WO2009063112A1 - Sistema de medición de recursos eólicos en el mar, productor de energía y método de instalación - Google Patents
Sistema de medición de recursos eólicos en el mar, productor de energía y método de instalación Download PDFInfo
- Publication number
- WO2009063112A1 WO2009063112A1 PCT/ES2008/000708 ES2008000708W WO2009063112A1 WO 2009063112 A1 WO2009063112 A1 WO 2009063112A1 ES 2008000708 W ES2008000708 W ES 2008000708W WO 2009063112 A1 WO2009063112 A1 WO 2009063112A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wind
- sea
- floating
- resources
- energy
- Prior art date
Links
- 238000009434 installation Methods 0.000 title claims description 20
- 238000000034 method Methods 0.000 title claims description 14
- 238000007667 floating Methods 0.000 claims abstract description 83
- 238000005259 measurement Methods 0.000 claims abstract description 42
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 31
- 238000004873 anchoring Methods 0.000 claims abstract description 29
- 238000001514 detection method Methods 0.000 claims abstract description 12
- 230000005540 biological transmission Effects 0.000 claims abstract description 9
- 241000251468 Actinopterygii Species 0.000 claims description 8
- 230000005611 electricity Effects 0.000 claims description 8
- 238000005188 flotation Methods 0.000 claims description 7
- 230000007613 environmental effect Effects 0.000 claims description 5
- 239000012530 fluid Substances 0.000 claims description 5
- 239000013535 sea water Substances 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 230000015556 catabolic process Effects 0.000 claims description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 230000002706 hydrostatic effect Effects 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 229930002875 chlorophyll Natural products 0.000 description 2
- 235000019804 chlorophyll Nutrition 0.000 description 2
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000002352 surface water Substances 0.000 description 2
- 239000003643 water by type Substances 0.000 description 2
- 230000001174 ascending effect Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B35/00—Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
- B63B35/44—Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D80/00—Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B22/00—Buoys
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/95—Lidar systems specially adapted for specific applications for meteorological use
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01W—METEOROLOGY
- G01W1/00—Meteorology
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B35/00—Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
- B63B35/44—Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
- B63B2035/442—Spar-type semi-submersible structures, i.e. shaped as single slender, e.g. substantially cylindrical or trussed vertical bodies
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B35/00—Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
- B63B35/44—Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
- B63B2035/4433—Floating structures carrying electric power plants
- B63B2035/4466—Floating structures carrying electric power plants for converting water energy into electric energy, e.g. from tidal flows, waves or currents
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Definitions
- the following invention refers to a system for measuring wind resources at sea, producer of energy and installation method, being based on a floating structure to install in deep water and provided with instrumentation that records the movement of the structure, in its different components, to correct the wind measurements made at the assembly level of a marine wind turbine, that is, at least a height of 50 m., this being An essential object of the invention, since it is about being able to make wind resource measurements at heights of 50 meters above sea level, being the point at which the wind turbines of marine wind turbines will be installed. Also, another object of the invention is the production of energy by the energy use of waves and marine currents.
- the system can incorporate photovoltaic panels in order to generate electricity for the system's own consumption, and, likewise, the system can incorporate, in proximity to the floating structure, a fish farm.
- the stability provided by the floating structures on which the invention is based is essential for a good measurement of the LIDAR.
- another object of the invention is that the system can supply itself due to power generation subsystems that it can incorporate.
- Another object of the invention is the presentation of a method of installation of the system that facilitates its maintenance. SCOPE.
- This report describes a system for measuring wind resources at sea, an energy producer and an installation method, being of special application for installation in deep water by performing wind measurements at the assembly level of a marine wind turbine , this is at least 50 m high.
- LIDAR Light-lmaging Detection And Ranging
- SODAR Sonic Detection And are known
- the buoyancy buoyancy system "spar” refers to floating systems that keep the center of gravity below the center of flotation, thus achieving the desired stability and are usually slender systems.
- the basic parts of a “spar" floating buoy include:
- Lower ballast tank (“soft tank”).
- the upper structure usually consists of a multi-level configuration of roofs in order to achieve a sufficient work area, while minimizing cantilever surfaces.
- the upper ballast tank is responsible for providing sufficient buoyancy reserve to support the weight of the other elements, since none of them would have positive buoyancy by itself.
- the term "hard tank” comes from the fact that its compartments are sized to withstand all the hydrostatic pressure without flooding them. It is usually divided into 5 or 6 levels of watertight compartments separated by roofs and each of these is further subdivided into another 4 by radial bulkheads.
- the tank located at the height of the flotation usually has a double hull or double bulkheads ("cofferdams") to minimize the volume of water filling in case of collision with another vessel.
- cofferdams double hull or double bulkheads
- the intermediate section extends from the lower base of the "hard tank” to provide the design draft to the structure.
- this central body is sized from the bending moments to resist during the phase of adrizamiento after the trailer to the point of final location.
- this central body was replaced by a less heavy lattice structure and a simpler and cheaper construction.
- the TLP system is vertically attached, by means of tensioned ties to the sea floor ("tension / torsion leg", as will be seen later), in this way it avoids the ascending movement (heave) and the rotations of the axes contained in the plane of the surface Marine ("pitch and roll”)
- the semi-submersible system is a floating structure with a large roof, from which several columns that connect underwater with horizontal floating elements (called pontoons) come out.
- the instrumentation depends on the precision that is desired ⁇ of the cost that is willing to assume.
- the gyro solution is expensive, and the element is heavy and large.
- This report describes a system for measuring wind resources in the energy producing sea and an installation method, based on:
- LIDAR Light-lmaging Detection And Ranging
- the instrumentation that records the movement of the structure allows for more reliable data, since it allows correcting the initial wind data (and other data), taking into account the movement that the floating structure has had.
- the floating structure can incorporate a mast of at least 50 meters, minimum height equivalent to the positioning of a marine wind turbine, allowing to obtain wind measurements of great reliability to assess the subsequent installation of a marine wind farm.
- the floating structure can incorporate photovoltaic panels generating electrical energy to the control, instrumentation, recording and data transmission systems, that is, for self-consumption.
- the system can incorporate a fish farm next to the wave's own energy utilization device, allowing to add value to the installation, both economic and ecological.
- the system is constructed totally or partially in port, then it is dragged in flotation to the chosen site and finally it is attached to the seabed with anchorage devices, so that, said installation method, allows repair work, in the case of serious damage, for which the anchoring devices are released, the system is floated to the port, repair work is carried out and finally it is taken back to the site and it is restrained with the anchoring devices.
- LIDAR Light-lmaging Detection And Ranging
- the floating structure can incorporate a mast of at least 50 meters, minimum height equivalent to the positioning of a marine wind turbine, allowing wind measurements of great reliability.
- the energy use device of the waves integrated in the floating structure, is defined by vertical generators, mounted between two platforms, being able to be a linear electric generator or air, seawater or other fluid compressors.
- the vertical generators mounted between the two platforms, at the water level, are defined by cylindrical elements and their corresponding float movable along it, by the action of the waves, generating electricity if it is an electric generator or compressing air , seawater or other fluid in the case of compressors.
- the upper platform for mounting the mast and mounting the vertical generators, including the lower platform, is at a height such that the level of the water does not reach the waves.
- the device of energy use of currents is defined by at least one arm, below the water level, which at its free end has a rotating device. In a preferred embodiment, it will have a pair of arms in a position opposed to the floating structure.
- the floating structure can incorporate photovoltaic panels generating electrical energy to the control, instrumentation, recording and data transmission systems, that is, for self-consumption.
- the system can incorporate a fish farm next to the floating structure type "spar", allowing to add value to the installation, both economic and ecological.
- the system is constructed totally or partially in port, then it is dragged in flotation to the chosen site and finally it is fastened to the seabed with anchoring devices, so that the described installation method allows repair work, since, in the case In case of serious damage, the anchoring devices are released, the system is floated to the port, the repair work is carried out and finally it is taken back to the site and it is restrained with the anchoring devices.
- the system incorporates an energy use device for waves and currents.
