorophyll fluorescence is recorded as PhiPSII (which is indicative of the operating quantum efficiency of photosystem Il photochemistry) and FvVFm' (which is the maximum efficiency of photosystem II) two to four times during the experimental period, starting at 11 AM on the measurement days, using the Hansatech FMS2 instrument (LemnaTec GmbH, Wurselen, Germany).
  • Measurements are started during the stress period at the beginning of visible drought stress symptoms, namely, leaf greying and the start of leaf rolling until the end of the experiment and measurements are recorded on the youngest most fully expanded leaf.
  • the dates of tasseling and silking on individual plants are recorded, and the ASI is computed.
  • the above methods may be used to select transgenic plants with increased drought tolerance when compared to a control plant not comprising said recombinant DNA construct.
  • a Gaspe Flint derived maize line was transformed via Agrobacterium with the plasmid PHP26200, encoding the maize miR827 precursor from clone cil1 c.pk002.l5a. Five transformation events for each plasmid construct were evaluated for drought tolerance in the following manner.
  • Soil mixture consisted of a 37.5% TURFACE®, 37.5% SB300 and 25% sand mixture. All pots were filled with the same amount of soil +/- 10 grams. Pots were brought up to 100% field capacity (FC) by hand watering. All plants were watered with 6.5 mM KNO 3 containing nutrient solution until day 26 when treatment was applied. Plants were maintained at 50% FC until 21 days after planting (DAP). On day 17, the watering system malfunctioned and a subset of plants received too much water. Thus, all plants were once again brought up to 100% field capacity. This resulted in the extension of the experiment such that treatment was applied at a later stage of development; approximately the V7-V8 stage of development.
  • An entry clone, PHP32214 was constructed that contains the maize miR827 precursor coding region and the following regulatory elements: maize ubiquitin promoter, maize ubiquitin 5' non-translated region, maize ubiquitin 5' intron-1 and the Pinll terminator region.
  • the overexpression vector, PHP34054 contains the following expression cassettes: 1. Ubiquitin promoter::moPAT::Pinll terminator; cassette expressing the PAT herbicide resistance gene used for selection during the transformation process. 2. LTP2 promoter::DS-RED2::Pinll terminator; cassette expressing the DS-
  • RED color marker gene used for seed sorting.
  • the maize miR827 sequence present in expression vector, PHP34054 was introduced into a transformable maize line derived from an elite maize inbred line, using transformation as described above.
  • the miR827 expression vector PHP34054 was electroporated into the
  • LBA4404 Agrobacterium strain containing vector PHP10523 (FIG. 7; SEQ ID NO:46) to create a miR827 co-integrate vector, PHP34082.
  • the co-integrate vector PHP34082 was formed by recombination of the 2 plasmids, PHP34054 and PHP10523, through the COS recombination sites contained on each vector.
  • the co-integrate maize miR827 vector, PHP34082 contains the same 3 expression cassettes as above (Example 19) in addition to other genes (TET, TET, TRFA, ORI terminator, CTL, ORI V, VIR C1 , VIR C2, VIR G, VIR B) needed for the Agrobacterium strain and the Agrobactenum-meoMeo transformation.
  • EXAMPLE 21 Yield Analysis of Maize Lines Containing the
  • a recombinant DNA construct containing the maize miR827 gene can be introduced into an elite maize inbred line either by direct transformation or introgression from a separately transformed line.
  • Transgenic plants can undergo more vigorous field- based experiments to study yield enhancement and/or stability under well-watered and water-limiting conditions.
  • Subsequent yield analysis can be done to determine whether plants that contain the maize miR827 gene have an improvement in yield performance under water-limiting conditions, when compared to the control plants that do not contain the maize miR827 gene.
  • drought conditions can be imposed during the flowering and/or grain fill period for plants that contain the maize miR827 gene and the control plants. Reduction in yield can be measured for both. Plants containing the maize miR827 gene may have less yield loss relative to the control plants, for example, 25% less yield loss.
  • the above method may be used to select transgenic plants with increased yield, under water-limiting conditions and/or well-watered conditions, when compared to a control plant not comprising said recombinant DNA construct. Plants selected will have increased yield under water limiting conditions.

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Virology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Pretreatment Of Seeds And Plants (AREA)

Abstract

Isolated polynucleotides and polypeptides and recombinant DNA constructs useful for conferring drought tolerance, compositions (such as plants or seeds) comprising these recombinant DNA constructs, and methods utilizing these recombinant DNA constructs. The recombinant DNA construct comprises a polynucleotide operably linked to a promoter that is functional in a plant, wherein said polynucleotide encodes a miR827 microRNA.

