WO2009065577A1 - Modulares, netzungebundenes kraftwerk - Google Patents

Modulares, netzungebundenes kraftwerk Download PDF

Info

Publication number
WO2009065577A1
WO2009065577A1 PCT/EP2008/009803 EP2008009803W WO2009065577A1 WO 2009065577 A1 WO2009065577 A1 WO 2009065577A1 EP 2008009803 W EP2008009803 W EP 2008009803W WO 2009065577 A1 WO2009065577 A1 WO 2009065577A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
power plant
synthesis
methanol
desorption
Prior art date
Application number
PCT/EP2008/009803
Other languages
English (en)
French (fr)
Inventor
Gregor Waldstein
Original Assignee
Gregor Waldstein
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gregor Waldstein filed Critical Gregor Waldstein
Priority to AT08851992T priority Critical patent/ATE537358T1/de
Priority to EP08851992A priority patent/EP2220367B1/de
Priority to US12/744,104 priority patent/US8715581B2/en
Publication of WO2009065577A1 publication Critical patent/WO2009065577A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/52Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with liquids; Regeneration of used liquids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/1516Multisteps
    • C07C29/1518Multisteps one step being the formation of initial mixture of carbon oxides and hydrogen for synthesis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/007Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations the wind motor being combined with means for converting solar radiation into useful energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/10Combinations of wind motors with apparatus storing energy
    • F03D9/19Combinations of wind motors with apparatus storing energy storing chemical energy, e.g. using electrolysis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • F03D9/255Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/70Waterborne solar heat collector modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/10PV power plants; Combinations of PV energy systems with other systems for the generation of electric power including a supplementary source of electric power, e.g. hybrid diesel-PV energy systems
    • H02S10/12Hybrid wind-PV energy systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/30Alkali metal compounds
    • B01D2251/304Alkali metal compounds of sodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/30Alkali metal compounds
    • B01D2251/306Alkali metal compounds of potassium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/404Alkaline earth metal or magnesium compounds of calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/602Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/604Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/16Air or water being indistinctly used as working fluid, i.e. the machine can work equally with air or water without any modification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/18Air and water being simultaneously used as working fluid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/141Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/142Solar thermal; Photovoltaics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/20Capture or disposal of greenhouse gases of methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry

Definitions

  • the invention relates to a power plant connected to power, which generates and stores from CO2 of the air, water and regenerative energy, combustible hydrocarbons, this power plant is preferably installed on a float; Furthermore, the use of such a power plant and method for operating such a power plant.
  • a further disadvantage of the known methods is that storage media for electrical energy have a low energy density; furthermore, renewable energy can often be generated cheaply in places and / or at times where the need for it is low.
  • liquid fuels in particular hydrocarbons
  • methanol should be mentioned as a particularly advantageous source of energy; in particular, since it is the simplest hydrocarbon-containing compound which is liquid at room temperature.
  • methane is a cheap source of energy, since there is a strong infrastructure for this KW to the end user.
  • Hardy et al., US 2005/02328833 also disclose a process for recovering fuels (hydrocarbons) comprising the steps of alkaline CO2 absorption, C02 release, H2 electrowinning, methanol synthesis from H2 and CO2 components and conversion to hydrocarbons by Fischer-Tropsch synthesis , This document proposes to cover the required energy with a nuclear reactor.
  • An essential purpose of the entire plant disclosed therein is to produce directly on board a ship hydrocarbons for use as fuel.
  • the invention thus relates to a power plant without power for the production and storage of combustible hydrocarbons, in particular methanol, dimethyl ether and methane.
  • the invention further relates to a process for the production of combustible hydrocarbons, a floating body equipped with a power plant as described herein and the use of the power plant or the floating body for the production of combustible hydrocarbons fe.
  • the term power plant generally refers to a network of different power plants. In the narrower sense, such composite systems are called, which generate electrical energy and deliver it to an existing network. In the context of the present The invention is intended to describe the term but also those plant compounds which provide a chemical energy source (in particular methanol, methane, dimethyl ether). Such a power plant is unbetztebun- the if it has no direct connection to a consumer, but the generated energy (or the energy source) stores and thus provides for delivery.
  • a chemical energy source in particular methanol, methane, dimethyl ether
  • a floating body generally refers to any device capable of receiving the plant components mentioned below and being able to float in regions of constant wind conditions / wave motion.
  • this term includes all types of vessels that can move on their own (“mobile floats”, eg by motor power, “motor vessels” or wind power, “sailing ships") or must be moved ("stationary floats”, eg “pontoons”
  • the term "floats moved by wind power” includes not only classic ships equipped with mast and sail but also unconventional sailing ships which use, for example, a sail kite or other technical equipment.
  • floats may be constructed as monohull or multihull boats.
  • methanol synthesis or “methanol production” refers to the formation of methanol from hydrogen and carbon dioxide or carbon monoxide.
  • methanol production refers to the formation of methanol from hydrogen and carbon dioxide or carbon monoxide.
  • the required hydrogen can also be formed in situ, resulting in the following gross equation:
  • DME dimethyl ether
  • the chemical energy carriers (methanol, DME, methane) formed according to these reactions can be present in different purities and do not have to be generated completely chemically pure, i. By-products, impurities from the previous reaction steps and / or the starting material, etc. may be included.
  • the chemical energy source provided according to the invention is suitable, if appropriate after further purification steps, to be used as an energy carrier in internal combustion engines or fuel cells or as a starting material in chemical syntheses. The invention is further illustrated by the figures.
  • Fig. 1 shows a schematic representation of a power plant according to the invention wherein the reference numerals have the following meaning: Aggregates
  • FIG. 2 shows a schematic representation of a floating body according to the invention comprising a power plant for the production of methanol, wherein the reference signs have the following meaning:
  • Fig. 3 shows a particular embodiment of the wind turbine, in which the wind turbine and the CO2 absorption system are combined with each other by the rotor blades of WICA are provided with microporous membranes for CO 2 absorption.
  • 1 shows the low-carbon flow and 2 the CO 2 -rich return of the wash liquor.
  • the invention relates to a power plant without power, characterized in that it contains the following, in their capacity coordinated systems ("modules"): a) wind turbine, hydropower plant, solar thermal system and / or photovoltaic system for generating electrical energy for the operation of plants b) to f) b) C02 absorption plant for the absorption of atmospheric CO2 c) CO2 desorption plant for the desorption of CO2 obtained in b) d) electrochemical or solar thermal H2 synthesis plant for the operation of the plant e); e) synthesis plant selected from the group of catalytic methanol synthesis, catalytic DME synthesis, catalytic methane synthesis; f) storage facility selected from the group methanol storage facility, DME storage facility, methane storage facility.
  • modules in their capacity coordinated systems
  • Such a power plant offers the possibility of harvesting and storing the energy present in wind power, hydropower and / or solar energy almost independently of location. This opens up a great potential for possible locations.
  • the chemical energy source that is, the storage medium methanol, DME, methane
  • Methanol is an energy source with a comparatively high energy density, which is easy to handle and can be stored for a long time. Further, the methanol formed according to the present invention can be easily integrated into the existing power supply systems, used as a chemical raw material, or directly used in fuel cells (e.g., in DMFC cells). DME and methane are also energy sources with comparatively high energy density, which are easy to handle and storable. Furthermore, the chemical energy carriers formed according to the invention can be easily integrated into the existing energy supply systems, used as a chemical raw material, or used directly in fuel cells.
  • the invention relates to the special tuning of the synthesis technology to the performance of the wind power, hydropower and / or photovoltaic plant; the functional integration of components of the synthesis plant in the wind power hydropower and / or photovoltaic system; the specific selection and design of the individual plants.
  • the systems a) to f) can also be designed as combined systems. So the wind turbine (a) by special design, the function of the C02 absorption system (b) partially or completely take over. Furthermore, the electrochemical H2 synthesis plant (d) and the catalytic methanol synthesis plant (e) can be combined, for example in the form of an inverted Direct Methanol Fuel Cell (DMFC). Furthermore, the C02 desorption unit (c) and the electrochemical H2 synthesis unit (d) can be combined with each other. Also, the C02 absorption and desorption can be combined or functionally coupled. Such combined or combined systems are included in the present invention.
  • DMFC Direct Methanol Fuel Cell
  • a thermal CO 2 desorption plant with a solar thermal H2 synthesis plant.
  • a CO 2 desorption plant which works on the principle of reductive alkaline low-pressure electrolysis with a methanol synthesis plant based on synthesis gas.
  • the following modules can be combined with each other as desired.
  • Float The term has already been explained at the beginning. Floats can be created specifically for the purpose of the invention. Alternatively, existing equipment can be reused, for example by equipping freighters or rigs with the appropriate equipment. Suitable floats include cargo ships and buoys.
  • Plant for the production of energy (module a): depending on the configuration, electrical and / or thermal energy is required for the process described here. This energy is provided via a primary plant. In principle, all known systems are suitable which provide electrical or thermal energy. Wind turbines, hydropower plants, photovoltaic systems and solar thermal systems should be mentioned as advantageous installations, with wind turbines and solar thermal systems being particularly noteworthy. Furthermore, hydropower plants deserve special mention.
  • WKA wind turbines
  • module al By wind turbines (“WKA”), (module al) are meant in the context of the present invention, all systems that can convert wind energy into electrical energy .
  • WKAs contain a rotor hub and rotor blades, which is mounted on a mast and with The term thus includes WKAs with vertically or horizontally rotating rotor blades, and WKAs may be used with or without transmission assistance.
  • module a2 Under hydropower plant (module a2) are in the context of the present invention, all facilities to understand that either harness the kinetic energy of the water or make the relative movement of float to water available. Preference would therefore also be a moving float ("sailing ship") which moves through substantially dormant water becomes. Also preferred is a floating body, which can convert the energy of the water waves into electrical energy.
  • module a4 Under solar thermal system (module a4) are in the context of the present invention, all systems to understand that make the radiation energy of the sun thermally usable.
  • modules are known per se and commercially available or designed and manufactured according to known methods.
  • a vertically rotating wind turbine is used without gear support.
  • This embodiment has the advantage that a particularly low-maintenance WKA and easily mountable WKA is used.
  • a horizontally rotating power plant with gearbox support is used.
  • This embodiment has the advantage that a particularly energy-efficient and flexible WKA is used.
  • a solar thermal system and possibly a WKA is used.
  • This embodiment is advantageous when the following systems show a low demand for electrical energy and a high demand for thermal energy.
  • a wave force machine eg of the "Pelamis” or “OPT Powerbuoy” type
  • Such wave power machines are either anchored or positioned by other means, for example via sails.
  • a sailboat with attached OPT Powerbuoys is thus a specific embodiment of the above-mentioned hydropower plant.
  • an in-water turbine is used (e.g., as used in tidal power plants) which utilizes a flow in the water, e.g., a sea current.
  • Such turbines can, for example, be attached to stationary floats.
  • the invention therefore also relates to a modular power plant in which the floating body is stationary and which has a turbine arranged in the water.
  • an in-water turbine is used, which is attached to the hull of a sailboat.
  • said sailboat is moved by wind power relative to the water and thus drives the turbine for power generation.
  • Said sailboat can be either a classic sailboat with one or more hulls, or a boat which is equipped with non-konvnetionellen facilities for wind propulsion, such as a kite.
  • the invention therefore also relates to a modular power plant in which the floating body is a sailboat which has one or more turbines arranged in the water.
  • CO2 absorption system module b
  • Numerous plants and processes for the absorption of atmospheric CO2 are known.
  • CO2 absorption plants comprise plants based on a wash liquor (wet chemical plants, module b1), or without the use of wash liquors ("dry chemical plants", b2).
  • a wash liquor in particular an alkaline aqueous solution, preferably an alkali hydroxide such as NaOH or KOH, where Carbonate and / or bicarbonate, see Weimer et al, Energy Convers. Mgmt. 1996, p.1351 ff, which is incorporated by reference in this description (in particular: Chapter 3.3.2).
  • a wash liquor in particular an alkaline aqueous solution, preferably an alkali hydroxide such as NaOH or KOH, where Carbonate and / or bicarbonate, see Weimer et al, Energy Convers. Mgmt. 1996, p.1351 ff, which is incorporated by reference in this description (in particular: Chapter 3.3.2).
  • the CO2 of 1700m3 of air is needed.
  • 120000m3 of air must be fed per hour to the absorption plant.
  • Suitable wash liquors react reversibly with CO2 and are generally known, by way of example mention may be made of the already mentioned NaOH solution.
  • the absorption may be in open contact in a padded scrubbing tower.
  • the air flow is possibly first moistened and then passed in countercurrent to the alkaline wash liquor through this equipped with packing absorption tower.
  • the absorption system is of the Venturi tower type.
  • Venturi towers of this kind contain means for supplying the aqueous alkaline solution, means for dropping / atomizing this solution in the upper area of the tower, means for removing the formed carbonate / bicarbonate solution in the lower area of the tower.
  • Suitable venturi towers are known from US 4339547, which is incorporated by reference into this specification (in particular: Fig. 3a, b, column 2, Z. 63 - Sp.3, Z. 38)
  • the absorption system contains microporous hollow fiber membranes, in particular hydrophobic microporous hollow fiber membranes, which contain alkaline absorption liquid and are brought into contact with an air stream so as to absorb atmospheric CO2.
  • microporous hollow fiber membranes in particular hydrophobic microporous hollow fiber membranes, which contain alkaline absorption liquid and are brought into contact with an air stream so as to absorb atmospheric CO2.
  • Such membranes are known and commercially available, for example, from Hoechst-Celanese.
  • the design and dimensioning of corresponding absorbers is known per se and, for example, in Stucki et al, Int. J. Hydrogen Energy, 1995, p. 653 et seq.
  • these microporous membranes are coated with a hydroscopic material, for example MgSO.sub.4, which reduces the evaporation of the circulating water the washing solution.
  • a hydroscopic material for example MgSO.sub.4
  • the wind turbine and the CO 2 absorption system are combined with each other by the rotor blades and / or the mast of the WKA are provided with the aforementioned microporous membranes.
  • These membranes are mounted on mast and / or rotor blade in such a way that on the one hand they are in direct contact with the air and on the other hand the wash liquor can circulate to and from the CO2 desorption plant.
  • the invention therefore also relates to wind power plants and power plants without power, as described here, in which the rotor blades and / or the mast are provided with hydrophobic microporous membranes for CO 2 absorption.
  • an evaporation-reducing component is added to the wash liquor.
  • Suitable components have a vapor pressure reducing effect.
  • Such components are known per se, as a specific example is called magnesium sulfate.
  • the effective concentration of such components depends on the design of the plant, the feedstock used and the operating conditions. The determination of suitable operating parameters can be determined on the basis of appropriate tests; as an indication, 0.1 to 10% by weight of MgSO4 in the wash liquor are suitable.
  • Module b2 In the context of the present invention, preference is also given to systems in which air is contacted with solid CaO at comparatively low temperatures (in particular ⁇ 100 ° C.), with formation of CaCO 3.
  • the said CaO is advantageously present in finely divided form, for example as nanoparticles.
  • Corresponding apparatuses and systems which absorb gases by means of a solid absorbent are known per se and can be designed according to known methods. This dry chemical plant is preferably combined with the dry chemical C02 desorption plant mentioned below.
  • CO2 Desorption Plant (Module c): Systems for releasing CO2 from wash liquors, in particular from carbonate-containing aqueous wash liquors, are generally known (module c1). Equipment for the release of CO2 from solids, in particular from carbonate-containing solids, are also generally known (module c2). Such release may be by physicochemical, electrochemical or chemical means and is closely related to the compounds formed by CO 2 absorption.
  • the CO2 release takes place electrochemically by electrolysis of the carbonate solution formed in an electrochemical membrane cell to form CO 2 and H 2 ("alkaline low-pressure electrolysis", module rapid)
  • electrolysis of the carbonate solution formed in an electrochemical membrane cell to form CO 2 and H 2
  • Such cells are known per se; Na2CO3 + 4H2O -> 3H2 + 3/202 + CO2 + 2NaOH
  • the advantage of this embodiment lies in the fact that the C02 desorption unit and the H2 synthesis unit are combined with one another.
  • the CO2 release takes place electrochemically by electrolysis of the carbonate solution formed in an electrochemical membrane cell to form CO (eg using a solid oxide electrolysis cell, SOEC, module cl2).
  • CO a solid oxide electrolysis cell
  • SOEC solid oxide electrolysis cell
  • the release of CO2 by chemical means by acidification of the wash liquor from Appendix b) with optionally subsequent electrodialysis module cl3.
  • the desorption by adding an acid eg. aqueous sulfuric acid
  • an acid eg. aqueous sulfuric acid
  • the salt formed in this reaction can be worked up again in a subsequent electrodialysis.
  • the reactions can be described by the following equations: Na2CO3 + H2SO4 -> Na2SO4 + CO2 + H2O Na2SO4 + H2O -> NaOH + H2SO4.
  • the advantage of this embodiment lies in the simple and safe CO 2 desorption.
  • the release of CO2 takes place on a physicochemical (thermal) path by calcination (module c2).
  • a (alkaline) Alkalicarbonat Favor calcium carbonate, so far heated that CO2 is split off.
  • Suitable reactors for this reaction are known, for example rotary kilns or fluidized bed reactors.
  • the required (alkaline) alkali metal carbonates can be obtained directly from the CO2 absorption plant (by wet chemical or dry chemical route) or by reaction with Na2CO3 (from the absorption plant).
  • the metal oxides formed in the calcination can be recycled by reaction with water (for wet chemical processes) or recycled without further chemical reaction (for dry chemical processes).
  • the reaction can of the wet-chemical process by the following equations, which summarize the provision of the carbonate, the calcination and the recycling: Na 2 CO 3 + Ca (OH) 2 -> CaCO 3 + 2NaOH
  • An advantage of this embodiment is that a particularly finely divided carbonate is provided for the further reaction sequence.
  • Another advantage of this embodiment is that electrical energy can be dispensed with to carry out the reaction.
  • the solids are present in finely divided form, preferably as nanoparticles.
  • Mo duls c2 C02 release from CaC03 carried solar thermally at 500 - 2000 0 C, preferably about 1000 0 C.
  • solar thermal plants are known; suitable in principle all such systems that produce by bundling or focusing the desired temperatures; For example by means of parabolic mirror or Fresnel lenses.
  • the partial pressure of CO2 can be lowered in the reaction space in order to favorably influence the release.
  • a reduction of the CO 2 partial pressure is, for example, possible by H2 introduced into the reaction space.
  • the release of CO2 by chemical means by reaction of the carbonate solution with chlorine ("desorption by chlorination", module cl4), optionally in the presence of a catalyst, to form a chloride / hypochlorite solution and CO2 Reaction and corresponding devices ("stripping towers”) are known per se.
  • the required chlorine is recycled electrochemically; For example, by the initially formed chloride / hypochlorite solution is reduced and then fed to the H2 synthesis plant in which a chlor-alkali electrolysis is carried out.
  • the reaction can be described by the following equations summarizing desorption, reduction, and H2 synthesis / C12 recycling:
  • Such an embodiment is indicated, for example, when the H2 synthesis plant is designed such that chlorine is produced as a by-product.
  • C02 release may be physico-chemical in a pressure reduction ("degassing") plant
  • degassing pressure reduction
  • Such degasification plants are known per se
  • the advantage of this embodiment is that a technically simple and robust plant is provided Embodiment is particularly advantageous if in the C02 absorption plant a wash liquor was used, which enters into a predominantly physical bond or weak chemical bond with the CO 2, ie essentially absorptive or coordinative effects occur.
  • H2 - synthesis plant (module d): The supply of the required hydrogen can be based on electrochemical mixing (module dl) and / or solar thermal (module d2) path, wherein electrochemical H2 - synthesis systems are preferred.
  • electrochemical H2 - synthesis systems are preferred.
  • electrochemical cells are suitable which electrolyze aqueous solutions to form hydrogen.
  • Such cells are known, extensively studied and can be designed by the skilled person and integrated into the overall process.
  • An adaptation is meaningful or necessary, for example, to the previous C02 desorption plant.
  • all known solar thermal processes are suitable which lead to H2 release. Again, an adaptation to the other systems makes sense or necessary.
  • operational reliability, investment costs and efficiency are important parameters in all H2 synthesis plants.
  • Module dl In an advantageous embodiment, the H2 production takes place by means of PEM electrolysis (proton exchange membrane). This technology is state of the art and can be easily implemented on the required scale.
  • the H2 production takes place by means of chlorine-alkali electrolysis of an aqueous saline solution.
  • all known electrolysis cells are suitable. This embodiment is particularly advantageous when CO 2 desorption is by chlorination.
  • the H2 production takes place by means of high-temperature electrolysis of water to form hydrogen and oxygen.
  • water in principle, all known electrolysis cells are suitable.
  • the water used is first desalted, for example by means of ion exchange or distillation. This embodiment is particularly advantageous when CO 2 desorption is not achieved by chlorination.
  • the aqueous formed in the CO 2 absorption Carbonate / bicarbonate solution fed directly to an electrolysis, with CO2 and 02 is formed at the anode and H2 at the cathode and a hydroxide-containing solution is formed, which can be recycled for CO2 absorption ("low pressure alkaline electrolysis")
  • Electrolysis cells are known per se and described in US3135673, the contents of which are incorporated by reference into this specification. In essence, the reaction can be described by the following equation:
  • this electrolysis cell can be constructed so that in a three-part, separated by diaphragms cell H2 and 02 can be removed at the cathode or anode chambers and the C02 formed can be removed in the intermediate region.
  • the required hydrogen is produced by solar thermal processes without electricity. This can be done for example by thermal dissociation of ZnO at temperatures above 2000 K where Zn and * s 02 are formed. Zn reacts with H2O to form ZnO releasing H2.
  • This embodiment is advantageous when solar radiation is available in high intensity.
  • Such a solar thermal H2 synthesis plant may advantageously be combined with a CO 2 desorption plant which releases the CO 2 due to thermal processes, as described above.
  • the reaction energy required for all endothermic processes can be made available thermally. Thermal energy is provided for CO 2 desorption and H2 synthesis; The CO2 absorption and the synthesis of methanol, DME, methane are exothermic reactions.
  • the particular advantage of this embodiment would therefore be the low demand for electrical energy and the high Overall efficiency of the power plant to see. Accordingly, such a power plant in regions with high solar radiation, eg. In desert regions, would be advantageous to install.
  • Synthesis plant for the production of combustible hydrocarbons (module e).
  • the synthesis of combustible hydrocarbons, especially methanol, methane, DME, as well as corresponding plants are known in the art.
  • systems are used which are based on catalytic synthesis processes.
  • Methanol Synthesis Plant (Module el): As already stated, the present invention encompasses methanol synthesis plants which either i)
  • Transfer methanol can be designed so that, with a simple throughput, virtually complete conversion to methanol takes place.
  • these systems can also be designed or operated in such a way that only partial conversion of the CO or CO2 used takes place.
  • unreacted starting material is recycled either after removal of the product (methanol). or (especially in the case of CO2) released into the environment.
  • a complete (or virtually complete) recycling takes place without release to the environment.
  • the methanol synthesis is carried out from the components CO2 and H2.
  • Equipment for the conversion of C02 and H2 to methanol are well known. Typically, these plants are designed so that in the reactor, the reaction at 50 - 100 bar, 200 - 300 0 C takes place.
  • the reactors can be designed as fixed bed or fluidized bed reactors. Suitable catalysts are, for example, Cu-doped solids. material catalysts.
  • the methanol synthesis can be carried out in one or more stages. This reaction can be illustrated by the following reaction equation:
  • a distillation unit is provided in this plant, which allows the partial or complete separation of the water formed from methanol.
  • the invention thus also relates to a power plant as described herein, in which the methanol synthesis plant contains a C-containing catalyst (for the conversion of CO2 and H2), and optionally a distillation unit (for partial or complete separation of the methanol produced and for the return of the water for electrolysis) is assigned.
  • the methanol / synthesis gas plant contains a unit for the high-temperature electrolysis of CO2.
  • such units contain an oxygen ion-conducting solid electrolyte, for example ZrO / Y 2 O 3. Typical reaction temperatures are about 800 - 1000 0 C.
  • the unit supplied CO2 / H2O - mixtures are reduced upon application of a voltage in accordance with the following equations: C02 -> CO + H20 1/202 -> 2H2 + 02.
  • the stoichiometry of the synthesis gas produced depends on the applied voltage, the contact time, the residence time, the temperature and can be optimized in simple series experiments. If such a high-temperature electrolysis is combined with the methanol / synthesis gas plant, depending on the operating point of the high-temperature electrolysis unit, a separate H2 synthesis plant can be dispensed with.
  • the methanol / synthesis gas plant is combined with a plant for reductive alkaline low pressure electrolysis. This system provides the required CO.
  • the methanol synthesis is carried out according to:
  • This plant is referred to as a "direct methanol plant.” This process is particularly advantageous since the components CO2 and H2O can be used directly, and in this variant, the methanol and hydrogen synthesis plant (plants d) and e)) are in Such systems are known per se and eg in US 5928806, the contents of which are incorporated by reference into this specification.
  • Methane synthesis plant (module e2): In one embodiment, the methane synthesis takes place from the Components C02 and H2. Facilities for the conversion of CO2 and H2 to methane are well known. Typically, these systems are designed so that in the reactor, the reaction at 1 - 30 bar, preferably at atmospheric pressure, 300 - 400 0 C takes place.
  • the reactors can be designed as fixed bed or fluidized bed reactors. Suitable catalysts are, for example, Ni-doped solid catalysts.
  • the methanol synthesis can be carried out in one or more stages, preferably in one stage. This reaction can be illustrated by the following reaction equation:
  • This variant is particularly advantageous because it can be easily miniaturized, that non-pressure process variants are already known and that can be dispensed with a distillative purification. These advantages can override the disadvantage of storing under pressure partially or completely.
  • the invention thus also relates to a power plant as described here, in which the methane synthesis plant contains a Ni-containing catalyst (for the conversion of CO2 and H2), and to which no distillation unit for product separation is assigned.
  • the DME synthesis is from methanol with elimination of water. Facilities for this implementation are well known. Typically, these systems are designed so that the reaction takes place in the reactor at 30-80 bar, preferably at 50 bar, 200-300 0 C.
  • the reactors can be designed as fixed bed or fluidized bed reactors. Suitable catalysts are, for example, Cu / Fe-doped solid catalysts. This variant is particularly advantageous since DME generates an energy carrier which can be liquefied under low pressure.
  • the DME synthesis can be done directly; corresponding systems and catalysts are known. The gross equations of such reactions are given below: 3CO + 3H2 -> H3C-O-CH3 + C02
  • Storage System (Module f): Storage systems for liquid or gaseous combustible hydrocarbons are known per se.
  • Methanol Storage System (Module fl): Storage tanks ("tanks") suitable for methanol are known per se and because of their physicochemical properties, in particular flash point, vapor pressure and solution properties, tanks must be made of suitable materials and have appropriate safety features
  • the invention also relates to a floating body as described herein, consisting of two separate, interconnected devices in which the one device only Appendix f) contains and the second device includes the systems a) - e).
  • Methane storage facility (module f2): Methane storage facilities are preferably designed to handle either gaseous methane at 200bar (“CNG”) at ambient temperature or gaseous methane without pressure and at ambient temperature or liquid methane and depressurised at -163 ° C (. LNG NV) is stored corresponding systems are already industrially deployed Moreover, the statements made for methanol DME apply accordingly - storage installation (module f3):.... the statements made for methanol make correspondingly for DME DME is similar to LPG saved, so that the corresponding plants can be used according to this invention. DME storage systems are preferably designed so that the liquid DME is stored at 5 bar and ambient temperature.
  • the present invention therefore also relates to a watercraft as described herein, consisting of a composite of two or more individual vessels, characterized in that a first vessel contains the plants a) - e) and the associated further vessels each one Storage facility f) included.
  • a first vessel contains the plants a) - e) and the associated further vessels each one Storage facility f) included.
  • the methanol storage plant is separated by a movable partition wall (for example a membrane) into two partial volumes. So it is possible to store in the system water, which is needed in the course of the reaction.
  • the volume of water consumed corresponds approximately to the volume of methanol formed. This measure makes it possible to dispense with a local water supply system.
  • this embodiment leads to increased stability.
  • the floating body may contain other equipment ("ancillary equipment” or modules), including equipment used to purify starting materials, to supply and recover auxiliary materials and to recover energy, in particular thermal energy It is also possible to provide temporary storage for the intermediately formed products, for example batteries for intermediate storage electrical energy, gas tanks for the intermediate storage of CO2, and H2. Liquid tanks for temporary storage of auxiliaries. It is also possible to provide plants for regenerating the catalysts and the electrolysis cells. Furthermore, it is possible to provide storage for the optionally generated oxygen. These auxiliary systems are known per se and can be designed accordingly by the person skilled in the art.
  • the scaling of a power plant according to the invention depends on various parameters and is not limited by the invention.
  • the available wind or solar energy and the plants known therefor typically represent an upper limit.
  • To characterize the size of the power plant according to the invention it is possible to specify the primarily generated electrical energy (by wind or solar energy), since the other plants are tuned to it become. For large systems, for example, a single wind power plant with approx. 10 MW would have to be mentioned as an upper power limit. On this performance, the other components are interpreted.
  • the size of the systems d) to e) represents a lower limit, because below a critical size, the systems are too small for efficient operation. In connection with a direct methanol fuel cell, about 100 W would be mentioned as the lower power limit.
  • the invention relates to a kartebundenes power plant with a power of 100 W to 10 MW, preferably from 1 kW to 5 MW power, more preferably from 0.5 to 3 MW power.
  • the invention also relates to a power plant which preferably in places with constant wind conditions or suitable currents of the water or suitable wave movements of the water (such described below).
  • This positioning solves many of the problems of existing wind turbines (for land-based installations: especially noise, landscape), for offshore installations: especially costs for foundations, maintenance and network connection) or hydroelectric power plants.
  • the present invention relates to a floating body, in particular a watercraft, comprising the following installations: a) wind power plant or hydroelectric power plant for generating electrical energy for the operation of the facilities b) to f); b) CO2 absorption system for the absorption of atmospheric CO2; c) CO2 desorption plant for the desorption of the CO2 obtained in b); d) electrochemical H2 synthesis plant; e) catalytic synthesis plant for the production of combustible hydrocarbons; f) storage facility for storing the hydrocarbons obtained in e).
  • Such a floating body offers the possibility of producing and storing combustible hydrocarbons (such as methane, DME or methanol) from the virtually unlimited resources CO2 of the air and H2 of the water by means of wind energy or hydropower. Since all necessary resources are available free of charge, it is thus possible to economically produce these combustible hydrocarbons as a valuable and environmentally neutral energy source. Furthermore, the storage of such hydrocarbons is possible on such a device.
  • the individual plant parts a) to f) are known per se and can be dimensioned on the basis of general knowledge and adapted to the requirements in the operation of a floating device.
  • the systems a) to f) are preferably designed as described in this document.
  • buoyant can be installed remotely from the consumer as there are no loss of power due to transmission or network connection costs, which can be avoided, for example. an intercontinental transport of energy even from an economic point of view.
  • a basic idea of the present invention is therefore to "harvest" regenerative energy where it is obtained uniformly and in high density, to convert this energy obtained into a chemical energy carrier which is stored and emptied discontinuously for further use.
  • such a float can be easily repositioned; For example, to perform maintenance or to operate in regions with optimal wind / wave / flow conditions.
  • the invention therefore relates to a watercraft as a floating body, which is equipped with a WKA.
  • the axial resistance of the rotor can be used for the propulsion of the float so as to enable or assist the positioning / re-positioning.
  • the invention therefore relates to a buoy as a floating body, which is equipped with a WKA.
  • the invention therefore relates to a sailboat as a floating body, which is equipped with a water turbine.
  • the present invention relates to the use of a non-powered power plant or a floating body as described herein, in particular a buoy or a watercraft, for the production and storage of combustible hydrocarbons such as methanol methane, DME,.
  • the power plant is designed so that the essential or exclusive purpose is the production and (intermediate) storage of combustible hydrocarbons.
  • the floating body may be designed so that its essential or exclusive intended purpose is the production and the
  • Auxiliary units are used to drive the float or that the generated hydrocarbon is used in other processes. It is preferred to use the floating body according to the invention for the production and storage of combustible hydrocarbons, in particular methane or methanol or DME.
  • the invention in a fourth aspect, relates to a process for producing combustible hydrocarbons (in particular methanol, methane and / or DME) comprising the steps of a) positioning a power plant or a floating body as described here in a region which constant wind conditions, constant wave motion or constant Having solar radiation; b) operation of the facilities of this power plant / float; c) discontinuous, preferably periodic, emptying of the storage facility.
  • This method makes it possible to produce a chemical energy carrier in a simple and safe manner as well flexible and needs-oriented. The individual steps are explained below.
  • Step a) Regions with constant wind conditions are well known; The necessary strength of the wind depends on the design of the wind turbine. Typically, an average wind speed of at least 7m / s should be present. Wind conditions are considered constant when the average wind speed is at least 70%, preferably at least 80% of the time. Typical regions are the areas of the trade winds and areas that form a "natural nozzle" (such as coastal areas, areas between islands, mountain passes, summits, etc.) Generally, positioning should take into account that constant wind increases the degree of utilization; low wind shear reduces wear and also increases performance, and in particular trade winds meet these requirements, which is a significant advantage over land-based installations.
  • Regions of constant wave motion are well known; The necessary strength of the waves depends on the design of the wave power plant. Typically, waves with a height of ⁇ 10 m, for example 2-8 m should be present. Shaft ratios are considered constant when the average annual wave height is more than 0.7 m. Typical regions are the areas of the South Pacific.
  • Regions of constant solar radiation are also well known. Suitable areas are those in which the average intensity of solar radiation averages more than 200 watts / m2 per year. Typical areas are, for example, on the Arabian Peninsula or in northern Africa.
  • the positioning of the vessel can be done in several ways. In the simplest case, the vessel is anchored to the desired position. Alternatively, the vessel may cruise in the wind, being kept on course by engine power and / or wind power, depending on the design. In a further alternative, the vessel is re-positioned at certain intervals, for example, in changing weather conditions or due to seasonal fluctuations.
  • the invention therefore also relates to a method in which the positioning of the floating body optionally comprises a continuous or discontinuous repositioning.
  • the resistance of the wind turbine for driving the float in particular a ship, can be partially or completely used.
  • the invention therefore also relates to a method as described herein, in which the positioning and / or re-positioning of the floating device takes place with partial or complete utilization of the resistance of the wind turbine.
  • the positioning of a power plant which is not installed on a float essentially relates to the advantageous installation of the wind turbine or solar thermal system, whereby the criteria mentioned here are applicable.
  • Step b) The operation of the individual systems is carried out according to the interpretation in a known manner.
  • the individual plant components must be coordinated in their production capacity.
  • the generated electrical energy must be sufficient for all parts of the plant b) to f) as well as any ancillary components which may be present. be coordinated by H2 and the desorption of CO2.
  • the equipment may be designed to allow for fully automatic, remote-controlled production, or for an on-site operator team, as well as combinations thereof. If the vessel is at anchor, fully automated operation is possible. If the vessel crosses in the wind, at least a partial manual operation is preferred, which monitors and controls at least the positioning of the vessel.
  • Step c) the emptying of the storage facility takes place discontinuously, preferably in periodic periods.
  • the parameters for this can be either a time unit (eg monthly, quarterly, yearly) or the level of the storage facility (eg at least 50% filled, maximum 90% filled), or a spatial parameter (eg a vessel cruising in the trade wind driving a certain course), or a combination thereof.
  • a time unit eg monthly, quarterly, yearly
  • the level of the storage facility eg at least 50% filled, maximum 90% filled
  • a spatial parameter eg a vessel cruising in the trade wind driving a certain course
  • a float is equipped with the following equipment:
  • a tank for holding the methanol formed as module f, volume 300m3.
  • This power plant produces 50 kg of methanol / h, which corresponds to an energy content Hu of 274 kWh (efficiency 46%).
  • the components caustic soda and
  • Example 2 Wind power plant A power plant with the following plants
  • Such a power plant can, for example, on a
  • a sailing ship is equipped with the following facilities
  • Such a ship can, for example, be operated cruising in the trade wind.
  • Example 4 purely thermal power plant A power plant with the following modules
  • Such a power plant can be installed, for example, on the Arabian Peninsula.
  • a gas engine is provided, which uses the methane produced as fuel.
  • a module a is necessary in this embodiment only for the supply of auxiliary equipment.
  • a ship is equipped with the modules b) to f) described below, several modules a) are connected to it
  • Such a power plant can be installed, for example, in the south pacific.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Wind Motors (AREA)

