WO2009077603A1 - Article d'isolation cryogenique, procede de mise en œuvre et utilisation d'un tel article d'isolation, et lanceur equipe d'un tel article d'isolation - Google Patents

Article d'isolation cryogenique, procede de mise en œuvre et utilisation d'un tel article d'isolation, et lanceur equipe d'un tel article d'isolation Download PDF

Info

Publication number
WO2009077603A1
WO2009077603A1 PCT/EP2008/067932 EP2008067932W WO2009077603A1 WO 2009077603 A1 WO2009077603 A1 WO 2009077603A1 EP 2008067932 W EP2008067932 W EP 2008067932W WO 2009077603 A1 WO2009077603 A1 WO 2009077603A1
Authority
WO
WIPO (PCT)
Prior art keywords
cryogenic
layer
insulation
insulation article
thermal
Prior art date
Application number
PCT/EP2008/067932
Other languages
English (en)
Inventor
Yaël Marion
Didier Desombre
Rémo Cargnello
Original Assignee
Cryospace L'air Liquide Aerospatiale
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cryospace L'air Liquide Aerospatiale filed Critical Cryospace L'air Liquide Aerospatiale
Priority to EP08863175A priority Critical patent/EP2223003A1/fr
Publication of WO2009077603A1 publication Critical patent/WO2009077603A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/14Arrangements for the insulation of pipes or pipe systems
    • F16L59/141Arrangements for the insulation of pipes or pipe systems in which the temperature of the medium is below that of the ambient temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/40Arrangements or adaptations of propulsion systems
    • B64G1/402Propellant tanks; Feeding propellants
    • B64G1/4021Tank construction; Details thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/46Arrangements or adaptations of devices for control of environment or living conditions
    • B64G1/50Arrangements or adaptations of devices for control of environment or living conditions for temperature control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0329Foam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/22Assembling processes
    • F17C2209/227Assembling processes by adhesive means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/011Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/08Ergols, e.g. hydrazine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0186Applications for fluid transport or storage in the air or in space
    • F17C2270/0189Planes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0186Applications for fluid transport or storage in the air or in space
    • F17C2270/0197Rockets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the technical field of the present invention is that of the cryogenic insulation of equipment, for example space or aeronautical vehicles.
  • the present invention relates to a cryogenic insulation article and a method of implementing such a cryogenic insulation article designed to define a thermal insulation for protecting for example a tank subjected to cryogenic temperatures.
  • cryogenic temperatures refers to very low temperatures, such as those of liquid oxygen (90 K) and liquid hydrogen (20 K)
  • the invention also relates to the use of such a cryogenic insulation article for the cryogenic insulation of equipment or structures for example of space or aeronautical vehicles, such as thin-walled tanks in which there are propellants, such as hydrogen or oxygen.
  • the invention finally relates to a launcher equipped with such a cryogenic insulation article.
  • a cryogenic insulation article for the cryogenic insulation of equipment or structures for example of space or aeronautical vehicles, such as thin-walled tanks in which there are propellants, such as hydrogen or oxygen.
  • the invention finally relates to a launcher equipped with such a cryogenic insulation article.
  • a cryogenic insulation article for the cryogenic insulation of equipment or structures for example of space or aeronautical vehicles, such as thin-walled tanks in which there are propellants, such as hydrogen or oxygen.
  • the invention finally relates to a launcher equipped with such a cryogenic insulation article.
  • the thermal insulation of a cryogenic tank of a launcher to simplify the description is considered, for example, the thermal insulation of a cryogenic tank of
  • a thermally insulating material to maintain the propellants it contains in the liquid phase by minimizing heat losses.
  • a thermally insulating material may be of the closed cell rigid foam type polyvinyl chloride, polyurethane loaded or non-glass, polyisocyanurate or phenolic.
  • Such a material generally used in a thickness of about 20 to 25 mm, makes it possible to respect a given maximum input thermal flux while being able to withstand the mechanical stresses imposed by the thermal contraction, the pressure and other forces applied to the structure of the structure. tank. This material can be glued or sprayed directly onto the surface of the tank.
  • thermal protection must allow the movements of the tank surface and support the acceleration loads subjected to the launcher. Indeed, before and after the takeoff of a cryogenic spacecraft, the loss of a part of insulation, mounted on a tank filled with liquid propellant would involve potential risks of malfunction that could lead to the destruction of the launcher through important thermal flows entering through the poor surface of the insulation.
