WO2009073366A2 - Dewatering of silicate wellbore fluids - Google Patents
Dewatering of silicate wellbore fluids Download PDFInfo
- Publication number
- WO2009073366A2 WO2009073366A2 PCT/US2008/084025 US2008084025W WO2009073366A2 WO 2009073366 A2 WO2009073366 A2 WO 2009073366A2 US 2008084025 W US2008084025 W US 2008084025W WO 2009073366 A2 WO2009073366 A2 WO 2009073366A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fluid
- silicate
- coagulant
- flocculant
- flocculated
- Prior art date
Links
- 239000012530 fluid Substances 0.000 title claims abstract description 116
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 title claims abstract description 44
- 238000000034 method Methods 0.000 claims abstract description 30
- 239000000356 contaminant Substances 0.000 claims abstract description 13
- 230000003311 flocculating effect Effects 0.000 claims abstract description 11
- 239000002699 waste material Substances 0.000 claims abstract description 11
- 238000004064 recycling Methods 0.000 claims abstract description 3
- 239000000701 coagulant Substances 0.000 claims description 34
- 239000007787 solid Substances 0.000 claims description 25
- 238000005553 drilling Methods 0.000 claims description 21
- 229920000867 polyelectrolyte Polymers 0.000 claims description 8
- 150000004760 silicates Chemical class 0.000 claims description 8
- 125000002091 cationic group Chemical group 0.000 claims description 6
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 239000000178 monomer Substances 0.000 claims description 3
- 229920000371 poly(diallyldimethylammonium chloride) polymer Polymers 0.000 claims description 3
- -1 diallyl dialkyl ammonium halide Chemical class 0.000 claims description 2
- 150000001252 acrylic acid derivatives Chemical class 0.000 claims 3
- 229920001577 copolymer Polymers 0.000 claims 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims 1
- 150000001875 compounds Chemical class 0.000 claims 1
- 238000005189 flocculation Methods 0.000 description 11
- 230000016615 flocculation Effects 0.000 description 11
- 229920000642 polymer Polymers 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 10
- 238000005755 formation reaction Methods 0.000 description 10
- 239000002245 particle Substances 0.000 description 8
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 6
- 238000005345 coagulation Methods 0.000 description 5
- 230000015271 coagulation Effects 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 239000012071 phase Substances 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 125000000129 anionic group Chemical group 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 239000008394 flocculating agent Substances 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- KCZFLPPCFOHPNI-UHFFFAOYSA-N alumane;iron Chemical compound [AlH3].[Fe] KCZFLPPCFOHPNI-UHFFFAOYSA-N 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- 229920006317 cationic polymer Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000368 destabilizing effect Effects 0.000 description 1
- 125000004985 dialkyl amino alkyl group Chemical group 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- RUTXIHLAWFEWGM-UHFFFAOYSA-H iron(3+) sulfate Chemical compound [Fe+3].[Fe+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O RUTXIHLAWFEWGM-UHFFFAOYSA-H 0.000 description 1
- 229910000360 iron(III) sulfate Inorganic materials 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000002910 solid waste Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000011882 ultra-fine particle Substances 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B21/00—Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
- E21B21/06—Arrangements for treating drilling fluids outside the borehole
- E21B21/063—Arrangements for treating drilling fluids outside the borehole by separating components
- E21B21/065—Separating solids from drilling fluids
- E21B21/066—Separating solids from drilling fluids with further treatment of the solids, e.g. for disposal
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/52—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
- C02F1/5236—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/52—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
- C02F1/54—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
- C02F1/56—Macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/20—Heavy metals or heavy metal compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/10—Nature of the water, waste water, sewage or sludge to be treated from quarries or from mining activities
Definitions
- Embodiments disclosed herein relate generally to dewatering of wellbore fluids.
- embodiments disclosed herein relate to dewatering of silicate- based wellbore fluids.
- Various fluids are used when drilling or completing a well, and the fluids may be used for a variety of reasons.