- the floating structure is fixed to the seabed by a anchoring device to maintain its position, such as catenary lines, "taut moorings", “tension / torsion leg”.
- anchoring device for the wind resource measurement system at sea based on a floating structure, the anchoring devices can be: catenary lines, "taut moorings "," tension / torsion leg "or other type of anchoring device.
- Catenary lines They are the oldest and most common funding systems. Its restoration strength is based mainly on its weight.
- Taut moorings These are lines with a specific claim. Its restoring force is achieved by the elastic characteristics of the material.
- Tesion / torsion leg The flotation of the platform exceeds its weight, and this type of line counteracts the net force in a vertical and upward direction, holding the platform.
- These types of lines are typical of TLP platforms, although they could also be used for other platforms, and one could even use a Only of these lines to hold a platform.
- the catenary lines can use passive devices, such as dead weights, or floats, along their lines, in order to improve the dynamics of the floating structure or the structural behavior of the line.
- the “DP” (“Dynamic Positioning”) systems are active devices to control the position of the structure. They are based on an active system, such as propellers, or any other system that allows displacement, they are also controlled by a control device. With attached weather buoys it should be understood that, said buoys will be anchored in the vicinity of the floating platform to which we refer, in order to perform a simple data transmission to the platform.
- the floating structure can be any combination of the "spar” and / or "TLP” and / or semi-submersible structures.
- the weather station is designed in such a way that, in extreme wave conditions, the
- the weather station contains:
- the "parameter / s relating to the properties of air and / or water” can be, among others: air temperature, wind speed, average wind speed, wind direction, height, rain, thunder, conductivity, pressure barometric, atmospheric pressure, redox, nutrients (ammonia, nitrate, nitrite, phosphate), chlorophyll, pH, salinity, dissolved oxygen, turbidity, hydrocarbons, water temperature, surface water temperature, seafloor temperature, humidity, saturation of oxygen, global radiation, hydrostatic pressure, and / or depth.
- the sensors for measuring “environmental parameters” can be, among others: echo sounders, hydrophones, radars, TADS ("Thermal Animal Detector System"), Van Veen dredgers, Nansen networks, colonization cameras of underwater structures, Niskin bottles, video cameras , and / or cameras.
- the "parameters of currents, waves and / or tides” can be, among others: depth, wave direction, wave height, wave period, accelerations, inclinations, direction of origin of waves, direction of the current, speed of Ia current, profile of the current.
- the ADCP (Accoustic Doppler Current Profiler) type sensor can be used to measure characteristics of marine currents.
- Figure 1 It shows a perspective view of the whole floating structure based on a "spar" type buoy and a high-rise mast.
- Figure 2 Shows a front view of the floating structure of the previous figure.
- Figure 3. Shows a perspective view of the floating structure, with the integrated wave energy use device.
- Figure 4. Shows a front view of the floating structure, with the integrated wave energy use device, arranged at the level of the water.
- Figure 5 Shows a detailed view of the outer zone of the wave energy use device based on vertical generators.
- Figure 6. It shows a perspective view of the floating system, with the energy use device of the currents based on arms equipped with rotating propellers.
- Figure 7. Shows a perspective view of the floating system, with a fish farm placed at its base.
- Figure 8 Shows a perspective view of the floating system, with an integrated photovoltaic system.
- Figure 9 Shows a perspective view of the whole floating structure based on the "TLP" concept, a high-rise mast, and the LIDAR system.
- Figure 10 Shows a perspective view of the whole floating structure based on the concept of semi-submersible, a high-rise mast, and the LIDAR system. DESCRIPTION OF A PREFERRED EMBODIMENT.
- the floating structure 1 in a preferred embodiment, will be docked by at least one anchoring means 4, in order to maintain it without undergoing significant changes in its position.
- the floating structure 1 may incorporate at least one LIDAR device
- the floating structure 1 incorporates a mast 3 of at least 50 meters, minimum height equivalent to the positioning of a marine wind turbine, allowing the measurements obtained to be highly reliable, given that the wind turbines will be installed at that height.
- the floating structure 1 can incorporate photovoltaic panels 15 generating electrical energy to the control, instrumentation, recording and data transmission systems, that is, being used for self-consumption.
- the system incorporates a fish farm 16 next to the wave energy use device itself, allowing to add value to the installation, both economic and ecological.
- electrical energy can be obtained for which, the floating structure type "spar" installed in deep water and fixed by a anchoring device to maintain its position, provided with instrumentation that records The movement of the structure to correct the wind measurements can incorporate:
- LIDAR Light-lmaging Detection And Ranging
- the floating structure 1 can incorporate a mast
- Said mast 3 will have the precise instrumentation to record the movement of the structure 1 and make the necessary corrections in the wind measurements.
- the own structure of the "spar" buoy integrates a device 5 for the use of wave energy and / or a device
- the device 5 of energy use of the waves is integrated in the floating structure 1, it is defined by vertical generators, mounted between two platforms 9 and 10, being able to be an electric generator linear or air compressors.
- the vertical generators mounted between the two platforms 9 and 10 are arranged at level 1 1 of the water and are defined by cylindrical elements 7 and their corresponding float 8 movable along it by the action of the waves, so that it generates electricity if it is an electric generator or compresses air if it is an air compressor, or compresses seawater, or compresses a certain fluid.
- the upper mounting platform 9 of the vertical generators is at a height such as the level 11 of the water that the waves do not contact with it, in order to avoid the large load that they would have to bear in such case.
- the distance between the lower and upper platforms will be determined according to the oceanographic conditions of each site.
- the device 12 for energy use of the currents is defined by at least one arm 13, below the water level, which at its free end has a rotating device 14.
- the floating structure 1 can incorporate photovoltaic panels 15 generating electricity for self-consumption.
- the system can incorporate, together with the floating system, a fish farm 16 Io that allows to give an added value to the economic and ecological installation.
- an installation method is also described, which is based on the construction of the complete port system, the subsequent dragging of the assembly to the chosen location and the final fastening to the seabed, by means of chains or other devices.
- FIG. 9 shows a perspective view of the assembly of a floating structure 17 based on the "TLP" concept, a high-rise mast 3, and the LIDAR system 18.
- Figure 10 shows a perspective view of the assembly of the floating structure 17 based on the concept of semi-submersible, a mast 3 of great height, and the LIDAR system 18.
- the floating structure is fixed to the seabed by a anchoring device to maintain its position, such as catenary lines, “taut moorings”, “tension / torsion leg”, which are based on: • Catenary lines: They are the oldest and most common funding systems. Its restoration strength is based mainly on its weight.
- Tension / torsion leg The flotation of the platform exceeds its weight, and this type of line counteracts the net force in a vertical and upward direction, holding the platform.
- These types of lines are typical of TLP platforms, although they could also serve for other platforms, and even one of these lines could even be used to hold a platform.
- the floating structure may be any combination of the "spar” and / or “TLP” and / or semi-submersible structures.
- the floating structure that supports the LIDAR device Light-
- the weather station contains:
- the "parameter / s relating to the properties of air and / or water” can be, among others: air temperature, wind speed, average wind speed, wind direction, height, rain, thunder, conductivity, pressure barometric, atmospheric pressure, redox, nutrients (ammonia, nitrate, nitrite, phosphate), chlorophyll, pH, salinity, dissolved oxygen, turbidity, hydrocarbons, water temperature, surface water temperature, seafloor temperature, humidity, oxygen saturation , global radiation, hydrostatic pressure, and / or depth.
- the sensors for measuring "environmental parameters” can be, among others: echo sounders, hydrophones, radars, TADS ("Thermal Animal Detector System"), Van Veen dredgers, IMansen networks, colonization cameras of underwater structures, Niskin bottles, video cameras , and / or cameras.
- echo sounders can be, among others: echo sounders, hydrophones, radars, TADS ("Thermal Animal Detector System"), Van Veen dredgers, IMansen networks, colonization cameras of underwater structures, Niskin bottles, video cameras , and / or cameras.