  • the patent application FR 2,876,438 describes thermal insulation articles which adhere to the thin-walled structure of a cryogenic tank subject to constraints of mechanical and thermal origin which cause the deformations thereof. However, such insulating articles are dimensioned as such, to respond to aerothermal flows. A complementary material can then be used as a high temperature protection material to avoid significant loss of propellants by evaporation.
  • the object of the invention is to propose an insulation article that makes it possible to optimize the mass of a cryogenic tank by minimizing the thermal protection mass, with obtaining a higher insulating performance, and the mass of the propellants. inconsistent, and therefore increase the launcher payload.
  • the invention relates to a cryogenic insulation article for protecting a structure subjected to cryogenic temperatures, characterized in that it comprises at least a first layer of insulating material, which is a closed cell rigid foam layer of polyetherimide and thickness less than 5 mm capable of being brought into contact with the wall of this structure, and a second layer of less dense insulating material, which is a layer of copolymer ethylene vinyl acetate of greater thickness used against incoming heat flux, glued to the surface of the first layer.
  • a first layer of insulating material which is a closed cell rigid foam layer of polyetherimide and thickness less than 5 mm capable of being brought into contact with the wall of this structure
  • a second layer of less dense insulating material which is a layer of copolymer ethylene vinyl acetate of greater thickness used against incoming heat flux, glued to the surface of the first layer.
  • this first layer has a thickness of about 3 mm.
  • the second layer is a copolymer layer of ethylene vinyl acetate.
  • this second layer has a thickness of about 19.5 mm.
  • Such an insulation article makes it possible to offer, with as good a level of thermal and mechanical performance as the devices of the prior art, a considerably lower density. It also allows, while maintaining masses and similar mechanical performance, to improve thermal performance or, while maintaining similar masses and thermal performance, to improve the mechanical margin.
  • the sum of the density of the two materials forming the combined thermal protection according to the invention is less than the currently used insulations for better thermal and mechanical performance.
  • the thermal performances are thus dimensioned with respect to the incoming flows.
  • the mechanical performance responds to the behavior of the cryogenic tank which, given the significant differences in stiffness with the insulating article, imposes its "mechanical" deformation ( ⁇ meC a) to the assembly.
  • the invention also relates to a method for implementing a cryogenic insulation article which comprises the following successive steps: a step of preparing the surface on which the cryogenic insulation article is to be applied,
  • cryogenic insulation article in the form of at least one panel made from a rigid closed cell polyetherimide foam, is glued, using a glass fabric impregnated with an adhesive material.
  • the invention can be used in all industrial fields, in particular the aeronautical and space fields, where thermal insulation, for example in the form of insulating panels, is used to protect a structure subjected to cryogenic temperatures in the purpose of using an insulating material currently unsuitable for these temperatures or simply to reduce the mass of the insulation assembly thus obtained.
  • the invention relates to a cryogenic insulation article which comprises a first layer of insulating material of small thickness, for example less than 5 mm, having good mechanical performance, so as to perfectly withstand the mechanical stresses on a cryogenic tank at the temperature. 20 K, and a second layer of less dense insulating material, thicker, used against incoming flows.
  • the invention makes it possible to guarantee the dimensioning of thermal performances with respect to the incoming flows, and the response of mechanical performances to the behavior of the cryogenic tank which, taking into account the significant differences in rigidity with the set of two layers of insulating materials. , impose its "mechanical" deformed ( ⁇ meC a) to the set.
  • flow of longitudinal force in the current zone.
  • the tank wall in contact with the propellant, undergoes a deformation of thermal origin
  • ⁇ mec ⁇ i ⁇ mec ⁇ + h therm ⁇ ⁇ V (20 - 293)]
  • ⁇ ffleca2 ⁇ meca + [ ⁇ rterm - ⁇ 2. (R 2 -293)] with T 2 temperature at the interface of the two layers of insulation.
  • the invention makes it possible to use thermally insulating materials, which, in the known art, could not be used to protect cryogenic tanks.
  • the material used as the second insulating layer is isolated from the surface of the reservoir, in contact with the liquid propellant, by the first insulating layer of small thickness in contact with the cold wall can reach the temperature of 20 K and capable of undergoing total deformations of mechanical and thermal origin ( ⁇ meca + ⁇ therm) •
  • the material of the second insulating layer is subjected to higher temperatures resulting from the thermal gradient making it possible to minimize the mechanical strain ⁇ meCA 2 •