Abstract

Die Erfindung betrifft ein netzungebundenes Kraftwerk, welches die folgenden, in Ihrer Kapazität aufeinander abgestimmten Anlagen enthält: a) Windkraftanlage, Wasserkraftanlage, solarthermische Anlage und / oder Photovoltaikanlage zur Erzeugung elektrischer Energie für den Betrieb der Anlagen b) bis f ); b) C02 - Absorptionsanlage zur Absorption von atmosphärischem C02; c) C02 - Desorptionsanlage zur Desorption des in b) gewonnenen C02; d) elektrochemische oder solarthermische H2 - Syntheseanlage zum Betrieb der Anlage e); e) Syntheseanlage ausgewählt aus der Gruppe katalytische Methanol-Synthese, katalytische DME-Synthese, katalytisehe Methan-Synthese; f) Speicheranlage ausgewählt aus der Gruppe Methanol - Speicheranlage, DME - Speicheranlage, Methan - Speicheranlage; ferner die Verwendung eines solchen Kraftwerkes und Verfahren zum Betreiben eines solchen Kraftwerkes.

Description

Modulares, netzungebundenes Kraftwerk
Die Erfindung betrifft ein netzungebundenes Kraftwerk, welches aus CO2 der Luft, Wasser und regenera- tiver Energie, brennbare Kohlenwasserstoffe erzeugt und speichert, wobei dieses Kraftwerk bevorzugt auf einem Schwimmkörper installiert ist; ferner die Verwendung eines solchen Kraftwerkes und Verfahren zum Betreiben eines solchen Kraftwerkes.
Es besteht ein allgemeiner Bedarf, Energie kostengünstig und umweltneutral zur Verfügung zu stellen. Fossile Energieträger leisten derzeit den Großteil der globalen Energieversorgung. Die Verwendung dieser Energieträger ist aber durch die vorhandenen Reserven und durch die Toleranz des Weltklimas für Emissionen des Verbrennungsproduktes CO2 beschränkt. Nuklearenergie wird wegen der ungelösten Entsorgungsfrage von verantwortlichen Entscheidungsträgern abgelehnt. Ferner sind allge- mein Lösungen bekannt, elektrische Energie aus erneuerbaren Energiequellen zu Verfügung zu stellen. Ferner sind Lösungen bekannt flüssige Brennstoffe aus Biomasse zu erzeugen. Biogene Treibstoffe nutzen die durch Fotosynthese aus CO2 und H2O gebildete und in Biomasse gespei- cherte chemische Energie und bilden einen Teil eines geschlossenen Stoffkreislaufs . Die Nutzung von Biomasse zur Energieversorgung steht aber mit der Nutzung von Biomasse für Ernährung und andere Zwecke (Biodiversität / Lebensraum) im Konflikt. Jener Teil der Erdoberfläche, an dem für Fotosynthese geeignete Bedingungen herrschen ist klein und kaum erweiterbar. Mit heutigen (BTL) Technologien müsste 20% der globalen Fotosynthesekapazität für Energiezwecke benutzt werden. Selbst der geringe Beitrag den Biomasse heute liefert hat bereits massive unerwünschte Auswirkungen auf den Agrarmarkt. Sonnenenergie und Windenergie sind nur in geringen Energiedichten und nicht nach Bedarf verfügbar. Diese Energieformen können daher nur dann einen maßgeblichen Beitrag zur globalen Energieversorgung leisten, wenn sie großflächig "geerntet" und sinnvoll gespeichert werden können. Beide Energieformen können derzeit nur ortsfest bzw. verbunden mit dem Verbraucher („netzgebunden") genutzt werden. Dadurch ist die Wahl der Standorte stark eingeengt. Geeignete Speichersysteme für erzeugte Energie, die eine lange Lagerung und Transport über große Entfernungen zulassen, fehlen.
Nachteilig ist bei den bekannten Verfahren ferner, dass Speichermedien für elektrische Energie eine geringe Energiedichte aufweisen; ferner können erneuerbare Energien häufig an Orten und / oder zu Zeiten günstig erzeugt werden, wo der Bedarf daran gering ist. Flüssige Energieträger hingegen, insbesondere Kohlenwasserstoffe, können leicht gelagert und transportiert werden und weisen eine hohe Energiedichte auf. Ferner besteht für diese Energieträger eine ausgebaute Infrastruktur. In diesem Zusammenhang ist Methanol als besonders vorteilhafter Energieträger zu nennen; insbesondere, da es die einfachste, bei Raumtemperatur flüssige, kohlenwasser- stoffhaltige Verbindung ist. Ebenso ist Methan ein günstiger Energieträger, da für diesen KW bis zum Endverbraucher eine ausgeprägte Infrastruktur besteht.
Es sind nun bereits verschiedene Verfahren zur Herstellung von Methanol aus atmosphärischem CO2 vorgeschlagen worden.
Weimer et al, Energy Conversion Mgmt, 1996, Vol. 37, 1351 ff, diskutiert generelle Lösungsansätze zur Produktion von Methanol unter Verwendung von Solarenergie. Eines der dort allgemein und ohne konkrete Ausfüh- rung vorgestellte Verfahren umfasst die Schritte alkalische CO2 Absorption, CO2 Freisetzung, elektrolytische H2 Gewinnung und Methanolsynthese aus den Komponenten H2 und CO2. Dabei wird vorgeschlagen, solare Energie zur Deckung des benötigten Strombedarfs der gesamten Anlage heranzuziehen. Dieser Prozess, obwohl geeignet, wird als nachteilig angesehen, da Biomasse als bessere Kohlen- stoffquelle zur Verfügung steht und, da die solare Stromgewinnung unter anderem unwirtschaftlich, flächenintensiv und witterungsabhängig ist. Die Problematik der nur periodisch vorhandenen elektrischen Energie wird in diesem Dokument nicht berücksichtigt.
Corbett et al, US 4339547 offenbaren einen ähnlichen Prozess zur Gewinnung von Treibstoffen (Kohlen¬ wasserstoffen) umfassend die Schritte alkalische CO2 Absorption, C02 Freisetzung, elektrolytische H2 Gewin- nung, Methanolsynthese aus den Komponenten H2 und CO2 und Umsetzung zu Kohlenwasserstoffen mittels Fischer-Tropsch Synthese. Dieses Dokument offenbart insbesondere vorteilhafte Apparate zur CO2 -Absorption.
Hardy et al, US 2005/02328833, offenbaren ebenfalls einen Prozess zur Gewinnung von Treibstoffen (Kohlenwasserstoffen) umfassend die Schritte alkalische CO2 Absorption, C02 Freisetzung, elektrolytische H2 Gewinnung, Methanolsynthese aus den Komponenten H2 und C02 und Umsetzung zu Kohlenwasserstoffen mittels Fischer- Tropsch Synthese. In diesem Dokument wird vorgeschlagen, die benötigte Energie durch einen Nuklearreaktor zu decken. Ein wesentlicher Zweck der gesamten dort offenbarten Anlage ist es, an Bord eines Schiffes direkt Kohlenwasserstoffe zur Verwendung als Treibstoff zu produzieren.
Zusammenfassend bleibt festzuhalten, dass die bekannten Prozesse in der Gesamtschau verschiedene Nachteile aufweisen. So sind die Prozesse teils unnötig kompliziert, teils wenig umweltfreundlich, und insgesamt nicht geeignet einen Energieträger preiswert und kontinu- ierlich zur Verfügung zu stellen. Es ist daher eine Aufgabe der vorliegenden Erfindung, eines oder mehrere der Nachteile bekannter Anlagen zu beheben.
Die vorstehend umrissenen Aufgaben werden ge- mäss den unabhängigen Ansprüchen gelöst. Vorteilhafte Ausführungsformen sind in der Beschreibung und den abhängigen Ansprüchen angegeben. Weitere Aspekte der Erfindung sind in den unabhängigen Ansprüchen sowie in der Beschreibung angegeben.
Die Erfindung betrifft somit ein netzungebundenes Kraftwerk zur Erzeugung und Lagerung von brennbaren Kohlenwasserstoffen, insbesondere Methanol, Dimethylether und Methan. Die Erfindung betrifft weiter ein Verfahren zur Erzeugung von brennbaren Kohlenwasserstoffen, einen Schwimmkörper ausgerüstet mit einem Kraftwerk wie hier beschrieben sowie die Verwendung des Kraftwerkes bzw. des Schwimmkörpers zur Erzeugung brennbarer Kohlenwasserstof- fe.
Die in nachfolgend aufgeführten allgemeinen, bevorzugten und besonders bevorzugten Ausführungsformen, Definitionen und Alternativen können beliebig miteinander kombiniert werden und sind Gegenstand der vorliegenden Erfindung. Des Weiteren können einzelne Definitionen / Alternativen entfallen.
Sofern sich aus dem direkten Zusammenhang keine andere Bedeutung ergibt, haben die folgenden Begriffe die hier angegebene Bedeutung:
Der Begriff Kraftwerk bezeichnet allgemein einen Verbund verschiedener Anlagen zur Energieerzeugung. Im engeren Sinne werden damit solche Verbundanlagen bezeichnet, die elektrische Energie erzeugen und an ein bestehendes Netz abgeben. Im Rahmen der vorliegenden Erfindung soll der Begriff aber auch solche Anlagenver- bunde beschreiben, die einen chemischen Energieträger (insbesondere Methanol, Methan, Dimethylether) zur Verfügung stellen. Ein solches Kraftwerk ist netzungebun- den, wenn es keine direkte Anbindung an einen Verbraucher aufweist, sondern die erzeugte Energie (bzw. den Energieträger) speichert und so zur Abgabe bereitstellt.
Ein Schwimmkörper bezeichnet allgemein jegli- che Vorrichtung, welche die nachstehend genannten Anlagenteile aufnehmen kann und sich schwimmend in Regionen konstanter Windverhältnisse / Wellenbewegung aufhalten kann. Insbesondere umfasst dieser Begriff alle Arten von Wasserfahrzeugen die sich aus eigener Kraft bewegen können („mobile Schwimmkörper", z.B. durch Motorkraft; „Motorschiffe" oder durch Windkraft; „Segelschiffe") oder bewegt werden müssen („stationäre Schwimmkörper", z.B. „Pontons", „Inseln", „Bojen".). Erfindungs- gemäss erfasst der Begriff „durch Windkraft bewegte Schwimmkörper" neben klassischen mit Mast und Segel ausgerüsteten Schiffen auch unkonventionelle Segelschiffe welche beispielsweise einen Segeldrachen oder andere technische Einrichtungen nutzen. Ferner können Schwimmkörper als Einrumpfboot oder Mehrrumpfboote konstruiert sein.
Der Begriff „Methanol - Synthese" bzw. „Methanol - Herstellung" bezieht sich auf die Bildung von Methanol aus Wasserstoff und Kohlendioxid bzw. Kohlenmo- noxid. Zur Veranschaulichung werden die folgenden Bruttogleichungen angegeben:
CO2 + 3H2 -> H3COH + H2O; CO + 2H2 -> H3COH
Der benötigte Wasserstoff kann ebenfalls in situ gebildet werden, was zur folgenden Bruttogleichung führt:
CO2 + 2H2O -> H3COH + 3/202. Der Begriff „Methan - Synthese" bzw. „Methan
- Herstellung" bezieht sich auf die Bildung von Methan aus Wasserstoff und Kohlendioxid bzw. Kohlenmonoxid. Zur
Veranschaulichung werden die folgenden Gleichungen angegeben:
4H2O -> 4H2 + 202
CO2 + 4H2 -> CH4 + 2H2O ergibt als Bruttoreaktion:
CO2 + 2H2O -> CH4 + 202.
Der Begriff „Dimethylether (DME) - Synthese" bzw. „DME - Herstellung" bezieht sich auf die Bildung von DME aus Wasserstoff und Kohlendioxid bzw. Kohlenmonoxid. Zur Veranschaulichung werden die folgenden Bruttoglei- chungen angegeben:
3CO + 3H2 -> H3C-O-CH3 + CO2 2CO2 + 3H2O -> H3C-O-CH3 + 302.
Das gemäss diesen Reaktionen gebildeten chemischen Energieträger (Methanol, DME, Methan) können in verschiedenen Reinheiten vorliegen und müssen nicht vollständig chemisch rein erzeugt werden, d.h. Nebenprodukte, Verunreinigungen aus den vorhergehenden Reaktionsschritten und / oder dem Ausgangsmaterial usw. können enthalten sein. Der erfindungsgemäss zur Verfügung gestellte chemische Energieträger ist geeignet, ggf. nach weiteren Reinigungsschritten, als Energieträger in Verbrennungskraftmaschinen oder Brennstoffzellen oder als Ausgangsmaterial in chemischen Synthesen verwendet zu werden. Die Erfindung wird weiterhin illustriert durch die Figuren.
Fig. 1 zeigt eine schematische Darstellung eines erfindungsgemässen Kraftwerkes wobei die Bezugszeichen die folgende Bedeutung haben: Aggregate
A Windkraft- oder Photovoltaikanlage B CO2 Absorptionsanlage C C02 Desorptionsanlage D H2 Syntheseanlage E katalytische Methanol-
F Speicheranlage
Stoffströme
1 Luft CO2 reich
2 Luft CO2 arm
3 Waschlauge ungesättigt
4 Waschlauge gesättigt
5 CO2
6 H20
7 02
8 H2
9 Methanol
10 H20
Fig. 2 zeigt eine schematische Darstellung eines erfindungsgemässen Schwimmkörpers enthaltend ein Kraftwerk zur Methanolherstellung wobei die Bezugszeichen die folgende Bedeutung haben:
1 Luft CO2 reich
2 H20
3 Luft CO2 arm
4 Methanol
Fig. 3 zeigt eine besondere Ausgestaltung der Windkraftanlage, in welcher die Windkraftanlage und die CO2-Absorptionsanlage miteinander kombiniert sind, indem die Rotorblätter der WICA mit mikroporösen Membranen zur C02-Absorption versehen sind. Hierbei zeigt 1 den CO2- armen Vorlauf und 2 den C02 reichen Rücklauf der Waschlauge .
In einem ersten Aspekt betrifft die Erfindung daher eine netzungebundenes Kraftwerk, dadurch gekennzeichnet, dass es die folgenden, in Ihrer Kapazität aufeinander abgestimmten Anlagen („Module") enthält: a) Windkraftanlage, Wasserkraftanlage, solarthermische Anlage und / oder Photovoltaikanlage zur Erzeugung elektrischer Energie für den Betrieb der Anlagen b) bis f ) ; b) C02 - Absorptionsanlage zur Absorption von atmosphärischem C02; c) CO2 - Desorptionsanlage zur Desorption des in b) gewonnenen CO2; d) elektrochemische oder solarthermische H2 - Syntheseanlage zum Betrieb der Anlage e) ; e) Syntheseanlage ausgewählt aus der Gruppe katalytische Methanol-Synthese, katalytische DME- Synthese, katalytische Methan-Synthese; f) Speicheranlage ausgewählt aus der Gruppe Methanol - Speicheranlage, DME - Speicheranlage, Methan - Speicheranlage.
Ein derartiges Kraftwerk bietet die Möglichkeit, die in Windkraft, Wasserkraft und/oder Sonnenener- gie vorliegende Energie nahezu ortsunabhängig zu ernten und zu speichern. Dadurch eröffnet sich ein großes Potential an möglichen Standorten. Der chemische Energieträger (d.h. das Speichermedium Methanol, DME, Methan) wird dabei aus seinen Verbrennungsprodukten (CO2 und H2O) synthetisiert, bildet also einen geschlossenen Stoffkreislauf.
Methanol ist ein Energieträger mit vergleichsweise hoher Energiedichte, welcher leicht zu handhaben ist und langfristig lagerbar ist. Ferner kann das erfindungsgemäss gebildete Methanol unschwer in die bestehenden Energieversorgungs-Systeme integriert werden, als Chemie-Rohstoff verwendet, oder in Brennstoffzellen (z.B. in DMFC-Zellen) direkt eingesetzt werden. DME und Methan sind ebenfalls Energieträger mit vergleichsweise hoher Energiedichte, welche leicht zu handhaben und lagerbar sind. Ferner können die erfindungsgemäss gebildeten chemischen Energieträger unschwer in die bestehenden Energieversorgungs-Systeme integriert werden, als Chemie-Rohstoff verwendet, oder in Brennstoffzellen direkt eingesetzt werden.
Im Gegensatz zu bekannten Windkraft-, Wasserkraft- oder Photovoltaik-Anlagen, welche in bestehende Netze integriert sind, entstehen auch keine Probleme der Netzwerksteuerung, da keine Spitzenlasten oder Stillstandzeiten auszugleichen sind. Vielmehr ist es möglich, durch Umwandlung des gebildeten chemischen Energieträgers in elektrische Energie einen Netzausgleich zu schaffen.
Die Erfindung betrifft insbesondere die spezielle Abstimmung der Synthesetechnologie auf die Leistung der Windkraft- Wasserkraft- und/oder Photovol- taikanlage; die funktionale Integration von Komponenten der Syntheseanlage in die Windkraft- Wasserkraft- und/oder Photovoltaikanlage; die spezifische Auswahl und Ausgestaltung der einzelnen Anlagen.
Im Folgenden soll die Erfindung weiter erläutert werden und vorteilhafte Ausführungsformen darge¬ stellt werden.
Allgemein: Es versteht sich, dass die einzelnen Anlagen/Module a) bis f) in Ihrer Dimensionierung aufeinander abgestimmt sein müssen. Eine derartige Auslegung liegt im Rahmen ingenieurtechnischer Routinetätigkeit. Ferner kann es sich aus Verfahrenstechnischer, Sicherheitstechnischer oder Produktionstechnischer Sicht als vorteilhaft erweisen, die Anlagen a) bis f) mehrfach auszuführen. So kann es z.B. vorteilhaft sein, mehrere Windkraftanlagen, mehrere Syntheseanlagen und mehrere Speicheranlagen vorzusehen. Derartige Variationen liegen im Rahmen der üblichen Ingenieurstätigkeit und sind von der vorliegenden Erfindung mit umfasst. Ferner müssen die einzelnen Elemente der Anlagen ggf. den Bedingungen auf See angepasst sein. Derartige Anpassungen sind bereits aus angrenzenden Gebieten bekannt, z.B. im Zusammenhang mit Ölbohrinseln, auf denen auch eine Weiterverarbeitung des Rohöls stattfindet, oder auf Tankschiffen, welche gefährliche Güter wie Erdgas, H2O2, H2SO4 und ähnliches transportieren.
Kombination von Anlagen / Modulen: Wie nachstehend noch weiter ausgeführt, können die Anlagen a) bis f) auch als kombinierte Anlagen ausgeführt werden. So kann die Windkraftanlage (a) durch spezielle Ausgestaltung auch die Funktion der C02-Absorptionsanlage (b) teilweise oder vollständig übernehmen. Ferner können die elektrochemische H2 - Syntheseanlage (d) und die kataly- tische Methanol - Syntheseanlage (e) kombiniert sein, bspw. in Form einer umgekehrten Direct Methanol Fuel Cell (DMFC) . Des Weiteren kann die C02-Desorptionsanlage (c) und die elektrochemische H2 - Syntheseanlage (d) miteinander kombiniert sein. Auch können die C02-Absorptions- und Desorptionsanlage kombiniert oder funktionell gekoppelt sein. Derartige kombinierte bzw. zusammenge- fasste Anlagen sind von der vorliegenden Erfindung mit umfasst .