- the “parameters of currents, waves and / or tides” can be, among others: depth, wave direction, wave height, wave period, accelerations, inclinations, direction of origin of waves, direction of the current, speed of Ia current, profile of the current.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Ocean & Marine Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- General Engineering & Computer Science (AREA)
- Architecture (AREA)
- Atmospheric Sciences (AREA)
- Biodiversity & Conservation Biology (AREA)
- Ecology (AREA)
- Environmental Sciences (AREA)
- Wind Motors (AREA)
Abstract
El sistema de medición de recursos eólicos en el mar, de Ia presente invención está basado en una estructura flotante tipo boya 'spar' fijada por un dispositivo de fondeo para mantener su posición y estando provista de instrumentación que registra el movimiento de Ia estructura para corregir las mediciones de viento, de forma que Ia estructura (1 ) flotante, instalada en aguas profundas, incorpora: al menos, un dispositivo LIDAR (Light-lmaging Detection And Ranging) para Ia medida del viento, y/o; al menos, una estación meteorológica, un dispositivo (5) de aprovechamiento energético de las olas, y/o; un dispositivo (12) de aprovechamiento energético de las corrientes; siendo utilizada Ia energía generada para abastecer a los diferentes sistemas de control, instrumentación, registro y transmisión de datos.
Description
SISTEMA DE MEDICIÓN DE RECURSOS EÓLICOS EN EL MAR, PRODUCTOR DE ENERGÍA Y MÉTODO DE INSTALACIÓN.
OBJETO DE LA INVENCIÓN.
La siguiente invención, según se expresa en el enunciado de Ia presente memoria descriptiva, se refiere a un sistema de medición de recursos eólicos en el mar, productor de energía y método de instalación, estando basado en una estructura flotante para instalar en aguas profundas y provista de instrumentación que registra el movimiento de Ia estructura, en sus distintas componentes, para corregir las mediciones de viento realizadas a nivel de montaje de una turbina eólica marina, esto es, a, al menos, una altura de 50 m., siendo este un objeto esencial de Ia invención, ya que, se trata de poder hacer mediciones de recurso eólico a alturas de 50 metros sobre el nivel del mar, al ser el punto en el que quedarán instaladas las turbinas eólicas de los aerogeneradores marinos. Asimismo, otro objeto de Ia invención es Ia producción de energía por el aprovechamiento energético de las olas y de las corrientes marinas.
Igualmente, el sistema puede incorporar unas placas fotovoltaicas con objeto de generar energía eléctrica para el consumo propio del sistema, y, asimismo, el sistema puede incorporar, en proximidad a Ia estructura flotante, una piscifactoría.
Asimismo, Ia estabilidad que proporcionan las estructuras flotantes en las que se base Ia invención, es fundamental para una buena medición del LIDAR. Por otra parte, otro objeto de Ia invención es que el sistema pueda autoabastecerse debido a subsistemas de generación de energía que puede incorporar.
Otro objeto de Ia invención es Ia presentación de un método de instalación del sistema que facilita el mantenimiento del mismo. CAMPO DE APLICACIÓN.
En Ia presente memoria se describe un sistema de medición de recursos eólicos en el mar, productor de energía y un método de instalación, siendo de especial aplicación para su instalación en aguas profundas realizando las mediciones de viento a nivel de montaje de una turbina eólica marina, esto es, a, al menos, una altura de 50 m.
ANTECEDENTES PE LA INVENCIÓN.
Con objeto de medir el viento sobre el mar son conocidos diferentes sistemas basados, todos ellos, en mediciones en aguas poco profundas, pero ninguno en aguas profundas y a una altura equivalente al montaje de una turbina eólica, esto es, a, al menos, 50 metros.
Así, Ia solución usual es poner un mástil sobre un mono-pilote clavado en el fondo marino, de forma que este sistema conlleva un impacto en Ia fauna marina muy alto, debido al ruido en Ia fase de construcción. Además existen anemómetros sobre boyas y barcos flotantes, pero siempre con una altura máxima de 10 metros, y situados sobre estructuras que distorsionan las medidas de viento, como puede ser un barco o una plataforma petrolífera.
Asimismo, son conocidos otros sistemas como el LIDAR (Light-lmaging Detection And Ranging) o el SODAR (Sonic Detection And
Ranging) para medición de viento, de forma que el sistema LIDAR necesita una provisión de agua pura para limpiar Ia lente, y el sistema SODAR necesita mantenimiento y electricidad y tiene problemas con el movimiento y con Ia precisión de Ia medida. Igualmente, podemos hacer referencia a las denominadas boyas "spar" de pequeña altura que son utilizadas para medir los parámetros del mar, incluyendo las características del viento, pero debido a Ia variabilidad del viento entre Ia superficie y Ia altura adecuada (estimable en más de 50 metros), y por Ia estabilidad del aire, es poco aconsejable utilizar este sistema para los parques eólicos.
El sistema de boyas de flotación "spar" se refiere a sistemas flotantes que mantienen el centro de gravedad por debajo del centro de flotación, consiguiendo así Ia estabilidad deseada y suelen ser sistemas esbeltos. Las partes básicas de una boya flotante "spar" incluye:
1 ) Estructura superior.
2) Tanque de lastre superior ("hard tank").
3) Sección intermedia (configuración cilindrica ciega o en celosía). 4) Tanque de lastre inferior ("soft tank").
La estructura superior consta habitualmente de una configuración multi-nivel de cubiertas para así conseguir un área de trabajo suficiente, minimizando al mismo tiempo las superficies en voladizo. El tanque de lastre superior es el encargado de aportar Ia reserva de flotabilidad suficiente para soportar el peso de los demás elementos, ya que ninguno de ellos tendría flotabilidad positiva por sí mismo. El término "hard tank" viene del hecho de que sus compartimentos están dimensionados para soportar toda Ia presión hidrostática sin necesidad de inundar los mismos. Habitualmente está dividido en 5 ó 6 niveles de compartimentos estancos separados por cubiertas y cada uno de estos se subdivide a su vez en otros 4 mediante mamparos radiales. El tanque situado a Ia altura de Ia flotación dispone usualmente de doble casco o mamparos dobles ("cofferdams") para minimizar el volumen de llenado de agua en caso de colisión con otro buque. En cualquier caso Io usual es que sólo el nivel más bajo de tanques esté inundado con una cantidad variable de lastre dependiendo de Ia condición de carga de Ia plataforma, quedando el resto vacíos.
La sección intermedia se extiende a partir de Ia base inferior del "hard tank" para dotar del calado de diseño a Ia estructura.
En las "spar" clásicas éste no era sino una extensión de Ia chapa que constituye el forro exterior del tanque superior sin apenas ninguna estructura interna.
Los escantillones de este cuerpo central se dimensionan a partir de los momentos flectores a resistir durante Ia fase de adrizamiento tras el remolque hasta el punto de emplazamiento final. En una posterior evolución se reemplazó este cuerpo central por una estructura en celosía menos pesada y de construcción más simple y barata.
Existen otros conceptos de sistemas flotantes, distintos al "spar", como pueden ser, por ejemplo, el TLP ("Tensión Leg Platform") y el semisumergible.
El sistema TLP está verticalmente sujeto, mediante ataduras tensionadas al suelo marino ("tension/torsion leg", como se verá después), de esta forma evita el movimiento ascensional (heave) y las rotaciones de los ejes contenidos en el plano de Ia superficie marina
("pitch and roll")
El sistema semisumergible es una estructura flotante con una gran cubierta, de Ia que salen varias columnas que conectan bajo el agua con elementos flotantes horizontales (llamados pontones). La instrumentación depende de Ia precisión que se quiera γ del coste que se esté dispuesto a asumir. La solución del giróscopo es cara, y el elemento es pesado y grande.
Igualmente, existen acelerómetros lineales, acelerómetros angulares, inclinómetros y GPS (Global Positioning System). El uso de más de un tipo de instrumentación, permite Ia comprobación de mediciones, y, además, Ia ubicación de Ia instrumentación en más de un sitio, por ejemplo Ia cima de Ia boya "spar" y Ia cima del mástil, permite un conocimiento mayor de las características del movimiento. Por otra parte, podemos considerar el documento de BURT
Wayne referido a Ia comparación de respuestas en cazoletas de anemómetros montados en una boya mástil y en una boya toroidal a una altura de 5 m., de forma que Ia boya mástil queda fijada al fondo marino y Ia boya toroidal queda flotante amarrada por un cable flotante de 50 metros que actúa de muelle, mientras que el mástil, de Ia misma, queda amarrado a Ia toroide por un segundo cable flotante de 50 metros.
DESCRIPCIÓN DE LA INVENCIÓN.
En Ia presente memoria se describe un sistema de medición de recursos eólicos en el mar productor de energía y un método de instalación, estando basado en:
• una estructura flotante tipo boya "spar" fijada por un dispositivo de fondeo para mantener su posición, o;
• una estructura flotante tipo boya "spar" que no esta fijada al fondo marino, pero capaz de mantener o variar su posición mediante sistemas "DP" u otros, o;
• una estructura flotante tipo "TLP" fijada por un dispositivo de fondeo para mantener su posición, o;
• una estructura flotante tipo semisumergida;
y estando provista Ia estructura flotante de instrumentación que registra el movimiento de Ia estructura para corregir las mediciones de viento, de forma que Ia estructura flotante, instalada en aguas profundas, incorpora:
• al menos, un dispositivo LIDAR (Light-lmaging Detection And Ranging) para Ia medida del viento, y/o;
• al menos, una estación meteorológica.
La instrumentación que registra el movimiento de Ia estructura permite contar con datos más fiables, ya que permite corregir los datos iniciales de viento (y otros datos), teniendo en cuenta el movimiento que ha tenido Ia estructura flotante.
Asimismo, Ia estructura flotante puede incorporar un mástil de, al menos 50 metros, altura mínima equivalente al posicionamiento de una turbina eólica marina, permitiendo obtener medidas de viento de una gran fiabilidad para valorar Ia posterior instalación de un parque eólico marino. Además, Ia estructura flotante puede incorporar unas placas fotovoltaicas generando energía eléctrica a los sistemas de control, instrumentación, registro y transmisión de datos, es decir, para autoconsumo.
Igualmente, el sistema puede incorporar una piscifactoría junto al propio dispositivo de aprovechamiento de energía de las olas, permitiendo dar un valor añadido a Ia instalación, tanto económico como ecológico.
El sistema se construye total o parcialmente en puerto, posteriormente es arrastrado en flotación hasta el emplazamiento elegido y finalmente se sujeta al fondo marino con dispositivos de fondeo, de manera que, dicho método de instalación, permite realizar labores de reparación, en el caso de avería grave, para Io cual se sueltan los dispositivos de fondeo, se arrastra en flotación el sistema hasta puerto, se realizan las labores de reparación y finalmente se vuelve a llevar hasta el emplazamiento y se vuelve a sujetar con los dispositivos de fondeo.
Además, en una variante de ejecución practica de Ia invención, el sistema que se describe permite, además, Ia producción de energía para Io cual, Ia estructura flotante, instalada en aguas profundas, incorpora:
• al menos, un dispositivo LIDAR (Light-lmaging Detection And Ranging) para Ia medida del viento, y/o;
• al menos, una estación meteorológica, y.
• un dispositivo de aprovechamiento energético de las olas, y/o;
• un dispositivo de aprovechamiento energético de las corrientes; siendo utilizada Ia energía generada para abastecer a los diferentes sistemas de control, instrumentación, registro y transmisión de datos, es decir, para autoconsumo.
Además, Ia estructura flotante puede incorporar un mástil de, al menos 50 metros, altura mínima equivalente al posicionamiento de una turbina eólica marina, permitiendo realizar medidas de viento de una gran fiabilidad.
Por otra parte, el dispositivo de aprovechamiento energético de las olas, integrado en Ia estructura flotante, se define por unos generadores verticales, montados entre dos plataformas, pudiendo tratarse de un generador eléctrico lineal o unos compresores de aire, agua marina u otros fluidos.
Los generadores verticales montados entre las dos plataformas, a nivel del agua, se definen por unos elementos cilindricos y su correspondiente flotador desplazable a Io largo de él, por Ia acción de las olas, generando electricidad si se trata de un generador eléctrico o comprimiendo aire, agua marina u otro fluido si se trata de unos compresores.
La plataforma superior de montaje del mástil y montaje de los generadores verticales entre ella Ia plataforma inferior, queda a una altura tal del nivel del agua que las olas no llegan a contactar con ella.
Asimismo, el dispositivo de aprovechamiento energético de las corrientes se define por, al menos, un brazo, por debajo del nivel del agua, que en su extremo libre presenta un dispositivo giratorio. En una ejecución preferente dispondrá de una pareja de brazos en posición contrapuesta a Ia estructura flotante.
La estructura flotante puede incorporar unas placas fotovoltaicas generando energía eléctrica a los sistemas de control, instrumentación, registro y transmisión de datos, es decir, para autoconsumo.
Igualmente, el sistema puede incorporar una piscifactoría junto a Ia estructura flotante tipo boya "spar", permitiendo dar un valor añadido a Ia instalación, tanto económico como ecológico.
El sistema se construye total o parcialmente en puerto, posteriormente es arrastrado en flotación hasta el emplazamiento elegido y finalmente se sujeta al fondo marino con dispositivos de fondeo, de manera que el descrito método de instalación permite labores de reparación, ya que, en el caso de avería grave, se sueltan los dispositivos de fondeo, se arrastra en flotación el sistema hasta puerto, se realizan las labores de reparación y finalmente se vuelve a llevar hasta el emplazamiento y se vuelve a sujetar con los dispositivos de fondeo.
Además, el sistema incorpora un dispositivo de aprovechamiento energético de las olas y de las corrientes.
La estructura flotante está fijada al fondo marino por un dispositivo de fondeo para mantener su posición, tal como líneas catenarias, "taut moorings", "tension/torsion leg".
En definitiva, para las estructuras flotantes comentadas anteriormente, existen varias posibilidades de dispositivo de fondeo, por Io que para el sistema de medición de recursos eólicos en el mar basado en una estructura flotante, los dispositivos de fondeo pueden ser: líneas catenarias, "taut moorings", "tension/torsion leg" u otro tipo de dispositivo de fondeo.
A continuación se explican cada uno de los conceptos:
• Líneas catenarias: Son los sistemas de fondeo más antiguos y comunes. Su fuerza de restauración se basa principalmente en su peso.
• "Taut moorings": Son líneas con una pretensión i determinada. Su fuerza de restauración se consigue por las características elásticas del material. • "Tension/torsion leg": La flotación de Ia plataforma excede su peso, y este tipo de línea contraresta Ia fuerza neta en dirección vertical y hacia arriba, sujetando Ia plataforma. Este tipo de líneas son típicas de las plataformas TLP, aunque también podrían servir para otras plataformas, e incluso podría utilizarse una
sola de estas líneas para sujetar una plataforma. Las líneas catenarias pueden utilizar dispositivos pasivos, como pesos muertos, o flotadores, a Io largo de sus líneas, con el fin de mejorar Ia dinámica de Ia estructura flotante o el comportamiento estructural de Ia línea.
También existe Ia posibilidad, para el sistema de medición de recursos eólicos en cuestión, de no utilizar dispositivos de fondeo. Esto implica que no estaría fijado al fondo marino, y sin embargoo, es capaz de mantener o variar su posición mediante sistemas "DP" u otros dispositivos.
Los sistemas "DP" ("Dynamic Positioning") son dispositivos activos para controlar Ia posición de Ia estructura. Están basados en un sistema activo, tal como hélices, o cualquier otro sistema que permita desplazamiento, además son controlados por un dispositivo de control. Con boyas meteorológicas anexas se debe entender que, dichas boyas estarán ancladas en las cercanías de Ia plataforma flotante a Ia que nos referimos, para poder realizar una sencilla transmisión de datos hasta Ia plataforma.
Asimismo, Ia estructura flotante puede ser cualquier combinación de las estructuras "spar", y/o "TLP" y/o semisumergible.