  • a first rigid polyetherimide closed cell (PEI) foam layer is used on which a second layer of copolymer foam is adhered to.
  • EVA ethylene vinyl acetate
  • the first polyetherimide layer is known, for example, under the R82 domination available from the AIREX Company.
  • a rigid closed cell polyetherimide foam may have a density of between 55 Kg / m 3 and 60 Kg / m 3 , for example of the order of 60 Kg / m 3 .
  • This rigid foam fairly low density has a low thermal contraction of 0.73% at 20 K and a good tensile strength of 1.7 MPa.
  • the second ethylene vinyl acetate copolymer layer is known, for example, under the EVA25 domination available from the ZOTEFOAMS Company.
  • Such a closed-cell cross-linked ethylene vinyl acetate copolymer foam can have a density of 25 Kg / m 3 and a thermal conductivity value of 0.035 W / mk at room temperature.
  • Table 1 at the end of the description makes the comparison between this embodiment and a thermal insulation known under the H920A domination and available from the Air Liquide Company.
  • This known thermal insulation is made with 21 mm rigid closed-cell polyvinyl chloride foam characterized by a density of 55 Kg / m 3 , a thermal conductivity of 0.033 W / mk at room temperature, a thermal contraction of 1% at 20 K and a tensile strength of 1.0 MPa.
  • This table 1 shows an equivalent density of the embodiment of the invention significantly lower than the thermal insulation of the prior art.
  • a low p equ i of 0.67 Kg / m 2 is obtained with the example of the invention, for as good thermal and mechanical performance as the insulation of the known art.
  • the adhesive chosen so as to retain its properties up to a cryogenic temperature, may advantageously be a polyurethane consisting of a polyol and an isocyanate.
  • the gain on the mass of a cryogenic tank, mounted on an Ariane 5 launcher, is about 120 Kg (knowing that it is isolated on a surface that represents not less than 300 m 2 ).
  • a step of preparation of the surface In a first step, the metal surface of the tank is prepared which it is desired to protect thermally. This surface preparation is intended to give said surface a sufficient surface tension to ensure optimum adhesion of a primer. It can take various forms well known to those skilled in the art. It usually consists of an alkaline degreasing operation and a suifochromic pickling operation for aluminum alloys, followed by a demineralized water rinse or a grinding with fine-grade abrasive paper. , or corundum sandblasting of small particle size, to avoid any degradation of the metal structure.
  • a projection operation of a primer is carried out. This operation improves the adhesion of the adhesive used subsequently to fix the insulation and protects the structure against corrosion.
  • the primer for example PZ 820 / HZ820 from the company Sodiema, is advantageously an epoxy chosen mainly to maintain its properties up to a cryogenic temperature of about 2OK. In order to avoid any pollution of the surface thus protected, it is isolated within a maximum of 30 days after the polymerization of the primary and at least 36 hours after the end of its projection.
  • the thickness of the insulation film is advantageously between 10 and 50 microns, knowing that its optimum thickness is about 20 microns.
  • the adhesive film can be produced by means of an adhesive of the epoxy family such as "Araldite” (registered trademark) AY1O3 / HY953F of the VANTICO company.
  • This adhesive adheres to the structure at ambient temperature as well as at cryogenic temperatures while being chemically compatible with thermal protection.
  • the adhesive is applied using a glass cloth impregnated with glue, preferably with rollers, and then wound directly on the tank.
  • the mass of adhesive to be deposited is advantageously between 150 and 200 g / m 2 . After placing the panels on the structure, they are then maintained under a vacuum of 0.7 bar using a vacuum bag for a period of about 36 hours, time required for the glue to polymerize.
  • the vacuum bag is removed to ensure good adhesion of the insulation panels and the presence of glue at the inter-panel joints.
  • a seal without glue could lead to a phenomenon of cryopompage of the air during the cooling of the tank, possibly damaging the insulation.
  • the allowed play between two neighboring panels should be around one millimeter.
  • the mass of the glass fabric is advantageously between 30 and 40 g / m 2 and its width is about one meter for ease of implementation.
  • the glue guarantees a shear strength of 3 MPa.
  • the insulation thus made allows the movements of the skin of the reservoir due to the hyperstatic forces (thermal contractions and pressurization of the reservoirs) during the ground filling, as well as the general efforts supported by the launcher in flight.
  • the insulation panels thus made with a first layer of closed cell polyetherimide foam of 3 mm thickness and a second layer of ethylene vinyl copolymer foam of
  • P 1 density of the material of the layer i
  • heat flow entering the tank on the ground
  • peqm equivalent density isolating the complex in kg / m 2 .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Environmental Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