Ferner kann es für die optimale Stoff- und Energiekopplung der Anlage sinnvoll sein, bestimmte Ausführungsformen der einzelnen Anlagen a) bis f) miteinander zu kombinieren. So ist es bspw. vorteilhaft, eine thermische C02- Desorptionsanlage mit einer solarthermischen H2-Syntheseanlage zu kombinieren. Weiterhin ist es bspw. vorteilhaft, eine C02-Desorptionsanlage welche nach dem Prinzip reduktiven alkalischen Niederdruck-Elektrolyse arbeitet mit einer Methanol- Syntheseanlage auf Basis von Synthesegas zu kombinieren. Sodann ist es bspw. vorteilhaft, die CO2- Desorptionsanlage, welche nach dem Prinzip der Chlorierung arbeitet, mit einer H2-Syntheseanlage zu kombinieren, welche nach dem Prinzip der Chlor-Alkali-Elektrolyse arbeitet. Im Prinzip können die nachstehenden Module beliebig miteinander kombiniert werden. Es ergeben sich, z.B. aus wirtschaftlichen oder technischen Überlegungen, besonders bevorzugte Kombinationen, welche Gegenstand der vorliegenden Erfindung sind. Diese Kombinationen sollen anhand des morphologischen Kastens am Ende dieser Beschreibung im Überblick dargestellt werden. Die genannten einzelnen Anlagen werden nachstehend im Detail erläutert . Schwimmkörper: Der Begriff wurde bereits eingangs erläutert. Schwimmkörper können eigens für den erfindungsgemässen Zweck erstellt werden. Alternativ können bestehende Vorrichtungen umgenutzt werden, z.B. Indem Frachtschiffe oder Bohrinseln mit den entsprechenden Anlagen ausgerüstet werden. Geeignete Schwimmkörper sind z.B. Frachtschiffe und Bojen.
Anlage zur Erzeugung von Energie (Modul a) : für den hier beschriebenen Prozess ist je nach Ausgestaltung, elektrische und / oder thermische Energie nötig. Diese Energie wird über eine Primäranlage zur Verfügung gestellt. Prinzipiell sind alle bekannten Anlagen geeignet, die elektrische bzw. thermische Energie zur Verfügung stellen. Als vorteilhafte Anlagen sind Windkraftanlagen, Wasserkraftanlagen, Photovoltaikanlagen und solarthermische Anlagen zu nennen, wobei Windkraftanlagen und solarthermische Anlagen besonders hervorzuheben sind. Ferner sind Wasserkraftanlagen besonders hervorzuheben.
Unter Windkraftanlagen („WKA"), (Modul al) sind im Zusammenhang mit der vorliegenden Erfindung alle Anlagen zu verstehen, die Windenergie in elektrische Energie umwandeln können. Typischerweise enthalten WKAs einen Rotor aus Nabe und Rotorblättern, welcher auf einem Mast montiert ist und mit einem Generator gekoppelt ist; der Begriff umfasst somit WKAs mit vertikal oder horizontal drehenden Rotorblättern. Ferner können WKAs mit oder ohne Getriebeunterstützung eingesetzt werden.
Unter Wasserkraftanlage (Modul a2) sind im Zusammenhang mit der vorliegenden Erfindung alle Anlagen zu verstehen, welche entweder die kinetische Energie des Wassers nutzbar machen oder die relative Bewegung von Schwimmkörper zum Wasser nutzbar machen. Bevorzugt wäre daher auch ein bewegter Schwimmkörper („Segelschiff") welcher durch im wesentlichen ruhendes Wasser bewegt wird. Bevorzugt ist ferner ein Schwimmkörper, welcher die Energie der Wasserwellen in elektrische Energie umsetzen kann.
Unter Photovoltaikanlagen (Modula a3) sind im
Zusammenhang mit der vorliegenden Erfindung alle Anlagen zu verstehen, die in der Sonnenstrahlung enthaltene Sonnenenergie auf direktem Weg in elektrische Energie umwandeln können.
Unter Solarthermischer Anlage (Modul a4) sind im Zusammenhang mit der vorliegenden Erfindung alle Anlagen zu verstehen, welche die Strahlungsenergie der Sonne thermisch nutzbar machen.
Die vorstehend genannten Anlagen (Module) sind an sich bekannt und kommerziell erhältlich bzw. nach bekannten Methoden auszulegen und herzustellen.
In einer vorteilhaften Ausführungsform wird eine vertikal drehende WKA ohne Getriebeunterstützung verwendet. Diese Ausführungsform hat den Vorteil, dass eine besonders wartungsarme WKA und problemlos montierbare WKA verwendet wird.
In einer alternativen Ausführungsform wird eine horizontal drehende WKA mit Getriebeunterstützung verwendet. Diese Ausführungsform hat den Vorteil, dass eine besonders energieeffiziente und flexible WKA verwendet wird.
In einer weiteren alternativen Ausführungsform wird eine solarthermische Anlage und ggf. eine WKA verwendet. Diese Ausführungsform ist von Vorteil, wenn die nachfolgenden Anlagen einen geringen Bedarf an elektrischer Energie und einen hohen Bedarf an thermischer Energie zeigen. In einer weiteren alternativen Ausführungsform der Erfindung wird eine Wellenkraftmaschine (z. B. vom Typ eines „Pelamis" oder „OPT Powerbuoy") verwendet, welche die Auf- und Ab- Bewegung der Wellen nutzt, um die daraus resultierende Energie in elektrische Energie zu verwandeln. Solche Wellenkraftmaschinen werden entweder verankert oder mit anderen Mitteln, bspw. via Segel, positioniert. Ein Segelboot mit daran befestigten OPT Powerbuoys ist somit eine spezifische Ausführungsform von o.g. Wasserkraftanlage.
In einer weiteren alternativen Ausführungsform der Erfindung wird eine im Wasser angeordnete Turbine verwendet (z.B. wie sie in Gezeitenkraftwerken verwendet werden) welche eine Strömung im Wasser, bspw. eine Meeresströmung, nutzt. Solche Turbinen können bspw. an ortsfesten Schwimmkörpern befestigt werden. Die Erfindung betrifft daher auch ein modulares Kraftwerk, bei dem der Schwimmkörper ortsfest ist und der eine im Wasser angeordnete Turbine aufweist.
In einer weiteren alternativen Ausführungsform wird eine im Wasser angeordnete Turbine verwendet, welche am Rumpf eines Segelboots befestigt ist. In dieser Ausführungsform wird besagtes Segelboot durch Windkraft relativ zum Wasser bewegt und treibt so die Turbine zur Stromerzeugung an. Besagtes Seegelboot kann dabei entweder ein klassisches Segelboot mit einem oder mehreren Rümpfen sein, oder ein Boot welches mit nicht- konvnetionellen Einrichtungen zum Windvortrieb, bspw. einem Drachen, ausgerüstet ist. Die Erfindung betrifft daher auch ein modulares Kraftwerk, bei dem der Schwimmkörper ein Segelboot ist welches eine oder mehrere im Wasser angeordnete Turbinen aufweist. CO2 - Absorptionsanlage (Modul b) : Zahlreiche Anlagen und Prozesse zur Absorption von atmosphärischem CO2 sind bekannt. Erfindunggemäss sind CO2 - Absorptionsanlagen Anlagen auf Basis einer Waschlauge (Nasschemische Anlagen, Modul bl), oder ohne die Verwendung von Waschlaugen („Trockenchemische Anlagen", Modul b2) umfasst.
Modul bl : Im Rahmen der vorliegenden Erfindung sind solche Anlagen bevorzugt, bei denen Luft (welche ca. 350 ppm CO2 enthält) mit einer Waschlauge, insbesondere eine alkalischen wässrigen Lösung, bevorzugt ein Alkalihydroxid wie NaOH oder KOH, in Kontakt gebracht wird, wobei sich Carbonat und/oder Hydrogencarbonat bildet, vgl Weimer et al, Energy Convers. Mgmt . 1996, p.1351 ff, welches durch Referenz in diese Beschreibung aufgenommen wird (insbesondere: Kapitel 3.3.2). Zur Erzeugung von 11 Methanol wird entsprechend das CO2 von 1700m3 Luft benötigt. Um eine Syntheseanlage mit einer Primärleistung von 60OkW mit CO2 zu versorgen, muss pro Stunde 120000m3 Luft der Absorptionsanlage zugeführt werden. Geeignete Waschlaugen reagieren reversibel mit CO2 und sind allgemein bekannt, beispielhaft sei die bereits erwähnte NaOH-Lösung genannt. Die Reaktion kann z.B. gemäss folgender Gleichungen im wässrigen Medium erfolgen:
2NaOH + CO2 -> Na2CO3 + H20 NaOH + CO2 -> NaHCO3, wobei Carbonat und Hydrogencarbonat miteinander im Gleichgewicht stehen. Sofern im Zusammenhang mit der vorliegenden Erfindung auf Carbonat als Reaktionspartner abgestellt wird, ist die entsprechende Reaktion des Hydrogencarbonates mit umfasst, und lediglich aus Gründen der Übersichtlichkeit nicht mit aufgeführt.
In einer Ausführungsform kann die Absorption im offenen Kontakt in einem mit Füllkörpern versehenen Waschturm erfolgen. Dabei wird der Luftstrom ggf. zunächst befeuchtet und dann im Gegenstrom zur alkalischen Waschlauge durch diesen mit Füllkörpern versehenen Absorptionsturm geleitet.
In einer weiteren vorteilhaften Ausführungsform ist die Absorptionsanlage vom Typ eines Venturi- Turms. Solche Venturi-Türme enthalten Mittel zur Zuführung der wässrigen alkalischen Lösung, Mittel zur Tropfenbildung / Vernebelung dieser Lösung im oberen Bereich des Turms, Mittel zur Abführung der gebildeten Carbonat / Hydrogencarbonat - Lösung im unteren Bereich des Turms. Geeignete Venturi - Türme sind aus US 4339547 bekannt, welche durch Referenz in diese Beschreibung aufgenommen wird (insbesondere: Fig. 3a, b; Spalte 2, Z. 63 - Sp.3, Z. 38)
In einer weiteren vorteilhaften Ausführungs- form enthält die Absorptionsanlage mikroporöse Holfasermembranen, insbesondere hydrophobe mikroporöse Holfaser- membranen, welche alkalischen Absorptionsflüssigkeit enthalten und mit einem Luftstrom in Kontakt gebracht werden um so atmosphärisches CO2 zu absorbieren. Solche Membranen sind bekannt und bspw. von Hoechst - Celanese kommerziell erhältlich. Die Konstruktion und Dimensionie- rung entsprechender Absorber ist an sich bekannt und bspw. in Stucki et al, Int. J. Hydrogen Energy, 1995, S.653 ff beschrieben. Dieses Dokument, (insbesondere S. 656, „experimental" ) werden durch Referenz in diese Beschreibung aufgenommen. In einer vorteilhaften Ausfüh- rungsform werden diese mikroporösen Holfasermembranen mit einem hydgroskopischen Material, bspw. MgSO4, belegt. Diese Massnahme reduziert die Verdunstung des zirkulierenden Wassers der Waschlösung.
In einer besonderen Ausführungsform werden die Windkraftanlage und die C02-Absorptionsanlage miteinander kombiniert, indem die Rotorblätter und / oder der Mast der WKA mit den vorstehend genannten mikroporösen Membranen versehen sind. Diese Membranen werden derartig auf Mast und/oder Rotorblatt montiert, dass sie einerseits mit der Luft im direkten Kontakt sind und andererseits die Waschlauge von und zur CO2- Desorptionsanlage zirkulieren kann. Die Erfindung betrifft daher auch Windkraftanlagen und netzungebundene Kraftwerke wie hier beschrieben, bei denen die Rotorblätter und / oder der Mast mit hydrophoben mikroporösen Membranen zur CO2 Absorption versehen sind.
In einer weiteren vorteilhaften ausgestaltung der hier beschriebenen Nasschemischen Absorptionsanlagen wird der Waschlauge eine die Verdunstung reduzierende Komponente zugegeben. Geeignete Komponenten haben eine Dampfdruck - reduzierende Wirkung. Solche Komponenten sind an sich bekannt, als spezifisches Beispiel sei Magnesiumsulfat genannt. Die effektiv notwendige Konzentration solcher Komponenten hängt von der Konstruktion der Anlage, den Verwendeten Einsatzstoffen und den Betriebsbedingungen ab. Die Bestimmung geeigneter Betriebsparameter kann anhand entsprechender Versuche bestimmt werden, als Anhaltspunkt sind 0.1 - 10 Gew-% MgSO4 in der Waschlauge geeignet.
Modul b2: Im Rahmen der vorliegenden Erfindung sind ferner solche Anlagen bevorzugt, bei denen Luft mit festem CaO bei vergleichsweise niedrigen Temperaturen (insbesondere <100°C) kontaktiert wird, wobei sich CaCO3 bildet. Das genannte CaO liegt dabei vorteilhaft in feinverteilter Form, bspw. als Nanopartikel vor. Entsprechende Apparate und Anlagen, welche mittels eines festen Absorbens Gase absorbieren sind an sich bekannt und können nach bekannten Methoden ausgelegt werden. Diese Trockenchemische Anlage wird bevorzugt mit der nachstehend genannten Trockenchemischen C02 - Desorptionsanlage kombiniert . CO2 - Desorptionsanlage (Modul c) : Anlagen zur Freisetzung von CO2 aus Waschlaugen, insbesondere aus carbonathaltigen wässrigen Waschlaugen, sind allgemein bekannt (Modul cl) . Anlagen zur Freisetzung von CO2 aus Feststoffen, insbesondere aus carbonathaltigen Feststoffen, sind ebenfalls allgemein bekannt (Modul c2) . Eine solche Freisetzung kann auf physiko-chemischen, elektrochemischen oder chemischen Weg erfolgen und steht in engem Zusammenhang mit der durch die C02-Absorption gebildeten Verbindungen.
In einer Ausführungsform erfolgt die CO2- Freisetzung auf elektrochemischen Weg durch Elektrolyse der gebildeten Carbonatlösung in einer elektrochemischen Membranzelle unter Bildung von C02 und H2 („alkalische Niederdruck-Elektrolyse", Modul eil). Solche Zellen sind an sich bekannt; im Wesentlichen kann die Reaktion durch folgende Gleichung beschrieben werden: Na2CO3 + 4H2O -> 3H2 + 3/202 + CO2 + 2NaOH
Der Vorteil dieser Ausführungsform liegt darin, dass die C02 - Desorptionsanlage und die H2 - Syntheseanlage miteinander kombiniert sind.
In einer alternativen Ausführungsform erfolgt die CO2-Freisetzung auf elektrochemischen Weg durch Elektrolyse der gebildeten Carbonatlösung in einer elektrochemischen Membranzelle unter Bildung von CO (bspw. unter Verwendung einer Solid Oxide Electrolysis Cell, SOEC, Modul cl2) . Eine derartige Anlage wird im Zusammenhang mit der vorliegenden Erfindung ebenfalls als C02-Desorptionsanlage betrachtet, da das aus der Luft gebundene C02 wieder abgegeben wird, im speziellen fall in der Form von CO + 1/202. Solche Zellen sind an sich bekannt; im Wesentlichen kann die Reaktion durch folgende Gleichung beschrieben werden:
Na2CO3 + H20 -> 1/202 + CO + 2NaOH Der Vorteil dieser Ausfuhrungsform liegt darin, dass CO gebildet wird, welches in der Nachfolgenden Methanolsyntheseanlage zu Methanol oder in einer DME Syntheseanlage zu DME umgesetzt wird, ohne Wasser als Nebenprodukt zu bilden. Ferner ist bei dieser Umsetzung der Strombedarf vergleichsweise niedriger.
In einer alternativen Ausfuhrungsform erfolgt die CO2-Freisetzung auf chemischen Weg durch Säuerung der Waschlauge aus Anlage b) mit ggf. anschliessender Elektrodialyse (Modul cl3) . Die Desorption durch Zugabe einer Saure, bspw . wassrige Schwefelsäure, ist allgemein bekannt und kann in gangigen Apparaten, bspw. einem Ruhrreaktor erfolgen. Das in dieser Reaktion gebildete Salz kann in einer nachfolgenden Elektrodialyse wieder aufgearbeitet werden. Im Wesentlichen können die Reaktion durch die Folgenden Gleichungen beschrieben werden: Na2CO3 + H2SO4 -> Na2SO4 + CO2 + H2O Na2SO4 + H2O -> NaOH + H2SO4. Der Vorteil dieser Ausfuhrungsform liegt in der einfachen und sicheren C02-Desorption.
In einer alternativen Ausfuhrungsform erfolgt die CO2-Freisetzung auf physiko-chemischen (thermischen) Weg durch Calcinierung (Modul c2) . Dabei wird ein (Erd- ) Alkalicarbonat , bevorzug Calciumcarbonat, so weit erhitzt, dass CO2 abgespalten wird. Geeignete Reaktoren für diese Reaktion sind bekannt, bspw. Drehrohröfen oder Fliesbettreaktoren. Die benotigten (Erd-) alkalicarbonate können direkt aus der C02-Absorptionsanlage (auf Nasschemischen oder Trockenchemischen Weg) erhalten werden oder durch Umsetzung mit Na2CO3 (aus der Absorptionsanlage) erzeugt werden. Die bei der Calcinierung entstehenden Metalloxide können durch Reaktion mit Wasser recycliert werden (für Nasschemische Verfahren) oder ohne weitere chemische Umsetzung (für Trockenchemische Verfahren) recycliert werden. Im Wesentlichen können die Reaktion des Nasschemischen Verfahrens durch folgende Gleichungen, welche die Bereitstellung des Carbonates, die Calcinie- rung und die Recyclierung zusammenfassen, beschrieben werden: Na2CO3 + Ca (OH) 2 -> CaCO3 + 2NaOH
CaCO3 -> CaO + CO2
CaO + H2O -> Ca (OH) 2
Ein Vorteil dieser Ausführungsform ist, dass ein besonders feinteiliges Carbonat für die weitere Reaktionsse- quenz zur Verfügung gestellt wird. Ein weiterer Vorteil dieser Ausführungsform ist es, das auf elektrische Energie zur Durchführung der Reaktion verzichtet werden kann .
Im Wesentlichen können die Reaktion des Trockenchemischen Verfahrens durch folgende Gleichungen, welche die Bereitstellung des Carbonates, die Recyclierung zusammenfassen, beschrieben werden:
CaO (s) + C02 (g) -> CaC03 (s) CaCO3(s) -> CaO (s)+ C02 (g)
Dabei liegen die Feststoffe in feinteiliger Form, bevorzugt als Nanopartikel, vor.
In einer alternativen Ausführungsform des Mo- duls c2 erfolgt die C02-Freisetzung aus CaC03 solarthermisch bei 500 - 20000C, bevorzugt ca. 10000C. Solarther- mie-Anlagen sind bekannt; geeignet sind im Prinzip alle derartigen Anlagen, die durch Bündelung oder Fokussierung die gewünschten Temperaturen erzeugen; bspw. mittels Parabolspiegel oder Fresnel-Linsen .