- Common uses for well fluids include: lubrication and cooling of drill bit cutting surfaces while drilling generally or drilling-in (i.e., drilling in a targeted petroliferous formation), transportation of "cuttings" (pieces of formation dislodged by the cutting action of the teeth on a drill bit) to the surface, controlling formation fluid pressure to prevent blowouts, maintaining well stability, suspending solids in the well, minimizing fluid loss into and stabilizing the formation through which the well is being drilled, fracturing the formation in the vicinity of the well, displacing the fluid within the well with another fluid, cleaning the well, testing the well, transmitting hydraulic horsepower to the drill bit, fluid used for emplacing a packer, abandoning the well or preparing the well for abandonment, and otherwise treating the well or the formation.
- the mud When returned to the surface, the mud passes through solids control equipment to remove unwanted solids. While larger solids are removed by shale shakers and hydrocyclones, ultra-fine particles (less than about 20 microns) form colloidal suspensions in the fluid and will continue to circulate through the system unless special solids removal equipment is used. The difficulty of removing these small particles increases as the particle size decreases.
- waste management dewatering systems separate solids and fine particles from the liquid phase of drilling fluid, thereby leaving a clarified aqueous solution.
- waste fluids such as, wellbore fluids mixed with water from the rotary table, mud tanks, mud pumps, generators and from any other discharge point around a drilling rig.
- dewatering waste management systems clean drilling fluid through coagulation, flocculation, and/or mechanical separation.
- embodiments disclosed herein relate to a method of treating silicate-based wellbore fluids that includes flocculating at least a portion of contaminants contained in a silicate-based wellbore fluid out of the fluid phase; and separating the flocculated contaminants from the fluid phase.
- embodiments disclosed herein relate to a method of recycling a silicate-based wellbore fluid that includes adding a flocculant and a polyelectrolyte coagulant to a silicate-based wellbore fluid containing contaminants therein; flocculating at least a portion of the contaminants out of the fluid phase; and separating the silicate-based fluid from the flocculated contaminants.
- embodiments disclosed herein relate to a method of disposing of a used silicate-based wellbore fluid that includes lowering a pH of the used silicate-based wellbore fluid; adding a flocculant to the silicate based wellbore fluid; flocculating silicate solids out of the fluid phase; and separating the flocculated silicates from the fluid.
- embodiments disclosed herein relate to a method of disposing of wellbore fluid waste that includes providing a silicate-based wellbore fluid; determining whether additional drilling with the wellbore fluid is desired; if additional drilling is not desired, adding a flocculant and an inorganic coagulant to the fluid; if additional drilling is desired, adding a flocculant and a polyelectrolyte coagulant to the fluid; separating flocculated solids from the fluid.
- embodiments disclosed herein relate to dewatering of wellbore fluids.
- embodiments disclosed herein relate to dewatering of silicate- based wellbore fluids.
- Silicate-based wellbore fluids have been well-established as an effective means of stabilizing shale formations. Despite being an effective shale stabilizer, silicate never achieved early, widespread success, owing to certain advantages held by oil-based drilling fluids, in particular, the ease of use of oil-based fluids, which are also not prone to gellation or precipitation, and good lubricating properties. Until recent environmental pressures there was little incentive to improve the performance deficiencies in silicate-containing, water-based drilling fluids. Thus, as mud designers have been able to overcome the traditional deficiencies of silicate-based fluids, there has also been an increasing need for disposal of waste generated from the use of silicate-based fluids.
- dewatering of silicate-based fluids may be provided to reduce the volume of drilling wastes associated with the silicate-based fluids. Such dewatering of silicate-based fluids may occur through coagulation, flocculation, and/or mechanical separation.
- Coagulation occurs when the electrostatic charge on a solid is reduced, destabilizing the solid and allowing it to be attracted to other solids by van der Waals forces.
- coagulation is an aggregation of particles on a microscopic level.
- Flocculation is the binding of individual solid particles into aggregates of multiple particles on a macroscopic.
- Flocculation is physical, rather than electrical, and occurs when one segment of a flocculating polymer chain absorbs simultaneously onto more than one particle.
- Mechanical separation includes mechanical devices (e.g., hydrocyclones and centrifuges) that remove solid particles from a solution.
- a flocculant may be added to a wellbore fluid.
- Flocculants suitable for use in the dewatering of the fluids of the present disclosure may include for example, high molecular weight (2,000,000-20,000,000) acrylic acid or acrylate-based polymers.
- the charge density of the polymers may range from 0-100 percent (in either charge direction). In a particular embodiment, the charge density may range from 0-80 percent.
- the resulting polymers may be cationic, anionic, or non-ionic.