Description

TITLE
DROUGHT TOLERANT PLANTS AND RELATED CONSTRUCTS AND METHODS INVOLVING GENES ENCODING miR827
CROSS REFERENCE TO RELATED APPLICATIONS This application claims the benefit of U.S. Provisional Application No.
61/015,683, filed December 21 , 2007, the entire content of which is herein incorporated by reference.
FIELD OF THE INVENTION
The field of invention relates to plant breeding and genetics and, in particular, relates to recombinant DNA constructs useful in plants for conferring tolerance to drought.
BACKGROUND OF THE INVENTION
MicroRNAs (miRNAs) play an important role in regulating gene activity. These 20-22 nucleotide noncoding RNAs have the ability to hybridize via base-pairing with specific target mRNAs and downregulate the expression of these transcripts, by mediating either RNA cleavage or translational repression. Recent studies have indicated that miRNAs have important functions during development. In plants, they have been shown to control a variety of developmental processes including flowering time, leaf morphology, organ polarity, floral morphology, and root development (reviewed by Mallory and Vaucheret (2006) Nat Genet 38: S31 -36). Given the established regulatory role of miRNAs, it is likely that they are also involved in the control of some of the major crop traits such drought tolerance and disease resistance. Plant miRNAs are processed from longer precursor transcripts termed pre-miRNA that range in length from -50 to 500 nucleotides, and these precursors have the ability to form stable hairpin structures (reviewed by Bartel (2004) Cell 116: 281 -297). Many miRNA hairpin precursors originate as longer transcripts of 1 -2 kb or longer, termed ph-miRNA, that are polyadenylated and capped. This fact coupled with the detection of numerous ph-miRNAs in Expressed Sequence Tags (ESTs) libraries indicates that RNA polymerase Il is the enzyme responsible for miRNA gene transcription. Transgenic experiments indicate that it is the structure rather than the sequence of the pre-miRNA that directs their correct processing and that the rest of the pri-miRNA is not required for the production of miRNAs. While pri- miRNAs are processed to pre-miRNAs by Drosha in the nucleus and Dicer cleaves pre-miRNAs in the cytoplasm in metazoans, miRNA maturation in plants differs from the pathway in animals because plants lack a Drosha homolog. Instead, the RNase III enzyme DICER-LIKE 1 (DCL1 ), which is homologous to animal Dicer, may possess Drosha function in addition to its known function in hairpin processing (Kurihara and Watanabe (2004) Proc Natl Acad Sc/ 101 : 12753-12758).
Through the cloning efforts of several labs, at least 30 miRNA families have been identified in Arabidopsis (reviewed by Meyers et al. (2006) Curr Opin Biotech 17; 1 -8). Many of these miRNA sequences are represented by more than one locus, bringing the total number up to approximately 100. Because the particular miRNAs found by one lab are not generally overlapping with those found by another independent lab, it is assumed that the search for the entire set of miRNAs expressed by a given plant genome, the "miRNome," is not yet complete. One reason for this might be that many miRNAs are expressed only under very specific conditions, and thus may have been missed by standard cloning efforts. A recent study by Sunkar and Zhu (2004, Plant Ce// 16: 2001-2019) suggests that, indeed, miRNA discovery may be facilitated by choosing "non-standard" growth conditions for library construction. Sunkar and Zhu identified novel miRNAs in a library consisting of a variety of stress-induced tissues. They proceeded to demonstrate induction of some of these miRNAs by drought, cold and other stresses, suggesting a role for miRNAs in stress response. It is likely, then, that efforts to fully characterize the plant miRNome will require examination of the small RNA profile in many different tissues and under many different conditions. A complementary approach to standard miRNA cloning is computational prediction of miRNAs using available genomic and/or EST sequences, and several labs have reported finding novel Arabidopsis miRNAs in this manner (reviewed by Bonnet et al. (2006) New Phytol 171 :451 -468). Using these computational approaches, which rely in part on the observation that known miRNAs reside in hairpin precursors, hundreds of plant miRNAs have been predicted. However only a small fraction have been experimentally verified by Northern blot analysis. In addition, most of these computational methods rely on comparisons between two representative genomes (e.g. Arabidopsis and rice) in order to find conserved intergenic regions, and thus are not suitable for identifying species-specific miRNAs, which may represent a substantial fraction of the miRNome of any given organism.
Computational methods have also facilitated the prediction of miRNA targets, and in general plant miRNAs share a high degree of complementarity with their targets (reviewed by Bonnet et al. (2006) New Phytol 171 :451 -468). The predicted mRNA targets of plant miRNAs encode a wide variety of proteins. Many of these proteins are transcription factors and are thus likely to be important for development. However, there are also many enzymes that are putatively targeted, and these potentially have roles in such processes as mitochondrial metabolism, oxidative stress response, proteasome function, and lignification. It is likely that this list of processes regulated by miRNA will get longer as additional miRNAs are identified, and that eventually miRNAs will be implicated in processes critical to crop improvement. For example, a recently identified miRNA targeting genes in the sulfur assimilation pathway was identified, and shown to be induced under conditions of sulfate starvation (Jones-Rhoades and Bartel (2004) MoI Cell 14: 787- 799). This particular miRNA, then, is a candidate gene for increasing sulfur assimilation efficiency. It is tempting to speculate that the pathways for assimilating other compounds such as water and nitrate may also be under miRNA control. Much of the work on identification of novel miRNAs has been carried out in the model system Arabidopsis, and thus miRNomes of crop plants such as maize, rice and soybean are less fully understood. There is also no complete genome sequence available for crops such as maize and soybeans, further hampering miRNome analysis. Many Arabidopsis miRNAs have homologs in these other species, however there are also miRNAs that appear to be specific to Arabidopsis. Likewise, it is expected that there will be nonconserved miRNAs specific to the aforementioned crop species. A significant fraction of the non-conserved miRNAs could be part of the regulatory networks associated with species-specific growth conditions or developmental processes. As such, it is crucial to carry out miRNA cloning in crop species such as maize, to complement the bioinformatic approaches currently being used, and ultimately to more fully characterize the miRNomes of crop species. SUMMARY OF THE INVENTION
In one embodiment, the invention includes a plant comprising in its genome a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory element, wherein said polynucleotide has a nucleic acid sequence of at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25, 26 or 27, and wherein said plant exhibits increased drought tolerance when compared to a control plant not comprising said recombinant DNA construct. The plant may be a maize plant or a soybean plant.
In another embodiment, the invention includes a plant comprising in its genome a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory element, wherein said polynucleotide encodes a modified plant miRNA precursor comprising a first and a second oligonucleotide, wherein at least one of the first or the second oligonucleotides is heterologous to the precursor, wherein the first oligonucleotide is substantially complementary to the second oligonucleotide, and the second oligonucleotide encodes a miRNA with 0, 1 , 2 or 3 mismatches to a sequence selected from the group consisting of SEQ ID NOs:3, 6, 9, 12, 15, 18, 21 , 24 and 27, and wherein said plant exhibits increased drought tolerance when compared to a control plant not comprising said recombinant DNA construct. The plant may be a maize plant or a soybean plant.
In another embodiment, the invention includes a method of increasing drought tolerance in a plant, comprising: (a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence, wherein the polynucleotide has a nucleic acid sequence of at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25, 26 or 27; and (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the recombinant DNA construct and exhibits increased drought tolerance when compared to a control plant not comprising the recombinant DNA construct. The method may further comprise: (c) obtaining a progeny plant derived from the transgenic plant, wherein said progeny plant comprises in its genome the recombinant DNA construct and exhibits increased drought tolerance when compared to a control plant not comprising the recombinant DNA construct.
In another embodiment, the invention includes a method of evaluating drought tolerance in a plant, comprising: (a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence, wherein the polynucleotide has a nucleic acid sequence of at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25, 26 or 27; (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the recombinant DNA construct; and (c) evaluating the transgenic plant for drought tolerance compared to a control plant not comprising the recombinant DNA construct. The method may further comprise: (d) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the recombinant DNA construct; and (e) evaluating the progeny plant for drought tolerance compared to a control plant not comprising the recombinant DNA construct. In another embodiment, the invention includes a method of evaluating drought tolerance in a plant, comprising: (a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence, wherein the polynucleotide has a nucleic acid sequence of at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25, 26 or 27; (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the recombinant DNA construct; (c) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the recombinant DNA construct; and (d) evaluating the progeny plant for drought tolerance compared to a control plant not comprising the recombinant DNA construct. In another embodiment, the invention includes a method of determining an alteration of an agronomic characteristic in a plant, comprising: (a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence, wherein the polynucleotide has a nucleic acid sequence of at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25, 26 or 27; (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the recombinant DNA construct; and (c) determining whether the transgenic plant exhibits an alteration of at least one agronomic characteristic when compared to a control plant not comprising the recombinant DNA construct. The method may further comprise: (d) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the recombinant DNA construct; and (e) determining whether the progeny plant exhibits an alteration of at least one agronomic characteristic when compared to a control plant not comprising the recombinant DNA construct. Additionally, said determining step (c) may comprise determining whether the transgenic plant exhibits an alteration of at least one agronomic characteristic when compared, under water limiting conditions, to a control plant not comprising the recombinant DNA construct. Additionally, said determining step (e) may comprise determining whether the progeny plant exhibits an alteration of at least one agronomic characteristic when compared, under water limiting conditions, to a control plant not comprising the recombinant DNA construct. In another embodiment, the invention includes a method of determining an alteration of an agronomic characteristic in a plant, comprising: (a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence, wherein the polynucleotide has a nucleic acid sequence of at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25, 26 or 27; (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the recombinant DNA construct; (c) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the recombinant DNA construct; and (d) determining whether the progeny plant exhibits an alteration of at least one agronomic characteristic when compared to a control plant not comprising the recombinant DNA construct. Said determining step (d) may further comprise determining whether the transgenic plant exhibits an alteration of at least one agronomic characteristic when compared, under water limiting conditions, to a control plant not comprising the recombinant DNA construct. BRIEF DESCRIPTION OF THE
DRAWINGS AND SEQUENCE LISTING
The invention can be more fully understood from the following detailed description and the accompanying drawings and Sequence Listing which form a part of this application. Figure 1 shows a schematic of the pBC vector (SEQ ID NO:40).
Figure 2 shows a map of the vector pDONR™/Zeo (SEQ ID NO:41 ). The attP1 site is at nucleotides 570-801 ; the attP2 site is at nucleotides 2754-2985 (complementary strand).
Figure 3 shows a map of the vector pDONR™221 (SEQ ID NO:42). The attP1 site is at nucleotides 570-801 ; the attP2 site is at nucleotides 2754-2985 (complementary strand).
Figure 4 shows a map of the vector pBC-yellow (SEQ ID NO:43), a destination vector for use in construction of expression vectors for Arabidopsis. The attR1 site is at nucleotides 11276-11399 (complementary strand); the attR2 site is at nucleotides 9695-9819 (complementary strand).
Figure 5 shows a map of PHP27840 (SEQ ID NO:44), a destination vector for use in construction of expression vectors for soybean. The attR1 site is at nucleotides 7310-7434; the attR2 site is at nucleotides 8890-9014.
Figure 6 shows a map of PHP23236 (SEQ ID NO:45), a destination vector for use in construction of expression vectors for Gaspe Flint derived maize lines. The attR1 site is at nucleotides 2006-2130; the attR2 site is at nucleotides 2899- 3023. Figure 7 shows a map of PHP10523 (SEQ ID NO:46), a plasmid DNA present in Agrobacterium strain LBA4404 (Komari et al., Plant J. 10:165-174 (1996); NCBI General Identifier No. 59797027).
Figure 8 shows a map of PHP23235 (SEQ ID NO:47), a vector used to construct the destination vector PHP23236.
Figure 9 shows a map of PHP28647 (SEQ ID NO:48), a destination vector for use with maize inbred-derived lines. The attR1 site is at nucleotides 2289-2413; the attR2 site is at nucleotides 3869-3993.
Figure 10 shows a Northern blot analysis of AtmiR827 overexpression lines 1 through 9, plus wild-type control (CoI-O)
Figure 11 shows drought tolerance of AtmiR827 overexpression line 2 when compared to control. Similar results were seen for line 1.
Figure 12 shows ABA hypersensitivity of germination inhibition for AtmiR827 overexpression line 2 when compared to the control (CoI-O).
SEQ ID NOs:1 - 39 are described in Table 1.
Table 1 Sequences Encoding Plant miR827 Polynucleotides and Target Proteins
Figure imgf000009_0001
Figure imgf000010_0001
Figure imgf000011_0001
SEQ ID NO:40 is the nucleotide sequence of the 15.3 kb pBC vector.
SEQ ID NO:41 is the nucleotide sequence of the Gateway® donor vector pDONR™/Zeo. SEQ ID NO:42 is the nucleotide sequence of the Gateway® donor vector pDONR™221.
SEQ ID NO:43 is the nucleotide sequence of pBC-yellow, a destination vector for use with Arabidopsis.
SEQ ID NO:44 is the nucleotide sequence of PHP27840, a destination vector for use with soybean.
SEQ ID NO:45 is the nucleotide sequence of PHP23236, a destination vector for use with Gaspe Flint derived maize lines.
SEQ ID NO:46 is the nucleotide sequence of PHP10523 (Komari et al., Plant J. 10:165-174 (1996); NCBI General Identifier No. 59797027). SEQ ID NO:47 is the nucleotide sequence of PHP23235, a destination vector for use with Gaspe Flint derived lines.
SEQ ID NO:48 is the nucleotide sequence of PHP28647, a destination vector for use with maize inbred-derived lines.
SEQ ID NO:49 is the nucleotide sequence of the attB1 site. SEQ ID NO:50 is the nucleotide sequence of the attB2 site.
SEQ ID NO:51 is the nucleotide sequence of the AtmiR827pre-5'attB forward primer, containing the attB1 sequence, used to amplify the At-miR827- coding region.
SEQ ID NO:52 is the nucleotide sequence of the AtmiR827pre-3'attB reverse primer, containing the attB2 sequence, used to amplify the At-miR827- coding region.
SEQ ID NO:53 is the nucleotide sequence of the VC062 primer, containing the T3 promoter and attB1 site, useful to amplify cDNA inserts cloned into a Blueschpt® Il SK(+) vector (Stratagene). SEQ ID NO:54 is the nucleotide sequence of the VC063 primer, containing the T7 promoter and attB2 site, useful to amplify cDNA inserts cloned into a Blueschpt® Il SK(+) vector (Stratagene).
SEQ ID NO:55 is the nucleotide sequence of the 5' RNA adaptor used for RT-PCR of small RNAs
SEQ ID NO:56 is the nucleotide sequence of the 3' RNA adaptor used for RT-PCR of small RNAs.
The sequence descriptions and Sequence Listing attached hereto comply with the rules governing nucleotide and/or amino acid sequence disclosures in patent applications as set forth in 37 C. F. R. §1.821 -1.825.
The Sequence Listing contains the one letter code for nucleotide sequence characters and the three letter codes for amino acids as defined in conformity with the lUPAC-IUBMB standards described in Nucleic Acids Res. -/3:3021 -3030 (1985) and in the Biochemical J. 219 (No. 2^:345-373 (1984) which are herein incorporated by reference. The symbols and format used for nucleotide and amino acid sequence data comply with the rules set forth in 37 C. F. R. §1.822.
DETAILED DESCRIPTION
The disclosure of each reference set forth herein is hereby incorporated by reference in its entirety. As used herein and in the appended claims, the singular forms "a", "an", and
"the" include plural reference unless the context clearly dictates otherwise. Thus, for example, reference to "a plant" includes a plurality of such plants, reference to "a cell" includes one or more cells and equivalents thereof known to those skilled in the art, and so forth. Information pertinent to this application can be found in U.S. Patent
Application Nos. 10/963,238 and 10/963,394, filed October 12, 2004. The entire contents of the above applications are herein incorporated by reference.
Other references that may be useful in understanding the invention include U.S. Patent Application No. 10/913,288, filed August 6, 2004; and U.S. Patent Application No. 11/334,776, filed January 6, 2006.
Small RNAs play an important role in controlling gene expression. Regulation of many developmental processes including flowering is controlled by small RNAs. It is now possible to engineer changes in gene expression of plant genes by using transgenic constructs which produce small RNAs in the plant.
The invention provides methods and compositions useful for suppressing targeted sequences. The compositions can be employed in any type of plant cell, and in other cells which comprise the appropriate processing components {e.g., RNA interference components), including invertebrate and vertebrate animal cells. The compositions and methods are based on an endogenous miRNA silencing process discovered in Arabidopsis, a similar strategy can be used to extend the number of compositions and the organisms in which the methods are used. The methods can be adapted to work in any eukaryotic cell system. Additionally, the compositions and methods described herein can be used in individual cells, cells or tissue in culture, or in vivo in organisms, or in organs or other portions of organisms.
The compositions selectively suppress the target sequence by encoding a miRNA having substantial complementarity to a region of the target sequence. The miRNA is provided in a nucleic acid construct which, when transcribed into RNA, is predicted to form a hairpin structure which is processed by the cell to generate the miRNA, which then suppresses expression of the target sequence.
Nucleic acid sequences are disclosed that encode miRNAs from maize. Backbone hairpins containing the individual miRNA sequences are also disclosed. Constructs are described for transgenic expression of miRNAs and their backbones. Alternatively, constructs are described wherein backbone sequences and miRNA sequences are exchanged thereby altering the expression pattern of the miRNA, and its subsequent specific target sequence in the transgenic host. Any miRNA can be exchanged with any other backbone to create a new miRNA/backbone hybrid.
A method for suppressing a target sequence is provided. The method employs any of the constructs above, in which a miRNA is designed to identify a region of the target sequence, and inserted into the construct. Upon introduction into a cell, the miRNA produced suppresses expression of the targeted sequence. The target sequence can be an endogenous plant sequence, or a heterologous transgene in the plant. There can also be mentioned as the target gene, for example, a gene from a plant pathogen, such as a pathogenic virus, nematode, insect, or mold or fungus. Another aspect of the invention concerns a plant, cell, and seed comprising the construct and/or the miRNA. Typically, the cell will be a cell from a plant, but other prokaryotic or eukaryotic cells are also contemplated, including but not limited to viral, bacterial, yeast, insect, nematode, or animal cells. Plant cells include cells from monocots and dicots. The invention also provides plants and seeds comprising the construct and/or the miRNA. As used herein: The terms "microRNA" and "miRNA", used interchangeably herein, refer to an oligohbonucleic acid, which regulates expression of a polynucleotide comprising the target sequence.. A "mature miRNA" refers to the miRNA generated from the processing of a miRNA precursor. A "miRNA template" is an oligonucleotide region, or regions, in a nucleic acid construct which encodes the miRNA. The "backside" region of a miRNA is a portion of a polynucleotide construct which is substantially complementary to the miRNA template and is predicted to base pair with the miRNA template. The miRNA template and backside may form a double- stranded polynucleotide, including a hairpin structure.
The terms "domain" and "functional domain", used interchangeably herein, refer to nucleic acid sequence(s) that are capable of eliciting a biological response in plants. The present invention concerns miRNAs composed of at least 21 nucleotide sequences acting either individually, or in concert with other miRNA sequences, therefore a domain could refer to either individual miRNAs or groups of miRNAs. Also, miRNA sequences associated with their backbone sequences could be considered domains useful for processing the miRNA into its active form. As used herein, "subdomains" or "functional subdomains" refer to subsequences of domains that are capable of eliciting a biological response in plants. A miRNA could be considered a subdomain of a backbone sequence. "Contiguous" sequences or domains refer to sequences that are sequentially linked without added nucleotides intervening between the domains.
The phrases "target sequence" and "sequence of interest" are used interchangeably. Target sequence is used to mean the nucleic acid sequence that is selected for alteration (e.g., suppression) of expression, and is not limited to polynucleotides encoding polypeptides. The target sequence comprises a sequence that is substantially or fully complementary to the miRNA. The target sequence includes, but is not limited to, RNA, DNA, or a polynucleotide comprising the target sequence. As discussed in Bartel and Bartel (2003) Plant Phys. 132:709- 719, most microRNA sequences are 20-22 nucleotides with anywhere from 0, 1 , 2 or 3 mismatches when compared to their target sequences.
In some embodiments, the miRNA template, (i.e. the polynucleotide encoding the miRNA), and thereby the miRNA, may comprise some mismatches relative to the target sequence. In some embodiments the miRNA template has > 1 nucleotide mismatch as compared to the target sequence, for example, the miRNA template can have 1 , 2, 3, 4, 5, or more mismatches as compared to the target sequence. This degree of mismatch may also be described by determining the percent identity of the miRNA template to the complement of the target sequence. For example, the miRNA template may have a percent identity including about at least 70%, 75%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% as compared to the complement of the target sequence.
In some embodiments, the miRNA template, (i.e. the polynucleotide encoding the miRNA) and thereby the miRNA, may comprise some mismatches relative to the miRNA backside. In some embodiments the miRNA template has > 1 nucleotide mismatch as compared to the miRNA backside, for example, the miRNA template can have 1 , 2, 3, 4, 5, or more mismatches as compared to the miRNA backside. This degree of mismatch may also be described by determining the percent identity of the miRNA template to the complement of the miRNA backside. For example, the miRNA template may have a percent identity including about at least 70%, 75%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% as compared to the complement of the miRNA backside.
The design of artificial miRNA precursors is presented in PCT International Patent Publications WO2005/035769A2 and WO2006/044322A2, the contents of which are herein incorporated by reference.
An "Expressed Sequence Tag" ("EST") is a DNA sequence derived from a cDNA library and therefore is a sequence which has been transcribed. An EST is typically obtained by a single sequencing pass of a cDNA insert. The sequence of an entire cDNA insert is termed the "Full-Insert Sequence" ("FIS"). A "Contig" sequence is a sequence assembled from two or more sequences that can be selected from, but not limited to, the group consisting of an EST, FIS and PCR sequence. A sequence encoding an entire or functional protein is termed a
"Complete Gene Sequence" ("CGS") and can be derived from an FIS or a contig.
"Agronomic characteristic" is a measurable parameter including but not limited to, greenness, yield, growth rate, biomass, fresh weight at maturation, dry weight at maturation, fruit yield, seed yield, total plant nitrogen content, fruit nitrogen content, seed nitrogen content, nitrogen content in a vegetative tissue, total plant free amino acid content, fruit free amino acid content, seed free amino acid content, free amino acid content in a vegetative tissue, total plant protein content, fruit protein content, seed protein content, protein content in a vegetative tissue, drought tolerance, nitrogen uptake, root lodging, harvest index, stalk lodging, plant height, ear height and ear length.
"Transgenic" refers to any cell, cell line, callus, tissue, plant part or plant, the genome of which has been altered by the presence of a heterologous nucleic acid, such as a recombinant DNA construct, including those initial transgenic events as well as those created by sexual crosses or asexual propagation from the initial transgenic event. The term "transgenic" as used herein does not encompass the alteration of the genome (chromosomal or extra-chromosomal) by conventional plant breeding methods or by naturally occurring events such as random cross- fertilization, non-recombinant viral infection, non-recombinant bacterial transformation, non-recombinant transposition, or spontaneous mutation. "Genome" as it applies to plant cells encompasses not only chromosomal
DNA found within the nucleus, but organelle DNA found within subcellular components (e.g., mitochondrial, plastid) of the cell.
"Plant" includes reference to whole plants, plant organs, plant tissues, seeds and plant cells and progeny of same. Plant cells include, without limitation, cells from seeds, suspension cultures, embryos, meristematic regions, callus tissue, leaves, roots, shoots, gametophytes, sporophytes, pollen, and microspores. "Progeny" comprises any subsequent generation of a plant. "Transgenic plant" includes reference to a plant which comprises within its genome a heterologous polynucleotide. For example, the heterologous polynucleotide is stably integrated within the genome such that the polynucleotide is passed on to successive generations. The heterologous polynucleotide may be integrated into the genome alone or as part of a recombinant DNA construct.
"Heterologous" with respect to sequence means a sequence that originates from a foreign species, or, if from the same species, is substantially modified from its native form in composition and/or genomic locus by deliberate human intervention. "Polynucleotide", "nucleic acid sequence", "nucleotide sequence", or "nucleic acid fragment" are used interchangeably and is a polymer of RNA or DNA that is single- or double-stranded, optionally containing synthetic, non-natural or altered nucleotide bases. Nucleotides (usually found in their 5'-monophosphate form) are referred to by their single letter designation as follows: "A" for adenylate or deoxyadenylate (for RNA or DNA, respectively), "C" for cytidylate or deoxycytidylate, "G" for guanylate or deoxyguanylate, "U" for uridylate, "T" for deoxythymidylate, "R" for purines (A or G), "Y" for pyrimidines (C or T), "K" for G or T, "H" for A or C or T, "I" for inosine, and "N" for any nucleotide.