In einer weiteren Ausgestaltung des Moduls c2 kann im Reaktionsraum der CO2-Partialdruck abgesenkt werden, um so die Freisetzung günstig zu beeinflussen. Eine Herabsetzung des C02-Partialdruckes ist bspw. möglich, indem H2 in den Reaktionsraum eingeleitet wird. In einer alternativen Ausführungsform erfolgt die CO2-Freisetzung auf chemischen Weg durch Umsetzung der Carbonat-Lösung mit Chlor („Desorption durch Chlorierung", Modul cl4), ggf. in Gegenwart eines Katalysators, unter Bildung einer Chlorid/Hypochlorid - Lösung und CO2. Diese Reaktion und entsprechende Apparate („Stripping - Türme") sind an sich bekannt. Das benötigte Chlor wird elektrochemisch recycliert; bspw. indem die gebildete Chlorid/Hypochlorid-Lösung zunächst reduziert wird und anschliessend der H2-Syntheseanlage zugeführt wird in der eine Chlor-Alkali-Elektrolyse durchgeführt wird. Im Wesentlichen können die Reaktion durch folgenden Gleichungen, welche die Desorption, die Reduktion sowie H2- Synthese/C12 recycling zusammenfassen, beschrieben werden:
Na2CO3 + C12 -> NaCl + NaOCl + CO2 NaOCl + NaCl -> 2NaCl + 1/2 02 2NaCl + 2H2O -> 2NaOH + C12 + H2
Eine derartige Ausführungsform ist bspw. dann angezeigt, wenn die H2 - Syntheseanlage so ausgestaltet ist, dass Chlor als Nebenprodukt erzeugt wird.
In einer alternativen Ausführungsform kann die C02-Freisetzung auf physiko-chemischen Weg in einer Anlage durch Druckverminderung („Entgasungsanlage") erfolgen. Solche Entgasungsanlagen sind an sich bekannt. Der Vorteil dieser Ausführungsform ist, dass eine technisch einfache und robuste Anlage bereitgestellt wird. Diese Ausführungsform ist vor allem dann vorteil- haft, wenn in der C02-Absorptionsanlage eine Waschlauge eingesetzt wurde, welche mit dem C02 eine vorwiegend physikalische Bindung oder schwache chemische Bindung eingeht, d.h. im wesentlichen absorptive oder koordinati- ve Effekte auftreten.
H2 - Syntheseanlage (Modul d) : Die Bereitstellung des benötigten Wasserstoffs kann auf elektroche- mischen (Modul dl) und/oder solarthermischem (Modul d2) Weg erfolgen, wobei elektrochemische H2 - Syntheseanlagen bevorzugt sind. Prinzipiell sind alle bekannten elektrochemischen Zellen geeignet, welche wässrige Lösungen unter Bildung von Wasserstoff elektrolysieren . Solche Zellen sind bekannt, weitgehend untersucht und können vom Fachmann ausgelegt und in den Gesamtprozess integriert werden. Eine Anpassung ist bspw. auf die vorhergehende C02-Desorptionsanlage sinnvoll bzw. notwendig. Des weiteren sind prinzipiell alle bekannten solarthermischen Prozesse geeignet, welche zur H2 - Freisetzung führen. Auch hier ist eine Anpassung an die weiteren Anlagen sinnvoll bzw. notwendig. Ferner sind bei allen H2 - Syntheseanlagen die Betriebssicherheit, Investitionskos- ten und Effizienz wichtige Parameter.
Modul dl: In einer vorteilhaften Ausführungsform erfolgt die H2 - Herstellung mittels PEM Elektrolyse (Proton Exchange Membrane). Diese Technologie ist Stand der Technik und lässt sich leicht im geforderten Massstab realisieren.
In einer weiteren vorteilhaften Ausführungsform erfolgt die H2 - Herstellung mittels Chlor-Alkali- Elektrolyse einer wässrigen Kochsalzlösung. Im Prinzip sind alle dafür bekannten Elektrolysezellen geeignet. Diese Ausführungsform ist besonders vorteilhaft, wenn die C02-Desorption durch Chlorierung erfolgt.
In einer weiteren vorteilhaften Ausführungsform erfolgt die H2 - Herstellung mittels Hochtemperatur- Elektrolyse von Wasser unter Bildung von Wasserstoff und Sauerstoff. Im Prinzip sind alle dafür bekannten Elektrolysezellen geeignet. Vorteilhaft wird das eingesetzte Wasser zunächst entsalzt, bspw. mittels Ionenaustauscher oder Destillation. Diese Ausführungsform ist besonders vorteilhaft, wenn die C02-Desorption nicht durch Chlorie- rung erfolgt.
In einer weiteren vorteilhaften Ausführungsform wird die bei der CO2 Absorption gebildete wässrige Carbonat / Hydrogencarbonat-Lösung direkt einer Elektrolyse zugeführt, wobei CO2 und 02 an der Anode und H2 an der Kathode gebildet wird und eine Hydroxid-haltige Lösung entsteht, welche für die CO2 Absorption recycliert werden kann („alkalische Niederdruck-Elektrolyse") . Solche Elektrolyse-Zellen sind an sich bekannt und in US3135673 beschrieben, dessen Inhalt durch Bezugnahme in diese Beschreibung aufgenommen wird. Im Wesentlichen können die Reaktion durch folgende Gleichung beschrieben werden:
Na2CO3 + 4H20 -> 3H2 + 3/202 + C02 + 2NaOH. Vorteilhaft kann diese Elektrolysezelle so konstruiert werden, dass in einer Dreiteiligen, durch Diaphragmen getrennten Zelle H2 und 02 an den Kathoden- bzw. Anoden- räumen entnommen werden können und das gebildete C02 im dazwischen liegenden Bereich entnommen werden kann.
Modul d2 : In einer weiteren vorteilhaften Ausführungsform wird der benötigte Wasserstoff durch solarthermische Prozesse ohne Elektrizität hergestellt. Dies kann z.B. durch thermische Dissoziation von ZnO bei Temperaturen über 2000 K erfolgen wobei Zn und *s 02 gebildet werden. Zn reagiert mit H2O unter der Bildung von ZnO wobei H2 freigesetzt wird. Diese Ausführungsform ist dann vorteilhaft, wenn Sonnenstrahlung in hoher Intensität zur Verfügung steht. Eine solche solarthermische H2 - Syntheseanlage kann vorteilhaft mit einer C02 - Desorptionsanlage kombiniert werden, welche das C02 aufgrund thermischer Prozesse freisetzt, wie vorstehend beschrieben. In dieser Ausführungsvariante kann die für alle endothermen Prozesse benötigte Reaktionsenergie thermisch zur Verfügung gestellt werden. Dabei werden für die C02-Desorption und die H2-Synthese thermische Energie bereitgestellt; die CO2 - Absorption und die Synthese von Methanol, DME, Methan sind exotherme Reaktionen. Der besondere Vorteil dieser Ausführungsform wäre daher im geringen Bedarf an elektrischer Energie und dem hohen Gesamtwirkungsgrad des Kraftwerkes zu sehen. Entsprechend wäre ein solches Kraftwerk in Regionen mit hoher Sonneneinstrahlung, bspw. in Wüstenregionen, vorteilhaft zu installieren .
Syntheseanlage zur Erzeugung brennbarer Kohlenwasserstoffe (Modul e) . Die Synthese von brennbaren Kohlenwasserstoffen, insbesondere Methanol, Methan, DME, sowie entsprechende Anlagen sind im Stand der Technik bekannt. Vorteilhaft werden Anlagen verwendet, die auf katalytischen Syntheseprozessen beruhen.
Methanol - Syntheseanlage (Modul el) : Wie bereits ausgeführt werden von der vorliegenden Erfindung Methanol - Syntheseanlagen umfasst, die entweder i)
Kohlendioxid (CO2) und Wasserstoff oder ii) Kohlenmonoxid
(CO) und Wasserstoff oder iii) Kohlendioxid und Wasser in
Methanol überführen. Diese Anlagen können so ausgelegt werden, dass bei einfachem Durchsatz praktisch vollstän- dige Umsetzung zu Methanol erfolgt. Alternativ können diese Anlagen auch so ausgelegt oder betrieben werden, dass nur eine teilweise Umsetzung des eingesetzten CO bzw. CO2 erfolgt. In diesem Fall wird nicht umgesetztes Ausgangsmaterial entweder nach Abtrennung des Produktes (Methanol) recycliert. oder (insbesondere im Fall von CO2) in die Umgebung abgegeben. Bevorzugt erfolgt eine vollständige (bzw. praktisch vollständige) Recyclierung ohne Abgabe an die Umgebung.
In einer vorteilhaften Ausführungsform erfolgt die Methanol - Synthese aus den Komponenten CO2 und H2. Anlagen zur Umsetzung von C02 und H2 zu Methanol sind allgemein bekannt. Typischerweise sind diese Anlagen so ausgelegt, dass im Reaktor die Umsetzung bei 50 - 100 bar, 200 - 300 0C erfolgt. Die Reaktoren können als Festbett oder Wirbelschichtreaktoren ausgelegt werden. Geeignete Katalysatoren sind bspw. Cu - dotierte Fest- stoffkatalysatoren. Die Methanolsynthese kann einstufig oder mehrstufig durchgeführt werden. Diese Umsetzung kann durch folgende Reaktionsgleichung veranschaulicht werden:
CO2 + 3H2 -> H3COH + H2O Diese Variante ist besonders vorteilhaft, da derartige kommerziell erhältliche Anlagen in ihrer Dimensionierung auf die durch typische Windkraftanlagen bereitgestellte elektrische Energie abgestimmt werden können. Vorteilhaft ist in dieser Anlage eine Destillationseinheit vorgese- hen, welche die teilweise oder vollständige Abtrennung des gebildeten Wassers vom Methanol ermöglicht. Die Erfindung betrifft somit auch ein Kraftwerk wie hier beschrieben, bei dem die Methanolsyntheseanlage einen Cu- haltigen Katalysator (zur Umsetzung von CO2 und H2) enthält, und der ggf. eine Destillationseinheit (zur teilweisen oder vollständigen Abtrennung des erzeugten Methanols und zur Rückführung des Wassers zur Elektrolyse) zugeordnet ist.
In einer weiteren vorteilhaften Ausführungs¬ variante erfolgt die Methanol-Synthese aus Synthesegas (ein gasförmiges Gemisch, im wesentlichen enthaltend CO / H2, bevorzugt im molaren Verhältnis 1:2) Anlagen zur Umsetzung von CO und H2 zu Methanol sind allgemein bekannt. Diese Umsetzung kann durch folgende Reaktionsgleichung veranschaulicht werden:
CO + 2H2 -> H3COH
Solche Anlagen werden im Zusammenhang mit der vorliegenden Erfindung als „Methanol/Synthesegas-Anlage" bezeich- net. Bei dieser Variante ist es vorteilhaft, dass kein Wasser als Nebenprodukt gebildet wird, so dass auf eine destillative Trennung von Methanol/Wasser verzichtet werden kann. Für diese Ausführungsform ist es jedoch notwendig, das CO2 der Luft vorgängig zu CO zu reduzie- ren . Entsprechende Prozesse und Anlagen sind bekannt und können in das hier beschriebene Kraftwerk integriert werden. In einer Variante enthält die Methanol/Synthesegas-Anlage eine Einheit zur Hochtemperatur- Elektrolyse von CO2. Vorteilhaft enthalten solche Einheiten einen Sauerstoffionen leitenden Festelektroly- ten, bspw. ZrO/Y2O3. Typische Reaktionstemperaturen sind dabei 800 - 10000C. Der Einheit zugeführte CO2/H2O - Gemische werden bei Anlegen einer Spannung gemäss nachstehenden Gleichungen reduziert: C02 -> CO + 1/202 H20 -> 2H2 + 02.
Die Stöchiometrie des erzeugten Synthesegases ist von der angelegten Spannung, der Kontaktzeit, der Verweildauer, der Temperatur abhängig und kann in einfachen Reihenversuchen optimiert werden. Sofern eine derartige Hochtempe- ratur - Elektrolyse mit der Methanol/Synthesegasanlage kombiniert wird, kann, je nach Betriebspunkt der Hochtemperatur - Elektrolyseeinheit auf eine separate H2- Syntheseanlage verzichtet werden.
In einer weiteren Variante wird die Methanol / Synthesegas - Anlage mit einer Anlage zur reduktiven alkalischen Niederdruckelektrolyse kombiniert. Diese Anlage stellt das benötigte CO zur Verfügung.
In einer weiteren bevorzugten Ausführungsform erfolgt die Methanol-Synthese gemäss:
C02 + 2H2O -> H3COH + 3/202.
Diese Anlage wird als „Direkt-Methanol-Anlage" bezeichnet. Dieses Verfahren ist besonders vorteilhaft, da die Komponenten CO2 und H2O direkt verwendet werden können. Bei dieser Variante sind demgemäss Methanol- und Wasserstoff-Syntheseanlage (Anlagen d) und e) ) in einer einzigen Anlage kombiniert. Solche Anlagen sind an sich bekannt und z.B. in US 5928806, deren Inhalt durch Bezug in diese Beschreibung aufgenommen wird.
Methan - Syntheseanlage (Modul e2) : In einer Ausführungsform erfolgt die Methan - Synthese aus den Komponenten C02 und H2. Anlagen zur Umsetzung von CO2 und H2 zu Methan sind allgemein bekannt. Typischerweise sind diese Anlagen so ausgelegt, dass im Reaktor die Umsetzung bei 1 - 30 bar, bevorzugt bei Normaldruck, 300 - 400 0C erfolgt. Die Reaktoren können als Festbett oder Wirbelschichtreaktoren ausgelegt werden. Geeignete Katalysatoren sind bspw. Ni - dotierte Feststoffkatalysatoren. Die Methanolsynthese kann einstufig oder mehrstufig durchgeführt werden, bevorzugt einstufig. Diese Umsetzung kann durch folgende Reaktionsgleichung veranschaulicht werden:
CO2 + 4H2 -> CH4 + 2H2O
Diese Variante ist besonders vorteilhaft, da sie leicht miniaturisert werden können, dass drucklose Verfahrensvarianten bereits bekannt sind und dass auf eine destillative Aufreinigung verzichtet werden kann. Diese Vorteile können den Nachteil der Speicherung unter Druck teilweise oder vollständige aufheben.
Die Erfindung betrifft somit auch ein Kraftwerk wie hier beschrieben, bei dem die Methansyntheseanlage einen Ni- haltigen Katalysator (zur Umsetzung von CO2 und H2) enthält, und der keine Destillationseinheit zur Produkttrennung zugeordnet ist.
Dimethylether - Syntheseanlage (Modul e3) : In einer Ausführungsform erfolgt die DME - Synthese aus Methanol unter Abspaltung von Wasser. Anlagen für diese Umsetzung sind allgemein bekannt. Typischerweise sind diese Anlagen so ausgelegt, dass im Reaktor die Umsetzung bei 30 - 80 bar, bevorzugt bei 50 bar, 200 - 300 0C erfolgt. Die Reaktoren können als Festbett oder Wirbelschichtreaktoren ausgelegt werden. Geeignete Katalysatoren sind bspw. Cu / Fe - dotierte Feststoffkatalysatoren . Diese Variante ist besonders vorteilhaft, da mit DME ein Energieträger erzeugt wird, der unter geringem Druck verflüssigt werden kann. Alternativ kann die DME Synthese auf direktem Weg erfolgen; entsprechende Anlagen und Katalysatoren sind bekannt. Die Bruttogliechungen solcher Reaktionen sind nachforlgend angegeben: 3CO + 3H2 -> H3C-O-CH3 + C02
2CO2 + 3H2O -> H3C-O-CH3 + 302.
Speicheranlage (Modul f) : Speicheranlagen für flüssige oder gasförmige brennbare Kohlenwasserstoffe sind an sich bekannt.
Methanol - Speicheranlage (Modul fl) : Speicheranlagen („Tanks") geeignet für Methanol sind an sich bekannt. Aufgrund seiner physiko-chemischen Eigenschaften, insbesondere Flammpunkt, Dampfdruck und Lösungsei- genschaften müssen Tanks aus geeigneten Materialien bestehen und entsprechende Sicherheitseinrichtungen aufweisen. Solche Materialien und Sicherheitseinrichtungen sind dem Fachmann bekannt. Ferner kann vorgesehen werden, dass die Methanol-Speicheranlage räumlich von den anderen Anlagenteilen getrennt ist. Die Erfindung betrifft daher auch ein Schwimmkörper wie hier beschrieben, bestehend aus zwei einzelnen, miteinander verbundenen Vorrichtungen bei der die eine Vorrichtung nur Anlage f) enthält und die zweite Vorrichtung die anlagen a) - e) enthält.
Methan - Speicheranlage (Modul f2) : Anlagen zur Speicherung von Methan werden bevorzugt so ausgelegt, dass entweder gasförmiges Methan bei 200bar („CNG") bei Umbebungstemeperatur oder gasförmiges Methan drucklos und bei Umbebungstemeperatur oder flüssiges Methan und drucklos bei -163°C (,,LNGNV) gespeichert wird. Entsprechende Anlagen sind bereits grosstechnisch im Einsatz. Im Übrigen gelten die für Methanol gemachten Aussagen entsprechend. DME - Speicheranlage (Modul f3) : Die für Methanol gemachten Aussagen treffen entsprechend auch für DME zu. DME kann ähnlich wie LPG gespeichert werden, so dass die entsprechenden Anlagen gemäss dieser Erfindung eingesetzt werden können. Bevorzugt sind DME - Speicheranlagen so ausgelegt, das flüssiges DME bei 5 bar und Umgebungstemperatur gespeichert wird.
In einer vorteilhaften Ausführungsform betrifft die vorliegende Erfindung daher auch ein Wasserfahrzeug wie hier beschrieben, bestehend aus einem Verbund von zwei oder mehr einzelnen Wasserfahrzeugen, dadurch gekennzeichnet, dass ein erstes Wasserfahrzeug die Anlagen a) - e) enthält und die damit verbundenen weiteren Wasserfahrzeuge jeweils eine Speicheranlage f) enthalten. In dieser Ausführungsform wird sowohl die Betriebssicherheit erhöht als auch die Flexiblität der gesamten Anlage verbessert.
In einer weiteren vorteilhaften Ausführung ist die Methanol- Speicheranlage mit einer beweglichen Trennwand (z.B. einer Membran) in zwei Teilvolumina getrennt. So ist es möglich, in der Anlage Wasser zu speichern, welches im Laufe der Reaktion benötigt wird. Das Volumen des verbrauchten Wassers entspricht in etwa dem Volumen des gebildeten Methanols. Durch diese Massnahme ist es möglich, auf eine lokale Wasseraufabei- tungsanlage zu verzichten. Ferner führt bei geeigneter Anordnung der Speicheranlage auf einem Schwimmkörper diese Ausführungsform zu einer erhöhten Stabilität.