- polyacryalmide- based flocculants include those sold under the trade names MAGNAFLOC® and ZETAG®, from Ciba Specialty Chemicals (Tarrytown, NY) and HYPERFLOC® from Hychem, Inc. (Tampa, FL).
- a coagulant may be used to assist in aggregating colloidal particles within a fluid.
- the coagulant may be an inorganic or polyelectrolyte type. Most inorganic coagulants will also reduce the pH due to the inherent acidity of the salt. Thus, selection among the two types of coagulants may be based on whether precipitation and removal of silicates from the fluid is desired. If further use in downhole operations, such as drilling, of the silicate-based fluid is desired, a polyelectrolyte coagulant may be selected so that the pH of the fluid does not substantially change.
- an acidic inorganic coagulant may be selected to reduce the pH of the fluid, and trigger coagulation and flocculation of the silicates within the fluid.
- the silicates may be disposed of with the remainder of the solid waste, and the fluid (water) may be disposed of, further treated, used in additional operations, etc.
- inorganic coagulants include aluminum- and iron-based coagulants, such as aluminum chloride, poly(aluminum hydroxy)chloride, aluminum sulfate, ferric sulfate, ferric chloride, etc. Further, one of ordinary skill in the art would appreciate that selection of the coagulant may depend, for example, on the pH of the fluid, presence of ions in the fluid, requirements for the final fluid, etc.
- inorganic coagulants include those sold under the trade name SUPERFLO C®, which are poly(aluminum hydroxy)chlorides available from Cytec Industries, Inc. (West Patterson, NJ).
- polyelectrolyte coagulants include water-soluble organic polymers that may be cationic, anionic, or non-ionic.
- cationic polymers having molecular weights generally less than 500,000 may be used. However, higher molecular weight polymers (such as up to 20,000,000) may be used in yet other embodiments.
- the charge density of the polymers may range up to 100 percent.
- Cationic monomers may include diallyl dialkyl ammonium halides and dialkylaminoalkyl (meth) -acrylates and -acrylamides, (as acid addition or quaternary ammonium salts).
- the coagulant may include poly diallyl dimethyl ammonium chloride.
- the floes may settle to the bottom of a fluid, and be separated therefrom by mechanical means such as a centrifuge.
- shaking and/or mixing of a treated fluid may be desirable to optimize solids flocculation formation.
- the level of shaking/mixing may depend on the type of coagulant used. For example, when using polymeric coagulants, gentle shaking or mixing is preferred to mix the polymer therein without affecting the polymers' efficacy at aiding flocculation.
- HYPERFLOC® AF 307 dewatered the fluid successfully.
- an analytical test of Sample 1 showed that the supernatant contains 1560 mg/L silicate, which represents most (if not all) of the silicate in the fluid, while the solids portion contains very little, if any at all.
- Aluminum chloride in combination with HYPERFLOC® AF 307 dewatered the silicate fluid successfully as well.
- An analytical test of Sample 5 showed that the supernatant contains only 160 mg/L silicate, indicating that the remainder of the silicate was flocculated with the solids.
- embodiments of the present disclosure for at least one of the following.
- reduction of drilling waste volume may be achieved by reducing the amount of water discharged with solids disposal.
- the dewatering may separate solids and fine particles from the liquid phase of drilling fluid, thereby leaving a clarified aqueous solution.