L' invention concerne un article d' isolation cryogénique, qui comprend au moins une première couche de matériau isolant ayant de bonnes performances mécaniques et d' épaisseur inférieure à 5 mm et une deuxième couche de matériau isolant moins dense, de plus grande épaisseur, utilisé contre les flux thermiques entrants.

Description

ARTICLE D'ISOLATION CRYOGENIQUE, PROCEDE DE MISE EN
ŒUVRE ET UTILISATION D'UN TEL ARTICLE D'ISOLATION, ET
LANCEUR EQUIPE D'UN TEL ARTICLE D'ISOLATION
DESCRIPTION
DOMAINE TECHNIQUE
Le domaine technique de la présente invention est celui de l'isolation cryogénique d'équipements, par exemple de véhicules spatiaux ou aéronautiques .
La présente invention concerne un article d' isolation cryogénique et un procédé de mise en œuvre d'un tel article d'isolation cryogénique conçu pour définir une isolation thermique destinée à protéger par exemple un réservoir soumis à des températures cryogéniques .
L'expression « températures cryogéniques » désigne des températures très basses, telles que celles de l'oxygène liquide (90 K) et de l'hydrogène liquide (20 K)
L' invention concerne également l'utilisation d'un tel article d'isolation cryogénique pour l'isolation cryogénique d'équipements ou de structures par exemple de véhicules spatiaux ou aéronautiques, tels que des réservoirs à paroi mince dans lesquels se trouvent des ergols, tels que de l'hydrogène ou de l'oxygène. L'invention concerne enfin un lanceur équipé d'un tel article d'isolation cryogénique. Dans la suite, pour simplifier la description on considère, à titre d'exemple, l'isolation thermique d'un réservoir cryotechnique d'un lanceur .
ÉTAT DE LA TECHNIQUE ANTÉRIEURE
Pour assurer la protection du réservoir cryotechnique d'un lanceur, on revêt celui-ci d'un matériau thermiquement isolant pour maintenir les ergols qu'il contient en phase liquide en minimisant les pertes thermiques. Un tel matériau peut être de type mousse rigide à cellules fermées en polychlorure de vinyle, polyuréthanne chargées ou non de verre, polyisocyanurate ou phénoliques. Un tel matériau, utilisé généralement en épaisseur d'environ 20 à 25 mm, permet de respecter un flux thermique entrant maximum donné tout en étant capable de tenir les sollicitations mécaniques imposées par la contraction thermique, la pression et autres efforts appliqués à la structure du réservoir. Ce matériau peut être collé ou projeté directement sur la surface du réservoir.
Une telle protection thermique doit permettre les mouvements de la surface du réservoir et supporter les charges d'accélération soumises au lanceur. En effet, avant et après le décollage d'un engin spatial cryotechnique, la perte d'une partie d'isolation, montée sur un réservoir rempli d'ergol liquide impliquerait des risques potentiels de disfonctionnement pouvant entraîner la destruction du lanceur par le biais d'importants flux thermiques entrant par la surface démunie de l'isolation. Pour augmenter la tenue mécanique en paroi tout en réduisant le niveau de flux entrant sans pénaliser la masse, la demande de brevet FR 2 876 438 décrit des articles d' isolation thermique qui adhérent sur la structure à paroi mince d'un réservoir cryogénique soumise à des contraintes d' origine mécanique et thermique qui entraînent les déformations de celui-ci. Cependant, de tels articles d'isolation sont dimensionnés comme tel, pour répondre aux flux aérothermiques. Un matériau complémentaire peut alors être utilisé comme matériau de protection hautes températures pour éviter d'importantes pertes d'ergols par évaporation.
L'invention a pour objet de proposer un article d'isolation qui permette d'optimiser la masse d'un réservoir cryotechnique en minimisant la masse de protection thermique, avec l'obtention d'une performance isolante plus élevée, et la masse des ergols inconsommables, et donc d'augmenter la charge utile du lanceur.
EXPOSE DE L'INVENTION
L'invention concerne un article d'isolation cryogénique pour protéger une structure soumise à des températures cryogéniques, caractérisé en ce qu'il comprend au moins une première couche de matériau isolant, qui est une couche de mousse rigide à cellules fermées de polyétherimide et d'épaisseur inférieure à 5 mm apte à être mise en contact avec la paroi de cette structure, et une deuxième couche de matériau isolant moins dense, qui est une couche de copolymère d' éthylène acétate de vinyle de plus grande épaisseur utilisé contre les flux thermiques entrants, collée à la surface de la première couche.
Avantageusement cette première couche a une épaisseur d'environ 3 mm.
Avantageusement la seconde couche est une couche de copolymère d' éthylène acétate de vinyle. Avantageusement cette seconde couche a une épaisseur d'environ 19,5 mm. Un tel article d'isolation permet d'offrir, avec un aussi bon niveau de performance thermique et mécanique que les dispositifs de l'art connu, une densité considérablement plus faible. Il permet également, en conservant des masses et performance mécanique analogues, d'améliorer les performances thermiques ou, en conservant des masses et performance thermique analogues, d'améliorer la marge mécanique. La somme de la densité des deux matériaux formant la protection thermique combinée selon l'invention, est moindre que les isolations actuellement utilisées pour de meilleures performances thermiques et mécaniques. Les performances thermiques sont ainsi dimensionnées vis â vis des flux entrants. De plus les performances mécaniques répondent au comportement du réservoir cryotechnique qui, compte tenu des écarts importants de rigidité avec l'article d'isolation, impose sa déformée « mécanique » (εmeCa) à l'ensemble.
L' invention concerne également un procédé de mise en œuvre d'un article d'isolation cryogénique qui comporte les étapes successives suivantes : - une étape de préparation de la surface sur laquelle doit être appliqué l'article d'isolation cryogénique,
