WO2009060412A2 - Procédé et système d'analyse biologique utilisant un dispositif de communication mobile - Google Patents
Procédé et système d'analyse biologique utilisant un dispositif de communication mobile Download PDFInfo
- Publication number
- WO2009060412A2 WO2009060412A2 PCT/IB2008/054655 IB2008054655W WO2009060412A2 WO 2009060412 A2 WO2009060412 A2 WO 2009060412A2 IB 2008054655 W IB2008054655 W IB 2008054655W WO 2009060412 A2 WO2009060412 A2 WO 2009060412A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical sensor
- optical
- sample
- interface
- luminescence
- Prior art date
Links
- 238000000034 method Methods 0.000 title abstract description 14
- 238000011953 bioanalysis Methods 0.000 title description 7
- 238000010295 mobile communication Methods 0.000 title description 4
- 230000003287 optical effect Effects 0.000 claims abstract description 85
- 238000004020 luminiscence type Methods 0.000 claims abstract description 24
- 238000004891 communication Methods 0.000 claims abstract description 15
- 230000005540 biological transmission Effects 0.000 claims abstract description 6
- 230000004044 response Effects 0.000 claims abstract description 6
- 230000000813 microbial effect Effects 0.000 claims abstract description 5
- 244000052769 pathogen Species 0.000 claims description 16
- 239000003153 chemical reaction reagent Substances 0.000 claims description 14
- 108010043121 Green Fluorescent Proteins Proteins 0.000 claims description 8
- 102000004144 Green Fluorescent Proteins Human genes 0.000 claims description 8
- ZKHQWZAMYRWXGA-KQYNXXCUSA-J ATP(4-) Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O ZKHQWZAMYRWXGA-KQYNXXCUSA-J 0.000 claims description 6
- ZKHQWZAMYRWXGA-UHFFFAOYSA-N Adenosine triphosphate Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)C(O)C1O ZKHQWZAMYRWXGA-UHFFFAOYSA-N 0.000 claims description 6
- 230000007246 mechanism Effects 0.000 claims description 6
- 230000001413 cellular effect Effects 0.000 claims description 5
- 108060001084 Luciferase Proteins 0.000 claims description 4
- 239000005089 Luciferase Substances 0.000 claims description 4
- 230000000694 effects Effects 0.000 claims 2
- 238000004458 analytical method Methods 0.000 abstract description 5
- 239000000523 sample Substances 0.000 description 33
- 238000012360 testing method Methods 0.000 description 26
- 238000010586 diagram Methods 0.000 description 10
- 238000012545 processing Methods 0.000 description 10
- 238000001514 detection method Methods 0.000 description 6
- 239000012472 biological sample Substances 0.000 description 5
- 230000001717 pathogenic effect Effects 0.000 description 5
- 238000013459 approach Methods 0.000 description 4
- 244000005700 microbiome Species 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 2
- 241000195493 Cryptophyta Species 0.000 description 2
- 241000233866 Fungi Species 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000012864 cross contamination Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 239000000891 luminescent agent Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000009781 safety test method Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000012956 testing procedure Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08C—TRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
- G08C19/00—Electric signal transmission systems
- G08C19/36—Electric signal transmission systems using optical means to covert the input signal
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/76—Chemiluminescence; Bioluminescence
- G01N21/763—Bioluminescence
-
- G—PHYSICS
- G08—SIGNALLING
- G08C—TRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
- G08C23/00—Non-electrical signal transmission systems, e.g. optical systems
- G08C23/04—Non-electrical signal transmission systems, e.g. optical systems using light waves, e.g. infrared
-
- G—PHYSICS
- G08—SIGNALLING
- G08C—TRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
- G08C2201/00—Transmission systems of control signals via wireless link
- G08C2201/90—Additional features
- G08C2201/93—Remote control using other portable devices, e.g. mobile phone, PDA, laptop
Definitions
- the present invention relates generally to bio-analysis and, more particularly, to pathogen detection using a mobile communication device.
- test devices require purchase of relatively expensive testing equipment.
- some testing procedures use optical sensors in combination with processing circuits to provide the test results.
- the results from the testing devices are not easily communicated to a central site.
- Various aspects of the present invention are directed to methods and arrangements for implementing processor power state transitions in a manner that addresses and overcomes the above-mentioned issues.
- the present invention is directed to a wireless communication device that has a wireless transceiver and audio transducers for bi-directional audio communications using the wireless transceiver.