- embodiments of the present disclosure may allow for determination of whether it is desirable to remove silicate from the fluid, allowing for additional flexibility in the end-use of the collected aqueous fluid.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Mining & Mineral Resources (AREA)
- Geology (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Hydrology & Water Resources (AREA)
- Mechanical Engineering (AREA)
- Fluid Mechanics (AREA)
- Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Removal Of Specific Substances (AREA)
- Physical Water Treatments (AREA)
Abstract
Description
Claims
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EA201070662A EA017192B1 (en) | 2007-11-29 | 2008-11-19 | Method of drilling or completing a well |
US12/744,732 US20100300979A1 (en) | 2007-11-29 | 2008-11-19 | Dewatering of silicate wellbore fluids |
MX2010005828A MX2010005828A (en) | 2007-11-29 | 2008-11-19 | Dewatering of silicate wellbore fluids. |
BRPI0819840-3A BRPI0819840A2 (en) | 2007-11-29 | 2008-11-19 | Method of treating silicate wellbore fluids |
AU2008331621A AU2008331621B2 (en) | 2007-11-29 | 2008-11-19 | Dewatering of silicate wellbore fluids |
CA2706913A CA2706913A1 (en) | 2007-11-29 | 2008-11-19 | Dewatering of silicate wellbore fluids |
EP08857051.0A EP2229502B1 (en) | 2007-11-29 | 2008-11-19 | Dewatering of silicate wellbore fluids |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US99111207P | 2007-11-29 | 2007-11-29 | |
US60/991,112 | 2007-11-29 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2009073366A2 true WO2009073366A2 (en) | 2009-06-11 |
WO2009073366A3 WO2009073366A3 (en) | 2010-07-01 |
Family
ID=40718431
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2008/084025 WO2009073366A2 (en) | 2007-11-29 | 2008-11-19 | Dewatering of silicate wellbore fluids |
Country Status (9)
Country | Link |
---|---|
US (1) | US20100300979A1 (en) |
EP (1) | EP2229502B1 (en) |
AR (1) | AR069439A1 (en) |
AU (1) | AU2008331621B2 (en) |
BR (1) | BRPI0819840A2 (en) |
CA (1) | CA2706913A1 (en) |
EA (1) | EA017192B1 (en) |
MX (1) | MX2010005828A (en) |
WO (1) | WO2009073366A2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9802846B2 (en) * | 2013-06-21 | 2017-10-31 | Baker Hughes, A Ge Company, Llc | Treating and recylcing oilfield waste water |
US11459257B1 (en) * | 2017-05-12 | 2022-10-04 | Eco Environmental, LLC | Method of treating a liquid with nanobubbles |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2401924A (en) * | 1940-07-24 | 1946-06-11 | Permutit Co | Removal of silica from water |
US3433312A (en) * | 1967-06-01 | 1969-03-18 | Mobil Oil Corp | Process for recovering valuable components from drilling fluid |
US3723310A (en) * | 1969-10-07 | 1973-03-27 | Int Minerals & Chem Corp | Process for flocculating oil and clay containing slimes |
US3998788A (en) * | 1974-01-08 | 1976-12-21 | Armour Pharmaceutical Company | Aluminum-zirconium anti-perspirant systems with trace amounts of alkaline earth metals |
US3931356A (en) * | 1974-04-26 | 1976-01-06 | Monsanto Company | Continuous process for the preparation of ABS type polyblends |
US4069152A (en) * | 1976-04-26 | 1978-01-17 | Specken Gerald A | Clarification of clay containing water |
US4765913A (en) * | 1986-02-11 | 1988-08-23 | Union Oil Co. Of Calif. | Process for removing silica from silica-rich geothermal brine |
US5262064A (en) * | 1991-09-26 | 1993-11-16 | Florida Institute Of Phosphate Research | Dewatering method and agent |
US5422012A (en) * | 1994-08-19 | 1995-06-06 | Jrs Investments, Inc. | Technique for separating solids from drilling fluids |
US5766714A (en) * | 1996-01-30 | 1998-06-16 | Gold Eagle Co. | Oil resistant label system |
US5871648A (en) * | 1996-11-26 | 1999-02-16 | Environmental Chemistries, Inc. | Wastewater treatment process and apparatus for high flow impurity removal |
US5965027A (en) * | 1996-11-26 | 1999-10-12 | Microbar Incorporated | Process for removing silica from wastewater |
US6059977A (en) * | 1997-10-16 | 2000-05-09 | Grand Tank (International) Inc. | Method for separating solids from drilling fluids |
US6203711B1 (en) * | 1999-05-21 | 2001-03-20 | E. I. Du Pont De Nemours And Company | Method for treatment of substantially aqueous fluids derived from processing inorganic materials |
US6391195B1 (en) * | 2000-12-26 | 2002-05-21 | Kenneth R. Layton | Apparatus for cleaning clearwater drilling muds |
US6485651B1 (en) * | 2001-03-28 | 2002-11-26 | Ondeo Nalco Company | Quick inverting liquid flocculant |