- une étape de protection au cours de laquelle on applique sur la surface ainsi préparée un primaire d'accrochage,
- une étape de fixation au cours de laquelle on colle ledit article d' isolation cryogénique, se présentant sous la forme d'au moins un panneau réalisé à partir d'une mousse rigide à cellules fermées en polyétherimide, à l'aide d'un tissu de verre imprégné d'un matériau adhésif.
L' invention peut être utilisée dans tous les domaines industriels, notamment les domaines aéronautique et spatial, où l'on utilise une isolation thermique, par exemple sous la forme de panneaux isolants, pour protéger une structure, soumise à des températures cryogéniques, dans le but d'utiliser un matériau isolant actuellement inadapté à ces températures ou tout simplement de réduire la masse de l'ensemble isolant ainsi obtenu.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
L' invention concerne un article d' isolation cryogénique qui comprend une première couche de matériau isolant de faible épaisseur, par exemple inférieure à 5 mm, ayant de bonnes performances mécaniques, de façon à tenir parfaitement les sollicitations mécaniques sur un réservoir cryotechnique à la température de 20 K, et d'une deuxième couche de matériau isolant moins dense, de plus grande épaisseur, utilisé contre les flux entrants .
L' invention permet de garantir le dimensionnement de performances thermiques vis-à-vis des flux entrants, et la réponse de performances mécaniques au comportement du réservoir cryotechnique qui, compte tenu des écarts importants de rigidité avec l'ensemble de deux couches de matériaux isolants, impose sa déformée « mécanique » (εmeCa) à l'ensemble.
L'expression de cette déformée « mécanique » du réservoir imposée aux deux couches de protection thermique et résultant des efforts de pression interne et des efforts généraux est donnée ci- dessous :
- En longitudinal (suivant l'axe du réservoir,
_ΔPxRx(0.5-υ) φ
Exe Exe
- En radial 'suivant le rayon du réservoir,
ΔPxRx(l-0.5υ) υxφ εr = i '- + ^
Exe Exe
Avec :
R : rayon du réservoir
: épaisseur de la paroi du réservoir E : module d' Young υ coefficient de Poisson
ΔP pression différentielle dans le réservoir
Φ = flux d'effort longitudinal en zone courante . De plus, la paroi du réservoir, en contact avec l'ergol, subit une déformation d'origine thermique
therm) dont l'expression pour un réservoir hydrogène liquide est la suivante : εtherm = oc (20 —293), avec α coefficient de dilatation de la paroi métallique.
Cette déformée « thermique » du réservoir est également imposée intégralement aux deux couches d'isolation. Etant donné que ces deux couches présentent des coefficients de dilatation thermique ai et α2 différents de α, les déformations mécaniques réellement subies par l'ensemble sont données ci- dessous :
- Pour la première couche : εmecαi = εmecα + htherm ~ <V (20 - 293)] - Pour la seconde couche : εffleca2meca + [εrterm2.(r2-293)] avec T2 température à l'interface des deux couches d' isolation .
L'optimisation thermomécanique de la définition de l'ensemble de ces deux couches consiste à vérifier les relations suivantes, avec soit une densité finale la plus faible possible ou des marges à rupture les plus grandes possibles : εmecal
Figure imgf000008_0001
1. (20 - 293)] < εΛ1[20i:] εmeca2 = εmeca + [εtherm - α2. (r2 -293)] < εΛ2[r2] avec εRi et εR2 : déformées à rupture de ces deux couches d' isolation .
Par souci de simplicité, on raisonne ici en termes de déformations uni-axiales mais le raisonnement est bien sûr applicable en déformation équivalente bi- axiale .
L'invention permet d'utiliser des matériaux thermiquement isolants, qui, dans l'art connu, ne pouvaient pas être utilisés pour protéger des réservoirs cryotechniques . En effet, le matériau utilisé comme deuxième couche isolante est isolé de la surface du réservoir, en contact avec l'ergol liquide, par la première couche isolante de faible épaisseur en contact avec la paroi froide pouvant atteindre la température de 20 K et capable de subir les déformations totales d' origine mécanique et thermique (ε meca + ε therm) • Ainsi, le matériau de la deuxième couche isolante est soumis à des températures plus élevées provenant du gradient thermique permettant de minimiser la déformation mécanique ε meCa2 •
Exemple de réalisation
Dans un exemple d' isolation thermique appliquée sur un réservoir cryotechnique destiné à équiper un lanceur de type Ariane 5, on utilise une première couche de mousse rigide à cellules fermées en polyétherimide (PEI) sur laquelle on colle une seconde couche de mousse de copolymère d' éthylène acétate de vinyle (EVA) .
La première couche en polyétherimide est connue, par exemple, sous la domination R82 disponible auprès de la Société AIREX. Une telle mousse rigide à cellules fermées en polyétherimide peut présenter une masse volumique comprise entre 55 Kg/m3 et 60 Kg/m3, par exemple de l'ordre de 60 Kg/m3. Cette mousse rigide d'assez faible densité possède une faible contraction thermique de 0,73 % à 20 K et une bonne résistance à a traction de 1,7 MPa.
La deuxième couche en copolymère d' éthylène acétate de vinyle est connue, par exemple, sous la domination EVA25 disponible auprès de la Société ZOTEFOAMS. Une telle mousse de copolymère d' éthylène acétate de vinyle réticulée à cellules fermées peut présenter une masse volumique de 25 Kg/m3 et une valeur de conductivité thermique de 0,035 W/m.k. à température ambiante .
La mise en place d'un adhésif entre les deux couches permet d'obtenir l'isolation désirée.
Le tableau 1 en fin de description effectue la comparaison entre cet exemple de réalisation et une isolation thermique connue sous la domination H920A et disponible auprès de la Société Air Liquide. Cette isolation thermique connue est réalisée avec 21 mm de mousse rigide à cellules fermées en polychlorure de vinyle caractérisée par une masse volumique de 55 Kg/m3, une conductivité thermique de 0,033 W/m.k à température ambiante, une contraction thermique de 1 % à 20 K et une résistance à la traction de 1,0 MPa.