Nebenanlagen: Neben diesen notwendigen AnIa- gen kann der Schwimmkörper noch weitere Anlagen („Nebenanlagen" bzw. Module) enthalten. Dies umfasst solche Anlagen, die zur Reinigung von Ausgangsmaterialien, zur Bereitstellung und Rückgewinnung von Hilfsstoffen und zur Rückgewinnung von Energie, insbesondere thermischer Energie, geeignet sind. Ferner können Zwischenspeicher für die intermediär entstehenden Produkte vorgesehen werden, so z.B. Batterien für die Zwischenspeicherung elektrischer Energie, Gastanks für die Zwischenspeiche- rung von CO2, und H2. Flüssigtanks für die Zwischenlagerung von Hilfsstoffen. Ebenfalls können Anlagen zur Regenerierung der Katalysatoren und der Elektrolysezellen vorgesehen werden. Ferner können Speicher für den ggf. erzeugten Sauerstoff vorgesehen werden. Diese Nebenanlagen sind an sich bekannt und können vom Fachmann entsprechend ausgelegt werden.
Skalierung: Die Skalierung eines erfindungs- gemässen Kraftwerkes hängt von verschiedenen Parametern ab und ist durch die Erfindung nicht begrenzt. Typischerweise stellt die zur Verfügung stehende Wind- oder Sonnenenergie und die dafür bekannten Anlagen eine obere Begrenzung dar. Zur Charakterisierung der Grosse des erfindungsgemässen Kraftwerkes eignet sich die Angabe der primär erzeugten elektrischen Energie (durch Wind- oder Solarenergie) , da die weiteren Anlagen darauf abgestimmt werden. So wäre bei Grossanlagen eine einzelne Windkraft- anläge mit ca. 10 MW als obere Leistungsgrenze zu nennen. Auf diese Leistung sind die weiteren Komponenten auszulegen. Typischerweise stellt die Grosse der Anlagen d) bis e) eine untere Begrenzung dar, da unterhalb einer kritischen Grosse die Anlagen für eine effiziente Arbeitsweise zu klein sind. In Verbindung mit einer Direkt Methanol Brennstoffzelle wären ca. 100 W als untere Leistungsgrenze zu nennen. Auf diese Leistung sind entsprechend die weiteren Anlagen auszulegen. Somit betrifft die Erfindung ein netzungebundenes Kraftwerk mit einer Leistung von 100 W bis 10 MW, bevorzugt von 1 kW bis 5 MW Leistung, besonders bevorzugt von 0.5 bis 3 MW Leistung.
Die Erfindung betrifft insbesondere auch ein Kraftwerk welches bevorzugt an Orten mit konstanten Windverhältnissen bzw. geeigneten Strömungen des Wassers oder geeigneten Wellenbewegungen des Wassers (wie nachstehend beschrieben) positioniert ist. Diese Positionierung löst viele der Probleme bestehender Windkraftanlagen (bei landgebundenen Anlagen: insbesondere Lärm, Landschaftsbild), bei Offshore Anlagen: insbesondere Kosten für Fundamente, Wartung und Netzwerkanbindung) bzw. Wasserkraftanlagen.
Für unverankerte Offshore - Anlagen besteht somit erstmals die Möglichkeit, einen Energieträger zu erzeugen, der (i) konzentriert gespeichert; (ii) gut transportiert und (iii) in bestehender Infrastruktur eingesetzt werden kann. Zum Vergleich sei darauf verwiesen, dass für Wasserstoff als Energieträger weder eine bestehende Infrastruktur vorliegt, ferner Speicherung und Transport mit erheblichen technischen Problemen verbunden sind.
In einem zweiten Aspekt betrifft die vorliegende Erfindung einen Schwimmkörper, insbesondere ein Wasserfahrzeug, umfassend die folgenden Anlagen: a) Windkraftanlage oder Wasserkraftanlage zur Erzeugung elektrischer Energie für den Betrieb der Anlagen b) bis f) ; b) CO2 - Absorptionsanlage zur Absorption von atmosphärischem C02; c) CO2 - Desorptionsanlage zur Desorption des in b) gewonnenen CO2 ; d) elektrochemische H2 - Syntheseanlage; e) katalytische Syntheseanlage zur Erzeugung brennbarer Kohlenwasserstoffe; f) Speicheranlage zur Speicherung der in e) gewonnenen Kohlenwasserstoffe. Ein derartiger Schwimmkörper bietet die Möglichkeit, brennbare Kohlenwasserstoffe (wie Methan, DME oder Methanol) aus den praktisch unbegrenzten Ressourcen CO2 der Luft und H2 des Wassers mittels Windenergie oder Wasserkraft zu erzeugen und zu lagern. Da alle notwendigen Ressourcen kostenfrei zur Verfügung stehen ist es dadurch möglich, diese brennbaren Kohlenwasserstoffe als wertvollen und umweltneutralen Energieträger kostengünstig zu produzieren. Ferner ist die Lagerung solcher Kohlenwasserstoffe auf einer solchen Vorrichtung möglich. Die einzelnen Anlagenteile a) bis f) sind an sich bekannt und können auf Basis des allgemeinen Fachwissens dimensioniert und auf die Erfordernisse im Betrieb einer schwimmfähigen Vorrichtung angepasst werden. Bevorzugt werden die Anlagen a) bis f) so ausgestaltet wie in diesem Dokument beschrieben.
Ein solcher Schwimmkörper kann fern vom Verbraucher installiert werden, da weder Leistungsverlus- te durch Übertragung noch Kosten für die Netzwerkanbin- dung entstehen, was z.B. einen interkontinentalen Transport von Energie auch unter wirtschaftlichen Gesichtspunkten ermöglicht. Ein Grundgedanke der vorliegenden Erfindung ist daher, regenerative Energie dort zu „ernten" wo sie gleichmässig und in hoher Dichte anfällt, diese gewonnene Energie in einen chemischen Energieträger zu überführen welcher gespeichert und diskontinuierlich zur weiteren Verwendung entleert wird.
Ferner kann ein solcher Schwimmkörper leicht repositioniert werden; bspw. um Wartungsarbeiten durchzuführen oder um in Regionen mit optimalen Wind- / Wellen- / Strömungs- Verhältnissen zu operieren.
In einer Ausführungsform betrifft die Erfindung daher ein Wasserfahrzeug als Schwimmkörper, welches mit einer WKA ausgerüstet ist. In dieser Ausführungsform kann der axiale Widerstand des Rotors für den Vortrieb des Schwimmkörpers benutzt werden, um so die Positionie- rung / Re-Positionierung zu ermöglichen oder zu unterstützen.
In einer weiteren Ausführungsform betrifft die Erfindung daher eine Boje als Schwimmkörper, welche mit einer WKA ausgerüstet ist. In einer weiteren Ausführungsform betrifft die Erfindung daher ein Segelboot als Schwimmkörper, welches mit einer Wasserturbine ausgerüstet ist.
In einem dritten Aspekt betrifft die vorliegende Erfindung die Verwendung eines netzungebundenen Kraftwerkes bzw. eines Schwimmkörpers wie hier beschrieben, insbesondere einer Boje oder eines Wasserfahrzeuges, zur Erzeugung und Speicherung von brennbaren Kohlenwas- serstoffen wie Methanol Methan, DME, . Das Kraftwerk ist so ausgelegt, das der wesentliche oder ausschliessliche Zweck die Produktion und das (Zwischen) speichern des brennbaren Kohlenwassserstoffes ist. Der Schwimmkörper kann so ausgelegt sein, dass sein wesentlicher oder ausschliesslicher Bestimmungszweck die Produktion und das
(Zwischen-) Speicherung von brennbarem Kohlenwasserstoff ist; ebenso ist es möglich, das diese Anlagen als
Hilfsaggregate zum Antrieb des Schwimmkörpers verwendet werden oder das der erzeugte Kohlenwasserstoff in weiteren Prozessen verwendet wird. Bevorzugt ist es, den erfindungsgemässen Schwimmkörper zur Produktion und Lagerung von brennbaren Kohlenwasserstoffen, insbesondere Methan oder Methanol oder DME, zu verwenden.
In einem vierten Aspekt betrifft die Erfindung ein Verfahren zur Herstellung von brennbaren Kohlenwasserstoffen (insbesondere Methanol, Methan und/oder DME) umfassend die Schritte a) Positionieren eines Kraftwerkes bzw. eines Schwimmkörpers wie hier beschrieben in einer Region welche konstante Windverhältnisse, konstante Wellenbewegung oder konstante Sonneneinstrahlung aufweist; b) Betrieb der Anlagen dieses Kraftwerkes / Schwimmkörpers; c) diskontinuierliche, bevorzugt periodische, Entleerung der Speicheranlage. Dieses Verfahren ermöglicht es, in einfacher und sicherer Weise einen chemischen Energieträger zu produzieren sowie flexibel und bedarfsgerecht 2ur Verfügung zu stellen. Die einzelnen Schritte werden nachfolgend erläutert.
Schritt a) Regionen mit konstanten Windver- hältnissen sind allgemein bekannt; Die notwendige Stärke des Windes hängt von der Auslegung der Windkraftanlage ab. Typischerweise sollte eine mittlere Windgeschwindigkeit von mindestens 7m/s vorliegen. Konstant werden Windverhältnisse dann betrachtet, wenn die Mittlere Windgeschwindigkeit zu mindestens 70%, bevorzugt zu mindestens 80% der Zeit vorliegt. Typische Regionen sind die Gebiete des Passatwindes und Gebiete, welche eine „natürliche Düse" bilden. (wie küstennahe Gebiete, Gebiete zwischen Inseln, an Gebirgspässen, auf Gipfeln usw. ) Generell ist bei der Positionierung zu berücksichtigen, dass konstanter Wind den Nutzungsgrad erhöht; starker Wind eine hohe Generatorleistung bei kleiner Rotorfläche ermöglicht; wenig vertikale Windscherung den Verschleiss reduziert und ebenfalls die Leistung erhöht. Insbesondere Passatwinde erfüllen diese Erfordernisse, was einen erheblichen Vorteil gegenüber landgebundenen Anlagen darstellt.
Regionen mit konstanten Wellenbewegungen sind allgemein bekannt; Die notwendige Stärke der Wellen hängt von der Auslegung der Wellenkraftanlage ab. Typischerweise sollten Wellen mit einer Höhe von <10 m, bspw. 2 - 8 m vorliegen. Konstant werden Wellenverhältnisse dann betrachtet, wenn die Wellenhöhe im Jahresdurchschnitt mehr als 0.7 m beträgt. Typische Regionen sind die Gebiete des Südpazifik.
Regionen mit konstanter Sonneneinstrahlung sind ebenfalls allgemein bekannt. Als geeignet sind Gebiete anzusehen, in denen die durchschnittliche Intensität der Sonneneinstrahlung im Jahresschnitt mehr als 200 Watt / m2 beträt. Typische Gebiete sind bspw. auf der Arabischen Halbinsel oder im nördlichen Afrika. Die Positionierung des Wasserfahrzeuges kann auf verschiedene Arten erfolgen. Im einfachsten Fall wird das Wasserfahrzeug an der gewünschten Position verankert. Alternativ kann das Wasserfahrzeug im Wind kreuzen, wobei es, je nach Konstruktion, durch Motorkraft und/oder Windkraft auf Kurs gehalten wird. In einer weiteren Alternative wird das Wasserfahrzeug in bestimmten Zeitabständen re-positioniert , bspw. bei sich ändernder Wetterlage oder aufgrund jahreszeitlicher Schwankungen. Die Erfindung betrifft daher auch ein Verfahren, bei dem das Positionieren des Schwimmkörpers gegebenenfalls ein kontinuierliches oder diskontinuierliches Repositionieren mit umfasst.
In einer Vorteilhaften Ausführungsform kann der Widerstand der Windkraftanlage zum Antrieb des Schwimmkörpers, insbesondere eines Schiffes, teilweise oder vollständig genutzt werden. Die Erfindung betrifft daher auch ein Verfahren wie hier beschrieben, in welchem die Positionierung und/oder Re-Positionierung der Schwimmfähigen Vorrichtung unter teilweiser oder vollständiger Ausnutzung des Widerstandes der Windkraftanlage erfolgt .
Die Positionierung eines Kraftwerkes welches nicht auf einem Schwimmkörper installiert ist betrifft im Wesentlichen die vorteilhafte Aufstellung der Windkraftanlage bzw. Solarthermischen Anlage, wobei auch hier die genannten Kriterien anwendbar sind.
Schritt b) Der Betrieb der einzelnen Anlagen erfolgt entsprechend der Auslegung auf bekannte Art und weise. Die einzelnen Anlagenteile müssen in Ihrer Produktionskapazität aufeinander abgestimmt werden. Beispielsweise muss die erzeugte elektrische Energie für alle Anlagenteile b) bis f) sowie gegebenenfalls vorhandene Nebenaggregate ausreichen, ferner muss die Produkti- on von H2 und die Desorption von CO2 aufeinander abgestimmt werden. Ferner können die Anlagen so ausgelegt sein, dass eine vollautomatische, fernüberwachte Produktion möglich ist oder dass eine Bedienmannschaft vor Ort ist, sowie Kombinationen daraus. Sofern das Wasserfahrzeug vor Anker liegt, ist ein vollautomatisierter Betrieb möglich. Sofern das Wasserfahrzeug im Wind kreuzt, ist zumindest ein teilweise manueller Betrieb bevorzugt, der zumindest die Positionierung des Wasserfahrzeuges überwacht und regelt.
Schritt c) Die Entleerung der Speicheranlage erfolgt erfindungsgemäss diskontinuierlich, bevorzugt in periodischen Zeiträumen. Als Parameter dafür kann entweder eine Zeiteinheit verwendet werden (z.B. monatlich, quartalsweise, jährlich) oder der Füllstand der Speicheranlage (z.B. mindestens zu 50% gefüllt, maximal zu 90% gefüllt), oder ein räumlicher Parameter (z.B. indem ein Wasserfahrzeug beim Kreuzen im Passatwind einen bestimmten Kurs fährt), oder Kombination daraus. Im Zusammenhang mit der vorliegenden Erfindung ist der Begriff „periodisch" zumindest nicht im exakt mathematischen Zusammenhang zu verstehen; vielmehr wird der produzierte chemische Energieträger auf der schwimmfähi- gen Vorrichtung produziert und gelagert und diskontinuierlich an weitere Verbraucher abgegeben.
Die nachfolgenden Ausführungsbβispiele sollen die Erfindung weiter erläutern ohne sie zu beschränken.
Bsp.l Boje mit Rotor
Ein Schwimmkörper wird mit den folgenden Anlagen ausgerüstet:
ein 600 kW Windkraftgenerator als Modul a ■ ein Gebläse - Luftbefeuchter als Modul b; Querschnittsfläche = 9 m2; v = 3.5 m/s, offener Kontakt zur wässrigen NaOH-Lösung im Waschturm ■ ein Schwefelsäure enthaltender Regenerator zur CO2 Freisetzung mit anschliessender Elektrodialyse als Modul c;
H2SO4 + Na2CO3 -> Na2SO4 + CO2 + H20 Na2SO4 + H2O -> NaOH + H2SO4.
■ eine Elektrolyse - Zelle zur Elektrolyse von Wasser als Modul d
3 H2O -> 3H2 + 3/2 02; Kapazität: 84 kg H2O/h
■ eine Methanol Synthese Anlage mit Destillationsein- heit als Modul e; Kapazität 50 kg Methanol/h.
" einen Tank zur Aufnahme des gebildeten Methanols als Modul f, Volumen = 300m3.
Dieses Kraftwerk produziert 50 kg Methanol/h, was einem Energiegehalt Hu von 274 kWh entspricht (Wirkungsgrad 46 %). Die Komponenten Natronlauge und
Schwefelsäure werden recycliert; C02 und H20 werden der
Umgebung entnommen.
Bsp. 2 Windkraftwerk Ein Kraftwerk mit folgenden Anlagen
eine horizontale Windkraftanalge mit Getriebe, deren Rotorblätter mit einer HF Membran beschichtet sind als kombinierte Modul a und b.
" eine Schwefelsäuredesorptinosanlage mit nachgeschal- teter Elektrodialyse als Modul c
" eine PEM Elektrolyseanlage als Modul d) " eine Methansyntheseanalge ohne Destillationseinheit als Modul e
ein CNG Tank als Modul f) Ein solches Kraftwerk kann bspw. auf einer
Insel im Nordatlantik installiert werden.
Bsp. 3 Segelschiff
Ein Segelschiff wird mit folgenden Anlagen ausgerüstet
eine am Rumpf montierte, im Wasser liegende Turbine als Modul a " ein CO2 Absorptionsanlage mit Verdunstungsinhibitoren Prinzip Offener Kontakt im Gegenstrom mit Füllkörpern als Modul b
" eine Dreikammerelektrolyse als kombiniertes Modul c) und d)
eine Methanolsyntheseanalge mit Destillationseinheit als Modul e
ein Methanoltank als Modul f)
Ein solches Schiff kann bspw. im Passatwind kreuzend betrieben werden.
Bsp. 4 rein thermisches Kraftwerk Ein Kraftwerk mit den folgenden Modulen
eine trockene CO2 Absorptionsanlage, welche mittels CaO Nanopartikeln arbeitet als Modul b)
eine daran angepasste thermische CaCO3 Crack-Anlage mit H2 - Überlagerung als Modul c)
eine thermische H2 Syntheseanlage nach dem ZnO/H2O Zyklus als Modul d) ■ eine Methansyntheseanalge ohne Destillationseinheit als Modul e
ein LNG Tank als Modul f)
Ein solches Kraftwerk kann bspw. auf der arabischen Halbinsel installiert werden. Als Modul a) wird ein Gasmotor vorgesehen, der das erzeugte Methan als Brennstoff verwendet. Ein Modul a ist in dieser Ausführungsform lediglich zur Versorgung von Hilfsaggregaten nötig.
Bsp. 5 Wellenkraftwerk
Ein Schiff wird mit den nachstehend beschriebenen Modulen b) bis f) ausgerüstet, mehrere Module a) sind damit verbunden
eine Wellenkraftanlage vom Typ Pelami als Modul a) eine nasschemische C02 Absorptionsanlage, welche unbeschichtete HF Membranen nutzt als Modul b)
eine SOEC Anlage als kombiniertes Modul c) und d) eine DME - Syntheseanalge ohne Destillationseinheit als Modul e)
ein LPG Tank als Modul f)
Ein solches Kraftwerk kann bspw. im Südpazi- fik installiert werden.
Der nachfolgende morphologische Kasten stellt die genannten 5 Beispiele sowie weitere Ausgestaltungen der Erfindung in übersichtlicher Weise zusammen, ohne dass er diese Erfindung beschränkt.
O Position landgebunden schwimmend stationär mobil stationär mobil
A l A4 A21 A22 A3 Photo-
E-Erzeugung Windkraft Solarthermie Wellenkraft Wasserstromung voltaik
A l l A 12 Thermoelekt- Hoch- Wellenkraft Wasser Kraftwerk
Vertikal ohne Vertikal mit πsch temp thermie elektrisch bewegt bewegt (Typ
Getriebe Getriebe (Typ (Typ Andasol) (Typ Para(Typ Ocean (Gezeiten- Segelschiff
Vestas 650) bolspiegel) Power) kraftwerk) mit Turbine)
Figure imgf000041_0001
C C I l C12 C13 C 14 C 15 C2 Desorption Dreikammer- reduktive H2SO4 Chlorierung CaOH2 Ba Therm Spaltung von
U) elektrolyse Desorption Säuerung sentausch CaC03 mittels SOEC dann C2
Na2SO4 ohne H2 mit H2 Dialyse Überlagerung Überlagerung
D Dl D2
H2 Synthese elektrolytisch thermisch Dreikammer- SOEC PEM EC Chloralkah- ZnO / H20 Zyklus Elektrolyse Elektrolyse
KW Synthese
KW Speicher
Figure imgf000041_0002

