WO2009072641A1 - Liquid crystalline polyester, and molded article thereof - Google Patents

Liquid crystalline polyester, and molded article thereof Download PDF

Info

Publication number
WO2009072641A1
WO2009072641A1 PCT/JP2008/072220 JP2008072220W WO2009072641A1 WO 2009072641 A1 WO2009072641 A1 WO 2009072641A1 JP 2008072220 W JP2008072220 W JP 2008072220W WO 2009072641 A1 WO2009072641 A1 WO 2009072641A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
crystal polyester
temperature
resin composition
Prior art date
Application number
PCT/JP2008/072220
Other languages
French (fr)
Japanese (ja)
Inventor
Tomoya Hosoda
Tomoko Uehara
Satoshi Okamoto
Original Assignee
Sumitomo Chemical Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008090690A external-priority patent/JP2009155623A/en
Application filed by Sumitomo Chemical Company, Limited filed Critical Sumitomo Chemical Company, Limited
Priority to US12/745,264 priority Critical patent/US8337719B2/en
Priority to CN200880125982.XA priority patent/CN101932654B/en
Publication of WO2009072641A1 publication Critical patent/WO2009072641A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/002Methods
    • B29B7/007Methods for continuous mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/72Measuring, controlling or regulating
    • B29B7/726Measuring properties of mixture, e.g. temperature or density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B9/14Making granules characterised by structure or composition fibre-reinforced
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/185Acids containing aromatic rings containing two or more aromatic rings
    • C08G63/187Acids containing aromatic rings containing two or more aromatic rings containing condensed aromatic rings
    • C08G63/189Acids containing aromatic rings containing two or more aromatic rings containing condensed aromatic rings containing a naphthalene ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/40Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft
    • B29B7/42Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft with screw or helix
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers

Definitions

  • the present invention relates to a liquid crystal polyester resin composition containing liquid crystal polyester and a filler made of a high dielectric material, a method for producing the same, and a molded body using the liquid crystal polyester resin composition.
  • antenna base for antenna manufacture
  • a molded body is used.
  • liquid crystal polyester has attracted attention as a thermoplastic resin used in the manufacture of antenna substrates. Liquid crystal polyester has both high heat resistance and heat resistance and low water absorption, so that the durability of the antenna is good as well as the durability of the antenna.
  • the dielectric characteristics required for such an antenna substrate include a high relative dielectric constant (high dielectric property) for electromagnetic waves in a high frequency region and a low dielectric loss tangent. It is important. This is because a high dielectric antenna substrate does not significantly deteriorate the antenna characteristics even with a relatively small antenna, and an antenna gain increases with a low dielectric loss tangent antenna substrate. This is because there is a tendency to do so.
  • a high dielectric material is used as a filler (hereinafter referred to as
  • a method of obtaining an antenna substrate from a resin composition containing the high dielectric material filler and a liquid crystal polyester For example, in Japanese Patent Application Laid-Open No. 2 00 4-1 6 1 9 5 3, a composition containing 25 to 35% by volume of liquid crystal polyester and 65 to 75% by volume of ceramic powder is melt-mixed, Thereafter, a tablet for antenna parts that has been converted into a tablet at room temperature by a tableting machine is disclosed, and it is disclosed that a tablet for antenna parts having excellent shape retention can be obtained by using a wax component together during melt mixing.
  • a resin composition containing a liquid crystal polyester and a filler is prepared by melting and kneading a liquid crystal polyester and a filler in advance before molding the resin composition to obtain a molded body (hereinafter referred to as a pellet-like composition). It is generally practiced to obtain “composition pellets”.
  • a method for producing a composition pellet a liquid crystal polyester and a filler are melted and kneaded, and a molten liquid crystal polyester resin composition is extruded into a string shape to obtain a string composition (strand).
  • a manufacturing method is generally known in which the composition is cooled and solidified and cut to obtain a composition pellets (such a manufacturing method is called a strand method).
  • the composition pellets may not be stably obtained.
  • a production method for tableting with a tableting machine is employed. Such a manufacturing method is relatively complicated and mass production. Is unsuitable and is not suitable for industrial production.
  • the resin composition of the invention of Japanese Patent Application Laid-Open No. 2006-2331 18 is a resin composition capable of obtaining a molded article having excellent dielectric properties even though the filling amount of the high dielectric material filler is small, and the strand tends to be easily obtained. In the direction.
  • the compatibility with the strand method is not necessarily sufficient in order to obtain a composition pellets with industrial stability and good productivity.
  • one of the objects of the present invention is that a resin method using a liquid crystal polyester and a high dielectric material filler can be applied with a strand method suitable for industrial production, and the composition pellets can be stably used.
  • An object of the present invention is to provide a liquid crystal polyester resin composition that can be produced.
  • the present invention comprises a structural unit represented by the following formula ( ⁇ ), a structural unit represented by the formula (ii), and a structural unit represented by the formula (iii), 2, 6-naphthalene diyl group when the total of the divalent aromatic group represented by Ar 2 and the divalent aromatic group represented by Ar 3 is 100 mol%.
  • Liquid crystal polyester (A) 50 to 80% by volume with a melt starting temperature of at least 280 ° C and a melt tension measured at a temperature higher than the flow starting temperature of 1 g or more.
  • Filler made of high dielectric material (B) 20-50% by volume,
  • a liquid crystal polyester resin composition is provided.
  • consists of 2, 6-naphthalene diyl group, 1, 4 1-phenylene group, and 4, 4 ′ 1-bif; ⁇ : diene group
  • diene group
  • Ar 2 , A r 3 is independently a divalent group selected from the group consisting of 2,6-naphthalenediyl group, 1,4-phenylene group, 1,3-phenylene group, and 4,4′-biphenylene group. Represents an aromatic group.
  • a part of the hydrogen atoms bonded to the aromatic ring are a halogen atom, an alkyl group having 1 to 10 carbon atoms, or 6 to 6 carbon atoms. It may be substituted with 20 aryl groups.
  • liquid crystal polyester resin composition of the present invention can be used in various applications that require dielectric properties such as high dielectric properties and low dielectric loss tangents.
  • the present invention further provides a molded body using the liquid crystal polyester resin composition, and an antenna having the molded body and an electrode.
  • a composition pellet can be easily produced by a composition pellet production method such as a strand method, which is widely used in this technical field. Since this composition pellet has good operability, a molded product can be easily obtained by injection molding or the like.
  • the molded body using the liquid crystal polyester resin composition of the present invention is used in various applications where high dielectric properties and low dielectric loss tangents are required, particularly for antennas of information communication equipment to which high frequency electromagnetic waves are applied. Since it can be used suitably, it is very useful industrially.
  • the present invention provides a liquid crystal polyester resin composition containing 50 to 80% by volume of liquid crystal polyester (A) and 20 to 50% by volume of a filler (B) made of a high dielectric material.
  • the liquid crystalline polyester used in the present invention is a polyester that exhibits optical anisotropy when melted and can form an anisotropic melt at a temperature of 45 ° C. or lower. More specifically, the liquid crystalline polyester used in the present invention includes a structural unit represented by the following formula (i), a structural unit represented by the formula (ii), and a structural unit represented by the formula (iii). becomes a divalent aromatic group represented by Alpha eta, the total of divalent aromatic groups represented by divalent aromatic group and a r 3 represented by a r 2 (hereinafter, "total aromatic When the total of the group is “100 mol%”, the aromatic group contains at least 40 mol% of 2,6-naphthalenediyl group.
  • the liquid crystal polyester used in the present invention has a flow start temperature of The melt tension measured at 280 ° C or higher and higher than the flow start temperature is 1 g or higher.
  • is a divalent aromatic group selected from the group consisting of 2,6-naphthalenedyl group, 1,4-phenylene group and 4,4′-biphenylene group
  • Ar 2 , A r 3 is each independently a bivalent group selected from the group consisting of 2,6-naphthalenediyl group, 1,4-monophenylene group, 1.3-phenylene group, and 4,4'-biphenylene group. It is an aromatic group.
  • the divalent aromatic group represented by ⁇ , Ar 2 and Ar 3 may have a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms as a substituent. Good.
  • Such a liquid crystal polyester comprises a monomer having a 2,6-naphthalenediyl group and another monomer having an aromatic ring, in which the structural unit having a 2,6-naphthalenediyl group is 40
  • the raw material monomer can be selected and polymerized so as to be at least mol%.
  • a preferable liquid crystal polyester is a liquid crystal polyester in which 2,6-naphthalene diyl group is 50 mol% or more with respect to 100 mol% of total aromatic groups, and more preferably 2,6-naphthalene diyl group is 65 mol%. It is a liquid crystal polyester having a mol% of at least 70, and particularly preferably a liquid crystal polyester having 2,6 mononaphthalenedyl groups of 70 mol% or more.
  • the liquid crystal polyester containing more 2,6-naphthalenediyl groups as the aromatic group can be obtained by setting the melt tension to 1 g or more as will be described later. This makes it possible to produce the composition pellets stably.
  • the liquid crystal polyester containing more 2,6-naphthalenediyl groups also has the advantage that the resulting molded article can be further reduced in dielectric loss tangent.
  • the total aromatic group total is 100 mol%
  • the resulting molded article tends to have a large electrostatic tangent.
  • the total of the structural unit represented by the formula (i), the structural unit represented by the formula (ii) and the structural unit represented by the formula (iii) constituting the liquid crystalline polyester used in the present invention (hereinafter referred to as “the structural unit represented by the formula (i)”)
  • the total of structural units represented by (i) (hereinafter referred to as “structural units (i)”) is 30 to 80 mol%.
  • the total of structural units represented by (ii) (hereinafter referred to as “structural units (ii)”) is 10 to 35 mol%, and the structural units represented by (iii) (hereinafter “structural units”)
  • (iii) J) is preferably 10 to 35 mol%.
  • Liquid crystalline polyesters in which the molar ratio (copolymerization ratio) of the structural unit (i), structural unit (ii), and structural unit (iii) to the total of all structural units is in the above range should exhibit a high degree of liquid crystallinity. In addition to this, it can be melted at a practical temperature, and melt molding becomes easy, which is preferable.
  • the liquid crystalline polyester is preferably a wholly aromatic liquid crystalline polyester in that a higher degree of heat resistance is obtained.
  • the structural unit (i), the structural unit (ii) and the structural unit are preferred.
  • the molar ratio of the total of structural units (ii) to the total of all structural units is substantially equal to the molar ratio of the total of structural units (iii).
  • the molar ratio of the total of the structural units (i) to the total of the structural units is more preferably 40 to 70 mol%, and particularly preferably 45 to 65 mol%.
  • the molar ratio of the total of structural units (ii) and the total molar ratio of structural units (iii) with respect to the total of all structural units is more preferably 15 to 30 mol%, and 17.5 to 27. 5 mol% is particularly preferable.
  • the liquid crystal polyester Tell has the advantage that it can exhibit a higher degree of liquid crystallinity and can be melted at a more practical temperature, facilitating melt molding.
  • the structural unit (i) is a structural unit derived from an aromatic hydroxycarboxylic acid.
  • Examples of the monomer for deriving the structural unit U) include 2-hydroxy-16-naphthoic acid, p-hydroxybenzoic acid, and 4- (4-hydroxyphenyl) benzoic acid. Further, a part of the hydrogen atoms bonded to the benzene ring or naphthalene ring of these monomers are substituted with a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms. Monomers can also be used. Among them, a monomer for deriving a structural unit having a 2,6-naphthalenediyl group is 2-hydroxy 6-naphthoic acid.
  • the structural unit (i i) is a structural unit derived from an aromatic dicarboxylic acid.
  • the monomer for deriving the structural unit (ii) include 2,6-naphthalenedicarboxylic acid, terephthalic acid, isophthalic acid, and Bif I diluo 4,4'-dicarboxylic acid.
  • a monomer in which a part of hydrogen atoms bonded to the benzene ring or naphthalene ring of these monomers is substituted with a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms.
  • a monomer for deriving a structural unit having a 2,6 mononaphthalenediyl group is 2,6-naphthalenedicarboxylic acid.
  • the structural unit (iii) is a structural unit derived from an aromatic diol.
  • the monomer for deriving the structural unit (iii) include 2,6-naphthalenediol, hydrated quinone, resorcin, and 4,4′-dihydroxybiphenyl.
  • a monomer in which a part of hydrogen atoms bonded to the benzene ring or naphthalene ring of these monomers is substituted with a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms.
  • a monomer for deriving a structural unit having a 2,6-naphthalenediyl group is 2,6-naphthalenediol.
  • the structural unit (i), the structural unit (ii), or the structural unit (iii) may have any of the above substituents on the aromatic ring (benzene ring or naphthalene ring).
  • substituents for example, Fluorine atom, chlorine atom, bromine atom, iodine atom are mentioned.
  • alkyl group having 1 to 10 carbon atoms include methyl group, ethyl group, propyl group, butyl group, hexyl group, octyl group, decyl group, etc. These may be linear or branched, and may be alicyclic groups.
  • the aryl group include aryl groups having 6 to 20 carbon atoms represented by phenyl group, naphthyl group and the like.
  • the monomer that derives the structural unit (i), the structural unit (ii), or the structural unit (iii) may be converted into an ester-forming derivative in order to facilitate polymerization in the process of producing the polyester.
  • the ester-forming derivative means a compound having a group that promotes an ester formation reaction.
  • the carboxyl group is represented by an acid halide, an acid li, or the like. It is an ester-forming derivative that has been converted to water, and in the case of a monomer having a hydroxyl group, it is an ester-forming derivative in which the hydroxyl group has been converted to an ester using a lower carboxylic acid.
  • a known method may be adopted as a method for producing the liquid crystal polyester.
  • a preferred production method includes a method of producing a liquid crystal polyester using an ester-forming derivative obtained by converting a hydroxyl group in a monomer molecule into an ester using a lower carboxylic acid as the ester-forming derivative.
  • a production method using an ester-forming derivative obtained by converting (acylating) a hydroxyl group of an aromatic hydroxycarboxylic acid and an aromatic diol into an acyl group is preferable.
  • the acylation can usually be carried out by reacting a monomer having a hydroxyl group (aromatic hydroxycarboxylic acid and aromatic diol) with acetic anhydride.
  • the ester-forming derivative thus obtained can be easily produced into a polyester by polycondensation with an aromatic dicarboxylic acid.
  • the monomer that forms the structural unit (i), the structural unit (ii), and the structural unit (iii) can be derived from a monomer that can derive a structural unit having a 2,6-naphthalenediyl group.
  • the aromatic hydroxycarboxylic acid for deriving the structural unit (i) and the aromatic diol for deriving the structural unit (iii) are converted to ester-forming derivatives after being converted to ester-forming derivatives.
  • ii) is melt-polymerized with the aromatic dicarboxylic acid to form a relatively low molecular weight liquid crystal polyester (hereinafter sometimes referred to as “prepolymer”).
  • prepolymer liquid crystal polyester
  • this prepolymer is used as a powder, and this powder is heated for solid phase polymerization.
  • solid-phase polymerization is used in this manner, the polymerization proceeds more rapidly, and the liquid crystal polyester can be increased in molecular weight, so that the flow start temperature of the obtained liquid crystal polyester can be increased.
  • this solid phase polymerization is also effective for adjusting the melt tension of the liquid crystal polyester.
  • the prepolymer may be cooled and solidified and then pulverized by various known pulverization means.
  • the average particle size of the powder is preferably in the range of about 0.05 mm to about 3 mm, and more preferably in the range of about 0.05 mm to about 1.5 mm. If the particle diameter of the powder is in such a range, it is more preferable because the degree of polymerization of the aromatic liquid crystal polyester is promoted, and if it is in the range of about 0.1 mm to about 1 mm, the sintering between the particles is preferable. This is more preferable because it increases the degree of polymerization of the liquid crystal polyester without causing a ring.
  • Suitable conditions for the heating conditions in the solid phase polymerization are exemplified below.
  • the temperature is raised from room temperature to a temperature that is 20 ° C lower than the flow start temperature of the prepolymer.
  • the temperature raising time at this time is not limited, it is preferably within 1 hour from the viewpoint of shortening the reaction time.
  • the temperature is raised from a temperature 20 ° C. or more lower than the flow start temperature of the prepolymer to a temperature of 28 ° C. or more.
  • the temperature increase is preferably performed at a temperature increase rate of 0.3 ° C. or less, and a temperature increase rate of about 0.1 to 0.15 ° C. is more preferable.
  • the temperature rising rate is 0.3 ° C. or less, sintering between powder particles hardly occurs, and therefore, a liquid crystal polyester having a higher degree of polymerization can be produced relatively easily.
  • the reaction may be carried out at a temperature of 28 ° C. or higher, preferably 30 ° C. to 400 ° C. for 30 minutes or longer. preferable.
  • the reaction is preferably performed at a reaction temperature of 280 to 350 ° C for 30 minutes to 30 hours, and more preferably at a reaction temperature of 285 to 340 ° C for 30 minutes to 20 hours.
  • Such heating conditions can be optimized as appropriate depending on the type of monomer used in the production of the liquid crystalline polyester.
  • the flow start temperature of the liquid crystal polyester can be set to 280 ° C. or higher in a relatively short time.
  • a liquid crystal polyester having such a flow start temperature is obtained according to the present invention.
  • the flow start temperature is a capillary rheometer equipped with a die with an inner diameter of 1 mm and a length of 1 Omm, and a heating rate of 4 ° CZ under a load of 9.8 MPa (100 kg / cm 2 ).
  • the flow start temperature represents the molecular weight of a liquid crystal polyester known in the art Index (see Naoyuki Koide, “Liquid Crystalline Polymer Synthesis / Molding-Application 1”, pages 95-105, CMC, published on June 5, 987.
  • the flow start temperature is As a device to measure, a flow characteristic evaluation device “Flow Tester CFT-500DJ” manufactured by Shimadzu Corporation is used.)
  • an electrode forming process is used.
  • the flow starting temperature of the liquid crystalline polyester is more preferably 290 ° C. or higher, and further preferably 295 ° C. or higher, while the antenna substrate is molded in a practical temperature range. From this point of view, the flow start temperature is preferably 380 ° C or lower, more preferably 350 ° C or lower.
  • the shape of the liquid crystal polyester used as the sample to be measured is not limited to powder, but the liquid crystal polyester may be formed into a pellet shape by a known method.
  • the liquid crystal polyester may be made into a pellet as a sample to be measured for the flow start temperature measurement.
  • the liquid crystal polyester having such a pellet shape can also be used for the melt tension measurement described later.
  • the production method will be briefly described.
  • the extruder to be used include, for example, a single-screw or multi-screw extruder, and a twin-screw extruder, a Banbury type kneader, and a roll-type kneader are preferable.
  • Pellets are obtained by melting liquid crystal polyester in the temperature range from 10 ° C lower than T p to 1 oo ° c higher than T p, starting from its flow start temperature T p [° C]. be able to.
  • the liquid crystalline polyester used in the present invention has a melt tension of 1 g or more measured at a temperature higher than the flow start temperature.
  • a preferred liquid crystal polyester is a liquid crystal polyester having a melt melt of 1.5 g or more, more preferably 2 g or more of a liquid crystal polyester.
  • a liquid crystal polyester having a melt tension of 1 g or more measured at a temperature about 25 ° C. higher than the flow start temperature is a liquid crystal polyester resin composition using a relatively large amount of a highly-inductive material filler as described later.
  • the composition pellets tend to be manufactured stably.
  • the melt tension here refers to a capillograph filled with liquid crystal polyester (pelletized liquid crystal polyester), a cylinder barrel diameter of 1 mm 0, a piston extrusion speed of 5. O mm, and a variable speed winder. It means the tension (g) when the sample is taken up in a filament shape while automatically accelerating and breaks, and several points of melt tension are measured at a temperature higher than the flow start temperature of the liquid crystalline polyester used for measurement. If the melt tension is 1 g or more at one point, it is defined as “liquid crystalline polyester having a melt tension of 1 g or more measured at a temperature higher than the flow start temperature” in the present invention. To do.
  • the liquid crystal polyester may be manufactured by combining the flow start temperatures of 280 ° C or higher.
  • structural unit (i) structural unit derived from p-hydroxybenzoic acid
  • structural unit (ii) structural unit derived from terephthalic acid and Z or isophthalic acid
  • structural unit (iii) As an example, a method for improving the amount of introduction of a structural unit derived from an aromatic diol selected from hydride quinone and resorcin is cited.
  • the amount of structural units having low flexibility is preferred, so that as structural unit (ii), structural units derived from terephthalic acid,
  • the structural unit (iii) is preferably a structural unit derived from hydroquinone.
  • the aromatic ring in these structural units may have a substituent, but in terms of introducing a structural unit having a small molecular volume, the structural unit having no substituent is introduced. Input is preferred.
  • the liquid crystalline polyester used in the present invention needs to contain 2,6-naphthalenediyl groups in an amount of 40 mol% or more based on the total aromatic groups, and has a structure having 2,6-naphthalenediyl groups. It is necessary to control the unit and the structural unit having a monocyclic aromatic group.
  • the structural unit (i-a) derived from 2-hydroxy-16-naphthoic acid is 40 to 75 as the structural unit (i).
  • the total of the structural unit derived from 2,6-naphthalenedicarboxylic acid (ii-a) and the structural unit derived from terephthalic acid (ii 1 b) is 12.5.
  • structural unit (iii) has 12.5 to 30 mol 0 6 structural unit (iii-a) derived from hydroquinone [where structural unit (i-a), (ii a), (ii-1b) and (iii-1a) are 100 mol%], and in structural unit (ii), the molar ratio of (ii-1a) to (ii-1b) is , (Ii—a) / [(ii—a) + (ii-b) ⁇ ⁇ 0.5.
  • More preferred liquid crystalline polyesters are those in which ( ⁇ — a) is 40 to 60 mol% with respect to the sum of the structural units (i 1 a), (i ia), (i i- b) and (i ii— a), (Ii-a) force ⁇ 1 4.5-29. 5 mol%, the sum of (ii-a) and (ii-b) is 15-30 mol%, (iii-a) is 15-5 And (ii) in the structural unit, the molar ratio of the structural unit between (ii—a) and (ii-1b) is (ii—a) /
  • melt polymerization and solid phase polymerization are performed, and the flow start temperature is set to 280 ° C or higher, preferably 295 ° C or higher. This makes it possible to produce liquid crystal polyester that can achieve a tension of 1 g or more.
  • the filler (B) made of a high dielectric material used in the present invention is a known filler applied to a high dielectric composition.
  • a filler as exemplified in JP-A-2004-307607 that is, a titanium dioxide system, a barium titanate system, a barium titanate zirconate system, a titanate stopper Nitium, calcium titanate, bismuth titanate, magnesium titanate, barium neodymium titanate, barium tin titanate, magnesium barium titanate, barium magnesium tantalate, lead titanate , Lead zirconate, lead zirconate titanate, lead niobate, lead magnesium niobate, lead nickel niobate, lead tungstate, calcium tungstate and lead magnesium tungstate Fillers made of high dielectric materials are applicable.
  • titanium ceramic filler is preferable from the viewpoint of obtaining a molded body having a high dielectric constant.
  • the “filler” is a filler made of ceramics having titanium as a constituent element component, and specific examples of the ceramics include titanium oxides and metal titanates.
  • the metal titanate refers to a metal titanate selected from a group consisting of barium, strontium, bismuth, lanthanum, neodymium, samarium, aluminum, calcium and magnesium, or a plurality of metals selected from such a group. There may be mentioned titanates formed by solid solution.
  • the titanium-based ceramic filler used in the present invention mainly contains such titanium-based ceramics, and does not exclude unintentionally contained impurities, and has been subjected to a surface treatment as described later. May be.
  • These high dielectric material fillers may be used in combination of two or more. These high dielectric material fillers may be surface-treated with a surface treatment agent such as a titanate coupling agent, an aluminum coupling agent, or a silane coupling agent.
  • a surface treatment agent such as a titanate coupling agent, an aluminum coupling agent, or a silane coupling agent.
  • the titanium-based ceramics exemplified above can be produced by known means.
  • a metal carbonate selected from the group consisting of barium, strontium, bismuth, lanthanum, neodymium, aluminum, calcium and magnesium, and titanium oxide are mixed and baked, then crushed and crushed as necessary
  • a titanium-based ceramic filler can be manufactured by performing operations such as classification.
  • a titanium-based ceramic filler that can be easily obtained from the market may be used.
  • a filler made of T i 0 2 or Ba T i 0 3 is preferable.
  • a filler made of B a T i 0 3 is ⁇ ⁇ ⁇ ⁇ ⁇ -1 ”manufactured by Fuji Titanium Industry Co., Ltd. wear.
  • a filler consisting of T i 0 2 “CR— 6” manufactured by Ishihara Sangyo Co., Ltd.
  • the titanium-based ceramics may be either single crystal or polycrystalline, and the crystal form is not limited.
  • the shape of the high dielectric material filler is not limited, and may be any of fine powder, fiber, and plate.
  • the liquid crystal polyester resin composition using the filler that can be well dispersed in the heated melt has a high dielectric material filler in the molded product when the molded product is obtained by molding this resin composition. It exists almost uniformly and tends to exhibit good properties related to the filler.
  • the titanium ceramic filler is preferably finely powdered.
  • the fine powdery filler is more preferably an average particle size of 0.01 to 100 ⁇ m, and further preferably 0.1 to 20 / m. Such an average particle diameter is obtained by external observation with an electron microscope when the average particle diameter is 2 O im or less, and when the average particle diameter exceeds 20 m, a laser single diffraction light scattering method is used. Is required.
  • the average particle size of the titanium ceramic filler is 0.23 to 5 jum, and a fine particle size of 0.25 to 1.5 m. More preferably, it is in the form of powder, and more preferably in the form of fine powder of 0.26 to 0.30 jUm. From the viewpoint of improving the mechanical strength such as bending strength, it is preferable to use a fibrous titanium ceramic filler.
  • the number average fiber length is preferably more than 0.5 jum and not more than 1 O im, and the number average fiber diameter is not less than 0.1 / m and not more than 1 jum, Aspect ratio (Number average fiber length Z Number average fiber diameter) More preferably, it is in the form of 2 or more, the number average fiber length is 1 jum or more and 10 m or less, and the number average fiber diameter is 0.1. It is more preferably 0.5 / m or less and a fibrous form with an aspect ratio of 3 or more.
  • Such number-average fiber length and number-average fiber diameter are determined by appearance observation with a scanning electron microscope (SEM).
  • the titanium-based ceramic fillers that can be easily obtained from the above-exemplified market are classified according to their shapes.
  • the fine powdered titanium-based ceramic fillers are “HP BT-1 J”, “CR-60”, “ “CR-58”, “CR-97J”, “SR-1 J” are exemplified, and “Taipaque PF R404” is exemplified as the fibrous titanium ceramic filler.
  • the liquid crystal polyester resin composition of the present invention may contain an additive such as a reinforcing agent depending on necessary properties as long as the object of the present invention is not significantly impaired.
  • additives include fibrous reinforcing agents such as glass fiber, silica alumina fiber, alumina fiber, and carbon fiber; acicular reinforcing agents such as aluminum borate whisker and titanic acid re-wiss whisker; glass Inorganic fillers such as beads, talc, my strength, graph eye candy, wollastonite, dolomite candy; mold release improvers such as fluororesins and metal stones; colorants such as dyes and pigments; antioxidants; thermal stability Agents; ultraviolet absorbers; antistatic agents; surfactants and the like. Two or more of these additives may be used in combination.
  • thermoplastic resins other than liquid crystal polyester for example, polyamide, crystalline polyester, polyethylene sulfide, polyether ketone, polycarbonate, polyphenylene ether and its modified products, polysulfone, Ethersulfone, polyetherimide, etc.
  • thermosetting resins for example, phenol
  • the liquid crystal polyester resin composition used in the present invention is obtained by mixing the liquid crystal polyester (A), the high dielectric material filler (B), and other components such as additives used as necessary.
  • the content ratio of the liquid crystal polyester (A) and the high dielectric material filler (B) is such that the dielectric properties of the high dielectric material filler used are sufficiently expressed, and the melt processability is good. It is determined in consideration of such balance.
  • the high dielectric material filler is preferably 20 to 50% by volume with respect to 100% by volume of the total amount of liquid crystal polyester and high dielectric material filler to be blended. More preferably, the content ratio is 2 2 to 4 5% by volume.
  • the blending means is not particularly limited as long as each raw material component can be melt-kneaded.
  • liquid crystal polyester (A) and high dielectric material filler (B) a method of supplying other components separately added to the melt mixer as needed, these raw material components in a mortar, Henschel mixer And a method of premixing using a ball mill, a ribbon blender, etc., and then feeding to a melt mixer.
  • melt kneading thermo melting
  • the liquid crystal polyester resin composition forms a heated melt.
  • the temperature condition in the melt-kneading can be appropriately optimized based on the flow start temperature T p [° C] of the liquid crystal polyester (A) used.
  • the temperature range is from 10 ° C below T p to 100 ° C above T p, more preferably from 10 ° C below T p to 70 ° C below T p
  • the temperature range is a high temperature, and more preferably, the temperature range is 10 ° C lower than Tp to 50 ° C higher than Tp. If two or more types of liquid crystalline polyester (A) are used, for the mixture of two or more liquid crystal polyesters, the flow start temperature is obtained by the method described above, and the flow start temperature may be used as a base point.
  • the heated melt of the liquid crystalline polyester resin composition obtained by melt-kneading is extruded into a string shape by, for example, a single-screw or multi-screw extruder, preferably a twin-screw extruder, a Banbury set kneader, a roll kneader or the like.
  • the string-like composition (strand) is cooled and solidified, and when it is cut, it can be added to the composition pellets by a series of operations.
  • the Strand method is advantageous in terms of better productivity.
  • the method for preparing the composition pellets using a single screw or twin screw extruder facilitates operability because it can continuously perform from melt-kneading to pelletizing.
  • the pellet method is a known pellet manufacturing means represented by the hot cut method. Can be manufactured stably and with high productivity.
  • the shape of the composition pellets obtained as described above may be cylindrical or prismatic.
  • the cross-sectional shape may be any of a circle, a substantially circle, an ellipse, and a star. In general, it is better to use a columnar composition, Perez®. This cross-sectional shape can be appropriately optimized depending on the shape of the extrusion port of the extruder.
  • the length of the composition pellets is appropriately selected according to the molding method to be described later, but it is preferably 0.1 to 1 O mm on average, and 1 to 5 mm long. More preferable.
  • the ratio of the diameter Z length of the pellets is preferably in the range of 0.1 to 10, more preferably in the range of 0.2 to 3, and particularly preferably in the range of 0.3 to 1.
  • the pellet-like liquid crystal polyester resin composition thus obtained can be applied to various conventional molding methods.
  • the molding method for example, melt molding such as injection molding or press molding is preferable, and injection molding is particularly preferable.
  • injection molding Specific examples include general injection molding, injection compression molding, two-color molding, and sandwich molding. Among these, general injection molding and injection compression molding are preferable.
  • the liquid crystal polyester resin composition of the present invention can be obtained as a composition pellets having excellent operability, so that it can be easily supplied continuously to a molding machine. It is also good in terms of storage.
  • the molded product obtained by using the liquid crystalline polyester resin composition of the present invention is a test method of ASTM D790, although it is relatively filled with a high dielectric material filler.
  • the measured bending strength is 1 OOMPa or more, and it becomes possible to obtain a molded article with extremely high mechanical strength.
  • the molded product obtained using the liquid crystalline polyester resin composition of the present invention has a measured impact strength according to the test method of ASTM D256 (no notch) even though the high dielectric material filler is filled relatively high. However, it is possible to obtain a molded article having an extremely high impact strength.
  • the liquid crystalline polyester (A) used in the present invention contains a specific amount of 2.6-naphthalenediyl group and has a flow start temperature of 280 ° C. or higher and a temperature higher than the flow start temperature. ⁇ The tension is 1 g or more, so it has excellent heat resistance and mechanical strength.
  • the liquid crystal polyester resin composition of the present invention comprises a high dielectric material filler by molding a molded body as a composition pellets
  • the molded product obtained using the resin composition of the present invention exhibits a sufficient dielectric effect, which is related to a high dielectric material filler, particularly a titanium ceramic filler, and has a measurement temperature of 23 ° C. and a frequency of 1 it is also possible to dielectric constant in GH Z expresses six or more.
  • the high-dielectric material filler is substantially uniformly present in the molded body, and the dielectric characteristics partially vary in the molded body. Such inconvenience can be avoided very well.
  • a mold having a desired shape and size can be obtained by appropriately optimizing the mold and the like.
  • the molded body has excellent dielectric properties and high mechanical strength, and further retains the high degree of heat resistance of liquid crystalline polyester, so it is a member for manufacturing antennas, especially for antennas. »Used suitably for the body.
  • the antenna substrate can be manufactured by etching or the like as necessary to form electrodes (radiation electrode, ground electrode).
  • electrodes radiation electrode, ground electrode.
  • known methods such as metal plating, sputtering, ion plating, vacuum evaporation, and soldering are employed.
  • the metal foil processed into the desired electrode shape may be bonded or pressure-bonded with an adhesive or the like. After the metal foil is bonded or pressure-bonded to the surface of the molded body in advance, the desired shape is obtained. A metal foil bonded or pressed may be patterned.
  • the antenna substrate Since the antenna substrate thus obtained has extremely excellent dielectric characteristics and mechanical strength, the antenna substrate is easier to miniaturize than conventional ones.
  • wireless LAN such as Bluetooth
  • mobile phone's PHS or mopile equipment It is particularly suitable for use as an antenna for GPS (Global Positioning System), ETC (Electric Rick! ⁇ One Collection System), and satellite communications.
  • GPS Global Positioning System
  • ETC Electronic Rick! ⁇ One Collection System
  • satellite communications satellite communications.
  • the antenna obtained using the liquid crystal polyester resin composition of the present invention is excellent in durability against the external environment due to high mechanical strength, high heat resistance, etc., and thus can be suitably used as an antenna for outdoor installation. It is.
  • due to the effect of miniaturization due to its excellent dielectric properties due to its excellent dielectric properties, it is extremely excellent as an antenna for automobiles or antennas for portable devices.
  • Capillograph 1 B type manufactured by Toyo Seiki Seisakusho
  • cylinder barrel diameter 1 mm0
  • piston extrusion speed was 5.
  • OmmZ variable speed The sample was taken up into a thread and the tension (g) when it was broken was measured.
  • the cylinder temperature was 350 using an injection molding machine (manufactured by Nissei Plastic Industry Co., Ltd., PS40E5AS E type).
  • a test piece (sample) having a length of 1 2 7 mm, a width of 1 2.7 mm, and a thickness of 6.4 mm was formed at a mold temperature of 1 ° C. and a mold temperature of 30 ° C. Then, according to the test method of ASTMD790, the bending strength of these samples was measured.
  • the cylinder temperature is 350 ° C using an injection molding machine (manufactured by Nissei Plastic Industry Co., Ltd., PS40E5ASE type).
  • the temperature was raised from 145 ° C. to 3 10 ° C. over 3 hours and 30 minutes while distilling off distilling by-product acetic acid and unreacted acetic anhydride.
  • a liquid crystal polyester was obtained by incubating at the same temperature for 3 hours.
  • the obtained liquid crystal polyester was cooled to room temperature and pulverized by a pulverizer to obtain a liquid crystal polyester powder (prepolymer 1) having a particle diameter of about 0.1 to 1 mm.
  • the flow initiation temperature of this prepolymer 1 was measured using a flow tester and found to be 267 ° C.
  • Prepolymer 1 obtained in Synthesis Example 1 was heated from 25 ° C to 250 ° C over 1 hour, then heated from the same temperature to 293 ° C over 5 hours, and then at the same temperature for 5 hours The mixture was kept warm and subjected to solid phase polymerization. After solid phase polymerization, the liquid crystal polyester was obtained in the form of powder when cooled. This liquid crystal polyester is designated as L C P 1. The flow initiation temperature of L CP 1 was measured using a flow tester and found to be 317 ° C. Synthesis example 3
  • the prepolymer 1 obtained in Synthesis Example 1 was heated from 25 ° C to 250 ° C over 1 hour, then heated from the same temperature to 310 ° C over 10 hours, and then at the same temperature for 5 hours. The mixture was kept warm and subjected to solid phase polymerization. Upon cooling after solid phase polymerization, liquid crystal polyester was obtained in powder form. This liquid crystal polyester is designated as LCP 2.
  • LC obtained When the flow start temperature was measured for P 2 using a flow tester, 33
  • LCP 1 and LCP 2 obtained in Synthesis Examples 1 to 3 were obtained by calculating the copolymerization mole fraction from the molar ratio of the monomer used.
  • the temperature was raised from 145 ° C. to 3 10 ° C. over 3 hours and 30 minutes while distilling off distilling by-product acetic acid and unreacted acetic anhydride.
  • a liquid crystalline polyester was obtained by incubating at the same temperature for 2 hours.
  • the obtained liquid crystalline polyester is cooled to room temperature and pulverized by a pulverizer to obtain a liquid crystalline polyester powder (prebolimer 2) having a particle size of about 0.1 to 1 mm using a flow tester.
  • the flow starting temperature was measured and found to be 273 ° C.
  • the resulting prepolymer 2 was heated from 25 ° C to 250 ° C over 1 hour, then heated from the same temperature to 300 ° C over 10 hours, and then maintained at the same temperature for 12 hours. Solid state polymerization was carried out by heating. When cooled after solid phase polymerization, liquid crystalline polyester was obtained in powder form. This liquid crystal polyester is designated as LCP 3.
  • the flow initiation temperature of L CP 3 measured using a flow tester was 324 ° C.
  • Synthesis example 5 The temperature of Prevolima 1 obtained in the same manner as in Synthesis Example 4 was raised from 25 ° C to 250 ° C over 1 hour, then from 325 ° C to 325 ° C over 10 hours, and then Solid-state polymerization was carried out at the same temperature for 12 hours. Upon cooling after solid phase polymerization, liquid crystal polyester was obtained in powder form. This liquid crystal polyester is designated as LCP 4. The flow initiation temperature of LCP4 was measured using a flow tester and found to be 34 9 ° C.
  • LCP 3 and LCP4 obtained in Synthesis Examples 4 to 5 are based on the molar ratio of the monomers used, and the copolymerization mole fraction is structural unit (i) : structural unit (ii): structural unit
  • the ratio of (iii) is 52.5 mol%: 23.75 mol%: 23.75 mol% This is expressed in terms of the content ratio of 2,6-naphthalenediyl group to the total of all aromatic groups. 3 mol%.
  • the flow starting temperature of this Prebomer 3 was measured using a flow tester and found to be 257 ° C.
  • Prebomer 3 was heated from 25 ° C to 250 ° C over 1 hour, then heated from the same temperature to 285 ° C over 5 hours, and then kept at that temperature for 3 hours to solidify. Phase polymerized. When cooled after solid state polymerization, liquid crystalline polyester is obtained in powder form. It was. This liquid crystal polyester is designated as LCP 5.
  • the flow initiation temperature of LCP 5 measured using a flow tester was 327 ° C.
  • Prebomer 3 obtained in the same manner as in Synthesis Example 6 was heated from 25 ° C to 250 ° C over 1 hour, then heated from the same temperature to 290 ° C over 5 hours, and then at the same temperature. Incubated for 3 hours for solid phase polymerization. Upon cooling after solid phase polymerization, liquid crystal polyester was obtained in powder form. This liquid crystal polyester is designated as LCP 6.
  • the flow initiation temperature of LCP 6 was measured using a flow tester and found to be 336 ° C.
  • LCP 5 and LCP 6 obtained in Synthesis Examples 6 to 7 can be obtained by calculating the copolymerization mole fraction from the molar ratio of the monomers used.
  • Structural unit (i): Structural unit (ii): Structural unit ( The ratio of iii) is 60 mol%: 20 mol%: 20 mol%. Since the monomer used here does not use a monomer having a 2,6-naphthalenediyl group, the content ratio of the 2,6-naphthalenediyl group to the total aromatic groups is 0 mol%.
  • Prebolimer 1 obtained in Synthesis Example 1 when the measurement temperature was 300 ° C. or less, no land could be formed. In addition, when the measurement temperature was 310 ° C or higher, the resin liquefied rather than formed a strand and melt tension could not be measured. Melt tension measurement was attempted even at a measurement temperature of 300 to 310 ° C, but the melt tension could not be calculated because the obtained strand was easily broken.
  • LCP 1 the melt tension was 1. Og or more at the measurement temperatures of 310 ° C, 320 ° C and 330 ° C.
  • main belt tension was measured at a measurement temperature of 330 ⁇ 360 ° C is was both 1.
  • LCP3 and LCP4 had a melt tension of less than 1. O g at a measurement temperature of 360 ° C or lower, and the melt tension could not be measured in the temperature range higher than that.
  • LCP 5 and LCP 6 had a melt tension of 1.0 g or more at a measurement temperature of 350 ° C.
  • a filler HPBT-1 manufactured by Fuji Titanium Industry Co., Ltd.
  • barium titanate Ba T i 0 3
  • 2 ratio volume ratio
  • the strand can be obtained
  • the number of strand breaks between the starting point and the ending point with the starting point when 0.5 kg of mixed powder is used and the end point when using 3 O kg of mixed powder. By counting (number of strand breaks), the ease of obtaining a strand was determined. The results are shown in Table 2. In this example, no strand break was observed, and it was found that a strand could be stably obtained (number of strand breaks: 0). Examples 2-3
  • Example 2 Using the same high dielectric material filler as that used in LCP 1 obtained in Synthesis Example 2 and Example 1, using the same ratio as shown in Table 2, the same experiment as in Example 1 was performed to break the strand. The number of times was calculated. The results are shown in Table 2. In Example 2, strand breakage was not observed, and it was found that strands were stably obtained (number of strand breaks: 0). On the other hand, in Example 3, a slight strand breakage (strand breakage number: 3 times) was recognized, but there was no problem in practical use.
  • Example 4 Example 4
  • Example 2 Using the same high dielectric material filler as that used in LCP 2 obtained in Synthesis Example 3 and Example 1, and using the proportions shown in Table 2, the same experiment as in Example 1 was performed to break the strand. The number of times was calculated. The results are shown in Table 2. Also in this example, strand breakage was not recognized, and it was found that strands were stably obtained (number of strand breaks: 0).
  • a filler made of titanium oxide (T i 0 2 ) (CR- 60, manufactured by Ishihara Sangyo Co., Ltd., average particle size 0.2 1 ju m) was used.
  • the number of strand breaks was determined by performing the same experiment as in Example 1 except that 1 and the proportions shown in Table 2 were blended. The results are shown in Table 2. Also in this example, no strand break was observed, and it was found that strands could be stably obtained (number of strand breaks: 0).
  • a filler (CR-97 manufactured by Ishihara Sangyo Co., Ltd., average particle size of 0.25 jum) made of titanium oxide ( ⁇ 0 2 ) was used, and LCP 1 obtained in Synthesis Example 2 was used. Except for blending at the ratio shown in Table 2, the same experiment as in Example 1 was performed to determine the number of strand breaks. The results are shown in Table 2. Also in this example, no strand break was observed, and it was found that strands could be stably obtained (number of strand breaks: 0).
  • a filler made of titanium oxide (T i 0 2 ) (SR-1 manufactured by Kayaku Co., Ltd., average particle size 0.26 jum) was used, and L CP 1 obtained in Synthesis Example 2 Except for blending in the proportions shown in Table 2, the same experiment as in Example 1 was performed to determine the number of times the land was cut. The results are shown in Table 2. Also in this example, no strand break was observed, and it was found that a strand could be stably obtained (number of strand breaks: 0).
  • Examples 9 to 1 1 As a high dielectric material filler, a fibrous filler made of titanium oxide (T i 0 2 )
  • LCP 1 obtained in Synthesis Example 2
  • Table 3 The same experiment as in Example 1 was performed to determine the number of strand breaks. The results are shown in Table 3. Also in this example, a slight strand breakage (strand breakage number: 2) was recognized, but there was no problem in practical use. Table 3
  • Prebolimer 1 obtained in Synthesis Example 1 and the same high dielectric material filler used in Example 1 Prebomer 1 is blended to 73% by volume and Filler to 27% by volume ( A total of 4. O kg) and a twin screw extruder (Ikegai Iron Works Co., Ltd. “PCM-30”) tried to pelletize by the strand method with a melting temperature of 295 ° C. could not.
  • PCM-30 twin screw extruder
  • LCP 5 obtained in Synthesis Example 6 and the same high dielectric material filler used in Example 5 were blended in the proportions shown in Table 3 (mixed powder total 4. O kg), twin screw extruder (Ikegai Iron Works Co., Ltd., rpCM-30J) was granulated by the restrand method at a granulation temperature of 340 ° C, causing many strand breaks (strand breaks: 40 times or more). The number of strand breaks was counted up to 40 times, and no more counting was performed.
  • LCP 5 obtained in Synthesis Example 6 and the same high-dielectric material filler used in Example 6 were blended in the proportions shown in Table 3 (mixed powder total 4. O kg), twin screw extruder (Ikegai Iron Works Co., Ltd. “PCM-30”) was granulated by the restructuring method at a granulation temperature of 340 ° C, resulting in frequent strand breaks (strand breaks: 40 times or more). The number of strand breaks was counted up to 40 times, and no more counting was performed.
  • composition pellets obtained in Examples 1 to 3 and Examples 5 to 8 were dried at 120 ° C. for 3 hours, and then injected into an injection molding machine (Nisshin Resin Industry Co., Ltd. 540-5 5 £. JIS K71 1 31 (1) dumbbell (thickness 1.2 mm) sample was molded at a cylinder temperature of 350 ° C and a mold temperature of 1300 ° C. The obtained sample was immersed for 60 seconds in ⁇ 160 solder (60% tin, 40% lead) at 2600 °. After that, the sample was pulled up and checked for foaming and swelling. The results are shown in Table 5. In addition, the composition pellets obtained in Examples 1 to 3 and Examples 5 to 8 were dried at 120 ° C.
  • composition pellets obtained in Examples 1 to 3 and Examples 5 to 8 were dried at 120 ° C. for 3 hours, and then injection molding machine (PS40E5A SE manufactured by Nissin Plastic Industry Co., Ltd.) Mold) at a cylinder temperature of 350 ° C and a mold temperature of 1 30 ° C.
  • a test piece (dielectric property measurement sample) having a thickness of 64 mm, a width of 64 mm, and a thickness of 1 mm was produced.
  • the dielectric properties (dielectric constant, dielectric loss tangent) of these samples at 1 GHz (measurement temperature 23 ° C) were evaluated using an HP impedance analyzer. The results are shown in Table 5.
  • Comparative Example 6 the strands could not be stably drawn. Therefore, the composition extruded from the twin screw extruder was pulverized with a pulverizer to obtain a particulate composition of about 3 mm, and this particulate composition was used. This was the pellet of Comparative Example 6.
  • the presence or absence of foaming by solder, bending strength, and dielectric properties were measured. The results are shown in Table 6.
  • Comparative Example 7 the strand could not be stably drawn. Therefore, the composition extruded from the twin-screw extruder was pulverized with a pulverizer to obtain a particulate composition of about 3 mm. Using this particulate composition, This was designated as Perezka of Comparative Example 7. In the same experiment as in Examples 13 to 19, the presence or absence of foaming by solder, bending strength, and dielectric properties were measured. The results are shown in Table 6.
  • Example 13 The same experiment as in Example 13 was performed, except that the composition pellets obtained in Example 1 were replaced with the composition pellets obtained in Examples 9 to 12. Solder foam tests, flexural strength and dielectric properties (dielectric constant, dielectric loss tangent) were determined for the compacts. The results are shown in Table 7.
  • composition pellets obtained in Examples 5 to 9 were dried at 120 ° C. for 3 hours, and then subjected to a cylinder temperature of 350 ° C. using a injection molding machine (PS40E5ASE manufactured by Nissin Plastic Industry Co., Ltd.). After molding at a mold temperature of 1300C, a molded product with a length of 127mm, a width of 12.7mm, and a thickness of 6.4mm was prepared (a sample for measuring bending strength). This molded product was cut to a length of 64 mm, a width of 12.7 mm, and a thickness of 6.4 mm, and used as a test piece (impact strength measurement sample). The impact strength of these samples (without notches) was measured according to the test method of AS TMD 256. The results are shown in Table 8.
  • composition pellets obtained in Comparative Examples 6 to 7 were dried at 120 ° C for 3 hours, and then the cylinder temperature was 350 ° C using a injection molding machine (PS40 E5ASE type, manufactured by Nissin Plastic Industry Co., Ltd.). After molding at a mold temperature of 1300C, a molded product with a length of 1 27mm, a width of 12.7mm, and a thickness of 6.4mm was prepared (sample for measuring bending strength). This molded product is 64mm long and 1 width? 7 mm. Thickness was cut to 6.4 mm to obtain a test piece (impact strength measurement sample). And ASTMD256 test method
  • liquid crystal polyester resin compositions obtained in Examples 1 to 12 can stably obtain strands, stable composition pellets can be produced by the Strand method.
  • pellet-like liquid crystal polyester resin compositions obtained in Examples 1 to 3 and Examples 5 to 12 were able to obtain molded bodies having extremely excellent solder foam tests, bending strength, and dielectric properties.
  • pellet-like liquid crystal polyester resin compositions obtained in Examples 5 to 9 were able to obtain molded articles having extremely excellent impact strength.
  • the obtained molded article was also inferior in bending strength and dielectric properties.
  • the liquid crystal polyester resin compositions of Comparative Examples 6 to 7 were completely incompatible with the strand method, and the obtained molded articles were inferior in bending strength and impact strength.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Disclosed is a liquid crystalline polyester resin composition comprising a liquid crystalline polyester and a high dielectric material filler. Also disclosed is a molded article of the liquid crystalline polyester resin composition. The liquid crystalline polyester resin composition comprises: 50 to 80% by volume of a liquid crystalline polyester which contains a 2,6-naphthalenediyl group as an aromatic group in an amount of 40% by mole or more, which has a fluidization initiation temperature of 280˚C or higher, and which has a melt tension of 1 g or more as measured at a temperature higher than the fluidization initiation temperature; and 20 to 50% by volume of a high dielectric material filler. The liquid crystalline polyester resin composition can be made into a composition pellet readily and stably by a strand process or the like. A molded article produced from the liquid crystalline polyester resin composition has excellent flexural strength and dielectric properties.