Ce tableau 1 met en évidence une densité équivalente de l'exemple de réalisation de l'invention nettement plus faible que l'isolation thermique de l'art connu. On obtient un faible p equi de 0,67 Kg/m2 avec l'exemple de l'invention, pour d'aussi bonnes performances thermiques et mécaniques que l'isolation de l'art connu. Pour tenir compte du surplus d'adhésif nécessaire â l'interface inter-couches, on peut ajouter la masse d'adhésif nécessaire utilisée lors de sa confection qui est comprise entre 0,08 et 0,1 Kg/m2, d'où une valeur de p equi de 0,77 Kg/m2.
L'adhésif, choisi de façon à pouvoir conserver ses propriétés jusqu'à une température cryogénique, peut être avantageusement un polyuréthanne constitué d'un polyol et d'un isocyanate.
Le gain sur la masse d'un réservoir cryotechnique, monté sur un lanceur de type Ariane 5, est d'environ 120 Kg (sachant que celui-ci est isolé sur une surface qui représente pas moins de 300 m2) .
Conformément à cet exemple de réalisation on peut assurer l'isolation thermique du réservoir cryotechnique à l'aide de panneaux d'isolation, préalablement confectionnés, directement collés sur la paroi externe de celui-ci, à l'aide d'un adhésif époxy et d'un sac à vide.
On peut avoir ainsi les étapes suivantes : 1. Une étape de préparation de la surface Dans un premier temps, on prépare la surface métallique du réservoir que l'on désire protéger thermiquement . Cette préparation de surface a pour objet de donner à ladite surface une tension superficielle suffisante pour assurer une adhérence optimale d'un primaire d'accrochage. Elle peut prendre différentes formes bien connues de l'homme du métier. Elle consiste généralement en une opération de dégraissage alcalin et en une opération de décapage suifochromique pour les alliages d'aluminium, suivies d'un rinçage à l'eau déminéralisée ou d'un émerisage à l'aide d'un papier abrasif de grade fin, ou encore de sablage au corindon de faible granulométrie, pour éviter toute dégradation de la structure métallique.
2. Une étape de protection
Dans un délai aussi court que possible (généralement moins de 8 heures) afin d'éviter une nouvelle pollution de la surface, on effectue une opération de projection d'un primaire d'accrochage. Celle opération améliore l'adhérence de l'adhésif utilisé ensuite pour fixer l'isolation et protège la structure contre la corrosion.
Le primaire, par exemple du PZ 820/HZ820 de la société SODIEMA, est avantageusement un époxy choisi principalement pour conserver ses propriétés jusqu'à une température cryogénique d'environ 2OK. Afin d'éviter toute pollution de la surface ainsi protégée, on isole celle-ci dans un délai maximum de 30 jours après la polymérisation du primaire et au moins 36 heures après la fin de sa projection. L'épaisseur du film d'isolation est avantageusement comprise entre 10 et 50 microns, sachant que son épaisseur optimale est d'environ 20 microns.
3. Une étape de fixation
On colle ensuite sur la surface ainsi préparée et revêtue du primaire les panneaux d'isolation aux emplacements préalablement définis avec un adhésif apte à supporter les températures cryogéniques sans perdre son intégrité, et compatible des matériaux dont il assure le collage.
Le film d'adhésif peut être réalisé au moyen d'une colle de la famille des époxydes telle que « l'Araldite » (marque déposée) AY1O3/HY953F de la société VANTICO. Ainsi cet adhésif adhère à la structure à température ambiante ainsi qu'aux températures cryogéniques tout en étant chimiquement compatible avec la protection thermique. L'application de l'adhésif s'effectue à l'aide d'un tissu de verre imprégné de colle, de préférence à l'aide de rouleaux, puis bobiné directement sur le réservoir. La masse de colle à déposer est avantageusement comprise entre 150 et 200 g/m2. Après avoir posé les panneaux sur la structure, on les maintient ensuite sous une dépression de 0,7 bar à l'aide d'un sac à vide pendant une durée d'environ 36 heures, temps nécessaire à la colle pour polymériser .
Après cette polymérisation, on dépose le sac à vide pour s'assurer du bon collage des panneaux d' isolation ainsi que de la présence de colle au niveau des joints inter panneaux. Un joint sans colle pourrait conduire à un phénomène de cryopompage de l'air lors de la mise en froid du réservoir, pouvant éventuellement endommager l'isolation. Le jeu toléré entre deux panneaux voisins doit être aux alentours d'un millimètre. La masse du tissu de verre est avantageusement comprise entre 30 et 40 g/m2 et sa largeur est d'environ un mètre pour une facilité de mise en œuvre. A la température de 2OK, la colle garantit une tenue en cisaillement de 3 MPa.
L' isolation ainsi réalisée permet les mouvements de la peau du réservoir dus aux efforts hyperstatiques (contractions thermiques et pressurisation des réservoirs) pendant la phase de remplissage au sol, ainsi qu'aux efforts généraux supportés par le lanceur en vol.
Les panneaux d'isolation ainsi réalisés avec une première couche de mousse à cellules fermées en polyétherimide de 3 mm d'épaisseur et une deuxième couche de mousse de copolymère d' éthylène de vinyle de
19,5 mm d'épaisseur possèdent une excellente résistance à l'impact mais également une haute résistance au pelage, indispensable pour ce type de structure chargée dynamiquement.
Tableau 1 ei Pl P2 Pequ, Réserve Réserve
Configuration e2(mm) φ(W/m2) T2(K) (mm) (kg/m3) (kg/m3) (kg/m2) εi (%) ε2(%)
Monocouche
21 55 0 0 286 1,16 - 0,60 - H920A
R82-60 / EVA
3 60 19,5 25 288 0,67 99 3,07(*) 1,52(**)
25
(*) (εΛ1 [20*] -[εΛerffl -Cc1. (20 -293)])
(**) (εΛ2 [r2]-[εrtβ1112.(r2-293)]) avec : e± : épaisseur de la couche i,
P1 : masse volumique du matériau de la couche i, φ : flux thermique entrant dans le réservoir au sol, peqm : densité équivalente isolant du complexe en kg/m2.
8i et £.2 '• réserves de déformation des deux matériaux disponibles avant sollicitation mécanique via