Claims

Ansprüche
1. Netzungebundenes Kraftwerk, dadurch gekennzeichnet, dass es die folgenden, in Ihrer Kapazität aufeinander abgestimmten Anlagen enthält: a) Anlage zur Erzeugung elektrischer und / oder thermischer Energie, ausgewählt aus der Gruppe umfassend Windkraftanlage, Wasserkraftanlage, Photovoltaikanlage und /oder solarthermische An- läge, zum Betrieb der Anlagen b) bis f) ; b) CO2 - Absorptionsanlage zur Absorption von atmosphärischem CO2 ; c) CO2 - Desorptionsanlage zur Desorption des in b) gewonnenen CO2; d) elektrochemische oder solarthermische H2 - Syntheseanlage zum Betrieb der Anlage e) ; e) Syntheseanlage ausgewählt aus der Gruppe kataly- tische Methanol - Syntheseanlage; katalytische Dimethylether - Syntheseanlage, katalytische Me- than - Syntheseanlage; f) Speicheranlage ausgewählt aus der Gruppe Methanol - Speicheranlage, Dimethylether - Speicheranlage, Methan - Speicheranlage.
2. Netzungebundes Kraftwerk gemäss Anspruch 1, dadurch gekennzeichnet, dass die Anlage zur Erzeugung elektrischer Energie eine Windkraftanlage ist.
3. Netzungebundes Kraftwerk gemäss Anspruch 1, dadurch gekennzeichnet, dass die Anlage zur Erzeugung elektrischer Energie eine Wasserkraftanlage, insbesondere eine an einem Schwimmkörper befestige Wellenkraftmaschine oder Turbine ist.
4. Netzungebundes Kraftwerk gemäss einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass in der C02-Absorρtionsanlage der Luftstrom ggf. zunächst befeuchtet wird und dann mit alkalischen Waschlauge im Gegenstrom in Kontakt gebracht wird.
5. Netzungebundes Kraftwerk gemäss einem der vorstehen- den Ansprüche, dadurch gekennzeichnet, dass die Rotorblätter und / oder der Mast der Windkraftanlage a) mit hydrophoben mikroporösen Membranen zur CO2 Absorption versehen sind, insbesondere wobei besagte hydrophoben mikroporösen Membranen mit hygroskopi- sehen Material, belegt sind.
6. Netzungebundes Kraftwerk gemäss einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die CO2- Desorptionsanlage b) nach dem Prinzip der Säuerung mit ggf. anschliessender Elektrodialyse arbeitet.
7. Netzungebundes Kraftwerk gemäss einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die elektrochemische H2 - Syntheseanlage c) nach dem Prinzip der Hochtemperatur-Elektrolyse von Wasser, welches ggf. entsalzt ist, arbeitet.
8. Netzungebundes Kraftwerk gemäss einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die kata- lytische Syntheseanlage d) entweder a) eine Methanol - Syntheseanlge ist, welche einen Cu-haltigen Katalysator enthält, und das dieser Anlage ggf. eine Destillationseinheit zugeordnet ist oder b) eine Methan - Syntheseanlage ist, welche einen Ni-haltigen Katalysator enthält, und das dieser Anlage ggf. keine Destillationseinheit zugeordnet ist.
9. Netzungebundes Kraftwerk gemäss einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die CO2- Desorptionsanlage c) unter reduktiven Bedingungen aus eingesetzten Carbonat CO erzeugt und die Methanol- Syntheseanlage e) eine Methanol / Synthesegas-Anlage ist.
10. Netzungebundenes Kraftwerk gemäß einem der Ansprüche 1 - 4, 7, dadurch gekennzeichnet, dass die CO2- De- sorptionsanlage c) solarthermisch, nach dem Prinzip der Calcinierung arbeitet und die H2 - Syntheseanlage d) mit einem solarthermischen Prozess geführt wird.
11. Netzungebundes Kraftwerk gemäss einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die CO2- Absorptionsanlgae ein Nasschemische C02-Absorptions- anlage enthaltend eine Waschlösung ist, und wobei die Waschlösung bevorzugt eine die Verdunstung reduzierende Komponente enthält.
12. Netzungebundes Kraftwerk gemäss einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die CO2- Absorptionsanlgae ein Trockenchemische CO2- Absorptionsanlage ist, und die C02-Desorptionsanlage eine trockenchemische C02-Desorptionsanlage ist; und wobei bevorzugt die Desorption in Gegenwart von überlagertem H2 durchgeführt wird.
13. Netzungebundes Kraftwerk gemäss einem der vorstehenden Ansprüche, insbesondere gemäss einem der Ansprüche 1 - 12, dadurch gekennzeichnet, dass es auf einem Schwimmkörper installiert ist.
14. Schwimmkörper, insbesondere Boje oder Schiff, enthaltend ein Kraftwerk gemäss einem der Ansprüche 1 - 12.
15. Schwimmkörper gemäss Anspruch 14 dadurch gekennzeichnet, dass es aus einem Verbund von zwei oder mehr einzelnen Schwimmkörpern besteht wobei a) eine erste Gruppe von Schwimmkörpern die Module a) - e) enthält und eine damit verbundene zweite Gruppe von Schwimmkörpern Speicheranlage (n) f) enthalten oder b) eine erste Gruppe von Schwimmkörpern d Modul (e) a) , insbesondere Wellenkraftmaschinen, enthält und eine damit verbundene zweite Gruppe von Schwimmkörpern Module b) - f) enthält, .
16. Verwendung eines netzungebundenen Kraftwerkes gemäss einem der Ansprüche 1 bis 13 oder eines Schwimmkörpers gemäss einem der Ansprüche 14 - 15, zur Herstellung und Speicherung von Methanol, Dimethylether und/oder Methan.
17. Verfahren zur Herstellung von Methanol, Dimethylether und/oder Methan umfassend die Schritte a) Positionieren eines netzungebundenen Kraftwerkes gemäss einem der Ansprüche 1 bis 13 oder eines Schwimmkörpers gemäss einem der Ansprüche 14 - 15 in einer Region mit konstanten Windverhältnissen und / oder konstanter Sonneneinstrahlung und/oder konstanter Wasserbewegung; b) Betrieb der Anlagen dieses Kraftwerkes; c) diskontinuierliche Entleerung der Speicheranlage.
PCT/EP2008/009803 2007-11-22 2008-11-20 Modulares, netzungebundenes kraftwerk WO2009065577A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AT08851992T ATE537358T1 (de) 2007-11-22 2008-11-20 Modulares, netzungebundenes kraftwerk
EP08851992A EP2220367B1 (de) 2007-11-22 2008-11-20 Modulares, netzungebundenes kraftwerk
US12/744,104 US8715581B2 (en) 2007-11-22 2008-11-20 Modular power plant unconnected to the grid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH18072007 2007-11-22
CH1807/07 2007-11-22