Description

明細書 液晶ポリエステル及びその成形体 技術分野  Description Liquid crystalline polyester and molded body thereof Technical Field
本発明は、 液晶ポリエステルと高誘電材料からなるフィラーとを含む液晶ポリ エステル樹脂組成物及びその製造方法、 並び該液晶ポリエステル樹脂組成物を用 いてなる成形体に関する。 背景枝術  The present invention relates to a liquid crystal polyester resin composition containing liquid crystal polyester and a filler made of a high dielectric material, a method for producing the same, and a molded body using the liquid crystal polyester resin composition. Background branch
衛星通信機器、 携帯電話、 P H S等の移動通信、 無線 L A Nシステム、 あるい は高速道路の E T Cシステムや G P Sなどの車載用通信に代表されるような無線 情報通信網の発達に伴い、 情報通信機器に使用されるアンテナの需要が急増して いる。 このようなアンテナは、 より小型軽量で、 かつ安価であることが要求され ていることから、 アンテナ製造用の基体 (以下、 「アンテナ用基体」 という。 ) には、 熱可塑性樹脂を用いてなる成形体が使用されている。  With the development of wireless communications networks such as satellite communications equipment, mobile communications such as mobile phones and PHS, wireless LAN systems, highway ETC systems, and in-vehicle communications such as GPS, information communications equipment Demand for antennas used in the market is increasing rapidly. Since such an antenna is required to be smaller and lighter and cheaper, a thermoplastic resin is used for a base for antenna manufacture (hereinafter referred to as “antenna base”). A molded body is used.
アンテナを製造するに当たっては、 前記アンテナ用基体に、 電極となリ得る導 体層を形成させる必要がある。 この電極の形成手段としては、 半田付け、 金属メ ツキ等の手段が採用されるため、 アンテナ用基体には、 これらの電極形成手段に よって、 その特性が損なわれない程度の耐久性が要求される。 このような特性を 満足させるために、 アンテナ用基体の製造に使用される熱可塑性樹脂としては、 液晶ポリエステルが注目されている。 液晶ポリエステルは、 高水準の耐熱性と加 ェ性とを併せて有し、 低吸水性でもあることから、 アンテナ製造に係る耐久性は もとより、 アンテナの絰時使用に対する耐久性も良好となる。  In manufacturing the antenna, it is necessary to form a conductor layer that can serve as an electrode on the antenna substrate. As a means for forming this electrode, means such as soldering or metal plating is adopted. Therefore, the antenna substrate is required to have such durability that the characteristics are not impaired by these electrode forming means. The In order to satisfy these characteristics, liquid crystal polyester has attracted attention as a thermoplastic resin used in the manufacture of antenna substrates. Liquid crystal polyester has both high heat resistance and heat resistance and low water absorption, so that the durability of the antenna is good as well as the durability of the antenna.
一方、 既述のような情報通信機器においては、 情報の更なる高密度化に伴って、 よリ高周波域の電磁波を用いる情報通信に対する適合性が検討されており、 それ にしたがつて、 より誘電特性に優れたァンテナ用基体が求められるようになって きた。 かかるアンテナ用基体で求められる誘電特性とは、 高周波領域の電磁波に 対して比誘電率が高い (高誘電性である) こと、 且つ低誘電正接であること、 が 重要視されている。 これは、 高誘電性のアンテナ用基体であれば、 比較的小型の アンテナにおいても、 アンテナ特性を著しく低下させることがないためであり、 低誘電正接のアンテナ用基体であると、 アンテナ利得が増大する傾向があるため である。 高誘電性のアンテナ用基体を得るには、 高誘電材料を充填剤 (以下、On the other hand, in the information communication equipment as described above, as information is further densified, suitability for information communication using electromagnetic waves in the high frequency range has been studied. An antenna substrate having excellent dielectric properties has been demanded. The dielectric characteristics required for such an antenna substrate include a high relative dielectric constant (high dielectric property) for electromagnetic waves in a high frequency region and a low dielectric loss tangent. It is important. This is because a high dielectric antenna substrate does not significantly deteriorate the antenna characteristics even with a relatively small antenna, and an antenna gain increases with a low dielectric loss tangent antenna substrate. This is because there is a tendency to do so. To obtain a high dielectric antenna substrate, a high dielectric material is used as a filler (hereinafter referred to as
「高誘電材料フィラー」 ということがある) として用い、 該高誘電材料フイラ一 と液晶ポリエステルとを含む樹脂組成物からアンテナ用基体を得るといった方法 が用いられる。 例えば、 特開 2 0 0 4—1 6 1 9 5 3号公報には、 液晶ポリエス テル 2 5〜 3 5体積%及びセラミック粉 6 5 - 7 5体積%を含む組成物を溶融混 合し、 その後打錠機によって常温タブレツ卜化したアンテナ部品用錠剤が提案さ れ、 溶融混合時にワックス成分を併用することで、 形状保持性に優れたアンテナ 部品用錠剤となることが開示されている。 And a method of obtaining an antenna substrate from a resin composition containing the high dielectric material filler and a liquid crystal polyester. For example, in Japanese Patent Application Laid-Open No. 2 00 4-1 6 1 9 5 3, a composition containing 25 to 35% by volume of liquid crystal polyester and 65 to 75% by volume of ceramic powder is melt-mixed, Thereafter, a tablet for antenna parts that has been converted into a tablet at room temperature by a tableting machine is disclosed, and it is disclosed that a tablet for antenna parts having excellent shape retention can be obtained by using a wax component together during melt mixing.
また、 本願の発明者らは、 高誘電性、 且つ低誘電正接の成形体が得られる樹脂 組成物として、 特定の構造単位からなる液晶ポリエステルとセラミック粉とを含 む樹脂組成物を提案している (特開 2 0 0 6— 2 3 3 1 1 8号公報参照) 。 発明の開示  In addition, the inventors of the present application have proposed a resin composition containing a liquid crystal polyester having a specific structural unit and ceramic powder as a resin composition from which a molded article having a high dielectric property and a low dielectric loss tangent can be obtained. (Refer to Japanese Patent Laid-Open No. 2000-062 3 3 1 1 8). Disclosure of the invention
ところで、 液晶ポリエステルとフィラーとを含む樹脂組成物は、 該樹脂組成物 を成形して成形体を得る前に、 予め液晶ポリエステルとフイラ一とを溶融混練し て、 ペレット状の組成物 (以下、 「組成物ペレット」 という) を得ることが一般 的に実施されている。 組成物ペレットを作製する方法としては、 液晶ポリエステ ルと充填剤とを溶融混鍊して、 溶融状態の液晶ポリエステル樹脂組成物を紐状に 押出して紐状組成物 (ストランド) を得、 該ストランドを冷却固化し、 これを切 断して組成物ペレツ卜を得るといった製造方法が一般的である (このような製造 方法は、 ストランド法と呼ばれている) 。  By the way, a resin composition containing a liquid crystal polyester and a filler is prepared by melting and kneading a liquid crystal polyester and a filler in advance before molding the resin composition to obtain a molded body (hereinafter referred to as a pellet-like composition). It is generally practiced to obtain “composition pellets”. As a method for producing a composition pellet, a liquid crystal polyester and a filler are melted and kneaded, and a molten liquid crystal polyester resin composition is extruded into a string shape to obtain a string composition (strand). A manufacturing method is generally known in which the composition is cooled and solidified and cut to obtain a composition pellets (such a manufacturing method is called a strand method).
しかしながら、 特開 2 0 0 4—1 6 1 9 5 3号公報で提案されているような高 誘電材料フィラーを高充填してなる樹脂組成物では、 ス卜ランド法を適用しょう とすると、 ストランド自体が得られ難いことから、 安定的に組成物ペレットを得 ることができないことがあり、 当該文献においては、 打錠機によって錠剤化する 製造方法が採用されている。 かかる製造方法は、 操作が比較的煩雑で大量生産に は不向きであり、 工業生産に適したものとはいえない。 特開 2006— 2331 1 8号の発明の樹脂組成物は、 高誘電材料フイラ一の充填量が少ないながらも、 優れた誘電特性の成形体が得られる樹脂組成物であり、 ストランドは得やすい傾 向にある。 しかし、 工業的に安定的且つ生産性よく組成物ペレツ卜を得る上では、 ストランド法に対する適合性は必ずしも十分とはいえない。 However, in a resin composition that is highly filled with a high-dielectric material filler as proposed in Japanese Patent Application Laid-Open No. 2 0 4 -1 6 1 9 5 3 Since it is difficult to obtain the composition pellets, the composition pellets may not be stably obtained. In this document, a production method for tableting with a tableting machine is employed. Such a manufacturing method is relatively complicated and mass production. Is unsuitable and is not suitable for industrial production. The resin composition of the invention of Japanese Patent Application Laid-Open No. 2006-2331 18 is a resin composition capable of obtaining a molded article having excellent dielectric properties even though the filling amount of the high dielectric material filler is small, and the strand tends to be easily obtained. In the direction. However, the compatibility with the strand method is not necessarily sufficient in order to obtain a composition pellets with industrial stability and good productivity.
そこで、 本発明の目的の 1つは、 液晶ポリエステル及び高誘電材料フィラーを 用いてなる樹脂組成物において、 工業生産に好適なス卜ランド法等が適用可能で、 安定的に組成物ペレツ卜を生産することができる液晶ポリエステル樹脂組成物を 提供することにある。  Therefore, one of the objects of the present invention is that a resin method using a liquid crystal polyester and a high dielectric material filler can be applied with a strand method suitable for industrial production, and the composition pellets can be stably used. An object of the present invention is to provide a liquid crystal polyester resin composition that can be produced.
本発明者らは、 鋭意検討を重ねた結果、 本発明を完成するに至った。 即ち、 本 発明は、 以下の式 ( ί ) で表される構造単位、 式 (ii) で表される構造単位及び 式 (iii) で表される構造単位からなり、 Αηで表される 2価の芳香族基、 Ar2 で表される 2価の芳香^基及び A r3で表される 2価の芳香族基の合計を 1 00モ ル%としたとき、 2, 6—ナフタレンジィル基を 40モル%以上含み、 流動開始 温度が 280°C以上であり、 流動開始温度よリ高い温度で測定されるメル卜テン シヨンが 1 g以上を示す液晶ポリエステル (A) 50〜80体積%と、 As a result of intensive studies, the present inventors have completed the present invention. That is, the present invention comprises a structural unit represented by the following formula (ί), a structural unit represented by the formula (ii), and a structural unit represented by the formula (iii), 2, 6-naphthalene diyl group when the total of the divalent aromatic group represented by Ar 2 and the divalent aromatic group represented by Ar 3 is 100 mol%. Liquid crystal polyester (A) 50 to 80% by volume with a melt starting temperature of at least 280 ° C and a melt tension measured at a temperature higher than the flow starting temperature of 1 g or more. ,
高誘電材料からなるフィラー (B) 20〜50体積%と、 Filler made of high dielectric material (B) 20-50% by volume,
を含有する、 液晶ポリエステル樹脂組成物を提供する。 A liquid crystal polyester resin composition is provided.
0  0
—— o—— Ar厂 c — ( i ) o o —— o—— Ar 厂 c — (i) o o
c—— ΑΓ2― c — ( ii ) c—— ΑΓ 2 — c — (ii)
o—— Ar3— 0 — (iii) ここで式中、 Αηは、 2, 6—ナフタレンジィル基、 1 , 4一フエ二レン基及び 4, 4' 一ビフ; ι:二レン基からなる群から選ばれる 2価の芳香族基を表す。 Ar2、 A r3は、 それぞれ独立に 2 , 6—ナフタレンジィル基、 1 , 4—フエ二レン基、 1 , 3—フエ二レン基及び 4, 4 ' ービフエ二レン基からなる群から選ばれる 2 価の芳香族基を表す。 また Α η、 Ar2又は A r3で示される芳香族基は、 その芳香 環に結合している水素原子の一部が、 ハロゲン原子、 炭素数 1 ~ 1 0のアルキル 基又は炭素数 6〜 2 0のァリール基に置換されていてもよい。 o—— Ar 3 — 0 — (iii) where Αη consists of 2, 6-naphthalene diyl group, 1, 4 1-phenylene group, and 4, 4 ′ 1-bif; ι: diene group Represents a divalent aromatic group selected from the group. Ar 2 , A r 3 is independently a divalent group selected from the group consisting of 2,6-naphthalenediyl group, 1,4-phenylene group, 1,3-phenylene group, and 4,4′-biphenylene group. Represents an aromatic group. In addition, in the aromatic group represented by ηη, Ar 2 or Ar 3 , a part of the hydrogen atoms bonded to the aromatic ring are a halogen atom, an alkyl group having 1 to 10 carbon atoms, or 6 to 6 carbon atoms. It may be substituted with 20 aryl groups.
本発明の液晶ポリエステル樹脂組成物は、 高誘電性や低誘電正接等の誘電特性 が求められる種々の用途に使用可能である。  The liquid crystal polyester resin composition of the present invention can be used in various applications that require dielectric properties such as high dielectric properties and low dielectric loss tangents.
本発明は、 更に、 上記液晶ポリエステル樹脂組成物を用いてなる成形体、 及び 当該成形体と電極とを有するアンテナを提供する。  The present invention further provides a molded body using the liquid crystal polyester resin composition, and an antenna having the molded body and an electrode.
本発明の液晶ポリエステル樹脂組成物によれば、 当技術分野で汎用的に用いら れるス卜ランド法等の組成物ペレツト製造方法によって、 容易に組成物ペレツ卜 を製造することができる。 この組成物ペレツトは操作性が良好であることから、 射出成形等により簡便に成形体を得ることができる。 そして、 本発明の液晶ポリ エステル樹脂組成物を用いてなる成形体は、 高誘電性且つ低誘電正接が求められ る種々の用途、 特に、 高周波の電磁波が適用される情報通信機器のアンテナに、 好適に使用できるため、 産業上極めて有用である。 発明を実施するための形態  According to the liquid crystal polyester resin composition of the present invention, a composition pellet can be easily produced by a composition pellet production method such as a strand method, which is widely used in this technical field. Since this composition pellet has good operability, a molded product can be easily obtained by injection molding or the like. The molded body using the liquid crystal polyester resin composition of the present invention is used in various applications where high dielectric properties and low dielectric loss tangents are required, particularly for antennas of information communication equipment to which high frequency electromagnetic waves are applied. Since it can be used suitably, it is very useful industrially. BEST MODE FOR CARRYING OUT THE INVENTION
本発明は、 液晶ポリエステル (A) 5 0〜8 0体積%と高誘電材料からなるフ イラ一 (B ) 2 0〜 5 0体積%とを含有する液晶ポリエステル樹脂組成物を提供 する。  The present invention provides a liquid crystal polyester resin composition containing 50 to 80% by volume of liquid crystal polyester (A) and 20 to 50% by volume of a filler (B) made of a high dielectric material.
本発明で用いる液晶ポリエステルは、 溶融時に光学異方性を示し、 4 5 0°C以 下の温度で異方性溶融体を形成し得るポリエステルである。 より具体的には、 本 発明に用いられる液晶ポリエステルは、 以下の式 ( i ) で表される構造単位、 式 ( i i ) で表される構造単位及び式 (i i i ) で表される構造単位からなり、 Α ηで 表される 2価の芳香族基、 A r2で表される 2価の芳香族基及び A r3で表される 2 価の芳香族基の合計 (以下、 「全芳香族基合計」 という) を 1 0 0モル%とした とき、 当該芳香族基の中で 2 , 6—ナフタレンジィル基を 4 0モル%以上含むも のである。 また、 本発明に用いられる液晶ポリエステルは、 その流動開始温度が 280 °C以上であリ、 流動開始温度よリ高い温度で測定されるメルトテンション が 1 g以上である。 The liquid crystalline polyester used in the present invention is a polyester that exhibits optical anisotropy when melted and can form an anisotropic melt at a temperature of 45 ° C. or lower. More specifically, the liquid crystalline polyester used in the present invention includes a structural unit represented by the following formula (i), a structural unit represented by the formula (ii), and a structural unit represented by the formula (iii). becomes a divalent aromatic group represented by Alpha eta, the total of divalent aromatic groups represented by divalent aromatic group and a r 3 represented by a r 2 (hereinafter, "total aromatic When the total of the group is “100 mol%”, the aromatic group contains at least 40 mol% of 2,6-naphthalenediyl group. In addition, the liquid crystal polyester used in the present invention has a flow start temperature of The melt tension measured at 280 ° C or higher and higher than the flow start temperature is 1 g or higher.
o  o
—— O—— ΑΓ,—— C ( j ) —— O—— ΑΓ, —— C (j)
O O O O
C ~ -Ar2—— C •(H) C ~ -Ar 2 —— C • (H)
0—— Ar3— ο (iii) 0—— Ar 3 — ο (iii)
ここで、 Αηは、 2, 6—ナフタレンジィル基、 1, 4—フエ二レン基及び 4, 4' ービフエ二レン基からなる群から選ばれる 2価の芳香族基であり、 Ar2、 A r3は、 それぞれ独立に 2, 6—ナフタレンジィル基、 1 , 4一フエ二レン基、 1. 3—フエ二レン基及び 4, 4' —ビフエ二レン基からなる群から選ばれる 2価の 芳香族基である。 また、 Αη、 Ar2及び Ar3で表される 2価の芳香族基は、 ハロ ゲン原子、 炭素数 1〜10のアルキル基又は炭素数 6〜 20のァリール基を置換 基として有してもよい。 Here, Αη is a divalent aromatic group selected from the group consisting of 2,6-naphthalenedyl group, 1,4-phenylene group and 4,4′-biphenylene group, Ar 2 , A r 3 is each independently a bivalent group selected from the group consisting of 2,6-naphthalenediyl group, 1,4-monophenylene group, 1.3-phenylene group, and 4,4'-biphenylene group. It is an aromatic group. Further, the divalent aromatic group represented by Αη, Ar 2 and Ar 3 may have a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms as a substituent. Good.
このような液晶ポリエステルは、 2, 6—ナフタレンジィル基を含むモノマー と、 それ以外の芳香環を有するモノマーとを、 得られる液晶ポリエステル中の、 2, 6—ナフタレンジィル基を有する構造単位が 40モル%以上になるように、 原料モノマーを選択し、 重合させて得ることができる。 好ましい液晶ポリエステ ルは、 全芳香族基合計 100モル%に対し、 2, 6—ナフタレンジィル基が、 5 0モル%以上である液晶ポリエステルであり、 より好ましくは 2, 6—ナフタレ ンジィル基が 65モル%以上の液晶ポリエステルであり、 特に好ましくは 2, 6 一ナフタレンジィル基が 70モル%以上の液晶ポリエステルである。 このように、 芳香族基として、 2, 6—ナフタレンジィル基をより多く含む液晶ポリエステル は、 後述するようにメルトテンションを 1 g以上とすることで、 ストランド法等 により安定的に組成物ペレットを製造することが可能となる。 また、 2, 6—ナ フタレンジィル基をより多く含む液晶ポリエステルは、 得られる成形体の更なる 低誘電正接化が達成可能であるという利点もある。 Such a liquid crystal polyester comprises a monomer having a 2,6-naphthalenediyl group and another monomer having an aromatic ring, in which the structural unit having a 2,6-naphthalenediyl group is 40 The raw material monomer can be selected and polymerized so as to be at least mol%. A preferable liquid crystal polyester is a liquid crystal polyester in which 2,6-naphthalene diyl group is 50 mol% or more with respect to 100 mol% of total aromatic groups, and more preferably 2,6-naphthalene diyl group is 65 mol%. It is a liquid crystal polyester having a mol% of at least 70, and particularly preferably a liquid crystal polyester having 2,6 mononaphthalenedyl groups of 70 mol% or more. Thus, the liquid crystal polyester containing more 2,6-naphthalenediyl groups as the aromatic group can be obtained by setting the melt tension to 1 g or more as will be described later. This makes it possible to produce the composition pellets stably. In addition, the liquid crystal polyester containing more 2,6-naphthalenediyl groups also has the advantage that the resulting molded article can be further reduced in dielectric loss tangent.
一方、 前記液晶ポリエステルにおいて、 全芳香族基合計 100モル%に対して、 On the other hand, in the liquid crystal polyester, the total aromatic group total is 100 mol%,
2, 6—ナフタレンジィル基が 40モル%を下回る場合は、 得られる成形体の誘 電正接が大きくなる傾向がある。 If the 2,6-naphthalenediyl group is less than 40 mol%, the resulting molded article tends to have a large electrostatic tangent.
また、 本発明に用いられる液晶ポリエステルを構成する、 式 (i) で表される 構造単位、 式 (ii) で表される構造単位及び式 (iii) で表される構造単位の合 計 (以下、 「全構造単位合計」 ということがある) を 100モル%としたとき、 (i) で表される構造単位 (以下、 「構造単位 ( i ) 」 という) の合計が 30〜 80モル%、 (ii) で表される構造単位 (以下、 「構造単位 (ii) 」 という) の 合計が 10〜35モル%、 (iii) で表される構造単位 (以下、 「構造単位  The total of the structural unit represented by the formula (i), the structural unit represented by the formula (ii) and the structural unit represented by the formula (iii) constituting the liquid crystalline polyester used in the present invention (hereinafter referred to as “the structural unit represented by the formula (i)”) The total of structural units represented by (i) (hereinafter referred to as “structural units (i)”) is 30 to 80 mol%. The total of structural units represented by (ii) (hereinafter referred to as “structural units (ii)”) is 10 to 35 mol%, and the structural units represented by (iii) (hereinafter “structural units”)
(iii) J という) の合計が 10〜35モル%であることが好ましい。 構造単位 ( i ) 、 構造単位 (ii) 及び構造単位 (iii) の、 全構造単位合計に対するモル 比率 (共重合比率) が前記の範囲である液晶ポリエステルは、 高度の液晶性を発 現することに加え、 実用的な温度で溶融し得るものとなり、 溶融成形が容易とな るため好ましい。  (iii) J) is preferably 10 to 35 mol%. Liquid crystalline polyesters in which the molar ratio (copolymerization ratio) of the structural unit (i), structural unit (ii), and structural unit (iii) to the total of all structural units is in the above range should exhibit a high degree of liquid crystallinity. In addition to this, it can be melted at a practical temperature, and melt molding becomes easy, which is preferable.
液晶ポリエステルは、 より高度の耐熱性が得られる点で、 全芳香族液晶ポリェ ステルであると好ましく、 構造単位 ( i ) 、 構造単位 (ii) 及び構造単位  The liquid crystalline polyester is preferably a wholly aromatic liquid crystalline polyester in that a higher degree of heat resistance is obtained. The structural unit (i), the structural unit (ii) and the structural unit are preferred.
(iii) 以外の構造単位を有さないものであると好ましい。 したがって、 全構造 単位合計に対する構造単位 (ii) の合計のモル比率と、 構造単位 (iii) の合計 のモル比率とは実質的に等しくなる。  Those having no structural unit other than (iii) are preferred. Therefore, the molar ratio of the total of structural units (ii) to the total of all structural units is substantially equal to the molar ratio of the total of structural units (iii).
全構造単位合計に対する、 構造単位 ( i ) の合計のモル比率は 40〜 70モ ル%であるとより好ましく、 45~ 65モル%であると、 とりわけ好ましい。 一方、 全構造単位合計に対する構造単位 (ii) の合計のモル比率及び構造単位 (iii) の合計のモル比率は、 それぞれ 1 5〜30モル%であるとより好ましく、 それぞれ 17. 5〜27. 5モル%であると、 とりわけ好ましい。  The molar ratio of the total of the structural units (i) to the total of the structural units is more preferably 40 to 70 mol%, and particularly preferably 45 to 65 mol%. On the other hand, the molar ratio of the total of structural units (ii) and the total molar ratio of structural units (iii) with respect to the total of all structural units is more preferably 15 to 30 mol%, and 17.5 to 27. 5 mol% is particularly preferable.
構造単位 ( i ) の合計のモル比率、 構造単位 (ii) の合計のモル比率及び構造 単位 (iii) の合計のモル比率が、 それぞれ前記の範囲であると、 液晶ポリエス テルが、 より高度の液晶性を発現し得るものとなり、 より実用的な温度で溶融で きるため、 溶融成形が容易となる利点がある。 When the total molar ratio of the structural unit (i), the total molar ratio of the structural unit (ii), and the total molar ratio of the structural unit (iii) are within the above ranges, the liquid crystal polyester Tell has the advantage that it can exhibit a higher degree of liquid crystallinity and can be melted at a more practical temperature, facilitating melt molding.
構造単位 ( i ) は芳香族ヒドロキシカルボン酸から誘導される構造単位である。 構造単位 U ) を誘導するモノマーとしては、 2—ヒドロキシ一 6—ナフトェ酸、 p—ヒドロキシ安息香酸、 4一 (4ーヒドロキシフエニル) 安息香酸が挙げられ る。 さらに、 これらのモノマーのベンゼン環又はナフタレン環に結合している水 素原子の一部が、 ハロゲン原子、 炭素数 1〜10のアルキル基又は炭素数 6〜2 0のァリール基で置換されてなるモノマーも用いることができる。 この中で、 2, 6—ナフタレンジィル基を有する構造単位を誘導するモノマーは、 2—ヒドロキ シー 6—ナフ卜ェ酸である。  The structural unit (i) is a structural unit derived from an aromatic hydroxycarboxylic acid. Examples of the monomer for deriving the structural unit U) include 2-hydroxy-16-naphthoic acid, p-hydroxybenzoic acid, and 4- (4-hydroxyphenyl) benzoic acid. Further, a part of the hydrogen atoms bonded to the benzene ring or naphthalene ring of these monomers are substituted with a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms. Monomers can also be used. Among them, a monomer for deriving a structural unit having a 2,6-naphthalenediyl group is 2-hydroxy 6-naphthoic acid.
構造単位 (i i) は芳香族ジカルボン酸から誘導される構造単位である。 構造単 位 (ii) を誘導するモノマーとしては、 2, 6—ナフタレンジカルボン酸、 テレ フタル酸、 イソフタル酸、 ビフ I二ルー 4, 4' ージカルボン酸が挙げられる。 さらに、 これらのモノマーのベンゼン環又はナフタレン環に結合している水素原 子の一部が、 ハロゲン原子、 炭素数 1 ~10のアルキル基又は炭素数 6~20の ァリール基で置換されてなるモノマーも用いることができる。 この中で、 2, 6 一ナフタレンジィル基を有する構造単位を誘導するモノマーは、 2, 6—ナフタ レンジカルボン酸である。  The structural unit (i i) is a structural unit derived from an aromatic dicarboxylic acid. Examples of the monomer for deriving the structural unit (ii) include 2,6-naphthalenedicarboxylic acid, terephthalic acid, isophthalic acid, and Bif I diluo 4,4'-dicarboxylic acid. Further, a monomer in which a part of hydrogen atoms bonded to the benzene ring or naphthalene ring of these monomers is substituted with a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms. Can also be used. Among them, a monomer for deriving a structural unit having a 2,6 mononaphthalenediyl group is 2,6-naphthalenedicarboxylic acid.
構造単位 (iii) は芳香族ジオールから誘導される構造単位である。 構造単位 (iii) を誘導するモノマーとしては、 2, 6—ナフタレンジオール、 ハイド口 キノン、 レゾルシン、 4, 4' —ジヒドロキシビフエニルが挙げられる。 また、 これらのモノマーのベンゼン環又はナフタレン環に結合している水素原子の一部 が、 ハロゲン原子、 炭素数 1〜1 0のアルキル基又は炭素数 6〜 20のァリール 基で置換されてなるモノマーも用いることができる。 この中で、 2, 6—ナフタ レンジィル基を有する構造単位を誘導するモノマーとは、 2, 6—ナフタレンジ オールである。  The structural unit (iii) is a structural unit derived from an aromatic diol. Examples of the monomer for deriving the structural unit (iii) include 2,6-naphthalenediol, hydrated quinone, resorcin, and 4,4′-dihydroxybiphenyl. In addition, a monomer in which a part of hydrogen atoms bonded to the benzene ring or naphthalene ring of these monomers is substituted with a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms. Can also be used. Among them, a monomer for deriving a structural unit having a 2,6-naphthalenediyl group is 2,6-naphthalenediol.