Claims

REVENDICATIONS
1. Article d'isolation cryogénique pour protéger une structure soumise à des températures cryogéniques, caractérisé en ce qu'il comprend au moins une première couche de matériau isolant, qui est une couche de mousse rigide à cellules fermées de polyétherimide et d'épaisseur inférieure à 5 mm apte à être mise en contact avec la paroi de cette structure, et une deuxième couche de matériau isolant moins dense, qui est une couche de copolymère d' éthylène acétate de vinyle de plus grande épaisseur utilisé contre les flux thermiques entrants, collée à la surface de la première couche .
2. Article d'isolation cryogénique selon la revendication 1, dans lequel la première couche a une épaisseur d'environ 3 mm.
3. Article d'isolation cryogénique selon la revendication 1, dans lequel la seconde couche a une épaisseur d'environ 19,5 mm.
4. Procédé de mise en œuvre d'un article d'isolation cryogénique selon l'une quelconque des revendications 1 à 3, qui comporte les étapes successives suivantes :
- une étape de préparation de la surface sur laquelle doit être appliqué l'article d'isolation cryogénique, - une étape de protection au cours de laquelle on applique sur la surface ainsi préparée un primaire d'accrochage,
- une étape de fixation au cours de laquelle on colle ledit article d' isolation cryogénique, se présentant sous la forme d'au moins un panneau réalisé à partir d'une mousse rigide à cellules fermées en polyétherimide, à l'aide d'un tissu de verre imprégné d'un matériau adhésif.
5. Utilisation d'au moins un article d'isolation cryogénique selon l'une quelconque des revendications 1 à 3, sous la forme d'un panneau d'isolation pour l'isolation d'une structure à parois minces d'un véhicule spatial ou aéronautique.
6. Lanceur, qui est équipé d'au moins un article d'isolation cryogénique selon l'une quelconque des revendications 1 à 3, sous la forme d'un panneau d' isolation .
PCT/EP2008/067932 2007-12-18 2008-12-18 Article d'isolation cryogenique, procede de mise en œuvre et utilisation d'un tel article d'isolation, et lanceur equipe d'un tel article d'isolation WO2009077603A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08863175A EP2223003A1 (fr) 2007-12-18 2008-12-18 Article d'isolation cryogenique, procede de mise en uvre et utilisation d'un tel article d'isolation, et lanceur equipe d'un tel article d'isolation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0759932A FR2925143B1 (fr) 2007-12-18 2007-12-18 Article d'isolation cryogenique, procede de mise en oeuvre et utilisation d'un tel article d'isolation, et lanceur equipe d'un tel article d'isolation
FR0759932 2007-12-18

Publications (1)

Publication Number Publication Date
WO2009077603A1 true WO2009077603A1 (fr) 2009-06-25