"Polypeptide", "peptide", "amino acid sequence" and "protein" are used interchangeably herein to refer to a polymer of amino acid residues. The terms apply to amino acid polymers in which one or more amino acid residue is an artificial chemical analogue of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers. The terms "polypeptide", "peptide", "amino acid sequence", and "protein" are also inclusive of modifications including, but not limited to, glycosylation, lipid attachment, sulfation, gamma- carboxylation of glutamic acid residues, hydroxylation and ADP-ribosylation.
"Messenger RNA (mRNA)" refers to the RNA that is without introns and that can be translated into protein by the cell.
"cDNA" refers to a DNA that is complementary to and synthesized from a mRNA template using the enzyme reverse transcriptase. The cDNA can be single- stranded or converted into the double-stranded form using the Klenow fragment of DNA polymerase I. "Mature" protein refers to a post-translationally processed polypeptide; i.e., one from which any pre- or pro-peptides present in the primary translation product have been removed.
"Precursor" protein refers to the primary product of translation of mRNA; i.e., with pre- and pro-peptides still present. Pre- and pro-peptides may be and are not limited to intracellular localization signals.
"Isolated" refers to materials, such as nucleic acid molecules and/or proteins, which are substantially free or otherwise removed from components that normally accompany or interact with the materials in a naturally occurring environment. Isolated polynucleotides may be purified from a host cell in which they naturally occur. Conventional nucleic acid purification methods known to skilled artisans may be used to obtain isolated polynucleotides. The term also embraces recombinant polynucleotides and chemically synthesized polynucleotides.
"Recombinant" refers to an artificial combination of two otherwise separated segments of sequence, e.g., by chemical synthesis or by the manipulation of isolated segments of nucleic acids by genetic engineering techniques. "Recombinant" also includes reference to a cell or vector, that has been modified by the introduction of a heterologous nucleic acid or a cell derived from a cell so modified, but does not encompass the alteration of the cell or vector by naturally occurring events (e.g., spontaneous mutation, natural transformation/transduction/transposition) such as those occurring without deliberate human intervention.
"Recombinant DNA construct" refers to a combination of nucleic acid fragments that are not normally found together in nature. Accordingly, a recombinant DNA construct may comprise regulatory sequences and coding sequences that are derived from different sources, or regulatory sequences and coding sequences derived from the same source, but arranged in a manner different than that normally found in nature.
The terms "entry clone" and "entry vector" are used interchangeably herein. "Regulatory sequences" refer to nucleotide sequences located upstream
(5' non-coding sequences), within, or downstream (3' non-coding sequences) of a coding sequence, and which influence the transcription, RNA processing or stability, or translation of the associated coding sequence. Regulatory sequences may include, but are not limited to, promoters, translation leader sequences, introns, and polyadenylation recognition sequences. The terms "regulatory sequence" and "regulatory element" are used interchangeably herein.
"Promoter" refers to a nucleic acid fragment capable of controlling transcription of another nucleic acid fragment.
"Promoter functional in a plant" is a promoter capable of controlling transcription in plant cells whether or not its origin is from a plant cell.
"Tissue-specific promoter" and "tissue-preferred promoter" are used interchangeably, and refer to a promoter that is expressed predominantly but not necessarily exclusively in one tissue or organ, but that may also be expressed in one specific cell.
"Developmentally regulated promoter" refers to a promoter whose activity is determined by developmental events.
"Operably linked" refers to the association of nucleic acid fragments in a single fragment so that the function of one is regulated by the other. For example, a promoter is operably linked with a nucleic acid fragment when it is capable of regulating the transcription of that nucleic acid fragment.
"Expression" refers to the production of a functional product. For example, expression of a nucleic acid fragment may refer to transcription of the nucleic acid fragment (e.g., transcription resulting in mRNA or functional RNA) and/or translation of mRNA into a precursor or mature protein.
"Phenotype" means the detectable characteristics of a cell or organism.
"Introduced" in the context of inserting a nucleic acid fragment (e.g., a recombinant DNA construct) into a cell, means "transfection" or "transformation" or "transduction" and includes reference to the incorporation of a nucleic acid fragment into a eukaryotic or prokaryotic cell where the nucleic acid fragment may be incorporated into the genome of the cell (e.g., chromosome, plasmid, plastid or mitochondrial DNA), converted into an autonomous replicon, or transiently expressed (e.g., transfected mRNA). A "transformed cell" is any cell into which a nucleic acid fragment (e.g., a recombinant DNA construct) has been introduced.
"Transformation" as used herein refers to both stable transformation and transient transformation. "Stable transformation" refers to the introduction of a nucleic acid fragment into a genome of a host organism resulting in genetically stable inheritance. Once stably transformed, the nucleic acid fragment is stably integrated in the genome of the host organism and any subsequent generation. "Transient transformation" refers to the introduction of a nucleic acid fragment into the nucleus, or DNA-containing organelle, of a host organism resulting in gene expression without genetically stable inheritance.
"Allele" is one of several alternative forms of a gene occupying a given locus on a chromosome. When the alleles present at a given locus on a pair of homologous chromosomes in a diploid plant are the same that plant is homozygous at that locus. If the alleles present at a given locus on a pair of homologous chromosomes in a diploid plant differ that plant is heterozygous at that locus. If a transgene is present on one of a pair of homologous chromosomes in a diploid plant that plant is hemizygous at that locus. Sequence alignments and percent identity calculations may be determined using a variety of comparison methods designed to detect homologous sequences including, but not limited to, the Megalign® program of the LASERGENE® bioinformatics computing suite (DNASTAR® Inc., Madison, Wl). Unless stated otherwise, multiple alignment of the sequences provided herein were performed using the Clustal V method of alignment (Higgins and Sharp (1989) CABIOS. 5:151-153) with the default parameters (GAP PENALTY=I O, GAP LENGTH PENALTY=I O). Default parameters for pairwise alignments and calculation of percent identity of protein sequences using the Clustal V method are KTUPLE=I , GAP PENALTY=3, WINDOW=5 and DIAGONALS SAVED=5. For nucleic acids these parameters are KTUPLE=2, GAP PENALTY=5, WINDOW=4 and
DIAGONALS SAVED=4. After alignment of the sequences, using the Clustal V program, it is possible to obtain "percent identity" and "divergence" values by viewing the "sequence distances" table on the same program; unless stated otherwise, percent identities and divergences provided and claimed herein were calculated in this manner.
Standard recombinant DNA and molecular cloning techniques used herein are well known in the art and are described more fully in Sambrook, J., Fritsch, E. F. and Maniatis, T. Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, 1989 (hereinafter "Sambrook").
Turning now to embodiments:
Embodiments include isolated polynucleotides and polypeptides, recombinant DNA constructs useful for conferring drought tolerance, compositions (such as plants or seeds) comprising these recombinant DNA constructs, and methods utilizing these recombinant DNA constructs.
Isolated Polynucleotides and Polypeptides:
The present invention includes the following isolated polynucleotides and polypeptides:
An isolated polynucleotide comprising: (i) a nucleic acid sequence having at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25, 26 or 27; or (ii) a full complement of the nucleic acid sequence of (i), wherein the full complement and the nucleic acid sequence of (i) consist of the same number of nucleotides and are 100% complementary. Any of the foregoing isolated polynucleotides may be utilized in any recombinant DNA constructs (including suppression DNA constructs) of the present invention. The polynucleotide preferably encodes a miR827 sequence.
An isolated polypeptide having an amino acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:29, 31 , 33, 35, 37 or 39. The polypeptide is preferably a SPX/MFS or an SPX/RING protein.
Recombinant DNA Constructs and Suppression DNA Constructs:
In one aspect, the present invention includes recombinant DNA constructs (including suppression DNA constructs). In one embodiment, a recombinant DNA construct comprises a polynucleotide operably linked to at least one regulatory sequence (e.g., a promoter functional in a plant), wherein the polynucleotide comprises (i) a nucleic acid sequence having at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25, 26 or 27; or (ii) a full complement of the nucleic acid sequence of (i).
In another embodiment, a recombinant DNA construct comprises a polynucleotide operably linked to at least one regulatory sequence (e.g., a promoter functional in a plant), wherein said polynucleotide encodes a miR827 sequence. For example, the miR827 sequence is from Arabidopsis thaliana, Zea mays, Glycine max, Glycine tabacina, Glycine soja and Glycine tomentella.
In another embodiment, a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory element (e.g., a promoter functional in a plant), wherein said polynucleotide encodes a modified plant miRNA precursor comprising a first and a second oligonucleotide, wherein at least one of the first or the second oligonucleotides is heterologous to the precursor, wherein the first oligonucleotide is substantially complementary to the second oligonucleotide, and the second oligonucleotide encodes a miRNA with 0, 1 , 2 or 3 mismatches to a sequence selected from the group consisting of SEQ ID NOs:3, 6, 9, 12, 15, 18, 21 , 24 and 27, and wherein said plant exhibits increased drought tolerance when compared to a control plant not comprising said recombinant DNA construct.
In another aspect, the present invention includes suppression DNA constructs.
A suppression DNA construct may comprise at least one regulatory sequence (for example, a promoter functional in a plant) operably linked to (a) all or part of: (i) a nucleic acid sequence having a sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:28, 30, 32, 34, 36 or 38, or (ii) a full complement of the nucleic acid sequence of (a)(i); or (b) a region derived from all or part of a sense strand or antisense strand of a target gene of interest, said region having a nucleic acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to said all or part of a sense strand or antisense strand from which said region is derived, and wherein said target gene of interest encodes a SPX/MFS or a SPX/RING protein. The suppression DNA construct may comprise a cosuppression construct, antisense construct, viral-suppression construct, hairpin suppression construct, stem-loop suppression construct, double- stranded RNA-producing construct, RNAi construct, or small RNA construct (e.g., an siRNA construct or an miRNA construct).
It is understood, as those skilled in the art will appreciate, that the invention encompasses more than the specific exemplary sequences. Alterations in a nucleic acid fragment which result in the production of a chemically equivalent amino acid at a given site, but do not affect the functional properties of the encoded polypeptide, are well known in the art. For example, a codon for the amino acid alanine, a hydrophobic amino acid, may be substituted by a codon encoding another less hydrophobic residue, such as glycine, or a more hydrophobic residue, such as valine, leucine, or isoleucine. Similarly, changes which result in substitution of one negatively charged residue for another, such as aspartic acid for glutamic acid, or one positively charged residue for another, such as lysine for arginine, can also be expected to produce a functionally equivalent product. Nucleotide changes which result in alteration of the N-terminal and C-terminal portions of the polypeptide molecule would also not be expected to alter the activity of the polypeptide. Each of the proposed modifications is well within the routine skill in the art, as is determination of retention of biological activity of the encoded products. "Suppression DNA construct" is a recombinant DNA construct which when transformed or stably integrated into the genome of the plant, results in "silencing" of a target gene in the plant. The target gene may be endogenous or transgenic to the plant. "Silencing," as used herein with respect to the target gene, refers generally to the suppression of levels of mRNA or protein/enzyme expressed by the target gene, and/or the level of the enzyme activity or protein functionality. The terms "suppression", "suppressing" and "silencing", used interchangeably herein, include lowering, reducing, declining, decreasing, inhibiting, eliminating or preventing. "Silencing" or "gene silencing" does not specify mechanism and is inclusive, and not limited to, anti-sense, cosuppression, viral-suppression, hairpin suppression, stem-loop suppression, RNAi-based approaches, and small RNA- based approaches.
A suppression DNA construct may comprise a region derived from a target gene of interest and may comprise all or part of the nucleic acid sequence of the sense strand (or antisense strand) of the target gene of interest. Depending upon the approach to be utilized, the region may be 100% identical or less than 100% identical (e.g., at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical) to all or part of the sense strand (or antisense strand) of the gene of interest. Suppression DNA constructs are well-known in the art, are readily constructed once the target gene of interest is selected, and include, without limitation, cosuppression constructs, antisense constructs, viral-suppression constructs, hairpin suppression constructs, stem-loop suppression constructs, double-stranded RNA-producing constructs, and more generally, RNAi (RNA interference) constructs and small RNA constructs such as siRNA (short interfering RNA) constructs and miRNA (microRNA) constructs.
"Antisense inhibition" refers to the production of antisense RNA transcripts capable of suppressing the expression of the target gene or gene product.
"Antisense RNA" refers to an RNA transcript that is complementary to all or part of a target primary transcript or mRNA and that blocks the expression of a target isolated nucleic acid fragment (U.S. Patent No. 5,107,065). The complementarity of an antisense RNA may be with any part of the specific gene transcript, i.e., at the 5' non-coding sequence, 3' non-coding sequence, introns, or the coding sequence. "Cosuppression" refers to the production of sense RNA transcripts capable of suppressing the expression of the target gene or gene product. "Sense" RNA refers to RNA transcript that includes the mRNA and can be translated into protein within a cell or in vitro. Cosuppression constructs in plants have been previously designed by focusing on overexpression of a nucleic acid sequence having homology to a native mRNA, in the sense orientation, which results in the reduction of all RNA having homology to the overexpressed sequence (see Vaucheret et al., Plant J. 16:651 -659 (1998); and Gura, Nature 404:804-808 (2000)).
Another variation describes the use of plant viral sequences to direct the suppression of proximal mRNA encoding sequences (PCT Publication No. WO 98/36083 published on August 20, 1998).
Previously described is the use of "hairpin" structures that incorporate all, or part, of an mRNA encoding sequence in a complementary orientation that results in a potential "stem-loop" structure for the expressed RNA (PCT Publication No. WO 99/53050 published on October 21 , 1999). In this case the stem is formed by polynucleotides corresponding to the gene of interest inserted in either sense or anti-sense orientation with respect to the promoter and the loop is formed by some polynucleotides of the gene of interest, which do not have a complement in the construct. This increases the frequency of cosuppression or silencing in the recovered transgenic plants. For review of hairpin suppression see Wesley, S.V. et al. (2003) Methods in Molecular Biology, Plant Functional Genomics: Methods and Protocols 236:273-286. A construct where the stem is formed by at least 30 nucleotides from a gene to be suppressed and the loop is formed by a random nucleotide sequence has also effectively been used for suppression (PCT Publication No. WO 99/61632 published on December 2, 1999).
The use of poly-T and poly-A sequences to generate the stem in the stem- loop structure has also been described (PCT Publication No. WO 02/00894 published January 3, 2002).
Yet another variation includes using synthetic repeats to promote formation of a stem in the stem-loop structure. Transgenic organisms prepared with such recombinant DNA fragments have been shown to have reduced levels of the protein encoded by the nucleotide fragment forming the loop as described in PCT Publication No. WO 02/00904, published January 3, 2002.
RNA interference refers to the process of sequence-specific post- transcriptional gene silencing in animals mediated by short interfering RNAs
(siRNAs) (Fire et al., Nature 391 :806 (1998)). The corresponding process in plants is commonly referred to as post-transchptional gene silencing (PTGS) or RNA silencing and is also referred to as quelling in fungi. The process of post- transchptional gene silencing is thought to be an evolutionahly-conserved cellular defense mechanism used to prevent the expression of foreign genes and is commonly shared by diverse flora and phyla (Fire et al., Trends Genet. 15:358 (1999)). Such protection from foreign gene expression may have evolved in response to the production of double-stranded RNAs (dsRNAs) derived from viral infection or from the random integration of transposon elements into a host genome via a cellular response that specifically destroys homologous single-stranded RNA of viral genomic RNA. The presence of dsRNA in cells triggers the RNAi response through a mechanism that has yet to be fully characterized.
The presence of long dsRNAs in cells stimulates the activity of a hbonuclease III enzyme referred to as dicer. Dicer is involved in the processing of the dsRNA into short pieces of dsRNA known as short interfering RNAs (siRNAs) (Berstein et al., Nature 409:363 (2001 )). Short interfering RNAs derived from dicer activity are typically about 21 to about 23 nucleotides in length and comprise about 19 base pair duplexes (Elbashir et al., Genes Dev. 15:188 (2001 )). Dicer has also been implicated in the excision of 21- and 22-nucleotide small temporal RNAs (stRNAs) from precursor RNA of conserved structure that are implicated in translational control (Hutvagner et al., Science 293:834 (2001 )). The RNAi response also features an endonuclease complex, commonly referred to as an RNA-induced silencing complex (RISC), which mediates cleavage of single- stranded RNA having sequence complementarity to the antisense strand of the siRNA duplex. Cleavage of the target RNA takes place in the middle of the region complementary to the antisense strand of the siRNA duplex. In addition, RNA interference can also involve small RNA (e.g., miRNA) mediated gene silencing, presumably through cellular mechanisms that regulate chromatin structure and thereby prevent transcription of target gene sequences (see, e.g., Allshire, Science 297:1818-1819 (2002); Volpe et al., Science 297:1833-1837 (2002); Jenuwein, Science 297:2215-2218 (2002); and Hall et al., Science 297:2232-2237 (2002)). As such, miRNA molecules of the invention can be used to mediate gene silencing via interaction with RNA transcripts or alternately by interaction with particular gene sequences, wherein such interaction results in gene silencing either at the transcriptional or post-transcriptional level.
RNAi has been studied in a variety of systems. Fire et al. (Nature 391 :806 (1998)) were the first to observe RNAi in Caenorhabditis elegans. Wianny and Goetz {Nature Cell Biol. 2:70 (1999)) describe RNAi mediated by dsRNA in mouse embryos. Hammond et al. (Nature 404:293 (2000)) describe RNAi in Drosophila cells transfected with dsRNA. Elbashir et al., {Nature 411 :494 (2001 )) describe RNAi induced by introduction of duplexes of synthetic 21 -nucleotide RNAs in cultured mammalian cells including human embryonic kidney and HeLa cells. Small RNAs play an important role in controlling gene expression.
Regulation of many developmental processes, including flowering, is controlled by small RNAs. It is now possible to engineer changes in gene expression of plant genes by using transgenic constructs which produce small RNAs in the plant.
Small RNAs appear to function by base-pairing to complementary RNA or DNA target sequences. When bound to RNA, small RNAs trigger either RNA cleavage or translational inhibition of the target sequence. When bound to DNA target sequences, it is thought that small RNAs can mediate DNA methylation of the target sequence. The consequence of these events, regardless of the specific mechanism, is that gene expression is inhibited. It is thought that sequence complementarity between small RNAs and their
RNA targets helps to determine which mechanism, RNA cleavage or translational inhibition, is employed. It is believed that siRNAsT which are perfectly complementary with their targets, work by RNA cleavage. Some miRNAs have perfect or near-perfect complementarity with their targets, and RNA cleavage has been demonstrated for at least a few of these miRNAs. Other miRNAs have several mismatches with their targets, and apparently inhibit their targets at the translational level. Again, without being held to a particular theory on the mechanism of action, a general rule is emerging that perfect or near-perfect complementarity causes RNA cleavage, whereas translational inhibition is favored when the miRNA/target duplex contains many mismatches. The apparent exception to this is microRNA 172 (miR172) in plants. One of the targets of miR172 is APETALA2 (AP2), and although miR172 shares near-perfect complementarity with AP2 it appears to cause translational inhibition of AP2 rather than RNA cleavage.
MicroRNAs (miRNAs) are noncoding RNAs of about 19 to about 24 nucleotides (nt) in length that have been identified in both animals and plants (Lagos-Quintana et al., Science 294:853-858 (2001 ), Lagos-Quintana et al., Curr. Biol. 12:735-739 (2002); Lau et al., Science 294:858-862 (2001 ); Lee and Ambros, Science 294:862-864 (2001 ); Llave et al., Plant Cell 14:1605-1619 (2002); Mourelatos et al., Genes. Dev. 16:720-728 (2002); Park et al., Curr. Biol. 12:1484- 1495 (2002); Reinhart et al., Genes. Dev. 16:1616-1626 (2002)). They are processed from longer precursor transcripts that range in size from approximately 70 to 200 nt, and these precursor transcripts have the ability to form stable hairpin structures. In animals, the enzyme involved in processing miRNA precursors is called dicer, an RNAse Ill-like protein (Grishok et al., Ce// 106:23-34 (2001 ); Hutvagner et al., Science 293:834-838 (2001 ); Ketting et al., Genes. Dev. 15:2654- 2659 (2001 )). Plants also have a dicer-like enzyme, DCL1 (previously named CARPEL FACTORY/SHORT I NTEG U M E NTS 1/ SUSPENSOR1 ), and recent evidence indicates that it, like dicer, is involved in processing the hairpin precursors to generate mature miRNAs (Park et al., Curr. Biol. 12:1484-1495 (2002); Reinhart et al., Genes Dev. 16:1616-1626 (2002)). Furthermore, it is becoming clear from recent work that at least some miRNA hairpin precursors originate as longer polyadenylated transcripts, and several different miRNAs and associated hairpins can be present in a single transcript (Lagos-Quintana et al., Science 294:853-858 (2001 ); Lee et al., EMBO J. 21 :4663-4670 (2002)). Recent work has also examined the selection of the miRNA strand from the dsRNA product arising from processing of the hairpin by DICER (Schwartz et al., Cell 115:199-208 (2003)). It appears that the stability (i.e. G:C versus A:U content, and/or mismatches) of the two ends of the processed dsRNA affects the strand selection, with the low stability end being easier to unwind by a helicase activity. The 5' end strand at the low stability end is incorporated into the RISC complex, while the other strand is degraded.
MicroRNAs (miRNAs) appear to regulate target genes by binding to complementary sequences located in the transcripts produced by these genes. In the case of lin-4 and let-7, the target sites are located in the 3' UTRs of the target mRNAs (Lee et al., Ce// 75:843-854 (1993); Wightman et al., Ce// 75:855-862 (1993); Reinhart et al., Nature 403:901 -906 (2000); Slack et al., MoI. Ce// 5:659-669 (2000)), and there are several mismatches between the lin-4 and let-7 miRNAs and their target sites. Binding of the lin-4 or let-7 miRNA appears to cause downregulation of steady-state levels of the protein encoded by the target mRNA without affecting the transcript itself (Olsen and Ambros, Dev. Biol. 216:671 -680 (1999)). On the other hand, recent evidence suggests that miRNAs can in some cases cause specific RNA cleavage of the target transcript within the target site, and this cleavage step appears to require 100% complementarity between the miRNA and the target transcript (Hutvagner and Zamore, Science 297:2056-2060 (2002); Llave et al., Plant Cell 14:1605-1619 (2002)). It seems likely that miRNAs can enter at least two pathways of target gene regulation: (1 ) protein downregulation when target complementarity is <100%; and (2) RNA cleavage when target complementarity is 100%. MicroRNAs entering the RNA cleavage pathway are analogous to the 21 -25 nt short interfering RNAs (siRNAs) generated during RNA interference (RNAi) in animals and posttranscriptional gene silencing (PTGS) in plants, and likely are incorporated into an RNA-induced silencing complex (RISC) that is similar or identical to that seen for RNAi.
Identifying the targets of miRNAs with bioinformatics has not been successful in animals, and this is probably due to the fact that animal miRNAs have a low degree of complementarity with their targets. On the other hand, bioinformatic approaches have been successfully used to predict targets for plant miRNAs (Llave et al., Plant Cell 14:1605-1619 (2002); Park et al., Curr. Biol. 12:1484-1495 (2002); Rhoades et al., Ce// 110:513-520 (2002)), and thus it appears that plant miRNAs have higher overall complementarity with their putative targets than do animal miRNAs. Most of these predicted target transcripts of plant miRNAs encode members of transcription factor families implicated in plant developmental patterning or cell differentiation. Regulatory Sequences:
A recombinant DNA construct (including a suppression DNA construct) of the present invention comprises at least one regulatory sequence.
A regulatory sequence may be a promoter. A number of promoters can be used in recombinant DNA constructs of the present invention. The promoters can be selected based on the desired outcome, and may include constitutive, tissue-specific, inducible, or other promoters for expression in the host organism.
High level, constitutive expression of the candidate gene under control of the 35S or UBI promoter may have pleiotropic effects, although candidate gene efficacy may be estimated when driven by a constitutive promoter. Use of tissue- specific and/or stress-specific promoters may eliminate undesirable effects but retain the ability to enhance drought tolerance. This effect has been observed in Arabidopsis (Kasuga et al. (1999) Nature Biotechnol. 17:287-91 ). Suitable constitutive promoters for use in a plant host cell include, for example, the core promoter of the Rsyn7 promoter and other constitutive promoters disclosed in WO 99/43838 and U.S. Patent No. 6,072,050; the core CaMV 35S promoter (Odell et al., Nature 313:810-812 (1985)); rice actin (McElroy et al., Plant Cell 2:163-171 (1990)); ubiquitin (Christensen et al., Plant MoI. Biol. 12:619-632 (1989) and Christensen et al., Plant MoI. Biol. 18:675-689 (1992)); pEMU (Last et al., Theor. Appl. Genet. 81 :581 -588 (1991 )); MAS (Velten et al., EMBO J. 3:2723- 2730 (1984)); ALS promoter (U.S. Patent No. 5,659,026), and the like. Other constitutive promoters include, for example, those discussed in U.S. Patent Nos. 5,608,149; 5,608,144; 5,604,121 ; 5,569,597; 5,466,785; 5,399,680; 5,268,463; 5,608,142; and 6,177,611.