前記のように、 構造単位 ( i ) 、 構造単位 (ii) 又は構造単位 (iii) は、 い ずれも芳香環 (ベンゼン環又はナフタレン環) に前記のような置換基を有してい てもよい。 これらの置換基を簡単に例示すると、 ハロゲン原子としては、 例えば、 フッ素原子、 塩素原子、 臭素原子、 ヨウ素原子が挙げられ、 炭素数 1〜 1 0のァ ルキル基としては、 メチル基、 ェチル基、 プロピル基、 ブチル基、 へキシル基、 ォクチル基、 デシル基等で代表されるアルキル基であり、 これらは直鎖でも分岐 していもよく、 脂環基でもよい。 ァリール基としては、 例えばフエニル基、 ナフ チル基等で代表される炭素数 6〜2 0のァリール基が挙げられる。 As described above, the structural unit (i), the structural unit (ii), or the structural unit (iii) may have any of the above substituents on the aromatic ring (benzene ring or naphthalene ring). . When these substituents are simply exemplified, as the halogen atom, for example, Fluorine atom, chlorine atom, bromine atom, iodine atom are mentioned. Examples of the alkyl group having 1 to 10 carbon atoms include methyl group, ethyl group, propyl group, butyl group, hexyl group, octyl group, decyl group, etc. These may be linear or branched, and may be alicyclic groups. Examples of the aryl group include aryl groups having 6 to 20 carbon atoms represented by phenyl group, naphthyl group and the like.
構造単位 ( i ) 、 構造単位 (i i ) 又は構造単位 (i i i ) を誘導するモノマーは、 ポリエステルを製造する過程で、 重合を容易にするために、 エステル形成性誘導 体に転換して用いることが好ましい。 該エステル形成性誘導体とは、 エステル生 成反応を促進するような基を有する化合物を意味し、 具体的に例示すると、 カル ポキシル基を有するモノマーでは、 そのカルボキシル基を、 酸ハロゲン化物、 酸 li水物に転換したようなエステル形成性誘導体であり、 水酸基を有するモノマー では、 その水酸基を、 低級カルボン酸を用いてエステルにしたようなエステル形 成性誘導体である。  The monomer that derives the structural unit (i), the structural unit (ii), or the structural unit (iii) may be converted into an ester-forming derivative in order to facilitate polymerization in the process of producing the polyester. preferable. The ester-forming derivative means a compound having a group that promotes an ester formation reaction. Specifically, in a monomer having a carboxyl group, the carboxyl group is represented by an acid halide, an acid li, or the like. It is an ester-forming derivative that has been converted to water, and in the case of a monomer having a hydroxyl group, it is an ester-forming derivative in which the hydroxyl group has been converted to an ester using a lower carboxylic acid.
液晶ポリエステルの製造方法としては公知の方法が採用してもよい。 好ましい 製造方法としては、 エステル形成性誘導体として、 モノマー分子内の水酸基を、 低級カルボン酸を用いてエステルに転換したエステル形成性誘導体を用いて液晶 ポリエステルを製造する方法が挙げられる。 中でも、 芳香族ヒドロキシカルボン 酸及び芳香族ジオールの水酸基をァシル基に転換 (ァシル化) してなるエステル 形成性誘導体を用いる製造方法が好ましい。 ァシル化は、 通常、 水酸基を有する モノマー (芳香族ヒドロキシカルボン酸及び芳香族ジオール) を、 無水酢酸と反 応させることで実施できる。 このようにして得られたエステル形成性誘導体は、 芳香族ジカルボン酸と脱酢酸重縮合させることにより、 容易にポリエステルを製 造することができる。  A known method may be adopted as a method for producing the liquid crystal polyester. A preferred production method includes a method of producing a liquid crystal polyester using an ester-forming derivative obtained by converting a hydroxyl group in a monomer molecule into an ester using a lower carboxylic acid as the ester-forming derivative. Among these, a production method using an ester-forming derivative obtained by converting (acylating) a hydroxyl group of an aromatic hydroxycarboxylic acid and an aromatic diol into an acyl group is preferable. The acylation can usually be carried out by reacting a monomer having a hydroxyl group (aromatic hydroxycarboxylic acid and aromatic diol) with acetic anhydride. The ester-forming derivative thus obtained can be easily produced into a polyester by polycondensation with an aromatic dicarboxylic acid.
エステル形成性誘導体を用いた液晶ポリエステル製造方法としては、 例えば、 特開 2 0 0 2 - 1 4 6 0 0 3号公報に記載された製造方法が例示できる。 本発明 に用いられる液晶ポリエステルの製造に関し、 この公報に記載されているような 製造方法を適用することを簡単に説明する。 構造単位 ( i ) 、 構造単位 (i i ) 及 び構造単位 (i i i ) を形成するモノマーを、 2 , 6—ナフタレンジィル基を有す る構造単位を誘導できるモノマーが、 全モノマーの合計に対して、 4 0モル%以 上になるように選択し、 構造単位 ( i ) を誘導する芳香族ヒドロキシカルボン酸 及び構造単位 (i i i ) を誘導する芳香族ジオールを、 ァシル化してエステル形成 性誘導体に転換した後、 構造単位 (i i ) を形成する芳香族ジカルボン酸と溶融重 合させ、 比較的低分子量の液晶ポリエステル (以下、 「プレボリマー」 と称する ことがある) を得る。 次いで、 このプレボリマーを粉末とし、 この粉末を加熱す ることによリ固相重合させる。 このように固相重合を用いると、 重合がより進行 しゃすく、 液晶ポリエステルの高分子量化を図ることができるため、 得られる液 晶ポリエステルの流動開始温度をより高温化できるという利点がある。 また、 後 述するように液晶ポリエステルのメル卜テンションを調整するためにも、 この固 相重合は有効である。 As a method for producing a liquid crystal polyester using an ester-forming derivative, for example, a production method described in Japanese Patent Application Laid-Open No. 2 00 2-1 46 0 0 3 can be exemplified. Regarding the production of the liquid crystalline polyester used in the present invention, the application of the production method described in this publication will be briefly described. The monomer that forms the structural unit (i), the structural unit (ii), and the structural unit (iii) can be derived from a monomer that can derive a structural unit having a 2,6-naphthalenediyl group. 40 mol% or less The aromatic hydroxycarboxylic acid for deriving the structural unit (i) and the aromatic diol for deriving the structural unit (iii) are converted to ester-forming derivatives after being converted to ester-forming derivatives. ii) is melt-polymerized with the aromatic dicarboxylic acid to form a relatively low molecular weight liquid crystal polyester (hereinafter sometimes referred to as “prepolymer”). Next, this prepolymer is used as a powder, and this powder is heated for solid phase polymerization. When solid-phase polymerization is used in this manner, the polymerization proceeds more rapidly, and the liquid crystal polyester can be increased in molecular weight, so that the flow start temperature of the obtained liquid crystal polyester can be increased. As will be described later, this solid phase polymerization is also effective for adjusting the melt tension of the liquid crystal polyester.
溶融重合により得られたプレポリマーを粉末とするには、 プレボリマーを冷却 固化した後に、 各種公知の粉砕手段によって粉砕すればよい。 粉末の粒子径は、 平均で 0 . 0 5 mm以上 3 mm程度以下の範囲が好ましく、 0 . 0 5 mm以上1 . 5 mm程度以下の範囲がよリ好ましい。 粉末の粒子径がこのような範囲であれば、 芳香族液晶ポリエステルの高重合度化が促進されることからより好ましく、 0 . 1 mm以上 1 mm程度以下の範囲であれば、 粒子間のシンタリングを生じること なく液晶ポリエステルの高重合度化が促進されるため、 さらに好ましい。  In order to make the prepolymer obtained by melt polymerization into powder, the prepolymer may be cooled and solidified and then pulverized by various known pulverization means. The average particle size of the powder is preferably in the range of about 0.05 mm to about 3 mm, and more preferably in the range of about 0.05 mm to about 1.5 mm. If the particle diameter of the powder is in such a range, it is more preferable because the degree of polymerization of the aromatic liquid crystal polyester is promoted, and if it is in the range of about 0.1 mm to about 1 mm, the sintering between the particles is preferable. This is more preferable because it increases the degree of polymerization of the liquid crystal polyester without causing a ring.
固相重合における加熱条件について好適なもの条件を以下に例示する。 まず、 室温からプレボリマーの流動開始温度よリ 2 0 °C以上低い温度まで昇温する。 こ のときの昇温時間は限定されるものではないが、 反応時間の短縮といった観点か らは、 1時間以内で行うことが好ましい。  Suitable conditions for the heating conditions in the solid phase polymerization are exemplified below. First, the temperature is raised from room temperature to a temperature that is 20 ° C lower than the flow start temperature of the prepolymer. Although the temperature raising time at this time is not limited, it is preferably within 1 hour from the viewpoint of shortening the reaction time.
次いで、 プレボリマーの流動開始温度よリ 2 0 °C以上低い温度から 2 8 0 °C以 上の温度まで昇温させる。 昇温は、 0 . 3 °C 分以下の昇温速度で行うことが好 ましく、 0 . 1〜0 . 1 5 °C 分程度の昇温速度がより好ましい。 該昇温速度が 0 . 3 °CZ分以下であれば、 粉末の粒子間のシンタリングが生じ難いため、 より 高重合度の液晶ポリエステルの製造が比較的容易に実施できる。  Next, the temperature is raised from a temperature 20 ° C. or more lower than the flow start temperature of the prepolymer to a temperature of 28 ° C. or more. The temperature increase is preferably performed at a temperature increase rate of 0.3 ° C. or less, and a temperature increase rate of about 0.1 to 0.15 ° C. is more preferable. When the temperature rising rate is 0.3 ° C. or less, sintering between powder particles hardly occurs, and therefore, a liquid crystal polyester having a higher degree of polymerization can be produced relatively easily.
また、 液晶ポリエステルの重合度をさらに高めるためには、 2 8 0 °C以上の温 度で、 好ましくは 2 8 0 °C~ 4 0 0 °Cの温度範囲で 3 0分以上反応させることが 好ましい。 とりわけ、 液晶ポリエステルの熱安定性をより良好にする観点からは、 反応温度 280〜350°Cで 30分〜 30時間反応させることが好ましく、 反応 温度 285~ 340°Cで 30分〜 20時間反応させることがさらに好ましい。 か かる加熱条件は、 当該液晶ポリエステルの製造に用いたモノマーの種類により、 適宜最適化することができる。 In order to further increase the polymerization degree of the liquid crystalline polyester, the reaction may be carried out at a temperature of 28 ° C. or higher, preferably 30 ° C. to 400 ° C. for 30 minutes or longer. preferable. In particular, from the viewpoint of improving the thermal stability of liquid crystal polyester, The reaction is preferably performed at a reaction temperature of 280 to 350 ° C for 30 minutes to 30 hours, and more preferably at a reaction temperature of 285 to 340 ° C for 30 minutes to 20 hours. Such heating conditions can be optimized as appropriate depending on the type of monomer used in the production of the liquid crystalline polyester.
このように固相重合を用いれば、 液晶ポリエステルの流動開始温度を 280°C 以上にすることが比較的短時間で実施可能であり、 このような流動開始温度を有 する液晶ポリエステルを、 本発明の液晶ポリエステル樹脂組成物に適用すれば、 得られる成形体は高度の耐熱性を有するものとなる。 なお、 流動開始温度とは、 内径 1 mm、 長さ 1 Ommのダイスを取付けた毛細管型レオメーターを用い、 9. 8MP a (1 00 k g/cm2) の荷重下において昇温速度 4°CZ分で液晶ポリ エステルをノズルから押出すときに、 溶融粘度が 4800 P a ■ s (48000 ボイズ) を示す温度を意味し、 該流動開始温度は当技術分野で周知の液晶ポリェ ステルの分子量を表す指標である (小出直之編、 「液晶性ポリマー合成 ·成形 - 応用一」 、 95〜 1 05頁、 シーエムシー、 1 987年 6月 5日発行を参照、 本 発明においては、 流動開始温度を測定する装置として、 株式会社島津製作所製の 流動特性評価装置 「フローテスター CFT— 500DJ を用いる。 ) 。 本発明の 液晶ポリエステル樹脂組成物をアンテナ用基板の製造用に使用する場合、 電極形 成プロセスに対する耐熱性をより良好にするために、 前記液晶ポリエステルの流 動開始温度を 290°C以上にすることがより好ましく、 295°C以上にすること がさらに好ましい。 一方、 当該アンテナ用基板を実用的な温度範囲で成形する観 点からは、 流動開始温度は 380°C以下であると好ましく、 350°C以下であれ ばさらに好ましい。 If solid-state polymerization is used as described above, the flow start temperature of the liquid crystal polyester can be set to 280 ° C. or higher in a relatively short time. A liquid crystal polyester having such a flow start temperature is obtained according to the present invention. When applied to the liquid crystal polyester resin composition, the obtained molded product has a high heat resistance. The flow start temperature is a capillary rheometer equipped with a die with an inner diameter of 1 mm and a length of 1 Omm, and a heating rate of 4 ° CZ under a load of 9.8 MPa (100 kg / cm 2 ). Means the temperature at which the melt viscosity shows 4800 Pa s (48000 boise) when the liquid crystal polyester is extruded from the nozzle in minutes, and the flow start temperature represents the molecular weight of a liquid crystal polyester known in the art Index (see Naoyuki Koide, “Liquid Crystalline Polymer Synthesis / Molding-Application 1”, pages 95-105, CMC, published on June 5, 987. In the present invention, the flow start temperature is As a device to measure, a flow characteristic evaluation device “Flow Tester CFT-500DJ” manufactured by Shimadzu Corporation is used.) When the liquid crystal polyester resin composition of the present invention is used for manufacturing an antenna substrate, an electrode forming process is used. Better heat resistance against In order to achieve this, the flow starting temperature of the liquid crystalline polyester is more preferably 290 ° C. or higher, and further preferably 295 ° C. or higher, while the antenna substrate is molded in a practical temperature range. From this point of view, the flow start temperature is preferably 380 ° C or lower, more preferably 350 ° C or lower.
また、 かかる流動開始温度の測定において、 被測定サンプルとなる液晶ポリェ ステルの形状は、 パウダー状のものはもちろん、 該液晶ポリエステルを公知の手 段によりペレツ卜状にしてもよい。  Further, in the measurement of the flow start temperature, the shape of the liquid crystal polyester used as the sample to be measured is not limited to powder, but the liquid crystal polyester may be formed into a pellet shape by a known method.
流動開始温度測定に供する被測定サンプルとして、 液晶ポリエステルをペレツ ト状にしてもよいことを前に説明したが、 かかるペレツ卜状にした液晶ポリエス テルは、 後述のメルトテンション測定にも使用できるため、 簡単にその作製手段 を説明する。 使用する押出機の例としては、 例えば単軸又は多軸押出機が挙げられ、 二軸押 出機、 バンバリ一式混鍊機、 ロール式混練機が好ましい。 ペレットは、 液晶ポリ エステルを、 その流動開始温度 T p [°C] を基点として、 T pより 1 0 °C低い温 度から T pより 1 o o°c高い温度の温度範囲で溶融させて得ることができる。 液 晶ポリエステルの熱劣化を十分に防止するといつた観点からは、 T pより 1 0 °C 低い温度から T pより 7 0 °C高い温度の温度範囲で溶融させることが好ましく、 T pより 1 0 °C低い温度から T pより 5 0 °C高い温度範囲で溶融させることがさ らに好ましい。 As described before, the liquid crystal polyester may be made into a pellet as a sample to be measured for the flow start temperature measurement. However, the liquid crystal polyester having such a pellet shape can also be used for the melt tension measurement described later. The production method will be briefly described. Examples of the extruder to be used include, for example, a single-screw or multi-screw extruder, and a twin-screw extruder, a Banbury type kneader, and a roll-type kneader are preferable. Pellets are obtained by melting liquid crystal polyester in the temperature range from 10 ° C lower than T p to 1 oo ° c higher than T p, starting from its flow start temperature T p [° C]. be able to. From the viewpoint of sufficiently preventing thermal deterioration of the liquid crystalline polyester, it is preferable to melt in a temperature range from 10 ° C lower than Tp to 70 ° C higher than Tp. It is more preferable to melt in the temperature range from 0 ° C lower to 50 ° C higher than Tp.
本発明に用いる液晶ポリエステルは、 その流動開始温度より高い温度で測定さ れるメル卜テンションが 1 g以上を示す。 好ましい液晶ポリエステルはメルト亍 ンシヨンが 1 . 5 g以上の液晶ポリエステルであり、 よリ好ましくは 2 g以上液 晶ポリエステルである。 特に、 流動開始温度より 2 5 °C程度高い温度で測定され るメルトテンションが 1 g以上である液晶ポリエステルは、 後述するような高誘 電材料フィラーを比較的多量に用いて液晶ポリエステル樹脂組成物としたとして も、 安定的に組成物ペレットが製造できる傾向にある。 なお、 ここでいうメルト テンションとは、 キヤピログラフに液晶ポリエステル (ペレット化した液晶ポリ エステル) を充填し、 シリンダーバレル径 1 mm 0、 ピストンの押出し速度は 5 . O mm 分、 速度可変巻取機で自動昇速しながら試料を糸状に引き取り、 破断し たときの張力 (g) を意味するそして、 測定に供する液晶ポリエステルの流動開 始温度より高い温度において、 数点メルトテンション測定を行い、 求められたメ ル卜テンションの中で、 一点でもメル卜テンションが 1 g以上であれば、 本発明 でいう 「流動開始温度より高い温度で測定されるメル卜テンションが 1 g以上の 液晶ポリエステル」 と定義する。  The liquid crystalline polyester used in the present invention has a melt tension of 1 g or more measured at a temperature higher than the flow start temperature. A preferred liquid crystal polyester is a liquid crystal polyester having a melt melt of 1.5 g or more, more preferably 2 g or more of a liquid crystal polyester. In particular, a liquid crystal polyester having a melt tension of 1 g or more measured at a temperature about 25 ° C. higher than the flow start temperature is a liquid crystal polyester resin composition using a relatively large amount of a highly-inductive material filler as described later. However, the composition pellets tend to be manufactured stably. The melt tension here refers to a capillograph filled with liquid crystal polyester (pelletized liquid crystal polyester), a cylinder barrel diameter of 1 mm 0, a piston extrusion speed of 5. O mm, and a variable speed winder. It means the tension (g) when the sample is taken up in a filament shape while automatically accelerating and breaks, and several points of melt tension are measured at a temperature higher than the flow start temperature of the liquid crystalline polyester used for measurement. If the melt tension is 1 g or more at one point, it is defined as “liquid crystalline polyester having a melt tension of 1 g or more measured at a temperature higher than the flow start temperature” in the present invention. To do.
ここで、 流動開始温度より高い温度で測定されるメルトテンションが 1 g以上 の液晶ポリエステルを製造する方法について一例を挙げて説明する。  Here, an example is given and demonstrated about the method of manufacturing liquid crystalline polyester whose melt tension measured at the temperature higher than a flow start temperature is 1 g or more.
メルトテンションが高い液晶ポリエステルを得るには、 該液晶ポリエステルの 分子量を高くすることと、 より分子容が小さい構造単位の導入が効果的である。 前者では、 既述のとおり、 より高耐熱性の成形体が得られる観点からも、 固相重 合による液晶ポリエステル製造を行って、 その流動開始温度を 280°C以上とす ればよい。 In order to obtain a liquid crystal polyester having a high melt tension, it is effective to increase the molecular weight of the liquid crystal polyester and to introduce a structural unit having a smaller molecular volume. In the former case, as described above, from the viewpoint of obtaining a molded article with higher heat resistance, The liquid crystal polyester may be manufactured by combining the flow start temperatures of 280 ° C or higher.
また、 後者である分子容の小さい構造単位を導入するためには、 単環芳香族基 の導入が有効である。 この観点からは、 構造単位 ( i ) として、 p—ヒドロキシ 安息香酸から誘導される構造単位、 構造単位 (ii) として、 テレフタル酸及び Z 又はイソフタル酸から誘導される構造単位、 構造単位 (iii) として、 ハイド口 キノン及びレゾルシンから選ばれる芳香族ジオールから誘導される構造単位の導 入量を向上させる方法が挙げられる。 また、 より高温の流動開始温度の液晶ポリ エステルを得るという観点からは、 屈曲性の低い構造単位の導入量が好ましいの で、 構造単位 (ii) としては、 テレフタル酸から誘導される構造単位、 構造単位 (iii) としては、 ハイドロキノンから誘導される構造単位が好ましい。 また、 これらの構造単位にある芳香環には置換基を有していてもよいことを記したが、 分子容の小さい構造単位を導入する面では、 置換基を有していない構造単位の導 入が好ましい。  In order to introduce the latter structural unit having a small molecular volume, introduction of a monocyclic aromatic group is effective. From this point of view, as structural unit (i), structural unit derived from p-hydroxybenzoic acid, as structural unit (ii), structural unit derived from terephthalic acid and Z or isophthalic acid, structural unit (iii) As an example, a method for improving the amount of introduction of a structural unit derived from an aromatic diol selected from hydride quinone and resorcin is cited. In addition, from the viewpoint of obtaining a liquid crystal polyester having a higher flow starting temperature, the amount of structural units having low flexibility is preferred, so that as structural unit (ii), structural units derived from terephthalic acid, The structural unit (iii) is preferably a structural unit derived from hydroquinone. In addition, it has been described that the aromatic ring in these structural units may have a substituent, but in terms of introducing a structural unit having a small molecular volume, the structural unit having no substituent is introduced. Input is preferred.
一方、 本発明に用いられる液晶ポリエステルには、 2, 6—ナフタレンジィル 基を全芳香族基合計に対して 40モル%以上含有させることが必要であり、 2 , 6—ナフタレンジィル基を有する構造単位及び単環芳香族基を有する構造単位を 制御する必要がある。  On the other hand, the liquid crystalline polyester used in the present invention needs to contain 2,6-naphthalenediyl groups in an amount of 40 mol% or more based on the total aromatic groups, and has a structure having 2,6-naphthalenediyl groups. It is necessary to control the unit and the structural unit having a monocyclic aromatic group.
具体的に、 より好適な液晶ポリエステルを構成する構造単位の組み合わせを記 すと、 構造単位 ( i ) として、 2—ヒドロキシ一 6—ナフトェ酸に由来する構造 単位 ( i— a) を 40~75モル%、 構造単位 (ii) として、 2, 6—ナフタレ ンジカルボン酸に由来する構造単位 (ii— a) とテレフタル酸に由来する構造単 位 (ii一 b) との合計を 1 2. 5〜30モル%、 構造単位 (iii) として、 ハイ ドロキノンに由来する構造単位 (i i i— a) を 1 2. 5〜30モル06有し [ここ で構造単位 ( i — a) 、 (ii一 a) 、 ( i i一 b ) 及び ( i i i一 a ) の合計を 1 0 0モル%とする] 、 且つ構造単位 (ii) において、 (ii一 a) と (ii一 b) との モル比率が、 (ii— a) / [ (ii— a) + (ii-b) } ≥0. 5の関係を満たす ものである。 より好ましい液晶ポリエステルは、 構造単位 ( i一 a) 、 (i i-a) 、 (i i- b) 及び (i ii— a) の合計に対して、 ( ί — a) が 40~60モル%、 (ii一 a) 力《1 4. 5-29. 5モル%であって ( i i— a ) と ( i i— b ) の合計が 1 5 〜30モル%、 (iii— a) が 1 5〜30モル%であり、 且つ (i i) 構造単位に おいて、 (i i— a) と (i i一 b) との構造単位のモル比率が、 (ii— a) /Specifically, when a combination of structural units constituting a more preferable liquid crystal polyester is described, the structural unit (i-a) derived from 2-hydroxy-16-naphthoic acid is 40 to 75 as the structural unit (i). The total of the structural unit derived from 2,6-naphthalenedicarboxylic acid (ii-a) and the structural unit derived from terephthalic acid (ii 1 b) is 12.5. ~ 30 mol%, as structural unit (iii), has 12.5 to 30 mol 0 6 structural unit (iii-a) derived from hydroquinone [where structural unit (i-a), (ii a), (ii-1b) and (iii-1a) are 100 mol%], and in structural unit (ii), the molar ratio of (ii-1a) to (ii-1b) is , (Ii—a) / [(ii—a) + (ii-b)} ≥0.5. More preferred liquid crystalline polyesters are those in which (ί — a) is 40 to 60 mol% with respect to the sum of the structural units (i 1 a), (i ia), (i i- b) and (i ii— a), (Ii-a) force << 1 4.5-29. 5 mol%, the sum of (ii-a) and (ii-b) is 15-30 mol%, (iii-a) is 15-5 And (ii) in the structural unit, the molar ratio of the structural unit between (ii—a) and (ii-1b) is (ii—a) /
{ (i i-a) + (ii- b) } ≥0. 6の関係を満足する液晶ポリエステルであり、 特に好ましくは、 ( i — a) が 50〜60モル%、 (i i— a) が 1 5〜24. 5 モル%であって (i i— a) と (i i— b) の合計が 20~25モル%、 (i i i一 a) が 20〜25モル%、 であり、 且つ (i i) の構造単位において、 (i i一 a) と (ii一 b) の構造単位の共重合比率が、 (i i— a) / { (i i-a) + (ii— b) } ≥0. 6の関係を満足する液晶ポリエステルである。 {(i ia) + (ii-b)} A liquid crystalline polyester satisfying the relationship of ≥0.6, and particularly preferably (i — a) is 50 to 60 mol%, and (ii—a) is 15 ˜24.5 mol%, the sum of (ii—a) and (ii—b) is 20-25 mol%, (iii-a) is 20-25 mol%, and the structure of (ii) In the unit, the copolymerization ratio of the structural units (ii-1a) and (ii-1b) satisfies the relationship (ii—a) / {(i ia) + (ii—b)} ≥0.6 Liquid crystal polyester.
そして、 このような構造単位の組み合わせを誘導できる、 それぞれのモノマー を用い、 溶融重合と固相重合とを行い、 流動開始温度を 280°C以上、 好ましく は 295°C以上にすることによって、 メルトテンション 1 g以上を実現する液晶 ポリエステルを製造することが可能となる。  Then, by using each monomer capable of deriving such a combination of structural units, melt polymerization and solid phase polymerization are performed, and the flow start temperature is set to 280 ° C or higher, preferably 295 ° C or higher. This makes it possible to produce liquid crystal polyester that can achieve a tension of 1 g or more.
本発明に用いられる高誘電材料からなるフィラー (B) [以下、 「高誘電性フ イラ一 (B) 」 ということがある] は、 高誘電性組成物に適用されている各種公 知のフィラーを用いることができる。 具体的には、 特開 2004— 307607 号公報 (段落 [0030] ) に例示されているようなフィラー、 すなわち、 二酸化チ タン系、 チタン酸バリウム系、 チタン酸ジルコン酸バリウム系、 チタン酸スト口 ンチウム系、 チタン酸カルシウム系、 チタン酸ビスマス系、 チタン酸マグネシゥ ム系、 チタン酸バリウムネオジゥム系、 チタン酸バリウム錫系、 マグネシウム二 ォブ酸バリウム系、 マグネシウムタンタル酸バリウム系、 チタン酸鉛系、 ジルコ ン酸鉛系、 チタン酸ジルコン酸鉛系、 ニオブ酸鉛系、 マグネシウムニオブ酸鉛系、 ニッケルニオブ酸鉛系、 タングステン酸鉛系、 タングステン酸カルシウム系 及びマグネシウムタングステン酸鉛系から選ばれる高誘電材料からなるフィラー が適用可能である。  The filler (B) made of a high dielectric material used in the present invention (hereinafter sometimes referred to as “high dielectric filler (B)”) is a known filler applied to a high dielectric composition. Can be used. Specifically, a filler as exemplified in JP-A-2004-307607 (paragraph [0030]), that is, a titanium dioxide system, a barium titanate system, a barium titanate zirconate system, a titanate stopper Nitium, calcium titanate, bismuth titanate, magnesium titanate, barium neodymium titanate, barium tin titanate, magnesium barium titanate, barium magnesium tantalate, lead titanate , Lead zirconate, lead zirconate titanate, lead niobate, lead magnesium niobate, lead nickel niobate, lead tungstate, calcium tungstate and lead magnesium tungstate Fillers made of high dielectric materials are applicable.
前記例示された高誘電材料フィラーの中でも、 よリ高誘電率の成形体を得る観 点からは、 チタン系セラミックスフイラ一が好ましい。 「チタン系セラミックス フィラー」 とは、 チタンをその構成元素成分として有するセラミックスからなる フィラーであり、 該セラミックスとしては、 チタンの酸化物又は金属チタン酸塩 を具体的に挙げることができる。 ここで金属チタン酸塩とは、 バリウム、 スト口 ンチウム、 ビスマス、 ランタン、 ネオジゥム、 サマリウム、 アルミニウム、 カル シゥ厶及びマグネシウムからなる郡から選ばれる金属のチタン酸塩又はかかる群 から選ばれる複数の金属が固溶してなるチタン酸塩を挙げることができる。 Among the high dielectric material fillers exemplified above, a titanium ceramic filler is preferable from the viewpoint of obtaining a molded body having a high dielectric constant. "Titanium ceramics The “filler” is a filler made of ceramics having titanium as a constituent element component, and specific examples of the ceramics include titanium oxides and metal titanates. Here, the metal titanate refers to a metal titanate selected from a group consisting of barium, strontium, bismuth, lanthanum, neodymium, samarium, aluminum, calcium and magnesium, or a plurality of metals selected from such a group. There may be mentioned titanates formed by solid solution.
また、 より低誘電正接の成形体が得られる観点から、 該チタン系セラミックス フィラーのなかでも、 T i 02、 B a T i 03、 S r T i 03、 C a T i 03、 M g T i 03、 B a S r T i 206、 B a N d 2 T i 4012、 B a N d 2T i 5014, B a B i 2 N d 2T i 09等からなるフイラ一が好ましく、 T i 02、 B a T i 03、 S r T i 03、 B a S r T i 206、 B a N d 2T i 4012及び B a N d 2 T i 5014からなる群力、 ら選ばれるチタン系セラミックスからなるフィラーがさらに好ましい。 本発明に 用いられるチタン系セラミックスフイラ一は、 かかるチタン系セラミックスを主 として含むものであり、 企図せず含まれる不純物を排除するものではなく、 後述 するような表面処理を施したものであってもよい。 Further, from the viewpoint of obtaining a molded body having a lower dielectric loss tangent, among the titanium-based ceramic fillers, T i 0 2 , B a T i 0 3 , S r T i 0 3 , C a T i 0 3 , M g T i 0 3 , B a S r T i 2 0 6 , B a N d 2 T i 4 0 12 , B a N d 2 T i 5 0 14 , B a B i 2 N d 2 T i 0 A filler consisting of 9 etc. is preferred, T i 0 2 , B a T i 0 3 , S r T i 0 3 , B a S r T i 2 0 6 , B a N d 2 T i 4 0 12 and B group force consisting of a N d 2 T i 5 0 14, filler made of titanium based ceramics selected et more preferably. The titanium-based ceramic filler used in the present invention mainly contains such titanium-based ceramics, and does not exclude unintentionally contained impurities, and has been subjected to a surface treatment as described later. May be.
これらの高誘電材料フイラ一は、 二種以上を混合して使用してもよい。 また、 これらの高誘電材料フイラ一は、 チタネート系カップリング剤、 アルミ系カップ リング剤、 シラン系カップリング剤などの表面処理剤で表面処理を施されていて もよい。  These high dielectric material fillers may be used in combination of two or more. These high dielectric material fillers may be surface-treated with a surface treatment agent such as a titanate coupling agent, an aluminum coupling agent, or a silane coupling agent.
次に、 好適なチタン系セラミックスフィラーについて詳述する。  Next, a suitable titanium-based ceramic filler will be described in detail.
前記に例示したチタン系セラミックスは 公知の手段で製造することができる。 例えば、 バリウム、 ストロンチウム、 ビスマス、 ランタン、 ネオジゥム、 アルミ 二ゥム、 カルシウム及びマグネシウムからなる群から選ばれる金属の炭酸塩と、 酸化チタンとを混合 "焼成した後、 必要に応じて解砕、 粉砕又は分級等の操作を 行うことで、 チタン系セラミックスフイラ一を製造することができる。  The titanium-based ceramics exemplified above can be produced by known means. For example, a metal carbonate selected from the group consisting of barium, strontium, bismuth, lanthanum, neodymium, aluminum, calcium and magnesium, and titanium oxide are mixed and baked, then crushed and crushed as necessary Alternatively, a titanium-based ceramic filler can be manufactured by performing operations such as classification.
また、 市場から容易に入手できるチタン系セラミックスフイラ一を使用しても よく、 入手性と経済性の観点から勘案すると、 T i 02又は B a T i 03からなる フィラーが好ましい。 具体的に入手容易な市販品を例示すると、 B a T i 03な らなるフイラ一は、 富士チタン工業 (株) 製 Γ Η Ρ Β Τ— 1」 を挙げることがで きる。 また、 T i 02からなるフイラ一としては石原産業 (株) 製の 「CR— 6Further, a titanium-based ceramic filler that can be easily obtained from the market may be used. From the viewpoint of availability and economy, a filler made of T i 0 2 or Ba T i 0 3 is preferable. As a specific example of a commercially available product, a filler made of B a T i 0 3 is Γ Γ Ρ Β Τ-1 ”manufactured by Fuji Titanium Industry Co., Ltd. wear. In addition, as a filler consisting of T i 0 2 , “CR— 6” manufactured by Ishihara Sangyo Co., Ltd.
OJ 、 「CR— 58」 、 「CR—97」 や 「タイぺーク P F R404J 、 堺化学 (株) 製の 「SR— 1 J を挙げることができる。 なお、 チタン系セラミックスフ イラ一に含有されるチタン系セラミックスは、 単結晶、 多結晶のいずれであって もよく、 その結晶形も限定されない。 OJ, “CR-58”, “CR-97”, “Taipeke PF R404J” and “SR-1 J” manufactured by Sakai Chemical Industry Co., Ltd. The titanium-based ceramics may be either single crystal or polycrystalline, and the crystal form is not limited.
高誘電材料フィラーの形状についても限定されず、 微粉状、 繊維状、 板状のい ずれであってもよいが、 後述する液晶ポリエステル樹脂組成物の調製方法におい て、 液晶ポリエステルの加熱溶融体と良好に分散できるような形状のフィラーを 選択することが好ましい。 このように加熱溶融体に良好に分散できるようなフィ ラーを用いた液晶ポリエステル樹脂組成物は、 この樹脂組成物を成形して成形体 を得たときに、 成形体中に高誘電材料フィラーがほぼ均一に存在して、 フィラー に係る特性が良好に発現する傾向がある。 操作性の面から見た場合、 チタン系セ ラミックスフイラ一は、 その形状が微粉末状であると好ましい。 微粉末状のフィ ラーとしては、 その平均粒径が 0. 01〜 1 00〃mであるとより好ましく、 0. 1 0~20/ mであると、 さらに好ましい。 このような平均粒径は、 該平均粒径 が 2 O im以下である場合は電子顕微鏡による外観観察で求められるものであり、 平均粒径が 20 mを越える場合はレーザ一回折式光散乱法で求められるもので ある。  The shape of the high dielectric material filler is not limited, and may be any of fine powder, fiber, and plate. In the method for preparing a liquid crystal polyester resin composition described later, It is preferable to select a filler having a shape that can be well dispersed. Thus, the liquid crystal polyester resin composition using the filler that can be well dispersed in the heated melt has a high dielectric material filler in the molded product when the molded product is obtained by molding this resin composition. It exists almost uniformly and tends to exhibit good properties related to the filler. From the viewpoint of operability, the titanium ceramic filler is preferably finely powdered. The fine powdery filler is more preferably an average particle size of 0.01 to 100 μm, and further preferably 0.1 to 20 / m. Such an average particle diameter is obtained by external observation with an electron microscope when the average particle diameter is 2 O im or less, and when the average particle diameter exceeds 20 m, a laser single diffraction light scattering method is used. Is required.
平均粒径が 20 β m以下の微粉末状のチタン系セラミックスフイラ一である場 合、 その平均粒径を求める方法について簡単に説明する。 まず、 チタン系セラミ ックスフイラ一の外観を走査形電子顕微鏡 (SEM) を用いて SEM写真を測定 し、 得られた SEM写真を画像解析装置 (例えば株式会社二レコ社製 「ルーゼッ クス IIIUJ ) を用いて、 一次粒子の各粒径区間における粒子量 (%) をプロッ 卜して分布曲線を求め、 その累積した分布曲線より、 累積度 50%の粒径を平均 粒径とする。 得られる成形体に関し、 衝撃強度等の機械強度を向上させる観点か らは、 チタン系セラミックスフイラ一の平均粒径が 0. 23〜5 jumであると好 ましく、 0. 25〜1. 5 mの微粉末状であるとより好ましく、 0. 26〜0. 30jUmの微粉末状であると、 さらに好ましい。 また、 曲げ強度等の機械強度を向上させる観点からは、 繊維状のチタン系セラ ミックスフイラ一を用いるとよい。 かかる繊維状のチタン系セラミックスフイラ 一において、 その数平均繊維長が 0.5jumを越えて 1 O im以下であると好ま しく、 数平均繊維径が 0. 1 / m以上 1 jum以下であり、 ァスぺクト比 (数平均 繊維長 Z数平均繊維径) 2以上の繊維状であるとさらに好ましく、 数平均繊維長 が 1 jum以上 1 0 m以下であり、 数平均繊維径が 0. 1 / 以上0. 5/ m以 下であり、 アスペクト比 3以上の繊維状であると、 より好ましい。 このような数 平均繊維長や数平均繊維径は、 走査形電子顕微鏡 (SEM) による外観観察で求 められるものである。 In the case of a fine powder titanium-based ceramic filler with an average particle size of 20 βm or less, a method for obtaining the average particle size will be briefly described. First, the external appearance of a titanium ceramic filler was measured using a scanning electron microscope (SEM) and SEM photographs were measured. The obtained SEM photographs were then analyzed using an image analyzer (eg, “Luzex IIIUJ” manufactured by Nireco Corporation). Then, by plotting the particle amount (%) in each particle size section of the primary particles, a distribution curve is obtained, and from the accumulated distribution curve, the particle size having a cumulative degree of 50% is taken as the average particle size. From the viewpoint of improving mechanical strength such as impact strength, it is preferable that the average particle size of the titanium ceramic filler is 0.23 to 5 jum, and a fine particle size of 0.25 to 1.5 m. More preferably, it is in the form of powder, and more preferably in the form of fine powder of 0.26 to 0.30 jUm. From the viewpoint of improving the mechanical strength such as bending strength, it is preferable to use a fibrous titanium ceramic filler. In such a fibrous titanium-based ceramic filler, the number average fiber length is preferably more than 0.5 jum and not more than 1 O im, and the number average fiber diameter is not less than 0.1 / m and not more than 1 jum, Aspect ratio (Number average fiber length Z Number average fiber diameter) More preferably, it is in the form of 2 or more, the number average fiber length is 1 jum or more and 10 m or less, and the number average fiber diameter is 0.1. It is more preferably 0.5 / m or less and a fibrous form with an aspect ratio of 3 or more. Such number-average fiber length and number-average fiber diameter are determined by appearance observation with a scanning electron microscope (SEM).
前記に例示した市場から容易に入手できるチタン系セラミックスフイラ一をそ の形状で分類すると、 微粉状のチタン系セラミックスフイラ一としては、 「HP BT— 1 J 、 「CR— 60」 、 「CR— 58」 、 「CR— 97J 、 「SR— 1 J が例示され、 繊維状のチタン系セラミックスフイラ一としては、 「タイぺーク P F R404」 が例示される。  The titanium-based ceramic fillers that can be easily obtained from the above-exemplified market are classified according to their shapes. The fine powdered titanium-based ceramic fillers are “HP BT-1 J”, “CR-60”, “ “CR-58”, “CR-97J”, “SR-1 J” are exemplified, and “Taipaque PF R404” is exemplified as the fibrous titanium ceramic filler.
本発明の液晶ポリエステル樹脂組成物は、 本発明の目的を著しく損なわない範 囲であれば、 必要な特性に応じて補強剤等の添加剤が含有されていてもよい。  The liquid crystal polyester resin composition of the present invention may contain an additive such as a reinforcing agent depending on necessary properties as long as the object of the present invention is not significantly impaired.
ここで添加剤としては、 例えばガラス繊維、 シリカアルミナ繊維、 アルミナ繊 維、 炭素繊維などの繊維状補強剤;ホウ酸アルミニウムゥイスカー、 チタン酸力 リウ厶ゥイスカーなどの針状の補強剤; ガラスビーズ、 タルク、 マイ力、 グラフ アイ卜、 ウォラストナイ ト、 ドロマイ卜などの無機充填剤; フッ素樹脂、 金属石 鹼類などの離型改良剤;染料、 顔料などの着色剤;酸化防止剤;熱安定剤;紫外 線吸収剤;帯電防止剤;界面活性剤などが挙げられる。 これらの添加剤は二種以 上を併用してもよい。  Here, examples of additives include fibrous reinforcing agents such as glass fiber, silica alumina fiber, alumina fiber, and carbon fiber; acicular reinforcing agents such as aluminum borate whisker and titanic acid re-wiss whisker; glass Inorganic fillers such as beads, talc, my strength, graph eye candy, wollastonite, dolomite candy; mold release improvers such as fluororesins and metal stones; colorants such as dyes and pigments; antioxidants; thermal stability Agents; ultraviolet absorbers; antistatic agents; surfactants and the like. Two or more of these additives may be used in combination.
また、 高級脂肪酸、 高級脂肪酸エステル、 高級脂肪酸金属塩、 フルォロカーボ ン系界面活性剤等の外部滑剤効果を有する添加剤を用いることも可能である。 更 に、 少量であれば、 液晶ポリエステル以外の熱可塑性樹脂 (たとえば、 ポリアミ ド、 結晶性ポリエステル、 ポリフエ二レンスルフィ ド、 ポリエーテルケトン、 ポ リカーボネート、 ポリフエ二レンエーテル及びその変性物、 ポリスルホン、 ポリ エーテルスルホン、 ポリエーテルイミド等) や熱硬化性樹脂 (たとえば、 フエノ ール樹脂、 エポキシ樹脂等) を含有させてもよい。 このような液晶ポリエステル 以外の熱可塑性樹脂や熱硬化性樹脂を使用する場合、 液晶ポリエステル自身の液 晶性ゃ成形加工性を損なわないようにして、 その種類や添加量を選択することが 必要である。 It is also possible to use additives having an external lubricant effect, such as higher fatty acids, higher fatty acid esters, higher fatty acid metal salts, and fluorocarbon surfactants. In addition, if the amount is small, thermoplastic resins other than liquid crystal polyester (for example, polyamide, crystalline polyester, polyethylene sulfide, polyether ketone, polycarbonate, polyphenylene ether and its modified products, polysulfone, Ethersulfone, polyetherimide, etc.) and thermosetting resins (for example, phenol) Resin, epoxy resin, etc.). When using a thermoplastic resin or thermosetting resin other than liquid crystal polyester, it is necessary to select the type and amount of addition so as not to impair the liquid crystal polyester's liquid crystal properties and moldability. is there.
本発明に用いられる液晶ポリエステル樹脂組成物は、 液晶ポリエステル (A ) 、 高誘電材料フィラー (B ) 、 及び必要に応じて用いられる添加剤等のその他の成 分を混合することにより得られる。  The liquid crystal polyester resin composition used in the present invention is obtained by mixing the liquid crystal polyester (A), the high dielectric material filler (B), and other components such as additives used as necessary.
本発明の液晶ポリエステル樹脂組成物における、 液晶ポリエステル (A ) と高 誘電材料フィラー (B ) との含有比率は、 用いる高誘電材料フィラーの誘電特性 が十分に発現され、 かつ溶融加工性が良好となるようなバランスを勘案して決定 される。 具体的には、 配合される液晶ポリエステルと高誘電材料フィラーの合計 量 1 0 0体積%に対し、 高誘電材料フィラーが 2 0〜 5 0体積%であると好まし く、 高誘電材料フィラーの含有比率が 2 2〜 4 5体積%であるとさらに好ましし、。 次に、 前記のス卜ランド法等に係る組成物ペレツ卜の作製方法について説明す る。  In the liquid crystal polyester resin composition of the present invention, the content ratio of the liquid crystal polyester (A) and the high dielectric material filler (B) is such that the dielectric properties of the high dielectric material filler used are sufficiently expressed, and the melt processability is good. It is determined in consideration of such balance. Specifically, the high dielectric material filler is preferably 20 to 50% by volume with respect to 100% by volume of the total amount of liquid crystal polyester and high dielectric material filler to be blended. More preferably, the content ratio is 2 2 to 4 5% by volume. Next, a method for producing a composition pellets according to the above-mentioned Sland method will be described.
本発明の液晶ポリエステル樹脂組成物を得る調製方法において、 各原料成分を 溶融混練できる範囲であれば、 その配合手段は特に限定されない。 具体的には、 液晶ポリエステル (A ) と高誘電材料フィラー (B) 、 必要に応じて添加される その他の成分を各々別々に溶融混合機に供給する方法、 これらの原料成分を乳鉢、 ヘンシェルミキサー、 ボールミル、 リボンプレンダーなどを利用して予備混合し てから溶融混合機に供給する方法等が挙げられる。 このような溶融混練 (熱溶 融) により、 液晶ポリエステル樹脂組成物は加熱溶融体を形成する。  In the preparation method for obtaining the liquid crystal polyester resin composition of the present invention, the blending means is not particularly limited as long as each raw material component can be melt-kneaded. Specifically, liquid crystal polyester (A) and high dielectric material filler (B), a method of supplying other components separately added to the melt mixer as needed, these raw material components in a mortar, Henschel mixer And a method of premixing using a ball mill, a ribbon blender, etc., and then feeding to a melt mixer. By such melt kneading (thermal melting), the liquid crystal polyester resin composition forms a heated melt.
溶融混練における温度条件は、 使用している液晶ポリエステル (A ) の流動開 始温度 T p [°C] を基点にして適宜最適化できる。 好ましくは、 T pより 1 0 °C 低い温度から T pより 1 0 0 °C高い温度の温度範囲であり、 より好ましくは、 T pより 1 0 °C低い温度から T pより 7 0 °C高い温度の温度範囲であり、 さらによ リ好ましくは、 T pより 1 0 °C低い温度から T pより 5 0 °C高い温度の温度範囲 である。 また、 液晶ポリエステル (A ) として 2種類以上を使用した場合は、 こ の 2種類以上の液晶ポリエステルの混合物に対して、 既述した方法で流動開始温 度を求め、 その流動開始温度を基点にすればよい。 The temperature condition in the melt-kneading can be appropriately optimized based on the flow start temperature T p [° C] of the liquid crystal polyester (A) used. Preferably, the temperature range is from 10 ° C below T p to 100 ° C above T p, more preferably from 10 ° C below T p to 70 ° C below T p The temperature range is a high temperature, and more preferably, the temperature range is 10 ° C lower than Tp to 50 ° C higher than Tp. If two or more types of liquid crystalline polyester (A) are used, For the mixture of two or more liquid crystal polyesters, the flow start temperature is obtained by the method described above, and the flow start temperature may be used as a base point.
溶融混練で得られた液晶ポリエステル樹脂組成物の加熱溶融体は、 例えば単軸 又は多軸押出機、 好ましくは二軸押出機、 バンバリ一式混鍊機、 ロール式混練機 等により紐状に押し出して紐状組成物とした後、 この紐状組成物 (ストランド) を冷却固化し、 これを切断するといつた一連の操作により、 組成物ペレツ卜に加 ェできる。 また、 前記ストランドを冷却固化させることなく、 押出機のダイスか ら吐出した直後、 ダイスカッターにより、 切断してペレツ卜に加工するホット力 ット法も用いることができる。 但し、 ストランド法とホットカツ卜法を生産性の 観点から比較すると、 よリ生産性が良好となる面でス卜ランド法が有利である。 このように、 単軸又は二軸押出機を用いた組成物ペレットの調製方法は、 溶融 混練からペレツ卜化までを連続して行うことができることから操作性が容易とな る。  The heated melt of the liquid crystalline polyester resin composition obtained by melt-kneading is extruded into a string shape by, for example, a single-screw or multi-screw extruder, preferably a twin-screw extruder, a Banbury set kneader, a roll kneader or the like. After forming the string-like composition, the string-like composition (strand) is cooled and solidified, and when it is cut, it can be added to the composition pellets by a series of operations. Further, it is also possible to use a hot force method in which the strand is cut and processed into a pellet by a die cutter immediately after being discharged from the die of the extruder without being cooled and solidified. However, when the strand method and the hot-cut method are compared from the viewpoint of productivity, the Strand method is advantageous in terms of better productivity. As described above, the method for preparing the composition pellets using a single screw or twin screw extruder facilitates operability because it can continuously perform from melt-kneading to pelletizing.
本発明の液晶ポリエステル樹脂組成物においては、 高誘電材料フィラーを比較 的高充填したとしても、 ス卜ランド法ゃホッ卜カツト法に代表される公知のペレ ット製造手段で、 組成物ペレツ卜を、 安定的に、 生産性良く製造することが可能 である。  In the liquid crystal polyester resin composition of the present invention, even if the high dielectric material filler is relatively high filled, the pellet method is a known pellet manufacturing means represented by the hot cut method. Can be manufactured stably and with high productivity.
前記のようにして得られた組成物ペレツ卜の形状は円柱状でも角柱状でもよい。 また、 断面形状は円形、 略円形、 楕円形、 星形いずれでもよい。 一般的には円柱 状の組成物ペレツ卜とするのがよい。 なお、 この断面形状は押出機の押出口の形 状によつて適宜最適化できる。  The shape of the composition pellets obtained as described above may be cylindrical or prismatic. The cross-sectional shape may be any of a circle, a substantially circle, an ellipse, and a star. In general, it is better to use a columnar composition, Perez®. This cross-sectional shape can be appropriately optimized depending on the shape of the extrusion port of the extruder.
組成物ペレツ卜の長さは、 後述する成形方法によって適宜好適な長さが採用さ れるが、 平均で表して 0 . 1〜 1 O m mの長さのものが好ましく、 1〜5 m mの 長さのものがより好ましい。 ペレットの直径 Z長さの比は、 0 . 1 ~ 1 0の範囲 が好ましく、 0 . 2〜3の範囲がさらに好ましく、 0 . 3 ~ 1の範囲が特に好ま しい。  The length of the composition pellets is appropriately selected according to the molding method to be described later, but it is preferably 0.1 to 1 O mm on average, and 1 to 5 mm long. More preferable. The ratio of the diameter Z length of the pellets is preferably in the range of 0.1 to 10, more preferably in the range of 0.2 to 3, and particularly preferably in the range of 0.3 to 1.
かくして得られたペレツト状の液晶ポリエステル樹脂組成物は、 種々慣用の成 形方法に適用可能である。 成形方法としては、 例えば、 射出成形あるいはプレス 成形等の溶融成形が好ましく、 特に射出成形が好ましい。 射出成形としては、一 般射出成形、 射出圧縮成形、 2色成形、 サンドイッチ成形等を具体的に挙げるこ とができ、 これらの中でも一般射出成形、 射出圧縮成形が好ましい。 これらの成 形方法のいずれにおいても、 本発明の液晶ポリエステル樹脂組成物は、 操作性に 優れた組成物ペレツ卜として得られるので、 成形機に連続して供給するのも容易 であり、 計量■保管の面でも良好である。 The pellet-like liquid crystal polyester resin composition thus obtained can be applied to various conventional molding methods. As the molding method, for example, melt molding such as injection molding or press molding is preferable, and injection molding is particularly preferable. As injection molding, Specific examples include general injection molding, injection compression molding, two-color molding, and sandwich molding. Among these, general injection molding and injection compression molding are preferable. In any of these forming methods, the liquid crystal polyester resin composition of the present invention can be obtained as a composition pellets having excellent operability, so that it can be easily supplied continuously to a molding machine. It is also good in terms of storage.
本発明の液晶ポリエステル樹脂組成物を用いて得られる成形体は、 高誘電材料 フィラーを比較的高充填しているにも関わらず、 ASTM D790の試験法 The molded product obtained by using the liquid crystalline polyester resin composition of the present invention is a test method of ASTM D790, although it is relatively filled with a high dielectric material filler.
(Me t h o d 1の 3点曲げ法) に従って、 測定される曲げ強度が 1 OOMP a 以上を有し、 極めて高機械強度の成形体を得ることが可能となる。 According to (Method 1 three-point bending method), the measured bending strength is 1 OOMPa or more, and it becomes possible to obtain a molded article with extremely high mechanical strength.
本発明の液晶ポリエステル樹脂組成物を用いて得られる成形体は、 高誘電材料 フィラーを比較的高充填しているにも関わらず、 ASTM D256の試験法 (ノッチなし) に従って、 測定される衝撃強度が 1 OOJ m以上を有し、 極め て高い衝撃強度の成形体を得ることが可能となる。  The molded product obtained using the liquid crystalline polyester resin composition of the present invention has a measured impact strength according to the test method of ASTM D256 (no notch) even though the high dielectric material filler is filled relatively high. However, it is possible to obtain a molded article having an extremely high impact strength.
本発明に用いられる液晶ポリエステル (A) は、 既述のように 2. 6—ナフタ レンジィル基を特定量含み、 流動開始温度が 280°C以上且つ流動開始温度より も高い温度で測定されるメル卜テンションが 1 g以上であることから、 耐熱性及 び機械強度に優れたものである。 そして、 本発明の液晶ポリエステル樹脂組成物 は、 組成物ペレツ卜として成形体を成形することにより、 高誘電材料フィラー As described above, the liquid crystalline polyester (A) used in the present invention contains a specific amount of 2.6-naphthalenediyl group and has a flow start temperature of 280 ° C. or higher and a temperature higher than the flow start temperature.卜 The tension is 1 g or more, so it has excellent heat resistance and mechanical strength. The liquid crystal polyester resin composition of the present invention comprises a high dielectric material filler by molding a molded body as a composition pellets
(B) を比較的高充填したとしても、 高誘電材料フイラ一 (B) の分散性が良好 になって、 成形体中で高誘電材料フィラー (B) が凝集するのを良好に抑制する ことができる。 このような成形体は、 液晶ポリエステル自身が有している、 優れ た機械強度が十分に維持されて、 極めて機械強度に優れた成形体を得ることがで さる。 Even when (B) is filled relatively high, the dispersibility of the high dielectric material filler (B) is improved, and the high dielectric material filler (B) is well suppressed from agglomerating in the molded body. Can do. Such a molded product can be obtained by maintaining the excellent mechanical strength of the liquid crystalline polyester itself and having an extremely excellent mechanical strength.
また、 本発明の樹脂組成物を用いて得られる成形体は、 高誘電材料フィラー、 特にチタン系セラミックスフイラ一が係る、 優れた誘電効果が十分に発現され、 測定温度 23 °C、 周波数 1 G H Zでの比誘電率が 6以上を発現することも可能で ある。 そして、 予め組成物ペレツ卜にして成形された成形体は、 当該成形体中、 高誘電材料フィラーが略均一に存在することになリ、 前記の誘電特性が成形体中 で部分的に変動するような不都合を、 極めて良好に回避することができる。 このような成形方法により、 金型等を適宜最適化して、 所望の形状,寸法の成 形体を得ることができる。 当該成形体は、 既述のとおり優れた誘電特性と高機械 強度を兼ね備え、 さらに液晶ポリエステルが有する高度の耐熱性が十分に保持さ れているので、 アンテナを製造するための部材、 特にアンテナ用 »体に好適に使 用される。 In addition, the molded product obtained using the resin composition of the present invention exhibits a sufficient dielectric effect, which is related to a high dielectric material filler, particularly a titanium ceramic filler, and has a measurement temperature of 23 ° C. and a frequency of 1 it is also possible to dielectric constant in GH Z expresses six or more. In addition, in the molded body that has been molded in advance with the composition pellets, the high-dielectric material filler is substantially uniformly present in the molded body, and the dielectric characteristics partially vary in the molded body. Such inconvenience can be avoided very well. By such a molding method, a mold having a desired shape and size can be obtained by appropriately optimizing the mold and the like. As described above, the molded body has excellent dielectric properties and high mechanical strength, and further retains the high degree of heat resistance of liquid crystalline polyester, so it is a member for manufacturing antennas, especially for antennas. »Used suitably for the body.
そして、 このアンテナ用基体は、 必要に応じてエッチング等を施し、 電極 (放 射電極、 グランド電極) を形成せしめることによりアンテナを製造することがで きる。 電極となり得る導電層の形成手段は、 金属めつき、 スパッタリング、 ィォ ンプレーティング、 真空蒸着、 半田付け等の公知の方法が採用される。 また、 所 望の電極形状に加工された金属箔を接着剤等で接着又は圧着してもよく、 予め金 属箔を成形体表面に接着又は圧着させた後に、 所望の形状となるように、 接着又 は圧着された金属箔をパターニングしてもよい。  The antenna substrate can be manufactured by etching or the like as necessary to form electrodes (radiation electrode, ground electrode). As a means for forming a conductive layer that can serve as an electrode, known methods such as metal plating, sputtering, ion plating, vacuum evaporation, and soldering are employed. Alternatively, the metal foil processed into the desired electrode shape may be bonded or pressure-bonded with an adhesive or the like. After the metal foil is bonded or pressure-bonded to the surface of the molded body in advance, the desired shape is obtained. A metal foil bonded or pressed may be patterned.
かくして得られるアンテナは、 アンテナ用基体の誘電特性や機械強度が極めて 優れるため、 従来のものより、 小型化が容易であり、 例えば、 ブルートゥースな どの無線 L A N用、 携帯電話' P H Sあるいはモパイル機器用、 G P S (グロ一 バルポジショニングシステム) 用、 E T C (エレクト口リック! ^一ルコレクショ ンシステム) 用、 衛星通信用などのアンテナとして、 特に好適に用いられる。 このように、 本発明の液晶ポリエステル樹脂組成物を用いて得られるアンテナ は、 高機械強度、 高耐熱性等によって、 外環境に対する耐久性に優れているので、 屋外設置用アンテナに好適に使用可能である。 また、 優れた誘電特性による小型 化の効果により、 自動車搭載用アンテナ又は携帯機器用アンテナとしても、 極め て優れている。  Since the antenna substrate thus obtained has extremely excellent dielectric characteristics and mechanical strength, the antenna substrate is easier to miniaturize than conventional ones. For example, for wireless LAN such as Bluetooth, mobile phone's PHS or mopile equipment, It is particularly suitable for use as an antenna for GPS (Global Positioning System), ETC (Electric Rick! ^ One Collection System), and satellite communications. As described above, the antenna obtained using the liquid crystal polyester resin composition of the present invention is excellent in durability against the external environment due to high mechanical strength, high heat resistance, etc., and thus can be suitably used as an antenna for outdoor installation. It is. In addition, due to the effect of miniaturization due to its excellent dielectric properties, it is extremely excellent as an antenna for automobiles or antennas for portable devices.
実施例  Example
以下、 本発明を実施例によって、 より詳細に説明するが、 本発明はこれらの実 施例に限定されるものではない。  EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
尚、 本発明においては、 以下の測定を行った。  In the present invention, the following measurements were performed.
(流動開始温度測定方法)  (Flow start temperature measurement method)
フローテスター 〔島津製作所社製、 「C F T— 5 0 0型」 〕 を用いて試料量約 2 gを内径 1 mm、 長さ 1 0 mmのダイスを取付けた毛細管型レオメーターに充 填させる。 9. 8MP a ( 1 00 k g/cm2) の荷重下において昇温速度 4°C 分で液晶性ポリエステルをノズルから押出すときに、 溶融粘度が 4800 P a - s (48000ボイズ) を示す温度を流動開始温度とした。 Using a flow tester (manufactured by Shimadzu Corporation, “CFT-500 type”), fill a capillary rheometer with a sample size of about 2 g and a die with an inner diameter of 1 mm and a length of 10 mm. To fill. 9. Temperature at which melt viscosity is 4800 Pa-s (48000 boise) when liquid crystalline polyester is extruded from the nozzle at a heating rate of 4 ° C under a load of 8 MPa (100 kg / cm 2 ) Was defined as the flow start temperature.
(メルトテンション測定)  (Melt tension measurement)
キヤピログラフ 1 B型 (東洋精機製作所製) を用いて、 試料約 1 O gを仕込み、 シリンダーバレル径 1 mm0、 ピストンの押出し速度は 5. OmmZ分、 速度可 変巻取機で自動昇速しながら試料を糸状に引き取り、 破断したときの張力 (g) を測定した。  Using Capillograph 1 B type (manufactured by Toyo Seiki Seisakusho), about 1 O g of sample was charged, cylinder barrel diameter 1 mm0, piston extrusion speed was 5. OmmZ, variable speed The sample was taken up into a thread and the tension (g) when it was broken was measured.
(曲げ強度)  (Bending strength)
液晶ポリエステル樹脂組成物を造粒し、 得られた組成物ペレットを 1 20°Cで 3時間乾燥させた後、 射出成形機 (日精樹脂工業 (株) 製、 PS40E5AS E 型) により、 シリンダー温度 350°C、 金型温度 1 30°Cで成形して、 長さ 1 2 7mm、 幅 1 2. 7 mm、 厚さ 6. 4 mmの試験片 (サンプル) を作製した。 そ して、 ASTMD790の試験法に従い、 これらのサンプルの曲げ強度を測定し  After granulating the liquid crystal polyester resin composition and drying the resulting composition pellets at 120 ° C for 3 hours, the cylinder temperature was 350 using an injection molding machine (manufactured by Nissei Plastic Industry Co., Ltd., PS40E5AS E type). A test piece (sample) having a length of 1 2 7 mm, a width of 1 2.7 mm, and a thickness of 6.4 mm was formed at a mold temperature of 1 ° C. and a mold temperature of 30 ° C. Then, according to the test method of ASTMD790, the bending strength of these samples was measured.
(はんだ発泡試験) (Solder foam test)
液晶ポリエステル樹脂組成物を造粒し、 得られたペレツ卜を 1 20°Cで 3時間 乾燥させた後、 射出成形機 (日精樹脂工業 (株) 製、 PS40E5ASE型) を 用いて、 シリンダー温度 350°C、 金型温度 1 30°Cで、 J I S K 71 1 31 After granulating the liquid crystal polyester resin composition and drying the resulting pellets for 3 hours at 120 ° C, using an injection molding machine (PS40E5ASE, manufactured by Nissei Plastic Industry Co., Ltd.), cylinder temperature 350 ° C, mold temperature 1 30 ° C, JISK 71 1 31
(1 /1 ) 号ダンベル (厚み 1. 2mm) のサンプルを成形した。 得られたサン プルを、 260°Cの H 60 Aはんだ (スズ 60%、 鉛 40%) に 60秒間浸潰し た。 その後、 サンプルを引き上げ、 発泡や膨れの発生の有無を確認した。 Samples of (1/1) dumbbell (thickness 1.2 mm) were molded. The obtained sample was immersed in 260 ° C H 60 A solder (60% tin, 40% lead) for 60 seconds. The sample was then pulled up and checked for foaming and swelling.
(衝撃強度)  (Impact strength)
液晶ポリエステル樹脂組成物を造粒し、 得られた組成物ペレツトを 1 20°Cで 3時間乾燥させた後、 射出成形機 (日精樹脂工業 (株) 製、 PS40E5ASE 型) により、 シリンダー温度 350°C、 金型温度 1 30°Cで成形して、 長さ 1 2 7 mm. 幅 1 2. 7mm, 厚さ 6. 4 mmの成形体を作製した。 この成形体を長 さ 64mm、 幅 1 2. 7mm、 厚さ 6. 4 mmとなるように切削し、 試験片 (サ ンプル) とした。 そして、 AS TMD 256の試験法 (ノッチなし) に従い、 こ れらのサンプルの衝撃強度を測定した。 After granulating the liquid crystal polyester resin composition and drying the resulting pellet at 120 ° C for 3 hours, the cylinder temperature is 350 ° C using an injection molding machine (manufactured by Nissei Plastic Industry Co., Ltd., PS40E5ASE type). C. Molded at a mold temperature of 1 30 ° C to produce a compact with a length of 1 2 7 mm, a width of 1 2.7 mm, and a thickness of 6.4 mm. This molded body was cut to a length of 64 mm, a width of 12.7 mm, and a thickness of 6.4 mm. Sample). The impact strength of these samples was measured according to the test method of AS TMD 256 (no notch).
合成例 1 Synthesis example 1
攪拌装置、 トルクメータ、 窒素ガス導入管、 温度計および還流冷却器を備えた 反応器に、 2—ヒドロキシ一 6—ナフトェ酸 1 034. 99 g (5. 5モル) 、 バイドロキノン 272. 52 g (2. 475モル、 0. 225モル過剰仕込み) 、 2, 6—ナフタレンジカルボン酸 378. 33 g (1. 75モル) 、 テレフタル 酸 83. 07 g (0. 5モル) 、 無水酢酸 1 226. 87 g (1 2. 0モル) お よび触媒として 1—メチルイミダゾール 0. 1 7 gを添加し、 室温で 1 5分間攪 拌した後、 攪拌しながら昇温した。 内温が 1 45°Cとなったところで、 同温度を 保持したまま 1時間攪拌した。  In a reactor equipped with a stirrer, torque meter, nitrogen gas inlet tube, thermometer and reflux condenser, 2-hydroxymono-6-naphthoic acid 1 034. 99 g (5.5 mol), bidroquinone 272. 52 g (2.475 mol, 0.225 mol excess charge), 2,6-Naphthalenedicarboxylic acid 378.33 g (1.75 mol), terephthalic acid 83.07 g (0.5 mol), acetic anhydride 1 226. 87 g (12.0 mol) and 0.17 g of 1-methylimidazole as a catalyst were added, and the mixture was stirred at room temperature for 15 minutes, and then heated with stirring. When the internal temperature reached 145 ° C, the mixture was stirred for 1 hour while maintaining the same temperature.
次に、 留出する副生酢酸、 未反応の無水酢酸を留去しながら、 1 45°Cから 3 1 0°Cまで 3時間 30分かけて昇温した。 同温度で 3時間保温して液晶ポリエス テルを得た。 得られた液晶ポリエステルを室温に冷却し、 粉砕機で粉砕して、 粒 子径が約 0. 1 ~1 mmの液晶ポリエステルの粉末 (プレボリマー 1 ) を得た。 このプレポリマー 1についてフローテスターを用いて、 流動開始温度を測定し たところ、 267°Cであった。  Next, the temperature was raised from 145 ° C. to 3 10 ° C. over 3 hours and 30 minutes while distilling off distilling by-product acetic acid and unreacted acetic anhydride. A liquid crystal polyester was obtained by incubating at the same temperature for 3 hours. The obtained liquid crystal polyester was cooled to room temperature and pulverized by a pulverizer to obtain a liquid crystal polyester powder (prepolymer 1) having a particle diameter of about 0.1 to 1 mm. The flow initiation temperature of this prepolymer 1 was measured using a flow tester and found to be 267 ° C.
合成例 2 Synthesis example 2
合成例 1で得られたプレポリマー 1を、 25°Cから 250°Cまで 1時間かけて 昇温したのち、 同温度から 293°Cまで 5時間かけて昇温し、 次いで同温度で 5 時間保温して固相重合させた。 固相重合後、 冷却したところ、 液晶ポリエステル が粉末状で得られた。 この液晶ポリエステルを L C P 1とする。 L C P 1につい てフローテスターを用いて、 流動開始温度を測定したところ、 31 7°Cであった。 合成例 3  Prepolymer 1 obtained in Synthesis Example 1 was heated from 25 ° C to 250 ° C over 1 hour, then heated from the same temperature to 293 ° C over 5 hours, and then at the same temperature for 5 hours The mixture was kept warm and subjected to solid phase polymerization. After solid phase polymerization, the liquid crystal polyester was obtained in the form of powder when cooled. This liquid crystal polyester is designated as L C P 1. The flow initiation temperature of L CP 1 was measured using a flow tester and found to be 317 ° C. Synthesis example 3
合成例 1で得られたプレポリマ一 1を、 25°Cから 250°Cまで 1時間かけて 昇温したのち、 同温度から 310°Cまで 10時間かけて昇温し、 次いで同温度で 5時間保温して固相重合させた。 固相重合後、 冷却したところ、 液晶ポリエステ ルが粉末状で得られた。 この液晶ポリエステルを LCP 2とする。 得られた LC P 2についてフローテスターを用いて、 流動開始温度を測定したところ、 33The prepolymer 1 obtained in Synthesis Example 1 was heated from 25 ° C to 250 ° C over 1 hour, then heated from the same temperature to 310 ° C over 10 hours, and then at the same temperature for 5 hours. The mixture was kept warm and subjected to solid phase polymerization. Upon cooling after solid phase polymerization, liquid crystal polyester was obtained in powder form. This liquid crystal polyester is designated as LCP 2. LC obtained When the flow start temperature was measured for P 2 using a flow tester, 33
3°Cであった。 3 ° C.
合成例 1〜3で得られた LCP 1及び L CP 2は、 使用したモノマーのモル比 率から、 共重合モル分率を求めると、 構造単位 ( i ) :構造単位 (ii) :構造単 位 (iii) の比が 55. ひモル%: 22. 5モル% : 22. 5モル0 /oとなる。 こ れを全芳香族基合計に対する 2, 6—ナフタレンジィル基の含有比で表すと、 7LCP 1 and LCP 2 obtained in Synthesis Examples 1 to 3 were obtained by calculating the copolymerization mole fraction from the molar ratio of the monomer used. Structural unit (i): Structural unit (ii): Structural unit The ratio of (iii) is 55. mol%: 22.5 mol%: 22.5 mol 0 / o. This can be expressed as the content ratio of 2,6-naphthalenediyl group to the total aromatic group total.
2. 5モル%となる。 2. 5 mol%.
合成例 4 Synthesis example 4
合成例 1と同様の反応器に、 2—ヒドロキシー 6—ナフ卜ェ酸 987. 95 g (5. 25モル) 、 4, 4' —ジヒドロキシビフエニル 486. 47 g (2. 6 1 2モル、 0. 237モル過剰仕込み) 、 2, 6—ナフタレンジカルポン酸 51 In the same reactor as in Synthesis Example 1, 2-hydroxy-6-naphthoic acid 987.95 g (5.25 mol), 4,4′-dihydroxybiphenyl 486.47 g (2.6 1 2 mol, 0. 237 molar excess charge), 2,6-Naphthalenedicarboxylic acid 51
3. 45 g (2. 375モル) 、 無水酢酸 1 1 74. 04 g (1 1. 5モル) お よび触媒として 1ーメチルイミダゾール 0. 1 94 gを添加し、 室温で 1 5分間 攪拌した後、 攪拌しながら昇温した。 内温が 1 45°Cとなったところで、 同温度 を保持したまま 1時間攪拌し、 触媒である 1ーメチルイミダゾール 5. 83 g をさらに添加した。 3. 45 g (2.375 mol), acetic anhydride 1 1 74.04 g (1 1.5 mol) and 1-methylimidazole 0.194 g as catalyst were added and stirred at room temperature for 15 minutes Then, the temperature was raised while stirring. When the internal temperature reached 145 ° C, the mixture was stirred for 1 hour while maintaining the same temperature, and 5.83 g of 1-methylimidazole as a catalyst was further added.
次に、 留出する副生酢酸、 未反応の無水酢酸を留去しながら、 1 45°Cから 3 1 0°Cまで 3時間 30分かけて昇温した。 同温度で 2時間保温して液晶性ポリエ ステルを得た。 得られた液晶性ポリエステルを室温に冷却し、 粉砕機で粉砕して、 粒子径が約 0. 1〜 1 mmの液晶性ポリエステルの粉末 (プレボリマー 2) を得 このプレボリマー 2についてフローテスターを用いて、 流動開始温度を測定し たところ、 273°Cであった。  Next, the temperature was raised from 145 ° C. to 3 10 ° C. over 3 hours and 30 minutes while distilling off distilling by-product acetic acid and unreacted acetic anhydride. A liquid crystalline polyester was obtained by incubating at the same temperature for 2 hours. The obtained liquid crystalline polyester is cooled to room temperature and pulverized by a pulverizer to obtain a liquid crystalline polyester powder (prebolimer 2) having a particle size of about 0.1 to 1 mm using a flow tester. The flow starting temperature was measured and found to be 273 ° C.
得られたプレポリマー 2を、 25 °Cから 250°Cまで 1時間かけて昇温したの ち、 同温度から 300°Cまで 1 0時間かけて昇温し、 次いで同温度で 1 2時間保 温して固相重合させた。 固相重合後冷却したところ、 液晶ポリエステルが粉末状 で得られた。 この液晶ポリエステルを LCP 3とする。 L CP 3についてフロー テスターを用いて、 流動開始温度を測定したところ、 324°Cであった。  The resulting prepolymer 2 was heated from 25 ° C to 250 ° C over 1 hour, then heated from the same temperature to 300 ° C over 10 hours, and then maintained at the same temperature for 12 hours. Solid state polymerization was carried out by heating. When cooled after solid phase polymerization, liquid crystalline polyester was obtained in powder form. This liquid crystal polyester is designated as LCP 3. The flow initiation temperature of L CP 3 measured using a flow tester was 324 ° C.
合成例 5 合成例 4と同様にして得られたプレボリマ一 2を、 25°Cから 250°Cまで 1 時間かけて昇温したのち、 同温度から 325°Cまで 10時間かけて昇温し、 次い で同温度で 1 2時間保温して固相重合させた。 固相重合後冷却したところ、 液晶 ポリエステルが粉末状で得られた。 この液晶ポリエステルを LCP 4とする。 L CP 4についてフローテスターを用いて、 流動開始温度を測定したところ、 34 9°Cであった。 Synthesis example 5 The temperature of Prevolima 1 obtained in the same manner as in Synthesis Example 4 was raised from 25 ° C to 250 ° C over 1 hour, then from 325 ° C to 325 ° C over 10 hours, and then Solid-state polymerization was carried out at the same temperature for 12 hours. Upon cooling after solid phase polymerization, liquid crystal polyester was obtained in powder form. This liquid crystal polyester is designated as LCP 4. The flow initiation temperature of LCP4 was measured using a flow tester and found to be 34 9 ° C.
合成例 4〜5で得られた LCP 3及び LCP4は、 使用したモノマーのモル比 率から、 共重合モル分率は、 構造単位 ( i ) :構造単位 (ii) :構造単位 LCP 3 and LCP4 obtained in Synthesis Examples 4 to 5 are based on the molar ratio of the monomers used, and the copolymerization mole fraction is structural unit (i) : structural unit (ii): structural unit
(iii) の比が、 52. 5モル% : 23. 75モル% : 23. 75モル%となる これを全芳香族基合計に対する 2, 6—ナフタレンジィル基の含有比で表すと、 76. 3モル%となる。  The ratio of (iii) is 52.5 mol%: 23.75 mol%: 23.75 mol% This is expressed in terms of the content ratio of 2,6-naphthalenediyl group to the total of all aromatic groups. 3 mol%.
合成例 6 Synthesis example 6
合成例 1と同様の反応器に、 p—ヒドロキシ安息香酸を 91 1 g (6. 6モ ル) 、 4, 4' ージヒドロキシビフエニルを 409 g (2. 2モル) 、 イソフタ ル酸を 91 g (0. 55モル) 、 テレフタル酸を 274 g ( 1. 65モル) 、 無 水酢酸を 1 235 g (1 2. 1モル) 用いて攪拌した。 次いで、 1—メチルイミ ダゾールを 0. 1 7 g添加し反応器内を十分に窒素ガスで置換した後、 窒素ガス 気流下で 1 5分かけて 1 50°Cまで昇温させ、 温度を保持して 1時間還流させた。 その後、 1—メチルイミダゾールを 1. 7 g添加した後、 留出する副生酢酸、 未 反応の無水酢酸を留去しながら 2時間 50分かけて 320°Cまで昇温し、 トルク の上昇が認められる時点を反応終了とみなし、 内容物を取り出した。 得られた液 晶性ポリエステルを室温に冷却し、 粉砕機で粉砕して、 粒子径が約 0. 1〜1 m mの液晶性ポリエステルの粉末 (プレボリマー 3) を得た。  In the same reactor as in Synthesis Example 1, 91 g (6.6 mol) of p-hydroxybenzoic acid, 409 g (2.2 mol) of 4,4′-dihydroxybiphenyl, and 91 of isophthalic acid were mixed. The mixture was stirred using 1 g (0.55 mol), 274 g (1.65 mol) of terephthalic acid and 1235 g (12.1 mol) of anhydrous acetic acid. Next, 0.17 g of 1-methylimidazole was added and the inside of the reactor was sufficiently replaced with nitrogen gas. Then, the temperature was raised to 150 ° C. over 15 minutes under a nitrogen gas stream, and the temperature was maintained. Reflux for 1 hour. Thereafter, 1.7 g of 1-methylimidazole was added, and the temperature was raised to 320 ° C over 2 hours and 50 minutes while distilling off the by-product acetic acid to be distilled and unreacted acetic anhydride. The time at which it was observed was regarded as the end of the reaction, and the contents were taken out. The obtained liquid crystalline polyester was cooled to room temperature and pulverized with a pulverizer to obtain a liquid crystalline polyester powder (prepolymer 3) having a particle size of about 0.1 to 1 mm.
このプレボリマー 3についてフローテスターを用いて、 流動開始温度を測定し たところ、 257°Cであった。  The flow starting temperature of this Prebomer 3 was measured using a flow tester and found to be 257 ° C.
得られたプレボリマー 3を、 25 °Cから 250°Cまで 1時間かけて昇温したの ち、 同温度から 285°Cまで 5時間かけて昇温し、 次いで同温度で 3時間保温し て固相重合させた。 固相重合後冷却したところ、 液晶ポリエステルが粉末状で得 られた。 この液晶ポリエステルを LCP 5とする。 LCP 5についてフローテス ターを用いて、 流動開始温度を測定したところ、 327°Cであった。 The obtained Prebomer 3 was heated from 25 ° C to 250 ° C over 1 hour, then heated from the same temperature to 285 ° C over 5 hours, and then kept at that temperature for 3 hours to solidify. Phase polymerized. When cooled after solid state polymerization, liquid crystalline polyester is obtained in powder form. It was. This liquid crystal polyester is designated as LCP 5. The flow initiation temperature of LCP 5 measured using a flow tester was 327 ° C.
合成例 7 Synthesis example 7
合成例 6と同様にして得られたプレボリマー 3を、 25°Cから 250°Cまで 1 時間かけて昇温したのち、 同温度から 290°Cまで 5時間かけて昇温し、 次いで 同温度で 3時間保温して固相重合させた。 固相重合後冷却したところ、 液晶ポリ エステルが粉末状で得られた。 この液晶ポリエステルを LCP 6とする。 LCP 6についてフローテスターを用いて、 流動開始温度を測定したところ、 336°C であった。  Prebomer 3 obtained in the same manner as in Synthesis Example 6 was heated from 25 ° C to 250 ° C over 1 hour, then heated from the same temperature to 290 ° C over 5 hours, and then at the same temperature. Incubated for 3 hours for solid phase polymerization. Upon cooling after solid phase polymerization, liquid crystal polyester was obtained in powder form. This liquid crystal polyester is designated as LCP 6. The flow initiation temperature of LCP 6 was measured using a flow tester and found to be 336 ° C.
合成例 6~7で得られた LCP 5及び LCP 6は、 使用したモノマーのモル比 率から、 共重合モル分率を求めると、 構造単位 ( i ) :構造単位 (ii) :構造単 位 (iii) の比が、 60モル%: 20モル%: 20モル%となる。 ここで使用し たモノマーは、 2, 6—ナフタレンジィル基を有するものを用いていないので、 全芳香族基合計に対する 2, 6—ナフタレンジィル基の含有比は、 0モル%とな る。  LCP 5 and LCP 6 obtained in Synthesis Examples 6 to 7 can be obtained by calculating the copolymerization mole fraction from the molar ratio of the monomers used. Structural unit (i): Structural unit (ii): Structural unit ( The ratio of iii) is 60 mol%: 20 mol%: 20 mol%. Since the monomer used here does not use a monomer having a 2,6-naphthalenediyl group, the content ratio of the 2,6-naphthalenediyl group to the total aromatic groups is 0 mol%.
参考例 1〜, Reference example 1 ~
合成例 1〜 7で得られた液晶ポリエステルについてメル卜テンションを測定し た。 まず、 液晶ポリエステル 500 gを用いて、 二軸押出機 (池貝鉄工 (株) 「PCM— 30」 ) によって、 各液晶ポリエステルの流動開始温度よりも、 約 1 0°C程度高い温度で造粒した後の流動開始温度を、 上述の方法によリ測定した後、 その流動開始温度より高い温度範囲で、 種々測定温度を変更してメルトテンショ ン測定を実施し、 求められたメルトテンションの中で最大値を求めた。 また試料 が糸状に引き取れずメルトテンション測定が実施できない限界温度についても求 めた。 この結果を表 1に示す。 表 1 Melt tension was measured for the liquid crystal polyesters obtained in Synthesis Examples 1-7. First, using 500 g of liquid crystal polyester, it was granulated by a twin screw extruder (Ikegai Iron Works Co., Ltd. “PCM-30”) at a temperature about 10 ° C higher than the flow start temperature of each liquid crystal polyester. After the subsequent flow start temperature is measured by the above-mentioned method, the melt tension measurement is carried out by changing various measurement temperatures in the temperature range higher than the flow start temperature, and within the obtained melt tension. The maximum value was determined. We also determined the critical temperature at which the sample could not be drawn into a filament and measurement of melt tension was not possible. The results are shown in Table 1. table 1
Figure imgf000027_0001
Figure imgf000027_0001
合成例 1で得られたプレボリマー 1では、 測定温度が 300°C以下であるとス 卜ランドを形成することができなかった。 また測定温度が 31 0°C以上では樹脂 が、 ストランドを形成するよりも、 流動液状化して、 やはりメルトテンション測 定ができなかった。 測定温度 300~31 0°Cの間においてもメル卜テンション 測定を試みたが、 得られたス卜ランドが容易に破断してしまうためメル卜テンシ ヨンを算出することができなかった。  In Prebolimer 1 obtained in Synthesis Example 1, when the measurement temperature was 300 ° C. or less, no land could be formed. In addition, when the measurement temperature was 310 ° C or higher, the resin liquefied rather than formed a strand and melt tension could not be measured. Melt tension measurement was attempted even at a measurement temperature of 300 to 310 ° C, but the melt tension could not be calculated because the obtained strand was easily broken.
LCP 1では測定温度 31 0°C、 320°C及び 330°Cでメルトテンションが 1. O g以上であった。 LCF32では、 測定温度 330~360°Cで測定したメ ルトテンションが何れも 1. O g以上であった。 LCP3及び LCP4は、 測定 温度 360°C以下でのメルトテンションが 1. O g未満であり、 それ以上の温度 領域ではメルトテンションを測定することができなかった。 L C P 5及び L C P 6は測定温度 350°Cでメルトテンションが 1. 0 g以上であった。 In LCP 1, the melt tension was 1. Og or more at the measurement temperatures of 310 ° C, 320 ° C and 330 ° C. In LCF 3 2, main belt tension was measured at a measurement temperature of 330 ~ 360 ° C is was both 1. O g or more. LCP3 and LCP4 had a melt tension of less than 1. O g at a measurement temperature of 360 ° C or lower, and the melt tension could not be measured in the temperature range higher than that. LCP 5 and LCP 6 had a melt tension of 1.0 g or more at a measurement temperature of 350 ° C.
実施例 1 Example 1