Family

ID=39591389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/067932 WO2009077603A1 (fr) 2007-12-18 2008-12-18 Article d'isolation cryogenique, procede de mise en œuvre et utilisation d'un tel article d'isolation, et lanceur equipe d'un tel article d'isolation

Country Status (3)

Country Link
EP (1) EP2223003A1 (fr)
FR (1) FR2925143B1 (fr)
WO (1) WO2009077603A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002018135A1 (fr) * 2000-08-30 2002-03-07 Commissariat A L'energie Atomique Structure multicouche thermoplastique pour reservoir a gaz
EP1431650A1 (fr) * 2002-12-19 2004-06-23 Cryospace l'air liquide aerospatiale Complexe de protection thermique
FR2876438A1 (fr) * 2004-10-08 2006-04-14 Cryospace L Air Liquide Aerosp Article d'isolation cryogenique, procede de mise en oeuvre et utilisation d'un tel article d'isolation, et lanceur equipe d'un tel article d'isolation
WO2008049526A1 (fr) * 2006-10-26 2008-05-02 Rehau Ag + Co Corps creux polymère à remplissage de mousse

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002018135A1 (fr) * 2000-08-30 2002-03-07 Commissariat A L'energie Atomique Structure multicouche thermoplastique pour reservoir a gaz
EP1431650A1 (fr) * 2002-12-19 2004-06-23 Cryospace l'air liquide aerospatiale Complexe de protection thermique
FR2876438A1 (fr) * 2004-10-08 2006-04-14 Cryospace L Air Liquide Aerosp Article d'isolation cryogenique, procede de mise en oeuvre et utilisation d'un tel article d'isolation, et lanceur equipe d'un tel article d'isolation
WO2008049526A1 (fr) * 2006-10-26 2008-05-02 Rehau Ag + Co Corps creux polymère à remplissage de mousse

Also Published As

Publication number Publication date
FR2925143A1 (fr) 2009-06-19
FR2925143B1 (fr) 2012-09-28
EP2223003A1 (fr) 2010-09-01

Similar Documents

Publication Publication Date Title
US7296769B2 (en) Cryogenic fuel tank insulation assembly
EP2354622B1 (fr) Article d&#39;isolation cryogénique à capotage notamment destiné à protéger des réservoirs cryotechniques
US10184050B2 (en) Carbon nanotube coated structure and associated method of fabrication
FR2922522A1 (fr) Degivrage piezo-electrique d&#39;une entree d&#39;air
EP1878663B1 (fr) Panneau d&#39;isolation thermique de reservoirs cryotechniques
EP2726375B2 (fr) Réservoir de fluide cryogénique et son utilisation
FR2639607A1 (fr) Procede de stabilisation en altitude d&#39;un ballon stratospherique et ballon adapte a sa mise en oeuvre
EP2415118B1 (fr) Antenne radioelectrique a cornieres de decouplage ameliorees
FR2876438A1 (fr) Article d&#39;isolation cryogenique, procede de mise en oeuvre et utilisation d&#39;un tel article d&#39;isolation, et lanceur equipe d&#39;un tel article d&#39;isolation
EP2223003A1 (fr) Article d&#39;isolation cryogenique, procede de mise en uvre et utilisation d&#39;un tel article d&#39;isolation, et lanceur equipe d&#39;un tel article d&#39;isolation
EP1645793B1 (fr) Dispositif d&#39;isolation cryogénique
FR2789049A1 (fr) Structure pour l&#39;isolation thermique de satellites
EP2481968B1 (fr) Réservoir pour fluide sous pression comprenant deux compartiments separes par un fond commun integrant une couche de protection thermique en mousse
EP2979020B1 (fr) Procédé et dispositif d&#39;isolation thermique d&#39;un équipement
EP4182601A1 (fr) Dispositif de stockage de fluide cryogénique et véhicule comprenant un tel dispositif
EP2354621B1 (fr) Article d&#39;isolation cryogénique notamment destiné à protéger des réservoirs cryotechniques
FR3131359A1 (fr) Réservoir cryogenique embarqué léger de forme quelconque optimisé structurellement
EP1517078A2 (fr) Procédé d&#39;isolation thermique d&#39;un double fond separant deux ergols d&#39;un réservoir
EP1431650B1 (fr) Complexe de protection thermique
EP2415114B1 (fr) Antenne radioelectrique
FR3123706A1 (fr) Réservoir présentant une isolation renforcée combinant des matelas d’isolation thermique ainsi que des microsphères et procédé de fabrication d’un tel réservoir
FR3138651A1 (fr) Procédé d’isolation thermique d’une aérostructure et aéronef comprenant au moins un réservoir cryogénique ainsi qu’une aérostructure isolée selon ledit procédé
FR2843626A1 (fr) Dispositif de support susceptible de proteger au moins un equipement de forme lineaire contre des sollicitations aerothermiques
WO2013113784A1 (fr) Procede de realisation de la couche externe d&#39;un reservoir de lanceur spatial

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08863175

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008863175

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE