WO2009060425A2 - Electronic interface apparatus and method and system for manufacturing same - Google Patents

Electronic interface apparatus and method and system for manufacturing same Download PDF

Info

Publication number
WO2009060425A2
WO2009060425A2 PCT/IL2008/001397 IL2008001397W WO2009060425A2 WO 2009060425 A2 WO2009060425 A2 WO 2009060425A2 IL 2008001397 W IL2008001397 W IL 2008001397W WO 2009060425 A2 WO2009060425 A2 WO 2009060425A2
Authority
WO
WIPO (PCT)
Prior art keywords
connection wires
conductors
attaching
chip module
continuous connection
Prior art date
Application number
PCT/IL2008/001397
Other languages
French (fr)
Other versions
WO2009060425A3 (en
Inventor
Oded Bashan
Guy Shafran
Original Assignee
On Track Innovations Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/IL2007/001378 external-priority patent/WO2008129526A2/en
Priority to JP2010532705A priority Critical patent/JP5249341B2/en
Priority to MX2010004338A priority patent/MX2010004338A/en
Priority to CN2008801152733A priority patent/CN101904060B/en
Priority to US12/742,013 priority patent/US8333004B2/en
Priority to EP08847977A priority patent/EP2212975B1/en
Application filed by On Track Innovations Ltd. filed Critical On Track Innovations Ltd.
Priority to BRPI0818708-8A priority patent/BRPI0818708B1/en
Priority to CA2702160A priority patent/CA2702160C/en
Priority to KR1020107012242A priority patent/KR101103186B1/en
Publication of WO2009060425A2 publication Critical patent/WO2009060425A2/en
Publication of WO2009060425A3 publication Critical patent/WO2009060425A3/en
Priority to US13/625,287 priority patent/US8689428B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49855Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers for flat-cards, e.g. credit cards
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/07766Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card comprising at least a second communication arrangement in addition to a first non-contact communication arrangement
    • G06K19/07769Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card comprising at least a second communication arrangement in addition to a first non-contact communication arrangement the further communication means being a galvanic interface, e.g. hybrid or mixed smart cards having a contact and a non-contact interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to electronic interface cards, also known as
  • “smart cards” generally and more particularly to electronic interface cards having contact and/or contact-less functionalities.
  • the present invention seeks to provide improved electronic interface cards and methods for manufacturing thereof.
  • a method for manufacture of an electronic interface card including defining a pair of apertures in a substrate layer, associating an antenna with the substrate layer such that opposite ends of the antenna terminate at the apertures, placing a conductor in each of the apertures, connecting the antenna to the conductor, forming a recess in the substrate layer, attaching continuous connection wires to a plurality of chip modules, attaching the continuous connection wires to a plurality of conductors on a corresponding plurality of the substrate layers, cutting the continuous connection wires so as to retain portions thereof which connect each chip module to a corresponding pair of conductors and sealing the chip module in the recess.
  • the method also includes laminating the substrate layer together with at least a top layer and forming a recess in the top layer overlying the recess in the substrate layer.
  • the top layer includes a first top substrate layer and a second top substrate layer.
  • the sealing includes placing an adhesive on an underside of the chip module and inserting the chip module into the recess such that the underside engages the recessed surface.
  • the method also includes folding the wires underneath the chip module.
  • the method is automated and adjacent ones of the chip modules are spaced along the connection wires by a predetermined spacing and the conductors of adjacent ones of the cards are mutually spaced by the predetermined spacing, prior to the attaching the continuous connection wires to the plurality of conductors.
  • the attaching the continuous connection wires to the conductors includes laser bonding.
  • the attaching the continuous connection wires to a chip module includes soldering.
  • the wires have a length substantially greater than the distance between their respective opposite ends in the electronic interface card.
  • a method for manufacture of an electronic interface card including forming a substrate having at least one layer, forming an antenna in the at least one layer, connecting wires between a chip module and the antenna by: attaching continuous connection wires to a plurality of chip modules, attaching the continuous connection wires to a plurality of the antennas and cutting the continuous connection wires so as to retain portions thereof which connect each chip module to a corresponding antenna and mounting the chip module on the substrate.
  • connection wires are spaced along the connection wires by a predetermined spacing and the antennas adjacent ones of the substrates are mutually spaced by the predetermined spacing, prior to the attaching the continuous connection wires to the plurality of antennas.
  • the wires have a length substantially greater than the distance between their respective opposite ends in the electronic interface card.
  • the mounting including folding the wires underneath the chip module.
  • the method is automated.
  • a system for manufacturing an electronic interface card based on an electronic interface assembly including a substrate having at least one layer, at least two conductors located in the at least one layer and a wire antenna associated with the substrate and electrically coupled to the at least two conductors, the system including a recess former operative to form a recess in the substrate layer, wire attaching functionality operative for: attaching continuous connection wires to a plurality of chip modules, attaching the continuous connection wires to a plurality of conductors on a corresponding plurality of the substrate layers and cutting the continuous connection wires so as to retain portions thereof which connect each chip module to a corresponding pair of conductors and a sealer operative to seal the chip module in the recess.
  • the system also includes a laminator operative to laminate the substrate layer together with a top layer and a bottom layer.
  • a method for manufacture of an electronic interface assembly including providing a substrate having at least one substrate layer, associating an antenna with the at least one substrate layer, connecting the antenna to conductors associated with the at least one substrate layer, attaching a chip module to the conductors by: attaching continuous connection wires to a plurality of chip modules, attaching the continuous connection wires to a plurality of the conductors on a corresponding plurality of the substrate layers and cutting the continuous connection wires so as to retain portions thereof which connect each chip module to a corresponding pair of conductors and sealing the chip module to the substrate.
  • the method also includes defining a pair of apertures in a substrate layer such that opposite ends of the antenna terminate at the apertures and placing the conductors in each of the apertures prior to the connecting. Additionally or alternatively, the method also includes laminating the substrate layer together with a top layer and a bottom layer.
  • Fig. 1 is a simplified pictorial and sectional illustration of an electronic interface card having both contact and contact-less functionalities, constructed and operative in accordance with a preferred embodiment of the present invention
  • Fig. 2 is a simplified pictorial illustration of an initial step in the manufacture of the electronic interface card of Fig. 1;
  • Figs. 3A and 3B are, respectively, simplified pictorial and sectional illustrations of a further step in the manufacture of the electronic interface card of Fig.
  • Figs. 4A and 4B are, respectively, simplified pictorial and sectional illustrations of a yet further step in the manufacture of the electronic interface card of Fig. 1;
  • Figs. 5A and 5B are, respectively, simplified pictorial and sectional illustrations of a still further step in the manufacture of the electronic interface card of Fig. 1;
  • Figs. 6 A and 6B are, respectively, simplified pictorial and sectional illustrations of an additional step in the manufacture of the electronic interface card of Fig. 1;
  • Figs. 7 A and 7B are, respectively, simplified pictorial and sectional illustrations of a further additional step in the manufacture of the electronic interface card of Fig. 1;
  • Figs. 8A and 8B are, respectively, simplified pictorial and sectional illustrations of a yet further additional step in the manufacture of the electronic interface card of Fig. 1;
  • Fig. 9 is a simplified pictorial illustration of a still further additional step in the manufacture of the electronic interface card of Fig. 1 ;
  • Fig. 10 is a simplified pictorial illustration of a yet further additional step in the manufacture of the electronic interface card of Fig. 1;
  • Fig. 11 is a simplified pictorial illustration of a still further additional step in the manufacture of the electronic interface card of Fig. 1; and Figs. 12A and 12B are, respectively, simplified pictorial and sectional illustrations of a final step in the manufacture of the electronic interface card of Fig. 1.
  • Fig. 1 illustrates an electronic interface card 100 having contact and/or contact-less functionalities, constructed and operative in accordance with a preferred embodiment of the present invention.
  • electronic interface card 100 preferably comprises a multiple-layer substrate including top and bottom protection layers 102 and 104, typically formed of PVC (Polyvinyl
  • protection layers 102 and 104 may be formed of any other suitable material, such as Teslin®, PET-G
  • artwork layers 106 and 108 Disposed inwardly of both of protection layers 102 and 104 are preferably artwork layers 106 and 108, typically formed of PVC, each typically of thickness 0.15mm, typically bearing artwork which is visible through respective protection layers 102 and 104.
  • artwork layers 106 and 108 may be formed of any suitable material, such as Teslin®, PET-G (PolyEthyleneTerephthalate-Glycol), PET-F (PolyEthyleneTerephthalate-Film), polycarbonate or ABS.
  • artwork layers 106 and 108 may be obviated.
  • an inlay 110 including a wire antenna 112, preferably of wire diameter 0.1 mm, embedded in a first inlay layer 114, typically formed of PVC, preferably of thickness 0.15 mm.
  • Inlay 110 also includes second and third inlay layers 116 and 118, also preferably formed of PVC, of respective thicknesses 0.1 mm and 0.15 mm, respectively.
  • first, second and third inlay layers 114, 116 and 118 may be formed of any other suitable material, such as Teslin®, PET-G (PolyEthyleneTerephthalate-Glycol), PET-F (PolyEthyleneTerephthalate-Film), polycarbonate or ABS.
  • a chip module 120 preferably is mounted in a recess 122 formed in electronic interface card 100.
  • the chip module preferably includes a packaged smart
  • ⁇ card chip 124 having pads 126 and an array 128 of contacts, preferably of thickness 0.06 nun.
  • contacts 128 may be obviated and smart card chip 124 may provide contactless functionality.
  • wires 130 preferably of thickness 0.1mm, which are preferably soldered at first ends thereof to pads 126 and laser bonded at opposite ends thereof to metal elements 132 which are bonded to respective ends of wire antenna 112.
  • the length of wires 130 between pads 126 and respective metal elements 132 is substantially longer than the distance between pads 126 and metal elements 132 in the assembled card. This feature provides enhanced reliability.
  • a layer 134 of hot melt adhesive disposed at the periphery of the underside of array 128 of contacts, retains the chip module 120 in recess 122, by engaging a corresponding recessed peripheral facing surface 136 of layer .106.
  • Fig. 2 is a simplified pictorial illustration of an initial step in the manufacture of the electronic interface card of Fig. 1 in which layer 114 is punched to define a pair of apertures 150. As see in Figs. 3 A and
  • antenna 112 is associated with layer 114, as by known embedding techniques, typically employing an ultrasonic head commercially available from PCK Technology, Inc. of Islip, New York, U.S.A. Opposite ends 152 of antenna 112 terminate at apertures
  • antenna 112 may be a printed antenna formed on substrate 114 by suitable printing techniques or may be an antenna attached to substrate 114 by any suitable attachment method.
  • adhesive pads 154 are mounted onto layer 114 at corresponding edges 156 of apertures 150.
  • metal elements 132 are placed in apertures 150 and are retained in position therein by adhesive pads 154.
  • the ends 152 of antenna 112 are connected to metal elements 132 by thermal-compression bonding or any other suitable technique.
  • the adhesive pads 154 are no longer needed to retain the metal elements 132 in place and the pads 154 are removed. It is appreciated that alternatively adhesive pads 154 need not be removed.
  • Figs. 6 A and 6B layers 116 and 118 are provided onto the underside of layer 114 and layers 102, 104, 106 and 108 are all laminated together therewith,; with the resulting laminated structure appearing as shown in Figs. 7A and 7B.
  • Figs. 8 A and 8B it is seen that recess 122 is formed in layers 102, 106 and 114 and metal elements 132 and recessed peripheral facing surface 136 of layer 106 is exposed, preferably by milling. It is appreciated that alternatively the recess may be formed on the opposite surface of the card.
  • FIG. 9 illustrates the partially assembled cards of Fig. 8B arranged and retained in spaced side-by-side arrangement along a conveyor belt 160 with precise. spacing, here designated by “L”, between metal elements 132 of adjacent cards. The precise spacing preferably is maintained by upstanding elements 162 formed on conveyor belt 160. Conveyor belt 160 displaces the partially assembled cards of Fig. 8B in a direction indicated by an arrow I.
  • Fig. 10 illustrates chip modules 120
  • a pair of continuous wires 172 are unwound from respective spools 174 over a mandrel 176 so as to extend over respective pads 126 of chip modules 120, in propinquity or touching pads 126, as illustrated clearly in Enlargement A and in Section A - A in Fig. 10.
  • wires 172 are maintained under tension along their respective lengths.
  • Wires 172 are soldered to pads 126, for example, by a pair of heated soldering pins 178 which respectively engage wires 172 and pads 126. It is appreciated that where suitable, laser bonding and conventional soldering may be used interchangeably.
  • wires 172 are maintained under tension both along their respective lengths and downwardly against pads 126 so as to become at least partially embedded in pads 126 upon melting of the solder therein by soldering pins 178 and to be retained in an embedded position following engagement of the soldering pins, as seen in Enlargement C and in Section C - C.
  • the chip modules 120 are supported by wires 172 and are displaced in a direction indicated by an arrow II.
  • Fig. 11 illustrates assembly of the wire- mounted chip modules prepared as illustrated in Fig. 10 onto the partially assembled cards arranged as shown in Fig. 9. It is appreciated that the displacement directions I and II of the partially assembled cards of Fig. 9 and of the chip modules 120, supported by wires 172 are preferably identical. During continuous operation, the movement of conveyor belt 160 in direction I, engaging partially assembled cards 100 to which are welded wires 172 as described hereinbelow, is operative to tension wires 172.
  • wires 172 forward of a chip module 120 are soldered to metal elements 132 of partially assembled cards 100 by a pair of heated soldering pins 180. It is appreciated that where suitable, laser bonding and conventional soldering may be used interchangeably.
  • the lengths of wire 172 extending between metal elements 132 of partially assembled cards 100 and respective pads 126 of chip modules 120 is indicated by "F" in Fig. 11. Subsequently wires 172 are cut, by respective cutting heads 182 and 184 just rearward of pads 126, as seen in Enlargement B, and just forward of metal elements 132, as seen in Enlargement C, thus leaving wires 130 (Fig.
  • Figs. 12A and 12B it is seen that following attachment of wires 130 to corresponding pads 126 of the chip module 120, and placement of hot melt adhesive 134 on the periphery of the underside of array 128, the chip module 120 is inserted into recess 122 such that the periphery of array 128 sealingly engages recessed peripheral facing surface 136 of layer 106.
  • the insertion method is such that wires 130 are folded underneath the chip module 120, as seen in Fig. 1. It is appreciated that the methodology described hereinabove with respect to Figs. 1 - 12B is preferably highly automated.
  • the multiple-layer substrate of electronic interface card 100 may include any suitable number of layers of any suitable thickness. It is also appreciated that any or all of the layers of the multi-layer substrate of electronic interface card 100 may be formed of any of the materials described hereinabove, or any other suitable material, such as a composite material. Additionally, the layers of the multi-layer substrate of electronic interface card 100 need not be formed of the same material and each layer may be formed of a different material or different materials.

Abstract

A method for manufacture of an electronic interface card including defining a pair of apertures in a substrate layer, associating an antenna with the substrate layer such that opposite ends of the antenna terminate at the apertures, placing a conductor in each of the apertures, connecting the antenna to the conductor, forming a recess in the substrate layer, attaching continuous connection wires to a plurality of chip modules, attaching the continuous connection wires to a plurality of conductors on a corresponding plurality of the substrate layers, cutting the continuous connection wires so as to retain portions thereof which connect each chip module to a corresponding pair of conductors and sealing the chip module in the recess.

Description

ELECTRONIC INTERFACE APPARATUS AND METHOD AND SYSTEM FOR MANUFACTURING SAME
FIELD OF THE INVENTION
The present invention relates to electronic interface cards, also known as
"smart cards" generally and more particularly to electronic interface cards having contact and/or contact-less functionalities.
BACKGROUND OF THE INVENTION
The following U.S. Patents are believed to represent the current state of the art:
7,278,580; 7,271,039; 7,269,021; 7,243,840; 7,240,847, 7,204,427 and 6,881,605.
SUMMARY OF THE INVENTION
The present invention seeks to provide improved electronic interface cards and methods for manufacturing thereof.
There is thus provided in accordance with a preferred embodiment of the present invention, a method for manufacture of an electronic interface card including defining a pair of apertures in a substrate layer, associating an antenna with the substrate layer such that opposite ends of the antenna terminate at the apertures, placing a conductor in each of the apertures, connecting the antenna to the conductor, forming a recess in the substrate layer, attaching continuous connection wires to a plurality of chip modules, attaching the continuous connection wires to a plurality of conductors on a corresponding plurality of the substrate layers, cutting the continuous connection wires so as to retain portions thereof which connect each chip module to a corresponding pair of conductors and sealing the chip module in the recess.
Preferably, the method also includes laminating the substrate layer together with at least a top layer and forming a recess in the top layer overlying the recess in the substrate layer. Additionally, the top layer includes a first top substrate layer and a second top substrate layer. In accordance with a preferred embodiment of the present invention the sealing includes placing an adhesive on an underside of the chip module and inserting the chip module into the recess such that the underside engages the recessed surface.
Preferably, the method also includes folding the wires underneath the chip module. In accordance with a preferred embodiment of the present invention the method is automated and adjacent ones of the chip modules are spaced along the connection wires by a predetermined spacing and the conductors of adjacent ones of the cards are mutually spaced by the predetermined spacing, prior to the attaching the continuous connection wires to the plurality of conductors. Additionally or alternatively, the attaching the continuous connection wires to the conductors includes laser bonding. Alternatively or additionally, the attaching the continuous connection wires to a chip module includes soldering. Preferably, the wires have a length substantially greater than the distance between their respective opposite ends in the electronic interface card.
There is also provided in accordance with another preferred embodiment of the present invention a method for manufacture of an electronic interface card including forming a substrate having at least one layer, forming an antenna in the at least one layer, connecting wires between a chip module and the antenna by: attaching continuous connection wires to a plurality of chip modules, attaching the continuous connection wires to a plurality of the antennas and cutting the continuous connection wires so as to retain portions thereof which connect each chip module to a corresponding antenna and mounting the chip module on the substrate.
Preferably, adjacent ones of the chip modules are spaced along the connection wires by a predetermined spacing and the antennas adjacent ones of the substrates are mutually spaced by the predetermined spacing, prior to the attaching the continuous connection wires to the plurality of antennas. In accordance with a preferred embodiment of the present invention the wires have a length substantially greater than the distance between their respective opposite ends in the electronic interface card. Additionally or alternatively, the mounting including folding the wires underneath the chip module. Preferably, the method is automated. There is further provided in accordance with yet another preferred embodiment of the present invention a system for manufacturing an electronic interface card based on an electronic interface assembly including a substrate having at least one layer, at least two conductors located in the at least one layer and a wire antenna associated with the substrate and electrically coupled to the at least two conductors, the system including a recess former operative to form a recess in the substrate layer, wire attaching functionality operative for: attaching continuous connection wires to a plurality of chip modules, attaching the continuous connection wires to a plurality of conductors on a corresponding plurality of the substrate layers and cutting the continuous connection wires so as to retain portions thereof which connect each chip module to a corresponding pair of conductors and a sealer operative to seal the chip module in the recess. Preferably, the system also includes a laminator operative to laminate the substrate layer together with a top layer and a bottom layer.
There is even further provided in accordance with still another preferred embodiment of the present invention a method for manufacture of an electronic interface assembly including providing a substrate having at least one substrate layer, associating an antenna with the at least one substrate layer, connecting the antenna to conductors associated with the at least one substrate layer, attaching a chip module to the conductors by: attaching continuous connection wires to a plurality of chip modules, attaching the continuous connection wires to a plurality of the conductors on a corresponding plurality of the substrate layers and cutting the continuous connection wires so as to retain portions thereof which connect each chip module to a corresponding pair of conductors and sealing the chip module to the substrate.
Preferably, the method also includes defining a pair of apertures in a substrate layer such that opposite ends of the antenna terminate at the apertures and placing the conductors in each of the apertures prior to the connecting. Additionally or alternatively, the method also includes laminating the substrate layer together with a top layer and a bottom layer.
BRIEF DESCRIPTION OF THE DRAWINGS
The present invention will be understood and appreciated more fully from the following detailed description, taken in conjunction with the drawings in which:
Fig. 1 is a simplified pictorial and sectional illustration of an electronic interface card having both contact and contact-less functionalities, constructed and operative in accordance with a preferred embodiment of the present invention; Fig. 2 is a simplified pictorial illustration of an initial step in the manufacture of the electronic interface card of Fig. 1;
Figs. 3A and 3B are, respectively, simplified pictorial and sectional illustrations of a further step in the manufacture of the electronic interface card of Fig.
1; Figs. 4A and 4B are, respectively, simplified pictorial and sectional illustrations of a yet further step in the manufacture of the electronic interface card of Fig. 1;
Figs. 5A and 5B are, respectively, simplified pictorial and sectional illustrations of a still further step in the manufacture of the electronic interface card of Fig. 1;
Figs. 6 A and 6B are, respectively, simplified pictorial and sectional illustrations of an additional step in the manufacture of the electronic interface card of Fig. 1;
Figs. 7 A and 7B are, respectively, simplified pictorial and sectional illustrations of a further additional step in the manufacture of the electronic interface card of Fig. 1;
Figs. 8A and 8B are, respectively, simplified pictorial and sectional illustrations of a yet further additional step in the manufacture of the electronic interface card of Fig. 1; Fig. 9 is a simplified pictorial illustration of a still further additional step in the manufacture of the electronic interface card of Fig. 1 ; Fig. 10 is a simplified pictorial illustration of a yet further additional step in the manufacture of the electronic interface card of Fig. 1;
Fig. 11 is a simplified pictorial illustration of a still further additional step in the manufacture of the electronic interface card of Fig. 1; and Figs. 12A and 12B are, respectively, simplified pictorial and sectional illustrations of a final step in the manufacture of the electronic interface card of Fig. 1.
DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT
Reference is now made to Fig. 1, which illustrates an electronic interface card 100 having contact and/or contact-less functionalities, constructed and operative in accordance with a preferred embodiment of the present invention. As seen in Fig. 1, electronic interface card 100 preferably comprises a multiple-layer substrate including top and bottom protection layers 102 and 104, typically formed of PVC (Polyvinyl
Chloride), each typically of thickness 0.05mm. Alternatively, protection layers 102 and 104 may be formed of any other suitable material, such as Teslin®, PET-G
(PolyEthyleneTerephthalate-Glycol), PET-F (PolyEthyleneTerephthalate-Film), polycarbonate or ABS.
Disposed inwardly of both of protection layers 102 and 104 are preferably artwork layers 106 and 108, typically formed of PVC, each typically of thickness 0.15mm, typically bearing artwork which is visible through respective protection layers 102 and 104. Alternatively, artwork layers 106 and 108 may be formed of any suitable material, such as Teslin®, PET-G (PolyEthyleneTerephthalate-Glycol), PET-F (PolyEthyleneTerephthalate-Film), polycarbonate or ABS. Alternatively, artwork layers 106 and 108 may be obviated. Disposed inwardly of both of artwork layers 106 and 108 there is preferably provided an inlay 110 including a wire antenna 112, preferably of wire diameter 0.1 mm, embedded in a first inlay layer 114, typically formed of PVC, preferably of thickness 0.15 mm. Inlay 110 also includes second and third inlay layers 116 and 118, also preferably formed of PVC, of respective thicknesses 0.1 mm and 0.15 mm, respectively. Alternatively, first, second and third inlay layers 114, 116 and 118 may be formed of any other suitable material, such as Teslin®, PET-G (PolyEthyleneTerephthalate-Glycol), PET-F (PolyEthyleneTerephthalate-Film), polycarbonate or ABS.
A chip module 120 preferably is mounted in a recess 122 formed in electronic interface card 100. The chip module preferably includes a packaged smart
card chip 124 having pads 126 and an array 128 of contacts, preferably of thickness 0.06 nun. Alternatively, contacts 128 may be obviated and smart card chip 124 may provide contactless functionality.
Electrical connections between the chip module 120 and the embedded antenna 112 are provided by wires 130, preferably of thickness 0.1mm, which are preferably soldered at first ends thereof to pads 126 and laser bonded at opposite ends thereof to metal elements 132 which are bonded to respective ends of wire antenna 112.
It is appreciated that where suitable, laser bonding and conventional soldering may be used interchangeably. It is a particular feature of the present invention that the length of wires 130 between pads 126 and respective metal elements 132 is substantially longer than the distance between pads 126 and metal elements 132 in the assembled card. This feature provides enhanced reliability.
A layer 134 of hot melt adhesive, disposed at the periphery of the underside of array 128 of contacts, retains the chip module 120 in recess 122, by engaging a corresponding recessed peripheral facing surface 136 of layer .106. Reference is now made to Fig. 2, which is a simplified pictorial illustration of an initial step in the manufacture of the electronic interface card of Fig. 1 in which layer 114 is punched to define a pair of apertures 150. As see in Figs. 3 A and
3B, antenna 112 is associated with layer 114, as by known embedding techniques, typically employing an ultrasonic head commercially available from PCK Technology, Inc. of Islip, New York, U.S.A. Opposite ends 152 of antenna 112 terminate at apertures
150, as seen in Figs. 3 A and 3B.
Alternatively, antenna 112 may be a printed antenna formed on substrate 114 by suitable printing techniques or may be an antenna attached to substrate 114 by any suitable attachment method. Turning now to Figs. 4A and 4B, it seen that adhesive pads 154 are mounted onto layer 114 at corresponding edges 156 of apertures 150. As seen in Figs. 5 A and 5B, metal elements 132 are placed in apertures 150 and are retained in position therein by adhesive pads 154. Preferably the ends 152 of antenna 112 are connected to metal elements 132 by thermal-compression bonding or any other suitable technique. Following this connecting step, the adhesive pads 154 are no longer needed to retain the metal elements 132 in place and the pads 154 are removed. It is appreciated that alternatively adhesive pads 154 need not be removed. At this stage, as seen in Figs. 6 A and 6B, layers 116 and 118 are provided onto the underside of layer 114 and layers 102, 104, 106 and 108 are all laminated together therewith,; with the resulting laminated structure appearing as shown in Figs. 7A and 7B. Turning now to Figs. 8 A and 8B, it is seen that recess 122 is formed in layers 102, 106 and 114 and metal elements 132 and recessed peripheral facing surface 136 of layer 106 is exposed, preferably by milling. It is appreciated that alternatively the recess may be formed on the opposite surface of the card.
Reference is now made to Fig. 9 which illustrates the partially assembled cards of Fig. 8B arranged and retained in spaced side-by-side arrangement along a conveyor belt 160 with precise. spacing, here designated by "L", between metal elements 132 of adjacent cards. The precise spacing preferably is maintained by upstanding elements 162 formed on conveyor belt 160. Conveyor belt 160 displaces the partially assembled cards of Fig. 8B in a direction indicated by an arrow I. Reference is now made to Fig. 10 which illustrates chip modules 120
(Fig. 1) arranged in spaced side-by-side arrangement along a conveyor belt 170 with precise spacing, "L" therebetween, the spacing being identical to spacing "L" between metal elements 132 of adjacent cards (Fig. 9). The precise spacing may be maintained, for example, by upstanding elements 171 formed on conveyor belt 170. As seen in Fig. 10, a pair of continuous wires 172 are unwound from respective spools 174 over a mandrel 176 so as to extend over respective pads 126 of chip modules 120, in propinquity or touching pads 126, as illustrated clearly in Enlargement A and in Section A - A in Fig. 10. Preferably wires 172 are maintained under tension along their respective lengths. Wires 172 are soldered to pads 126, for example, by a pair of heated soldering pins 178 which respectively engage wires 172 and pads 126. It is appreciated that where suitable, laser bonding and conventional soldering may be used interchangeably. Preferably, at this stage, seen in Enlargement B and in Section B - B, wires 172 are maintained under tension both along their respective lengths and downwardly against pads 126 so as to become at least partially embedded in pads 126 upon melting of the solder therein by soldering pins 178 and to be retained in an embedded position following engagement of the soldering pins, as seen in Enlargement C and in Section C - C. At this point, following solidifying of the solder in pads 126, the chip modules 120 are supported by wires 172 and are displaced in a direction indicated by an arrow II.
Reference is now made to Fig. 11, which illustrates assembly of the wire- mounted chip modules prepared as illustrated in Fig. 10 onto the partially assembled cards arranged as shown in Fig. 9. It is appreciated that the displacement directions I and II of the partially assembled cards of Fig. 9 and of the chip modules 120, supported by wires 172 are preferably identical. During continuous operation, the movement of conveyor belt 160 in direction I, engaging partially assembled cards 100 to which are welded wires 172 as described hereinbelow, is operative to tension wires 172.
As seen in Enlargement A and Section A - A of Fig. 11, wires 172 forward of a chip module 120 are soldered to metal elements 132 of partially assembled cards 100 by a pair of heated soldering pins 180. It is appreciated that where suitable, laser bonding and conventional soldering may be used interchangeably. The lengths of wire 172 extending between metal elements 132 of partially assembled cards 100 and respective pads 126 of chip modules 120 is indicated by "F" in Fig. 11. Subsequently wires 172 are cut, by respective cutting heads 182 and 184 just rearward of pads 126, as seen in Enlargement B, and just forward of metal elements 132, as seen in Enlargement C, thus leaving wires 130 (Fig. 1) of length F, interconnecting respective pads 126 of each chip module 120 with corresponding metal elements 132 of each partially assembled card. The remaining lengths of wire 172 are discarded, as indicated at reference numeral 186. The partially assembled, cards each connected to a chip module 120, as seen in Enlargement D, are men off-loaded from conveyor belt 160.
Turning now to Figs. 12A and 12B, it is seen that following attachment of wires 130 to corresponding pads 126 of the chip module 120, and placement of hot melt adhesive 134 on the periphery of the underside of array 128, the chip module 120 is inserted into recess 122 such that the periphery of array 128 sealingly engages recessed peripheral facing surface 136 of layer 106. The insertion method is such that wires 130 are folded underneath the chip module 120, as seen in Fig. 1. It is appreciated that the methodology described hereinabove with respect to Figs. 1 - 12B is preferably highly automated. It is appreciated that while the illustrated embodiment described herein includes substrate layers 102, 104, 106, 108, 114, 116 and 118, the multiple-layer substrate of electronic interface card 100 may include any suitable number of layers of any suitable thickness. It is also appreciated that any or all of the layers of the multi-layer substrate of electronic interface card 100 may be formed of any of the materials described hereinabove, or any other suitable material, such as a composite material. Additionally, the layers of the multi-layer substrate of electronic interface card 100 need not be formed of the same material and each layer may be formed of a different material or different materials.
It will be appreciated by persons skilled in the art that the scope of the present invention is not limited by what has been particularly shown and described hereinabove. Rather, the invention includes both combinations and subcombinations of the various features described hereinabove as well modifications and variations thereof which would occur to persons skilled in the art upon reading the foregoing description together with the drawings and which are not in the prior art.

Claims

1. A method for manufacture of an electronic interface card comprising: defining a pair of apertures in a substrate layer; associating an antenna with said substrate layer such that opposite ends of said antenna terminate at said apertures; placing a conductor in each of said apertures; connecting said antenna to said conductor; forming a recess in said substrate layer; attaching continuous connection wires to a plurality of chip modules; attaching said continuous connection wires to a plurality of conductors on a corresponding plurality of said substrate layers; cutting said continuous connection wires so as to retain portions thereof which connect each chip module to a corresponding pair of conductors; and sealing said chip module in said recess.
2. A method according to claim 1 and also comprising: laminating said substrate layer together with at least a top layer; and forming a recess in said top layer overlying said recess in said substrate layer.
3. A method according to claim 2 and wherein said top layer comprises a first top substrate layer and a second top substrate layer.
4. A method according to claim 3 wherein said sealing comprises: placing an adhesive on an underside of said chip module; and inserting said chip module into said recess such that said underside engages said recessed surface.
5. A method according to any of claims 1 - 4 and also comprising folding said wires underneath said chip module.
6. A method according to any of claims 1 - 5 and wherein said method is automated and wherein adjacent ones of said chip modules are spaced along said connection wires by a predetermined spacing and said conductors of adjacent ones of said cards are mutually spaced by said predetermined spacing, prior to said attaching said continuous connection wires to said plurality of conductors.
7. A method according to any of claims 1 - 6 and wherein said attaching said continuous connection wires to said conductors comprises laser bonding.
8. A method according to any of claims 1 - 7 and wherein said attaching said continuous connection wires to a chip module comprises soldering.
9. A method for manufacture of an electronic interface card according to any of claims 1 - 8 and wherein said wires have a length substantially greater than the distance between their respective opposite ends in said electronic interface card.
10. A method for manufacture of an electronic interface card comprising: forming a substrate having at least one layer; forming an antenna in said at least one layer; connecting wires between a chip module and said antenna by: attaching continuous connection wires to a plurality of chip modules; attaching said continuous connection wires to a plurality of said antennas; and cutting said continuous connection wires so as to retain portions thereof which connect each chip module to a corresponding antenna; and mounting said chip module on said substrate.
11. A method for manufacture of an electronic interface card according to claim 10 and wherein adjacent ones of said chip modules are spaced along said connection wires by a predetermined spacing and said antennas adjacent ones of said substrates are mutually spaced by said predetermined spacing, prior to said attaching said continuous connection wires to said plurality of antennas.
12. A method for manufacture of an electronic interface card according to any of claims 10 - 11 and wherein said wires have a length substantially greater than the distance between their respective opposite ends in said electronic interface card.
13. A method according to any of claims 10 - 12 and wherein said mounting comprising folding said wires underneath said chip module.
14. A method according to any of claims 10 - 13 and wherein said method is automated.
15. A system for manufacturing an electronic interface card based on an electronic interface assembly comprising a substrate having at least one layer, at least two conductors located in said at least one layer and a wire antenna associated with said substrate and electrically coupled to said at least two conductors, the system comprising: a recess former operative to form a recess in said substrate layer; wire attaching functionality operative for: attaching continuous connection wires to a plurality of chip modules; attaching said continuous connection wires to a plurality of conductors on a corresponding plurality of said substrate layers; and cutting said continuous connection wires so as to retain portions thereof which connect each chip module to a corresponding pair of conductors; and a sealer operative to seal said chip module in said recess.
16. A system according to claim 15 and also comprising a laminator operative to laminate said substrate layer together with a top layer and a bottom layer.
17. A method for manufacture of an electronic interface assembly comprising: providing a substrate having at least one substrate layer; associating an antenna with said at least one substrate layer;
connecting said antenna to conductors associated with said at least one substrate layer; attaching a chip module to said conductors by: attaching continuous connection wires to a plurality of chip modules; attaching said continuous connection wires to a plurality of said conductors on a corresponding plurality of said substrate layers; and cutting said continuous connection wires so as to retain portions thereof which connect each chip module to a corresponding pair of conductors; and sealing said chip module to said substrate.
18. A method for manufacture of an electronic interface assembly according to claim 17 and also comprising: defining a parr of apertures in a substrate layer such that opposite ends of said antenna terminate at said apertures; and placing said conductors in each of said apertures prior to said connecting.
19. A method for manufacture of an electronic interface assembly according to either of claims 17 and 18 and also comprising laminating said substrate layer together with a top layer and a bottom layer.
PCT/IL2008/001397 2007-04-17 2008-10-23 Electronic interface apparatus and method and system for manufacturing same WO2009060425A2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
KR1020107012242A KR101103186B1 (en) 2007-11-08 2008-10-23 Electronic interface apparatus and method and system for manufacturing same
MX2010004338A MX2010004338A (en) 2007-11-08 2008-10-23 Electronic interface apparatus and method and system for manufacturing same.
CN2008801152733A CN101904060B (en) 2007-04-24 2008-10-23 Electronic interface apparatus and method and system for manufacturing same
US12/742,013 US8333004B2 (en) 2007-04-24 2008-10-23 Electronic interface apparatus and method and system for manufacturing same
EP08847977A EP2212975B1 (en) 2007-04-24 2008-10-23 Electronic interface apparatus and method and system for manufacturing same
JP2010532705A JP5249341B2 (en) 2007-04-24 2008-10-23 Electronic interface device, manufacturing method and manufacturing system
BRPI0818708-8A BRPI0818708B1 (en) 2007-04-17 2008-10-23 ELECTRONIC INTERFACE APPLIANCE AND METHOD AND SYSTEM FOR PRODUCTION
CA2702160A CA2702160C (en) 2007-11-08 2008-10-23 Electronic interface apparatus and method and system for manufacturing same
US13/625,287 US8689428B2 (en) 2007-04-24 2012-09-24 Method and system for manufacturing an electronic interface apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
ILPCT/IL2007/001378 2007-11-08
PCT/IL2007/001378 WO2008129526A2 (en) 2007-04-24 2007-11-08 Electronic interface apparatus and method and system for manufacturing same
PCT/IL2008/000538 WO2008129547A2 (en) 2007-04-24 2008-04-17 Method and system for manufacture of an electronic interface card and a card manufactured using same
ILPCT/IL2008/000538 2008-04-17

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/742,013 A-371-Of-International US8333004B2 (en) 2007-04-24 2008-10-23 Electronic interface apparatus and method and system for manufacturing same
US13/625,287 Division US8689428B2 (en) 2007-04-24 2012-09-24 Method and system for manufacturing an electronic interface apparatus

Publications (2)

Publication Number Publication Date
WO2009060425A2 true WO2009060425A2 (en) 2009-05-14
WO2009060425A3 WO2009060425A3 (en) 2010-03-11

Family

ID=40626540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IL2008/001397 WO2009060425A2 (en) 2007-04-17 2008-10-23 Electronic interface apparatus and method and system for manufacturing same

Country Status (1)

Country Link
WO (1) WO2009060425A2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2788646B1 (en) * 1999-01-19 2007-02-09 Bull Cp8 CHIP CARD HAVING A LOOP ANTENNA, AND ASSOCIATED MICROMODULE
GB2371264A (en) * 2001-01-18 2002-07-24 Pioneer Oriental Engineering L Smart card with embedded antenna
US7621043B2 (en) * 2005-11-02 2009-11-24 Checkpoint Systems, Inc. Device for making an in-mold circuit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of EP2212975A4 *

Also Published As

Publication number Publication date
WO2009060425A3 (en) 2010-03-11

Similar Documents

Publication Publication Date Title
US8333004B2 (en) Electronic interface apparatus and method and system for manufacturing same
AU2018278977B2 (en) Chip card manufacturing method, and chip card obtained by said method
US8348171B2 (en) Smartcard interconnect
CN108885709B (en) Method for manufacturing a chip card and a chip card antenna support
US10804226B2 (en) Method for manufacturing chip cards and chip card obtained by said method
JP4286945B2 (en) Contact-type non-contact type common IC card and manufacturing method thereof
CA2702160C (en) Electronic interface apparatus and method and system for manufacturing same
WO2009060425A2 (en) Electronic interface apparatus and method and system for manufacturing same
JP2008269648A (en) Ic card common to contact type and noncontact type
JP2010117833A (en) Inlay, production method thereof, and non-contact type information medium
JP2023150282A (en) Dual interface ic card and manufacturing method of the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880115273.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08847977

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2702160

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2010/004338

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2010532705

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008847977

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107012242

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010121963

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 12742013

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0818708

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100422