- the device has an optical sensor that provides optical data in response to optical stimulus and an optical sensor interface for directing luminescence from the sample to the optical sensor.
- a control circuit is also included for receiving the optical data from the optical sensor and interpreting the optical data to determine a level of luminescence received by the optical sensor and for providing the optical data to the wireless transceiver for transmission thereof.
- the present invention is directed to an optical interface that directs light to an optical sensor.
- the optical sensor is part of a wireless communication device.
- the interface is for use in microbial analysis.
- the microbial analysis is based upon readings obtained from the optical sensor.
- the interface has a reservoir for mixing the sample with a reagent to generate luminescence indicative of the level of microbial matter present.
- An adjustable securing mechanism secures the reservoir to the wireless communication device, and an optical arrangement directs light from the reservoir to the optical sensor.
- FIG. 1 shows a block diagram of a mobile device implemented according to an example embodiment of the present invention
- FIG. 2 shows a block diagram of a mobile device having a camera implemented according to an example embodiment of the present invention
- FIG. 3 shows a block diagram showing the functionality of a sample holder implemented according to an embodiment of the present invention
- FIG. 4 shows a block diagram showing the use of a calibration unit for use with an embodiment of the present invention
- FIG. 5 shows a flow diagram of a method for use with an embodiment of the present invention.
- FIG. 6 shows an adjustable sample holder for placement over a digital camera lens, according to an example embodiment of the present invention.
- a mobile device such as a phone
- an optical sensor is equipped with an optical sensor.
- a biological sample is placed within an optical interface.
- a luminescence agent is applied to the biological sample to generate luminescence in response to the presence of substances indicative of microorganisms (e.g., bacteria, protozoa, fungi or algae).
- the optical interface allows the generated luminescence to be detected by the optical sensor.
- a processing circuit processes resultant data by the optical sensor.
- the processed data can then be used to determine the presence and/or amount of microorganisms present.
- the processed data and/or the determined information can be sent using a wireless transceiver of the mobile phone.
- a mobile phone has a digital camera.
- a biological sample is placed within a digital camera interface.
- a luminescence agent is applied to the biological sample to generate luminescence in response to the presence of substances indicative of microorganisms (e.g., bacteria, protozoa, fungi or algae).
- the digital camera interface allows the generated luminescence to be detected by the digital camera.
- a processor circuit is configured to determine the presence and/or amount of microorganisms present based upon the intensity/amount of detected luminescence.
- the processed data and/or the determined information can be sent using a wireless transceiver of the mobile phone.
- the use of the digital camera can be particularly useful for using existing or slightly modified mobile phone technology thereby allowing ease of implementation and reduction in costs.
- Digital cameras can be implemented using an array of light sensors, such as charge-coupled devices (CCD) or CMOS sensors. Depending upon the necessary sensitivity, any number of pixel sensors can be used to determine the level of luminescence. Consistent with another example embodiment of the present invention, a mobile phone has an optical sensor, such as a photodiode, specifically designed for use in detecting luminescence from a biological sample.
- CCD charge-coupled devices
- CMOS sensors complementary metal-coupled devices
- any number of pixel sensors can be used to determine the level of luminescence.
- a mobile phone has an optical sensor, such as a photodiode, specifically designed for use in detecting luminescence from a biological sample.
- FIG. 1 shows a block diagram of a mobile device implemented according to an example embodiment of the present invention.
- Mobile device 100 includes a wireless transceiver 108 for communicating with a remote base- station (not shown).
- mobile device 100 functions as a mobile communication device using, for example, audio transducers 110.
- Mobile device 100 provides pathogen detection of a sample 102. The pathogen is detected using optical sensor 104.
- Processing circuit 106 processes the signals from optical sensor 104, audio transducers 110 and wireless transceiver 108.
- Processing circuit 106 receives signals from the optical sensor 104 that are indicative of the presence (or lack thereof) of various pathogens.
- the received signals are processed for transmission using wireless transceiver 108.
- the results of a pathogen test can be sent to a remote site for further processing, analysis or storage.
- other relevant information can also be included.
- possible additional information includes, but is not limited to, a time and date stamp, location indication, a mobile device identifier or input from the mobile device operator.
- a graphical user interface (GUI) could be implemented to allow the user of the device to select from different options and add information to a transmission.
- the test results can also be stored locally. This locally stored information can then be used as a backup of the information as well as for auditing of the information received and stored at the remote site.
- the mobile device 100 can receive testing instructions from the remote site.