Publications (1)

Publication Number Publication Date
WO2009065577A1 true WO2009065577A1 (de) 2009-05-28

Family

ID=40436469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/009803 WO2009065577A1 (de) 2007-11-22 2008-11-20 Modulares, netzungebundenes kraftwerk

Country Status (4)

Country Link
US (1) US8715581B2 (de)
EP (1) EP2220367B1 (de)
AT (1) ATE537358T1 (de)
WO (1) WO2009065577A1 (de)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010041329A1 (de) * 2010-09-24 2012-03-29 Siemens Aktiengesellschaft Vorrichtung zur Erwärmung von Erdreich
WO2013029701A1 (de) * 2011-08-29 2013-03-07 Ostsee Maritime Gmbh Energieversorgungsanlage, insbesondere für den bereich der haustechnik
DE102011088313A1 (de) 2011-12-12 2013-06-13 Wobben Properties Gmbh Verfahren zum Betrieb einer Windenergieanlage bzw. eines Windparks
EP2607303A1 (de) 2011-12-22 2013-06-26 Friedrich-Alexander-Universität Erlangen-Nürnberg Verfahren zur Einspeicherung von Energie, die in Form von elektrischer Energie oder Wärme vorliegt, in ein Eduktgasgemisch sowie eine Vorrichtung zur Durchführung dieses Verfahrens
DE102012203334A1 (de) 2012-03-02 2013-09-05 Wobben Properties Gmbh Verfahren zum Betreiben eines Kombikraftwerks bzw. Kombikraftwerk
DE102013001403A1 (de) * 2013-01-28 2014-07-31 Etogas Gmbh Verfahren und Anlage zur Herstellung eines chemischen Produkts
DE102017222948A1 (de) * 2017-12-15 2019-01-24 Thyssenkrupp Ag Produktion von Ammoniak und Wasserstoff mit direkter Stromeinspeisung aus Offshore Energiegewinnungsanlagen
WO2019197975A1 (en) 2018-04-09 2019-10-17 Kiss Zoltan J Air solar heating with integrated co2 from air absorption system
DE102020129374A1 (de) 2020-11-07 2022-05-12 Obrist Technologies Gmbh Anlage und Verfahren zur Herstellung eines global nutzbaren Energieträgers
CN117869186A (zh) * 2024-01-10 2024-04-12 东北电力大学 一种压缩二氧化碳储能与合成二甲醚的海上综合能源系统

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014087433A1 (en) * 2012-12-05 2014-06-12 Cri Ehf. System and process to capture industrial emissions and recycle for the production of chemicals
EA024944B1 (ru) * 2012-12-26 2016-11-30 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Иркутская государственная сельскохозяйственная академия" Водородная установка для использования энергии восполняемых источников с сезонно-цикловым режимом энергопотребления
DE102014112580B4 (de) 2014-09-01 2019-01-24 Mitsubishi Hitachi Power Systems Europe Gmbh Industrielle Produktionsanlage mit minimalem Treibhausgasausstoß, insbesondere Kohlendioxidausstoß, und Verfahren zum Betrieb desselben
US9914644B1 (en) 2015-06-11 2018-03-13 X Development Llc Energy efficient method for stripping CO2 from seawater
US11705780B2 (en) * 2016-01-20 2023-07-18 Soliton Holdings Corporation, Delaware Corporation Generalized jet-effect and generalized generator
US20180266394A1 (en) * 2016-01-20 2018-09-20 Soliton Holdings Corporation, Delaware Corporation Generalized Jet-Effect and Generalized Generator
US11499525B2 (en) * 2016-01-20 2022-11-15 Soliton Holdings Corporation, Delaware Corporation Generalized jet-effect and fluid-repellent corpus
US9873650B2 (en) 2016-05-26 2018-01-23 X Development Llc Method for efficient CO2 degasification
US9862643B2 (en) 2016-05-26 2018-01-09 X Development Llc Building materials from an aqueous solution
US9915136B2 (en) 2016-05-26 2018-03-13 X Development Llc Hydrocarbon extraction through carbon dioxide production and injection into a hydrocarbon well
US9914683B2 (en) 2016-05-26 2018-03-13 X Development Llc Fuel synthesis from an aqueous solution
CA3028233A1 (en) * 2016-06-18 2017-12-21 Think Tank 42 Pty. Ltd. A method and system for carbon capture and recycling
DE102016220297A1 (de) * 2016-09-27 2018-03-29 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur elektrochemischen Verwertung von Kohlenstoffdioxid
EP3339634A1 (de) * 2016-12-22 2018-06-27 Carrosapo UG (Haftungsbeschränkt) Verfahren zur herstellung von brennstoffen
BR112019013078B1 (pt) 2016-12-23 2024-01-02 Carbon Engineering Ltd Método e sistema para sintetizar combustível a partir de fonte de dióxido de carbono diluído
EP3352371B1 (de) * 2017-01-19 2020-09-30 Methanology AG Energieversorgungssystem für ein autarkes gebäude
RU2672415C1 (ru) * 2018-03-12 2018-11-14 Андрей Владиславович Курочкин Водородная установка (варианты)
JP7292576B2 (ja) * 2019-02-04 2023-06-19 住友金属鉱山株式会社 メタノール送液用配管支持部材
JP7265571B2 (ja) * 2021-03-05 2023-04-26 本田技研工業株式会社 炭素化合物の製造装置及び炭素化合物の製造方法
JP7176027B2 (ja) 2021-03-11 2022-11-21 本田技研工業株式会社 二酸化炭素処理装置及び炭素化合物の製造方法
CN113982835A (zh) * 2021-11-04 2022-01-28 西安热工研究院有限公司 一种基于合成甲醇的化学储能系统及方法
US20230279836A1 (en) * 2022-03-01 2023-09-07 Keith Charles Avery Grid Decoupled Wind Powered Hydrogen Generation and Storage
GB2619700A (en) * 2022-06-06 2023-12-20 Catagen Ltd Renewable energy capture, conversion and storage system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4085795A (en) * 1976-05-10 1978-04-25 George Herbert Gill Method for using geothermal energy
US4339547A (en) 1979-09-21 1982-07-13 Grumman Aerospace Corporation Production of synthetic hydrocarbons from air, water and low cost electrical power
US4627418A (en) * 1980-09-08 1986-12-09 Geruldine Gibson Apparatus for the carbothermic reduction of metal oxides using solar energy
DE3933284A1 (de) * 1989-10-05 1991-04-18 Steinmueller Gmbh L & C Verfahren zur kontinuierlichen erzeugung elektrischer energie aus solarenergie und solarkraftwerk zur durchfuehrung des verfahrens
DE4332789A1 (de) * 1993-09-27 1995-03-30 Abb Research Ltd Verfahren zur Speicherung von Energie
DE19802660A1 (de) 1998-01-24 1999-07-29 Goes Ges Fuer Forschung Und Te Abprodukt-Wärmekraft-Synthese-Kopplung, ein Verfahren zur regionalen Be- und Entsorgung
WO2000025380A2 (en) 1998-10-27 2000-05-04 Quadrise Limited Electrical energy storage compound
WO2005056737A1 (de) 2003-12-13 2005-06-23 SCHRÖDER, Sascha Verfahren und anlage zur herstellung flüssiger energieträger aus einem festen kohlenstoffträger
US20050232833A1 (en) 2004-04-15 2005-10-20 Hardy Dennis R Process for producing synthetic liquid hydrocarbon fuels
WO2007058608A1 (en) 2005-10-14 2007-05-24 Morphic Technologies Ab (Publ) A method and a system for producing, converting and storing energy

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3852180A (en) * 1972-02-04 1974-12-03 Skf Ind Trading & Dev Apparatus for co{11 {11 conversion to methane
US4341069A (en) * 1980-04-02 1982-07-27 Mobil Oil Corporation Method for generating power upon demand
US5246551A (en) 1992-02-11 1993-09-21 Chemetics International Company Ltd. Electrochemical methods for production of alkali metal hydroxides without the co-production of chlorine
DE4235125C2 (de) 1992-10-17 1994-09-29 Zsw Verfahren zur Herstellung von Synthesegas und Vorrichtung zum Durchführen des Verfahrens
DE19522215C2 (de) * 1995-06-20 1999-12-02 Nikolaus Laing Schwimmendes Solarkraftwerk und Verfahren zu seinem Betrieb
EP1483502B1 (de) * 2002-03-08 2009-08-26 Ocean Wind Energy Systems Offshore-windenergieanlage
US7318854B2 (en) * 2004-10-29 2008-01-15 New Jersey Institute Of Technology System and method for selective separation of gaseous mixtures using hollow fibers
US20100005966A1 (en) * 2006-07-17 2010-01-14 Commonwealth Scientific And Industrial Research Organsation Co2 capture using solar thermal energy
EP2207612A1 (de) 2007-10-11 2010-07-21 Los Alamos National Security LLC Verfahren zur herstellung von synthetischen brennstoffen und organischen chemikalien aus atmosphärischem kohlendioxid

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4085795A (en) * 1976-05-10 1978-04-25 George Herbert Gill Method for using geothermal energy
US4339547A (en) 1979-09-21 1982-07-13 Grumman Aerospace Corporation Production of synthetic hydrocarbons from air, water and low cost electrical power
US4627418A (en) * 1980-09-08 1986-12-09 Geruldine Gibson Apparatus for the carbothermic reduction of metal oxides using solar energy
DE3933284A1 (de) * 1989-10-05 1991-04-18 Steinmueller Gmbh L & C Verfahren zur kontinuierlichen erzeugung elektrischer energie aus solarenergie und solarkraftwerk zur durchfuehrung des verfahrens
DE4332789A1 (de) * 1993-09-27 1995-03-30 Abb Research Ltd Verfahren zur Speicherung von Energie
DE19802660A1 (de) 1998-01-24 1999-07-29 Goes Ges Fuer Forschung Und Te Abprodukt-Wärmekraft-Synthese-Kopplung, ein Verfahren zur regionalen Be- und Entsorgung
WO2000025380A2 (en) 1998-10-27 2000-05-04 Quadrise Limited Electrical energy storage compound
WO2005056737A1 (de) 2003-12-13 2005-06-23 SCHRÖDER, Sascha Verfahren und anlage zur herstellung flüssiger energieträger aus einem festen kohlenstoffträger
US20050232833A1 (en) 2004-04-15 2005-10-20 Hardy Dennis R Process for producing synthetic liquid hydrocarbon fuels
WO2007058608A1 (en) 2005-10-14 2007-05-24 Morphic Technologies Ab (Publ) A method and a system for producing, converting and storing energy

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010041329A1 (de) * 2010-09-24 2012-03-29 Siemens Aktiengesellschaft Vorrichtung zur Erwärmung von Erdreich
WO2013029701A1 (de) * 2011-08-29 2013-03-07 Ostsee Maritime Gmbh Energieversorgungsanlage, insbesondere für den bereich der haustechnik
DE102011088313A1 (de) 2011-12-12 2013-06-13 Wobben Properties Gmbh Verfahren zum Betrieb einer Windenergieanlage bzw. eines Windparks
WO2013087553A1 (de) 2011-12-12 2013-06-20 Wobben Properties Gmbh Verfahren zum betrieb einer windenergieanlage bzw. eines windparks
US9541067B2 (en) 2011-12-12 2017-01-10 Wobben Properties Gmbh Method for operating a wind turbine or a wind farm
EP2607303A1 (de) 2011-12-22 2013-06-26 Friedrich-Alexander-Universität Erlangen-Nürnberg Verfahren zur Einspeicherung von Energie, die in Form von elektrischer Energie oder Wärme vorliegt, in ein Eduktgasgemisch sowie eine Vorrichtung zur Durchführung dieses Verfahrens
DE102011089656A1 (de) 2011-12-22 2013-06-27 Friedrich-Alexander-Universität Erlangen-Nürnberg Verfahren zur Einspeicherung von Energie die in Form von elektrischem Strom oder Wärme vorliegt in ein Eduktgasgemisch sowie eine Vorrichtung zur Durchführung dieses Verfahrens
EP3968483A1 (de) 2012-03-02 2022-03-16 Wobben Properties GmbH Verfahren zum betreiben eines kombikraftwerks bzw. kombikraftwerk
DE102012203334A1 (de) 2012-03-02 2013-09-05 Wobben Properties Gmbh Verfahren zum Betreiben eines Kombikraftwerks bzw. Kombikraftwerk
WO2013128023A2 (de) 2012-03-02 2013-09-06 Wobben Properties Gmbh Verfahren zum betreiben eines kombikraftwerks bzw. kombikraftwerk
JP2015513890A (ja) * 2012-03-02 2015-05-14 ヴォッベン プロパティーズ ゲーエムベーハーWobben Properties Gmbh コンビネーション発電所を稼働するための方法、並びにコンビネーション発電所
DE102013001403A1 (de) * 2013-01-28 2014-07-31 Etogas Gmbh Verfahren und Anlage zur Herstellung eines chemischen Produkts
DE102017222948A1 (de) * 2017-12-15 2019-01-24 Thyssenkrupp Ag Produktion von Ammoniak und Wasserstoff mit direkter Stromeinspeisung aus Offshore Energiegewinnungsanlagen
WO2019197975A1 (en) 2018-04-09 2019-10-17 Kiss Zoltan J Air solar heating with integrated co2 from air absorption system
US10617998B2 (en) 2018-04-09 2020-04-14 Zoltan J. Kiss Methods to extract carbon dioxide from the atmosphere using a solar PV module as part of a combined cycle energy converter
DE102020129374A1 (de) 2020-11-07 2022-05-12 Obrist Technologies Gmbh Anlage und Verfahren zur Herstellung eines global nutzbaren Energieträgers
CN117869186A (zh) * 2024-01-10 2024-04-12 东北电力大学 一种压缩二氧化碳储能与合成二甲醚的海上综合能源系统
CN117869186B (zh) * 2024-01-10 2024-05-28 东北电力大学 一种压缩二氧化碳储能与合成二甲醚的海上综合能源系统

Also Published As

Publication number Publication date
EP2220367B1 (de) 2011-12-14
US20110237839A1 (en) 2011-09-29
US8715581B2 (en) 2014-05-06
ATE537358T1 (de) 2011-12-15
EP2220367A1 (de) 2010-08-25

Similar Documents

Publication Publication Date Title
EP2220367B1 (de) Modulares, netzungebundenes kraftwerk
Graves et al. Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy
CN103227339B (zh) 产生可再生氢并截留二氧化碳的电化学系统、装置和方法
US20100205856A1 (en) Method of producing synthetic fuels and organic chemicals from atmospheric carbon dioxide
EP3019582B1 (de) Flexibel betreibbares kraftwerk und verfahren zu dessen betrieb
US20130039833A1 (en) Systems and methods for producing ammonia fertilizer
CN109778218A (zh) 一种电化学制氢与提锂联产的装置及方法
Goeppert et al. Toward a sustainable carbon cycle: the methanol economy
DE102007019027A1 (de) Verfahren zum Umwandeln von Windenergie über dem offenen Wasser, insbesondere Ozean, in elektrische Energie und Einrichtung zur Durchführung des Verfahrens
WO2008087252A1 (en) A method for producing hydrogen and sulphuric acid
JPH1146460A (ja) 電力貯蔵システム
US8754269B2 (en) Catalytic process for reacting carbon dioxide with hydrogen
DE102017222948A1 (de) Produktion von Ammoniak und Wasserstoff mit direkter Stromeinspeisung aus Offshore Energiegewinnungsanlagen
CN216129402U (zh) 一种深远海离网型电力能源与化工生产集成系统
JP2005145218A (ja) 洋上水素製造設備及び水素製造輸送システム
GB2459430A (en) Production of hydrocarbons from carbon dioxide
Onwuemezie et al. Integrated solar-driven hydrogen generation by pyrolysis and electrolysis coupled with carbon capture and Rankine cycle
Pasternak Electrochemical approach for biogas upgrading
WO2017021083A1 (de) Herstellungsverfahren für ein brenngas und anlage zur herstellung eines brenngases mit einem elektrolysesystem zur elektrochemischen kohlenstoffdioxid-verwertung
KR102226251B1 (ko) 선박용 친환경 화석연료 개질 연료전지 추진 시스템 및 이를 이용한 선박의 추진 방법
Ganesh The latest state-of-the-art on artificial photosynthesis
Meinrenken et al. Options to dissociate CO2 and H2O for sustainable sunlight-to-fuel pathways: Comparative assessment of current R&D hurdles and future potential
KR20100048614A (ko) 풍력발전 및 전기분해를 이용한 탄화수소연료 생산선박
Manisco et al. Hydrogen Separation
Lowy et al. Electroreduction of carbon dioxide to liquid fuels: A low-cost, sustainable technology

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08851992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008851992

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12744104

Country of ref document: US