高誘電材料フイラ一として、 チタン酸バリウム (Ba T i 03) からなるフィ ラー (富士チタン工業 (株) 製 HPBT- 1 ) を用い、 合成例 2で得られた L CP 1とを、 表 2の割合 (容量比) となるように配合し (混合粉末合計 4. O k g) 、 二軸押出し機 (池貝鉄工 (株) rpCM— 30」 ) を用いて、 溶融温度 340°Cによリス卜ランド法にてペレツト化を試みた。 ストランドが得られるこ とを確認した後、 混合粉末が 0 . 5 k gを使用した時点を開始点とし、 混合粉末 3 . O k gを使用した時点を終了点として、 開始点一終了点の間で、 ストランド 切れの回数 (ストランド切れ回数) をカウントすることで、 ストランドの得られ 易さを求めた。 結果を表 2に示す。 本実施例ではストランド切れは認められず、 安定的にストランドが得られることが判明した (ストランド切れ回数: 0回) 。 実施例 2 ~ 3 As a high dielectric material filler, a filler (HPBT-1 manufactured by Fuji Titanium Industry Co., Ltd.) made of barium titanate (Ba T i 0 3 ) was used. 2 ratio (volume ratio) (mixed powder total 4. O kg), using a twin screw extruder (Ikegai Iron Works Co., Ltd. rpCM-30)) with a melting temperature of 340 ° C Attempted pelletization by the Sakai Land method. The strand can be obtained The number of strand breaks between the starting point and the ending point, with the starting point when 0.5 kg of mixed powder is used and the end point when using 3 O kg of mixed powder. By counting (number of strand breaks), the ease of obtaining a strand was determined. The results are shown in Table 2. In this example, no strand break was observed, and it was found that a strand could be stably obtained (number of strand breaks: 0). Examples 2-3
合成例 2で得られた L C P 1及び実施例 1で用いたものと同じ高誘電材料フィ ラーを用い、 表 2に示す割合で配合する以外は、 実施例 1と同様の実験を行って ストランド切れ回数を求めた。 結果を表 2に示す。 実施例 2においては、 ストラ ンド切れは認められず、 安定的にストランドが得られることが判明した (ストラ ンド切れ回数: 0回) 。 一方、 実施例 3では、 わずかにストランド切れ (ストラ ンド切れ回数: 3回) が認められたが、 実用的には問題ないものであった。 実施例 4  Using the same high dielectric material filler as that used in LCP 1 obtained in Synthesis Example 2 and Example 1, using the same ratio as shown in Table 2, the same experiment as in Example 1 was performed to break the strand. The number of times was calculated. The results are shown in Table 2. In Example 2, strand breakage was not observed, and it was found that strands were stably obtained (number of strand breaks: 0). On the other hand, in Example 3, a slight strand breakage (strand breakage number: 3 times) was recognized, but there was no problem in practical use. Example 4
合成例 3で得られた L C P 2及び実施例 1で用いたものと同じ高誘電材料フィ ラーを用い、 表 2に示す割合で配合する以外は、 実施例 1と同様の実験を行って ストランド切れ回数を求めた。 結果を表 2に示す。 本実施例においても、 ストラ ンド切れは認められず、 安定的にストランドが得られることが判明した (ストラ ンド切れ回数: 0回) 。  Using the same high dielectric material filler as that used in LCP 2 obtained in Synthesis Example 3 and Example 1, and using the proportions shown in Table 2, the same experiment as in Example 1 was performed to break the strand. The number of times was calculated. The results are shown in Table 2. Also in this example, strand breakage was not recognized, and it was found that strands were stably obtained (number of strand breaks: 0).
実施例 5 Example 5
高誘電材料フィラーとして、 酸化チタン (T i 02) からなるフィラー (石原 産業 (株) 製 C R— 6 0、 平均粒径 0 . 2 1 ju m) を用い、 合成例 2で得られ た L C P 1と、 表 2に示す割合で配合する以外は、 実施例 1と同様の実験を行つ てストランド切れ回数を求めた。 結果を表 2に示す。 本実施例においても、 スト ランド切れは認められず、 安定的にストランドが得られることが判明した (スト ランド切れ回数: 0回) 。 As a high-dielectric material filler, a filler made of titanium oxide (T i 0 2 ) (CR- 60, manufactured by Ishihara Sangyo Co., Ltd., average particle size 0.2 1 ju m) was used. The number of strand breaks was determined by performing the same experiment as in Example 1 except that 1 and the proportions shown in Table 2 were blended. The results are shown in Table 2. Also in this example, no strand break was observed, and it was found that strands could be stably obtained (number of strand breaks: 0).
実施例 6 Example 6
高誘電材料フィラーとして、 酸化チタン (T i 02) からなるフイラ一 (石原 産業 (株) 製 C R— 5 8、 平均粒径 0 . 2 8 ju m) を用い、 合成例 2で得られ た L C P 1と、 表 2に示す割合で配合する以外は、 実施例 1と同様の実験を行つ てストランド切れ回数を求めた。 結果を表 2に示す。 本実施例においても、 スト ランド切れは認められず、 安定的にストランドが得られることが判明した (スト ランド切れ回数: 0回) 。 It was obtained in Synthesis Example 2 using a filler made of titanium oxide (T i 0 2 ) as a high dielectric material filler (CR-58, manufactured by Ishihara Sangyo Co., Ltd., average particle size 0.28 jum). The same experiment as in Example 1 was conducted except that LCP 1 and the ratio shown in Table 2 were blended. The number of strand breaks was determined. The results are shown in Table 2. Also in this example, no strand break was observed, and it was found that strands could be stably obtained (number of strand breaks: 0).
実施例 7 Example 7
高誘電材料フイラ一として、 酸化チタン (Τ ί 02) からなるフィラー (石原 産業 (株) 製 CR— 97、 平均粒径 0. 25jum) を用い、 合成例 2で得られ た LCP 1と、 表 2に示す割合で配合する以外は、 実施例 1と同様の実験を行つ てストランド切れ回数を求めた。 結果を表 2に示す。 本実施例においても、 スト ランド切れは認められず、 安定的にストランドが得られることが判明した (スト ランド切れ回数: 0回) 。 As a high dielectric material filler, a filler (CR-97 manufactured by Ishihara Sangyo Co., Ltd., average particle size of 0.25 jum) made of titanium oxide (Τ 0 2 ) was used, and LCP 1 obtained in Synthesis Example 2 was used. Except for blending at the ratio shown in Table 2, the same experiment as in Example 1 was performed to determine the number of strand breaks. The results are shown in Table 2. Also in this example, no strand break was observed, and it was found that strands could be stably obtained (number of strand breaks: 0).
実施例 8 Example 8
高誘電材料フィラーとして、 酸化チタン (T i 02) からなるフィラー (堺化 学 (株) 製 SR— 1、 平均粒径 0. 26jum) を用い、 合成例 2で得られた L CP 1と、 表 2に示す割合で配合する以外は、 実施例 1と同様の実験を行ってス 卜ランド切れ回数を求めた。 結果を表 2に示す。 本実施例においても、 ストラン ド切れは認められず、 安定的にストランドが得られることが判明した (ストラン ド切れ回数: 0回) 。 As a high-dielectric material filler, a filler made of titanium oxide (T i 0 2 ) (SR-1 manufactured by Kayaku Co., Ltd., average particle size 0.26 jum) was used, and L CP 1 obtained in Synthesis Example 2 Except for blending in the proportions shown in Table 2, the same experiment as in Example 1 was performed to determine the number of times the land was cut. The results are shown in Table 2. Also in this example, no strand break was observed, and it was found that a strand could be stably obtained (number of strand breaks: 0).
表 2 Table 2
Figure imgf000029_0001
Figure imgf000029_0001
実施例 9~1 1 高誘電材料フィラーとして、 酸化チタン (T i 02) からなる繊維状フイラ一Examples 9 to 1 1 As a high dielectric material filler, a fibrous filler made of titanium oxide (T i 0 2 )
(石原産業 (株) 製 タイぺーク P FR404、 数平均繊維長 2〜4jum、 数平 均繊維径 0. 3〜0. 5 im) を用い、 合成例 2で得られた LCP 1と、 表 3に 示す割合で配合する以外は、 実施例 1と同様の実験を行ってストランド切れ回数 を求めた。 結果を表 3に示す。 本実施例においても、 ストランド切れは認められ ず、 安定的にストランドが得られることが判明した (ストランド切れ回数: 0 回) 。 (Ishihara Sangyo Co., Ltd. Taipek P FR404, number average fiber length 2 to 4 jum, number average fiber diameter 0.3 to 0.5 im), and LCP 1 obtained in Synthesis Example 2 Except for blending at the ratio shown in 3, the same experiment as in Example 1 was performed to determine the number of strand breaks. The results are shown in Table 3. Also in this example, no strand breakage was observed, and it was found that strands were stably obtained (number of strand breaks: 0).
実施例 1 2 Example 1 2
高誘電材料フィラーとして、 酸化チタン (T i 02) からなる繊維状フイラ一 (石原産業 (株) 製 タイぺーク P FR404、 数平均繊維長 2〜4/ m、 数平 均繊維径 0. 3〜.0. 5 jum) と、 ガラス繊維 (旭ファイバーガラス (株) 製 CS03 J APX— 1 ) を用い、 合成例 2で得られた LCP 1と、 表 3に示す割 合で配合する以外は、 実施例 1と同様の実験を行ってストランド切れ回数を求め た。 結果を表 3に示す。 本実施例においても、 わずかにストランド切れ (ストラ ンド切れ回数: 2回) が認められたが、 実用的には問題ないものであった。 表 3 Fibrous filler made of titanium oxide (T i 0 2 ) as a high-dielectric material filler (Ishihara Sangyo Co., Ltd. Typek P FR404, number average fiber length 2 to 4 / m, number average fiber diameter 0. 3 ~ .0.5 jum) and glass fiber (CS03 J APX-1 manufactured by Asahi Fiber Glass Co., Ltd.), except for LCP 1 obtained in Synthesis Example 2 and the ratio shown in Table 3 The same experiment as in Example 1 was performed to determine the number of strand breaks. The results are shown in Table 3. Also in this example, a slight strand breakage (strand breakage number: 2) was recognized, but there was no problem in practical use. Table 3
Figure imgf000030_0001
比較例 1
Figure imgf000030_0001
Comparative Example 1
合成例 1で得られたプレボリマー 1と、 実施例 1で用いたものと同じ高誘電材 料フイラ一とを用い、 プレボリマー 1が 73体積%、 フィラーが 27体積%とな るように配合し (混合粉末合計 4. O k g) 、 二軸押出し機 (池貝鉄工 (株) 「PCM— 30」 ) によって溶融温度 295°Cのストランド法にてペレット化を 試みたが、 ス卜ランドを得ることができなかった。 また、 造粒温度の種々変更し てストランドが引けるかどうかを試みたが、 当該造粒温度を変更するだけでは、 やはリストランドを得ることができなかった。  Using Prebolimer 1 obtained in Synthesis Example 1 and the same high dielectric material filler used in Example 1, Prebomer 1 is blended to 73% by volume and Filler to 27% by volume ( A total of 4. O kg) and a twin screw extruder (Ikegai Iron Works Co., Ltd. “PCM-30”) tried to pelletize by the strand method with a melting temperature of 295 ° C. could not. In addition, although various attempts were made to change the granulation temperature to determine whether the strands could be drawn, it was not possible to obtain a wristland only by changing the granulation temperature.
比較例 2 Comparative Example 2
合成例 4で得られた LCP 3と、 実施例 1で用いたものと同じ高誘電材料フィ ラーとを、 1_0 3が73体積%、 フィラーが 27体積%となるように配合し (混合粉末合計 4. O k g) 、 二軸押出し機 (池貝鉄工 (株) 「PCM— 3 0J ) によって溶融温度 340°Cのストランド法にてペレット化を試みたが、 ス 卜ランドを引くことができなかった。 また、 造粒温度の種々変更してストランド が引けるかどうかを試みたが、 当該造粒温度を変更するだけでは、 やはリストラ ンドを得ることができなかった。  LCP 3 obtained in Synthesis Example 4 and the same high dielectric material filler used in Example 1 were blended so that 1_03 was 73 vol% and filler was 27 vol% (mixed powder total 4. O kg), a twin-screw extruder (Ikegai Iron Works Co., Ltd. “PCM- 30J”) tried to pelletize with a strand method with a melting temperature of 340 ° C, but was unable to draw the land. In addition, attempts were made to determine whether the strands could be drawn by changing the granulation temperature, but it was not possible to obtain a list by simply changing the granulation temperature.
比較例 3 Comparative Example 3
合成例 5で得られた LCP4と、 実施例 1で用いたものと同じ高誘電材料フィ ラーとを、 表 3に示す割合 (容量比) となるように配合し (混合粉末合計 4. 0 k g) 、 二軸押出し機 (池貝鉄工 (株) Γρ〇Μ— 30」 ) によって造粒温度 340°Cによリストランド法にて造粒し、 ペレット (樹脂組成物) が得られるこ とを確認した。 そこで混合粉末が 0. 5kgを使用した後から、 混合粉末 3. 0 k gにおいて造粒によるス卜ランド切れの回数をカウントしたところストランド 切れの回数は 22回であり、 安定的にス卜ランドを得ることはできなかった。 比較例 4 LCP4 obtained in Synthesis Example 5 and the same high dielectric material filler used in Example 1 were blended so as to have the ratio (capacity ratio) shown in Table 3 (total mixed powder 4.0 kg) ), Granulated by the wristland method at a granulation temperature of 340 ° C with a twin screw extruder (Ikegai Iron Works Co., Ltd. Γρ〇Μ-30) and confirmed that pellets (resin composition) were obtained. did. So from after the mixed powder was used 0. 5 kg, strand breakage number of was counted the number of scan Bok land cutting granulating a mixed powder 3. 0 k g is 22 times, stably scan Bok Land Could not get. Comparative Example 4
合成例 6で得られた LCP 5と、 実施例 1で用いたものと同じ高誘電材料フィ ラーとを表 3に示す割合で配合する以外は比較例 3と同様の実験を行った。 ス卜 ランド切れの回数は 29回であり、 安定的にス卜ランドを得ることはできなかつ 比較例 5 The same experiment as in Comparative Example 3 was performed, except that LCP 5 obtained in Synthesis Example 6 and the same high dielectric material filler used in Example 1 were blended in the proportions shown in Table 3. The number of times the Sland runs out is 29 times, and the Sland cannot be obtained stably. Comparative Example 5
合成例 7で得られた LCP 6と、 実施例 1で用いたものと同じ高誘電材料フィ ラーとを、 表 3に示す割合で配合し (混合粉末合計 4. O k g) 、 二軸押出し機 (池貝鉄工 (株) 「PCM— 30」 ) によって造粒温度 345°Cによリストラ ンド法にて造粒を試みた。 混合粉末が 0. 5 k gを使用した時点から、 混合粉末 3. 0 k gを使用した時点までス卜ランド切れの回数をカウン卜したところス卜 ランド切れの回数は 24回であり、 安定的にストランドを得ることはできなかつ 比較例 6  LCP 6 obtained in Synthesis Example 7 and the same high dielectric material filler as used in Example 1 were blended in the proportions shown in Table 3 (mixed powder total 4. O kg), twin screw extruder (Ikegai Iron Works Co., Ltd. “PCM-30”) tried to granulate by restructuring at a granulation temperature of 345 ° C. When the count of the number of land cuts was counted from the point when 0.5 kg of mixed powder was used to the point when 3.0 kg of mixed powder was used, the number of land cuts was 24 times. No strands can be obtained and Comparative Example 6
合成例 6で得られた LCP 5と、 実施例 5で用いたものと同じ高誘電材料フィ ラーとを、 表 3に示す割合で配合し (混合粉末合計 4. O k g) 、 二軸押出し機 (池貝鉄工 (株) rpCM— 30J ) によって造粒温度 340°Cによリストラ ンド法にて造粒し、 ストランド切れが多発した (ストランド切れ: 40回以上) 。 なお、 ストランド切れの回数のカウントは 40回以上までとし、 これ以上のカウ ントを実施しないことにした。  LCP 5 obtained in Synthesis Example 6 and the same high dielectric material filler used in Example 5 were blended in the proportions shown in Table 3 (mixed powder total 4. O kg), twin screw extruder (Ikegai Iron Works Co., Ltd., rpCM-30J) was granulated by the restrand method at a granulation temperature of 340 ° C, causing many strand breaks (strand breaks: 40 times or more). The number of strand breaks was counted up to 40 times, and no more counting was performed.
比較例 7 Comparative Example 7
合成例 6で得られた LCP 5と、 実施例 6で用いたものと同じ高誘電材料フィ ラーとを、 表 3に示す割合で配合し (混合粉末合計 4. O k g) 、 二軸押出し機 (池貝鉄工 (株) 「PCM— 30」 ) によって造粒温度 340°Cによリストラ ンド法にて造粒し、 ストランド切れが多発した (ストランド切れ: 40回以上) 。 なお、 ストランド切れの回数のカウントは 40回以上までとし、 これ以上のカウ ントを実施しないことにした。 LCP 5 obtained in Synthesis Example 6 and the same high-dielectric material filler used in Example 6 were blended in the proportions shown in Table 3 (mixed powder total 4. O kg), twin screw extruder (Ikegai Iron Works Co., Ltd. “PCM-30”) was granulated by the restructuring method at a granulation temperature of 340 ° C, resulting in frequent strand breaks (strand breaks: 40 times or more). The number of strand breaks was counted up to 40 times, and no more counting was performed.
表 4 Table 4
Figure imgf000033_0001
Figure imgf000033_0001
実施例 1 3〜"! 7 Example 1 3 ~ "! 7
実施例 1〜 3及び実施例 5〜 8で得られた組成物べレツ卜を、 1 20 °Cで 3時 間乾燥後、 射出成形機 (日清樹脂工業 (株) 製 540巳5 5£型) を用いて、 シリンダー温度 350°C、 金型温度 1 30°Cで J I S K71 1 31 (1 ) 号ダンベル (厚み 1. 2mm) のサンプルを成形した。 得られたサンプルを、 2 60°〇の^160 はんだ (スズ 60%、 鉛 40%) に 60秒間浸潰した。 その後、 サンプルを引き上げ、 発泡や膨れの発生の有無を確認した。 結果を表 5に示す。 また、 実施例 1〜 3及び実施例 5〜 8で得られた組成物ペレットを、 1 20°C で 3時間乾燥させた後、 射出成形機 (曰清樹脂工業 (株) 製 PS40E5ASE 型) により、 シンリンダ一温度 350°C、 金型温度 1 30°Cで成形して、 長さ 1 27mm. 幅 1 2. 7 mm, 厚さ 6. 4 mmの試験片 (曲げ強度測定用サンプ ル) を作製した。 そして AS TMD 790に準拠する方法により、 これらのサン プルの曲げ強度を測定した。 結果を表 5に示す。  The composition pellets obtained in Examples 1 to 3 and Examples 5 to 8 were dried at 120 ° C. for 3 hours, and then injected into an injection molding machine (Nisshin Resin Industry Co., Ltd. 540-5 5 £. JIS K71 1 31 (1) dumbbell (thickness 1.2 mm) sample was molded at a cylinder temperature of 350 ° C and a mold temperature of 1300 ° C. The obtained sample was immersed for 60 seconds in ^ 160 solder (60% tin, 40% lead) at 2600 °. After that, the sample was pulled up and checked for foaming and swelling. The results are shown in Table 5. In addition, the composition pellets obtained in Examples 1 to 3 and Examples 5 to 8 were dried at 120 ° C. for 3 hours, and then injected with an injection molding machine (PS40E5ASE type manufactured by Kashiwa Plastic Industry Co., Ltd.). Molded at a cylinder temperature of 350 ° C and a mold temperature of 1 30 ° C. A test piece with a length of 1 27mm, a width of 12.7mm, and a thickness of 6.4mm (a sample for bending strength measurement) Produced. Then, the bending strength of these samples was measured by a method based on AS TMD 790. The results are shown in Table 5.
さらに、 実施例 1〜 3及び実施例 5~ 8で得られた組成物ペレツ卜を、 1 2 0°Cで 3時間乾燥させた後、 射出成形機 (日清樹脂工業 (株) 製 PS40E5A S E型) により、 シンリンダ一温度 350°C、 金型温度 1 30°Cで成形して、 長 さ 6 4 mm、 幅 6 4 mm、 厚さ 1 mmの試験片 (誘電特性測定用サンプル) を作 製した。 そしてこれらのサンプルの 1 G H z (測定温度 2 3 °C) における誘電特 性 (誘電率、 誘電正接) を H P製インピーダンスアナライザーで評価した。 結果 を表 5に示す。 Furthermore, the composition pellets obtained in Examples 1 to 3 and Examples 5 to 8 were dried at 120 ° C. for 3 hours, and then injection molding machine (PS40E5A SE manufactured by Nissin Plastic Industry Co., Ltd.) Mold) at a cylinder temperature of 350 ° C and a mold temperature of 1 30 ° C. A test piece (dielectric property measurement sample) having a thickness of 64 mm, a width of 64 mm, and a thickness of 1 mm was produced. The dielectric properties (dielectric constant, dielectric loss tangent) of these samples at 1 GHz (measurement temperature 23 ° C) were evaluated using an HP impedance analyzer. The results are shown in Table 5.
比較例 8 Comparative Example 8
既述のように、 比較例 4ではストランド切れが生じて安定的に組成物ペレツト を得ることができなかったが、 ペレツ卜長さ: 2 ~ 3 mm程度のものを選別して、 実施例 1 3〜 1 9と同様の実験により、 はんだによる発泡の有無、 曲げ強度及び 誘電特性を測定した。 結果を表 6に示す。  As described above, in Comparative Example 4, strand breakage occurred and a composition pellet could not be stably obtained, but a pellet having a length of about 2 to 3 mm was selected, and Example 1 was selected. In the same experiment as 3 to 19, the presence or absence of foaming by solder, bending strength and dielectric properties were measured. The results are shown in Table 6.
比較例 9 Comparative Example 9
比較例 6では安定的にストランドが引けなかったため、 二軸押出し機から押出 された組成物を粉砕機で粉砕して、 約 3 mm程度の粒子状組成物とし、 この粒子 状組成物を用いて、 これを比較例 6のペレツトとした。 実施例 1 3〜 1 9と同様 の実験により、 はんだによる発泡の有無、 曲げ強度及び誘電特性を測定した。 結 果を表 6に示す。  In Comparative Example 6, the strands could not be stably drawn. Therefore, the composition extruded from the twin screw extruder was pulverized with a pulverizer to obtain a particulate composition of about 3 mm, and this particulate composition was used. This was the pellet of Comparative Example 6. In the same experiment as in Examples 13 to 19, the presence or absence of foaming by solder, bending strength, and dielectric properties were measured. The results are shown in Table 6.
比較例 1 0 Comparative Example 1 0
比較例 7では安定的にストランドが引けなかったため、 二軸押出し機から押出 された組成物を粉砕機で粉砕して、 約 3 mm程度の粒子状組成物とし、 この粒子 状組成物を用いて、 これを比較例 7のペレツ卜とした。 実施例 1 3〜 1 9と同様 の実験により、 はんだによる発泡の有無、 曲げ強度及び誘電特性を測定した。 結 果を表 6に示す。 In Comparative Example 7, the strand could not be stably drawn. Therefore, the composition extruded from the twin-screw extruder was pulverized with a pulverizer to obtain a particulate composition of about 3 mm. Using this particulate composition, This was designated as Perezka of Comparative Example 7. In the same experiment as in Examples 13 to 19, the presence or absence of foaming by solder, bending strength, and dielectric properties were measured. The results are shown in Table 6.
表 5 Table 5
Figure imgf000035_0001
Figure imgf000035_0001
表 6 Table 6
Figure imgf000035_0002
Figure imgf000035_0002
実施例 2 0〜 2 3 Example 2 0-2 3
実施例 1で得られた組成物ペレツトを、 実施例 9 ~ 1 2で得られた組成物ペレ ットに置き換えた以外は、 実施例 1 3と同様の実験を行って、 得られたそれぞれ の成形体について、 はんだ発泡試験、 曲げ強度及び誘電特性 (誘電率、 誘電正 接) を求めた。 結果を表 7に示す。  The same experiment as in Example 13 was performed, except that the composition pellets obtained in Example 1 were replaced with the composition pellets obtained in Examples 9 to 12. Solder foam tests, flexural strength and dielectric properties (dielectric constant, dielectric loss tangent) were determined for the compacts. The results are shown in Table 7.
表 7 Table 7
Figure imgf000035_0003
実施例 24〜 28
Figure imgf000035_0003
Examples 24-28
実施例 5〜9で得られた組成物ペレツ卜を 1 20°Cで 3時間乾燥させた後、 射 出成形機 (日清樹脂工業 (株) 製 PS40E5ASE型) により、 シンリンダ一 温度 350°C、 金型温度 1 30°Cで成形して、 長さ 1 27mm、 幅 1 2. 7mm、 厚さ 6. 4 mmの成形品を作製後に (曲げ強度測定用サンプル) を作製した。 本 成形品を長さ 64mm、 幅 1 2. 7mm、 厚さ 6. 4 mmとなるように切削し、 試験片 (衝撃強度測定用サンプル) とした。 そして、 AS TMD 256の試験法 に従い、 これらのサンプル (ノッチなし) の衝撃強度を測定した。 結果を表 8に 示す。  The composition pellets obtained in Examples 5 to 9 were dried at 120 ° C. for 3 hours, and then subjected to a cylinder temperature of 350 ° C. using a injection molding machine (PS40E5ASE manufactured by Nissin Plastic Industry Co., Ltd.). After molding at a mold temperature of 1300C, a molded product with a length of 127mm, a width of 12.7mm, and a thickness of 6.4mm was prepared (a sample for measuring bending strength). This molded product was cut to a length of 64 mm, a width of 12.7 mm, and a thickness of 6.4 mm, and used as a test piece (impact strength measurement sample). The impact strength of these samples (without notches) was measured according to the test method of AS TMD 256. The results are shown in Table 8.
比較例 1 1〜"! 2 Comparative Example 1 1 ~ "! 2
比較例 6〜 7で得られた組成物ペレットを 1 20°Cで 3時間乾燥させた後、 射 出成形機 (日清樹脂工業 (株) 製 PS40 E5ASE型) により、 シンリンダ一 温度 350°C、 金型温度 1 30°Cで成形して、 長さ 1 27mm, 幅 1 2. 7mm、 厚さ 6. 4 mmの成形品を作製後に (曲げ強度測定用サンプル) を作製した。 本 成形品を長さ 64mm、 幅 1 ?. 7 mm. 厚さ 6. 4 mmとなるように切削し、 試験片 (衝撃強度測定用サンプル) とした。 そして、 ASTMD256の試験法 The composition pellets obtained in Comparative Examples 6 to 7 were dried at 120 ° C for 3 hours, and then the cylinder temperature was 350 ° C using a injection molding machine (PS40 E5ASE type, manufactured by Nissin Plastic Industry Co., Ltd.). After molding at a mold temperature of 1300C, a molded product with a length of 1 27mm, a width of 12.7mm, and a thickness of 6.4mm was prepared (sample for measuring bending strength). This molded product is 64mm long and 1 width? 7 mm. Thickness was cut to 6.4 mm to obtain a test piece (impact strength measurement sample). And ASTMD256 test method
(ノッチなし) に従い、 これらのサンプルの衝撃強度を測定した。 結果を表 8に 示す。 The impact strength of these samples was measured according to (no notch). The results are shown in Table 8.
表 8 Table 8
Figure imgf000036_0001
Figure imgf000036_0001
実施例 1〜1 2で得られた液晶ポリエステル樹脂組成物は、 安定的にストラン ドが得られることから、 ス卜ランド法による安定的な組成物ペレツ卜製造が可能 である。  Since the liquid crystal polyester resin compositions obtained in Examples 1 to 12 can stably obtain strands, stable composition pellets can be produced by the Strand method.
また、 実施例 1〜3、 実施例 5〜1 2で得られたペレット状の液晶ポリエステ ル樹脂組成物は、 はんだ発泡試験、 曲げ強度、 誘電特性に極めて優れる成形体が 得られることが判明した。 更には実施例 5〜 9で得られたぺレッ卜状の液晶ポリエステル樹脂組成物は、 衝撃強度に極めて優れる成形体が得られることが判明した。 In addition, it was found that the pellet-like liquid crystal polyester resin compositions obtained in Examples 1 to 3 and Examples 5 to 12 were able to obtain molded bodies having extremely excellent solder foam tests, bending strength, and dielectric properties. . Furthermore, it was found that the pellet-like liquid crystal polyester resin compositions obtained in Examples 5 to 9 were able to obtain molded articles having extremely excellent impact strength.
一方、 比較例 4で得られた液晶ポリエステル樹脂組成物は、 ストランド法では 安定的に組成物ペレツ卜が得られにくいことに加え、 得られる成形体も曲げ強度、 誘電特性に劣るものであった。 比較例 6 ~ 7の液晶ポリエステル樹脂組成物は、 全くストランド法に適合性が低いものであり、 得られる成形体は曲げ強度及び衝 撃強度に劣るものであった。  On the other hand, in the liquid crystal polyester resin composition obtained in Comparative Example 4, in addition to being difficult to stably obtain the composition pellets by the strand method, the obtained molded article was also inferior in bending strength and dielectric properties. . The liquid crystal polyester resin compositions of Comparative Examples 6 to 7 were completely incompatible with the strand method, and the obtained molded articles were inferior in bending strength and impact strength.