In choosing a promoter to use in the methods of the invention, it may be desirable to use a tissue-specific or developmentally regulated promoter.
A preferred tissue-specific or developmentally regulated promoter is a DNA sequence which regulates the expression of a DNA sequence selectively in the cells/tissues of a plant critical to tassel development, seed set, or both, and limits the expression of such a DNA sequence to the period of tassel development or seed maturation in the plant. Any identifiable promoter may be used in the methods of the present invention which causes the desired temporal and spatial expression.
Promoters which are seed or embryo-specific and may be useful in the invention include soybean Kunitz trypsin inhibitor (Kti3, Jofuku and Goldberg, Plant Cell 1 :1079-1093 (1989)), patatin (potato tubers) (Rocha-Sosa, M., et al. (1989) EMBO J. 8:23-29), convicilin, vicilin, and legumin (pea cotyledons) (Rerie, W.G., et al. (1991 ) MoI. Gen. Genet. 259:149-157; Newbigin, E.J., et al. (1990) Planta 180:461 -470; Higgins, T.J.V., et al. (1988) Plant. MoI. Biol. 11 :683-695), zein (maize endosperm) (Schemthaner, J. P., et al. (1988) EMBO J. 7:1249-1255), phaseolin (bean cotyledon) (Segupta-Gopalan, C, et al. (1985) Proc. Natl. Acad. Sci. U.S.A. 82:3320-3324), phytohemagglutinin (bean cotyledon) (Voelker, T. et al. (1987) EMBO J. 6:3571 -3577), B-conglycinin and glycinin (soybean cotyledon) (Chen, Z-L, et al. (1988) EMBO J. 7:297- 302), glutelin (rice endosperm), hordein (barley endosperm) (Marris, C, et al. (1988) Plant MoI. Biol. 10:359-366), glutenin and gliadin (wheat endosperm) (Colot, V., et al. (1987) EMBO J. 6:3559-3564), and sporamin (sweet potato tuberous root) (Hattori, T., et al. (1990) Plant MoI. Biol. 14:595-604). Promoters of seed-specific genes operably linked to heterologous coding regions in chimeric gene constructions maintain their temporal and spatial expression pattern in transgenic plants. Such examples include Arabidopsis thaliana 2S seed storage protein gene promoter to express enkephalin peptides in Arabidopsis and Brassica napus seeds (Vanderkerckhove et al., Bio/Technology 7:L929-932 (1989)), bean lectin and bean beta-phaseolin promoters to express luciferase (Riggs et al., Plant Sci. 63:47-57 (1989)), and wheat glutenin promoters to express chloramphenicol acetyl transferase (Colot et al., EMBO J 6:3559- 3564 (1987)).
Inducible promoters selectively express an operably linked DNA sequence in response to the presence of an endogenous or exogenous stimulus, for example by chemical compounds (chemical inducers) or in response to environmental, hormonal, chemical, and/or developmental signals. Inducible or regulated promoters include, for example, promoters regulated by light, heat, stress, flooding or drought, phytohormones, wounding, or chemicals such as ethanol, jasmonate, salicylic acid, or safeners. Promoters for use in the instant invention may include the following: 1 ) the stress-inducible RD29A promoter (Kasuga et al. (1999) Nature Biotechnol. 17:287- 91 ); 2) the barley promoter, B22E; expression of B22E is specific to the pedicel in developing maize kernels ("Primary Structure of a Novel Barley Gene Differentially Expressed in Immature Aleurone Layers". Klemsdal, S. S. et al., MoI. Gen. Genet. 228(1/2):9-16 (1991 )); and 3) maize promoter, Zag2 ("Identification and molecular characterization of ZAG1 , the maize homolog of the Arabidopsis floral homeotic gene AGAMOUS", Schmidt, R.J. et al., Plant Cell 5(7):729-737 (1993); "Structural characterization, chromosomal localization and phylogenetic evaluation of two pairs of AGAMOUS-Wke MADS-box genes from maize", Theissen et al. Gene 156(2):155- 166 (1995); NCBI GenBank Accession No. X80206)). Zag2 transcripts can be detected 5 days prior to pollination to 7 to 8 days after pollination ("DAP"), and directs expression in the carpel of developing female inflorescences and Ciml which is specific to the nucleus of developing maize kernels. Ciml transcript is detected 4 to 5 days before pollination to 6 to 8 DAP. Other useful promoters include any promoter which can be derived from a gene whose expression is maternally associated with developing female florets.
Additional promoters for regulating the expression of the nucleotide sequences of the present invention in plants are stalk-specific promoters. Such stalk-specific promoters include the alfalfa S2A promoter (GenBank Accession No. EF030816; Abrahams et al., Plant MoI. Biol. 27:513-528 (1995)) and S2B promoter (GenBank Accession No. EF030817) and the like, herein incorporated by reference.
Promoters may be derived in their entirety from a native gene, or be composed of different elements derived from different promoters found in nature, or even comprise synthetic DNA segments. It is understood by those skilled in the art that different promoters may direct the expression of a gene in different tissues or cell types, or at different stages of development, or in response to different environmental conditions. It is further recognized that since in most cases the exact boundaries of regulatory sequences have not been completely defined, DNA fragments of some variation may have identical promoter activity. Promoters that cause a gene to be expressed in most cell types at most times are commonly referred to as "constitutive promoters". New promoters of various types useful in plant cells are constantly being discovered; numerous examples may be found in the compilation by Okamuro, J. K., and Goldberg, R. B., Biochemistry of Plants 15:1 -82 (1989).
Additional promoters may include: RIP2, ml_IP15, ZmCORI , Rab17, CaMV 35S, RD29A, B22E, Zag2, SAM synthetase, ubiquitin, CaMV 19S, nos, Adh, sucrose synthase, R-allele, the vascular tissue preferred promoters S2A (Genbank accession number EF030816) and S2B (Genbank accession number EF030817), and the constitutive promoter GOS2 from Zea mays. Other promoters may include root preferred promoters, such as the maize NAS2 promoter, the maize Cyclo promoter (US 2006/0156439, published July 13, 2006), the maize ROOTMET2 promoter (WO05063998, published July 14, 2005), the CR1 BIO promoter (WO06055487, published May 26, 2006), the CRWAQ81 (WO05035770, published April 21 , 2005) and the maize ZRP2.47 promoter (NCBI accession number: U38790; GI No. 1063664), Recombinant DNA constructs of the present invention may also include other regulatory sequences, including but not limited to, translation leader sequences, introns, and polyadenylation recognition sequences. In another embodiment of the present invention, a recombinant DNA construct of the present invention further comprises an enhancer or silencer. An intron sequence can be added to the 5' untranslated region, the protein- coding region or the 3' untranslated region to increase the amount of the mature message that accumulates in the cytosol. Inclusion of a spliceable intron in the transcription unit in both plant and animal expression constructs has been shown to increase gene expression at both the mRNA and protein levels up to 1000-fold. Buchman and Berg, MoI. Cell Biol. 8:4395-4405 (1988); CaIMs et al., Genes Dev. 1 :1183-1200 (1987). Such intron enhancement of gene expression is typically greatest when placed near the 5' end of the transcription unit. Use of maize introns AdM -S intron 1 , 2, and 6, the Bronze-1 intron are known in the art. See generally, The Maize Handbook, Chapter 116, Freeling and Walbot, Eds., Springer, New York (1994).
If polypeptide expression is desired, it is generally desirable to include a polyadenylation region at the 3'-end of a polynucleotide coding region. The polyadenylation region can be derived from the natural gene, from a variety of other plant genes, or from T-DNA. The 3' end sequence to be added can be derived from, for example, the nopaline synthase or octopine synthase genes, or alternatively from another plant gene, or from any other eukaryotic gene.
A translation leader sequence is a DNA sequence located between the promoter sequence of a gene and the coding sequence. The translation leader sequence is present in the fully processed mRNA upstream of the translation start sequence. The translation leader sequence may affect processing of the primary transcript to mRNA, mRNA stability or translation efficiency. Examples of translation leader sequences have been described (Turner, R. and Foster, G. D. (1995) Molecular Biotechnology 3:225).
Any plant can be selected for the identification of regulatory sequences and miR827 sequences to be used in recombinant DNA constructs of the present invention. Examples of suitable plant targets for the isolation of genes and regulatory sequences would include but are not limited to alfalfa, apple, apricot, Arabidopsis, artichoke, arugula, asparagus, avocado, banana, barley, beans, beet, blackberry, blueberry, broccoli, brussels sprouts, cabbage, canola, cantaloupe, carrot, cassava, castorbean, cauliflower, celery, cherry, chicory, cilantro, citrus, Clementines, clover, coconut, coffee, corn, cotton, cranberry, cucumber, Douglas fir, eggplant, endive, escarole, eucalyptus, fennel, figs, garlic, gourd, grape, grapefruit, honey dew, jicama, kiwifruit, lettuce, leeks, lemon, lime, Loblolly pine, linseed, mango, melon, mushroom, nectarine, nut, oat, oil palm, oil seed rape, okra, olive, onion, orange, an ornamental plant, palm, papaya, parsley, parsnip, pea, peach, peanut, pear, pepper, persimmon, pine, pineapple, plantain, plum, pomegranate, poplar, potato, pumpkin, quince, radiata pine, radicchio, radish, rapeseed, raspberry, rice, rye, sorghum, Southern pine, soybean, spinach, squash, strawberry, sugarbeet, sugarcane, sunflower, sweet potato, sweetgum, tangerine, tea, tobacco, tomato, triticale, turf, turnip, a vine, watermelon, wheat, yams, and zucchini.
Compositions: A composition of the present invention is a plant comprising in its genome any of the recombinant DNA constructs (including any of the suppression DNA constructs) of the present invention (such as any of the constructs discussed above). Compositions also include any progeny of the plant, and any seed obtained from the plant or its progeny, wherein the progeny or seed comprises within its genome the recombinant DNA construct (or suppression DNA construct). Progeny includes subsequent generations obtained by self-pollination or outcrossing of a plant. Progeny also includes hybrids and inbreds. In hybrid seed propagated crops, mature transgenic plants can be self- pollinated to produce a homozygous inbred plant. The inbred plant produces seed containing the newly introduced recombinant DNA construct (or suppression DNA construct). These seeds can be grown to produce plants that would exhibit an altered agronomic characteristic (e.g., an increased agronomic characteristic, optionally under water limiting conditions), or used in a breeding program to produce hybrid seed, which can be grown to produce plants that would exhibit such an altered agronomic characteristic. The seeds may be maize seeds.
The plant may be a monocotyledonous or dicotyledonous plant, for example, a maize or soybean plant, such as a maize hybrid plant or a maize inbred plant. The plant may also be sunflower, sorghum, canola, wheat, alfalfa, cotton, rice, barley or millet.
The recombinant DNA construct may be stably integrated into the genome of the plant.
Embodiments include but are not limited to the embodiments: 1. A plant (for example, a maize or soybean plant) comprising in its genome a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence, wherein said polynucleotide has a sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25, 26 or 27, and wherein said plant exhibits increased drought tolerance when compared to a control plant not comprising said recombinant DNA construct. The plant further exhibits an alteration of at least one agronomic characteristic when compared to the control plant. 2. A plant (for example, a maize or soybean plant) comprising in its genome a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence, wherein said polynucleotide encodes a miR827 sequence, and wherein said plant exhibits increased drought tolerance when compared to a control plant not comprising said recombinant DNA construct. The plant further may exhibit an alteration of at least one agronomic characteristic when compared to the control plant.
3. A plant (for example, a maize or soybean plant) comprising in its genome a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence, wherein said polynucleotide encodes a miR827 sequence, and wherein said plant exhibits an alteration of at least one agronomic characteristic when compared to a control plant not comprising said recombinant DNA construct.
4. A plant (for example, a maize or soybean plant) comprising in its genome a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory element, wherein said polynucleotide has a sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25, 26 or 27, and wherein said plant exhibits an alteration of at least one agronomic characteristic when compared to a control plant not comprising said recombinant DNA construct.
5. A plant (for example, a maize or soybean plant) comprising in its genome a suppression DNA construct comprising at least one regulatory element operably linked to a region derived from all or part of a sense strand or antisense strand of a target gene of interest, said region having a nucleic acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to said all or part of a sense strand or antisense strand from which said region is derived, and wherein said target gene of interest encodes a SPX/MFS or SPX/RING protein, and wherein said plant exhibits an alteration of at least one agronomic characteristic when compared to a control plant not comprising said suppression DNA construct.
6. A plant (for example, a maize or soybean plant) comprising in its genome a suppression DNA construct comprising at least one regulatory element operably linked to all or part of (a) a nucleic acid sequence having a sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:28, 30, 32, 34, 36 or 38, or (b) a full complement of the nucleic acid sequence of (a), and wherein said plant exhibits an alteration of at least one agronomic characteristic when compared to a control plant not comprising said suppression DNA construct.
7. A plant (for example, a maize or soybean plant) comprising in its genome a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory element, wherein said polynucleotide encodes a modified plant miRNA precursor comprising a first and a second oligonucleotide, wherein at least one of the first or the second oligonucleotides is heterologous to the precursor, wherein the first oligonucleotide is substantially complementary to the second oligonucleotide, and the second oligonucleotide encodes a miRNA with 0, 1 , 2 or 3 mismatches to a sequence selected from the group consisting of SEQ ID NOs:3, 6, 9, 12, 15, 18, 21 , 24 and 27, and wherein said plant exhibits increased drought tolerance when compared to a control plant not comprising said recombinant DNA construct.
8. Any progeny of the above plants in embodiments 1-8, any seeds of the above plants in embodiments 1 -8, any seeds of progeny of the above plants in embodiments 1-8, and cells from any of the above plants in embodiments 1-8 and progeny thereof. In any of the foregoing embodiments 1 -8 or any other embodiments of the present invention, the miR827 sequence may be from Arabidopsis thaliana, Zea mays, Glycine max, Glycine tabacina, Glycine soja or Glycine tomentella.
In any of the foregoing embodiments 1 -8 or any other embodiments of the present invention, the recombinant DNA construct (or suppression DNA construct) may comprise at least a promoter functional in a plant as a regulatory sequence. In any of the foregoing embodiments 1 -8 or any other embodiments of the present invention, the alteration of at least one agronomic characteristic is either an increase or decrease. In any of the foregoing embodiments 1 -8 or any other embodiments of the present invention, the at least one agronomic characteristic may be selected from the group consisting of greenness, yield, growth rate, biomass, fresh weight at maturation, dry weight at maturation, fruit yield, seed yield, total plant nitrogen content, fruit nitrogen content, seed nitrogen content, nitrogen content in a vegetative tissue, total plant free amino acid content, fruit free amino acid content, seed free amino acid content, free amino acid content in a vegetative tissue, total plant protein content, fruit protein content, seed protein content, protein content in a vegetative tissue, drought tolerance, nitrogen uptake, root lodging, harvest index, stalk lodging, plant height, ear height and ear length. For example, the alteration of at least one agronomic characteristic may be an increase in yield, greenness or biomass.
In any of the foregoing embodiments 1 -8 or any other embodiments of the present invention, the plant may exhibit the alteration of at least one agronomic characteristic when compared, under water limiting conditions, to a control plant not comprising said recombinant DNA construct (or said suppression DNA construct).
"Drought" refers to a decrease in water availability to a plant that, especially when prolonged, can cause damage to the plant or prevent its successful growth (e.g., limiting plant growth or seed yield).
"Drought tolerance" is a trait of a plant to survive under drought conditions over prolonged periods of time without exhibiting substantial physiological or physical deterioration.
"Increased drought tolerance" of a plant is measured relative to a reference or control plant, and is a trait of the plant to survive under drought conditions over prolonged periods of time, without exhibiting the same degree of physiological or physical deterioration relative to the reference or control plant grown under similar drought conditions. Typically, when a transgenic plant comprising a recombinant DNA construct or suppression DNA construct in its genome exhibits increased drought tolerance relative to a reference or control plant, the reference or control plant does not comprise in its genome the recombinant DNA construct or suppression DNA construct.
One of ordinary skill in the art is familiar with protocols for simulating drought conditions and for evaluating drought tolerance of plants that have been subjected to simulated or naturally-occurring drought conditions. For example, one can simulate drought conditions by giving plants less water than normally required or no water over a period of time, and one can evaluate drought tolerance by looking for differences in physiological and/or physical condition, including (but not limited to) vigor, growth, size, or root length, or in particular, leaf color or leaf area size. Other techniques for evaluating drought tolerance include measuring chlorophyll fluorescence, photosynthetic rates and gas exchange rates.
A drought stress experiment may involve a chronic stress (i.e., slow dry down) and/or may involve two acute stresses (i.e., abrupt removal of water) separated by a day or two of recovery. Chronic stress may last 8 - 10 days. Acute stress may last 3 - 5 days. The following variables may be measured during drought stress and well watered treatments of transgenic plants and relevant control plants:
The variable "% area chg_start chronic - acute2" is a measure of the percent change in total area determined by remote visible spectrum imaging between the first day of chronic stress and the day of the second acute stress
The variable "% area chg_start chronic - end chronic" is a measure of the percent change in total area determined by remote visible spectrum imaging between the first day of chronic stress and the last day of chronic stress
The variable "% area chg_start chronic - harvest" is a measure of the percent change in total area determined by remote visible spectrum imaging between the first day of chronic stress and the day of harvest
The variable "% area chg_start chronic - recovery24hr" is a measure of the percent change in total area determined by remote visible spectrum imaging between the first day of chronic stress and 24 hrs into the recovery (24hrs after acute stress 2)
The variable "psii_acute1 " is a measure of Photosystem Il (PSII) efficiency at the end of the first acute stress period. It provides an estimate of the efficiency at which light is absorbed by PSII antennae and is directly related to carbon dioxide assimilation within the leaf.
The variable "psii_acute2" is a measure of Photosystem Il (PSII) efficiency at the end of the second acute stress period. It provides an estimate of the efficiency at which light is absorbed by PSII antennae and is directly related to carbon dioxide assimilation within the leaf.
The variable "fv/fm_acute1 " is a measure of the optimum quantum yield (Fv/Fm) at the end of the first acute stress - (variable fluorescence difference between the maximum and minimum fluorescence / maximum fluorescence)
The variable "fv/fm_acute2" is a measure of the optimum quantum yield (Fv/Fm) at the end of the second acute stress - (variable flourescence difference between the maximum and minimum fluorescence / maximum fluorescence)
The variable "leaf rollingjiarvest" is a measure of the ratio of top image to side image on the day of harvest.
The variable "leaf rolling_recovery24hr" is a measure of the ratio of top image to side image 24 hours into the recovery.
The variable "Specific Growth Rate (SGR)" represents the change in total plant surface area (as measured by Lemna Tec Instrument) over a single day (Y(t) r*t r*t
= Y0*e ). Y(t) = Y0*e is equivalent to % change in Y/Δ t where the individual terms are as follows: Y(t) = Total surface area at t; YO = Initial total surface area (estimated); r = Specific Growth Rate day"1, and t = Days After Planting ("DAP") The variable "shoot dry weight" is a measure of the shoot weight 96 hours after being placed into a 104 0C oven
The variable "shoot fresh weight" is a measure of the shoot weight immediately after being cut from the plant The Examples below describe some representative protocols and techniques for simulating drought conditions and/or evaluating drought tolerance. One can also evaluate drought tolerance by the ability of a plant to maintain sufficient yield (at least 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% yield) in field testing under simulated or naturally-occurring drought conditions (e.g., by measuring for substantially equivalent yield under drought conditions compared to non-drought conditions, or by measuring for less yield loss under drought conditions compared to a control or reference plant).
One of ordinary skill in the art would readily recognize a suitable control or reference plant to be utilized when assessing or measuring an agronomic characteristic or phenotype of a transgenic plant in any embodiment of the present invention in which a control plant is utilized (e.g., compositions or methods as described herein). For example, by way of non-limiting illustrations:
1. Progeny of a transformed plant which is hemizygous with respect to a recombinant DNA construct (or suppression DNA construct), such that the progeny are segregating into plants either comprising or not comprising the recombinant DNA construct (or suppression DNA construct): the progeny comprising the recombinant DNA construct (or suppression DNA construct) would be typically measured relative to the progeny not comprising the recombinant DNA construct (or suppression DNA construct) (i.e., the progeny not comprising the recombinant DNA construct (or the suppression DNA construct) is the control or reference plant). 2. lntrogression of a recombinant DNA construct (or suppression DNA construct) into an inbred line, such as in maize, or into a variety, such as in soybean: the introgressed line would typically be measured relative to the parent inbred or variety line (i.e., the parent inbred or variety line is the control or reference plant). 3. Two hybrid lines, where the first hybrid line is produced from two parent inbred lines, and the second hybrid line is produced from the same two parent inbred lines except that one of the parent inbred lines contains a recombinant DNA construct (or suppression DNA construct): the second hybrid line would typically be measured relative to the first hybrid line (i.e., the first hybrid line is the control or reference plant).
4. A plant comprising a recombinant DNA construct (or suppression DNA construct): the plant may be assessed or measured relative to a control plant not comprising the recombinant DNA construct (or suppression DNA construct) but otherwise having a comparable genetic background to the plant (e.g., sharing at least 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity of nuclear genetic material compared to the plant comprising the recombinant DNA construct (or suppression DNA construct)). There are many laboratory-based techniques available for the analysis, comparison and characterization of plant genetic backgrounds; among these are Isozyme Electrophoresis, Restriction Fragment Length Polymorphisms (RFLPs), Randomly Amplified Polymorphic DNAs (RAPDs), Arbitrarily Primed Polymerase Chain Reaction (AP-PCR), DNA Amplification Fingerprinting (DAF), Sequence Characterized Amplified Regions (SCARs), Amplified Fragment Length
Polymorphisms (AFLP®s), and Simple Sequence Repeats (SSRs) which are also referred to as Microsatellites.
Furthermore, one of ordinary skill in the art would readily recognize that a suitable control or reference plant to be utilized when assessing or measuring an agronomic characteristic or phenotype of a transgenic plant would not include a plant that had been previously selected, via mutagenesis or transformation, for the desired agronomic characteristic or phenotype. Methods: Methods include but are not limited to methods for increasing drought tolerance in a plant, methods for evaluating drought tolerance in a plant, methods for altering an agronomic characteristic in a plant, methods for determining an alteration of an agronomic characteristic in a plant, and methods for producing seed. The plant may be a monocotyledonous or dicotyledonous plant, for example, a maize or soybean plant. The plant may also be sunflower, sorghum, canola, wheat, alfalfa, cotton, rice, barley or millet. The seed may be a maize or soybean seed, for example, a maize hybrid seed or maize inbred seed. Methods include but are not limited to the following: A method of increasing drought tolerance in a plant, comprising: (a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence (for example, a promoter functional in a plant), wherein the polynucleotide has a sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25, 26 or 27; and (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the recombinant DNA construct and exhibits increased drought tolerance when compared to a control plant not comprising the recombinant DNA construct. The method may further comprise (c) obtaining a progeny plant derived from the transgenic plant, wherein said progeny plant comprises in its genome the recombinant DNA construct and exhibits increased drought tolerance when compared to a control plant not comprising the recombinant DNA construct.
A method of increasing drought tolerance in a plant, comprising: (a) introducing into a regenerable plant cell a suppression DNA construcζcomphsing at least one regulatory sequence (for example, a promoter functional in a plant) operably linked to all or part of (i) a nucleic acid sequence having a sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:28, 30, 32, 34, 36 or 38, or (ii) a full complement of the nucleic acid sequence of (a)(i); and (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the suppression DNA construct and exhibits increased drought tolerance when compared to a control plant not comprising the suppression DNA construct. The method may further comprise (c) obtaining a progeny plant derived from the transgenic plant, wherein said progeny plant comprises in its genome the suppression DNA construct and exhibits increased drought tolerance when compared to a control plant not comprising the suppression DNA construct..