- the remote site may request additional samples or instruct the user of the device in some manner.
- the sample 102 is treated with a chemical reagent that reacts with pathogens to produce light.
- Optical sensor 104 detects the presence and/or amount of pathogens in the sample 102 by detecting the amount of light produced.
- a specific embodiment involves the detection of adenosine triphosphate (ATP).
- the chemical reagent can include, for example, green fluorescent proteins (GFP) or liciferin/luciferase.
- mobile device 100 is a cellular phone.
- the cellular phone is communicates with remote devices by connecting to cellular towers. This can be particularly useful for using existing infrastructure to transmit the testing data.
- the mobile device 100 is a satellite phone.
- the satellite phone communicates with remote devices by connecting to satellites.
- test-related information can be transmitted using any number of different protocols and methods including, but not limited to, text messaging, direct data transfer and packet-based communications.
- packet-based communications could be implemented using e-mail or through a website.
- a direct connection can be implemented using modem technology.
- FIG. 2 shows a block diagram of a mobile device having a camera implemented according to an example embodiment of the present invention.
- Mobile device 200 includes wireless transceiver 200, a processing circuit 206, audio transducers 210 and optical sensor 204.
- optical sensor 204 is used as a digital camera for capturing images.
- Processing circuit 206 processes data received from the optical sensor 204 to generated images that can be stored or transmitted by the mobile device.
- Optical sensor 204 is also used to detect the presence of pathogens in sample 202.
- Processing circuit 206 processes the data from optical sensor 204.
- customized software is installed on the mobile device phone. The software controls the processing of data from optical sensor so as to allow for correct interpretation of data received during a pathogen detection test. Software can be used to determine the amount of luminescence received from the sample holder. This data can then be displayed and stored on the mobile device and/or transmitted using wireless transceiver 208.
- Specialized software can be installed on the mobile phone to interface with the sample holder.
- the software can be installed in any number of different manners including, but not limited to, during the manufacturing process, by a merchant or mobile service provider, downloading via the Internet or using a non-volatile memory device.
- the sample holder includes a non- volatile memory with the specialized software.
- the sample holder can be interfaced with the mobile device using any number of data transfer techniques including, but not limited to, Universal Serial Bus interfaces, Firewire interfaces, modem interfaces or infrared interfaces.
- FIG. 3 shows a block diagram showing the functionality of a sample holder implemented according to an embodiment of the present invention. Swab 302 is used to collect the test sample from the desired location.
- swab 302 is placed in container 304.
- container 304 contains a solution that mixes with the test sample.
- a luminescent/reagent 306 e.g., green fluorescent proteins (GFP) or liciferin/luciferase
- GFP green fluorescent proteins
- Detector 308 is used to determine the level of light given off from the mixture.
- the sample holder produces a signal that is received by the processor of the mobile device.
- the signal indicates that the luminescent 306 has been introduced to the solution.
- the mobile device is then able to determine when the proper time for measuring the level of light given off from the mixture.
- the combination of the reagent and sample may only produce significant levels of light during a certain window of time.
- the indication of when the reagent was introduced can be used to collect readings from the optical sensor during the proper window of time.
- the user of the device can manually press a button on the mobile phone to indicate when the reagent was activated.
- FIG. 4 shows a block diagram showing the use of a calibration unit for use with an embodiment of the present invention.
- Calibration unit 402 provides a known quantity of light.
- the software 212 compares the detection level of the optical sensor 204 to the known quantity of light. The comparison can then be used as a baseline for subsequent (or previous) bio-analysis measurements.
- This calibration is particularly useful for use with a large variety of optical sensors and configurations thereof.
- calibration unit 402 can provide a number of different light intensities sequentially. This can be particularly useful for setting a plurality of threshold levels for bio-analysis of a sample.
- software 212 can control the light intensity levels of the calibration unit through an acceptable communications interface.
- FIG. 5 shows a flow diagram of a method for use with an embodiment of the present invention.
- the mobile device is configured for bio-analysis. This can include software configuration, programmable logic configuration and/or discrete component configuration. The configuration can be accomplished during manufacture of the mobile device, after purchase by a user of the mobile device or anytime therebetween.
- a sample holder or calibration unit is attached to the mobile device. This step may not be necessary where the sample holder/calibration unit is an integral part of the mobile device.
- step 506 is another optical step during which the mobile device can be calibrated for future use.
- the sample under test is placed in the sample holder.
- the optical sensor detects luminescence originating in the sample holder due to the presence of the biological component being tested for (e.g., ATP).
- the results of testing step 510 can be stored locally, displayed locally and/or wirelessly transmitted to a remote location.
- FIG. 6 shows an adjustable sample holder for placement over a digital camera lens, according to an example embodiment of the present invention.
- the sample holder can be a detachable holder that interfaces with the mobile device. This allows for the sample holder to be detached from the mobile device when the device is not being used for bio-analysis. This can also be particularly useful for use with a variety of off-the- shelf mobile devices/phones.
- the sample holders can be specifically designed for use with one or more mobile phones.
- the sample holders can be designed with a generic interface that works with a variety of different mobile phones.
- Such a generic sample holder can include an adjustable attachment
- the attachment mechanism can be implemented as a clip, strap, hook and loop fastener, snap, magnetic or any other suitable attachment mechanism.
- the sample holder can also be implemented with an adjustable aperture 602.
- Aperture 602 can be moved along both vertical and horizontal axes 604 and 602, respectively, thereby aligning the aperture with the optical sensor.
- the size of aperture 602 can also be adjusted.
- Such flexibility can be particularly useful for reducing the amount of ambient light from external sources, such as a display of the phone.
- Various optical arrangements can be used to directed light from a reservoir of the sample holder to the optical sensor. For instance, a combination of one or more mirrors and lenses can be used to direct the light toward the optical sensor. In one instance, the light can be directed through a fiber optic cable to the optical sensor.
- processing circuits may be implemented using a variety of approaches, including one or more of digital signal processors, general purposes processors, programmable logic devices, digital and/or analog circuitry and/or software-based approaches.
- the above example embodiments and implementations may also be integrated with a variety of circuits, devices, systems and approaches including those for use in connection with cellular phones, laptop computers and handheld computing devices. These approaches are implemented in connection with various example embodiments of the present invention. Such modifications and changes do not depart from the true scope of the present invention that is set forth in the following claims.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Biochemistry (AREA)
- Plasma & Fusion (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
L'invention concerne une analyse microbienne d'un échantillon qui utilise divers dispositifs, systèmes, agencements et procédés. Un tel dispositif est un dispositif de communication sans fil équipé d'un émetteur-récepteur sans fil et de transducteurs audio pour communications audio bidirectionnelles utilisant l'émetteur-récepteur sans fil. Le dispositif est équipé d'un capteur optique qui fournit des données optiques en réponse à un stimulus optique et une interface de capteur optique pour orienter la luminescence à partir de l'échantillon vers le capteur optique. Un circuit de commande est également intégré pour recevoir les données optiques émanant du capteur optique et interpréter les données optiques pour déterminer un niveau de luminescence reçu par le capteur optique pour fournir les données optiques à l'émetteur-récepteur sans fil en vue de leur transmission.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US98608307P | 2007-11-07 | 2007-11-07 | |
US60/986,083 | 2007-11-07 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2009060412A2 true WO2009060412A2 (fr) | 2009-05-14 |
WO2009060412A3 WO2009060412A3 (fr) | 2009-07-30 |
Family
ID=40626283
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2008/054655 WO2009060412A2 (fr) | 2007-11-07 | 2008-11-07 | Procédé et système d'analyse biologique utilisant un dispositif de communication mobile |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2009060412A2 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012032171A1 (fr) * | 2010-09-09 | 2012-03-15 | Dublin City University | Système d'analyse optique |
EP2455745A1 (fr) * | 2010-11-16 | 2012-05-23 | Research In Motion Limited | Appareil et procédé associé pour faciliter la détection de la contamination d'un objet |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0834848A2 (fr) * | 1996-10-02 | 1998-04-08 | Texas Instruments Incorporated | Système de capteurs optiques fixes, et réseau de capteurs distribué |
US20050157304A1 (en) * | 2004-01-20 | 2005-07-21 | General Electric Company | Handheld device with a disposable element for chemical analysis of multiple analytes |
AU2006203399A1 (en) * | 1999-05-05 | 2006-09-07 | Invitrogen Corporation | Optical probes and assays |
US20060263252A1 (en) * | 2003-02-25 | 2006-11-23 | Jorge Sanchez-Olea | Apparatus and method for chemical and biological agent sensing |
US20070084990A1 (en) * | 2003-08-14 | 2007-04-19 | Microspectral Sensing, Llc | Integrated sensing system approach for handheld spectral measurements |
US20070146703A1 (en) * | 2005-09-19 | 2007-06-28 | Jmar Technologies, Inc. | Systems and Methods for Detection and Classification of Waterborne Particles Using a Multiple Angle Light Scattering (MALS) Instrument |
-
2008
- 2008-11-07 WO PCT/IB2008/054655 patent/WO2009060412A2/fr active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0834848A2 (fr) * | 1996-10-02 | 1998-04-08 | Texas Instruments Incorporated | Système de capteurs optiques fixes, et réseau de capteurs distribué |
AU2006203399A1 (en) * | 1999-05-05 | 2006-09-07 | Invitrogen Corporation | Optical probes and assays |
US20060263252A1 (en) * | 2003-02-25 | 2006-11-23 | Jorge Sanchez-Olea | Apparatus and method for chemical and biological agent sensing |
US20070084990A1 (en) * | 2003-08-14 | 2007-04-19 | Microspectral Sensing, Llc | Integrated sensing system approach for handheld spectral measurements |
US20050157304A1 (en) * | 2004-01-20 | 2005-07-21 | General Electric Company | Handheld device with a disposable element for chemical analysis of multiple analytes |
US20070146703A1 (en) * | 2005-09-19 | 2007-06-28 | Jmar Technologies, Inc. | Systems and Methods for Detection and Classification of Waterborne Particles Using a Multiple Angle Light Scattering (MALS) Instrument |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012032171A1 (fr) * | 2010-09-09 | 2012-03-15 | Dublin City University | Système d'analyse optique |
US9244066B2 (en) | 2010-09-09 | 2016-01-26 | Dublin City University | Optical testing system |
EP2455745A1 (fr) * | 2010-11-16 | 2012-05-23 | Research In Motion Limited | Appareil et procédé associé pour faciliter la détection de la contamination d'un objet |
Also Published As
Publication number | Publication date |
---|---|
WO2009060412A3 (fr) | 2009-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11385219B2 (en) | Handheld diagnostic test device and method for use with an electronic device and a test cartridge in a rapid diagnostic test | |
WO2007044593A3 (fr) | Procede et systeme destines a un estimateur de menace a imagerie chimique muni d'une sonde | |
US20110201382A1 (en) | Portalbe sensor apparatus with detachable sensor units | |
US20050201898A1 (en) | Universal optical imaging and processing system | |
DE602008006330D1 (de) | Tragbares Endgerät, Informationsverarbeitungsvorrichtung und Inhaltsanzeigesystem | |
US20140335905A1 (en) | Portable device for measuring blood alcohol level by using a mobile device susch as a phone, tablet or laptop | |
EP3651162B1 (fr) | Procédés et dispositifs pour effectuer une mesure analytique | |
KR20170036755A (ko) | 색조에 기초한 화학적 매개변수의 값을 결정하는 센서 장치 및 그 방법 | |
US20180031482A1 (en) | Spectrometric measuring device | |
RU2015105987A (ru) | Устройство отображения изображения и способ отображения изображения, оконечное устройство передачи информации и способ передачи информации и система отображения изображения | |
JP2007143648A5 (fr) | ||
EA200801809A1 (ru) | Комбинация считывателя и термостата | |
Kwon et al. | Applications of smartphone cameras in agriculture, environment, and food: A review | |
WO2009060412A2 (fr) | Procédé et système d'analyse biologique utilisant un dispositif de communication mobile | |
US20150099306A1 (en) | Test cassette reading device and reading method thereof | |
US20060092030A1 (en) | Universal colorimetric imaging array device | |
JP2020508470A5 (fr) | ||
US9140664B2 (en) | Liquid characteristic analyzing apparatus | |
KR20180064705A (ko) | 휴대폰을 이용한 휴대용 바이러스 검출 장치 | |
US12108318B2 (en) | Dynamic wireless information transmission | |
EP3354204A1 (fr) | Dispositif de mesure biophotonique, programme de traitement d'informations et procédé de traitement d'informations | |
US20170356847A1 (en) | Measuring device | |
EP3978909A1 (fr) | Procédé de détermination de la concentration d'au moins un analyte dans un fluide corporel | |
EP3865862A1 (fr) | Procédé pour améliorer la détermination d'une concentration d'analyte dans un fluide corporel | |
US9965872B2 (en) | Display processing terminal device, photosensor-equipped unit, and photometric system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08846834 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase in: |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08846834 Country of ref document: EP Kind code of ref document: A2 |