Claims

請求の範囲 The scope of the claims
1. 以下の式 ( i ) で表される構造単位、 式 (ii) で表される構造単位及び式 (iii) で表される構造単位からなり、 Αηで表される 2価の芳香族基、 Ar2で 表される 2価の芳香族基及び Ar3で表される 2価の芳香族基の合計を 100モ ル%としたとき、 2, 6—ナフタレンジィル基を 40モル%以上含み、 流動開始 温度が 280°C以上であり、 1. a divalent aromatic group represented by Αη, comprising a structural unit represented by the following formula (i), a structural unit represented by formula (ii), and a structural unit represented by formula (iii) , when the total of the divalent aromatic group represented by divalent aromatic groups and Ar 3 which is represented by Ar 2 and 100 molar%, 2, containing a 6-naphthalene Jiiru groups 40 mol% or more The flow start temperature is 280 ° C or higher,
流動開始温度よリ高い温度で測定されるメルトテンシヨンが 1 g以上を示す液晶 ポリエステル (A) 50〜80体積%と、 Liquid crystal polyester (A) having a melt tension of 1 g or more measured at a temperature higher than the flow start temperature (A) 50 to 80% by volume,
高誘電材料からなるフィラー (B) 20〜50体積%と、 Filler made of high dielectric material (B) 20-50% by volume,
を含有する液晶ポリエステル樹脂組成物。 A liquid crystal polyester resin composition comprising:
O  O
—— 0—— Αι^—— c — ( i )  —— 0—— Αι ^ —— c — (i)
O 0 O 0
C—— Ar2一 C ~ - (ii) C——Ar 2 1 C ~-(ii)
O—— Ar3— o (iii) O—— Ar 3 — o (iii)
式中、 Αηは、 2, 6—ナフタレンジィル基、 1, 4—フエ二レン基及び 4, 4' —ビフエ二レン基からなる群から選ばれる 2価の芳香族基を表す。 Ar2、 A r3は、 それぞれ独立に 2, 6—ナフタレンジィル基、 1 , 4—フエ二レン基、 1. 3—フエ二レン基及び 4, 4' ービフエ二レン基からなる群から選ばれる 2価の 芳香族基を表す。 また Αη、 Ar2又は Ar3で示される芳香族基は、 その芳香環に 結合している水素原子の一部が、 ハロゲン原子、 炭素数 1〜10のアルキル基又 は炭素数 6〜 20のァリール基に置換されていてもよい。 In the formula, η represents a divalent aromatic group selected from the group consisting of 2,6-naphthalene diyl group, 1,4-phenylene group and 4,4′-biphenylene group. Ar 2 and Ar 3 are each independently selected from the group consisting of 2,6-naphthalenedyl group, 1,4-phenylene group, 1.3-phenylene group and 4,4′-biphenylene group. Represents a divalent aromatic group. In addition, in the aromatic group represented by Αη, Ar 2 or Ar 3 , a part of the hydrogen atoms bonded to the aromatic ring is a halogen atom, an alkyl group having 1 to 10 carbon atoms, or a carbon atom having 6 to 20 carbon atoms. The aryl group may be substituted.
2. 前記高誘電材料からなるフィラー (B) が、 チタン系セラミックスを含有 するフィラーである、 請求項 1記載の液晶ポリエステル樹脂組成物。 2. The liquid crystal polyester resin composition according to claim 1, wherein the filler (B) made of the high dielectric material is a filler containing titanium-based ceramics.
3. 前記チタン系セラミックスが、 T i 02、 Ba T i 03、 S r T i 03、 C a T i 03、 M g T i 03、 B a S r T i 206、 B a N d2T i 4012、 B a N d2T i 50 14及び Ba B i 2N d2T i 09から選ばれるセラミックスを主として含む、 請求項 2記載の液晶ポリエステル樹脂組成物。 3. The titanium-based ceramics are T i 0 2 , Ba T i 0 3 , S r T i 0 3 , C a T i 0 3 , Mg T i 0 3 , B a S r T i 2 0 6 , B a N d 2 T i 4 0 12, B a N d 2 T i 5 0 14 and Ba B i mainly containing ceramic selected from 2 N d 2 T i 0 9 , the liquid crystal polyester resin composition according to claim 2, wherein object.
4. 液晶ポリエステル (A) 及び高誘電材料からなるフィラー (B) を熱溶融 し溶融物を得る工程と、  4. a step of thermally melting the liquid crystal polyester (A) and the filler (B) made of a high dielectric material to obtain a melt;
該溶融物を紐状に押出して紐状組成物を得る工程と、 Extruding the melt into a string to obtain a string composition;
該紐状組成物を切断してペレツ卜化する工程と、 Cutting the string composition and pelletizing;
を有する製造方法により得られる、 請求項 1〜 3のいずれかに記載の液晶ポリェ ステル樹脂組成物。 The liquid crystal polyester resin composition according to any one of claims 1 to 3, which is obtained by a production method comprising:
5. 請求項 1 ~4のいずれかに記載の液晶ポリエステル樹脂組成物を用いてな る成形体。  5. A molded article comprising the liquid crystal polyester resin composition according to any one of claims 1 to 4.
6. ASTM D790の試験法に従い測定した曲げ強度が 1 OOM P a以上 である、 請求項 5記載の成形体。  6. The molded article according to claim 5, wherein the bending strength measured according to the test method of ASTM D790 is 1 OOM Pa or more.
7. ASTM D 256の試験法に従い測定した衝撃強度が 1 0 OJZm以上で ある、 請求項 5又は 6に記載の成形体。  7. The molded product according to claim 5 or 6, wherein the impact strength measured according to the test method of ASTM D 256 is 10 OJZm or more.
8. 測定温度 23°C、 周波数 1 GH zでの比誘電率が 6. 0以上である、 請求 項 5〜 7のいずれかに記載の成形体。  8. The molded product according to any one of claims 5 to 7, having a relative dielectric constant of 6.0 or more at a measurement temperature of 23 ° C and a frequency of 1 GHz.
9. 請求項 5 ~ 8のいずれかに記載の成形体と電極とを有するアンテナ。  9. An antenna having the molded body according to any one of claims 5 to 8 and an electrode.
PCT/JP2008/072220 2007-12-03 2008-12-02 Liquid crystalline polyester, and molded article thereof WO2009072641A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/745,264 US8337719B2 (en) 2007-12-03 2008-12-02 Liquid crystalline polyester and molded article thereof
CN200880125982.XA CN101932654B (en) 2007-12-03 2008-12-02 Liquid crystalline polyester and molded article thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007312047 2007-12-03
JP2007-312047 2007-12-03
JP2008090690A JP2009155623A (en) 2007-12-03 2008-03-31 Liquid crystalline polyester resin composition and molded article thereof
JP2008-090690 2008-03-31

Publications (1)

Publication Number Publication Date
WO2009072641A1 true WO2009072641A1 (en) 2009-06-11

Family

ID=40717819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/072220 WO2009072641A1 (en) 2007-12-03 2008-12-02 Liquid crystalline polyester, and molded article thereof

Country Status (1)

Country Link
WO (1) WO2009072641A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101921469A (en) * 2009-06-15 2010-12-22 上野制药株式会社 Liquid-crystalline polyester blend compositions
WO2011021543A1 (en) * 2009-08-17 2011-02-24 住友化学株式会社 Back sheet for solar cell, and solar cell module
US8025814B2 (en) 2008-06-23 2011-09-27 Sumitomo Chemical Company, Limited Resin composition and molded article using the same
EP3315558A4 (en) * 2015-06-26 2018-12-05 Sumitomo Chemical Company Limited Resin composition and molded object
WO2021085412A1 (en) * 2019-10-31 2021-05-06 住友化学株式会社 Liquid-crystal polyester powder and method for producing liquid-crystal polyester solution composition
CN114672138A (en) * 2022-03-16 2022-06-28 张家港大塚化学有限公司 Preparation process of low dielectric loss liquid crystal composite material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004250687A (en) * 2003-01-30 2004-09-09 Sumitomo Chem Co Ltd High-permittivity resin composition, high-permittivity resin film and capacitor
JP2005029700A (en) * 2003-07-04 2005-02-03 Tdk Corp Composite dielectric, composite dielectric sheet, composite dielectric paste, composite dielectric sheet with metallic layer, wiring board, and multilayer wiring board
JP2006233118A (en) * 2005-02-28 2006-09-07 Sumitomo Chemical Co Ltd Resin composition for antenna
JP2006328141A (en) * 2005-05-24 2006-12-07 Ueno Technology:Kk Liquid crystalline polyester resin composition
JP2007154169A (en) * 2005-11-08 2007-06-21 Sumitomo Chemical Co Ltd Liquid crystal polyester resin composition and molded product for electronic part

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004250687A (en) * 2003-01-30 2004-09-09 Sumitomo Chem Co Ltd High-permittivity resin composition, high-permittivity resin film and capacitor
JP2005029700A (en) * 2003-07-04 2005-02-03 Tdk Corp Composite dielectric, composite dielectric sheet, composite dielectric paste, composite dielectric sheet with metallic layer, wiring board, and multilayer wiring board
JP2006233118A (en) * 2005-02-28 2006-09-07 Sumitomo Chemical Co Ltd Resin composition for antenna
JP2006328141A (en) * 2005-05-24 2006-12-07 Ueno Technology:Kk Liquid crystalline polyester resin composition
JP2007154169A (en) * 2005-11-08 2007-06-21 Sumitomo Chemical Co Ltd Liquid crystal polyester resin composition and molded product for electronic part

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8025814B2 (en) 2008-06-23 2011-09-27 Sumitomo Chemical Company, Limited Resin composition and molded article using the same
CN101613519B (en) * 2008-06-23 2014-07-09 住友化学株式会社 Resin composition and molded article using the same
CN101921469A (en) * 2009-06-15 2010-12-22 上野制药株式会社 Liquid-crystalline polyester blend compositions
WO2011021543A1 (en) * 2009-08-17 2011-02-24 住友化学株式会社 Back sheet for solar cell, and solar cell module
JP2011040654A (en) * 2009-08-17 2011-02-24 Sumitomo Chemical Co Ltd Back sheet for solar cell, and solar cell module
CN102473780A (en) * 2009-08-17 2012-05-23 住友化学株式会社 Back sheet for solar cell, and solar cell module
EP3315558A4 (en) * 2015-06-26 2018-12-05 Sumitomo Chemical Company Limited Resin composition and molded object
WO2021085412A1 (en) * 2019-10-31 2021-05-06 住友化学株式会社 Liquid-crystal polyester powder and method for producing liquid-crystal polyester solution composition
CN114514264A (en) * 2019-10-31 2022-05-17 住友化学株式会社 Liquid crystal polyester powder and method for producing liquid crystal polyester solution composition
CN114672138A (en) * 2022-03-16 2022-06-28 张家港大塚化学有限公司 Preparation process of low dielectric loss liquid crystal composite material

Similar Documents

Publication Publication Date Title
JP2009155623A (en) Liquid crystalline polyester resin composition and molded article thereof
TWI478980B (en) Resin composition and molded article using the same
JP2011052037A (en) Liquid crystal polyester resin composition, molding, and antenna
TWI707904B (en) Liquid crystal resin composition
JP4169322B2 (en) Totally aromatic liquid crystal polyester resin molding
TWI498365B (en) Liquid-crystalline polyester blend compositions
JP4798856B2 (en) Totally aromatic heat-resistant liquid crystal polyester resin composition with improved fluidity
CN101240106B (en) Liquid-crystalline polymer composition, method for producing the same and molded article using the same
TW200944559A (en) Liquid-crystal polyester resin composition for camera modules
TW200946654A (en) Resin composition and use of the same
TW201224017A (en) Liquid crystal polyester resin composition and camera module component
WO2009072641A1 (en) Liquid crystalline polyester, and molded article thereof
WO2014036760A1 (en) Liquid crystal polyester and preparation method thereof, composition containing the same and use of composition
JP5396810B2 (en) Liquid crystal polymer composition and molded article
KR20150023249A (en) Ultralow viscosity liquid crystalline polymer composition
KR20200115502A (en) Resin composition
JP4196647B2 (en) Antenna component tablet, antenna component, and manufacturing method thereof
JP2004143270A (en) Liquid-crystal polyester resin composition
JP5903732B2 (en) Liquid crystal polyester composition and molded body
WO1987005919A1 (en) Biaxially oriented polyester film
CN114573954A (en) Liquid crystal polyester resin composition for ultrathin film injection molding and preparation method thereof
JP2010065179A (en) Liquid crystalline polyester resin composition and molded product formed by using the same
WO2022004630A1 (en) Resin composition and resin molded article comprising said resin composition
JP2007238936A (en) Liquid-crystalline polymer composition, method for producing the same, molded article using the same and plane connector
JP7048828B1 (en) Resin composition and its molded product

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880125982.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08858192

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12745264

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107014654

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 08858192

Country of ref document: EP

Kind code of ref document: A1