CA2414321C (en) * | 2002-12-13 | 2004-11-09 | Donald Roy Smith | Shale bin/settling tank/centrifuge combination skid |
US20060293192A1 (en) * | 2005-06-22 | 2006-12-28 | Rutgers Organics | Lubricants for drilling fluids and methods for using the same |
-
2008
- 2008-11-19 AU AU2008331621A patent/AU2008331621B2/en not_active Ceased
- 2008-11-19 WO PCT/US2008/084025 patent/WO2009073366A2/en active Application Filing
- 2008-11-19 MX MX2010005828A patent/MX2010005828A/en not_active Application Discontinuation
- 2008-11-19 BR BRPI0819840-3A patent/BRPI0819840A2/en not_active IP Right Cessation
- 2008-11-19 CA CA2706913A patent/CA2706913A1/en not_active Abandoned
- 2008-11-19 EA EA201070662A patent/EA017192B1/en not_active IP Right Cessation
- 2008-11-19 EP EP08857051.0A patent/EP2229502B1/en not_active Not-in-force
- 2008-11-19 US US12/744,732 patent/US20100300979A1/en not_active Abandoned
- 2008-11-27 AR ARP080105165A patent/AR069439A1/en not_active Application Discontinuation
Non-Patent Citations (2)
Title |
---|
None |
See also references of EP2229502A4 |
Also Published As
Publication number | Publication date |
---|---|
EP2229502A2 (en) | 2010-09-22 |
EA017192B1 (en) | 2012-10-30 |
CA2706913A1 (en) | 2009-06-11 |
EP2229502A4 (en) | 2013-06-05 |
WO2009073366A3 (en) | 2010-07-01 |
AU2008331621B2 (en) | 2012-12-06 |
BRPI0819840A2 (en) | 2015-06-16 |
AR069439A1 (en) | 2010-01-20 |
EP2229502B1 (en) | 2019-06-26 |
AU2008331621A1 (en) | 2009-06-11 |
MX2010005828A (en) | 2010-07-01 |
US20100300979A1 (en) | 2010-12-02 |
EA201070662A1 (en) | 2010-12-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20110017677A1 (en) | Oil field water recycling system and method | |
US9518435B2 (en) | Drilling fluid processing | |
US20100059453A1 (en) | System and method for de-watering waste drilling fluids | |
CA2803904C (en) | Method for dispersing and aggregating components of mineral slurries and high-molecular weight multivalent anionic polymers for clay aggregation | |
EP1986965B1 (en) | Use of pvpp to remove contaminants from produced water of an oil or gas well | |
US20120168364A1 (en) | Oil field water recycling system and method | |
WO2005030652A1 (en) | Methods for the purification of contaminated waters | |
CA2689716A1 (en) | A coagulant for use of water purification and a water purifying method and a water purifying apparatus with applying the same | |
Syafalni et al. | Raw water treatment using bentonite-chitosan as a coagulant | |
MX2014000420A (en) | Injection flocculation and compression dewatering unit for solids control and management of drilling fluids and methods relating thereto. | |
CA2867496C (en) | Process and apparatus for treating drilling fluid | |
AU2008331621B2 (en) | Dewatering of silicate wellbore fluids | |
AU2013212579B2 (en) | Method for dispersing and aggregating components of mineral slurries | |
WO2019018370A2 (en) | Oil sands tailings treatment | |
CA2803025C (en) | Method for dispersing and aggregating components of mineral slurries and low molecular weight multivalent anionic polymers for mineral aggregation | |
Mohammed et al. | Treatment of Wastewater Associated With Crude Oil in Reservoirs | |
WO2012047210A1 (en) | Oil field water recycling system and method | |
Liu et al. | Application of PAC and flocculants for improving settling of solid particles in oilfield wastewater with high salinity and Ca2+ | |
WO2014178914A1 (en) | Formulations and methods for aggregating oil-wet solids in aqueous suspensions | |
JP2004008850A (en) | Treatment method of muddy water | |
JP2017047358A (en) | Effluent treatment method for bentonite based stable liquid, and organic coagulant used therefor | |
Schwoyer | Sludge Dewatering with Polyelectrolytes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08857051 Country of ref document: EP Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008331621 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2706913 Country of ref document: CA Ref document number: 12744732 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2010/005828 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2008331621 Country of ref document: AU Date of ref document: 20081119 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 201070662 Country of ref document: EA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008857051 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: PI0819840 Country of ref document: BR Kind code of ref document: A2 Effective date: 20100531 |