A method of increasing drought tolerance in a plant, comprising: (a) introducing into a regenerable plant cell a suppression DNA construct comprising at least one regulatory sequence (for example, a promoter functional in a plant) operably linked to a region derived from all or part of a sense strand or antisense strand of a target gene of interest, said region having a nucleic acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to said all or part of a sense strand or antisense strand from which said region is derived, and wherein said target gene of interest encodes a SPX/MFS or SPX/RING protein; and (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the suppression DNA construct and exhibits increased drought tolerance when compared to a control plant not comprising the suppression DNA construct. The method may further comprise (c) obtaining a progeny plant derived from the transgenic plant, wherein said progeny plant comprises in its genome the suppression DNA construct and exhibits increased drought tolerance when compared to a control plant not comprising the suppression DNA construct..
A method of evaluating drought tolerance in a plant, comprising (a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least on regulatory sequence (for example, a promoter functional in a plant), wherein the polynucleotide has a sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25, 26 or 27; (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the recombinant DNA construct; and (c) evaluating the transgenic plant for drought tolerance compared to a control plant not comprising the recombinant DNA construct. The method may further comprise (d) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the recombinant DNA construct; and (e) evaluating the progeny plant for drought tolerance compared to a control plant not comprising the recombinant DNA construct.
A method of evaluating drought tolerance in a plant, comprising (a) introducing into a regenerable plant cell a suppression DNA construct comprising at least one regulatory sequence (for example, a promoter functional in a plant) operably linked to all or part of (i) a nucleic acid sequence having a sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:28, 30, 32, 34, 36 or 38, or (ii) a full complement of the nucleic acid sequence of (a)(i); (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the suppression DNA construct; and (c) evaluating the transgenic plant for drought tolerance compared to a control plant not comprising the suppression DNA construct. The method may further comprise (d) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the suppression DNA construct; and (e) evaluating the progeny plant for drought tolerance compared to a control plant not comprising the suppression DNA construct.
A method of evaluating drought tolerance in a plant, comprising (a) introducing into a regenerable plant cell a suppression DNA construct comprising at least one regulatory sequence (for example, a promoter functional in a plant) operably linked to a region derived from all or part of a sense strand or antisense strand of a target gene of interest, said region having a nucleic acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to said all or part of a sense strand or antisense strand from which said region is derived, and wherein said target gene of interest encodes a SPX/MFS or SPX/RING protein; (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the suppression DNA construct; and (c) evaluating the transgenic plant for drought tolerance compared to a control plant not comprising the suppression DNA construct. The method may further comprise (d) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the suppression DNA construct; and (e) evaluating the progeny plant for drought tolerance compared to a control plant not comprising the suppression DNA construct.
A method of evaluating drought tolerance in a plant, comprising (a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence (for example, a promoter functional in a plant), wherein said polynucleotide has a sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25, 26 or 27; (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the recombinant DNA construct; (c) obtaining a progeny plant derived from said transgenic plant, wherein the progeny plant comprises in its genome the recombinant DNA construct; and (d) evaluating the progeny plant for drought tolerance compared to a control plant not comprising the recombinant DNA construct.
A method of evaluating drought tolerance in a plant, comprising (a) introducing into a regenerable plant cell a suppression DNA construct comprising at least one regulatory sequence (for example, a promoter functional in a plant) operably linked to all or part of (i) a nucleic acid sequence having a sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:28, 30, 32, 34, 36 or 38, or (ii) a full complement of the nucleic acid sequence of (a)(i); (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the suppression DNA construct; (c) obtaining a progeny plant derived from said transgenic plant, wherein the progeny plant comprises in its genome the suppression DNA construct; and (d) evaluating the progeny plant for drought tolerance compared to a control plant not comprising the suppression DNA construct.
A method of evaluating drought tolerance in a plant, comprising (a) introducing into a regenerable plant cell a suppression DNA construct comprising at least one regulatory sequence (for example, a promoter functional in a plant) operably linked to a region derived from all or part of a sense strand or antisense strand of a target gene of interest, said region having a nucleic acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to said all or part of a sense strand or antisense strand from which said region is derived, and wherein said target gene of interest encodes a SPX/MFS or SPX/RING protein; (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the suppression DNA construct; (c) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the suppression DNA construct; and (d) evaluating the progeny plant for drought tolerance compared to a control plant not comprising the suppression DNA construct. A method of determining an alteration of an agronomic characteristic in a plant, comprising (a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least on regulatory sequence (for example, a promoter functional in a plant), wherein said polynucleotide has a sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25, 26 or 27; (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome said recombinant DNA construct; and (c) determining whether the transgenic plant exhibits an alteration in at least one agronomic characteristic when compared, optionally under water limiting conditions, to a control plant not comprising the recombinant DNA construct. The method may further comprise (d) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the recombinant DNA construct; and (e) determining whether the progeny plant exhibits an alteration in at least one agronomic characteristic when compared, optionally under water limiting conditions, to a control plant not comprising the recombinant DNA construct.
A method of determining an alteration of an agronomic characteristic in a plant, comprising (a) introducing into a regenerable plant cell a suppression DNA construct comprising at least one regulatory sequence (for example, a promoter functional in a plant) operably linked to all or part of (i) a nucleic acid sequence having a sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:28, 30, 32, 34, 36 or 38, or (ii) a full complement of the nucleic acid sequence of (i); (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the suppression DNA construct; and (c) determining whether the transgenic plant exhibits an alteration in at least one agronomic characteristic when compared, optionally under water limiting conditions, to a control plant not comprising the suppression DNA construct. The method may further comprise (d) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the suppression DNA construct; and (e) determining whether the progeny plant exhibits an alteration in at least one agronomic characteristic when compared, optionally under water limiting conditions, to a control plant not comprising the suppression DNA construct. A method of determining an alteration of an agronomic characteristic in a plant, comprising (a) introducing into a regenerable plant cell a suppression DNA construct comprising at least one regulatory sequence (for example, a promoter functional in a plant) operably linked to a region derived from all or part of a sense strand or antisense strand of a target gene of interest, said region having a nucleic acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to said all or part of a sense strand or antisense strand from which said region is derived, and wherein said target gene of interest encodes a SPX/MFS or SPX/RING protein; (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the suppression DNA construct; and (c) determining whether the transgenic plant exhibits an alteration in at least one agronomic characteristic when compared, optionally under water limiting conditions, to a control plant not comprising the suppression DNA construct. The method may further comprise (d) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the suppression DNA construct; and (e) determining whether the progeny plant exhibits an alteration in at least one agronomic characteristic when compared, optionally under water limiting conditions, to a control plant not comprising the suppression DNA construct.
A method of determining an alteration of an agronomic characteristic in a plant, comprising (a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence (for example, a promoter functional in a plant), wherein said polynucleotide has a sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25, 26 or 27; (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome said recombinant DNA construct; (c) obtaining a progeny plant derived from said transgenic plant, wherein the progeny plant comprises in its genome the recombinant DNA construct; and (d) determining whether the progeny plant exhibits an alteration in at least one agronomic characteristic when compared, optionally under water limiting conditions, to a control plant not comprising the recombinant DNA construct.
A method of determining an alteration of an agronomic characteristic in a plant, comprising (a) introducing into a regenerable plant cell a suppression DNA construct comprising at least one regulatory sequence (for example, a promoter functional in a plant) operably linked to all or part of (i) a nucleic acid sequence having a sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:28, 30, 32, 34, 36 or 38, or (ii) a full complement of the nucleic acid sequence of (i); (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the suppression DNA construct; (c) obtaining a progeny plant derived from said transgenic plant, wherein the progeny plant comprises in its genome the suppression DNA construct; and (d) determining whether the progeny plant exhibits an alteration in at least one agronomic characteristic when compared, optionally under water limiting conditions, to a control plant not comprising the suppression DNA construct.
A method of determining an alteration of an agronomic characteristic in a plant, comprising (a) introducing into a regenerable plant cell a suppression DNA construct comprising at least one regulatory sequence (for example, a promoter functional in a plant) operably linked to a region derived from all or part of a sense strand or antisense strand of a target gene of interest, said region having a nucleic acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to said all or part of a sense strand or antisense strand from which said region is derived, and wherein said target gene of interest encodes a SPX/MFS or
SPX/RING protein; (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the suppression DNA construct; (c) obtaining a progeny plant derived from said transgenic plant, wherein the progeny plant comprises in its genome the suppression DNA construct; and (d) determining whether the progeny plant exhibits an alteration in at least one agronomic characteristic when compared, optionally under water limiting conditions, to a control plant not comprising the suppression DNA construct.
A method of producing seed (for example, seed that can be sold as a drought tolerant product offering) comprising any of the preceding methods, and further comprising obtaining seeds from said progeny plant, wherein said seeds comprise in their genome said recombinant DNA construct (or suppression DNA construct).
In any of the preceding methods or any other embodiments of methods of the present invention, in said introducing step said regenerable plant cell may comprise a callus cell, and embryogenic callus cell, a gametic cell, a meristematic cell, or a cell of an immature embryo. The regenerable plant cells may derive from an inbred maize plant.
In any of the preceding methods or any other embodiments of methods of the present invention, said regenerating step may comprise: (i) culturing said transformed plant cells in a media comprising an embryogenic promoting hormone until callus organization is observed; (ii) transferring said transformed plant cells of step (i) to a first media which includes a tissue organization promoting hormone; and (iii) subcultuhng said transformed plant cells after step (ii) onto a second media, to allow for shoot elongation, root development or both.
In any of the preceding methods or any other embodiments of methods of the present invention, the at least one agronomic characteristic may be selected from the group consisting of greenness, yield, growth rate, biomass, fresh weight at maturation, dry weight at maturation, fruit yield, seed yield, total plant nitrogen content, fruit nitrogen content, seed nitrogen content, nitrogen content in a vegetative tissue, total plant free amino acid content, fruit free amino acid content, seed free amino acid content, amino acid content in a vegetative tissue, total plant protein content, fruit protein content, seed protein content, protein content in a vegetative tissue, drought tolerance, nitrogen uptake, root lodging, harvest index, stalk lodging, plant height, ear height and ear length. The alteration of at least one agronomic characteristic may be an increase in yield, greenness or biomass.
In any of the preceding methods or any other embodiments of methods of the present invention, the plant may exhibit the alteration of at least one agronomic characteristic when compared, under water limiting conditions, to a control plant not comprising said recombinant DNA construct (or said suppression DNA construct). In any of the preceding methods that involve introducing into a regenerable plant cell a suppression DNA construct, each method further may comprise introducing into the regenerable plant cell a second suppression DNA construct, wherein the second suppression DNA construct comprises at least one regulatory element operably linked to all or part of: (1 ) a nucleic acid sequence having least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:28, 30, 32, 34, 36 or 38; or (2) a full complement of the nucleic acid sequence of (a)(1 ). The second suppression DNA construct may be introduced into the plant cell by co- transformation with the first suppression DNA construct, by sequential transformation of a plant, plant cell, or plant tissue culture line containing the first suppression DNA constructs, or by crossing of two plants that each have been transformed with a different suppression DNA construct.
In any of the preceding methods or any other embodiments of methods of the present invention, alternatives exist for introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence. For example, one may introduce into a regenerable plant cell a regulatory sequence (such as one or more enhancers, for example, as part of a transposable element), and then screen for an event in which the regulatory sequence is operably linked to an endogenous gene of the instant invention. The introduction of recombinant DNA constructs of the present invention into plants may be carried out by any suitable technique, including but not limited to direct DNA uptake, chemical treatment, electroporation, microinjection, cell fusion, infection, vector-mediated DNA transfer, bombardment, or Agrobacterium-meό\ateό transformation.
Techniques are set forth in the Examples below for transformation of maize plant cells and soybean plant cells.
Other methods for transforming dicots, primarily by use of Agrobacteήum tumefaciens, and obtaining transgenic plants include those published for cotton (U.S. Patent No. 5,004,863, U.S. Patent No. 5,159,135, U.S. Patent No. 5,518, 908); soybean (U.S. Patent No. 5,569,834, U.S. Patent No. 5,416,011 , McCabe et. al., BiolTechnology 6:923 (1988), Christou et al., Plant Physiol. 87:671 674 (1988)); Brassica (U.S. Patent No. 5,463,174); peanut (Cheng et al., Plant Cell Rep. 15:653 657 (1996), McKently et al., Plant Cell Rep. 14:699 703 (1995)); papaya; and pea (Grant et al., Plant Cell Rep. 15:254 258, (1995)).
Transformation of monocotyledons using electroporation, particle bombardment, and Agrobacteήum have also been reported, for example, transformation and plant regeneration as achieved in asparagus (Bytebier et al., Proc. Natl. Acad. Sci. (USA) 84:5354, (1987)); barley (Wan and Lemaux, Plant Physiol 104:37 (1994)); maize (Rhodes et al., Science 240:204 (1988), Gordon- Kamm et al., Plant Cell 2:603 618 (1990), Fromm et al., BiolTechnology 8:833 (1990), Koziel et al., BiolTechnology 11 : 194, (1993), Armstrong et al., Crop Science 35:550 557 (1995)); oat (Somers et al., BiolTechnology 10: 15 89 (1992)); orchard grass (Horn et al., Plant Cell Rep. 7:469 (1988)); rice (Toriyama et al., TheorAppl. Genet. 205:34, (1986); Part et al., Plant MoI. Biol. 32:1135 1148,
(1996); Abedinia et al., Aust. J. Plant Physiol. 24:133 141 (1997); Zhang and Wu, Theor. Appl. Genet. 76:835 (1988); Zhang et al. Plant Cell Rep. 7:379, (1988); Battraw and Hall, Plant Sci. 86:191 202 (1992); Christou et al., Bio/Technology 9:957 (1991 )); rye (De Ia Pena et al., Nature 325:274 (1987)); sugarcane (Bower and Birch, Plant J. 2:409 (1992)); tall fescue (Wang et al., BiolTechnology 10:691 (1992)), and wheat (Vasil et al., Bio/Technology 10:667 (1992); U.S. Patent No. 5,631 ,152). There are a variety of methods for the regeneration of plants from plant tissue. The particular method of regeneration will depend on the starting plant tissue and the particular plant species to be regenerated.
The regeneration, development, and cultivation of plants from single plant protoplast transformants or from various transformed explants is well known in the art (Weissbach and Weissbach, In: Methods for Plant Molecular Biology, (Eds.), Academic Press, Inc. San Diego, CA, (1988)). This regeneration and growth process typically includes the steps of selection of transformed cells, culturing those individualized cells through the usual stages of embryonic development through the rooted plantlet stage. Transgenic embryos and seeds are similarly regenerated. The resulting transgenic rooted shoots are thereafter planted in an appropriate plant growth medium such as soil.
The development or regeneration of plants containing the foreign, exogenous isolated nucleic acid fragment that encodes a protein of interest is well known in the art. The regenerated plants may be self-pollinated to provide homozygous transgenic plants. Otherwise, pollen obtained from the regenerated plants is crossed to seed-grown plants of agronomically important lines. Conversely, pollen from plants of these important lines is used to pollinate regenerated plants. A transgenic plant of the present invention containing a desired polypeptide is cultivated using methods well known to one skilled in the art.
EXAMPLES
The present invention is further illustrated in the following Examples, in which parts and percentages are by weight and degrees are Celsius, unless otherwise stated. It should be understood that these Examples, while indicating embodiments of the invention, are given by way of illustration only. From the above discussion and these Examples, one skilled in the art can ascertain the essential characteristics of this invention, and without departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various usages and conditions. Thus, various modifications of the invention in addition to those shown and described herein will be apparent to those skilled in the art from the foregoing description. Such modifications are also intended to fall within the scope of the appended claims.
EXAMPLE 1 Isolation of Small RNAs for Sequencing and Precursor Structure Analysis
RNA samples were extracted using Trizol reagent (Invitrogen), from mixed later stages maize kernels (7, 14 and 21 days after pollination). Total RNA was fractionated on 15% polyacrylamide TBE/urea gels, and a 21 -nt RNA marker was also included in a separate lane. Following electrophoresis, the gels were stained with ethidium bromide, and the region of the gel corresponding to 20-22 nucleotides was excised. The small RNA fraction was eluted overnight, ethanol precipitated, and then ligated sequentially to 5' and 3' RNA adaptors, using T4 RNA ligase (5' RNA adaptor GGUCUUAGUCGCAUCCUGUAGAUGGAUC and 31 RNA adaptor pAUGCACACUGAUGCUGACACCUGCidT where p = phosphate; idT = inverted deoxythymidine; SEQ ID NOs:55 and 56, respectively). The products of each ligation were gel purified on 10% denaturing polyacrylamide gels, to remove unligated adaptors. RT-PCR was then carried out on the final ligation product, using primers complementary to the 5' and 3' adaptor sequences. Amplified cDNAs corresponding to small RNAs were sequenced by concatamerization followed by standard dideoxy sequencing (Elbashir et al., 2001 Genes & Dev. 15:88-200).
Approximately 3000 small RNAs were sequenced from the mixed stage kernel library. After trimming adaptor sequences, the small RNA sequences were used as the query in BLAST searches to identify longer sequences in the DuPont internal cDNA database that could be used to generate predicted miRNA precursor sequences. Folding of potential hairpin precursor structures was performed using a publicly available RNA folding algorithm (Vienna RNA Package), and candidate miRNAs were chosen based on visual inspection of hairpin structures.
A maize miRNA (SEQ ID NO:3) and the corresponding precursor (SEQ ID NO:1 ) were identified and the miRNA was designated "w3-4". We subsequently identified the Arabidopsis homolog of w3-4 by BLAST searches against the Arabidopsis genome. Subsequently, the Arabidopsis homolog of w3-4 was published by others with the designation of "miR827" (Rajagopalan et al., 2006 Genes Devel. 20:3407-3425). Consequently, the terms "w3-4" and "miR827" are used interchangeably herein. EXAMPLE 2
Identification of Plant miR827 Genes and Candidate Target Genes Using BLAST search analyses of proprietary and public databases, the following miR827 homologs were identified. Listed in Table 2 are putative precursors sequences (which may be full-length, near full-length or intermediate in size), short hairpin sequences and the mature miRNA sequences for each plant homolog of miR827.
Table 2 miR827 Homologs
Figure imgf000056_0001
Additionally, candidate target genes from Arabidopsis, corn and rice were identified. These target genes all share the SPX domain. The candidate target genes are listed in Table 3.
Table 3 Candidate Target Genes for miR827
Figure imgf000056_0002
Figure imgf000057_0001
Candidate miR827 target genes listed in Table 3 contain a SPX domain, thought to be involved in G-protein signal transduction, and either a RING finger domain, involved in protein-protein interactions such as in the ubiquitin pathway, or a MFS ("Major Facilitator Superfamily") transmembrane domain involved in small solute transport.
The miR827 homologs from Arabidopsis, maize, rice and soybean, and putative target genes are also described in PCT International Patent Publication No. WO2008/133643A2. In WO2008/133643A2 the expression levels of maize miR827 and/or the miR827 precursor were examined under conditions of stress in the following areas: drought, temperature, nitrogen and phosphate.
Example 3
Overexpression of AtmiR827 in Transgenic Arabidopsis A 15.3-kb T-DNA based binary vector, called pBC (SEQ ID NO:40; FIG. 1 ), was constructed with a 1.3-kb 35S promoter immediately upstream of the
Invitrogen™ Gateway® C1 conversion insert. The in planta selectable marker in this vector is the BAR gene, which confers resistance to the herbicide glufosinate (BASTA).
The AtmiR827 region containing the hairpin precursor plus additional flanking sequence was amplified from Arabidopsis genomic DNA using PCR with the following primers:
(1 ) AtmiR827pre-5'attB forward primer (SEQ ID NO:51 ):
TTAAACAAGTTTGTACAAAAAAGCAGGCTGTCTGGATTCATGTTCTT GTTTGT (2) AtmiR827pre-3'attB reverse primer (SEQ ID NO:52):
TTAAACCACTTTGTACAAGAAAGCTGGGTGCTAAGCTGTGTAACGA CTGCAGA
The forward primer contains the attB1 sequence (ACAAGTTTGTACAAAAAAGCAGGCT; SEQ ID NO:49) adjacent to 24 nucleotides corresponding to a genomic sequence approximately 100 nucleotides upstream of the AtmiR827 hairpin precursor.
The reverse primer contains the attB2 sequence
(ACCACTTTGTACAAGAAAGCTGGGT; SEQ ID NO:50) adjacent to the reverse complement of a 24-nucleotide genomic sequence approximately 200 nucleotides downstream of the AtmiR827 hairpin precursor.
Using the Invitrogen™ Gateway® Clonase™ technology, a BP Recombination Reaction was performed with pDONR™/Zeo (SEQ ID NO:41 ; FIG. 2). This process removed the bacteria lethal ccdB gene, as well as the chloramphenicol resistance gene (CAM) from pDONR™/Zeo and directionally cloned the PCR product with flanking attB1 and attB2 sites creating an entry clone. This entry clone was used for a subsequent LR Recombination Reaction with a destination vector, as follows.
The 15.3-kb T-DNA based binary vector (destination vector), called pBC (SEQ ID NO:40; FIG. 1 ), contains the bacterial lethal ccdB gene as well as the chloramphenicol resistance gene (CAM) flanked by attR1 and attR2 sequences. Using the Invitrogen™ Gateway® technology, an LR Recombination Reaction was performed on the entry clone, containing the directionally cloned PCR product, and pBC. This allowed for rapid and directional cloning of the candidate gene behind the 35S promoter in pBC to create the 35S promoter::AtmiR827 expression construct, pBC-AtmiR827.
The 35S promoter::AtmiR827 expression construct was introduced into wild- type Arabidopsis ecotype CoI-O using the following whole plant Agrobacterium transformation procedure. The 35S promoter: :AtmiR827 construct was transformed into Agrobacterium tumefaciens strain C58 and grown in LB at 25 0C to OD600 ~1.0. Cells were then pelleted by centrifugation and resuspended in an equal volume of 5% sucrose/0.05% Silwet L-77 (OSI Specialties, Inc). At early bolting, soil grown Arabidopsis thaliana ecotype CoI-O were top watered with the Agrobacterium suspension. A week later, the same plants were top watered again with the same Agrobacterium strain in sucrose/Silwet. The plants were then allowed to set seed as normal. The resulting T1 seed were sown on soil, and transgenic seedlings were selected by spraying with glufosinate (Finale®; AgrEvo; Bayer Environmental Science). Several T1 lines were characterized for overexpression of AtmiR827 by Northern blotting and hybridization with a labeled oligo complementary to AtmiR827 (Figure 10). Two of the lines showing overexpression of AtmiR827, Lines 1 and 2, were allowed to set seed, and these T2 lines were subsequently used in the drought phenotyping assay. EXAMPLE 4
Screens to Identify Lines with Enhanced Drought Tolerance Quantitative Drought Screen: Plants are sown in pots containing Scotts® Metro-Mix® 200 soil.
The soil is watered to saturation and then plants are grown under standard conditions (i.e., 16 hour light, 8 hour dark cycle; 22°C; -60% relative humidity). No additional water is given.
Digital images of the plants are taken at the onset of visible drought stress symptoms. Images are taken once a day (at the same time of day), until the plants appear desiccated. Typically, four consecutive days of data is captured. Color analysis is employed for identifying potential drought tolerant lines.
Color analysis can be used to measure the increase in the percentage of leaf area that falls into a yellow color bin. Using hue, saturation and intensity data ("HSI"), the yellow color bin consists of hues 35 to 45.
Maintenance of leaf area is also used as another criterion for identifying potential drought tolerant lines, since Arabidopsis leaves wilt during drought stress. Maintenance of leaf area can be measured as reduction of rosette leaf area over time.
Leaf area is measured in terms of the number of green pixels obtained using the LemnaTec imaging system. Transgenic and control (e.g., wild-type) plants are grown side by side in flats that contain 72 plants (9 plants/pot). When wilting begins, images are measured for a number of days to monitor the wilting process. From these data wilting profiles are determined based on the green pixel counts obtained over four consecutive days for transgenic and accompanying control plants. The profile is selected from a series of measurements over the four day period that gives the largest degree of wilting. The ability to withstand drought is measured by the tendency of transgenic plants to resist wilting compared to control plants. LemnaTec HTSBonitUV software is used to analyze CCD images.
Estimates of the leaf area of the Arabidopsis plants are obtained in terms of the number of green pixels. The data for each image is averaged to obtain estimates of mean and standard deviation for the green pixel counts for transgenic and wild- type plants. Parameters for a noise function are obtained by straight line regression of the squared deviation versus the mean pixel count using data for all images in a batch. Error estimates for the mean pixel count data are calculated using the fit parameters for the noise function. The mean pixel counts for transgenic and wild-type plants are summed to obtain an assessment of the overall leaf area for each image. The four-day interval with maximal wilting is obtained by selecting the interval that corresponds to the maximum difference in plant growth. The individual wilting responses of the transgenic and wild-type plants are obtained by normalization of the data using the value of the green pixel count of the first day in the interval. The drought tolerance of the transgenic plant compared to the wild- type plant is scored by summing the weighted difference between the wilting response of transgenic plants and wild-type plants over day two to day four; the weights are estimated by propagating the error in the data. A positive drought tolerance score corresponds to a transgenic plant with slower wilting compared to the wild-type plant. Significance of the difference in wilting response between transgenic and wild-type plants is obtained from the weighted sum of the squared deviations.
Lines with a significant delay in yellow color accumulation and/or with significant maintenance of rosette leaf area, when compared to the average of the whole flat, are designated as Phase 1 hits. Phase 1 hits are re-screened in duplicate under the same assay conditions. When either or both of the Phase 2 replicates show a significant difference (Score of greater than 0.9) from the whole flat mean, the line is then considered a validated drought tolerant line. Example 5
Phenotypinq of Transgenic Arabidopsis Lines for Enhanced Drought Tolerance
T2 seed for the transgenic AtmiR827 overexpression lines was sown in four pots of Scotts® Metro-Mix® 200 soil, such that each pot contained 18-27 seed arranged into 9 positions (2-3 seed per position). These four pots were interspersed in one flat with four pots of CoI-O, planted in an identical manner. The soil was watered to saturation and then plants were grown under standard conditions (i.e., 16 hour light, 8 hour dark cycle; 22°C; -60% relative humidity). No additional water was given. At approximately one week after germination, the four pots with transgenic T2 seedlings were removed from the flat and sprayed with glufosinate to eliminate non-transgenic siblings. The pots were then replaced and monitored for resistance to glufosinate, and following this selection both the transgenic and control (CoI-O) seedlings were thinned such that only 9 plants remained in each of the pots (36 total of transgenic and 36 total of control).
It was found that both AtmiR827 overexpression lines 1 and 2 displayed significant maintenance of rosette leaf area under drought conditions, when compared to the CoI-O control (Figure 11 ), and therefore AtmiR827 confers drought tolerance when overexpressed. The drought tolerance score, as determined by the method of Example 4, was 2.5.
Example 6
ABA Inhibition of Germination Assay
Seeds from AtmiR827 overexpression line 2 and from the control (CoI-O) were sterilized and plated on 0.7% agar plates containing 0.5X Murashige and Skoog salts, 1 % sucrose, and either 0, 0.5, or 1 μM abscisic acid (ABA). Following cold treatment for three days at 4 0C, the plates were placed in a growth chamber set at 20 0C, 16 hr light/8 hr dark photoperiod, 100 μmole/m2/s light intensity, for 48 hours. Plates were then examined under a dissecting microscope and germination of the seeds was scored. Radical protrusion from the seed coat was used as the criteria for a positive germination event. Three replicate experiments were performed, each with at least 30 seed of control and 30 seed of the transgenic line. Relative to the control, the AtmiR827 overexpression line displayed an increased inhibition of germination by ABA (Figure 12), and therefore is hypersensitive to ABA.
EXAMPLE 7
Preparation of a Plant Expression Vector Containing a Homolog to the miR827 Gene
Sequences homologous to the Arabidopsis miR827 gene can be identified using sequence comparison algorithms such as BLAST (Basic Local Alignment Search Tool; Altschul et al., J. MoI. Biol. 215:403-410 (1993); see also the explanation of the BLAST algorithm on the world wide web site for the National Center for Biotechnology Information at the National Library of Medicine of the National Institutes of Health). Sequences encoding homologous miR827 genes can be PCR-amplified by either of the following methods.
Method 1 (RNA-based): If the 5' and 3' sequence information for the miR827-coding region is available, gene-specific primers can be designed as outlined above. RT-PCR can be used with plant RNA to obtain a nucleic acid fragment containing the protein-coding region flanked by attB1 (SEQ ID NO:49) and attB2 (SEQ ID NO:50) sequences.
Method 2 (DNA-based): Alternatively, if a cDNA clone is available for a gene encoding a miR827 precursor, the entire cDNA insert (containing 5' and 3' non-coding regions) can be PCR amplified. Forward and reverse primers can be designed that contain either the attB1 sequence and vector-specific sequence that precedes the cDNA insert or the attB2 sequence and vector-specific sequence that follows the cDNA insert, respectively. For a cDNA insert cloned into the vector pBulescript SK+, the forward primer VC062 (SEQ ID NO:53) and the reverse primer VC063 (SEQ ID NO:54) can be used.
Methods 1 and 2 can be modified according to procedures known by one skilled in the art. For example, the primers of Method 1 may contain restriction sites instead of attB1 and attB2 sites, for subsequent cloning of the PCR product into a vector containing attB1 and attB2 sites. Additionally, Method 2 can involve amplification from a cDNA clone, a lambda clone, a BAC clone or genomic DNA.
A PCR product obtained by either method above can be combined with the Gateway® donor vector, such as pDONR™/Zeo (Invitrogen™; FIG. 2; SEQ ID NO:41 ) or pDONR™221 (Invitrogen™; FIG. 3; SEQ ID NO:42), using a BP Recombination Reaction. This process removes the bacteria lethal ccdB gene, as well as the chloramphenicol resistance gene (CAM) from pDONR™221 and directionally clones the PCR product with flanking attB1 and attB2 sites to create an entry clone. Using the Invitrogen™ Gateway® Clonase™ technology, the sequence encoding the miR827 sequence from the entry clone can then be transferred to a suitable destination vector, such as pBC-Yellow (FIG. 4; SEQ ID NO:43), PHP27840 (FIG. 5; SEQ ID NO:44) or PHP23236 (FIG. 6; SEQ ID NO:45), to obtain a plant expression vector for use with Arabidopsis, soybean and corn, respectively. The attP1 and attP2 sites of donor vectors pDONR™/Zeo or pDONR™221 are shown in Figures 2 and 3, respectively. The attR1 and attR2 sites of destination vectors pBC-Yellow, PHP27840 and PHP23236 are shown in Figures 4, 5 and 6, respectively.
Alternatively a MultiSite Gateway® LR recombination reaction between multiple entry clones and a suitable destination vector can be performed to create an expression vector.
EXAMPLE 8
Preparation of Soybean Expression Vectors and Transformation of Soybean with miR827 Sequences Soybean plants can be transformed to overexpress a miR827 sequence in order to examine the resulting phenotype.
The same Gateway® entry clone described above can be used to directionally clone each gene into the PHP27840 vector (SEQ ID NO:44; FIG. 5) such that expression of the gene is under control of the SCP1 promoter. Soybean embryos may then be transformed with the expression vector comprising sequences encoding the instant polypeptides.
To induce somatic embryos, cotyledons, 3-5 mm in length dissected from surface sterilized, immature seeds of the soybean cultivar A2872, can be cultured in the light or dark at 26 0C on an appropriate agar medium for 6-10 weeks. Somatic embryos, which produce secondary embryos, are then excised and placed into a suitable liquid medium. After repeated selection for clusters of somatic embryos which multiply as early, globular staged embryos, the suspensions are maintained as described below. Soybean embryogenic suspension cultures can be maintained in 35 ml_ liquid media on a rotary shaker, 150 rpm, at 26 0C with florescent lights on a 16:8 hour day/night schedule. Cultures are subcultured every two weeks by inoculating approximately 35 mg of tissue into 35 ml_ of liquid medium. Soybean embryogenic suspension cultures may then be transformed by the method of particle gun bombardment (Klein et al. (1987) Nature (London) 327:70-73, U.S. Patent No. 4,945,050). A DuPont™ Biolistic™ PDS1000/HE instrument (helium retrofit) can be used for these transformations.
A selectable marker gene which can be used to facilitate soybean transformation is a chimeric gene composed of the 35S promoter from cauliflower mosaic virus (Odell et al. (1985) Nature 373:810-812), the hygromycin phosphotransferase gene from plasmid pJR225 (from E. coli; Gritz et al. (1983) Gene 25:179-188) and the 3' region of the nopaline synthase gene from the T-DNA of the Ti plasmid of Agrobacterium tumefaciens. Another selectable marker gene which can be used to facilitate soybean transformation is an herbicide-resistant acetolactate synthase (ALS) gene from soybean or Arabidopsis. ALS is the first common enzyme in the biosynthesis of the branched-chain amino acids valine, leucine and isoleucine. Mutations in ALS have been identified that convey resistance to some or all of three classes of inhibitors of ALS (US Patent No. 5,013,659; the entire contents of which are herein incorporated by reference).
Expression of the herbicide-resistant ALS gene can be under the control of a SAM synthetase promoter (U.S. Patent Application No. US-2003-0226166-A1 ; the entire contents of which are herein incorporated by reference).
To 50 μL of a 60 mg/mL 1 μm gold particle suspension is added (in order): 5 μL DNA (1 μg/μL), 20 μL spermidine (0.1 M), and 50 μL CaCl2 (2.5 M). The particle preparation is then agitated for three minutes, spun in a microfuge for 10 seconds and the supernatant removed. The DNA-coated particles are then washed once in 400 μL 70% ethanol and resuspended in 40 μL of anhydrous ethanol. The DNA/particle suspension can be sonicated three times for one second each. Five μL of the DNA-coated gold particles are then loaded on each macro carrier disk.
Approximately 300-400 mg of a two-week-old suspension culture is placed in an empty 60x15 mm petri dish and the residual liquid removed from the tissue with a pipette. For each transformation experiment, approximately 5-10 plates of tissue are normally bombarded. Membrane rupture pressure is set at 1100 psi and the chamber is evacuated to a vacuum of 28 inches mercury. The tissue is placed approximately 3.5 inches away from the retaining screen and bombarded three times. Following bombardment, the tissue can be divided in half and placed back into liquid and cultured as described above.
Five to seven days post bombardment, the liquid media may be exchanged with fresh media, and eleven to twelve days post bombardment with fresh media containing 50 mg/mL hygromycin. This selective media can be refreshed weekly. Seven to eight weeks post bombardment, green, transformed tissue may be observed growing from untransformed, necrotic embryogenic clusters. Isolated green tissue is removed and inoculated into individual flasks to generate new, clonally propagated, transformed embryogenic suspension cultures. Each new line may be treated as an independent transformation event. These suspensions can then be subcultured and maintained as clusters of immature embryos or regenerated into whole plants by maturation and germination of individual somatic embryos.
T1 plants can be subjected to a soil-based drought stress. Using image analysis, plant area, volume, growth rate and color analysis can be taken at multiple times before and during drought stress. Overexpression constructs that result in a significant delay in wilting or leaf area reduction, yellow color accumulation and/or increased growth rate during drought stress will be considered evidence that the Arabidopsis gene functions in soybean to enhance drought tolerance. Soybean plants transformed with miR827 sequence can then be assayed under more vigorous field-based studies to study yield enhancement and/or stability under well-watered and water-limiting conditions.
EXAMPLE 9 Transformation of Maize with miR827 Sequences Using Particle Bombardment
Maize plants can be transformed to overexpress a miR827 sequence in order to examine the resulting phenotype. The same Gateway® entry clone described above can be used to directionally clone each gene into a maize transformation vector. Expression of the gene in the maize transformation vector can be under control of a constitutive promoter such as the maize ubiquitin promoter (Chhstensen et al., (1989) Plant MoI. Biol. 12:619-632 and Christensen et al., (1992) Plant MoI. Biol. 18:675-689) The recombinant DNA construct described above can then be introduced into corn cells by the following procedure. Immature corn embryos can be dissected from developing caryopses derived from crosses of the inbred corn lines H99 and LH132. The embryos are isolated 10 to 11 days after pollination when they are 1.0 to 1.5 mm long. The embryos are then placed with the axis-side facing down and in contact with agarose-solidified N6 medium (Chu et al. (1975) Sci. Sin. Peking 18:659-668). The embryos are kept in the dark at 27°C. Friable embryogenic callus consisting of undifferentiated masses of cells with somatic proembryoids and embryoids borne on suspensor structures proliferates from the scutellum of these immature embryos. The embryogenic callus isolated from the primary explant can be cultured on N6 medium and sub-cultured on this medium every 2 to 3 weeks.
The plasmid, p35S/Ac (obtained from Dr. Peter Eckes, Hoechst Ag, Frankfurt, Germany) may be used in transformation experiments in order to provide for a selectable marker. This plasmid contains the Pat gene (see European Patent Publication 0 242 236) which encodes phosphinothhcin acetyl transferase (PAT). The enzyme PAT confers resistance to herbicidal glutamine synthetase inhibitors such as phosphinothricin. The pat gene in p35S/Ac is under the control of the 35S promoter from cauliflower mosaic virus (Odell et al. (1985) Nature 313:810-812) and the 3' region of the nopaline synthase gene from the T-DNA of the Ti plasmid of Agrobacterium tumefaciens.
The particle bombardment method (Klein et al. (1987) Nature 327:70-73) may be used to transfer genes to the callus culture cells. According to this method, gold particles (1 μm in diameter) are coated with DNA using the following technique. Ten μg of plasmid DNAs are added to 50 μl_ of a suspension of gold particles (60 mg per ml_). Calcium chloride (50 μl_ of a 2.5 M solution) and spermidine free base (20 μl_ of a 1.0 M solution) are added to the particles. The suspension is vortexed during the addition of these solutions. After 10 minutes, the tubes are briefly centrifuged (5 sec at 15,000 rpm) and the supernatant removed. The particles are resuspended in 200 μl_ of absolute ethanol, centrifuged again and the supernatant removed. The ethanol rinse is performed again and the particles resuspended in a final volume of 30 μl_ of ethanol. An aliquot (5 μl_) of the DNA- coated gold particles can be placed in the center of a Kapton™ flying disc (Bio-Rad Labs). The particles are then accelerated into the corn tissue with a DuPont™ Biolistic™ PDS-1000/He (Bio-Rad Instruments, Hercules CA), using a helium pressure of 1000 psi, a gap distance of 0.5 cm and a flying distance of 1.0 cm. For bombardment, the embryogenic tissue is placed on filter paper over agarose-solidified N6 medium. The tissue is arranged as a thin lawn and covers a circular area of about 5 cm in diameter. The petri dish containing the tissue can be placed in the chamber of the PDS-1000/He approximately 8 cm from the stopping screen. The air in the chamber is then evacuated to a vacuum of 28 inches of Hg. The macrocarher is accelerated with a helium shock wave using a rupture membrane that bursts when the He pressure in the shock tube reaches 1000 psi.
Seven days after bombardment the tissue can be transferred to N6 medium that contains bialaphos (5 mg per liter) and lacks casein or proline. The tissue continues to grow slowly on this medium. After an additional 2 weeks the tissue can be transferred to fresh N6 medium containing bialaphos. After 6 weeks, areas of about 1 cm in diameter of actively growing callus can be identified on some of the plates containing the bialaphos-supplemented medium. These calli may continue to grow when sub-cultured on the selective medium.
Plants can be regenerated from the transgenic callus by first transferring clusters of tissue to N6 medium supplemented with 0.2 mg per liter of 2,4-D. After two weeks the tissue can be transferred to regeneration medium (Fromm et al. (1990) Bio/Technology 8:833-839). Transgenic TO plants can be regenerated and their phenotype determined following high throughput ("HTP") procedures. T1 seed can be collected.
T1 plants can be subjected to a soil-based drought stress. Using image analysis, plant area, volume, growth rate and color analysis can be taken at multiple times before and during drought stress. Overexpression constructs that result in a significant delay in wilting or leaf area reduction, yellow color accumulation and/or increased growth rate during drought stress will be considered evidence that the miR827 sequence functions in maize to enhance drought tolerance.
EXAMPLE 10
Electroporation of Aqrobacterium tumefaciens LBA4404 Electroporation competent cells (40 μl_), such as Agrobacterium tumefaciens
LBA4404 containing PHP10523 (FIG. 7; SEQ ID NO:46), are thawed on ice (20-30 min). PHP10523 contains VIR genes for T-DNA transfer, an Agrobacterium low copy number plasmid origin of replication, a tetracycline resistance gene, and a Cos site for in vivo DNA bimolecular recombination. Meanwhile the electroporation cuvette is chilled on ice. The electroporator settings are adjusted to 2.1 kV. A DNA aliquot (0.5 μl_ parental DNA at a concentration of 0.2 μg -1.0 μg in low salt buffer or twice distilled H2O) is mixed with the thawed Agrobacterium tumefaciens LBA4404 cells while still on ice. The mixture is transferred to the bottom of electroporation cuvette and kept at rest on ice for 1 -2 min. The cells are electroporated (Eppendorf electroporator 2510) by pushing the "pulse" button twice (ideally achieving a 4.0 millisecond pulse). Subsequently, 0.5 ml_ of room temperature 2xYT medium (or SOC medium) are added to the cuvette and transferred to a 15 ml_ snap-cap tube (e.g., Falcon™ tube). The cells are incubated at 28-30 0C, 200-250 rpm for 3 h. Aliquots of 250 μl_ are spread onto plates containing YM medium and 50 μg/mL spectinomycin and incubated three days at 28-30 0C. To increase the number of transformants one of two optional steps can be performed:
Option 1 : Overlay plates with 30 μL of 15 mg/mL hfampicin. LBA4404 has a chromosomal resistance gene for hfampicin. This additional selection eliminates some contaminating colonies observed when using poorer preparations of LBA4404 competent cells.
Option 2: Perform two replicates of the electroporation to compensate for poorer electrocompetent cells.
Identification of transformants: Four independent colonies are picked and streaked on plates containing AB minimal medium and 50 μg/mL spectinomycin for isolation of single colonies. The plates are incubated at 28 0C for two to three days. A single colony for each putative co-integrate is picked and inoculated with 4 mL of 10 g/L bactopeptone, 10 g/L yeast extract, 5 g/L sodium chloride and 50 mg/L spectinomycin. The mixture is incubated for 24 h at 28 0C with shaking. Plasmid DNA from 4 ml_ of culture is isolated using Qiagen Miniprep and an optional Buffer PB wash. The DNA is eluted in 30 μl_. Aliquots of 2 μl_ are used to electroporate 20 μl_ of DH10b + 20 μl_ of twice distilled H2O aS per above. Optionally a 15 μl_ aliquot can be used to transform 75-100 μl_ of Invitrogen™ Library Efficiency DH5α. The cells are spread on plates containing LB medium and 50 μg/mL spectinomycin and incubated at 37 0C overnight.
Three to four independent colonies are picked for each putative co-integrate and inoculated 4 mL of 2xYT medium (10 g/L bactopeptone, 10 g/L yeast extract, 5 g/L sodium chloride) with 50 μg/mL spectinomycin. The cells are incubated at 37 0C overnight with shaking. Next, isolate the plasmid DNA from 4 mL of culture using QIAprep® Miniprep with optional Buffer PB wash (elute in 50 μL). Use 8 μL for digestion with Sail (using parental DNA and PHP10523 as controls). Three more digestions using restriction enzymes BamHI, EcoRI, and Hindlll are performed for 4 plasmids that represent 2 putative co-integrates with correct Sail digestion pattern (using parental DNA and PHP10523 as controls). Electronic gels are recommended for comparison.
EXAMPLE 11 Transformation of Maize Using Aqrobacterium
Maize plants can be transformed to overexpress a mir827 sequence in order to examine the resulting phenotype.
Figure imgf000069_0001
transformation of maize is performed essentially as described by Zhao et al. in Meth. MoI. Biol. 318:315-323 (2006) (see also Zhao et al., MoI. Breed. 8:323-333 (2001 ) and U.S. Patent No. 5,981 ,840 issued November 9, 1999, incorporated herein by reference). The transformation process involves bacterium innoculation, co-cultivation, resting, selection and plant regeneration.
1. Immature Embryo Preparation:
Immature maize embryos are dissected from caryopses and placed in a 2 mL microtube containing 2 mL PHI-A medium.
2. Agrobacteήum Infection and Co-Cultivation of Immature Embryos: 2.1 Infection Step: PHI-A medium of (1 ) is removed with 1 ml_ micropipettor, and 1 ml_ of Agrobacterium suspension is added. The tube is gently inverted to mix. The mixture is incubated for 5 min at room temperature.
2.2 Co-culture Step: The Agrobacterium suspension is removed from the infection step with a 1 ml_ micropipettor. Using a sterile spatula the embryos are scraped from the tube and transferred to a plate of PHI-B medium in a 100x15 mm Petri dish. The embryos are oriented with the embryonic axis down on the surface of the medium. Plates with the embryos are cultured at 20 0C, in darkness, for three days. L- Cysteine can be used in the co-cultivation phase. With the standard binary vector, the co-cultivation medium supplied with 100-400 mg/L L-cysteine is critical for recovering stable transgenic events.
3. Selection of Putative Transgenic Events:
To each plate of PHI-D medium in a 100x15 mm Petri dish, 10 embryos are transferred, maintaining orientation and the dishes are sealed with parafilm. The plates are incubated in darkness at 28 0C. Actively growing putative events, as pale yellow embryonic tissue, are expected to be visible in six to to eight weeks. Embryos that produce no events may be brown and necrotic, and little friable tissue growth is evident. Putative transgenic embryonic tissue is subcultured to fresh PHI- D plates at two-three week intervals, depending on growth rate. The events are recorded.
4. Regeneration of TO plants:
Embryonic tissue propagated on PHI-D medium is subcultured to PHI-E medium (somatic embryo maturation medium), in 100x25 mm Petri dishes and incubated at 28 0C, in darkness, until somatic embryos mature, for about ten to eighteen days. Individual, matured somatic embryos with well-defined scutellum and coleoptile are transferred to PHI-F embryo germination medium and incubated at 28 0C in the light (about 80 μE from cool white or equivalent fluorescent lamps). In seven to ten days, regenerated plants, about 10 cm tall, are potted in horticultural mix and hardened-off using standard horticultural methods. Media for Plant Transformation:
1. PHI-A: 4g/L CHU basal salts, 1.0 mL/L 100OX Eriksson's vitamin mix, 0.5 mg/L thiamin HCI, 1.5 mg/L 2,4-D, 0.69 g/L L-proline, 68.5 g/L sucrose, 36 g/L glucose, pH 5.2. Add 100 μM acetosyringone (filter-sterilized).
2. PHI-B: PHI-A without glucose, increase 2,4-D to 2 mg/L, reduce sucrose to 30 g/L and supplemente with 0.85 mg/L silver nitrate (filter-sterilized), 3.0 g/L Gelrite®, 100 μM acetosyringone (filter- sterilized), pH 5.8.
3. PHI-C: PHI-B without Gelrite® and acetosyhngonee, reduce 2,4-D to 1.5 mg/L and supplemente with 8.0 g/L agar, 0.5 g/L 2-[N- morpholino]ethane-sulfonic acid (MES) buffer, 100 mg/L carbenicillin (filter-sterilized).
4. PHI-D: PHI-C supplemented with 3 mg/L bialaphos (filter-sterilized).
5. PHI-E: 4.3 g/L of Murashige and Skoog (MS) salts, (Gibco, BRL 11117-074), 0.5 mg/L nicotinic acid, 0.1 mg/L thiamine HCI, 0.5 mg/L pyridoxine HCI, 2.0 mg/L glycine, 0.1 g/L myo-inositol, 0.5 mg/L zeatin (Sigma, Cat. No. Z-0164), 1 mg/L indole acetic acid
(IAA), 26.4 μg/L abscisic acid (ABA), 60 g/L sucrose, 3 mg/L bialaphos (filter-sterilized), 100 mg/L carbenicillin (filter-sterilized), 8 g/L agar, pH 5.6.
6. PHI-F: PHI-E without zeatin, IAA, ABA; reduce sucrose to 40 g/L; replacing agar with 1.5 g/L Gelrite®; pH 5.6.
Plants can be regenerated from the transgenic callus by first transferring clusters of tissue to N6 medium supplemented with 0.2 mg per liter of 2,4-D. After two weeks the tissue can be transferred to regeneration medium (Fromm et al., Bio/Technology 8:833-839 (1990)). Transgenic TO plants can be regenerated and their phenotype determined.
T1 seed can be collected.
Furthermore, a recombinant DNA construct can be introduced into an elite maize inbred line either by direct transformation or introgression from a separately transformed line. Transgenic plants, either inbred or hybrid, can undergo more vigorous field- based experiments to study yield enhancement and/or stability under water limiting and water non-limiting conditions. Subsequent yield analysis can be done to determine whether plants that contain the miR827 sequence have an improvement in yield performance (under water limiting or non-limiting conditions), when compared to the control (or reference) plants that do not contain the validated Arabidopsis lead gene. Specifically, water limiting conditions can be imposed during the flowering and/or grain fill period for plants that contain the validated Arabidopsis lead gene and the control plants. Plants containing the validated Arabidopsis lead gene would have less yield loss relative to the control plants, for example, 25% less yield loss, under water limiting conditions, or would have increased yield relative to the control plants under water non-limiting conditions.
EXAMPLE 12
Preparation of a miR827
Expression Vector for Transformation of Maize
Using Invitrogen's™ Gateway® technology, an LR Recombination Reaction can be performed with a miR827 entry clone and a destination vector (PHP28647) to create an overexpression vector. The overexpression vector will contain the following expression cassettes:
1. Ubiquitin promoter::moPAT::Pinll terminator; cassette expressing the PAT herbicide resistance gene used for selection during the transformation process.
2. LTP2 promoter::DS-RED2::Pinll terminator; cassette expressing the DS- RED color marker gene used for seed sorting.
3. Ubiquitin promoter::miR827::Pinll terminator; cassette overexpressing the gene of interest, miR827. EXAMPLE 13
Transformation of Maize with a miR827 Expression Vector Using Agrobacterium
The miR827 sequence present in an expression vector can be introduced into a maize inbred line, or a transformable maize line derived from an elite maize inbred line, using Agrobacterium-meό\ateό transformation as described above. The miR827 expression vector can be electroporated into the LBA4404 Agrobacterium strain containing vector PHP10523 (FIG. 7; SEQ ID NO:46) to create a miR827 co-integrate vector. The co-integrate vector is formed by recombination of the 2 plasmids, the miR827 expression vector and PHP10523, through the COS recombination sites contained on each vector. The co-integrate miR827 vector will contain the same 3 expression cassettes as above (Example 12) in addition to other genes (TET, TET, TRFA, ORI terminator, CTL, ORI V, VIR C1 , VIR C2, VIR G, VIR B) needed for the Agrobacterium strain and the
Figure imgf000073_0001
transformation.
EXAMPLE 14 Preparation of the Destination Vector PHP23236 for Transformation
Into Gaspe Flint Derived Maize Lines Destination vector PHP23236 (FIG. 6, SEQ ID NO:45) was obtained by transformation of Agrobacterium strain LBA4404 containing plasmid PHP10523 (FIG. 7, SEQ ID NO:46) with plasmid PHP23235 (FIG. 8, SEQ ID NO:47) and isolation of the resulting co-integration product. Destination vector PHP23236, can be used in a recombination reaction with an entry clone as described above to create a maize expression vector for transformation of Gaspe Flint-derived maize lines.
EXAMPLE 15
Preparation of Maize miR827 Expression Plasmid for Transformation into Gaspe Flint Derived Maize Lines Maize miR827, or Zm-miR827 (SEQ ID NO:3), was initially identified in a proprietary DuPont/Pioneer small RNA library made from maize kernels. Our assignment of Zm-miR827 as a homolog of At-miR827 (Arabidopsis miR827) reflects the fact that the two mature miRNA sequences share extensive identity, differing in only two positions. In addition, the target genes identified are similar between the two species, each encoding a protein with an N-terminal SPX domain and having the miR827 target sequence in the 5' UTR.
We used BLAST alignment searches of proprietary DuPont/Pioneer cDNA sequences to identify maize clone cil1 c.pk002.l5a, which contains a cDNA insert of approximately 1 kb in length that encodes the Zm-miR827 mature sequence (SEQ ID NO:3). Within the cDNA insert is a region of 132 nucleotides that includes the mature Zm-miR827 microRNA sequence and is predicted to form a hairpin precursor typical of microRNA precursors. Therefore, clone cil1 c.pk002.l5a has a cDNA insert encoding the primary transcript (SEQ ID NO:1 ) for Zm-miR827 (SEQ ID NO:3).
Using the Invitrogen™ Gateway® Recombination technology described above, cil1 c.pk002.l5a was directionally cloned into the destination vector PHP23236 (SEQ ID NO:45; FIG. 6) to create the expression vector PHP26200, which contains the cDNA of interest under control of the UBI promoter and is a T- DNA binary vector for
Figure imgf000074_0001
transformation into corn as described, but not limited to, the examples described herein.
EXAMPLE 16 Transformation of Gaspe Flint Derived
Maize Lines with a miR827 Sequence
Maize plants can be transformed to overexpress a miR827 sequence in order to examine the resulting phenotype.
Recipient Plants: Recipient plant cells can be from a uniform maize line having a short life cycle ("fast cycling"), a reduced size, and high transformation potential. Typical of these plant cells for maize are plant cells from any of the publicly available Gaspe Flint (GBF) line varieties. One possible candidate plant line variety is the F1 hybrid of GBF x QTM (Quick Turnaround Maize, a publicly available form of Gaspe Flint selected for growth under greenhouse conditions) disclosed in Tomes et al. U.S. Patent Application Publication No. 2003/0221212. Transgenic plants obtained from this line are of such a reduced size that they can be grown in four inch pots (1/4 the space needed for a normal sized maize plant) and mature in less than 2.5 months. (Traditionally 3.5 months is required to obtain transgenic TO seed once the transgenic plants are acclimated to the greenhouse.) Another suitable line is a double haploid line of GS3 (a highly transformable line) X Gaspe Flint. Yet another suitable line is a transformable elite inbred line carrying a transgene which causes early flowering, reduced stature, or both.
Transformation Protocol: Any suitable method may be used to introduce the transgenes into the maize cells, including but not limited to inoculation type procedures using Agrobacteήum based vectors. Transformation may be performed on immature embryos of the recipient (target) plant. Precision Growth and Plant Tracking:
The event population of transgenic (TO) plants resulting from the transformed maize embryos is grown in a controlled greenhouse environment using a modified randomized block design to reduce or eliminate environmental error. A randomized block design is a plant layout in which the experimental plants are divided into groups (e.g., thirty plants per group), referred to as blocks, and each plant is randomly assigned a location with the block.
For a group of thirty plants, twenty-four transformed, experimental plants and six control plants (plants with a set phenotype) (collectively, a "replicate group") are placed in pots which are arranged in an array (a.k.a. a replicate group or block) on a table located inside a greenhouse. Each plant, control or experimental, is randomly assigned to a location with the block which is mapped to a unique, physical greenhouse location as well as to the replicate group. Multiple replicate groups of thirty plants each may be grown in the same greenhouse in a single experiment. The layout (arrangement) of the replicate groups should be determined to minimize space requirements as well as environmental effects within the greenhouse. Such a layout may be referred to as a compressed greenhouse layout.
An alternative to the addition of a specific control group is to identify those transgenic plants that do not express the gene of interest. A variety of techniques such as RT-PCR can be applied to quantitatively assess the expression level of the introduced gene. TO plants that do not express the transgene can be compared to those which do.
Each plant in the event population is identified and tracked throughout the evaluation process, and the data gathered from that plant is automatically associated with that plant so that the gathered data can be associated with the transgene carried by the plant. For example, each plant container can have a machine readable label (such as a Universal Product Code (UPC) bar code) which includes information about the plant identity, which in turn is correlated to a greenhouse location so that data obtained from the plant can be automatically associated with that plant.
Alternatively any efficient, machine readable, plant identification system can be used, such as two-dimensional matrix codes or even radio frequency identification tags (RFID) in which the data is received and interpreted by a radio frequency receiver/processor. See U.S. Published Patent Application No. 2004/0122592, incorporated herein by reference.
Phenotypic Analysis Using Three-Dimensional Imaging: Each greenhouse plant in the TO event population, including any control plants, is analyzed for agronomic characteristics of interest, and the agronomic data for each plant is recorded or stored in a manner so that it is associated with the identifying data (see above) for that plant. Confirmation of a phenotype (gene effect) can be accomplished in the T1 generation with a similar experimental design to that described above.
The TO plants are analyzed at the phenotypic level using quantitative, nondestructive imaging technology throughout the plant's entire greenhouse life cycle to assess the traits of interest. For example, a digital imaging analyzer may be used for automatic multi-dimensional analyzing of total plants. The imaging may be done inside the greenhouse. Two camera systems, located at the top and side, and an apparatus to rotate the plant, are used to view and image plants from all sides. Images are acquired from the top, front and side of each plant. All three images together provide sufficient information to evaluate the biomass, size and morphology of each plant. Due to the change in size of the plants from the time the first leaf appears from the soil to the time the plants are at the end of their development, the early stages of plant development are best documented with a higher magnification from the top. This may be accomplished by using a motorized zoom lens system that is fully controlled by the imaging software. In a single imaging analysis operation, the following events occur: (1 ) the plant is conveyed inside the analyzer area, rotated 360 degrees so its machine readable label can be read, and left at rest until its leaves stop moving; (2) the side image is taken and entered into a database; (3) the plant is rotated 90 degrees and again left at rest until its leaves stop moving, and (4) the plant is transported out of the analyzer.
Plants are allowed at least six hours of darkness per twenty four hour period in order to have a normal day/night cycle. Imaging Instrumentation: Any suitable imaging instrumentation may be used, including but not limited to light spectrum digital imaging instrumentation commercially available from LemnaTec GmbH of Wurselen, Germany. The images are taken and analyzed with a LemnaTec Scanalyzer HTS LT-0001-2 having a 1/2" IT Progressive Scan IEE CCD imaging device. The imaging cameras may be equipped with a motor zoom, motor aperture and motor focus. All camera settings may be made using LemnaTec software. For example, the instrumental variance of the imaging analyzer may be less than about 5% for major components and less than about 10% for minor components. Software:
The imaging analysis system comprises a LemnaTec HTS Bonit software program for color and architecture analysis and a server database for storing data from about 500,000 analyses, including the analysis dates. The original images and the analyzed images are stored together to allow the user to do as much reanalyzing as desired. The database can be connected to the imaging hardware for automatic data collection and storage. A variety of commercially available software systems (e.g. Matlab, others) can be used for quantitative interpretation of the imaging data, and any of these software systems can be applied to the image data set. Conveyor System:
A conveyor system with a plant rotating device may be used to transport the plants to the imaging area and rotate them during imaging. For example, up to four plants, each with a maximum height of 1.5 m, are loaded onto cars that travel over the circulating conveyor system and through the imaging measurement area. In this case the total footprint of the unit (imaging analyzer and conveyor loop) is about 5 m x 5 m.
The conveyor system can be enlarged to accommodate more plants at a time. The plants are transported along the conveyor loop to the imaging area and are analyzed for up to 50 seconds per plant. Three views of the plant are taken. The conveyor system, as well as the imaging equipment, should be capable of being used in greenhouse environmental conditions. Illumination: Any suitable mode of illumination may be used for the image acquisition. For example, a top light above a black background can be used. Alternatively, a combination of top- and backlight using a white background can be used. The illuminated area should be housed to ensure constant illumination conditions. The housing should be longer than the measurement area so that constant light conditions prevail without requiring the opening and closing or doors. Alternatively, the illumination can be varied to cause excitation of either transgene (e.g., green fluorescent protein (GFP), red fluorescent protein (RFP)) or endogenous (e.g. Chlorophyll) fluorophores. Biomass Estimation Based on Three-Dimensional Imaging:
For best estimation of biomass the plant images should be taken from at least three axes, for example, the top and two side (sides 1 and 2) views. These images are then analyzed to separate the plant from the background, pot and pollen control bag (if applicable). The volume of the plant can be estimated by the calculation:
Volumeiyoxels) = -JTopArea(pixels) x ^j SidelArea(pixels) x -J Side2Area(pixels)
In the equation above the units of volume and area are "arbitrary units". Arbitrary units are entirely sufficient to detect gene effects on plant size and growth in this system because what is desired is to detect differences (both positive-larger and negative-smaller) from the experimental mean, or control mean. The arbitrary units of size (e.g. area) may be trivially converted to physical measurements by the addition of a physical reference to the imaging process. For instance, a physical reference of known area can be included in both top and side imaging processes. Based on the area of these physical references a conversion factor can be determined to allow conversion from pixels to a unit of area such as square centimeters (cm2). The physical reference may or may not be an independent sample. For instance, the pot, with a known diameter and height, could serve as an adequate physical reference. Color Classification: The imaging technology may also be used to determine plant color and to assign plant colors to various color classes. The assignment of image colors to color classes is an inherent feature of the LemnaTec software. With other image analysis software systems color classification may be determined by a variety of computational approaches.
For the determination of plant size and growth parameters, a useful classification scheme is to define a simple color scheme including two or three shades of green and, in addition, a color class for chlorosis, necrosis and bleaching, should these conditions occur. A background color class which includes non plant colors in the image (for example pot and soil colors) is also used and these pixels are specifically excluded from the determination of size. The plants are analyzed under controlled constant illumination so that any change within one plant over time, or between plants or different batches of plants (e.g. seasonal differences) can be quantified. In addition to its usefulness in determining plant size growth, color classification can be used to assess other yield component traits. For these other yield component traits additional color classification schemes may be used. For instance, the trait known as "staygreen", which has been associated with improvements in yield, may be assessed by a color classification that separates shades of green from shades of yellow and brown (which are indicative of senescing tissues). By applying this color classification to images taken toward the end of the TO or T1 plants' life cycle, plants that have increased amounts of green colors relative to yellow and brown colors (expressed, for instance, as Green/Yellow Ratio) may be identified. Plants with a significant difference in this Green/Yellow ratio can be identified as carrying transgenes which impact this important agronomic trait.
The skilled plant biologist will recognize that other plant colors arise which can indicate plant health or stress response (for instance anthocyanins), and that other color classification schemes can provide further measures of gene action in traits related to these responses. Plant Architecture Analysis:
Transgenes which modify plant architecture parameters may also be identified using the present invention, including such parameters as maximum height and width, internodal distances, angle between leaves and stem, number of leaves starting at nodes and leaf length. The LemnaTec system software may be used to determine plant architecture as follows. The plant is reduced to its main geometric architecture in a first imaging step and then, based on this image, parameterized identification of the different architecture parameters can be performed. Transgenes that modify any of these architecture parameters either singly or in combination can be identified by applying the statistical approaches previously described.
Pollen Shed Date: Pollen shed date is an important parameter to be analyzed in a transformed plant, and may be determined by the first appearance on the plant of an active male flower. To find the male flower object, the upper end of the stem is classified by color to detect yellow or violet anthers. This color classification analysis is then used to define an active flower, which in turn can be used to calculate pollen shed date.
Alternatively, pollen shed date and other easily visually detected plant attributes (e.g. pollination date, first silk date) can be recorded by the personnel responsible for performing plant care. To maximize data integrity and process efficiency this data is tracked by utilizing the same barcodes utilized by the LemnaTec light spectrum digital analyzing device. A computer with a barcode reader, a palm device, or a notebook PC may be used for ease of data capture recording time of observation, plant identifier, and the operator who captured the data.
Orientation of the Plants: Mature maize plants grown at densities approximating commercial planting often have a planar architecture. That is, the plant has a clearly discernable broad side, and a narrow side. The image of the plant from the broadside is determined. To each plant a well defined basic orientation is assigned to obtain the maximum difference between the broadside and edgewise images. The top image is used to determine the main axis of the plant, and an additional rotating device is used to turn the plant to the appropriate orientation prior to starting the main image acquisition. EXAMPLE 17
Screening of Gaspe Flint Derived Maize Lines for Drought Tolerance
Transgenic Gaspe Flint derived maize lines containing the miR827 sequence can be screened for tolerance to drought stress in the following manner. Transgenic maize plants are subjected to well-watered conditions (control) and to drought-stressed conditions. Transgenic maize plants are screened at the T1 stage or later.
Stress is imposed starting at 10 to 14 days after sowing (DAS) or 7 days after transplanting, and is continued through to silking. Pots are watered by an automated system fitted to timers to provide watering at 25 or 50% of field capacity during the entire period of drought-stress treatment. The intensity and duration of this stress will allow identification of the impact on vegetative growth as well as on the anthesis-silking interval. Potting mixture: A mixture of 1/3 turface (Profile Products LLC, IL, USA), 1/3 sand and 1/3 SB300 (Sun Gro Horticulture, WA, USA) can be used. The SB300 can be replaced with Fafard Fine-Germ (Conrad Fafard, Inc., MA, USA) and the proportion of sand in the mixture can be reduced. Thus, a final potting mixture can be 3/8 (37.5%) turface, 3/8 (37.5%) Fafard and % (25%) sand. Field Capacity Determination: The weight of the soil mixture (w1 ) to be used in one S200 pot (minus the pot weight) is measured. If all components of the soil mix are not dry, the soil is dried at 1000C to constant weight before determining w1. The soil in the pot is watered to full saturation and all the gravitational water is allowed to drain out. The weight of the soil (w2) after all gravitational water has seeped out (minus the pot weight) is determined. Field capacity is the weight of the water remaining in the soil obtained as w2-w1. It can be written as a percentage of the oven-dry soil weight.
Stress Treatment: During the early part of plant growth (10 DAS to 21 DAS), the well-watered control has a daily watering of 75% field capacity and the drought- stress treatment has a daily watering of 25% field capacity, both as a single daily dose at or around 10 AM. As the plants grow bigger, by 21 DAS, it will become necessary to increase the daily watering of the well-watered control to full field capacity and the drought stress treatment to 50% field capacity. Nutrient Solution: A modified Hoagland's solution at 1/16 dilution with tap water is used for irrigation.
TABLE 4
Preparation of 20 L of Modified Hoagland's Solution Using the Following Recipe:
Figure imgf000082_0001
TABLE 5
Preparation of 1 L of 1 OX Micronutrient Solution Using the Following Recipe:
Figure imgf000082_0002
Fertilizer grade KNO3 is used.
It is useful to add half a teaspoon of Osmocote (NPK 15:9:12) to the pot at the time of transplanting or after emergence (The Scotts Miracle-Gro Company, OH, USA).
Border plants: Place a row of border plants on bench-edges adjacent to the glass walls of the greenhouse or adjacent to other potential causes of microenvironment variability such as a cooler fan.
Automation: Watering can be done using PVC pipes with drilled holes to supply water to systematically positioned pots using a siphoning device. Irrigation scheduling can be done using timers. Statistical analysis: Mean values for plant size, color and chlorophyll fluorescence recorded on transgenic events under different stress treatments will be exported to Spotfire (Spotfire, Inc., MA, USA). Treatment means will be evaluated for differences using Analysis of Variance. Replications: Eight to ten individual plants are used per treatment per event.
Observations Made: Lemnatec measurements are made three times a week throughout growth to capture plant-growth rate. Leaf color determinations are made three times a week throughout the stress period using Lemnatec. Chlorophyll fluorescence is recorded as PhiPSII (which is indicative of the operating quantum efficiency of photosystem Il photochemistry) and FvVFm' (which is the maximum efficiency of photosystem II) two to four times during the experimental period, starting at 11 AM on the measurement days, using the Hansatech FMS2 instrument (LemnaTec GmbH, Wurselen, Germany). Measurements are started during the stress period at the beginning of visible drought stress symptoms, namely, leaf greying and the start of leaf rolling until the end of the experiment and measurements are recorded on the youngest most fully expanded leaf. The dates of tasseling and silking on individual plants are recorded, and the ASI is computed. The above methods may be used to select transgenic plants with increased drought tolerance when compared to a control plant not comprising said recombinant DNA construct.
EXAMPLE 18
Evaluation of Gaspe Flint Derived Maize Lines for Drought Tolerance
A Gaspe Flint derived maize line was transformed via Agrobacterium with the plasmid PHP26200, encoding the maize miR827 precursor from clone cil1 c.pk002.l5a. Five transformation events for each plasmid construct were evaluated for drought tolerance in the following manner.
Soil mixture consisted of a 37.5% TURFACE®, 37.5% SB300 and 25% sand mixture. All pots were filled with the same amount of soil +/- 10 grams. Pots were brought up to 100% field capacity (FC) by hand watering. All plants were watered with 6.5 mM KNO3 containing nutrient solution until day 26 when treatment was applied. Plants were maintained at 50% FC until 21 days after planting (DAP). On day 17, the watering system malfunctioned and a subset of plants received too much water. Thus, all plants were once again brought up to 100% field capacity. This resulted in the extension of the experiment such that treatment was applied at a later stage of development; approximately the V7-V8 stage of development. At 26 DAP reduced watered plants were subjected to chronic drought stress; no water or nutrient delivery until plants reached approximately 25% FC. Reduced watered plants were subjected to acute drought stress two times during the experiment; day 29 and day 34. Chlorophyll fluorescence measurements were collected during acute drought stress. Reduced watered plants were brought up to 40% FC with a 9 mM NO3 containing nutrient solution following acute drought stress. The pH was monitored at least three times weekly for each table.
The probability of a greater Student's t Test was calculated for each transgenic mean compared to the appropriate null mean (either segregant null or construct null). The t-test was a one tailed test. A minimum (P<t) of 0.1 was used as a cut off for a statistically significant result. Table 7 and 8 show the variables for each transgenic event that were significantly altered, as compared to the segregant nulls. A "positive effect" was defined as statistically significant improvement in that variable for the transgenic event relative to the null control. A "negative effect" was defined as a statistically significant improvement in that variable for the null control relative to the transgenic event. Table 6 presents the number of variables with a significant change for individual events transformed with each of the five plasmid DNA constructs. Table 7 presents the number of events for each construct that showed a significant change for each individual variable.
TABLE 6
Number of Variables with a Significant Change* for Individual Events Transformed with PHP26200 Encoding Maize miR827
Reduced Water Well Watered
Event Positive Negative Positive Negative Effect Effect Effect Effect
EA1909.300.1. 10 1 2 1 5
EA1909.300.1 .3 6 1 3 2
EA1909.300.1 .5 1 4 1 4
EA1909.300.1 .7 0 3 0 3
EA1909.300.1 .8 2 3 4 5 "P-value less than or equal to 0.1
TABLE 7
Number of Events Transformed with PHP26200 Encoding Maize miR827 with a Significant Change* for Individual Variables
Reduced Water Well Watered
Variable Positive Negative Positive ! Negative Effect Effect Effect Effect
% area chg_start chronic - acutei 0 0 1
% area chg_start chronic - acute2 0 3 0 3
% area chg_start chronic - end chronic 0 0 1 0
% area chg_start chronic - harvest 1 0 0
% area chg_start chronic - recovery72hr 1 0 0 2 fvfm_acute1 1 1 2 fvfm_acute2 4 0 3 2 N ( psii_acute1 1 2 2 1 psii_acute2 2 0 1 2 sgr - r2 > 0.9 0 5 0 4
*P-value less than or equal to 0.1 N (
For construct PHP26200, the statistical value associated with each improved variable is presented in Figures 13A - 14. A significant positive effect had a P- value of less than or equal to 0.1. A significant negative effect is shown in parentheses. A blank entry indicates that a significant difference was not observed between the transgenic event and the null segregant. The results for each of four transformed maize lines are presented in Figures 13A - 13B. One of the five events, EA1909.300.1.3, has variables with improved effects in both reduced water and well watered conditions. The summary evaluation for all four events with construct PHP26200 is presented in Figure 14. Many of these maize lines showed increased drought tolerance. EXAMPLE 19
Preparation of a Maize miR827 Expression Vector for Transformation of Maize
An entry clone, PHP32214, was constructed that contains the maize miR827 precursor coding region and the following regulatory elements: maize ubiquitin promoter, maize ubiquitin 5' non-translated region, maize ubiquitin 5' intron-1 and the Pinll terminator region.
Using Invitrogen's™ Gateway® technology, an LR Recombination Reaction was performed with the maize miR827 entry clone, PHP32214, and destination vector, PHP22964, to create an overexpression vector, PHP34054. The overexpression vector, PHP34054, contains the following expression cassettes: 1. Ubiquitin promoter::moPAT::Pinll terminator; cassette expressing the PAT herbicide resistance gene used for selection during the transformation process. 2. LTP2 promoter::DS-RED2::Pinll terminator; cassette expressing the DS-
RED color marker gene used for seed sorting.
3. Ubiquitin promoter::Zm-miR827::Pinll terminator; cassette overexpressing the gene of interest, maize miR827.
EXAMPLE 20 Transformation of Maize with a Maize miR827
Expression Vector Using Aqrobacterium
The maize miR827 sequence present in expression vector, PHP34054, was introduced into a transformable maize line derived from an elite maize inbred line, using
Figure imgf000086_0001
transformation as described above. The miR827 expression vector PHP34054 was electroporated into the
LBA4404 Agrobacterium strain containing vector PHP10523 (FIG. 7; SEQ ID NO:46) to create a miR827 co-integrate vector, PHP34082. The co-integrate vector PHP34082 was formed by recombination of the 2 plasmids, PHP34054 and PHP10523, through the COS recombination sites contained on each vector. The co-integrate maize miR827 vector, PHP34082, contains the same 3 expression cassettes as above (Example 19) in addition to other genes (TET, TET, TRFA, ORI terminator, CTL, ORI V, VIR C1 , VIR C2, VIR G, VIR B) needed for the Agrobacterium strain and the Agrobactenum-meoMeo transformation. EXAMPLE 21 Yield Analysis of Maize Lines Containing the
Maize miR827 Lead Gene
A recombinant DNA construct containing the maize miR827 gene can be introduced into an elite maize inbred line either by direct transformation or introgression from a separately transformed line.
Transgenic plants, either inbred or hybrid, can undergo more vigorous field- based experiments to study yield enhancement and/or stability under well-watered and water-limiting conditions. Subsequent yield analysis can be done to determine whether plants that contain the maize miR827 gene have an improvement in yield performance under water-limiting conditions, when compared to the control plants that do not contain the maize miR827 gene. Specifically, drought conditions can be imposed during the flowering and/or grain fill period for plants that contain the maize miR827 gene and the control plants. Reduction in yield can be measured for both. Plants containing the maize miR827 gene may have less yield loss relative to the control plants, for example, 25% less yield loss.
The above method may be used to select transgenic plants with increased yield, under water-limiting conditions and/or well-watered conditions, when compared to a control plant not comprising said recombinant DNA construct. Plants selected will have increased yield under water limiting conditions.

Claims

CLAIMSWhat is claimed is:
1. A plant comprising in its genome a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory element, wherein said polynucleotide has a nucleic acid sequence of at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25, 26 or 27, and wherein said plant exhibits increased drought tolerance when compared to a control plant not comprising said recombinant DNA construct.
2. The plant of claim 1 , wherein the plant is a maize plant or a soybean plant.
3. A plant comprising in its genome a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory element, wherein said polynucleotide encodes a modified plant miRNA precursor comprising a first and a second oligonucleotide, wherein at least one of the first or the second oligonucleotides is heterologous to the precursor, wherein the first oligonucleotide is substantially complementary to the second oligonucleotide, and the second oligonucleotide encodes a miRNA with 0, 1 , 2 or 3 mismatches to a sequence selected from the group consisting of SEQ ID NOs:3, 6, 9, 12, 15, 18, 21 , 24 and 27, and wherein said plant exhibits increased drought tolerance when compared to a control plant not comprising said recombinant DNA construct.
4. The plant of claim 3, wherein the plant is a maize plant or a soybean plant.
5. A method of increasing drought tolerance in a plant, comprising: (a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence, wherein the polynucleotide has a nucleic acid sequence of at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1 , 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25, 26 or 27; and
(b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the recombinant DNA construct and exhibits increased drought tolerance when compared to a control plant not comprising the recombinant DNA construct.
6. The method of claim 5, further comprising:
(c) obtaining a progeny plant derived from the transgenic plant, wherein said progeny plant comprises in its genome the recombinant DNA construct and exhibits increased drought tolerance when compared to a control plant not comprising the recombinant DNA construct.
7. A method of evaluating drought tolerance in a plant, comprising: (a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence, wherein the polynucleotide has a nucleic acid sequence of at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ
ID NO:1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1 , 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 , 22,
23, 24, 25, 26 or 27; (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the recombinant DNA construct; and
(c) evaluating the transgenic plant for drought tolerance compared to a control plant not comprising the recombinant DNA construct.
8. The method of claim 7, further comprising:
(d) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the recombinant DNA construct; and
(e) evaluating the progeny plant for drought tolerance compared to a control plant not comprising the recombinant DNA construct.
9. A method of evaluating drought tolerance in a plant, comprising: (a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence, wherein the polynucleotide has a nucleic acid sequence of at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25, 26 or 27; (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the recombinant DNA construct;
(c) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the recombinant DNA construct; and
(d) evaluating the progeny plant for drought tolerance compared to a control plant not comprising the recombinant DNA construct.
10. A method of determining an alteration of an agronomic characteristic in a plant, comprising: (a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence, wherein the polynucleotide has a nucleic acid sequence of at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1 , 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25, 26 or 27;
(b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the recombinant DNA construct; and (c) determining whether the transgenic plant exhibits an alteration of at least one agronomic characteristic when compared to a control plant not comprising the recombinant DNA construct.
11. The method of claim 10, further comprising:
(d) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the recombinant DNA construct; and
(e) determining whether the progeny plant exhibits an alteration of at least one agronomic characteristic when compared to a control plant not comprising the recombinant DNA construct.
12. The method of claim 10, wherein said determining step (c) comprises determining whether the transgenic plant exhibits an alteration of at least one agronomic characteristic when compared, under water limiting conditions, to a control plant not comprising the recombinant DNA construct.
13. The method of claim 11 , wherein said determining step (e) comprises determining whether the progeny plant exhibits an alteration of at least one agronomic characteristic when compared, under water limiting conditions, to a control plant not comprising the recombinant DNA construct.
14. A method of determining an alteration of an agronomic characteristic in a plant, comprising:
(a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence, wherein the polynucleotide has a nucleic acid sequence of at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25, 26 or 27;
(b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the recombinant DNA construct;
(c) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the recombinant DNA construct; and
(d) determining whether the progeny plant exhibits an alteration of at least one agronomic characteristic when compared to a control plant not comprising the recombinant DNA construct.
15. The method of claim 14, wherein said determining step (d) comprises determining whether the transgenic plant exhibits an alteration of at least one agronomic characteristic when compared, under water limiting conditions, to a control plant not comprising the recombinant DNA construct.
PCT/US2008/087874 2007-12-21 2008-12-20 Drought tolerant plants and related constructs and methods involving genes encoding mir827 WO2009086229A2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
MX2010006941A MX2010006941A (en) 2007-12-21 2008-12-20 Drought tolerant plants and related constructs and methods involving genes encoding mir827.
CA2710221A CA2710221A1 (en) 2007-12-21 2008-12-20 Drought tolerant plants and related constructs and methods involving genes encoding mir827
CN200880127193.XA CN101952443B (en) 2007-12-21 2008-12-20 Drought tolerant plants and related constructs and methods involving genes encoding miR827
BRPI0819513-7A2A BRPI0819513A2 (en) 2007-12-21 2008-12-20 "PLANT UNDERSTANDING IN YOUR GENOME A RECOMBINANT DNA CONSTRUCTION AND METHODS OF INCREASING AND EVALUATING WATER DEFICIENCY TOLERANCE AND DETERMINING A CHANGE OF AGRONOMIC CHARACTERISTICS"
EP08866008A EP2229448A2 (en) 2007-12-21 2008-12-20 Drought tolerant plants and related constructs and methods involving genes encoding mir827

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US1568307P 2007-12-21 2007-12-21
US61/015,683 2007-12-21

Publications (2)

Publication Number Publication Date
WO2009086229A2 true WO2009086229A2 (en) 2009-07-09
WO2009086229A3 WO2009086229A3 (en) 2009-09-03

Family

ID=40451602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/087874 WO2009086229A2 (en) 2007-12-21 2008-12-20 Drought tolerant plants and related constructs and methods involving genes encoding mir827

Country Status (7)

Country Link
US (3) US20090165168A1 (en)
EP (1) EP2229448A2 (en)
CN (1) CN101952443B (en)
BR (1) BRPI0819513A2 (en)
CA (1) CA2710221A1 (en)
MX (1) MX2010006941A (en)
WO (1) WO2009086229A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011067745A3 (en) * 2009-12-06 2011-08-04 Rosetta Green Ltd. Compositions and methods for enhancing plants resistance to abiotic stress
US8722072B2 (en) 2010-01-22 2014-05-13 Bayer Intellectual Property Gmbh Acaricidal and/or insecticidal active ingredient combinations
US9265252B2 (en) 2011-08-10 2016-02-23 Bayer Intellectual Property Gmbh Active compound combinations comprising specific tetramic acid derivatives

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101899441B (en) * 2010-06-29 2012-09-05 清华大学 MiRNA-827 responding to H2O2 and application thereof
CN114891758B (en) * 2015-07-22 2024-02-13 孟山都技术公司 Methods and compositions for selectively modulating protein expression
CN106282188A (en) * 2016-08-30 2017-01-04 上海交通大学 Plant senescence is correlated with microRNA and application thereof
CN106934534B (en) * 2017-02-28 2020-10-13 武汉大学 Calculation method for effective utilization coefficient of irrigation water in irrigation area of long-vine melon
CN112725352B (en) * 2021-01-29 2022-04-12 浙江大学 Barley HvZIFL2 gene and application thereof
CN113603747B (en) * 2021-08-27 2023-11-07 上海交通大学 Application of polypeptide coded by Pri-miRNA in improving cold resistance of grape

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006111512A1 (en) * 2005-04-19 2006-10-26 Basf Plant Science Gmbh Improved methods controlling gene expression
WO2007131699A2 (en) * 2006-05-12 2007-11-22 Bayer Bioscience N.V. Novel stress-related microrna molecules and uses thereof
WO2008133643A2 (en) * 2006-10-12 2008-11-06 Monsanto Technology, Llc Plant micrornas and methods of use thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090087878A9 (en) * 1999-05-06 2009-04-02 La Rosa Thomas J Nucleic acid molecules associated with plants
US8106180B2 (en) * 2003-08-07 2012-01-31 Whitehead Institute For Biomedical Research Methods and products for expression of micro RNAs
EP2361984A1 (en) * 2003-10-09 2011-08-31 E. I. du Pont de Nemours and Company Gene silencing by using modified micro-RNA molecules
US20070294782A1 (en) * 2004-12-21 2007-12-20 Mark Abad Transgenic plants with enhanced agronomic traits
EP1838144B1 (en) * 2005-01-07 2016-08-31 Oregon State University Method to trigger rna interference
US8299233B2 (en) * 2008-01-04 2012-10-30 Centre National De La Recherche Scientifique Molecular in vitro diagnosis of breast cancer
CN101899441B (en) * 2010-06-29 2012-09-05 清华大学 MiRNA-827 responding to H2O2 and application thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006111512A1 (en) * 2005-04-19 2006-10-26 Basf Plant Science Gmbh Improved methods controlling gene expression
WO2007131699A2 (en) * 2006-05-12 2007-11-22 Bayer Bioscience N.V. Novel stress-related microrna molecules and uses thereof
WO2008133643A2 (en) * 2006-10-12 2008-11-06 Monsanto Technology, Llc Plant micrornas and methods of use thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
RAJAGOPALAN RAMYA ET AL: "A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana" GENES & DEVELOPMENT, vol. 20, no. 24, December 2006 (2006-12), pages 3407-3425, XP002520917 ISSN: 0890-9369 *
SUNKAR ET AL: "Small RNAs as big players in plant abiotic stress responses and nutrient deprivation" TRENDS IN PLANT SCIENCE, ELSEVIER SCIENCE, OXFORD, GB, vol. 12, no. 7, 1 July 2007 (2007-07-01), pages 301-309, XP022148764 ISSN: 1360-1385 *
WANG YONG ET AL: "Structure and expression profile of the Arabidopsis PHO1 gene family indicates a broad role in inorganic phosphate homeostasis" PLANT PHYSIOLOGY (ROCKVILLE), vol. 135, no. 1, May 2004 (2004-05), pages 400-411, XP002520975 ISSN: 0032-0889 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011067745A3 (en) * 2009-12-06 2011-08-04 Rosetta Green Ltd. Compositions and methods for enhancing plants resistance to abiotic stress
US9562235B2 (en) 2009-12-06 2017-02-07 A.B. Seeds Ltd. MicroRNA compositions and methods for enhancing plant resistance to abiotic stress
US8722072B2 (en) 2010-01-22 2014-05-13 Bayer Intellectual Property Gmbh Acaricidal and/or insecticidal active ingredient combinations
US9265252B2 (en) 2011-08-10 2016-02-23 Bayer Intellectual Property Gmbh Active compound combinations comprising specific tetramic acid derivatives

Also Published As

Publication number Publication date
US20090165168A1 (en) 2009-06-25
CN101952443B (en) 2014-11-12
CA2710221A1 (en) 2009-07-09
MX2010006941A (en) 2010-08-16
CN101952443A (en) 2011-01-19
BRPI0819513A2 (en) 2015-03-10
WO2009086229A3 (en) 2009-09-03
US20130298285A1 (en) 2013-11-07
US20120117687A1 (en) 2012-05-10
EP2229448A2 (en) 2010-09-22

Similar Documents

Publication Publication Date Title
US20090044293A1 (en) Plants with altered root architecture, involving the rt1 gene, related constructs and methods
WO2009029739A2 (en) Methods involving genes encoding nucleoside diphosphatase kinase (ndk) polypeptides and homologs thereof for modifying the plant&#39;s root architecture
US20130298285A1 (en) DROUGHT TOLERANT PLANTS AND RELATED CONSTRUCTS AND METHODS INVOLVING GENES ENCODING miR827
US20150284739A1 (en) Drought tolerant plants and related constructs and methods involving genes encoding ferrochelatases
US20140059716A1 (en) Plants having altered agronomic characteristics under nitrogen limiting conditions and related constructs and methods involving genes encoding lnt2 polypeptides and homologs thereof
US20140245497A1 (en) Drought tolerant plants and related constructs and methods involving genes encoding ferredoxin family proteins
EP2331685A1 (en) Plants with altered root architecture, related constructs and methods involving genes encoding protein phophatase 2c (pp2c) polypeptides and homologs thereof
CA2726105A1 (en) Plants having altered agronomic characteristics under nitrogen limiting conditions and related constructs and methods involving genes encoding lnt1 polypeptides and homologs thereof
CA2703903A1 (en) Plants with altered root architecture, related constructs and methods involving genes encoding leucine rich repeat kinase (llrk) polypeptides and homologs thereof
WO2009058947A2 (en) Plants with altered root architecture, related constructs and methods involving genes encoding exostosin family polypeptides and homologs thereof
US20110035837A1 (en) Plants having altered agronomic characteristics under nitrogen limiting conditions and related constructs and methods involving genes encoding lnt3 polypeptides
EP2326663A2 (en) Plants with altered root architecture, related constructs and methods involving genes encoding rep2 polypeptides and homologs thereof
US20120047603A1 (en) Drought tolerant plants and related constructs and methods involving genes encoding fatty acid desaturase family polypeptides

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880127193.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08866008

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2710221

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2010/006941

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008866008

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 4968/DELNP/2010

Country of ref document: IN

ENP Entry into the national phase

Ref document number: PI0819513

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100621