La estructura flotante que soporta:
• el dispositivo LIDAR (Light-lmaging Detection And Ranging) para Ia medida del viento, y/o;
• Ia estación meteorológica, está diseñado de tal manera que, en las condiciones de ola extremas, el
LIDAR y/o Ia estación meteorológica no son rociados por el agua. La estación meteorológica, contiene:
• cualquier tipo de sensor que mida "parámetro/s relativos a las propiedades del aire y/o agua", y/o • cualquier tipo de sensor que mida "parámetros medioambientales", y/o
• cualquier tipo de sensor que mida "parámetros de corrientes, olas y/o mareas", y/o
• boyas meteorológicas anexas, con conexión de datos a Ia estructura.
Los "parámetro/s relativos a las propiedades del aire y/o del agua", pueden ser, entre otros: temperatura del aire, velocidad del viento, velocidad media de viento, dirección del viento, altura, lluvia, truenos, conductividad, presión barométrica, presión atmosférica, redox, nutrientes (amoniaco, nitrato, nitrito, fosfato), clorofila, pH, salinidad, oxígeno disuelto, turbidez, hidrocarburos, temperatura del agua, temperatura superficial del agua, temperatura del fondo de marino, humedad, saturación de oxígeno, radiación global, presión hidrostática, y/o profundidad. Los sensores para medir "parámetros medioambientales" pueden ser, entre otros: ecosondas, hidrófonos, radares, TADS ("Thermal Animal Detector System"), dragas Van Veen, redes Nansen, cámaras de colonización de estructuras submarinas, botellas Niskin, cámaras de video, y/o cámaras de fotos. Los "parámetros de corrientes, olas y/o mareas" pueden ser, entre otros: profundidad, dirección de ola, altura de ola, período de ola, aceleraciones, inclinaciones, dirección de procedencia de oleaje, dirección de Ia corriente, velocidad de Ia corriente, perfil de Ia corriente.
Para medir características de las corrientes marinas puede usarse el sensor tipo ADCP (Accoustic Doppler Current Profiler).
Para complementar Ia descripción que seguidamente se va a realizar, y con objeto de ayudar a una mejor comprensión de las características de Ia invención, se acompaña a Ia presente memoria descriptiva, de un juego de planos, en cuyas figuras de forma ilustrativa y no limitativa, se representan los detalles más característicos de Ia invención.
BREVE DESCRIPCIÓN DE LOS DISEÑOS.
Figura 1 . Muestra una vista en perspectiva del conjunto de Ia estructura flotante basada en una boya tipo "spar" y un mástil de gran altura.
Figura 2. Muestra una vista frontal de Ia estructura flotante, de Ia figura anterior.
Figura 3. Muestra una vista en perspectiva de Ia estructura flotante, con el dispositivo de aprovechamiento energético de las olas integrado.
Figura 4. Muestra una vista frontal de Ia estructura flotante, con el dispositivo de aprovechamiento energético de las olas integrado, dispuesto a ras del nivel del agua.
Figura 5. Muestra una vista en detalle de Ia zona exterior del dispositivo de aprovechamiento energético de las olas basado en unos generadores verticales.
Figura 6. Muestra una vista en perspectiva del sistema flotante, con el dispositivo de aprovechamiento energético de las corrientes basado en unos brazos dotados de unas hélices giratorias. Figura 7. Muestra una vista en perspectiva del sistema flotante, con una piscifactoría colocada en su base.
Figura 8. Muestra una vista en perspectiva del sistema flotante, con un sistema fotovoltaico integrado.
Figura 9. Muestra una vista en perspectiva del conjunto de Ia estructura flotante basada en el concepto "TLP", un mástil de gran altura, y el sistema LIDAR.
Figura 10. Muestra una vista en perspectiva del conjunto de Ia estructura flotante basada en el concepto de semisumergible, un mástil de gran altura, y el sistema LIDAR. DESCRIPCIÓN DE UNA REALIZACIÓN PREFERENTE.
A Ia vista de las comentadas figuras y de acuerdo con Ia numeración adoptada podemos observar como el sistema de medición de recursos eólicos en el mar, está basado en:
• una estructura flotante tipo boya "spar" fijada por un dispositivo de fondeo para mantener su posición, o;
• una estructura flotante tipo boya "spar" que no esta fijada al fondo marino, pero capaz de mantener o variar su posición mediante sistemas "DP" u otros, o;
• una estructura flotante tipo "TLP" fijada por un dispositivo de fondeo para mantener su posición, o;
• una estructura flotante tipo semisumergida; cuya estructura flotante esta provista de instrumentación que registra el movimiento de Ia estructura para corregir las mediciones de viento, de forma que Ia estructura 1 flotante, instalada en aguas profundas, se conforma por una boya 2 tipo "spar" y un mástil 3.
Así, la estructura 1 flotante, en una realización preferente, será atracada por, al menos, un medio 4 de fondeo, con objeto de mantenerla sin sufrir cambios significativos en su posición.
De esta forma, con objeto de efectuar medidas de viento, Ia estructura 1 flotante podrá incorporar, al menos, un dispositivo LIDAR
(Light-lmaging Detection And Ranging) para Ia medida del viento, y/o, al menos, una estación meteorológica.
Asimismo, Ia estructura 1 flotante incorpora un mástil 3 de, al menos 50 metros, altura mínima equivalente al posicionamiento de una turbina eólica marina, permitiendo que las medidas obtenidas sean de una gran fiabilidad, dado que las turbinas eólicas quedarán instalados a esa altura.
Por otra parte, Ia estructura 1 flotante puede incorporar unas placas fotovoltaicas 15 generando energía eléctrica a los sistemas de control, instrumentación, registro y transmisión de datos, es decir, siendo utilizada para autoconsumo.
Asimismo, el sistema incorpora una piscifactoría 16 junto al propio dispositivo de aprovechamiento de energía de las olas, permitiendo dar un valor añadido a Ia instalación, tanto económico como ecológico. En una variante de ejecución practica, además de medida de viento se puede obtener energía eléctrica para Io cual, Ia estructura flotante tipo boya "spar" instalada en aguas profundas y fijada por un dispositivo de fondeo para mantener su posición, provista de instrumentación que registra el movimiento de Ia estructura para corregir las mediciones de viento, puede incorporar:
• al menos, un dispositivo LIDAR (Light-lmaging Detection And Ranging) para Ia medida del viento, y/o;
• al menos, una estación meteorológica, y.
• un dispositivo de aprovechamiento energético de las olas, y/o;
• un dispositivo de aprovechamiento energético de las corrientes de manera que se genera una energía eléctrica para autoconsumo del sistema.
Asimismo, la estructura flotante 1 puede incorporar un mástil
3 que tendrá una altura de, al menos, 50 metros, altura equivalente al posicionamiento de una turbina eólica marina, con objeto de poder obtener mediciones del viento con Ia suficiente seguridad que permita acometer Ia instalación de un parque eólico marino.
El citado mástil 3 dispondrá de Ia instrumentación precisa para registrar el movimiento de Ia estructura 1 y realizar las correcciones precisas en las mediciones de viento.
Asimismo, Ia propia estructura de Ia boya "spar" integra un dispositivo 5 de aprovechamiento energético de las olas y/o un dispositivo
12 de aprovechamiento de las corrientes, de forma que el dispositivo 5 de aprovechamiento energético de las olas esta integrado en Ia estructura 1 flotante, el mismo se define por unos generadores verticales, montados entre dos plataformas 9 y 10, pudiendo tratarse de un generador eléctrico lineal o unos compresores de aire.
Los generadores verticales montados entre las dos plataformas 9 y 10 quedan dispuestos a nivel 1 1 del agua y se definen por unos elementos cilindricos 7 y su correspondiente flotador 8 desplazable a Io largo de él por Ia acción de las olas, de manera que genera electricidad si se trata de un generador eléctrico o comprime aire si se trata de unos compresores de aire, o comprime agua marina, o comprime un fluido determinado.
La plataforma 9 superior de montaje de los generadores verticales queda a una altura tal del nivel 11 del agua que las olas no llegan a contactar con ella, con objeto de evitar Ia gran carga que tendrían que soportar en tal caso. Así, Ia distancia entre las plataformas inferior y superior vendrá determinada en función de las condiciones oceanógraficas propias de cada emplazamiento.
Por otra parte, el dispositivo 12 de aprovechamiento energético de las corrientes se define por, al menos, un brazo 13, por debajo del nivel de agua, que en su extremo libre presenta un dispositivo 14 giratorio.
Además, Ia estructura 1 flotante puede incorporar unas placas fotovoltaicas 15 generando energía eléctrica para autoconsumo.
Asimismo, el sistema puede incorporar, junto al sistema flotante, una piscifactoría 16 Io que permite dar un valor añadido a Ia instalación tanto económico como ecológico.
Como realización preferente también se describe un método de instalación, el cual, se basa en Ia construcción del sistema completo en puerto, el posterior arrastre en flotación del conjunto hasta el emplazamiento elegido y Ia final sujeción al fondo marino, mediante cadenas u otros dispositivos de fondeo.
Mediante este método de instalación se facilita el mantenimiento y el mismo se basa en Ia idea de que, en caso de avería grave, se sueltan los dispositivos de fondeo, se arrastra el sistema a puerto y se realizan las labores de reparación, posteriormente se lleva nuevamente al emplazamiento y se vuelve a sujetar con el sistema de fondeo. En Ia figura 9 se muestra una vista en perspectiva del conjunto de una estructura flotante 17 basada en el concepto "TLP", un mástil 3 de gran altura, y el sistema LIDAR 18.
En Ia figura 10 se muestra una vista en perspectiva del conjunto de Ia estructura flotante 17 basada en el concepto de semisumergible, un mástil 3 de gran altura, y el sistema LIDAR 18.
Por otra parte, Ia estructura flotante está fijada al fondo marino por un dispositivo de fondeo para mantener su posición, tal como líneas catenarias, "taut moorings", "tension/torsion leg", los cuales están basados en: • Líneas catenarias: Son los sistemas de fondeo más antiguos y comunes. Su fuerza de restauración se basa principalmente en su peso.
• "Taut moorings": Son líneas con una pretensión determinada. Su fuerza de restauración se consigue por las características elásticas del material.
• "Tension/torsion leg": La flotación de Ia plataforma excede su peso, y este tipo de línea contraresta Ia fuerza neta en dirección vertical y hacia arriba, sujetando Ia plataforma. Este tipo de líneas son típicas de las plataformas TLP, aunque también podrían servir
para otras plataformas, e incluso podría utilizarse una sola de estas líneas para sujetar una plataforma. Además, Ia estructura flotante podrá ser cualquier combinación de las estructuras "spar", y/o "TLP" y/o semisumergible. La estructura flotante que soporta el dispositivo LIDAR (Light-
Imaging Detection And Ranging) para Ia medida del viento, y/o Ia estación meteorológica, está diseñado de tal manera que, en las condiciones de ola extremas, el LIDAR y/o Ia estación meteorológica no son rociados por el agua. La estación meteorológica, contiene:
• cualquier tipo de sensor que mida "parámetro/s relativos a las propiedades del aire y/o agua", y/o
• cualquier tipo de sensor que mida "parámetros medioambientales", y/o • cualquier tipo de sensor que mida "parámetros de corrientes, olas y/o mareas", y/o
• boyas meteorológicas anexas, con conexión de datos a Ia estructura.
Los "parámetro/s relativos a las propiedades del aire y/o del agua", pueden ser, entre otros: temperatura del aire, velocidad del viento, velocidad media de viento, dirección del viento, altura, lluvia, truenos, conductividad, presión barométrica, presión atmosférica, redox, nutrientes (amoniaco, nitrato, nitrito, fosfato), clorofila, pH, salinidad, oxígeno disuelto, turbidez, hidrocarburos, temperatura del agua, temperatura superficial del agua, temperatura del fondo marino, humedad, saturación de oxígeno, radiación global, presión hidrostática, y/o profundidad.
Los sensores para medir "parámetros medioambientales" pueden ser, entre otros: ecosondas, hidrófonos, radares, TADS ("Thermal Animal Detector System"), dragas Van Veen, redes IMansen, cámaras de colonización de estructuras submarinas, botellas Niskin, cámaras de video, y/o cámaras de fotos.
Los "parámetros de corrientes, olas y/o mareas" pueden ser, entre otros: profundidad, dirección de ola, altura de ola, período de ola, aceleraciones, inclinaciones, dirección de procedencia de oleaje, dirección de Ia corriente, velocidad de Ia corriente, perfil de Ia corriente.
Claims
R E I V I N D I C A C I O N E S.
I a.- SISTEMA DE MEDICIÓN DE RECURSOS EÓLICOS EN EL MAR, estando basado en:
• una estructura flotante tipo boya "spar" fijada por un dispositivo de fondeo para mantener su posición, o;
• una estructura flotante tipo boya "spar" que no esta fijada al fondo marino, pero capaz de mantener o variar su posición mediante sistemas "DP" u otros, o;
• una estructura flotante tipo "TLP" fijada por un dispositivo de fondeo para mantener su posición, o;
• una estructura flotante tipo semisumergida; y estando provista Ia estructura flotante de instrumentación que registra el movimiento de Ia estructura para corregir las mediciones de viento, caracterizado porque Ia estructura (1 ) flotante, instalada en aguas profundas, incorpora:
• al menos, un dispositivo LIDAR (Light-lmaging Detection And Ranging) para Ia medida del viento, y/o;
• al menos, una estación meteorológica.
2a.- SISTEMA DE MEDICIÓN DE RECURSOS EÓLICOS EN EL MAR, según reivindicación 1a, caracterizado porque Ia estructura (1) flotante incorpora un mástil (3) de, al menos 50 metros, altura mínima equivalente al posicionamiento de una turbina eólica marina.
3a.- SISTEMA DE MEDICIÓN DE RECURSOS EÓLICOS EN EL
MAR, según reivindicación 1 a, caracterizado porque Ia estructura (1 ) flotante incorpora unas placas fotovoltaicas (15) generando energía eléctrica a los sistemas de control, instrumentación, registro y transmisión de datos.
4a.- SISTEMA DE MEDICIÓN DE RECURSOS EÓLICOS EN EL MAR, según reivindicación 1 a, caracterizado porque el sistema incorpora una piscifactoría (16) junto a Ia estructura flotante.
5a.- MÉTODO DE INSTALACIÓN DE UN SISTEMA DE
MEDICIÓN DE RECURSOS EÓLICOS EN EL MAR, según reivindicaciones
1 a a 4a, caracterizado porque el sistema es arrastrado en flotación desde el punto de fabricación hasta el emplazamiento elegido y finalmente se sujeta al fondo marino con dispositivos de fondeo (4).
6a.- MÉTODO DE INSTALACIÓN DE UN SISTEMA DE MEDICIÓN DE RECURSOS EÓLICOS EN EL MAR, según reivindicación 5a, caracterizado porque en el caso de avería grave, se sueltan los dispositivos de fondeo (4), se arrastra en flotación el sistema hasta puerto, se realizan las labores de reparación y finalmente se vuelve a llevar hasta el emplazamiento y se vuelve a sujetar con los dispositivos de fondeo (4).
7a.- SISTEMA DE MEDICIÓN DE RECURSOS EÓLICOS EN EL MAR Y PRODUCTOR DE ENERGÍA, según reivindicación 1 a, caracterizado porque Ia estructura (1 ) flotante, instalada en aguas profundas, incorpora:
• al menos, un dispositivo LIDAR (Light-lmaging Detection And Ranging) para Ia medida del viento, y/o;
• al menos, una estación meteorológica, y. • un dispositivo (5) de aprovechamiento energético de las olas, y/o;
• un dispositivo (12) de aprovechamiento energético de las corrientes; siendo utilizada Ia energía generada para abastecer a los diferentes sistemas de control, instrumentación, registro y transmisión de datos.
8a.- SISTEMA DE MEDICIÓN DE RECURSOS EÓLICOS EN EL MAR Y PRODUCTOR DE ENERGÍA, según reivindicación 7a, caracterizado porque Ia estructura (1 ) flotante incorpora un mástil (3) de, al menos 50 metros, altura mínima equivalente al posicionamiento de una turbina eólica marina.
9a.- SISTEMA DE MEDICIÓN DE RECURSOS EÓLICOS EN EL MAR Y PRODUCTOR DE ENERGÍA, según reivindicación 7a, caracterizado porque el dispositivo (5) de aprovechamiento energético de las olas, integrado en Ia estructura (1 ) flotante, se define por unos generadores verticales, montados entre dos plataformas (9) y (10), pudiendo tratarse de un generador eléctrico lineal o unos compresores de aire, agua marina, u otros fluidos.
10a.- SISTEMA DE MEDICIÓN DE RECURSOS EÓLICOS EN EL MAR Y PRODUCTOR DE ENERGÍA, según reivindicaciones 7a, caracterizado porque los generadores verticales montados entre las
dos plataformas (9) y (10), a nivel del agua, se definen por unos elementos cilindricos (7) y su correspondiente flotador (8) desplazable a Io largo de él, por Ia acción de las olas, genera electricidad si se trata de un generador eléctrico o comprime aire o agua marina u otro fluido si se trata de unos compresores.
1 1 a.- SISTEMA DE MEDICIÓN DE RECURSOS EÓLICOS EN EL MAR Y PRODUCTOR DE ENERGÍA, según reivindicación 9a, caracterizado porque Ia plataforma (9) superior de montaje de los generadores verticales queda a una altura tal del nivel (11) del agua que las olas no llegan a contactar con él.
12a.- SISTEMA DE MEDICIÓN DE RECURSOS EÓLICOS EN EL MAR Y PRODUCTOR DE ENERGÍA, según reivindicación 7a, caracterizado porque el dispositivo (12) de aprovechamiento energético de las corrientes se define por, al menos, un brazo (13), por debajo del nivel (1 1 ) del agua, que en su extremo libre presenta un dispositivo (14) giratorio.
13a.- SISTEMA DE MEDICIÓN DE RECURSOS EÓLICOS EN EL MAR Y PRODUCTOR DE ENERGÍA, según reivindicación 7a, caracterizado porque Ia estructura (1 ) flotante incorpora unas placas fotovoltaicas (15) generando energía eléctrica a los sistemas de control, instrumentación, registro y transmisión de datos.
14a.- SISTEMA DE MEDICIÓN DE RECURSOS EÓLICOS EN EL MAR Y PRODUCTOR DE ENERGÍA, según reivindicación 7a, caracterizado porque el sistema incorpora una piscifactoría (16) junto a Ia estructura flotante..
15a.- MÉTODO DE INSTALACIÓN DEL SISTEMA DE MEDICIÓN DE RECURSOS EÓLICOS EN EL MAR Y PRODUCTOR DE ENERGÍA, de acuerdo con las reivindicaciones 7a a 14a, caracterizado porque el sistema es arrastrado en flotación desde el punto de fabricación hasta el emplazamiento elegido y finalmente se sujeta al fondo marino con dispositivos de fondeo (4).
16a.- MÉTODO DE REPARACIÓN DEL SISTEMA DE MEDICIÓN DE RECURSOS EÓLICOS EN EL MAR Y PRODUCTOR DE ENERGÍA, según reivindicación 15a, caracterizado porque en el caso de avería grave, se sueltan los dispositivos de fondeo, se arrastra en flotación el sistema
hasta puerto, se realizan las labores de reparación y finalmente se vuelve a llevar hasta el emplazamiento y se vuelve a sujetar con los dispositivos de fondeo (4).
17a.- SISTEMA DE MEDICIÓN DE RECURSOS EÓLICOS EN EL MAR, según reivindicación 1a, caracterizado porque el sistema incorpora un dispositivo de aprovechamiento energético de las olas.
18a.- SISTEMA DE MEDICIÓN DE RECURSOS EÓLICOS EN EL MAR, según reivindicación 1 a, caracterizado porque el sistema incorpora un dispositivo de aprovechamiento energético de las corrientes. 19a.- SISTEMA DE MEDICIÓN DE RECURSOS EÓLICOS EN EL
MAR, según reivindicación 1 a, caracterizado porque Ia estructura flotante está fijada al fondo marino por un dispositivo de fondeo para mantener su posición, tal como líneas catenarias, "taut mooήngs", "tensión/torsión leg". 20a.- SISTEMA DE MEDICIÓN DE RECURSOS EÓLICOS EN EL
MAR, según las reivindicación 1 , caracterizado porque Ia estructura flotante puede ser cualquier combinación de las estructuras "spar", y/o "TLP" y/o semisumergible
21 a.- SISTEMA DE MEDICIÓN DE RECURSOS EÓLICOS EN EL MAR, según reivindicación 1 a, caracterizado porque Ia estructura flotante que soporta
• el dispositivo LIDAR (Light-lmaging Detection And Ranging) para Ia medida del viento, y/o;
• Ia estación meteorológica, está diseñado de tal manera que, en las condiciones de ola extremas, el
LIDAR y/o Ia estación meteorológica no son rociados por el agua.
22a.- SISTEMA DE MEDICIÓN DE RECURSOS EÓLICOS EN EL MAR, según reivindicación 1a, caracterizado porque, Ia estación meteorológica, contiene: • cualquier tipo de sensor que mida "parámetro/s relativos a las propiedades del aire y/o agua", y/o
• cualquier tipo de sensor que mida "parámetros medioambientales", y/o
• cualquier tipo de sensor que mida "parámetros de corrientes, olas y/o mareas", y/o
boyas meteorológicas anexas, con conexión de datos a Ia estructura.
10
15
20
25
30
35
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES200703020A ES2301443B1 (es) | 2007-11-15 | 2007-11-15 | Sistema de medicion de recursos eolicos en el mar, productor de energia y metodo de instalacion. |
ESP200703020 | 2007-11-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009063112A1 true WO2009063112A1 (es) | 2009-05-22 |
Family
ID=39469740
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/ES2008/000708 WO2009063112A1 (es) | 2007-11-15 | 2008-11-14 | Sistema de medición de recursos eólicos en el mar, productor de energía y método de instalación |
Country Status (2)
Country | Link |
---|---|
ES (1) | ES2301443B1 (es) |
WO (1) | WO2009063112A1 (es) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011095666A3 (es) * | 2010-02-03 | 2011-10-13 | Apia Xxi, S.A. | Mástil meteorológico marino para medida de recurso eólico |
DE102010060663A1 (de) | 2010-11-18 | 2012-05-24 | Ssb Wind Systems Gmbh & Co. Kg | Meteorologische Messanordnung |
CN102662180A (zh) * | 2012-05-22 | 2012-09-12 | 广东省电力设计研究院 | 海上测风装置及量测方法 |
EP2629101A1 (en) | 2012-02-14 | 2013-08-21 | SSB Wind Systems GmbH & Co. KG | Floating wind measuring system |
EP2818395A1 (en) * | 2013-06-27 | 2014-12-31 | Alstom Renovables España, S.L. | Floating offshore structures |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2524491B2 (es) * | 2013-05-06 | 2015-06-17 | Universidad De Cantabria | Plataforma flotante para aplicaciones en mar abierto |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5347186A (en) * | 1992-05-26 | 1994-09-13 | Mcq Associates, Inc. | Linear motion electric power generator |
US6320272B1 (en) * | 1997-03-26 | 2001-11-20 | Forskningscenter Riso | Wind turbine with a wind velocity measurement system |
ES2182702A1 (es) * | 2001-06-01 | 2003-03-01 | Jove Felipe Prats | Central flotante para producir energia electrica procedente del mar, combinada por oleaje y eolica que puede ser sumergida y recuperada ante un temporal. |
GB2398841A (en) * | 2003-02-28 | 2004-09-01 | Qinetiq Ltd | Wind turbine control having a Lidar wind speed measurement apparatus |
WO2005008284A1 (en) * | 2003-07-11 | 2005-01-27 | Qinetiq Limited | Wind speed measurement apparatus and method |
US20050235641A1 (en) * | 2004-03-16 | 2005-10-27 | Thomas Sabol | Wave energy converters (WECs) with velocity multiplication |
EP1617076A1 (en) * | 2004-07-06 | 2006-01-18 | General Electric Company | Method and apparatus for determining a site for an offshore wind turbine |
WO2006010783A1 (en) * | 2004-06-18 | 2006-02-02 | Jorma Lindberg | Wind-, wave- and current power stations with different foundation solutions and methods how to manufacture, transport, install and operate these power stations |
WO2006038091A2 (en) * | 2004-10-06 | 2006-04-13 | Enertec Ag | Construction of a submerged floating foundation |
US20060170221A1 (en) * | 2003-07-01 | 2006-08-03 | Aloys Wobben | Marine fishery or hunting stand combined with wind energy plant |
JP2007002721A (ja) * | 2005-06-23 | 2007-01-11 | Teruo Kinoshita | レバー体式の海洋風車ポンプ装置、風車人工漁場と洋上浮遊風力発電所 |
US20070228739A1 (en) * | 2006-03-31 | 2007-10-04 | John Troy Kraczek | Offshore Energy Capture and Storage Device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2221571B1 (es) * | 2003-06-02 | 2006-02-16 | Agustin Uriarte Aldama | Boya solar de medida de la calidad del agua. |
-
2007
- 2007-11-15 ES ES200703020A patent/ES2301443B1/es not_active Withdrawn - After Issue
-
2008
- 2008-11-14 WO PCT/ES2008/000708 patent/WO2009063112A1/es active Application Filing
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5347186A (en) * | 1992-05-26 | 1994-09-13 | Mcq Associates, Inc. | Linear motion electric power generator |
US6320272B1 (en) * | 1997-03-26 | 2001-11-20 | Forskningscenter Riso | Wind turbine with a wind velocity measurement system |
ES2182702A1 (es) * | 2001-06-01 | 2003-03-01 | Jove Felipe Prats | Central flotante para producir energia electrica procedente del mar, combinada por oleaje y eolica que puede ser sumergida y recuperada ante un temporal. |
GB2398841A (en) * | 2003-02-28 | 2004-09-01 | Qinetiq Ltd | Wind turbine control having a Lidar wind speed measurement apparatus |
US20060170221A1 (en) * | 2003-07-01 | 2006-08-03 | Aloys Wobben | Marine fishery or hunting stand combined with wind energy plant |
WO2005008284A1 (en) * | 2003-07-11 | 2005-01-27 | Qinetiq Limited | Wind speed measurement apparatus and method |
US20050235641A1 (en) * | 2004-03-16 | 2005-10-27 | Thomas Sabol | Wave energy converters (WECs) with velocity multiplication |
WO2006010783A1 (en) * | 2004-06-18 | 2006-02-02 | Jorma Lindberg | Wind-, wave- and current power stations with different foundation solutions and methods how to manufacture, transport, install and operate these power stations |
EP1617076A1 (en) * | 2004-07-06 | 2006-01-18 | General Electric Company | Method and apparatus for determining a site for an offshore wind turbine |
WO2006038091A2 (en) * | 2004-10-06 | 2006-04-13 | Enertec Ag | Construction of a submerged floating foundation |
JP2007002721A (ja) * | 2005-06-23 | 2007-01-11 | Teruo Kinoshita | レバー体式の海洋風車ポンプ装置、風車人工漁場と洋上浮遊風力発電所 |
US20070228739A1 (en) * | 2006-03-31 | 2007-10-04 | John Troy Kraczek | Offshore Energy Capture and Storage Device |
Non-Patent Citations (2)
Title |
---|
BURT, WAYNE.: "A comparison of the response of identical cup anemometers mounted on a spar and a toroid buoy.", JOURNAL OF PHYSICAL OCEANOGRAPHY, vol. 5, 4 October 1975 (1975-10-04), Retrieved from the Internet <URL:http://ams.allenpress.com/archive/1520-0485/5/4/pdf/il520-0485-5-4-789.pdf> [retrieved on 20080705] * |
WESLER, J.E. ET AL.: "Ocean Data Acquisition Systems of the World. Preparatory Conference of Governmental Experts to Formulate a Draft Convention on the Legal Status of Ocean Data Acquisition Systems", UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION., 10 November 1971 (1971-11-10), Retrieved from the Internet <URL:http://unesdoc.unesco.org/images/0000/000004/000430EB.pdf> [retrieved on 20090302] * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011095666A3 (es) * | 2010-02-03 | 2011-10-13 | Apia Xxi, S.A. | Mástil meteorológico marino para medida de recurso eólico |
DE102010060663A1 (de) | 2010-11-18 | 2012-05-24 | Ssb Wind Systems Gmbh & Co. Kg | Meteorologische Messanordnung |
US9075168B2 (en) | 2010-11-18 | 2015-07-07 | Ssb Wind Systems Gmbh & Co. Kg | Meteorological measurement system |
DE102010060663B4 (de) | 2010-11-18 | 2018-03-08 | Ssb Wind Systems Gmbh & Co. Kg | Meteorologische Messanordnung |
EP2629101A1 (en) | 2012-02-14 | 2013-08-21 | SSB Wind Systems GmbH & Co. KG | Floating wind measuring system |
CN102662180A (zh) * | 2012-05-22 | 2012-09-12 | 广东省电力设计研究院 | 海上测风装置及量测方法 |
EP2818395A1 (en) * | 2013-06-27 | 2014-12-31 | Alstom Renovables España, S.L. | Floating offshore structures |
US9499241B2 (en) | 2013-06-27 | 2016-11-22 | Alstom Renewable Technologies | Floating offshore structures |
Also Published As
Publication number | Publication date |
---|---|
ES2301443A1 (es) | 2008-06-16 |
ES2301443B1 (es) | 2009-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2301445B1 (es) | Sistema marino de produccion de energia electrica y metodo de instalacion. | |
ES2516590B1 (es) | Estructura sumergible de soporte activo para torres de generadores y subestaciones o elementos similares, en instalaciones marítimas | |
US7819073B2 (en) | Floating wind turbine installation | |
Sclavounos et al. | Floating offshore wind turbines: tension leg platform and taught leg buoy concepts supporting 3-5 MW wind turbines | |
ES2819237T3 (es) | Boya con compensación de movimiento integrada | |
ES2962758T3 (es) | Plataforma eólica flotante con dispositivo de patas tensoras | |
ES2456345T3 (es) | Plataforma de alta mar estabilizada por columnas con planchas de atrapamiento de agua y sistema de amarre asimétrico para soporte de turbinas eólicas de alta mar | |
JP6407172B2 (ja) | 複式浮遊型風速計−マスト搭載方式およびドップラー方式 | |
WO2009063112A1 (es) | Sistema de medición de recursos eólicos en el mar, productor de energía y método de instalación | |
US8558403B2 (en) | Single moored offshore horizontal turbine train | |
CA2900477C (en) | Apparatus for mooring floater using submerged pontoon | |
ES2387232B2 (es) | Plataforma semisumergible para aplicaciones en mar abierto | |
CN108454799B (zh) | 一种海上风电浮式基础浮运施工方法 | |
Ishida et al. | At-sea experiment of a hybrid spar type offshore wind turbine | |
IL256290A (en) | Stable floating platform structure | |
Sclavounos | Floating offshore wind turbines | |
CN208102275U (zh) | 一种可浮运的海上风电浮式基础 | |
WO2014181007A1 (es) | Plataforma flotante para aplicaciones en mar abierto | |
GB2459172A (en) | A stable deep water floating platform | |
NO347179B1 (en) | A mooring system for a plurality of floating units | |
US20230113147A1 (en) | Floating offshore wind turbine substructure | |
CN108316335A (zh) | 一种张紧式系泊潜式浮式基础及其施工方法 | |
CN207987953U (zh) | 一种张紧式系泊潜式浮式基础 | |
US20200398947A1 (en) | Offshore Electric Power Generating System | |
CN214737820U (zh) | 一种海工平台专用码头靠耙工装件 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08849185 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08849185 Country of ref document: EP Kind code of ref document: A1 |